WO2014006935A1 - Position measurement device, stage apparatus, exposure equipment, and device manufacturing method - Google Patents

Position measurement device, stage apparatus, exposure equipment, and device manufacturing method Download PDF

Info

Publication number
WO2014006935A1
WO2014006935A1 PCT/JP2013/056243 JP2013056243W WO2014006935A1 WO 2014006935 A1 WO2014006935 A1 WO 2014006935A1 JP 2013056243 W JP2013056243 W JP 2013056243W WO 2014006935 A1 WO2014006935 A1 WO 2014006935A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
beam splitter
measurement
diffraction grating
polarization beam
Prior art date
Application number
PCT/JP2013/056243
Other languages
French (fr)
Japanese (ja)
Inventor
要助 栗山
博人 今川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2014006935A1 publication Critical patent/WO2014006935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers

Definitions

  • the present invention relates to a position measuring apparatus, a stage apparatus, an exposure apparatus, and a device manufacturing method.
  • a laser interferometer is used to measure the position of a substrate stage that holds and moves an exposure target substrate. Is going.
  • the laser interferometer since the optical path of the measurement beam is long and the optical path length changes, short-term fluctuations in the measured value due to the temperature fluctuation of the atmosphere on the optical path cannot be ignored.
  • a measurement obtained by irradiating measurement light such as laser light onto a diffraction grating attached to a substrate stage, and photoelectrically converting interference light between the diffraction light generated from the diffraction grating and the corresponding reference light A position measuring device that measures a relative movement amount of a substrate stage from a signal has been proposed (see, for example, Patent Document 1). In this position measurement apparatus, position measurement can be performed more stably than a laser interferometer.
  • the present invention has been made in view of the above-described problems. For example, when applied to the position measurement of the substrate stage of an exposure apparatus, the position measurement in the in-plane direction of the substrate and the position measurement in the normal direction of the substrate are performed. It is an object of the present invention to provide a position measuring apparatus capable of simultaneously and stably performing the above.
  • the present invention also provides an exposure that can position the photosensitive substrate on the substrate stage with high accuracy with respect to the projection optical system using, for example, a position measuring device that simultaneously and stably measures the position of the substrate stage.
  • An object is to provide an apparatus.
  • a position measuring device that measures the relative position of the second member, the relative position of which is variable with respect to the first member, A polarizing beam splitter fixedly attached to the first member; A reflective diffraction grating attached to the second member and having a periodic structure along a first direction; A first measurement light which is a diffracted light along the first direction generated from the diffraction grating in response to the first polarized light incident on the diffraction grating via a first path in the polarization beam splitter; A first measurement unit that measures a relative position of the second member along the first direction based on interference with the second polarized first reference light corresponding to one measurement light; A second measurement light that is zero-order light generated along the second direction from the diffraction grating in response to the light incident on the diffraction grating via the second path in the polarization beam splitter; and the second measurement light
  • a position measuring device comprising: a second measuring
  • the relative position with respect to the first member being variable.
  • a polarizing beam splitter fixedly attached to the first member; Generated from the diffraction grating along the predetermined path in the first plane in response to light obliquely incident on the diffraction grating along a predetermined path in the first plane including the first direction via the polarizing beam splitter
  • First relative position of the second member along the first direction is measured based on interference light between the first measurement light that is diffracted light and the first reference light corresponding to the first measurement light.
  • the first measurement unit deflects light that has passed through the polarization beam splitter, and obliquely enters the first region on the diffraction grating along the first path at a Littrow angle of the reflective diffraction grating.
  • a position measuring device having a member.
  • a stage apparatus including a stage that holds an object and a drive unit that moves the stage, Comprising the position measuring device of the first form or the second form, One of the polarization beam splitter and the diffraction grating is attached to the stage.
  • An exposure apparatus comprising a stage device of a third form that holds and moves the substrate.
  • the exposure apparatus of the fourth embodiment using the exposure apparatus of the fourth embodiment, exposing the predetermined pattern to the substrate; Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate; And processing the surface of the substrate through the mask layer.
  • a device manufacturing method is provided.
  • the position measuring apparatus of the present invention when applied to the position measurement of the substrate stage of the exposure apparatus, the position measurement in the in-plane direction of the substrate and the position measurement in the normal direction of the substrate are performed simultaneously and stably. be able to.
  • a position measurement device that simultaneously and stably measures the position of the substrate stage is used to accurately align the photosensitive substrate on the substrate stage with respect to the projection optical system. Can do.
  • FIG. 1 shows schematically the structure of the exposure apparatus provided with the position measuring device concerning 1st Embodiment. It is a figure which shows roughly the arrangement
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus provided with a position measuring apparatus according to the first embodiment.
  • the position measurement apparatus of this embodiment is applied to the position measurement of the substrate stage that moves while holding the photosensitive substrate in the exposure apparatus.
  • the Z axis is set in the normal direction of the image plane of the projection optical system PL (that is, the direction of the optical axis AX of the projection optical system PL: the vertical direction on the paper surface of FIG. 1) in the image plane of the projection optical system PL.
  • the X axis is set parallel to the paper surface of FIG. 1
  • the Y axis is set perpendicular to the paper surface of FIG. 1 in the image plane of the projection optical system PL.
  • exposure light (illumination light) is supplied from a light source LS to the exposure apparatus of the first embodiment.
  • the exposure light source LS for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used.
  • the exposure apparatus of the first embodiment includes an illumination optical system IL that illuminates a mask (reticle) M on which a pattern to be transferred is formed by illumination light (exposure light) emitted from a light source LS.
  • the illumination optical system IL is composed of an optical integrator (homogenizer), a field stop, a condenser lens, and the like.
  • the illumination optical system IL illuminates, for example, the entire rectangular pattern region of the mask M, or an elongated slit-shaped region (for example, a rectangular region) along the X direction in the entire pattern region.
  • the light from the pattern of the mask M forms a pattern image of the mask M in the unit exposure region of the wafer (photosensitive substrate) W coated with the photoresist via the projection optical system PL. That is, in the unit exposure area of the wafer W, a rectangular area similar to the entire pattern area of the mask M or a rectangular area elongated in the X direction (optically corresponding to the illumination area on the mask M) A mask pattern image is formed in the (static exposure region).
  • the mask M is held substantially parallel to the XY plane on the mask stage MS.
  • the mask stage MS incorporates a mechanism for moving the mask M in the X direction, the Y direction, the rotation direction around the Z axis, and the like.
  • the mask stage MS is provided with a movable mirror (not shown), and a mask laser interferometer (not shown) using this movable mirror moves the position of the mask stage MS (and hence the mask M) in the X direction, the Y direction, and the rotation. Measure the position of the direction in real time.
  • the wafer W is held substantially parallel to the XY plane on a wafer stage (substrate stage) WS via a wafer holder (not shown). That is, on the wafer stage WS that holds the wafer W and moves on the exposure apparatus surface plate, the wafer W is held at a predetermined position in a predetermined posture.
  • the wafer stage WS has a mechanism for moving the wafer stage WS (and thus the wafer W) in the X direction, the Y direction, the Z direction, the rotation direction around the X axis, the rotation direction around the Y axis, and the rotation direction around the Z axis. It has been incorporated.
  • the position in the X direction, the position in the Y direction, the position in the Z direction, the position in the rotation direction around the X axis, and the position in the rotation direction around the Y axis of the wafer stage WS (and thus the wafer W).
  • a position measuring device 1 that measures the position in the rotation direction around the Z axis in real time.
  • the position measuring apparatus 1 includes a pair of reflective diffraction gratings 10 that are spaced apart in the X direction with the wafer W interposed therebetween, and the projection optical system PL in the X direction. And four measuring units 11 installed side by side.
  • FIG. 2 shows a reference state in which the center Wa of the wafer W and the optical axis AX of the projection optical system PL are at the same position on the XY plane.
  • the diffraction grating 10 has, for example, an elongated rectangular outer shape along the Y direction, and is fixedly (or detachably) attached to the wafer stage WS.
  • the four measurement units 11 are fixedly attached to the exposure apparatus main body isolated from the wafer stage WS.
  • the first pair of measurement units 11 are arranged side by side in the X direction on the + X direction side of the projection optical system PL
  • the second pair of measurement units 11 is -X of the projection optical system PL. They are arranged side by side in the X direction on the direction side.
  • the pair of diffraction gratings 10 are arranged symmetrically with respect to an axis extending in the Y direction through the center Wa of the wafer W and have the same configuration.
  • the four measurement units 11 are arranged symmetrically with respect to the axis extending in the Y direction through the optical axis AX so as to be along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration. It shall have.
  • the wafer stage WS moves with respect to the stationary exposure apparatus main body. The specific configuration and operation of the position measuring device 1 will be described later.
  • the output of the mask laser interferometer and the output of the position measuring device 1 are supplied to the control system CR.
  • the control system CR controls the position of the mask M in the X direction, the Y direction, and the rotation direction based on the measurement result of the mask laser interferometer. That is, the control system CR transmits a control signal to a mechanism incorporated in the mask stage MS, and this mechanism moves the mask stage MS based on the control signal, whereby the position of the mask M in the X direction, the Y direction. And adjust the position in the rotation direction.
  • the control system CR Based on the measurement result of the position measuring device 1, the control system CR makes the focus position (Z-direction position) and tilt angle (X-axis) of the wafer W match the surface of the wafer W with the image plane of the projection optical system PL.
  • the rotation angle around and the rotation angle around the Y axis are controlled. That is, the control system CR transmits a control signal to the wafer stage drive system DRw, and the wafer stage drive system DRw drives the wafer stage WS based on the control signal, thereby adjusting the focus position and tilt angle of the wafer W.
  • control system CR controls the position of the wafer W in the X direction, the Y direction, and the rotational direction around the Z axis based on the measurement result of the position measuring device 1. That is, the control system CR transmits a control signal to the wafer stage drive system DRw, and the wafer stage drive system DRw drives the wafer stage WS based on the control signal, whereby the position of the wafer W in the X direction, Adjust the position and the position in the rotation direction around the Z axis.
  • the pattern image of the mask M is collectively exposed to one unit exposure area among a plurality of unit exposure areas set vertically and horizontally on the wafer W.
  • the control system CR sends a control signal to the wafer stage drive system DRw, and projects another unit exposure region of the wafer W by moving the wafer stage WS along the XY plane by the wafer stage drive system DRw. Positioning is performed with respect to the optical system PL.
  • the operation of collectively exposing the pattern image of the mask M to the unit exposure area of the wafer W is repeated.
  • the control system CR transmits a control signal to a mechanism incorporated in the mask stage MS, and also transmits a control signal to the wafer stage drive system DRw, according to the projection magnification of the projection optical system PL.
  • the pattern image of the mask M is scanned and exposed to one unit exposure region of the wafer W while the mask stage MS and the wafer stage WS are moved in the Y direction at the speed ratio.
  • the control system CR sends a control signal to the wafer stage drive system DRw, and projects another unit exposure region of the wafer W by moving the wafer stage WS along the XY plane by the wafer stage drive system DRw. Positioning is performed with respect to the optical system PL.
  • the operation of scanning and exposing the pattern image of the mask M to the unit exposure area of the wafer W is repeated.
  • the position of the mask M and the wafer W is controlled using the position measuring device 1, the wafer stage driving system DRw, etc., and the rectangular (generally slit-shaped) static exposure region is shortened.
  • the mask stage MS and the wafer stage WS along the Y direction, which is the side direction, and the mask M and the wafer W synchronously (scanning)
  • the long side of the static exposure region is formed on the wafer W.
  • the mask pattern is scanned and exposed to an area having a width equal to the length of the wafer W and a length corresponding to the scanning amount (movement amount) of the wafer W.
  • FIG. 3 is a diagram for explaining the measurement principle of the X-direction position and the Y-direction position of the diffraction grating attached to the wafer stage.
  • measurement light 31 including a p-polarized component and an s-polarized component enters the same optical path along the X direction on a polarizing beam splitter PBS fixedly attached to the exposure apparatus main body.
  • the s-polarized light reflected in the Z direction on the polarization separation surface is emitted from the polarization beam splitter PBS and is reflected on the reflective diffraction grating 10 attached to the wafer stage WS. Is incident on the measurement point 32a.
  • the diffraction grating 10 has a form of a plane parallel plate having an incident surface substantially parallel to the XY plane with respect to the polarization beam splitter PBS.
  • the diffraction grating 10 is provided with a diffraction pattern having a two-dimensional periodic structure along the X direction and the Y direction.
  • + 1st order diffracted light 31sa and ⁇ 1st order diffracted light 31sb are generated along the X direction (along the XZ plane) from the diffraction grating 10, and
  • a + 1st order diffracted light 31sc (not shown) and a ⁇ 1st order diffracted light 31sd (not shown) are generated from the diffraction grating 10 along the Y direction (along the YZ plane).
  • the + 1st order diffracted light 31sa and the ⁇ 1st order diffracted light 31sb which are s-polarized measurement light generated from the diffraction grating 10 along the X direction, are deflected in the Z direction by the deflecting members 33a and 33b, respectively, and then the polarization beam splitter PBS. It propagates inside and is reflected in the X direction by the polarization separation plane.
  • the deflecting members 33a and 33b are fixedly attached to the polarization beam splitter PBS and have a one-dimensional periodic structure diffraction pattern along the X direction.
  • the diffraction patterns of the deflecting members 33a and 33b may be formed on the optical surface facing the diffraction grating 10 of the polarization beam splitter PBS.
  • the p-polarized light transmitted through the polarization separation surface is emitted from the polarization beam splitter PBS and fixedly attached to the exposure apparatus main body (that is, integrated with the polarization beam splitter PBS).
  • the reference member RM has the form of a plane parallel plate with the incident surface along the YZ plane facing the polarization beam splitter PBS.
  • a diffraction pattern having a two-dimensional periodic structure along the X direction and the Y direction is provided.
  • + 1st order diffracted light 31pa and ⁇ 1st order diffracted light 31pb are generated along the Z direction (along the XZ plane) from the reference member RM.
  • a + 1st order diffracted light 31pc (not shown) and a ⁇ 1st order diffracted light 31pd (not shown) are generated along the Y direction (along the XY plane) from the member RM.
  • the + 1st order diffracted light 31pa and the ⁇ 1st order diffracted light 31pb which are p-polarized reference light generated along the Z direction from the reference member RM, are deflected in the X direction by the deflecting members 35a and 35b, respectively, and then the polarization beam splitter PBS Propagates inside and transmits through the polarization splitting surfaces.
  • the deflecting members 35a and 35b are fixedly attached to the polarization beam splitter PBS, and have a one-dimensional periodic structure diffraction pattern along the Z direction.
  • the diffraction patterns of the deflecting members 35a and 35b may be formed on the optical surface facing the reference member RM of the polarization beam splitter PBS.
  • the s-polarized + 1st order diffracted light 31sa reflected in the X direction on the polarization separation surface of the polarization beam splitter PBS and the p-polarized + 1st order diffracted light 31pa transmitted through the polarization separation surface are along the same path. And enters a folding member 36a such as a corner cube fixedly attached to the polarization beam splitter PBS.
  • the s-polarized + 1st-order diffracted light 31sa and the p-polarized + 1st-order diffracted light 31pa that have been translated in the Z direction by the action of the folding member 36a and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS.
  • the + 1st-order diffracted light 31sa which is s-polarized measurement light reflected in the Z direction on the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS and moved from the measurement point 32a on the diffraction grating 10 to the ⁇ X direction side.
  • the incident light is incident on the point 32b that is spaced apart.
  • the + 1st order diffracted light 31saa is generated along the X direction from the diffraction grating 10.
  • the + 1st-order diffracted light 31saa which is s-polarized measurement light generated along the X direction from the diffraction grating 10, is deflected in the Z direction by a deflecting member 33c configured in the same manner as the deflecting members 33a and 33b, and then polarized beam splitter. It propagates inside the PBS and is reflected in the X direction by the polarization separation surface.
  • the + first-order diffracted light 31pa which is p-polarized reference light that has passed through the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS, and is spaced from the point 34a on the reference member RM to the ⁇ Z direction side by the point 34b. Is incident on. In a region including the point 34b on the reference member RM, a diffraction pattern having a one-dimensional periodic structure along the Z direction is provided. In response to the p-polarized + 1st order diffracted light 31pa incident on the point 34b on the reference member RM, the + 1st order diffracted light 31paa is generated along the Z direction from the reference member RM.
  • the + 1st-order diffracted light 31paa which is p-polarized reference light generated along the Z direction from the reference member RM, is deflected in the X direction by a deflecting member 35c configured in the same manner as the deflecting members 35a and 35b, and then the polarization beam splitter. Propagates through the PBS and passes through the polarization separation surface.
  • the + 1st order diffracted light 31saa that is the s-polarized measurement light reflected in the X direction on the polarization separation surface and the + 1st order diffracted light 31paa that is the p-polarized reference light that has passed through the polarization separation surface are polarized along the same path.
  • the light propagates through the beam splitter PBS and is emitted from the polarization beam splitter PBS.
  • the s-polarized ⁇ 1st-order diffracted light 31sb reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS and the p-polarized ⁇ 1st-order diffracted light 31pb transmitted through the polarization separation surface are along the same path.
  • the light propagates through the polarization beam splitter PBS and enters a folding member 36b such as a corner cube fixedly attached to the polarization beam splitter PBS.
  • the s-polarized ⁇ 1st-order diffracted light 31sb and the p-polarized ⁇ 1st-order diffracted light 31pb that have been translated in the Z direction by the action of the folding member 36b and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS. To do.
  • the ⁇ 1st-order diffracted light 31sb which is the s-polarized measurement light reflected in the Z direction on the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS and moved from the measurement point 32a on the diffraction grating 10 to the + X direction side. Incident light is incident on the point 32c which is spaced apart.
  • the -1st order diffracted light 31sbb is generated along the X direction from the diffraction grating 10.
  • the s-polarized ⁇ 1st-order diffracted light 31sbb which is measurement light generated from the diffraction grating 10 along the X direction, is deflected in the Z direction by a deflecting member 33d configured in the same manner as the deflecting members 33a to 33c, and then is polarized. It propagates inside the splitter PBS and is reflected in the X direction by the polarization separation surface.
  • the first-order diffracted light 31pb which is p-polarized reference light that has passed through the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS, and is spaced from the point 34a on the reference member RM to the + Z direction side by a point 34c. Is incident on. In a region including the point 34c on the reference member RM, a diffraction pattern having a one-dimensional periodic structure along the Z direction is provided. In response to the p-polarized -1st order diffracted light 31pb incident on the point 34c on the reference member RM, the -1st order diffracted light 31pbb is generated along the Z direction from the reference member RM.
  • the ⁇ 1st-order diffracted light 31pbb which is p-polarized reference light generated along the Z direction from the reference member RM, is deflected in the X direction by a deflecting member 35d configured similarly to the deflecting members 35a to 35c, and then is polarized. It propagates inside the splitter PBS and passes through the polarization separation surface.
  • the ⁇ 1st order diffracted light 31sbb which is the s-polarized measurement light reflected in the X direction on the polarization separation surface and the ⁇ 1st order diffracted light 31pbb which is the p-polarized reference light transmitted through the polarization separation surface are along the same path. Then, the light propagates through the polarization beam splitter PBS and is emitted from the polarization beam splitter PBS.
  • the interference light between the + 1st order diffracted light 31saa, which is the s-polarized measurement light emitted from the polarization beam splitter PBS along the same path, and the + 1st order diffracted light 31paa, which is the p-polarized reference light, is obtained by photoelectric detection.
  • the X-direction position of the measurement point 32a on the diffraction grating 10, and consequently the X-direction position of the measurement point 32a of the wafer stage WS is measured.
  • the relative position along the X direction at the measurement point 32a of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured.
  • + 1st order diffracted light 31sc (not shown) and ⁇ from the diffraction grating 10 along the Y direction (along the YZ plane) according to the s-polarized light incident on the measurement point 32a on the diffraction grating 10 and ⁇ First-order diffracted light 31sd (not shown) is generated. Further, in accordance with the p-polarized light incident on the point 34a on the reference member RM, the + first-order diffracted light 31pc (not shown) and the ⁇ 1st-order diffracted light 31pd from the reference member RM along the Y direction (along the XY plane). (Not shown) occurs.
  • the + 1st-order diffracted light 31sc that is the s-polarized measurement light and the + 1st-order diffracted light 31pc that is the p-polarized reference light pass through the paths corresponding to the + 1st-order diffracted light 31sa and the + 1st-order diffracted light 31pa in the X-direction position measurement.
  • + 1st-order diffracted light 31scc (not shown) that is light and + 1st-order diffracted light 31pcc (not shown) that is p-polarized reference light are emitted from the polarization beam splitter PBS along the same path.
  • the ⁇ 1st order diffracted light 31sd which is s-polarized measurement light
  • the + 1st order diffracted light 31pd which is p-polarized reference light
  • the interference light between the + 1st order diffracted light 31scc that is the s-polarized measurement light emitted from the polarization beam splitter PBS along the same path and the + 1st order diffracted light 31pcc that is the p-polarized reference light is obtained by photoelectric detection.
  • the Y-direction position of the measurement point 32a on the diffraction grating 10, and consequently the Y-direction position of the measurement point 32a of the wafer stage WS is measured.
  • the relative position along the Y direction at the measurement point 32a of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured.
  • FIG. 4 is a diagram for explaining the measurement principle of the position in the Z direction of the diffraction grating attached to the wafer stage.
  • a polarization beam splitter that is, a polarization beam splitter used for measurement of the X-direction position and the Y-direction position of the diffraction grating 10) PBS fixedly attached to the exposure apparatus main body PBS and p-polarization component in the same optical path.
  • the measurement light 41 including the s-polarized light component enter along the X direction.
  • the s-polarized light reflected in the Z direction on the polarization separation surface propagates through the polarization beam splitter PBS and is fixedly attached to the polarization beam splitter PBS. It passes through a quarter-wave plate 42 as a member, becomes circularly polarized light, and enters a point 43a on the diffraction grating 10 attached to the wafer stage WS.
  • measurement light 41a which is zero-order light (regular reflection light) is generated from the diffraction grating 10 along the Z direction.
  • the measurement light 41a generated along the Z direction from the diffraction grating 10 becomes p-polarized light through the quarter-wave plate 42, propagates through the polarization beam splitter PBS, and then passes through the polarization separation surface.
  • the p-polarized light transmitted through the polarization separation surface propagates through the polarization beam splitter PBS and is fixedly attached to the polarization beam splitter PBS.
  • the light After passing through 44, the light becomes circularly polarized light, and is incident on a point 45a on a reference member (that is, a reference member used for measurement of the X-direction position and Y-direction position of the diffraction grating 10) RM fixedly attached to the exposure apparatus main body.
  • a reference member that is, a reference member used for measurement of the X-direction position and Y-direction position of the diffraction grating 10.
  • a planar reflecting surface along the YZ plane is provided.
  • the circularly-polarized reference light 41b which is zero-order light reflected at the point 45a on the reference member RM, becomes s-polarized light through the quarter-wave plate 44, propagates inside the polarization beam splitter PBS, and is polarized and separated. Is reflected in the Z direction.
  • the p-polarized measurement light 41a transmitted through the polarization separation surface and the s-polarized reference light 41b reflected in the Z direction on the polarization separation surface propagate through the polarization beam splitter PBS along the same path to each other.
  • the light enters the folding member 46 fixedly attached to the splitter PBS.
  • the p-polarized measurement light 41a and the s-polarized reference light 41b which have been translated in the X direction by the action of the folding member 46 and returned to the polarization beam splitter PBS, enter the polarization separation surface of the polarization beam splitter PBS.
  • the p-polarized measurement light 41 a that has passed through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light via the quarter-wave plate 42, and starts from a point 43 a on the diffraction grating 10. Incident to the point 43b spaced in the + X direction.
  • measurement light 41 aa that is zero-order light is generated along the Z direction from the diffraction grating 10.
  • the measurement light 41aa generated along the Z direction from the diffraction grating 10 becomes s-polarized light through the quarter-wave plate 42, propagates through the polarization beam splitter PBS, and is reflected in the X direction by the polarization separation surface.
  • the s-polarized reference 41b reflected by the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light via the quarter wavelength plate 44, and starts from a point 45a on the reference member RM.
  • the incident light enters the point 45b spaced in the + Z direction.
  • a planar reflecting surface along the YZ plane is provided in a region including the point 45b on the reference member RM.
  • the circularly polarized reference light 41b reflected at the point 45b on the reference member RM becomes p-polarized light through the quarter-wave plate 44, propagates through the polarization beam splitter PBS, and passes through the polarization separation surface.
  • the s-polarized measurement light 41aa reflected in the X direction on the polarization separation surface of the polarization beam splitter PBS and the p-polarized reference light 41b transmitted through the polarization separation surface are inside the polarization beam splitter PBS along the same path. And is emitted from the polarization beam splitter PBS.
  • the Z-direction position of the measurement point 43 located between the points 43a and 43b, and thus the Z-direction position of the measurement point 43 on the wafer stage WS is measured.
  • the relative position along the Z direction is measured at the measurement point 43 of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable.
  • FIG. 5 is a diagram schematically showing the configuration of the position measuring apparatus according to the first embodiment.
  • the position measurement device 1 of the first embodiment includes four measurement units 11 (only one measurement unit 11 is shown in FIG. 5), a measurement light source 12, a branch unit 13, and a light guide 14. And a processing unit 15.
  • the measurement unit 11 includes a polarization beam splitter PBS, a reference member RM, and an input / output unit 11A, and is fixedly attached to the exposure apparatus main body.
  • the measurement light source 12, the branch unit 13, the light guide 14, and the processing unit 15 are provided in common for the four measurement units 11.
  • the measurement light source 12 a He—Ne laser light source, a semiconductor laser light source, or the like can be used.
  • the light supplied from the measurement light source 12 is separated into s-polarized light and p-polarized light in the branch unit 13, and is input to the input / output unit 11 ⁇ / b> A of each measurement unit 11 via, for example, a dual-core light guide 14. Supplied. That is, the s-polarized light propagated through one core of the light guide 14 and the p-polarized light propagated through the other core are supplied to the input / output unit 11A.
  • the input / output unit 11A includes a collimator, a beam splitter, and the like, and generates p-polarized component and s-polarized component along the same optical path from p-polarized light and s-polarized light supplied along different optical paths. The required number of measurement lights are generated. The plurality of measurement lights generated by the input / output unit 11A are respectively emitted along the X direction and enter the polarization beam splitter PBS.
  • the optical surface PBSa on the input / output unit 11A side of the prism-type polarizing beam splitter PBS as shown in FIG. 6, four measurement lights 51, 52, 53, and 54 for measuring the positions in the XY directions are provided.
  • Five measurement lights 61, 62, 63, 64, 65 for measuring the Z-direction position are incident.
  • the measurement light 61 is incident on the center of the optical surface PBSa
  • the measurement lights 51 to 54 are incident on the positions of four corners of a relatively small square centered on the position of the measurement light 61
  • the measurement lights 62 to 65 are measured.
  • the light 61 is incident on four corners of a relatively large square centered on the position of the light 61.
  • the s-polarized light reflected by the polarization separation surface of the polarization beam splitter PBS is incident on the polarization beam splitter PBS side of the diffraction grating 10, as shown in FIG. It enters the measurement points 51m, 52m, 53m, and 54m on the surface 10a.
  • the p-polarized light that has passed through the polarization separation surface of the polarization beam splitter PBS is the points 51r and 52r on the incident surface RMa of the reference member RM on the polarization beam splitter PBS side. , 53r, and 54r.
  • a diffraction pattern having a two-dimensional periodic structure along the Y direction and the Z direction is provided.
  • the ⁇ first-order diffracted light which is s-polarized measurement light generated along the X direction (along the XZ plane) at the measurement point 51m, is an optical surface on the diffraction grating 10 side of the polarization beam splitter PBS as shown in FIG. In the region 51e on the PBSb, it enters the polarization separation surface of the polarization beam splitter PBS via a diffraction pattern region having a one-dimensional periodic structure along the X direction.
  • the ⁇ first-order diffracted light generated along the Y direction (along the YZ plane) at the measurement point 51m passes through the diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51e. Incident on the polarization separation surface.
  • ⁇ first-order diffracted light which is s-polarized measurement light generated along the X direction at measurement points 52m to 54m, extends along the X direction in the regions 52e, 53e, and 54e on the optical surface PBSb of the polarization beam splitter PBS. Then, the light enters the polarization separation surface of the polarization beam splitter PBS through the diffraction pattern region having the one-dimensional periodic structure.
  • the ⁇ first-order diffracted light generated along the Y direction at the measurement points 52m to 54m passes through the diffraction pattern region having a one-dimensional periodic structure along the Y direction in the regions 52e to 54e, and the polarization separation surface of the polarization beam splitter PBS. Is incident on.
  • Each measurement light of s-polarized light reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS passes through a folding member such as a corner cube fixedly attached to the polarization beam splitter PBS, and then the inside of the polarization beam splitter PBS. And is incident on the diffraction grating 10 again. That is, the ⁇ first-order diffracted light generated along the X direction at the measurement points 51m to 54m reciprocates once through the path in the polarization beam splitter PBS, and the measurement point 51m to 54m is sandwiched between the measurement points 51m to 54m on the incident surface 10a of the diffraction grating 10. Incident to a pair of points spaced in the direction.
  • the ⁇ first-order diffracted light generated along the Y direction at the measurement points 51m to 54m reciprocates once through the path in the polarization beam splitter PBS, and in the Y direction across the measurement points 51m to 54m on the incident surface 10a of the diffraction grating 10. Incident on a pair of spaced points.
  • First-order diffracted light which is s-polarized measurement light generated at a pair of points spaced in the X direction across the measurement point 51m, is primary along the X direction in the region 51e on the optical surface PBSb of the polarization beam splitter PBS. It goes to the polarization separation plane of the polarization beam splitter PBS through the diffraction pattern region having the original periodic structure.
  • First-order diffracted light which is s-polarized measurement light generated at a pair of points spaced in the Y direction across the measurement point 51m, passes through a diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51e.
  • first-order diffracted light which is s-polarized measurement light generated at a pair of points spaced in the X direction with the measurement points 52m to 54m interposed therebetween, is a region 52e to 54e on the optical surface PBSb of the polarization beam splitter PBS.
  • the first-order diffracted light which is s-polarized measurement light generated at a pair of points spaced in the Y direction across the measurement points 52m to 54m, is diffracted having a one-dimensional periodic structure along the Y direction in the regions 52e to 54e. It goes to the polarization separation surface of the polarization beam splitter PBS through the pattern region.
  • the ⁇ first-order diffracted light that is p-polarized reference light generated along the Z direction (along the XZ plane) at the point 51r on the incident surface RMa of the reference member RM is a polarized beam as shown in FIG.
  • the region 51f on the optical surface PBSc on the reference member RM side of the splitter PBS it enters the polarization separation surface of the polarization beam splitter PBS via a diffraction pattern region having a one-dimensional periodic structure along the X direction.
  • the ⁇ first-order diffracted light that is p-polarized reference light generated along the Y direction (along the XY plane) at the measurement point 51r passes through a diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51f. Then, the light enters the polarization separation surface of the polarization beam splitter PBS.
  • ⁇ first-order diffracted light which is p-polarized reference light generated along the X direction at points 52r to 54r on the incident surface RMa of the reference member RM, is converted into regions 52f and 53f on the surface PBSc of the polarization beam splitter PBS.
  • 54f is incident on the polarization separation surface of the polarization beam splitter PBS via a diffraction pattern region having a one-dimensional periodic structure along the X direction.
  • the ⁇ first-order diffracted light that is p-polarized reference light generated along the Y direction at the measurement points 52r to 54r is polarized through the diffraction pattern region having a one-dimensional periodic structure along the Y direction in the regions 52f to 54f.
  • the light enters the polarization splitting surface of the beam splitter PBS.
  • Each p-polarized reference light transmitted through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization member such as the corner cube described above, propagates inside the polarization beam splitter PBS, and is incident on the reference member RM again. That is, the ⁇ first-order diffracted light generated along the Z direction at the points 51r to 54r reciprocates once through the path in the polarization beam splitter PBS, and in the Z direction across the points 51r to 54r on the incident surface RMa of the reference member RM.
  • the light beams are incident on a pair of spaced points 51ra, 51rb; 52ra, 52rb; 53ra, 53rb; 54ra, 54rb.
  • a diffraction pattern having a one-dimensional periodic structure along the Z direction is provided.
  • the ⁇ first-order diffracted light generated along the Y direction at the points 51r to 54r reciprocates once through the path in the polarization beam splitter PBS, and is spaced in the Y direction across the points 51r to 54r on the incident surface RMa of the reference member RM.
  • a region including the points 51 rc, 51 rd; 52 rc, 52 rd; 53 rc, 53 rd; 54 rc, 54 rd is provided with a diffraction pattern having a one-dimensional periodic structure along the Y direction.
  • the first-order diffracted light which is p-polarized reference light generated at a pair of points spaced in the Z direction across the point 51r, is one-dimensional along the Z direction in the region 51f on the optical surface PBSc of the polarizing beam splitter PBS. It goes to the polarization separation surface of the polarization beam splitter PBS through the diffraction pattern region having the periodic structure.
  • First-order diffracted light which is p-polarized reference light generated at a pair of points spaced in the Y direction across the point 51r, passes through a diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51f. , Toward the polarization separation surface of the polarization beam splitter PBS.
  • the first-order diffracted light which is p-polarized reference light generated at a pair of points spaced in the Z direction across the points 52r to 54r, is Z in the regions 52f to 54f on the surface PBSc of the polarization beam splitter PBS. It goes to the polarization separation surface of the polarization beam splitter PBS through a diffraction pattern region having a one-dimensional periodic structure along the direction.
  • First-order diffracted light which is p-polarized reference light generated at a pair of points spaced in the Y direction across the points 52r to 54r, is a diffraction pattern having a one-dimensional periodic structure along the Y direction in the regions 52f to 54f. It goes to the polarization separation plane of the polarization beam splitter PBS through the region.
  • the optical path between the diffraction grating 10 and the optical path between the s-polarized measurement light reflected in the X direction by the polarization separation surface and the optical path between the reference member RM is reciprocated twice.
  • the p-polarized reference light transmitted through the polarization splitting surface is emitted from the polarization beam splitter PBS along the same path.
  • the interference lights 51a, 51b, 51c, 51d of the measurement light corresponding to the measurement light 51 and the reference light are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 11A.
  • the interference lights 52a, 52b, 52c, 52d; 53a, 53b, 53c, 53d; 54a, 54b, 54c, 54d of the measurement light and the reference light corresponding to the measurement lights 52 to 54 are along the same path. Is emitted from the polarization beam splitter PBS and enters the input / output unit 11A.
  • the interference lights 51a to 54a and 51b to 54b related to the measurement in the X direction are shown in FIG. 5, but the illustration of the interference lights 51c to 54c and 51d to 54d related to the measurement in the Y direction is omitted. .
  • the input / output unit 11A supplies a detection signal obtained by photoelectrically detecting each interference light to the processing unit 15.
  • the processing unit 15 obtains the X-direction position of the measurement point 51m on the diffraction grating 10 based on the difference between the detection signal obtained by photoelectrically detecting the interference light 51a and the detection signal obtained by photoelectric detection of the interference light 51b. Based on the difference between the detection signal obtained by photoelectrically detecting the interference light 51c and the detection signal obtained by photoelectric detection of the interference light 51d, the position in the Y direction of the measurement point 51m on the diffraction grating 10 is obtained.
  • the processing unit 15 measures the measurement points on the diffraction grating 10 based on the difference between the detection signal obtained by photoelectric detection of the interference lights 52a to 54a and the detection signal obtained by photoelectric detection of the interference lights 52b to 54b. Based on the difference between the detection signal obtained by photoelectrically detecting the interference lights 52c to 54c and the detection signal obtained by photoelectric detection of the interference lights 52d to 54d, the X-direction positions of 52m to 54m are obtained. The Y direction positions of the measurement points 52m to 54m are obtained.
  • the s-polarized light reflected by the polarization separation surface of the polarization beam splitter PBS is fixed to the optical surface PBSb of the polarization beam splitter PBS as shown in FIG.
  • the circularly polarized light passes through quarter-wave plates 61e, 62e, 63e, 64e, and 65e attached thereto.
  • the light that has been circularly polarized through the quarter-wave plates 61e to 65e enters the vicinity of the measurement points 61m, 62m, 63m, 64m, and 65m on the incident surface 10a of the diffraction grating 10. .
  • the p-polarized light that has passed through the polarization separation surface of the polarization beam splitter PBS is fixedly attached to the optical surface PBSc of the polarization beam splitter PBS, as shown in FIG. It becomes circularly polarized light through the wave plates 61f, 62f, 63f, 64f, and 65f.
  • the light that has been circularly polarized through the quarter-wave plates 61f to 65f enters the vicinity of points 61r, 62r, 63r, 64r, and 65r on the incident surface RMa of the reference member RM.
  • a reflecting surface along the YZ plane is provided.
  • Circularly polarized measurement light generated along the Z direction from the diffraction grating 10 becomes p-polarized light through the quarter-wave plates 61e to 65e, and enters the polarization separation surface of the polarization beam splitter PBS.
  • Circularly polarized reference light which is zero-order light reflected in the vicinity of the points 61r to 65r on the reference member RM, becomes s-polarized light through the quarter-wave plates 61f to 65f, and is a polarization separation surface of the polarization beam splitter PBS. Is incident on.
  • Each p-polarized measurement light that has passed through the polarization separation surface of the polarization beam splitter PBS becomes circularly polarized light through the corresponding folding member, the polarization beam splitter PBS, and the quarter wavelength plates 61e to 65e, and again on the diffraction grating 10.
  • measurement light that is zero-order light is generated along the Z direction from the diffraction grating 10.
  • Circularly polarized measurement light generated from the diffraction grating 10 along the Z direction passes through the quarter-wave plates 61e to 65e to become s-polarized light, and travels toward the polarization separation surface of the polarization beam splitter PBS.
  • Each s-polarized reference light reflected in the Z direction by the polarization separation surface of the polarization beam splitter PBS becomes circularly polarized light through the corresponding folding member, the polarization beam splitter PBS, and the quarter wavelength plates 61f to 65f, and again. Incident near the points 61r to 65r on the reference member RM.
  • the circularly polarized reference light reflected in the vicinity of the points 61r to 65r on the reference member RM becomes p-polarized light through the quarter-wave plates 61f to 65f and travels toward the polarization separation surface of the polarization beam splitter PBS.
  • the p-polarized reference light that travels back and forth in the optical path and passes through the polarization separation surface is emitted from the polarization beam splitter PBS along the same path.
  • the interference lights 61a, 62a, 63a, 64a, 65a between the measurement light and the reference light corresponding to the measurement lights 61 to 65 are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 11A. To do.
  • the input / output unit 11A supplies a detection signal obtained by photoelectrically detecting the interference lights 61a to 65a to the processing unit 15.
  • the processing unit 15 obtains the Z-direction positions of the measurement points 61m to 65m on the diffraction grating 10 based on detection signals obtained by photoelectrically detecting the interference lights 61a to 65a.
  • the measurement results of the Z direction positions of the measurement points 61m to 65m on the diffraction grating 10 obtained by the processing unit 15, and the measurement results of the Z direction positions of the measurement points 61m to 65m of the wafer stage WS are supplied to the control system CR.
  • the wafer stage WS holding the wafer W is stepped over a predetermined range along the XY plane during exposure.
  • the four measurement units 11 and the pair of reflective diffraction gratings 10 always measure the position of the wafer stage WS by the cooperative action of at least one measurement unit 11 and the diffraction grating 10 facing the measurement units 11. Arranged to be able to do. In general, various forms are possible for the number and arrangement of measurement units, the number and arrangement of diffraction gratings, and the like.
  • the position measuring apparatus 1 measures the relative position of the wafer stage (second member) WS whose relative position with respect to the exposure apparatus main body (first member) is variable.
  • the position measuring apparatus 1 has a polarization beam splitter PBS and a reference member RM fixedly attached to the exposure apparatus main body, and a two-dimensional periodic structure attached to the wafer stage WS along the X direction and the Y direction. And a reflective diffraction grating 10.
  • the position measuring apparatus 1 uses the single polarization beam splitter PBS fixedly attached to the exposure apparatus main body, the X direction position and the Y direction position at the measurement points 51m to 54m of the wafer stage WS, and the wafer stage.
  • the positions in the Z direction at WS measurement points 61m to 65m are simultaneously measured by a so-called heterodyne interference method.
  • the rotation position of the wafer stage WS around the X-axis, the rotation position around the Y-axis, and the Z-axis position The position of rotation is also measured at the same time.
  • the X direction and the Y direction which are in-plane directions of the wafer W using the single polarization beam splitter PBS fixedly attached to the exposure apparatus main body.
  • the position measurement of the wafer stage WS along the direction and the position measurement of the wafer stage WS along the Z direction which is the normal direction of the wafer W can be performed simultaneously and stably. Therefore, in the exposure apparatus of the first embodiment, the position measurement apparatus 1 that simultaneously and stably measures the position of the wafer stage WS is used to accurately place the wafer W on the wafer stage WS with respect to the projection optical system PL. It is possible to align the positions, and thus it is possible to perform a good projection exposure.
  • the position measuring apparatus of the present invention is applied to the position measurement of the wafer stage WS that holds and moves the wafer W in the exposure apparatus.
  • the present invention is not limited to a wafer stage (substrate stage), and in general, the position measuring apparatus of the present invention can be similarly applied to position measurement of a stage that holds and moves an object.
  • the position measuring device of the present invention is applied to position measurement of a mask stage MS that holds and moves a mask M provided with a pattern to be transferred in the first embodiment. You can also
  • the mask stage MS holding the mask M moves along the Y direction that is the scanning direction.
  • the position measuring apparatus 1 according to the modification of FIG. 11 includes a pair of reflective diffraction gratings 10 placed at an interval in the X direction with the mask M interposed therebetween, and the mask M (and thus the projection optical system PL). And a pair of measuring units 11 installed at an interval in the X direction.
  • FIG. 11 shows a reference state in which the center PAa of the pattern area PA of the mask M and the optical axis AX of the projection optical system PL are at the same position on the XY plane.
  • the diffraction grating 10 has an elongated rectangular outer shape, for example, along the Y direction, and is fixedly (or detachably) attached to the mask stage MS.
  • the pair of measurement units 11 is fixedly attached to the exposure apparatus main body isolated from the mask stage MS.
  • the pair of diffraction gratings 10 are arranged symmetrically with respect to an axis extending in the Y direction through the center PAa of the pattern area PA of the mask M, and have the same configuration.
  • the pair of measurement units 11 are arranged symmetrically with respect to the axis extending in the Y direction through the optical axis AX so as to be along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration as each other.
  • the polarization beam splitter PBS is attached to the exposure apparatus main body, the diffraction grating 10 is attached to the wafer stage WS, and the relative position of the wafer stage WS that is variable relative to the exposure apparatus main body is determined. Measuring.
  • the present invention is not limited thereto, and in general, in order to measure the relative position of the second member whose relative position with respect to the first member is variable, a polarization beam splitter fixedly attached to the first member, A diffraction grating attached to two members can be used.
  • the polarization beam splitter PBS is attached to the wafer stage WS
  • the diffraction grating 10 is attached to the exposure apparatus body
  • the relative position of the wafer stage WS whose relative position with respect to the exposure apparatus body is variable is measured.
  • the position measurement apparatus of the present invention is applied to the position measurement of a stage that moves while holding an object
  • one of the polarization beam splitter and the diffraction grating is attached to the stage.
  • the diffraction grating 10 may be provided on the back surface of the wafer stage WS
  • the polarization beam splitter PBS may be disposed on the surface plate side from the wafer stage.
  • the exposure apparatus is based on the interference light between the measurement light that has reciprocated twice along the optical path between the diffraction grating 10 and the reference light that has reciprocated twice along the optical path between the reference member RM.
  • the relative position of the wafer stage WS whose relative position with respect to the main body is variable is measured.
  • the measurement target member is not limited to this, for example, based on the interference light between the measurement light that reciprocates once in the optical path between the diffraction grating and the reference light that reciprocates once in the optical path between the reference member.
  • the relative position of can also be measured.
  • FIG. 12 is a view schematically showing a configuration of an exposure apparatus provided with the position measuring apparatus according to the second embodiment.
  • FIG. 13 is a diagram schematically showing the arrangement of diffraction gratings and measurement units that constitute the position measurement apparatus of the second embodiment.
  • the second embodiment has a configuration similar to that of the first embodiment, but the configuration of the position measuring device 1A according to the second embodiment is different from the position measuring device 1 of the first embodiment. Therefore, in FIG. 12 and FIG. 13, the elements having the same functions as those shown in FIG. 1 and FIG. Hereinafter, the configuration and operation of the second embodiment will be described focusing on differences from the first embodiment.
  • the exposure apparatus includes a position in the X direction, a position in the Y direction, a position in the Z direction, a position in the rotational direction around the X axis, and a position in the rotational direction around the Y axis of the wafer stage WS (and thus the wafer W). And a position measuring device 1A that measures the position in the rotation direction around the Z axis in real time.
  • the position measuring apparatus 1 ⁇ / b> A includes a pair of reflective diffraction gratings 110 that are installed with a gap in the X direction with the wafer W interposed therebetween, and the projection optical system PL with the X direction interposed therebetween. And four measuring units 111 installed side by side.
  • FIG. 13 shows a reference state in which the center Wa of the wafer W and the optical axis AX of the projection optical system PL are at the same position in the XY plane.
  • the diffraction grating 110 has, for example, an elongated rectangular outer shape along the Y direction, and is fixedly (or detachably) attached to the wafer stage WS.
  • the four measurement units 111 are fixedly attached to the exposure apparatus main body isolated from the wafer stage WS.
  • the first pair of measurement units 111 are arranged side by side in the X direction on the + X direction side of the projection optical system PL
  • the second pair of measurement units 111 are -X of the projection optical system PL. They are arranged side by side in the X direction on the direction side.
  • the pair of diffraction gratings 110 are arranged symmetrically with respect to an axis extending in the Y direction through the center Wa of the wafer W and have the same configuration.
  • the four measuring units 111 are symmetrically arranged with respect to the axis extending in the Y direction through the optical axis AX so as to be along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration as each other. It shall have.
  • the wafer stage WS moves with respect to the stationary exposure apparatus main body.
  • FIG. 14 is a diagram for explaining the measurement principle of the X-direction position and the Y-direction position of the diffraction grating attached to the wafer stage.
  • measurement light 131 including a p-polarized component and an s-polarized component enters the same optical path along the X direction on a polarizing beam splitter PBS fixedly attached to the exposure apparatus body. Further, along the optical path spaced in the + Z direction from the optical path of the measurement light 131, the measurement light 132 including the p-polarized component and the s-polarized component is incident along the X direction on the same optical path.
  • s-polarized light reflected in the Z direction on the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 133.
  • the light that has been circularly polarized through the quarter-wave plate 133 is deflected obliquely with respect to the Z direction in the XZ plane by the deflecting member 134a, and then the reflective diffraction grating 110 attached to the wafer stage WS.
  • the incident light is obliquely incident on the upper dotted area (hereinafter, simply referred to as “area”) 135 a at the Littrow angle of the diffraction grating 110.
  • the quarter wave plate 133 as a polarizing member is attached so as to be in contact with the optical surface PBSa along the XY plane of the polarizing beam splitter PBS.
  • the deflecting member 134a is attached to a required position on the quarter wavelength plate 133 and has a one-dimensional periodic structure diffraction pattern along the X direction.
  • the diffraction grating 110 has a form of a plane parallel plate with an incident surface substantially parallel to the XY plane with respect to the polarization beam splitter PBS.
  • the diffraction grating 110 is provided with a diffraction pattern having a two-dimensional periodic structure along the X direction and the Y direction.
  • the first-order diffracted light 131a is generated obliquely from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110.
  • the minus first-order diffracted light 131a which is circularly polarized measurement light generated from the diffraction grating 110 in an oblique direction, is deflected in the Z direction by the deflecting member 134a, then becomes p-polarized light through the quarter-wave plate 133, and is polarized light. It propagates inside the splitter PBS and passes through the polarization separation surface.
  • the Littrow angle (Littrow angle of the first-order diffracted light) of the diffraction grating 110 is the incident angle of the light beam when the light beam incident on the diffraction grating 110 and the first-order diffracted light generated corresponding to the incident beam are parallel to each other. Is defined as When the light beam is incident on the diffraction grating 110 at the Littrow angle, even if the height (Z-direction position) of the grating pattern surface of the diffraction grating 110 changes, the lateral shift of the first-order diffracted light does not occur. There is an advantage of not.
  • the p-polarized light transmitted through the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 136.
  • the quarter wave plate 136 as a polarizing member is attached so as to be in contact with the optical surface PBSb along the YZ plane of the polarizing beam splitter PBS.
  • the light that has been circularly polarized through the quarter-wave plate 136 is incident on a planar reflecting surface 137 provided in contact with the quarter-wave plate 136.
  • the circularly-polarized reference light 131b reflected by the reflecting surface 137 becomes s-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and is reflected in the Z direction by the polarization separation surface.
  • the reflective surface 137 as the reference surface of the reference member RM is provided so as to contact the quarter wavelength plate 136, but the quarter wavelength plate 136 is not limited thereto.
  • a mirror having a reflective surface 137 at a distance from each other may be disposed as the reference member RM.
  • the reference member RM may be a mirror having the form of a plane parallel plate with the incident surface along the YZ plane facing the polarization beam splitter PBS.
  • the reference member RM is fixedly attached to the exposure apparatus body in the same manner as the polarization beam splitter PBS.
  • the p-polarized measurement light ( ⁇ 1st-order diffracted light) 131a transmitted through the polarization separation surface of the polarization beam splitter PBS and the s-polarized reference light (0th-order reflected light) 131b reflected by the polarization separation surface are on the same path. And propagates through the inside of the polarization beam splitter PBS, and enters the folding member 138a such as a corner cube attached to the polarization beam splitter PBS.
  • the p-polarized measurement light 131a and the s-polarized reference light 131b that have been translated in the + X direction by the action of the folding member 138a and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS.
  • the p-polarized measurement light 131 a that has passed through the polarization separation surface propagates through the polarization beam splitter PBS and enters the quarter-wave plate 133.
  • the measurement light 131 a that has been circularly polarized through the quarter-wave plate 133 is incident on the diffraction grating 110 obliquely at a Littrow angle of the diffraction grating 110 into a region 135 b spaced from the region 135 a in the + X direction.
  • the minus first-order diffracted light 131aa is obliquely directed from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110. appear.
  • An incident path of light incident on the region 135a on the diffraction grating 110 (and thus an emission path through which the ⁇ 1st order diffracted light 131a is emitted) and an incident path of light incident on the region 135b (and thus the ⁇ 1st order diffracted light 131aa are emitted). are parallel to each other.
  • the ⁇ 1st-order diffracted light 131aa which is a circularly polarized measurement light generated from the diffraction grating 110 in an oblique direction, is deflected in the Z direction by the deflecting member 134a, then becomes s-polarized light through the quarter-wave plate 133, and the polarized beam It propagates inside the splitter PBS and is reflected in the X direction by the polarization separation surface.
  • the s-polarized reference light 131 b reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS and enters the quarter wavelength plate 136.
  • the reference light 131b that has been circularly polarized through the quarter-wave plate 136 is reflected by the reflecting surface 137 as a reference surface, and then becomes p-polarized light through the quarter-wave plate 136, and the inside of the polarization beam splitter PBS. Is transmitted through the polarization splitting surface.
  • the s-polarized measurement light 131aa reflected in the X direction on the polarization separation surface and the p-polarized reference light 131b transmitted through the polarization separation surface propagate through the polarization beam splitter PBS along the same path, and are polarized. Ejected from the beam splitter PBS.
  • the s-polarized light reflected in the Z direction on the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter wavelength plate 133.
  • the light that has been circularly polarized through the quarter-wave plate 133 is deflected obliquely with respect to the Z direction in the YZ plane by the deflecting member 134b, and then the Littrow of the diffraction grating 110 in the region 135c on the diffraction grating 110. Incident at an angle.
  • the deflection member 134b is attached to a required position on the quarter-wave plate 133 and has a one-dimensional periodic structure diffraction pattern along the X direction.
  • the first-order diffracted light 132a is generated obliquely from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110. .
  • An incident path of light incident on the region 135a on the diffraction grating 110 (and thus an exit path from which the ⁇ 1st order diffracted light 131a is emitted) and an incident path of light incident on the region 135c (and an exit from which the + 1st order diffracted light 132a is emitted).
  • the path is symmetric with respect to a plane parallel to the YZ plane through an intermediate position between the region 135a and the region 135c.
  • the + 1st-order diffracted light 132a which is circularly polarized measurement light generated in the oblique direction from the diffraction grating 110, is deflected in the Z direction by the deflecting member 134b, then becomes p-polarized light through the quarter-wave plate 133, and is polarized beam splitter. Propagates through the PBS and passes through the polarization separation surface.
  • the p-polarized light transmitted through the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 136.
  • the light that has been circularly polarized through the quarter-wave plate 136 enters a reflecting surface 137 as a reference surface of the reference member RM.
  • the circularly-polarized reference light 132b reflected by the reflecting surface 137 becomes s-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and is reflected in the Z direction by the polarization separation surface.
  • the p-polarized measurement light 132a transmitted through the polarization separation surface of the polarization beam splitter PBS and the s-polarized reference light 132b reflected by the polarization separation surface propagate through the polarization beam splitter PBS along the same path. Then, the light enters the folding member 138b such as a corner cube attached to the polarization beam splitter PBS.
  • the p-polarized measurement light 132a and the s-polarized reference light 132b that have been translated in the + X direction and returned to the polarization beam splitter PBS by the action of the folding member 138b are incident on the polarization separation surface of the polarization beam splitter PBS.
  • the p-polarized measurement light 132a that has passed through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS and enters the quarter-wave plate 133.
  • the measurement light 132 a that has become circularly polarized light through the quarter-wave plate 133 is incident obliquely at a Littrow angle of the diffraction grating 110 on the diffraction grating 110 to a region 135 d that is spaced from the region 135 c in the + X direction.
  • the first-order diffracted light 132aa is generated obliquely from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110.
  • An incident path of light incident on the region 135c on the diffraction grating 110 (and thus an exit path from which the + 1st order diffracted light 132a is emitted) and an incident path of light incident on the region 135d (and an exit path from which the + 1st order diffracted light 132aa is emitted).
  • the + 1st-order diffracted light 132aa which is circularly polarized measurement light generated in the oblique direction from the diffraction grating 110, is deflected in the Z direction by the deflecting member 134b, and then becomes s-polarized light through the quarter-wave plate 133, and the polarization beam splitter. It propagates inside the PBS and is reflected in the X direction by the polarization separation surface.
  • the s-polarized reference light 132 b reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 136.
  • the reference light 132b that has been circularly polarized through the quarter-wave plate 136 is reflected by the reflecting surface 137, then becomes p-polarized light through the quarter-wave plate 136, propagates inside the polarization beam splitter PBS, Transmits through the polarization separation surface.
  • the s-polarized measurement light 132aa reflected in the X direction on the polarization separation surface and the p-polarized reference light 132b transmitted through the polarization separation surface propagate through the polarization beam splitter PBS along the same path, and are polarized. Ejected from the beam splitter PBS.
  • the interference light between the s-polarized measurement light ( ⁇ 1st order diffracted light) 131aa and the p-polarized reference light 131b emitted from the polarization beam splitter PBS along the same path corresponding to the measurement light 131 is photoelectrically detected.
  • the X-direction position of the measurement point 135 on the diffraction grating 110 and, consequently, the X-direction position at the measurement point 135 of the wafer stage WS are measured.
  • the relative position along the X direction at the measurement point 135 of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured.
  • the measurement point 135 is an intermediate position between the area 135a and the area 135d (as a result, an intermediate position between the area 135b and the area 135c).
  • s-polarized measurement light ( ⁇ ) corresponds to a pair of measurement light beams 131 and 132 that enter the polarization beam splitter PBS along a pair of X-direction optical paths spaced in the Z direction.
  • Interference light between the first-order diffracted light) 131aa and the p-polarized reference light 131b, and interference light between the s-polarized measurement light (+ 1st-order diffracted light) 132aa and the p-polarized reference light 132b are detected.
  • Interference light between measurement light ( ⁇ 1st order diffracted light) 131yaa and p-polarized reference light 131yb, and interference light between s-polarized measurement light (+ 1st order diffracted light) 132yaa and p-polarized reference light 132yb can be detected. .
  • a third detection signal obtained by photoelectrically detecting light and an s-polarized measurement light 132yaa and a p-polarized reference light 132yb emitted from the polarization beam splitter PBS along the same path corresponding to the measurement light 132y.
  • the position in the Y direction of the measurement point 135y on the diffraction grating 110, and hence the position in the Y direction at the measurement point 135y of the wafer stage WS are measured.
  • the relative position along the Y direction at the measurement point 135y of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured.
  • the measurement point 135y at the Y direction position may coincide with the measurement point 135x at the X direction position (the above-described measurement point 135).
  • FIG. 15 is a diagram for explaining the measurement principle of the position in the Z direction of the diffraction grating attached to the wafer stage.
  • a polarization beam splitter that is, a polarization beam splitter used for measuring the X-direction position and the Y-direction position of the diffraction grating 110
  • PBS fixedly attached to the exposure apparatus main body PBS
  • p-polarization component in the same optical path.
  • the measurement light 141 including the s-polarized component are incident along the X direction.
  • the s-polarized light reflected in the Z direction on the polarization separation surface propagates inside the polarization beam splitter PBS and is optical along the XY plane of the polarization beam splitter PBS.
  • a quarter-wave plate 133 that is, a quarter-wave plate used for measurement of the X-direction position and the Y-direction position of the diffraction grating 110 mounted so as to be in contact with the surface PBSa becomes circularly polarized light, and is applied to the wafer stage WS. The light enters the region 143 a on the attached diffraction grating 110.
  • measurement light 141a that is zero-order light (regular reflection light) is generated along the Z direction from the diffraction grating 110.
  • the measurement light 141a generated along the Z direction from the diffraction grating 110 becomes p-polarized light through the quarter-wave plate 133, propagates through the polarization beam splitter PBS, and then passes through the polarization separation surface.
  • the p-polarized light transmitted through the polarization separation surface propagates through the polarization beam splitter PBS and contacts the optical surface PBSb along the YZ plane of the polarization beam splitter PBS.
  • the quarter-wave plate 136 (that is, a quarter-wave plate used for measuring the X-direction position and the Y-direction position of the diffraction grating 110) is circularly polarized and is in contact with the quarter-wave plate 136.
  • the planar reflecting surface 137 that is, a reference surface used for measurement of the X-direction position and the Y-direction position of the diffraction grating 110).
  • the polarizing beam splitter PBS, the quarter-wave plates 133 and 136, and the reflecting surface 137 as the reference member RM in FIG. 15 are common to the components in FIG.
  • the circularly-polarized reference light 141b reflected by the reflecting surface 137 becomes s-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and is reflected in the Z direction by the polarization separation surface.
  • the p-polarized measurement light 141a transmitted through the polarization separation surface of the polarization beam splitter PBS and the s-polarized reference light 141b reflected in the Z direction by the polarization separation surface pass through the inside of the polarization beam splitter PBS along the same path.
  • the p-polarized measurement light 141a and the s-polarized reference light 141b that have been translated in the + X direction by the action of the folding member 146 and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS.
  • the p-polarized measurement light 141 a that has passed through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light via the quarter-wave plate 133, and from the region 143 a on the diffraction grating 110.
  • the light enters the region 143b spaced in the + X direction.
  • measurement light 141 aa that is zero-order light is generated along the Z direction from the diffraction grating 110.
  • the measurement light 141aa generated along the Z direction from the diffraction grating 110 becomes s-polarized light through the quarter-wave plate 133, propagates inside the polarization beam splitter PBS, and is reflected in the X direction by the polarization separation surface.
  • the s-polarized reference light 141b reflected by the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light through the quarter wavelength plate 136, and is a reflection surface 137 that is a reference surface. Is incident on.
  • the circularly-polarized reference light 141b reflected by the reflecting surface 137 becomes p-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and passes through the polarization separation surface.
  • the s-polarized measurement light 141aa reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS and the p-polarization reference light 141b transmitted through the polarization separation surface are arranged along the same path with each other in the polarization beam splitter PBS. And is emitted from the polarization beam splitter PBS.
  • the diffraction grating 110 based on the detection signal obtained by photoelectrically detecting the interference light between the s-polarized measurement light 141aa and the p-polarized reference light 141b emitted from the polarization beam splitter PBS along the same path.
  • the Z-direction position of the measurement point 143 located between the area 143a and the area 143b, and thus the Z-direction position of the measurement point 143 on the wafer stage WS is measured.
  • the relative position along the Z direction is measured at the measurement point 143 of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable.
  • FIG. 16 is a diagram schematically showing the configuration of the position measuring apparatus according to the second embodiment.
  • the position measurement apparatus 1A of the second embodiment includes four measurement units 111 (only one measurement unit 111 is shown in FIG. 16), a measurement light source 112, a branch unit 113, and a light guide 114. And a processing unit 115.
  • the measurement unit 111 includes a polarizing beam splitter PBS, quarter-wave plates 133 and 136, deflecting members 134a and 134b, a reflecting surface 137 as a reflecting surface of the reference member RM, folding members 138a, 138b, and 146, and an input / output unit 111A. And is fixedly attached to the exposure apparatus main body. However, in FIG.
  • the deflection members 134 a and 134 b and the folding members 138 a, 138 b, and 146 that constitute a part of the measurement unit 111 are not illustrated for the sake of clarity.
  • the measurement light source 112, the branch unit 113, the light guide 114, and the processing unit 115 are provided in common for the four measurement units 111.
  • the measurement light source 112 a He—Ne laser light source, a semiconductor laser light source, or the like can be used.
  • the light supplied from the measurement light source 112 is separated into s-polarized light and p-polarized light in the branch unit 113, and is input to the input / output unit 111A of each measurement unit 111 via, for example, a dual-core light guide 114. Supplied. That is, the s-polarized light propagated through one core of the light guide 114 and the p-polarized light propagated through the other core are supplied to the input / output unit 111A.
  • the input / output unit 111A includes a collimator, a beam splitter, and the like, and generates p-polarized component and s-polarized component along the same optical path from p-polarized light and s-polarized light supplied along different optical paths. The required number of measurement lights are generated. The plurality of measurement lights generated by the input / output unit 111A are respectively emitted along the X direction and enter the polarization beam splitter PBS.
  • the measurement lights 151x to 154x correspond to the pair of measurement lights 131 and 132 in FIG.
  • the measurement lights 151y to 154y correspond to the pair of measurement lights 131y and 132y for Y-direction position measurement described above with reference to FIG.
  • the measurement lights 161 to 165 correspond to the measurement light 141 in FIG.
  • a route to the measurement points 135ya, 135yb, 135yc, and 135yd where the position is measured is represented by a solid line in the drawing.
  • the path to the measurement points 143a, 143b, 143c, 143d, and 143e where the position in the Z direction is measured by the measurement lights 161 to 165 is represented by a single line in the form of a broken line in the figure.
  • the second embodiment as an example, as shown in FIG. 17, four measurement points 135xa to 135xd and corresponding four measurement points 135ya to 135yd are respectively coincident with each other.
  • the positions of the measurement points 135xa to 135xd, 135ya to 135yd, and 143a to 143e on the incident surface 110a of the diffraction grating 110 are indicated by black circles, and the positions of incident light related to the respective measurement points are indicated by white circles. .
  • the incident surface 110 a of the diffraction grating 110 is virtually divided into a lid shape according to the module dimension L.
  • the four measurement points 135xa to 135xd; 135ya to 135yd corresponding to the four measurement lights 151x to 154x and 151y to 154y are located at the four corners of a square having a side of 4 ⁇ L.
  • the measurement point 143b corresponding to the measurement light 162 is located at the center of the square defined by the four measurement points 135xa to 135xd; 135ya to 135yd.
  • the measurement points 143a and 143c corresponding to the measurement beams 161 and 163 are separated from the measurement point 143b corresponding to the measurement beam 162 by a distance of 3 ⁇ L in the X direction.
  • the measurement points 143d and 143e corresponding to the measurement lights 164 and 165 are separated from the measurement point 143b corresponding to the measurement light 162 by a distance of 3 ⁇ L in the Y direction.
  • the positions of light incident on the incident surface 110a of the diffraction grating 110 in relation to the measurement points 135xa to 135xd corresponding to the measurement lights 151x to 154x are four positions arranged in the X direction across the measurement points 135xa to 135xd. .
  • the positions of the light incident on the incident surface 110a of the diffraction grating 110 in relation to the measurement points 135ya to 135yd corresponding to the measurement lights 151y to 154y are the positions of the four corners of a rectangle elongated in the Y direction with the measurement points 135ya to 135yd as the center. It is.
  • the positions of light incident on the incident surface 110a of the diffraction grating 110 in relation to the measurement points 143a to 143e corresponding to the measurement lights 161 to 165 are two positions arranged in the X direction with the measurement points 143a to 143e interposed therebetween. .
  • the s-polarized measurement light reflected in the X direction by the polarization separation surface after reciprocating the optical path between the diffraction grating 110 and the reflection surface 137 as a reference surface of the reference member RM The p-polarized reference light that has passed through the optical path between the two and transmitted through the polarization separation surface is emitted from the polarization beam splitter PBS along the same path.
  • the interference lights 151xa and 151xb between the measurement light and the reference light corresponding to the measurement light 151x are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 111A.
  • interference light 152xa, 152xb; 153xa, 153xb; 154xa, 154xb between the measurement light and the reference light corresponding to the measurement lights 152x to 154x are emitted from the polarization beam splitter PBS along the same path, and input / output unit Incident on 111A.
  • the s-polarized measurement light reflected in the X direction by the polarization separation surface after two reciprocations of the optical path between the diffraction grating 110 and the reflection surface as the reference surface of the reference member RM The p-polarized reference light that has passed through the polarization separation surface after two reciprocations in the optical path to 137 is emitted from the polarization beam splitter PBS along the same path.
  • the interference lights 151ya and 151yb of the measurement light and the reference light corresponding to the measurement light 151y are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 111A.
  • interference lights 152ya, 152yb; 153ya, 153yb; 154ya, 154yb between the measurement light and the reference light corresponding to the measurement lights 152y to 154y are emitted from the polarization beam splitter PBS along the same path, and are input / output units. Incident on 111A.
  • the input / output unit 111A supplies a detection signal obtained by photoelectrically detecting each interference light to the processing unit 115.
  • the processing unit 115 performs measurement corresponding to the measurement light 151x on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference light 151xa and a detection signal obtained by photoelectric detection of the interference light 151xb.
  • the X direction position of the point 135xa is obtained.
  • the processing unit 115 corresponds to the measurement light 151y on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference light 151ya and a detection signal obtained by photoelectric detection of the interference light 151yb.
  • the Y direction position of the measurement point 135ya to be obtained is obtained.
  • the processing unit 115 generates a signal on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference lights 152xa to 154xa and a detection signal obtained by photoelectric detection of the interference lights 152xb to 154xb.
  • the X direction positions of the measurement points 135xb to 135xd corresponding to the measurement lights 152x to 154x are obtained.
  • the processing unit 115 performs measurement on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference lights 152ya to 154ya and a detection signal obtained by photoelectric detection of the interference lights 152yb to 154yb.
  • the Y direction positions of the measurement points 135yb to 135yd corresponding to the lights 152y to 154y are obtained.
  • 135xd The measurement results of the X direction position and the Y direction position in 135ya to 135yd are supplied to the control system CR.
  • the s-polarized measurement beam reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS after reciprocating the optical path between the diffraction grating 110 and the reference member RM is referred to.
  • the p-polarized reference light that has passed through the polarization separation surface after reciprocating twice along the optical path between the reflection surface 137 as a surface is emitted from the polarization beam splitter PBS along the same path.
  • the interference lights 161a, 162a, 163a, 164a, 165a of the measurement light corresponding to the measurement lights 161 to 165 and the reference light are emitted from the polarization beam splitter PBS along the same path and incident on the input / output unit 111A. To do.
  • the input / output unit 111A supplies a detection signal obtained by photoelectrically detecting the interference lights 161a to 165a to the processing unit 115. Based on the detection signal obtained by photoelectrically detecting the interference lights 161a to 165a, the processing unit 115 determines the positions in the Z direction of the five measurement points 143a to 143e corresponding to the measurement lights 161 to 165 on the diffraction grating 110, respectively. Ask.
  • the measurement results of the Z direction positions of the five measurement points 143a to 143e on the diffraction grating 110 obtained by the processing unit 115, and consequently the measurement results of the Z direction positions of the five measurement points 143a to 143e of the wafer stage WS, are controlled by the control system. Supplied to CR.
  • the wafer stage WS holding the wafer W is stepped over a predetermined range along the XY plane during exposure.
  • the four measurement units 111 and the pair of reflective diffraction gratings 110 always measure the position of the wafer stage WS by the cooperative action of at least one measurement unit 111 and the diffraction grating 110 facing the measurement unit 111. Arranged to be able to do. In general, various forms are possible for the number and arrangement of measurement units, the number and arrangement of diffraction gratings, and the like.
  • the position measuring apparatus 1A measures the relative position of the wafer stage (second member) WS whose relative position with respect to the exposure apparatus main body (first member) is variable.
  • the position measuring apparatus 1A has a polarization beam splitter PBS and a reference member RM fixedly attached to the exposure apparatus main body, and a two-dimensional periodic structure attached to the wafer stage WS along the X direction and the Y direction. And a reflective diffraction grating 110.
  • the rotation position of the wafer stage WS around the X-axis, the rotation position around the Y-axis, and the Z-axis position is also measured at the same time.
  • measurement is a first-order diffracted light generated in an oblique direction from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110 in accordance with light obliquely incident at the Littrow angle of the diffraction grating 110.
  • the X-direction position and the Y-direction position of the diffraction grating 110 are measured.
  • the incident light to the diffraction grating 110 and the measurement light emitted from the diffraction grating 110 reciprocate in the same region of the deflecting members 134a and 134b attached to the polarization beam splitter PBS via the quarter wavelength plate 133. .
  • the optical path of the measurement light between the polarization beam splitter PBS (and thus the measurement unit 111) and the diffraction grating 110 can be shortened.
  • the position measurement apparatus 1A since the optical path length of the measurement light between the measurement unit 111 and the diffraction grating 110 can be reduced, the measurement error due to the atmospheric fluctuation is reduced.
  • the position measurement of the wafer stage WS can be stably and highly accurately performed. Therefore, in the exposure apparatus of the second embodiment, the position measurement apparatus 1 that stably and highly accurately measures the position of the wafer stage WS while suppressing the measurement error caused by the atmospheric fluctuation is used in the projection optical system PL.
  • the wafer W on the wafer stage WS can be aligned with high accuracy, and hence good projection exposure can be performed.
  • the wafer stage WS along the X direction and the Y direction, which are in-plane directions of the wafer W, is used. And the position measurement of the wafer stage WS along the Z direction, which is the normal direction of the wafer W, can be performed simultaneously and stably.
  • the flatness error is obtained by using a difference signal between a measurement signal from the first measurement unit that measures the X-direction position of the diffraction grating 110 and a measurement signal from the second measurement unit that measures the Y-direction position of the diffraction grating 110. Cannot be canceled.
  • the measurement result of the third measurement unit that measures the Z-direction position of the diffraction grating 110 that is, the measurement result regarding the distribution of the Z-direction position of the diffraction grating 110 is used to reduce the flatness error.
  • the measurement error caused by the first measurement unit and the second measurement unit is corrected.
  • the interval between the measurement points of the plurality of third measurement units (measurement axis interval) is set to the interval between the measurement points of the plurality of first measurement units (measurement axis interval) and the measurement point of the plurality of second measurement units.
  • the measurement error by the first measurement unit and the second measurement unit can be corrected by setting the interval to the interval (measurement axis interval) or less.
  • the interval between the four X direction measurement points 135xa to 135xd is (4 ⁇ L)
  • the interval between the four Y direction measurement points 135ya to 135yd is shown.
  • the interval between the five Z-direction measurement points 143a to 143e is (3 ⁇ L). That is, the interval (3 ⁇ L) between the five Z direction measurement points is set to be less than or equal to the interval between the four X direction measurement points (4 ⁇ L) and the interval between the four Y direction measurement points (4 ⁇ L).
  • the intervals between the eight Z-direction measurement points 143 are set to (2 ⁇ L) and arranged in a cross shape.
  • the numbers and positions of the X direction measurement points 35x and the Y direction measurement points 135y are the same as the example shown in FIG.
  • the interval between the eight Z-direction measurement points (2 ⁇ L) is the interval between the four X-direction measurement points (4 ⁇ L) and the interval between the four Y-direction measurement points. It is set to (4 ⁇ L) or less.
  • the flatness error of the light transmitting portion provided on the diffraction grating 110 can be removed from the measurement results obtained by the first measurement unit and the second measurement unit, for example, one interference light (corresponding to the measurement light 131).
  • the output signal of the interference light obtained in this way and the output signal of the other interference light (interference light obtained corresponding to the measurement light 132) are handled independently, so that the correction pitch in the X direction is substantially halved.
  • the correction error in the X direction can also be suppressed.
  • the output signal of one interference light (interference light obtained corresponding to the measurement light 131y) and the output signal of the other interference light (interference light obtained corresponding to the measurement light 132y) are handled independently.
  • the correction pitch in the Y direction can be substantially halved, and correction errors in the Y direction can be suppressed.
  • the deflecting members 134a and 134b that deflect light passing through the polarizing beam splitter PBS and obliquely enter a predetermined region on the diffraction grating 110 at the Littrow angle of the diffraction grating 110 along a predetermined direction.
  • a diffraction grating having a diffraction pattern having a periodic structure is used.
  • the present invention is not limited to this, and various forms are possible for the specific configuration of the deflecting member.
  • a deflecting member 181 having a diffractive action and a prism action can be used as shown in FIG. In the deflecting member 181 according to the modification of FIG.
  • a diffraction grating having a periodic diffraction pattern is formed on a wedge-shaped light transmitting member as a whole.
  • the deflecting member 181 is attached to a required position on the quarter-wave plate 133 attached to the optical surface PBSa of the polarization beam splitter PBS. Further, a deflecting member having only a prism action may be used. In this case, the deflecting member 181 is removed from the diffraction grating having a periodic diffraction pattern, that is, a wedge-shaped light transmitting member as a whole.
  • the measurement light incident on the region 135a (135c) and the measurement light incident on the region 135b (135d) may be slightly shifted from the relationship of being parallel to each other. With this configuration, it is possible to further improve the accuracy by removing the elliptically polarized light component that may occur during diffraction by the diffraction grating 110.
  • the diffraction grating 134a (134b) is used as the deflecting member, the diffraction grating includes a portion through which the measurement light incident on the region 135a (135c) passes and a portion through which the measurement light incident on the region 135b (135d) passes. You can change the pitch.
  • the position measuring apparatus of the present invention is applied to the position measurement of the wafer stage WS that moves while holding the wafer W in the exposure apparatus.
  • the present invention is not limited to a wafer stage (substrate stage), and in general, the position measuring apparatus of the present invention can be similarly applied to position measurement of a stage that holds and moves an object.
  • the position measurement apparatus of the present invention is applied to position measurement of a mask stage MS that holds and moves a mask M provided with a pattern to be transferred in the second embodiment. You can also
  • a position measuring apparatus 1A includes a pair of reflective diffraction gratings 110 that are installed with a gap in the X direction with a mask M interposed therebetween, and a mask M (and thus a projection optical system PL). And a pair of measuring units 111 that are spaced apart in the X direction.
  • FIG. 20 shows a reference state in which the center PAa of the pattern area PA of the mask M and the optical axis AX of the projection optical system PL are at the same position on the XY plane.
  • the diffraction grating 110 has, for example, an elongated rectangular outer shape along the Y direction, and is fixedly (or detachably) attached to the mask stage MS.
  • the pair of measurement units 111 is fixedly attached to the exposure apparatus main body isolated from the mask stage MS.
  • the pair of diffraction gratings 110 are arranged symmetrically with respect to an axis extending in the Y direction through the center PAa of the pattern area PA of the mask M, and have the same configuration.
  • the pair of measurement units 111 are arranged symmetrically with respect to the axis extending in the Y direction through the optical axis AX so as to extend along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration.
  • the polarization beam splitter PBS is attached to the exposure apparatus main body
  • the diffraction grating 110 is attached to the wafer stage WS
  • the relative position of the wafer stage WS with respect to the exposure apparatus main body is variable. Measuring.
  • the present invention is not limited thereto, and in general, in order to measure the relative position of the second member whose relative position with respect to the first member is variable, a polarization beam splitter fixedly attached to the first member, A diffraction grating attached to two members can be used.
  • the polarization beam splitter PBS is attached to the wafer stage WS
  • the diffraction grating 110 is attached to the exposure apparatus body
  • the relative position of the wafer stage WS that is variable relative to the exposure apparatus body is measured.
  • the position measurement apparatus of the present invention is applied to the position measurement of a stage that moves while holding an object
  • one of the polarization beam splitter and the diffraction grating is attached to the stage.
  • the diffraction grating 110 may be provided on the back surface of the wafer stage WS
  • the polarization beam splitter PBS may be disposed on the surface plate side from the wafer stage.
  • the exposure apparatus is based on the interference light between the measurement light that has reciprocated twice along the optical path between the diffraction grating 110 and the reference light that has reciprocated twice along the optical path between the reference member RM.
  • the relative position of the wafer stage WS whose relative position with respect to the main body is variable is measured. Thereby, for example, even if the wafer stage WS is tilted around the X axis or the Y axis, the relative position can be measured with high accuracy.
  • the measurement target member is not limited to this, for example, based on the interference light between the measurement light that reciprocates once in the optical path between the diffraction grating and the reference light that reciprocates once in the optical path between the reference member.
  • the relative position of can also be measured.
  • the holding member that holds the polarization beam splitter PBS may be made of a non-magnetic material.
  • the stage is driven by a linear motor, a planar motor, or the like, measurement errors caused by stress applied to the polarization beam splitter due to the influence of magnetic flux from the motor can be reduced.
  • a light transmission mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a light transmission mask (reticle) in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • an electronic mask variable shaping mask, which forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, as disclosed in US Pat. No. 6,778,257.
  • an active mask or an image generator for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used.
  • DMD Digital Micro-mirror Device
  • variable molding mask When such a variable molding mask is used, a stage on which a workpiece such as a wafer or glass plate is mounted is scanned with respect to the variable molding mask, and the position of the workpiece is measured using a position detection system.
  • a position detection system a position detection system
  • an exposure apparatus (lithography system) that forms a line-and-space pattern on a wafer W by forming interference fringes on the wafer W.
  • the above embodiment can also be applied.
  • two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scanning exposure.
  • the above embodiment can also be applied to an exposure apparatus that performs double exposure of two shot areas almost simultaneously.
  • the object on which the pattern is to be formed is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing, but for example, an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head, an image sensor It can be widely applied to exposure apparatuses for manufacturing (CCD, etc.), micromachines, DNA chips, and the like. Further, in order to manufacture reticles or masks used in not only microdevices such as semiconductor elements but also light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The above embodiment can also be applied to an exposure apparatus that transfers a circuit pattern.
  • a step-and-scan type projection exposure apparatus is described as an example, but the present invention is also applied to a position measurement apparatus of a step-and-repeat type projection exposure apparatus. can do.
  • the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • FIG. 21 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film.
  • Step S42 the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed.
  • Development that is, development of the photoresist to which the pattern has been transferred (step S46: development process).
  • step S48 processing step.
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is.
  • step S48 the surface of the wafer W is processed through this resist pattern.
  • the processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like.
  • the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as a photosensitive substrate.
  • FIG. 22 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element.
  • a pattern forming process step S50
  • a color filter forming process step S52
  • a cell assembling process step S54
  • a module assembling process step S56
  • a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment.
  • the pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal panel is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52.
  • a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
  • the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD, etc.), micromachine, thin film magnetic head, and DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
  • an exposure apparatus for manufacturing a semiconductor device for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display
  • various devices such as an image sensor (CCD, etc.), micromachine, thin film magnetic head, and DNA chip.
  • the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various
  • the illumination optical system IL is not limited to ArF excimer laser light (wavelength 193 nm).
  • a DFB semiconductor laser or fiber laser is used as vacuum ultraviolet light.
  • a single wavelength laser beam in the infrared or visible range oscillated from is amplified with, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and converted into ultraviolet light using a nonlinear optical crystal. Harmonics may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To simultaneously and stably perform position measurement in the in-plane direction of a substrate and position measurement in the normal direction of the substrate, a position measurement device is provided with: a polarized beam splitter which is fixedly attached to a first member; a reflective diffraction grating which is attached to a second member and has a periodic structure along a first direction; a first measurement unit which measures the relative position of the second member along the first direction on the basis of the interference between first measurement light that is diffracted light along the first direction generated from the diffraction grating in response to first polarized light incident on the diffraction grating via a first path in the polarized beam splitter, and second polarized first reference light corresponding to the first measurement light; and a second measurement unit which measures the relative position of the second member along a second direction on the basis of the interference between second measurement light that is zero-order light generated along the second direction from the diffraction grating in response to light incident on the diffraction grating via a second path in the polarized beam splitter, and second reference light corresponding to the second measurement light.

Description

位置計測装置、ステージ装置、露光装置、およびデバイス製造方法Position measuring apparatus, stage apparatus, exposure apparatus, and device manufacturing method
 本発明は、位置計測装置、ステージ装置、露光装置、およびデバイス製造方法に関する。 The present invention relates to a position measuring apparatus, a stage apparatus, an exposure apparatus, and a device manufacturing method.
 従来、半導体素子等の電子デバイス(マイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる露光装置では、レーザ干渉計を用いて、露光対象の基板を保持して移動する基板ステージの位置計測を行っている。しかしながら、レーザ干渉計では、計測用ビームの光路が長く且つ光路長が変化するため、光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動を無視することができない。 Conventionally, in an exposure apparatus used in a photolithography process for producing electronic devices (microdevices) such as semiconductor elements, a laser interferometer is used to measure the position of a substrate stage that holds and moves an exposure target substrate. Is going. However, in the laser interferometer, since the optical path of the measurement beam is long and the optical path length changes, short-term fluctuations in the measured value due to the temperature fluctuation of the atmosphere on the optical path cannot be ignored.
 そこで、例えば基板ステージに取り付けられた回折格子にレーザ光のような計測光を照射し、回折格子から発生する回折光と、これに対応する参照光との干渉光を光電変換して得られる検出信号から、基板ステージの相対移動量を計測する位置計測装置が提案されている(例えば、特許文献1を参照)。この位置計測装置では、レーザ干渉計に比して安定的に位置計測を行うことができる。 Therefore, for example, a measurement obtained by irradiating measurement light such as laser light onto a diffraction grating attached to a substrate stage, and photoelectrically converting interference light between the diffraction light generated from the diffraction grating and the corresponding reference light A position measuring device that measures a relative movement amount of a substrate stage from a signal has been proposed (see, for example, Patent Document 1). In this position measurement apparatus, position measurement can be performed more stably than a laser interferometer.
米国特許第8,134,688号U.S. Pat. No. 8,134,688
 しかしながら、露光装置の基板ステージの位置計測に対して従来の位置計測装置を適用した場合、基板の面内方向の位置計測と基板の法線方向の位置計測とを独立して行うため、位置計測の安定性が必ずしも十分ではない。 However, when a conventional position measurement apparatus is applied to the position measurement of the substrate stage of the exposure apparatus, the position measurement in the in-plane direction of the substrate and the position measurement in the normal direction of the substrate are performed independently. The stability of is not always sufficient.
 本発明は、前述の課題に鑑みてなされたものであり、例えば露光装置の基板ステージの位置計測に対して適用した場合に、基板の面内方向の位置計測と基板の法線方向の位置計測とを同時に且つ安定的に行うことのできる位置計測装置を提供することを目的とする。また、本発明は、例えば基板ステージの位置計測を同時に且つ安定的に行う位置計測装置を用いて、投影光学系に対して基板ステージ上の感光性基板を高精度に位置合わせすることのできる露光装置を提供することを目的とする。 The present invention has been made in view of the above-described problems. For example, when applied to the position measurement of the substrate stage of an exposure apparatus, the position measurement in the in-plane direction of the substrate and the position measurement in the normal direction of the substrate are performed. It is an object of the present invention to provide a position measuring apparatus capable of simultaneously and stably performing the above. The present invention also provides an exposure that can position the photosensitive substrate on the substrate stage with high accuracy with respect to the projection optical system using, for example, a position measuring device that simultaneously and stably measures the position of the substrate stage. An object is to provide an apparatus.
 前記課題を解決するために、第1形態では、第1部材に対する相対位置が可変である第2部材の相対位置を計測する位置計測装置において、
 前記第1部材に固定的に取り付けられた偏光ビームスプリッターと、
 前記第2部材に取り付けられて、第1方向に沿った周期構造を有する反射型の回折格子と、
 前記偏光ビームスプリッター内の第1経路を経て前記回折格子に入射した第1偏光の光に応じて前記回折格子から発生する前記第1方向に沿った回折光である第1測定光と、該第1測定光に対応する第2偏光の第1参照光との干渉に基づいて、前記第2部材の前記第1方向に沿った相対位置を計測する第1計測部と、
 前記偏光ビームスプリッター内の第2経路を経て前記回折格子に入射した光に応じて前記回折格子から第2方向に沿って発生する0次光である第2測定光と、該第2測定光に対応する第2参照光との干渉に基づいて、前記第2部材の前記第2方向に沿った相対位置を計測する第2計測部とを備えていることを特徴とする位置計測装置を提供する。
In order to solve the above-described problem, in the first embodiment, in the position measurement device that measures the relative position of the second member, the relative position of which is variable with respect to the first member,
A polarizing beam splitter fixedly attached to the first member;
A reflective diffraction grating attached to the second member and having a periodic structure along a first direction;
A first measurement light which is a diffracted light along the first direction generated from the diffraction grating in response to the first polarized light incident on the diffraction grating via a first path in the polarization beam splitter; A first measurement unit that measures a relative position of the second member along the first direction based on interference with the second polarized first reference light corresponding to one measurement light;
A second measurement light that is zero-order light generated along the second direction from the diffraction grating in response to the light incident on the diffraction grating via the second path in the polarization beam splitter; and the second measurement light There is provided a position measuring device comprising: a second measuring unit that measures a relative position of the second member along the second direction based on interference with a corresponding second reference light. .
 第2形態では、第1部材に対する相対位置が可変であって、第1方向に沿った周期構造を有する反射型の回折格子が設けられた第2部材の相対位置を計測する位置計測装置において、
 前記第1部材に固定的に取り付けられた偏光ビームスプリッターと、
 前記偏光ビームスプリッターを経て前記第1方向を含む第1平面内の所定経路に沿って前記回折格子に斜め入射した光に応じて前記回折格子から前記第1平面内の前記所定経路に沿って発生する回折光である第1測定光と、該第1測定光に対応する第1参照光との干渉光に基づいて、前記第2部材の前記第1方向に沿った相対位置を計測する第1計測部とを備え、
 前記第1計測部は、前記偏光ビームスプリッターを経た光を偏向して第1経路に沿って前記回折格子上の第1領域に、前記反射型の回折格子のリトロー角で斜め入射させる第1偏向部材を有することを特徴とする位置計測装置を提供する。
In the second embodiment, in the position measurement device that measures the relative position of the second member provided with a reflection type diffraction grating having a periodic structure along the first direction, the relative position with respect to the first member being variable.
A polarizing beam splitter fixedly attached to the first member;
Generated from the diffraction grating along the predetermined path in the first plane in response to light obliquely incident on the diffraction grating along a predetermined path in the first plane including the first direction via the polarizing beam splitter First relative position of the second member along the first direction is measured based on interference light between the first measurement light that is diffracted light and the first reference light corresponding to the first measurement light. With a measuring unit,
The first measurement unit deflects light that has passed through the polarization beam splitter, and obliquely enters the first region on the diffraction grating along the first path at a Littrow angle of the reflective diffraction grating. Provided is a position measuring device having a member.
 第3形態では、物体を保持するステージと、該ステージを移動させる駆動部とを備えたステージ装置において、
 第1形態または第2形態の位置計測装置を備え、
 前記偏光ビームスプリッターおよび前記回折格子のうちの一方が前記ステージに取り付けられていることを特徴とするステージ装置を提供する。
In the third embodiment, in a stage apparatus including a stage that holds an object and a drive unit that moves the stage,
Comprising the position measuring device of the first form or the second form,
One of the polarization beam splitter and the diffraction grating is attached to the stage.
 第4形態では、所定のパターンを基板に露光する露光装置において、
 前記基板を保持して移動する第3形態のステージ装置を備えていることを特徴とする露光装置を提供する。
In the fourth embodiment, in an exposure apparatus that exposes a predetermined pattern on a substrate,
An exposure apparatus is provided, comprising a stage device of a third form that holds and moves the substrate.
 第5形態では、第4形態の露光装置を用いて、前記所定のパターンを前記基板に露光することと、
 前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
 前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法を提供する。
In the fifth embodiment, using the exposure apparatus of the fourth embodiment, exposing the predetermined pattern to the substrate;
Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate;
And processing the surface of the substrate through the mask layer. A device manufacturing method is provided.
 本発明の位置計測装置では、例えば露光装置の基板ステージの位置計測に対して適用した場合に、基板の面内方向の位置計測と基板の法線方向の位置計測とを同時に且つ安定的に行うことができる。また、本発明の露光装置では、例えば基板ステージの位置計測を同時に且つ安定的に行う位置計測装置を用いて、投影光学系に対して基板ステージ上の感光性基板を高精度に位置合わせすることができる。 In the position measuring apparatus of the present invention, for example, when applied to the position measurement of the substrate stage of the exposure apparatus, the position measurement in the in-plane direction of the substrate and the position measurement in the normal direction of the substrate are performed simultaneously and stably. be able to. In the exposure apparatus of the present invention, for example, a position measurement device that simultaneously and stably measures the position of the substrate stage is used to accurately align the photosensitive substrate on the substrate stage with respect to the projection optical system. Can do.
第1実施形態にかかる位置計測装置を備えた露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus provided with the position measuring device concerning 1st Embodiment. 第1実施形態の位置計測装置を構成する回折格子および計測ユニットの配置を概略的に示す図である。It is a figure which shows roughly the arrangement | positioning of the diffraction grating and measurement unit which comprise the position measuring device of 1st Embodiment. ウェハステージに取り付けられた回折格子のX方向位置およびY方向位置の計測原理について説明する図である。It is a figure explaining the measurement principle of the X direction position of the diffraction grating attached to the wafer stage, and the Y direction position. ウェハステージに取り付けられた回折格子のZ方向位置の計測原理について説明する図である。It is a figure explaining the measurement principle of the Z direction position of the diffraction grating attached to the wafer stage. 第1実施形態にかかる位置計測装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the position measuring device concerning a 1st embodiment. 偏光ビームスプリッターの入出力ユニット側の光学面に対する複数の計測光の入射位置を示す図である。It is a figure which shows the incident position of the some measurement light with respect to the optical surface by the side of the input / output unit of a polarization beam splitter. 回折格子の偏光ビームスプリッター側の入射面における計測点の位置を示す図である。It is a figure which shows the position of the measurement point in the entrance plane by the side of the polarizing beam splitter of a diffraction grating. 参照部材の偏光ビームスプリッター側の入射面の構成および該入射面における複数の計測光の入射位置を示す図である。It is a figure which shows the structure of the incident surface by the side of the polarization beam splitter of a reference member, and the incident position of the some measurement light in this incident surface. 偏光ビームスプリッターの回折格子側の光学面の構成を示す図である。It is a figure which shows the structure of the optical surface by the side of the diffraction grating of a polarizing beam splitter. 偏光ビームスプリッターの参照部材側の光学面の構成を示す図である。It is a figure which shows the structure of the optical surface by the side of the reference member of a polarization beam splitter. マスクステージの位置計測に適用した変形例における回折格子および計測ユニットの配置を概略的に示す図である。It is a figure which shows roughly arrangement | positioning of the diffraction grating and measurement unit in the modification applied to the position measurement of a mask stage. 第2実施形態にかかる位置計測装置を備えた露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the exposure apparatus provided with the position measuring device concerning 2nd Embodiment. 第2実施形態の位置計測装置を構成する回折格子および計測ユニットの配置を概略的に示す図である。It is a figure which shows roughly the arrangement | positioning of the diffraction grating and measurement unit which comprise the position measuring device of 2nd Embodiment. ウェハステージに取り付けられた回折格子のX方向位置およびY方向位置の計測原理について説明する図である。It is a figure explaining the measurement principle of the X direction position of the diffraction grating attached to the wafer stage, and the Y direction position. ウェハステージに取り付けられた回折格子のZ方向位置の計測原理について説明する図である。It is a figure explaining the measurement principle of the Z direction position of the diffraction grating attached to the wafer stage. 第2実施形態にかかる位置計測装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the position measuring device concerning 2nd Embodiment. 第2実施形態の回折格子の入射面における計測点の位置、および各計測点に関連して入射する光の位置を示す図である。It is a figure which shows the position of the measurement point in the entrance plane of the diffraction grating of 2nd Embodiment, and the position of the incident light in relation to each measurement point. 変形例にかかる計測点の位置、および各計測点に関連して入射する光の位置を示す図である。It is a figure which shows the position of the measurement point concerning a modification, and the position of the incident light in relation to each measurement point. 変形例にかかる偏向部材の構成を概略的に示す図である。It is a figure which shows schematically the structure of the deflection | deviation member concerning a modification. マスクステージの位置計測に適用した変形例における回折格子および計測ユニットの配置を概略的に示す図である。It is a figure which shows roughly arrangement | positioning of the diffraction grating and measurement unit in the modification applied to the position measurement of a mask stage. 半導体デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a semiconductor device. 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of liquid crystal devices, such as a liquid crystal display element.
 以下、実施形態を、添付図面に基づいて説明する。図1は、第1実施形態にかかる位置計測装置を備えた露光装置の構成を概略的に示す図である。第1実施形態では、露光装置において感光性基板を保持して移動する基板ステージの位置計測に対して、本実施形態の位置計測装置を適用している。図1では、投影光学系PLの像面の法線方向(すなわち投影光学系PLの光軸AXの方向:図1の紙面における鉛直方向)にZ軸を、投影光学系PLの像面内において図1の紙面に平行にX軸を、投影光学系PLの像面内において図1の紙面に垂直にY軸を設定している。 Hereinafter, embodiments will be described with reference to the accompanying drawings. FIG. 1 is a view schematically showing a configuration of an exposure apparatus provided with a position measuring apparatus according to the first embodiment. In the first embodiment, the position measurement apparatus of this embodiment is applied to the position measurement of the substrate stage that moves while holding the photosensitive substrate in the exposure apparatus. In FIG. 1, the Z axis is set in the normal direction of the image plane of the projection optical system PL (that is, the direction of the optical axis AX of the projection optical system PL: the vertical direction on the paper surface of FIG. 1) in the image plane of the projection optical system PL. The X axis is set parallel to the paper surface of FIG. 1, and the Y axis is set perpendicular to the paper surface of FIG. 1 in the image plane of the projection optical system PL.
 図1を参照すると、第1実施形態の露光装置には、光源LSから露光光(照明光)が供給される。露光用光源LSとして、たとえば193nmの波長の光を供給するArFエキシマレーザ光源や、248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。第1実施形態の露光装置は、光源LSから射出された照明光(露光光)により、転写すべきパターンが形成されたマスク(レチクル)Mを照明する照明光学系ILを備えている。 Referring to FIG. 1, exposure light (illumination light) is supplied from a light source LS to the exposure apparatus of the first embodiment. As the exposure light source LS, for example, an ArF excimer laser light source that supplies light with a wavelength of 193 nm, a KrF excimer laser light source that supplies light with a wavelength of 248 nm, or the like can be used. The exposure apparatus of the first embodiment includes an illumination optical system IL that illuminates a mask (reticle) M on which a pattern to be transferred is formed by illumination light (exposure light) emitted from a light source LS.
 照明光学系ILは、オプティカル・インテグレータ(ホモジナイザー)、視野絞り、コンデンサレンズ等から構成されている。照明光学系ILは、例えばマスクMの矩形状のパターン領域全体、あるいはパターン領域全体のうちX方向に沿って細長いスリット状の領域(例えば矩形状の領域)を照明する。 The illumination optical system IL is composed of an optical integrator (homogenizer), a field stop, a condenser lens, and the like. The illumination optical system IL illuminates, for example, the entire rectangular pattern region of the mask M, or an elongated slit-shaped region (for example, a rectangular region) along the X direction in the entire pattern region.
 マスクMのパターンからの光は、投影光学系PLを介して、フォトレジストが塗布されたウェハ(感光性基板)Wの単位露光領域にマスクMのパターン像を形成する。すなわち、マスクM上での照明領域に光学的に対応するように、ウェハWの単位露光領域において、マスクMのパターン領域全体と相似な矩形状の領域、あるいはX方向に細長い矩形状の領域(静止露光領域)にマスクパターン像が形成される。 The light from the pattern of the mask M forms a pattern image of the mask M in the unit exposure region of the wafer (photosensitive substrate) W coated with the photoresist via the projection optical system PL. That is, in the unit exposure area of the wafer W, a rectangular area similar to the entire pattern area of the mask M or a rectangular area elongated in the X direction (optically corresponding to the illumination area on the mask M) A mask pattern image is formed in the (static exposure region).
 マスクMは、マスクステージMS上においてXY平面とほぼ平行に保持されている。マスクステージMSには、X方向、Y方向、Z軸廻りの回転方向などにマスクMを移動させる機構が組み込まれている。マスクステージMSには図示を省略した移動鏡が設けられ、この移動鏡を用いるマスクレーザ干渉計(不図示)が、マスクステージMS(ひいてはマスクM)のX方向の位置、Y方向の位置、回転方向の位置などをリアルタイムに計測する。 The mask M is held substantially parallel to the XY plane on the mask stage MS. The mask stage MS incorporates a mechanism for moving the mask M in the X direction, the Y direction, the rotation direction around the Z axis, and the like. The mask stage MS is provided with a movable mirror (not shown), and a mask laser interferometer (not shown) using this movable mirror moves the position of the mask stage MS (and hence the mask M) in the X direction, the Y direction, and the rotation. Measure the position of the direction in real time.
 ウェハWは、ウェハホルダ(不図示)を介して、ウェハステージ(基板ステージ)WS上においてXY平面とほぼ平行に保持されている。すなわち、ウェハWを保持して露光装置定盤上を移動するウェハステージWS上において、ウェハWは所定の位置に所定の姿勢で保持されている。ウェハステージWSには、X方向、Y方向、Z方向、X軸廻りの回転方向、Y軸廻りの回転方向およびZ軸廻りの回転方向に、ウェハステージWS(ひいてはウェハW)を移動させる機構が組み込まれている。 The wafer W is held substantially parallel to the XY plane on a wafer stage (substrate stage) WS via a wafer holder (not shown). That is, on the wafer stage WS that holds the wafer W and moves on the exposure apparatus surface plate, the wafer W is held at a predetermined position in a predetermined posture. The wafer stage WS has a mechanism for moving the wafer stage WS (and thus the wafer W) in the X direction, the Y direction, the Z direction, the rotation direction around the X axis, the rotation direction around the Y axis, and the rotation direction around the Z axis. It has been incorporated.
 第1実施形態の露光装置は、ウェハステージWS(ひいてはウェハW)のX方向の位置、Y方向の位置、Z方向の位置、X軸廻りの回転方向の位置、Y軸廻りの回転方向の位置、およびZ軸廻りの回転方向の位置をリアルタイムに計測する位置計測装置1を備えている。位置計測装置1は、図1および図2に示すように、ウェハWを挟んでX方向に間隔を隔てて設置された一対の反射型の回折格子10と、投影光学系PLを挟んでX方向に並んで設置された4つの計測ユニット11とを有する。図2では、ウェハWの中心Waと投影光学系PLの光軸AXとがXY平面において同じ位置にある基準的な状態を示している。 In the exposure apparatus of the first embodiment, the position in the X direction, the position in the Y direction, the position in the Z direction, the position in the rotation direction around the X axis, and the position in the rotation direction around the Y axis of the wafer stage WS (and thus the wafer W). And a position measuring device 1 that measures the position in the rotation direction around the Z axis in real time. As shown in FIGS. 1 and 2, the position measuring apparatus 1 includes a pair of reflective diffraction gratings 10 that are spaced apart in the X direction with the wafer W interposed therebetween, and the projection optical system PL in the X direction. And four measuring units 11 installed side by side. FIG. 2 shows a reference state in which the center Wa of the wafer W and the optical axis AX of the projection optical system PL are at the same position on the XY plane.
 回折格子10は、例えばY方向に沿って細長い矩形状の外形を有し、ウェハステージWSに固定的に(あるいは着脱自在に)取り付けられている。4つの計測ユニット11は、ウェハステージWSと隔絶された露光装置本体に固定的に取り付けられている。4つの計測ユニット11のうち、第1の対の計測ユニット11は投影光学系PLの+X方向側においてX方向に並んで配置され、第2の対の計測ユニット11は投影光学系PLの-X方向側においてX方向に並んで配置されている。 The diffraction grating 10 has, for example, an elongated rectangular outer shape along the Y direction, and is fixedly (or detachably) attached to the wafer stage WS. The four measurement units 11 are fixedly attached to the exposure apparatus main body isolated from the wafer stage WS. Of the four measurement units 11, the first pair of measurement units 11 are arranged side by side in the X direction on the + X direction side of the projection optical system PL, and the second pair of measurement units 11 is -X of the projection optical system PL. They are arranged side by side in the X direction on the direction side.
 以下、説明を簡単にするために、一対の回折格子10は、ウェハWの中心Waを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有するものとする。また、4つの計測ユニット11は、投影光学系PLの光軸AXを通ってX方向に延びる軸線に沿うように光軸AXを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有するものとする。さらに、静止している露光装置本体に対して、ウェハステージWSが移動するものとする。位置計測装置1の具体的な構成および作用については後述する。 Hereinafter, in order to simplify the description, it is assumed that the pair of diffraction gratings 10 are arranged symmetrically with respect to an axis extending in the Y direction through the center Wa of the wafer W and have the same configuration. Further, the four measurement units 11 are arranged symmetrically with respect to the axis extending in the Y direction through the optical axis AX so as to be along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration. It shall have. Further, it is assumed that the wafer stage WS moves with respect to the stationary exposure apparatus main body. The specific configuration and operation of the position measuring device 1 will be described later.
 マスクレーザ干渉計の出力および位置計測装置1の出力は、制御系CRに供給される。制御系CRは、マスクレーザ干渉計の計測結果に基づいて、マスクMのX方向、Y方向および回転方向の位置の制御を行う。即ち、制御系CRは、マスクステージMSに組み込まれている機構に制御信号を送信し、この機構が制御信号に基づいてマスクステージMSを移動させることにより、マスクMのX方向の位置、Y方向の位置、回転方向の位置などの調整を行う。 The output of the mask laser interferometer and the output of the position measuring device 1 are supplied to the control system CR. The control system CR controls the position of the mask M in the X direction, the Y direction, and the rotation direction based on the measurement result of the mask laser interferometer. That is, the control system CR transmits a control signal to a mechanism incorporated in the mask stage MS, and this mechanism moves the mask stage MS based on the control signal, whereby the position of the mask M in the X direction, the Y direction. And adjust the position in the rotation direction.
 制御系CRは、位置計測装置1の計測結果に基づいて、ウェハWの表面を投影光学系PLの像面と一致させるために、ウェハWのフォーカス位置(Z方向位置)および傾斜角(X軸廻りの回転角、Y軸廻りの回転角)の制御を行う。即ち、制御系CRは、ウェハステージ駆動系DRwに制御信号を送信し、ウェハステージ駆動系DRwが制御信号に基づいてウェハステージWSを駆動することにより、ウェハWのフォーカス位置および傾斜角の調整を行う。 Based on the measurement result of the position measuring device 1, the control system CR makes the focus position (Z-direction position) and tilt angle (X-axis) of the wafer W match the surface of the wafer W with the image plane of the projection optical system PL. The rotation angle around and the rotation angle around the Y axis are controlled. That is, the control system CR transmits a control signal to the wafer stage drive system DRw, and the wafer stage drive system DRw drives the wafer stage WS based on the control signal, thereby adjusting the focus position and tilt angle of the wafer W. Do.
 また、制御系CRは、位置計測装置1の計測結果に基づいて、ウェハWのX方向の位置、Y方向の位置およびZ軸廻りの回転方向の位置の制御を行う。即ち、制御系CRは、ウェハステージ駆動系DRwに制御信号を送信し、ウェハステージ駆動系DRwが制御信号に基づいてウェハステージWSを駆動することにより、ウェハWのX方向の位置、Y方向の位置およびZ軸廻りの回転方向の位置の調整を行う。 Further, the control system CR controls the position of the wafer W in the X direction, the Y direction, and the rotational direction around the Z axis based on the measurement result of the position measuring device 1. That is, the control system CR transmits a control signal to the wafer stage drive system DRw, and the wafer stage drive system DRw drives the wafer stage WS based on the control signal, whereby the position of the wafer W in the X direction, Adjust the position and the position in the rotation direction around the Z axis.
 ステップ・アンド・リピート方式では、ウェハW上に縦横に設定された複数の単位露光領域のうちの1つの単位露光領域に、マスクMのパターン像を一括的に露光する。その後、制御系CRは、ウェハステージ駆動系DRwに制御信号を送信し、ウェハステージ駆動系DRwによりウェハステージWSをXY平面に沿ってステップ移動させることにより、ウェハWの別の単位露光領域を投影光学系PLに対して位置決めする。こうして、マスクMのパターン像をウェハWの単位露光領域に一括露光する動作を繰り返す。 In the step-and-repeat method, the pattern image of the mask M is collectively exposed to one unit exposure area among a plurality of unit exposure areas set vertically and horizontally on the wafer W. Thereafter, the control system CR sends a control signal to the wafer stage drive system DRw, and projects another unit exposure region of the wafer W by moving the wafer stage WS along the XY plane by the wafer stage drive system DRw. Positioning is performed with respect to the optical system PL. Thus, the operation of collectively exposing the pattern image of the mask M to the unit exposure area of the wafer W is repeated.
 ステップ・アンド・スキャン方式では、制御系CRは、マスクステージMSに組み込まれた機構に制御信号を送信すると共に、ウェハステージ駆動系DRwに制御信号を送信し、投影光学系PLの投影倍率に応じた速度比でマスクステージMSおよびウェハステージWSをY方向に移動させつつ、マスクMのパターン像をウェハWの1つの単位露光領域に走査露光する。その後、制御系CRは、ウェハステージ駆動系DRwに制御信号を送信し、ウェハステージ駆動系DRwによりウェハステージWSをXY平面に沿ってステップ移動させることにより、ウェハWの別の単位露光領域を投影光学系PLに対して位置決めする。こうして、マスクMのパターン像をウェハWの単位露光領域に走査露光する動作を繰り返す。 In the step-and-scan method, the control system CR transmits a control signal to a mechanism incorporated in the mask stage MS, and also transmits a control signal to the wafer stage drive system DRw, according to the projection magnification of the projection optical system PL. The pattern image of the mask M is scanned and exposed to one unit exposure region of the wafer W while the mask stage MS and the wafer stage WS are moved in the Y direction at the speed ratio. Thereafter, the control system CR sends a control signal to the wafer stage drive system DRw, and projects another unit exposure region of the wafer W by moving the wafer stage WS along the XY plane by the wafer stage drive system DRw. Positioning is performed with respect to the optical system PL. Thus, the operation of scanning and exposing the pattern image of the mask M to the unit exposure area of the wafer W is repeated.
 すなわち、ステップ・アンド・スキャン方式では、位置計測装置1、ウェハステージ駆動系DRwなどを用いてマスクMおよびウェハWの位置制御を行いながら、矩形状(一般にはスリット状)の静止露光領域の短辺方向であるY方向に沿って、マスクステージMSとウェハステージWSとを、ひいてはマスクMとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域の長辺に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有する領域に対してマスクパターンが走査露光される。 That is, in the step-and-scan method, the position of the mask M and the wafer W is controlled using the position measuring device 1, the wafer stage driving system DRw, etc., and the rectangular (generally slit-shaped) static exposure region is shortened. By moving (scanning) the mask stage MS and the wafer stage WS along the Y direction, which is the side direction, and the mask M and the wafer W synchronously (scanning), the long side of the static exposure region is formed on the wafer W. The mask pattern is scanned and exposed to an area having a width equal to the length of the wafer W and a length corresponding to the scanning amount (movement amount) of the wafer W.
 以下、位置計測装置1の具体的な構成および作用の説明に先立ち、位置計測装置1における計測原理について説明する。図3は、ウェハステージに取り付けられた回折格子のX方向位置およびY方向位置の計測原理について説明する図である。図3を参照すると、露光装置本体に固定的に取り付けられた偏光ビームスプリッターPBSに、同一光路にp偏光成分とs偏光成分とを含む計測光31がX方向に沿って入射する。偏光ビームスプリッターPBSに入射した計測光31のうち、偏光分離面でZ方向に反射されたs偏光の光は偏光ビームスプリッターPBSから射出され、ウェハステージWSに取り付けられた反射型の回折格子10上の計測点32aに入射する。 Hereinafter, prior to the description of the specific configuration and operation of the position measuring device 1, the measurement principle of the position measuring device 1 will be described. FIG. 3 is a diagram for explaining the measurement principle of the X-direction position and the Y-direction position of the diffraction grating attached to the wafer stage. Referring to FIG. 3, measurement light 31 including a p-polarized component and an s-polarized component enters the same optical path along the X direction on a polarizing beam splitter PBS fixedly attached to the exposure apparatus main body. Of the measurement light 31 incident on the polarization beam splitter PBS, the s-polarized light reflected in the Z direction on the polarization separation surface is emitted from the polarization beam splitter PBS and is reflected on the reflective diffraction grating 10 attached to the wafer stage WS. Is incident on the measurement point 32a.
 回折格子10は、偏光ビームスプリッターPBSに対してXY平面にほぼ平行な入射面を向けた平行平面板の形態を有する。回折格子10には、X方向およびY方向に沿った二次元周期構造を有する回折パターンが設けられている。回折格子10上の計測点32aに入射したs偏光の光に応じて、回折格子10からX方向に沿って(XZ平面に沿って)+1次回折光31saおよび-1次回折光31sbが発生するとともに、回折格子10からY方向に沿って(YZ平面に沿って)+1次回折光31sc(不図示)および-1次回折光31sd(不図示)が発生する。 The diffraction grating 10 has a form of a plane parallel plate having an incident surface substantially parallel to the XY plane with respect to the polarization beam splitter PBS. The diffraction grating 10 is provided with a diffraction pattern having a two-dimensional periodic structure along the X direction and the Y direction. According to the s-polarized light incident on the measurement point 32a on the diffraction grating 10, + 1st order diffracted light 31sa and −1st order diffracted light 31sb are generated along the X direction (along the XZ plane) from the diffraction grating 10, and A + 1st order diffracted light 31sc (not shown) and a −1st order diffracted light 31sd (not shown) are generated from the diffraction grating 10 along the Y direction (along the YZ plane).
 回折格子10からX方向に沿って発生したs偏光の測定光である+1次回折光31saおよび-1次回折光31sbは、偏向部材33aおよび33bによりそれぞれZ方向に偏向された後、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向にそれぞれ反射される。偏向部材33aおよび33bは、偏光ビームスプリッターPBSに固定的に取り付けられ、X方向に沿った一次元周期構造の回折パターンを有する。偏向部材33aおよび33bの回折パターンを、偏光ビームスプリッターPBSの回折格子10と対向する光学面に形成しても良い。 The + 1st order diffracted light 31sa and the −1st order diffracted light 31sb, which are s-polarized measurement light generated from the diffraction grating 10 along the X direction, are deflected in the Z direction by the deflecting members 33a and 33b, respectively, and then the polarization beam splitter PBS. It propagates inside and is reflected in the X direction by the polarization separation plane. The deflecting members 33a and 33b are fixedly attached to the polarization beam splitter PBS and have a one-dimensional periodic structure diffraction pattern along the X direction. The diffraction patterns of the deflecting members 33a and 33b may be formed on the optical surface facing the diffraction grating 10 of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSに入射した計測光31のうち、偏光分離面を透過したp偏光の光は偏光ビームスプリッターPBSから射出され、露光装置本体に固定的に取り付けられた(すなわち偏光ビームスプリッターPBSと一体的に保持された)参照部材RM上の点34aに入射する。参照部材RMは、偏光ビームスプリッターPBSに対してYZ平面に沿った入射面を向けた平行平面板の形態を有する。参照部材RM上の点34aを含む領域には、X方向およびY方向に沿った二次元周期構造を有する回折パターンが設けられている。参照部材RM上の点34aに入射したp偏光の光に応じて、参照部材RMからZ方向に沿って(XZ平面に沿って)+1次回折光31paおよび-1次回折光31pbが発生するとともに、参照部材RMからY方向に沿って(XY平面に沿って)+1次回折光31pc(不図示)および-1次回折光31pd(不図示)が発生する。 Of the measurement light 31 incident on the polarization beam splitter PBS, the p-polarized light transmitted through the polarization separation surface is emitted from the polarization beam splitter PBS and fixedly attached to the exposure apparatus main body (that is, integrated with the polarization beam splitter PBS). Incident on a point 34a on the reference member RM). The reference member RM has the form of a plane parallel plate with the incident surface along the YZ plane facing the polarization beam splitter PBS. In the region including the point 34a on the reference member RM, a diffraction pattern having a two-dimensional periodic structure along the X direction and the Y direction is provided. In accordance with the p-polarized light incident on the point 34a on the reference member RM, + 1st order diffracted light 31pa and −1st order diffracted light 31pb are generated along the Z direction (along the XZ plane) from the reference member RM. A + 1st order diffracted light 31pc (not shown) and a −1st order diffracted light 31pd (not shown) are generated along the Y direction (along the XY plane) from the member RM.
 参照部材RMからZ方向に沿って発生したp偏光の参照光である+1次回折光31paおよび-1次回折光31pbは、偏向部材35aおよび35bによりそれぞれX方向に偏向された後、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面をそれぞれ透過する。偏向部材35aおよび35bは、偏光ビームスプリッターPBSに固定的に取り付けられ、Z方向に沿った一次元周期構造の回折パターンを有する。偏向部材35aおよび35bの回折パターンを、偏光ビームスプリッターPBSの参照部材RMと対向する光学面に形成しても良い。 The + 1st order diffracted light 31pa and the −1st order diffracted light 31pb, which are p-polarized reference light generated along the Z direction from the reference member RM, are deflected in the X direction by the deflecting members 35a and 35b, respectively, and then the polarization beam splitter PBS Propagates inside and transmits through the polarization splitting surfaces. The deflecting members 35a and 35b are fixedly attached to the polarization beam splitter PBS, and have a one-dimensional periodic structure diffraction pattern along the Z direction. The diffraction patterns of the deflecting members 35a and 35b may be formed on the optical surface facing the reference member RM of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の+1次回折光31saと、偏光分離面を透過したp偏光の+1次回折光31paとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに固定的に取り付けられたコーナーキューブのような折返し部材36aに入射する。折返し部材36aの作用によりZ方向へ平行移動されて偏光ビームスプリッターPBSへ戻されたs偏光の+1次回折光31saおよびp偏光の+1次回折光31paは、偏光ビームスプリッターPBSの偏光分離面に入射する。 The s-polarized + 1st order diffracted light 31sa reflected in the X direction on the polarization separation surface of the polarization beam splitter PBS and the p-polarized + 1st order diffracted light 31pa transmitted through the polarization separation surface are along the same path. And enters a folding member 36a such as a corner cube fixedly attached to the polarization beam splitter PBS. The s-polarized + 1st-order diffracted light 31sa and the p-polarized + 1st-order diffracted light 31pa that have been translated in the Z direction by the action of the folding member 36a and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面でZ方向に反射されたs偏光の測定光である+1次回折光31saは、偏光ビームスプリッターPBSから射出され、回折格子10上の計測点32aから-X方向側に間隔を隔てた点32bに入射する。回折格子10上の点32bに入射したs偏光の+1次回折光31saに応じて、回折格子10からX方向に沿って+1次回折光31saaが発生する。回折格子10からX方向に沿って発生したs偏光の測定光である+1次回折光31saaは、偏向部材33aおよび33bと同様に構成された偏向部材33cによりZ方向に偏向された後、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向に反射される。 The + 1st-order diffracted light 31sa, which is s-polarized measurement light reflected in the Z direction on the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS and moved from the measurement point 32a on the diffraction grating 10 to the −X direction side. The incident light is incident on the point 32b that is spaced apart. In response to the s-polarized + 1st order diffracted light 31sa incident on the point 32b on the diffraction grating 10, the + 1st order diffracted light 31saa is generated along the X direction from the diffraction grating 10. The + 1st-order diffracted light 31saa, which is s-polarized measurement light generated along the X direction from the diffraction grating 10, is deflected in the Z direction by a deflecting member 33c configured in the same manner as the deflecting members 33a and 33b, and then polarized beam splitter. It propagates inside the PBS and is reflected in the X direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の参照光である+1次回折光31paは偏光ビームスプリッターPBSから射出され、参照部材RM上の点34aから-Z方向側に間隔を隔てた点34bに入射する。参照部材RM上の点34bを含む領域には、Z方向に沿った一次元周期構造を有する回折パターンが設けられている。参照部材RM上の点34bに入射したp偏光の+1次回折光31paに応じて、参照部材RMからZ方向に沿って+1次回折光31paaが発生する。 The + first-order diffracted light 31pa, which is p-polarized reference light that has passed through the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS, and is spaced from the point 34a on the reference member RM to the −Z direction side by the point 34b. Is incident on. In a region including the point 34b on the reference member RM, a diffraction pattern having a one-dimensional periodic structure along the Z direction is provided. In response to the p-polarized + 1st order diffracted light 31pa incident on the point 34b on the reference member RM, the + 1st order diffracted light 31paa is generated along the Z direction from the reference member RM.
 参照部材RMからZ方向に沿って発生したp偏光の参照光である+1次回折光31paaは、偏向部材35aおよび35bと同様に構成された偏向部材35cによりX方向に偏向された後、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。偏光分離面でX方向に反射されたs偏光の測定光である+1次回折光31saaと、偏光分離面を透過したp偏光の参照光である+1次回折光31paaとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSから射出される。 The + 1st-order diffracted light 31paa, which is p-polarized reference light generated along the Z direction from the reference member RM, is deflected in the X direction by a deflecting member 35c configured in the same manner as the deflecting members 35a and 35b, and then the polarization beam splitter. Propagates through the PBS and passes through the polarization separation surface. The + 1st order diffracted light 31saa that is the s-polarized measurement light reflected in the X direction on the polarization separation surface and the + 1st order diffracted light 31paa that is the p-polarized reference light that has passed through the polarization separation surface are polarized along the same path. The light propagates through the beam splitter PBS and is emitted from the polarization beam splitter PBS.
 一方、偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の-1次回折光31sbと、偏光分離面を透過したp偏光の-1次回折光31pbとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに固定的に取り付けられたコーナーキューブのような折返し部材36bに入射する。折返し部材36bの作用によりZ方向へ平行移動されて偏光ビームスプリッターPBSへ戻されたs偏光の-1次回折光31sbおよびp偏光の-1次回折光31pbは、偏光ビームスプリッターPBSの偏光分離面に入射する。 On the other hand, the s-polarized −1st-order diffracted light 31sb reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS and the p-polarized −1st-order diffracted light 31pb transmitted through the polarization separation surface are along the same path. The light propagates through the polarization beam splitter PBS and enters a folding member 36b such as a corner cube fixedly attached to the polarization beam splitter PBS. The s-polarized −1st-order diffracted light 31sb and the p-polarized −1st-order diffracted light 31pb that have been translated in the Z direction by the action of the folding member 36b and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS. To do.
 偏光ビームスプリッターPBSの偏光分離面でZ方向に反射されたs偏光の測定光である-1次回折光31sbは、偏光ビームスプリッターPBSから射出され、回折格子10上の計測点32aから+X方向側に間隔を隔てた点32cに入射する。回折格子10上の点32cに入射したs偏光の-1次回折光31sbに応じて、回折格子10からX方向に沿って-1次回折光31sbbが発生する。回折格子10からX方向に沿って発生した測定光であるs偏光の-1次回折光31sbbは、偏向部材33a~33cと同様に構成された偏向部材33dによりZ方向に偏向された後、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向に反射される。 The −1st-order diffracted light 31sb, which is the s-polarized measurement light reflected in the Z direction on the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS and moved from the measurement point 32a on the diffraction grating 10 to the + X direction side. Incident light is incident on the point 32c which is spaced apart. In response to the s-polarized -1st order diffracted light 31sb incident on the point 32c on the diffraction grating 10, the -1st order diffracted light 31sbb is generated along the X direction from the diffraction grating 10. The s-polarized −1st-order diffracted light 31sbb, which is measurement light generated from the diffraction grating 10 along the X direction, is deflected in the Z direction by a deflecting member 33d configured in the same manner as the deflecting members 33a to 33c, and then is polarized. It propagates inside the splitter PBS and is reflected in the X direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の参照光である-1次回折光31pbは偏光ビームスプリッターPBSから射出され、参照部材RM上の点34aから+Z方向側に間隔を隔てた点34cに入射する。参照部材RM上の点34cを含む領域には、Z方向に沿った一次元周期構造を有する回折パターンが設けられている。参照部材RM上の点34cに入射したp偏光の-1次回折光31pbに応じて、参照部材RMからZ方向に沿って-1次回折光31pbbが発生する。 The first-order diffracted light 31pb, which is p-polarized reference light that has passed through the polarization separation surface of the polarization beam splitter PBS, is emitted from the polarization beam splitter PBS, and is spaced from the point 34a on the reference member RM to the + Z direction side by a point 34c. Is incident on. In a region including the point 34c on the reference member RM, a diffraction pattern having a one-dimensional periodic structure along the Z direction is provided. In response to the p-polarized -1st order diffracted light 31pb incident on the point 34c on the reference member RM, the -1st order diffracted light 31pbb is generated along the Z direction from the reference member RM.
 参照部材RMからZ方向に沿って発生したp偏光の参照光である-1次回折光31pbbは、偏向部材35a~35cと同様に構成された偏向部材35dによりX方向に偏向された後、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。偏光分離面でX方向に反射されたs偏光の測定光である-1次回折光31sbbと、偏光分離面を透過したp偏光の参照光である-1次回折光31pbbとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSから射出される。 The −1st-order diffracted light 31pbb, which is p-polarized reference light generated along the Z direction from the reference member RM, is deflected in the X direction by a deflecting member 35d configured similarly to the deflecting members 35a to 35c, and then is polarized. It propagates inside the splitter PBS and passes through the polarization separation surface. The −1st order diffracted light 31sbb which is the s-polarized measurement light reflected in the X direction on the polarization separation surface and the −1st order diffracted light 31pbb which is the p-polarized reference light transmitted through the polarization separation surface are along the same path. Then, the light propagates through the polarization beam splitter PBS and is emitted from the polarization beam splitter PBS.
 こうして、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光である+1次回折光31saaとp偏光の参照光である+1次回折光31paaとの干渉光を光電検出して得られる第1検出信号と、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光である-1次回折光31sbbとp偏光の参照光である-1次回折光31pbbとの干渉光を光電検出して得られる第2検出信号との差に基づいて、回折格子10上の計測点32aのX方向位置、ひいてはウェハステージWSの計測点32aにおけるX方向位置が計測される。一般的には、露光装置本体に対する相対位置が可変であるウェハステージWSの計測点32aにおけるX方向に沿った相対位置が計測される。 Thus, the interference light between the + 1st order diffracted light 31saa, which is the s-polarized measurement light emitted from the polarization beam splitter PBS along the same path, and the + 1st order diffracted light 31paa, which is the p-polarized reference light, is obtained by photoelectric detection. Interference light between the first detection signal and the −1st order diffracted light 31sbb that is the s-polarized measurement light and the −1st order diffracted light 31pbb that is the p-polarized reference light emitted from the polarization beam splitter PBS along the same path. Based on the difference from the second detection signal obtained by photoelectric detection, the X-direction position of the measurement point 32a on the diffraction grating 10, and consequently the X-direction position of the measurement point 32a of the wafer stage WS is measured. In general, the relative position along the X direction at the measurement point 32a of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured.
 上述したように、回折格子10上の計測点32aに入射したs偏光の光に応じて、回折格子10からY方向に沿って(YZ平面に沿って)+1次回折光31sc(不図示)および-1次回折光31sd(不図示)が発生する。また、参照部材RM上の点34aに入射したp偏光の光に応じて、参照部材RMからY方向に沿って(XY平面に沿って)+1次回折光31pc(不図示)および-1次回折光31pd(不図示)が発生する。 As described above, + 1st order diffracted light 31sc (not shown) and − from the diffraction grating 10 along the Y direction (along the YZ plane) according to the s-polarized light incident on the measurement point 32a on the diffraction grating 10 and − First-order diffracted light 31sd (not shown) is generated. Further, in accordance with the p-polarized light incident on the point 34a on the reference member RM, the + first-order diffracted light 31pc (not shown) and the −1st-order diffracted light 31pd from the reference member RM along the Y direction (along the XY plane). (Not shown) occurs.
 s偏光の測定光である+1次回折光31scおよびp偏光の参照光である+1次回折光31pcは、X方向位置計測における+1次回折光31saおよび+1次回折光31paに対応する経路を経て、s偏光の測定光である+1次回折光31scc(不図示)およびp偏光の参照光である+1次回折光31pcc(不図示)になり、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。s偏光の測定光である-1次回折光31sdおよびp偏光の参照光である+1次回折光31pdは、X方向位置計測における-1次回折光31sbおよび-1次回折光31pbに対応する経路を経て、s偏光の測定光である-1次回折光31sdd(不図示)およびp偏光の参照光である-1次回折光31pdd(不図示)になり、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。 The + 1st-order diffracted light 31sc that is the s-polarized measurement light and the + 1st-order diffracted light 31pc that is the p-polarized reference light pass through the paths corresponding to the + 1st-order diffracted light 31sa and the + 1st-order diffracted light 31pa in the X-direction position measurement. + 1st-order diffracted light 31scc (not shown) that is light and + 1st-order diffracted light 31pcc (not shown) that is p-polarized reference light are emitted from the polarization beam splitter PBS along the same path. The −1st order diffracted light 31sd, which is s-polarized measurement light, and the + 1st order diffracted light 31pd, which is p-polarized reference light, pass through paths corresponding to the −1st order diffracted light 31sb and −1st order diffracted light 31pb in the X-direction position measurement. It becomes a −1st order diffracted light 31sdd (not shown) which is a polarized measurement light and a −1st order diffracted light 31pdd (not shown) which is a p-polarized reference light, and is emitted from the polarization beam splitter PBS along the same path.
 こうして、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光である+1次回折光31sccとp偏光の参照光である+1次回折光31pccとの干渉光を光電検出して得られる第3検出信号と、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光である-1次回折光31sddとp偏光の参照光である-1次回折光31pddとの干渉光を光電検出して得られる第4検出信号との差に基づいて、回折格子10上の計測点32aのY方向位置、ひいてはウェハステージWSの計測点32aにおけるY方向位置が計測される。一般的には、露光装置本体に対する相対位置が可変であるウェハステージWSの計測点32aにおけるY方向に沿った相対位置が計測される。 In this way, the interference light between the + 1st order diffracted light 31scc that is the s-polarized measurement light emitted from the polarization beam splitter PBS along the same path and the + 1st order diffracted light 31pcc that is the p-polarized reference light is obtained by photoelectric detection. Interference light between the third detection signal and the −1st order diffracted light 31sdd which is the s-polarized measurement light emitted from the polarization beam splitter PBS along the same path and the −1st order diffracted light 31pdd which is the p-polarized reference light. Based on the difference from the fourth detection signal obtained by photoelectric detection, the Y-direction position of the measurement point 32a on the diffraction grating 10, and consequently the Y-direction position of the measurement point 32a of the wafer stage WS is measured. In general, the relative position along the Y direction at the measurement point 32a of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured.
 図4は、ウェハステージに取り付けられた回折格子のZ方向位置の計測原理について説明する図である。図4を参照すると、露光装置本体に固定的に取り付けられた偏光ビームスプリッター(すなわち回折格子10のX方向位置およびY方向位置の計測に用いられる偏光ビームスプリッター)PBSに、同一光路にp偏光成分とs偏光成分とを含む計測光41がX方向に沿って入射する。偏光ビームスプリッターPBSに入射した計測光41のうち、偏光分離面でZ方向に反射されたs偏光の光は偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに固定的に取り付けられた偏光部材としての1/4波長板42を経て円偏光になり、ウェハステージWSに取り付けられた回折格子10上の点43aに入射する。 FIG. 4 is a diagram for explaining the measurement principle of the position in the Z direction of the diffraction grating attached to the wafer stage. Referring to FIG. 4, a polarization beam splitter (that is, a polarization beam splitter used for measurement of the X-direction position and the Y-direction position of the diffraction grating 10) PBS fixedly attached to the exposure apparatus main body PBS and p-polarization component in the same optical path. And the measurement light 41 including the s-polarized light component enter along the X direction. Of the measurement light 41 incident on the polarization beam splitter PBS, the s-polarized light reflected in the Z direction on the polarization separation surface propagates through the polarization beam splitter PBS and is fixedly attached to the polarization beam splitter PBS. It passes through a quarter-wave plate 42 as a member, becomes circularly polarized light, and enters a point 43a on the diffraction grating 10 attached to the wafer stage WS.
 回折格子10上の点43aに入射した円偏光の光に応じて、回折格子10からZ方向に沿って0次光(正反射光)である測定光41aが発生する。回折格子10からZ方向に沿って発生した測定光41aは、1/4波長板42を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬した後に、偏光分離面を透過する。偏光ビームスプリッターPBSに入射した計測光41のうち、偏光分離面を透過したp偏光の光は偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに固定的に取り付けられた1/4波長板44を経て円偏光になり、露光装置本体に固定的に取り付けられた参照部材(すなわち回折格子10のX方向位置およびY方向位置の計測に用いられる参照部材)RM上の点45aに入射する。 In response to the circularly polarized light incident on the point 43a on the diffraction grating 10, measurement light 41a, which is zero-order light (regular reflection light), is generated from the diffraction grating 10 along the Z direction. The measurement light 41a generated along the Z direction from the diffraction grating 10 becomes p-polarized light through the quarter-wave plate 42, propagates through the polarization beam splitter PBS, and then passes through the polarization separation surface. Of the measurement light 41 incident on the polarization beam splitter PBS, the p-polarized light transmitted through the polarization separation surface propagates through the polarization beam splitter PBS and is fixedly attached to the polarization beam splitter PBS. After passing through 44, the light becomes circularly polarized light, and is incident on a point 45a on a reference member (that is, a reference member used for measurement of the X-direction position and Y-direction position of the diffraction grating 10) RM fixedly attached to the exposure apparatus main body.
 参照部材RM上の点45aを含む領域には、YZ平面に沿った平面状の反射面が設けられている。参照部材RM上の点45aにおいて反射された0次光である円偏光の参照光41bは、1/4波長板44を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でZ方向に反射される。偏光分離面を透過したp偏光の測定光41aと偏光分離面でZ方向へ反射されたs偏光の参照光41bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに固定的に取り付けられた折返し部材46に入射する。折返し部材46の作用によりX方向へ平行移動されて偏光ビームスプリッターPBSへ戻されたp偏光の測定光41aおよびs偏光の参照光41bは、偏光ビームスプリッターPBSの偏光分離面に入射する。 In a region including the point 45a on the reference member RM, a planar reflecting surface along the YZ plane is provided. The circularly-polarized reference light 41b, which is zero-order light reflected at the point 45a on the reference member RM, becomes s-polarized light through the quarter-wave plate 44, propagates inside the polarization beam splitter PBS, and is polarized and separated. Is reflected in the Z direction. The p-polarized measurement light 41a transmitted through the polarization separation surface and the s-polarized reference light 41b reflected in the Z direction on the polarization separation surface propagate through the polarization beam splitter PBS along the same path to each other. The light enters the folding member 46 fixedly attached to the splitter PBS. The p-polarized measurement light 41a and the s-polarized reference light 41b, which have been translated in the X direction by the action of the folding member 46 and returned to the polarization beam splitter PBS, enter the polarization separation surface of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の測定光41aは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板42を経て円偏光になり、回折格子10上の点43aから+X方向に間隔を隔てた点43bに入射する。回折格子10上の点43bに入射した円偏光の光41aに応じて、回折格子10からZ方向に沿って0次光である測定光41aaが発生する。回折格子10からZ方向に沿って発生した測定光41aaは、1/4波長板42を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向に反射される。 The p-polarized measurement light 41 a that has passed through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light via the quarter-wave plate 42, and starts from a point 43 a on the diffraction grating 10. Incident to the point 43b spaced in the + X direction. In response to the circularly polarized light 41 a incident on the point 43 b on the diffraction grating 10, measurement light 41 aa that is zero-order light is generated along the Z direction from the diffraction grating 10. The measurement light 41aa generated along the Z direction from the diffraction grating 10 becomes s-polarized light through the quarter-wave plate 42, propagates through the polarization beam splitter PBS, and is reflected in the X direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面で反射されたs偏光の参照41bは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板44を経て円偏光になり、参照部材RM上の点45aから+Z方向に間隔を隔てた点45bに入射する。参照部材RM上の点45bを含む領域には、YZ平面に沿った平面状の反射面が設けられている。参照部材RM上の点45bにおいて反射された円偏光の参照光41bは、1/4波長板44を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。 The s-polarized reference 41b reflected by the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light via the quarter wavelength plate 44, and starts from a point 45a on the reference member RM. The incident light enters the point 45b spaced in the + Z direction. In a region including the point 45b on the reference member RM, a planar reflecting surface along the YZ plane is provided. The circularly polarized reference light 41b reflected at the point 45b on the reference member RM becomes p-polarized light through the quarter-wave plate 44, propagates through the polarization beam splitter PBS, and passes through the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の測定光41aaと、偏光分離面を透過したp偏光の参照光41bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSから射出される。こうして、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光41aaとp偏光の参照光41bとの干渉光を光電検出して得られる検出信号に基づいて、回折格子10上において点43aと43bとの中間に位置する計測点43のZ方向位置、ひいてはウェハステージWS上の計測点43におけるZ方向位置が計測される。一般的には、露光装置本体に対する相対位置が可変であるウェハステージWSの計測点43におけるZ方向に沿った相対位置が計測される。 The s-polarized measurement light 41aa reflected in the X direction on the polarization separation surface of the polarization beam splitter PBS and the p-polarized reference light 41b transmitted through the polarization separation surface are inside the polarization beam splitter PBS along the same path. And is emitted from the polarization beam splitter PBS. Thus, on the diffraction grating 10 based on the detection signal obtained by photoelectrically detecting the interference light between the s-polarized measurement light 41aa and the p-polarized reference light 41b emitted from the polarization beam splitter PBS along the same path. , The Z-direction position of the measurement point 43 located between the points 43a and 43b, and thus the Z-direction position of the measurement point 43 on the wafer stage WS is measured. Generally, the relative position along the Z direction is measured at the measurement point 43 of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable.
 図5は、第1実施形態にかかる位置計測装置の構成を概略的に示す図である。図5を参照すると、第1実施形態の位置計測装置1は、4つの計測ユニット11(図5では1つの計測ユニット11だけを示している)、計測用光源12、分岐ユニット13、ライトガイド14、および処理部15を備えている。計測ユニット11は、偏光ビームスプリッターPBS、参照部材RM、および入出力ユニット11Aを有し、露光装置本体に固定的に取り付けられている。一例として、計測用光源12、分岐ユニット13、ライトガイド14、および処理部15は、4つの計測ユニット11に対して共通に設けられている。 FIG. 5 is a diagram schematically showing the configuration of the position measuring apparatus according to the first embodiment. Referring to FIG. 5, the position measurement device 1 of the first embodiment includes four measurement units 11 (only one measurement unit 11 is shown in FIG. 5), a measurement light source 12, a branch unit 13, and a light guide 14. And a processing unit 15. The measurement unit 11 includes a polarization beam splitter PBS, a reference member RM, and an input / output unit 11A, and is fixedly attached to the exposure apparatus main body. As an example, the measurement light source 12, the branch unit 13, the light guide 14, and the processing unit 15 are provided in common for the four measurement units 11.
 計測用光源12として、He-Neレーザ光源、半導体レーザ光源などを用いることができる。計測用光源12から供給された光は、分岐ユニット13においてs偏光の光とp偏光の光とに分離され、例えばデュアルコアのライトガイド14を介して、各計測ユニット11の入出力ユニット11Aに供給される。すなわち、ライトガイド14の一方のコアを介して伝搬したs偏光の光と他方のコアを介して伝搬したp偏光の光とが、入出力ユニット11Aに供給される。入出力ユニット11Aは、コリメータ、ビームスプリッターなどを有し、互いに異なる光路に沿って供給されたp偏光の光およびs偏光の光から、互いに同じ光路に沿ったp偏光成分とs偏光成分とを含む計測光を所要数だけ生成する。入出力ユニット11Aで生成された複数の計測光は、X方向に沿ってそれぞれ射出され、偏光ビームスプリッターPBSに入射する。 As the measurement light source 12, a He—Ne laser light source, a semiconductor laser light source, or the like can be used. The light supplied from the measurement light source 12 is separated into s-polarized light and p-polarized light in the branch unit 13, and is input to the input / output unit 11 </ b> A of each measurement unit 11 via, for example, a dual-core light guide 14. Supplied. That is, the s-polarized light propagated through one core of the light guide 14 and the p-polarized light propagated through the other core are supplied to the input / output unit 11A. The input / output unit 11A includes a collimator, a beam splitter, and the like, and generates p-polarized component and s-polarized component along the same optical path from p-polarized light and s-polarized light supplied along different optical paths. The required number of measurement lights are generated. The plurality of measurement lights generated by the input / output unit 11A are respectively emitted along the X direction and enter the polarization beam splitter PBS.
 具体的に、プリズム型の偏光ビームスプリッターPBSの入出力ユニット11A側の光学面PBSaには、図6に示すように、4つのXY方向位置計測用の計測光51,52,53,54と、5つのZ方向位置計測用の計測光61,62,63,64,65とが入射する。一例として、計測光61は光学面PBSaの中心に入射し、計測光51~54は計測光61の位置を中心とする比較的小さい正方形の四隅の位置に入射し、計測光62~65は計測光61の位置を中心とする比較的大きい正方形の四隅の位置に入射する。 Specifically, on the optical surface PBSa on the input / output unit 11A side of the prism-type polarizing beam splitter PBS, as shown in FIG. 6, four measurement lights 51, 52, 53, and 54 for measuring the positions in the XY directions are provided. Five measurement lights 61, 62, 63, 64, 65 for measuring the Z-direction position are incident. As an example, the measurement light 61 is incident on the center of the optical surface PBSa, the measurement lights 51 to 54 are incident on the positions of four corners of a relatively small square centered on the position of the measurement light 61, and the measurement lights 62 to 65 are measured. The light 61 is incident on four corners of a relatively large square centered on the position of the light 61.
 図5を参照すると、計測光51~54のうち、偏光ビームスプリッターPBSの偏光分離面で反射されたs偏光の光は、図7に示すように、回折格子10の偏光ビームスプリッターPBS側の入射面10aにおける計測点51m,52m,53m,54mに入射する。計測光51~54のうち、偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の光は、図8に示すように、参照部材RMの偏光ビームスプリッターPBS側の入射面RMaにおける点51r,52r,53r,54rに入射する。点51r~54rを含む領域には、Y方向およびZ方向に沿った二次元周期構造を有する回折パターンが設けられている。 Referring to FIG. 5, of the measurement lights 51 to 54, the s-polarized light reflected by the polarization separation surface of the polarization beam splitter PBS is incident on the polarization beam splitter PBS side of the diffraction grating 10, as shown in FIG. It enters the measurement points 51m, 52m, 53m, and 54m on the surface 10a. Among the measurement lights 51 to 54, the p-polarized light that has passed through the polarization separation surface of the polarization beam splitter PBS, as shown in FIG. 8, is the points 51r and 52r on the incident surface RMa of the reference member RM on the polarization beam splitter PBS side. , 53r, and 54r. In a region including the points 51r to 54r, a diffraction pattern having a two-dimensional periodic structure along the Y direction and the Z direction is provided.
 計測点51mでX方向に沿って(XZ平面に沿って)発生したs偏光の測定光である±1次回折光は、図9に示すように、偏光ビームスプリッターPBSの回折格子10側の光学面PBSb上の領域51eにおいてX方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。計測点51mでY方向に沿って(YZ平面に沿って)発生した±1次回折光は、領域51eにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。 The ± first-order diffracted light, which is s-polarized measurement light generated along the X direction (along the XZ plane) at the measurement point 51m, is an optical surface on the diffraction grating 10 side of the polarization beam splitter PBS as shown in FIG. In the region 51e on the PBSb, it enters the polarization separation surface of the polarization beam splitter PBS via a diffraction pattern region having a one-dimensional periodic structure along the X direction. The ± first-order diffracted light generated along the Y direction (along the YZ plane) at the measurement point 51m passes through the diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51e. Incident on the polarization separation surface.
 同様に、計測点52m~54mでX方向に沿って発生したs偏光の測定光である±1次回折光は、偏光ビームスプリッターPBSの光学面PBSb上の領域52e,53e,54eにおいてX方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。計測点52m~54mでY方向に沿って発生した±1次回折光は、領域52e~54eにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。 Similarly, ± first-order diffracted light, which is s-polarized measurement light generated along the X direction at measurement points 52m to 54m, extends along the X direction in the regions 52e, 53e, and 54e on the optical surface PBSb of the polarization beam splitter PBS. Then, the light enters the polarization separation surface of the polarization beam splitter PBS through the diffraction pattern region having the one-dimensional periodic structure. The ± first-order diffracted light generated along the Y direction at the measurement points 52m to 54m passes through the diffraction pattern region having a one-dimensional periodic structure along the Y direction in the regions 52e to 54e, and the polarization separation surface of the polarization beam splitter PBS. Is incident on.
 偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の各測定光は、偏光ビームスプリッターPBSに固定的に取り付けられたコーナーキューブのような折返し部材を経て、偏光ビームスプリッターPBSの内部を伝搬し、再び回折格子10に入射する。すなわち、計測点51m~54mでX方向に沿って発生した±1次回折光は、偏光ビームスプリッターPBS内の経路を1往復し、回折格子10の入射面10aにおいて計測点51m~54mを挟んでX方向に間隔を隔てた一対の点に入射する。計測点51m~54mでY方向に沿って発生した±1次回折光は、偏光ビームスプリッターPBS内の経路を1往復し、回折格子10の入射面10aにおいて計測点51m~54mを挟んでY方向に間隔を隔てた一対の点に入射する。 Each measurement light of s-polarized light reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS passes through a folding member such as a corner cube fixedly attached to the polarization beam splitter PBS, and then the inside of the polarization beam splitter PBS. And is incident on the diffraction grating 10 again. That is, the ± first-order diffracted light generated along the X direction at the measurement points 51m to 54m reciprocates once through the path in the polarization beam splitter PBS, and the measurement point 51m to 54m is sandwiched between the measurement points 51m to 54m on the incident surface 10a of the diffraction grating 10. Incident to a pair of points spaced in the direction. The ± first-order diffracted light generated along the Y direction at the measurement points 51m to 54m reciprocates once through the path in the polarization beam splitter PBS, and in the Y direction across the measurement points 51m to 54m on the incident surface 10a of the diffraction grating 10. Incident on a pair of spaced points.
 計測点51mを挟んでX方向に間隔を隔てた一対の点で発生したs偏光の測定光である1次回折光は、偏光ビームスプリッターPBSの光学面PBSb上の領域51eにおいてX方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。計測点51mを挟んでY方向に間隔を隔てた一対の点で発生したs偏光の測定光である1次回折光は、領域51eにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。 First-order diffracted light, which is s-polarized measurement light generated at a pair of points spaced in the X direction across the measurement point 51m, is primary along the X direction in the region 51e on the optical surface PBSb of the polarization beam splitter PBS. It goes to the polarization separation plane of the polarization beam splitter PBS through the diffraction pattern region having the original periodic structure. First-order diffracted light, which is s-polarized measurement light generated at a pair of points spaced in the Y direction across the measurement point 51m, passes through a diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51e. Toward the polarization separation surface of the polarization beam splitter PBS.
 同様に、計測点52m~54mを挟んでX方向に間隔を隔てた一対の点で発生したs偏光の測定光である1次回折光は、偏光ビームスプリッターPBSの光学面PBSb上の領域52e~54eにおいてX方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。計測点52m~54mを挟んでY方向に間隔を隔てた一対の点で発生したs偏光の測定光である1次回折光は、領域52e~54eにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。 Similarly, first-order diffracted light, which is s-polarized measurement light generated at a pair of points spaced in the X direction with the measurement points 52m to 54m interposed therebetween, is a region 52e to 54e on the optical surface PBSb of the polarization beam splitter PBS. At the polarization separation plane of the polarization beam splitter PBS through a diffraction pattern region having a one-dimensional periodic structure along the X direction. The first-order diffracted light, which is s-polarized measurement light generated at a pair of points spaced in the Y direction across the measurement points 52m to 54m, is diffracted having a one-dimensional periodic structure along the Y direction in the regions 52e to 54e. It goes to the polarization separation surface of the polarization beam splitter PBS through the pattern region.
 一方、参照部材RMの入射面RMa上の点51rでZ方向に沿って(XZ平面に沿って)発生したp偏光の参照光である±1次回折光は、図10に示すように、偏光ビームスプリッターPBSの参照部材RM側の光学面PBSc上の領域51fにおいてX方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。計測点51rでY方向に沿って(XY平面に沿って)発生したp偏光の参照光である±1次回折光は、領域51fにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。 On the other hand, the ± first-order diffracted light that is p-polarized reference light generated along the Z direction (along the XZ plane) at the point 51r on the incident surface RMa of the reference member RM is a polarized beam as shown in FIG. In the region 51f on the optical surface PBSc on the reference member RM side of the splitter PBS, it enters the polarization separation surface of the polarization beam splitter PBS via a diffraction pattern region having a one-dimensional periodic structure along the X direction. The ± first-order diffracted light that is p-polarized reference light generated along the Y direction (along the XY plane) at the measurement point 51r passes through a diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51f. Then, the light enters the polarization separation surface of the polarization beam splitter PBS.
 同様に、参照部材RMの入射面RMa上の点52r~54rでX方向に沿って発生したp偏光の参照光である±1次回折光は、偏光ビームスプリッターPBSの面PBSc上の領域52f,53f,54fにおいてX方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。計測点52r~54rでY方向に沿って発生したp偏光の参照光である±1次回折光は、領域52f~54fにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面に入射する。 Similarly, ± first-order diffracted light, which is p-polarized reference light generated along the X direction at points 52r to 54r on the incident surface RMa of the reference member RM, is converted into regions 52f and 53f on the surface PBSc of the polarization beam splitter PBS. , 54f is incident on the polarization separation surface of the polarization beam splitter PBS via a diffraction pattern region having a one-dimensional periodic structure along the X direction. The ± first-order diffracted light that is p-polarized reference light generated along the Y direction at the measurement points 52r to 54r is polarized through the diffraction pattern region having a one-dimensional periodic structure along the Y direction in the regions 52f to 54f. The light enters the polarization splitting surface of the beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の各参照光は、上述したコーナーキューブのような折返し部材を経て、偏光ビームスプリッターPBSの内部を伝搬し、再び参照部材RMに入射する。すなわち、点51r~54rでZ方向に沿って発生した±1次回折光は、偏光ビームスプリッターPBS内の経路を1往復し、参照部材RMの入射面RMaにおいて点51r~54rを挟んでZ方向に間隔を隔てた一対の点51ra,51rb;52ra,52rb;53ra,53rb;54ra,54rbに入射する。点51ra,51rb;52ra,52rb;53ra,53rb;54ra,54rbを含む領域には、Z方向に沿った一次元周期構造を有する回折パターンが設けられている。 Each p-polarized reference light transmitted through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization member such as the corner cube described above, propagates inside the polarization beam splitter PBS, and is incident on the reference member RM again. That is, the ± first-order diffracted light generated along the Z direction at the points 51r to 54r reciprocates once through the path in the polarization beam splitter PBS, and in the Z direction across the points 51r to 54r on the incident surface RMa of the reference member RM. The light beams are incident on a pair of spaced points 51ra, 51rb; 52ra, 52rb; 53ra, 53rb; 54ra, 54rb. In the region including the points 51ra, 51rb; 52ra, 52rb; 53ra, 53rb; 54ra, 54rb, a diffraction pattern having a one-dimensional periodic structure along the Z direction is provided.
 点51r~54rでY方向に沿って発生した±1次回折光は、偏光ビームスプリッターPBS内の経路を1往復し、参照部材RMの入射面RMaにおいて、点51r~54rを挟んでY方向に間隔を隔てた一対の点51rc,51rd;52rc,52rd;53rc,53rd;54rc,54rdに入射する。点51rc,51rd;52rc,52rd;53rc,53rd;54rc,54rdを含む領域には、Y方向に沿った一次元周期構造を有する回折パターンが設けられている。 The ± first-order diffracted light generated along the Y direction at the points 51r to 54r reciprocates once through the path in the polarization beam splitter PBS, and is spaced in the Y direction across the points 51r to 54r on the incident surface RMa of the reference member RM. Are incident on a pair of points 51rc, 51rd; 52rc, 52rd; 53rc, 53rd; 54rc, 54rd. A region including the points 51 rc, 51 rd; 52 rc, 52 rd; 53 rc, 53 rd; 54 rc, 54 rd is provided with a diffraction pattern having a one-dimensional periodic structure along the Y direction.
 点51rを挟んでZ方向に間隔を隔てた一対の点で発生したp偏光の参照光である1次回折光は、偏光ビームスプリッターPBSの光学面PBSc上の領域51fにおいてZ方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。点51rを挟んでY方向に間隔を隔てた一対の点で発生したp偏光の参照光である1次回折光は、領域51fにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。 The first-order diffracted light, which is p-polarized reference light generated at a pair of points spaced in the Z direction across the point 51r, is one-dimensional along the Z direction in the region 51f on the optical surface PBSc of the polarizing beam splitter PBS. It goes to the polarization separation surface of the polarization beam splitter PBS through the diffraction pattern region having the periodic structure. First-order diffracted light, which is p-polarized reference light generated at a pair of points spaced in the Y direction across the point 51r, passes through a diffraction pattern region having a one-dimensional periodic structure along the Y direction in the region 51f. , Toward the polarization separation surface of the polarization beam splitter PBS.
 同様に、点52r~54rを挟んでZ方向に間隔を隔てた一対の点で発生したp偏光の参照光である1次回折光は、偏光ビームスプリッターPBSの面PBSc上の領域52f~54fにおいてZ方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。点52r~54rを挟んでY方向に間隔を隔てた一対の点で発生したp偏光の参照光である1次回折光は、領域52f~54fにおいてY方向に沿った一次元周期構造を有する回折パターン領域を介して、偏光ビームスプリッターPBSの偏光分離面へ向かう。 Similarly, the first-order diffracted light, which is p-polarized reference light generated at a pair of points spaced in the Z direction across the points 52r to 54r, is Z in the regions 52f to 54f on the surface PBSc of the polarization beam splitter PBS. It goes to the polarization separation surface of the polarization beam splitter PBS through a diffraction pattern region having a one-dimensional periodic structure along the direction. First-order diffracted light, which is p-polarized reference light generated at a pair of points spaced in the Y direction across the points 52r to 54r, is a diffraction pattern having a one-dimensional periodic structure along the Y direction in the regions 52f to 54f. It goes to the polarization separation plane of the polarization beam splitter PBS through the region.
 各計測光51~54について、回折格子10との間の光路を2往復して偏光分離面でX方向に反射されたs偏光の測定光と、参照部材RMとの間の光路を2往復して偏光分離面を透過したp偏光の参照光とは、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。こうして、計測光51に対応した測定光と参照光との干渉光51a,51b,51c,51dが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット11Aに入射する。 For each of the measurement beams 51 to 54, the optical path between the diffraction grating 10 and the optical path between the s-polarized measurement light reflected in the X direction by the polarization separation surface and the optical path between the reference member RM is reciprocated twice. The p-polarized reference light transmitted through the polarization splitting surface is emitted from the polarization beam splitter PBS along the same path. Thus, the interference lights 51a, 51b, 51c, 51d of the measurement light corresponding to the measurement light 51 and the reference light are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 11A.
 同様に、計測光52~54に対応した測定光と参照光との干渉光52a,52b,52c,52d;53a,53b,53c,53d;54a,54b,54c,54dが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット11Aに入射する。なお、X方向位置の計測に関する干渉光51a~54aおよび51b~54bは図5に示されているが、Y方向位置の計測に関する干渉光51c~54cおよび51d~54dについては図示を省略している。 Similarly, the interference lights 52a, 52b, 52c, 52d; 53a, 53b, 53c, 53d; 54a, 54b, 54c, 54d of the measurement light and the reference light corresponding to the measurement lights 52 to 54 are along the same path. Is emitted from the polarization beam splitter PBS and enters the input / output unit 11A. The interference lights 51a to 54a and 51b to 54b related to the measurement in the X direction are shown in FIG. 5, but the illustration of the interference lights 51c to 54c and 51d to 54d related to the measurement in the Y direction is omitted. .
 入出力ユニット11Aは、各干渉光を光電検出して得られる検出信号を処理部15に供給する。処理部15は、干渉光51aを光電検出して得られる検出信号と干渉光51bを光電検出して得られる検出信号との差に基づいて回折格子10上の計測点51mのX方向位置を求め、干渉光51cを光電検出して得られる検出信号と干渉光51dを光電検出して得られる検出信号との差に基づいて回折格子10上の計測点51mのY方向位置を求める。 The input / output unit 11A supplies a detection signal obtained by photoelectrically detecting each interference light to the processing unit 15. The processing unit 15 obtains the X-direction position of the measurement point 51m on the diffraction grating 10 based on the difference between the detection signal obtained by photoelectrically detecting the interference light 51a and the detection signal obtained by photoelectric detection of the interference light 51b. Based on the difference between the detection signal obtained by photoelectrically detecting the interference light 51c and the detection signal obtained by photoelectric detection of the interference light 51d, the position in the Y direction of the measurement point 51m on the diffraction grating 10 is obtained.
 同様に、処理部15は、干渉光52a~54aを光電検出して得られる検出信号と干渉光52b~54bを光電検出して得られる検出信号との差に基づいて回折格子10上の計測点52m~54mのX方向位置を求め、干渉光52c~54cを光電検出して得られる検出信号と干渉光52d~54dを光電検出して得られる検出信号との差に基づいて回折格子10上の計測点52m~54mのY方向位置を求める。処理部15で得られた回折格子10上の計測点51m~54mのX方向位置およびY方向位置の計測結果、ひいてはウェハステージWSの計測点51m~54mにおけるX方向位置およびY方向位置の計測結果は、制御系CRに供給される。 Similarly, the processing unit 15 measures the measurement points on the diffraction grating 10 based on the difference between the detection signal obtained by photoelectric detection of the interference lights 52a to 54a and the detection signal obtained by photoelectric detection of the interference lights 52b to 54b. Based on the difference between the detection signal obtained by photoelectrically detecting the interference lights 52c to 54c and the detection signal obtained by photoelectric detection of the interference lights 52d to 54d, the X-direction positions of 52m to 54m are obtained. The Y direction positions of the measurement points 52m to 54m are obtained. Measurement results of the X direction position and the Y direction position of the measurement points 51m to 54m on the diffraction grating 10 obtained by the processing unit 15, and consequently the measurement result of the X direction position and the Y direction position at the measurement points 51m to 54m of the wafer stage WS. Is supplied to the control system CR.
 再び図5を参照すると、計測光61~65のうち、偏光ビームスプリッターPBSの偏光分離面で反射されたs偏光の光は、図9に示すように、偏光ビームスプリッターPBSの光学面PBSbに固定的に取り付けられた1/4波長板61e,62e,63e,64e,65eを経て円偏光になる。1/4波長板61e~65eを経て円偏光になった光は、図7に示すように、回折格子10の入射面10a上の計測点61m,62m,63m,64m,65mの近傍に入射する。 Referring to FIG. 5 again, of the measurement lights 61 to 65, the s-polarized light reflected by the polarization separation surface of the polarization beam splitter PBS is fixed to the optical surface PBSb of the polarization beam splitter PBS as shown in FIG. The circularly polarized light passes through quarter- wave plates 61e, 62e, 63e, 64e, and 65e attached thereto. As shown in FIG. 7, the light that has been circularly polarized through the quarter-wave plates 61e to 65e enters the vicinity of the measurement points 61m, 62m, 63m, 64m, and 65m on the incident surface 10a of the diffraction grating 10. .
 計測光61~65のうち、偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の光は、図10に示すように、偏光ビームスプリッターPBSの光学面PBScに固定的に取り付けられた1/4波長板61f,62f,63f,64f,65fを経て円偏光になる。1/4波長板61f~65fを経て円偏光になった光は、図8に示すように、参照部材RMの入射面RMa上の点61r,62r,63r,64r,65rの近傍に入射する。点61r~65rを含む領域には、YZ平面に沿った反射面が設けられている。 Among the measurement lights 61 to 65, the p-polarized light that has passed through the polarization separation surface of the polarization beam splitter PBS is fixedly attached to the optical surface PBSc of the polarization beam splitter PBS, as shown in FIG. It becomes circularly polarized light through the wave plates 61f, 62f, 63f, 64f, and 65f. As shown in FIG. 8, the light that has been circularly polarized through the quarter-wave plates 61f to 65f enters the vicinity of points 61r, 62r, 63r, 64r, and 65r on the incident surface RMa of the reference member RM. In a region including the points 61r to 65r, a reflecting surface along the YZ plane is provided.
 回折格子10上の計測点61m~65mの近傍に入射した円偏光の光に応じて、回折格子10からZ方向に沿って0次光である測定光が発生する。回折格子10からZ方向に沿って発生した円偏光の測定光は、1/4波長板61e~65eを経てp偏光になり、偏光ビームスプリッターPBSの偏光分離面に入射する。参照部材RM上の点61r~65rの近傍において反射された0次光である円偏光の参照光は、1/4波長板61f~65fを経てs偏光になり、偏光ビームスプリッターPBSの偏光分離面に入射する。 In response to the circularly polarized light incident in the vicinity of the measurement points 61 m to 65 m on the diffraction grating 10, measurement light that is zero-order light is generated along the Z direction from the diffraction grating 10. Circularly polarized measurement light generated along the Z direction from the diffraction grating 10 becomes p-polarized light through the quarter-wave plates 61e to 65e, and enters the polarization separation surface of the polarization beam splitter PBS. Circularly polarized reference light, which is zero-order light reflected in the vicinity of the points 61r to 65r on the reference member RM, becomes s-polarized light through the quarter-wave plates 61f to 65f, and is a polarization separation surface of the polarization beam splitter PBS. Is incident on.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の各測定光は、対応する折返し部材、偏光ビームスプリッターPBS、および1/4波長板61e~65eを経て円偏光になり、再び回折格子10上の計測点61m~65mの近傍に入射する。回折格子10上の計測点61m~65mの近傍に入射した円偏光の光に応じて、回折格子10からZ方向に沿って0次光である測定光が発生する。回折格子10からZ方向に沿って発生した円偏光の測定光は、1/4波長板61e~65eを経てs偏光になり、偏光ビームスプリッターPBSの偏光分離面に向かう。 Each p-polarized measurement light that has passed through the polarization separation surface of the polarization beam splitter PBS becomes circularly polarized light through the corresponding folding member, the polarization beam splitter PBS, and the quarter wavelength plates 61e to 65e, and again on the diffraction grating 10. In the vicinity of the measurement points 61m to 65m. In response to circularly polarized light that has entered the vicinity of the measurement points 61 m to 65 m on the diffraction grating 10, measurement light that is zero-order light is generated along the Z direction from the diffraction grating 10. Circularly polarized measurement light generated from the diffraction grating 10 along the Z direction passes through the quarter-wave plates 61e to 65e to become s-polarized light, and travels toward the polarization separation surface of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面でZ方向に反射されたs偏光の各参照光は、対応する折返し部材、偏光ビームスプリッターPBS、および1/4波長板61f~65fを経て円偏光になり、再び参照部材RM上の点61r~65rの近傍に入射する。参照部材RM上の点61r~65rの近傍において反射された円偏光の参照光は、1/4波長板61f~65fを経てp偏光になり、偏光ビームスプリッターPBSの偏光分離面に向かう。 Each s-polarized reference light reflected in the Z direction by the polarization separation surface of the polarization beam splitter PBS becomes circularly polarized light through the corresponding folding member, the polarization beam splitter PBS, and the quarter wavelength plates 61f to 65f, and again. Incident near the points 61r to 65r on the reference member RM. The circularly polarized reference light reflected in the vicinity of the points 61r to 65r on the reference member RM becomes p-polarized light through the quarter-wave plates 61f to 65f and travels toward the polarization separation surface of the polarization beam splitter PBS.
 各計測光61~65について、回折格子10との間の光路を2往復して偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の測定光と、参照部材RMとの間の光路を2往復して偏光分離面を透過したp偏光の参照光とは、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。こうして、計測光61~65に対応した測定光と参照光との干渉光61a,62a,63a,64a,65aが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット11Aに入射する。 For each of the measurement lights 61 to 65, the s-polarized measurement light reflected in the X direction on the polarization separation surface of the polarization beam splitter PBS after reciprocating the optical path between the diffraction grating 10 and the reference member RM. The p-polarized reference light that travels back and forth in the optical path and passes through the polarization separation surface is emitted from the polarization beam splitter PBS along the same path. Thus, the interference lights 61a, 62a, 63a, 64a, 65a between the measurement light and the reference light corresponding to the measurement lights 61 to 65 are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 11A. To do.
 入出力ユニット11Aは、干渉光61a~65aを光電検出して得られる検出信号を処理部15に供給する。処理部15は、干渉光61a~65aを光電検出して得られる検出信号に基づいて、回折格子10上の計測点61m~65mのZ方向位置を求める。処理部15で得られた回折格子10上の計測点61m~65mのZ方向位置の計測結果、ひいてはウェハステージWSの計測点61m~65mにおけるZ方向位置の計測結果は、制御系CRに供給される。 The input / output unit 11A supplies a detection signal obtained by photoelectrically detecting the interference lights 61a to 65a to the processing unit 15. The processing unit 15 obtains the Z-direction positions of the measurement points 61m to 65m on the diffraction grating 10 based on detection signals obtained by photoelectrically detecting the interference lights 61a to 65a. The measurement results of the Z direction positions of the measurement points 61m to 65m on the diffraction grating 10 obtained by the processing unit 15, and the measurement results of the Z direction positions of the measurement points 61m to 65m of the wafer stage WS are supplied to the control system CR. The
 なお、ウェハWを保持したウェハステージWSは、露光に際して、XY平面に沿った所定の範囲に亘ってステップ移動する。第1実施形態では、4つの計測ユニット11および一対の反射型の回折格子10が、少なくとも1つの計測ユニット11とこれに対向する回折格子10との協働作用によりウェハステージWSの位置計測を常に行うことができるように配置されている。一般に、計測ユニットの数および配置、回折格子の数および配置などについては、様々な形態が可能である。 Note that the wafer stage WS holding the wafer W is stepped over a predetermined range along the XY plane during exposure. In the first embodiment, the four measurement units 11 and the pair of reflective diffraction gratings 10 always measure the position of the wafer stage WS by the cooperative action of at least one measurement unit 11 and the diffraction grating 10 facing the measurement units 11. Arranged to be able to do. In general, various forms are possible for the number and arrangement of measurement units, the number and arrangement of diffraction gratings, and the like.
 上述したように、第1実施形態にかかる位置計測装置1は、露光装置本体(第1部材)に対する相対位置が可変であるウェハステージ(第2部材)WSの相対位置を計測する。具体的に、位置計測装置1は、露光装置本体に固定的に取り付けられた偏光ビームスプリッターPBSおよび参照部材RMと、ウェハステージWSに取り付けられてX方向およびY方向に沿った二次元周期構造を有する反射型の回折格子10とを備えている。 As described above, the position measuring apparatus 1 according to the first embodiment measures the relative position of the wafer stage (second member) WS whose relative position with respect to the exposure apparatus main body (first member) is variable. Specifically, the position measuring apparatus 1 has a polarization beam splitter PBS and a reference member RM fixedly attached to the exposure apparatus main body, and a two-dimensional periodic structure attached to the wafer stage WS along the X direction and the Y direction. And a reflective diffraction grating 10.
 そして、位置計測装置1では、露光装置本体に固定的に取り付けられた単一の偏光ビームスプリッターPBSを用いて、ウェハステージWSの計測点51m~54mにおけるX方向位置およびY方向位置と、ウェハステージWSの計測点61m~65mにおけるZ方向位置とを、いわゆるヘテロダイン干渉方式により同時に計測する。その結果、ウェハステージWSの複数点におけるX方向位置、Y方向位置およびZ方向位置に加えて、ウェハステージWSのX軸廻りの回転の位置、Y軸廻りの回転の位置、およびZ軸廻りの回転の位置も同時に計測される。 The position measuring apparatus 1 uses the single polarization beam splitter PBS fixedly attached to the exposure apparatus main body, the X direction position and the Y direction position at the measurement points 51m to 54m of the wafer stage WS, and the wafer stage. The positions in the Z direction at WS measurement points 61m to 65m are simultaneously measured by a so-called heterodyne interference method. As a result, in addition to the X-direction position, the Y-direction position, and the Z-direction position at a plurality of points on the wafer stage WS, the rotation position of the wafer stage WS around the X-axis, the rotation position around the Y-axis, and the Z-axis position The position of rotation is also measured at the same time.
 以上のように、第1実施形態にかかる位置計測装置1では、露光装置本体に固定的に取り付けられた単一の偏光ビームスプリッターPBSを用いて、ウェハWの面内方向であるX方向およびY方向に沿ったウェハステージWSの位置計測と、ウェハWの法線方向であるZ方向に沿ったウェハステージWSの位置計測とを同時に且つ安定的に行うことができる。したがって、第1実施形態の露光装置では、ウェハステージWSの位置計測を同時に且つ安定的に行う位置計測装置1を用いて、投影光学系PLに対してウェハステージWS上のウェハWを高精度に位置合わせすることができ、ひいては良好な投影露光を行うことができる。 As described above, in the position measurement apparatus 1 according to the first embodiment, the X direction and the Y direction which are in-plane directions of the wafer W using the single polarization beam splitter PBS fixedly attached to the exposure apparatus main body. The position measurement of the wafer stage WS along the direction and the position measurement of the wafer stage WS along the Z direction which is the normal direction of the wafer W can be performed simultaneously and stably. Therefore, in the exposure apparatus of the first embodiment, the position measurement apparatus 1 that simultaneously and stably measures the position of the wafer stage WS is used to accurately place the wafer W on the wafer stage WS with respect to the projection optical system PL. It is possible to align the positions, and thus it is possible to perform a good projection exposure.
 なお、上述の第1実施形態では、露光装置においてウェハWを保持して移動するウェハステージWSの位置計測に対して、本発明の位置計測装置を適用している。しかしながら、ウェハステージ(基板ステージ)に限定されることなく、一般に、物体を保持して移動するステージの位置計測に対しても同様に本発明の位置計測装置を適用することができる。一例として、例えば図11に示すように、第1実施形態において転写すべきパターンが設けられたマスクMを保持して移動するマスクステージMSの位置計測に対して、本発明の位置計測装置を適用することもできる。 In the first embodiment described above, the position measuring apparatus of the present invention is applied to the position measurement of the wafer stage WS that holds and moves the wafer W in the exposure apparatus. However, the present invention is not limited to a wafer stage (substrate stage), and in general, the position measuring apparatus of the present invention can be similarly applied to position measurement of a stage that holds and moves an object. As an example, for example, as shown in FIG. 11, the position measuring device of the present invention is applied to position measurement of a mask stage MS that holds and moves a mask M provided with a pattern to be transferred in the first embodiment. You can also
 ステップ・アンド・スキャン方式では、マスクMを保持したマスクステージMSが走査方向であるY方向に沿って移動する。図11の変形例にかかる位置計測装置1は、マスクMを挟んでX方向に間隔を隔てて設置された一対の反射型の回折格子10と、マスクMを挟んで(ひいては投影光学系PLを挟んで)X方向に間隔を隔てて設置された一対の計測ユニット11とを有する。図11では、マスクMのパターン領域PAの中心PAaと投影光学系PLの光軸AXとがXY平面において同じ位置にある基準的な状態を示している。 In the step-and-scan method, the mask stage MS holding the mask M moves along the Y direction that is the scanning direction. The position measuring apparatus 1 according to the modification of FIG. 11 includes a pair of reflective diffraction gratings 10 placed at an interval in the X direction with the mask M interposed therebetween, and the mask M (and thus the projection optical system PL). And a pair of measuring units 11 installed at an interval in the X direction. FIG. 11 shows a reference state in which the center PAa of the pattern area PA of the mask M and the optical axis AX of the projection optical system PL are at the same position on the XY plane.
 回折格子10は、例えばY方向に沿って細長い矩形状の外形を有し、マスクステージMSに固定的に(あるいは着脱自在に)取り付けられている。一対の計測ユニット11は、マスクステージMSと隔絶された露光装置本体に固定的に取り付けられている。一例として、一対の回折格子10はマスクMのパターン領域PAの中心PAaを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有する。また、一対の計測ユニット11は、投影光学系PLの光軸AXを通ってX方向に延びる軸線に沿うように光軸AXを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有する。 The diffraction grating 10 has an elongated rectangular outer shape, for example, along the Y direction, and is fixedly (or detachably) attached to the mask stage MS. The pair of measurement units 11 is fixedly attached to the exposure apparatus main body isolated from the mask stage MS. As an example, the pair of diffraction gratings 10 are arranged symmetrically with respect to an axis extending in the Y direction through the center PAa of the pattern area PA of the mask M, and have the same configuration. The pair of measurement units 11 are arranged symmetrically with respect to the axis extending in the Y direction through the optical axis AX so as to be along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration as each other. Have
 また、上述の第1実施形態では、偏光ビームスプリッターPBSが露光装置本体に取り付けられ、回折格子10がウェハステージWSに取り付けられ、露光装置本体に対する相対位置が可変であるウェハステージWSの相対位置を計測している。しかしながら、これに限定されることなく、一般に、第1部材に対する相対位置が可変である第2部材の相対位置を計測するために、第1部材に固定的に取り付けられた偏光ビームスプリッターと、第2部材に取り付けられた回折格子とを用いることができる。例えば、上述の第1実施形態において、偏光ビームスプリッターPBSをウェハステージWSに取り付け、回折格子10を露光装置本体に取り付けて、露光装置本体に対する相対位置が可変であるウェハステージWSの相対位置を計測することもできる。また、物体を保持して移動するステージの位置計測に対して本発明の位置計測装置を適用する場合、偏光ビームスプリッターおよび回折格子のうちの一方がステージに取り付けられる。また、ウェハステージWSの裏面に回折格子10を設け、ウェハステージよりも定盤側に偏光ビームスプリッターPBSを配置することもできる。 In the first embodiment described above, the polarization beam splitter PBS is attached to the exposure apparatus main body, the diffraction grating 10 is attached to the wafer stage WS, and the relative position of the wafer stage WS that is variable relative to the exposure apparatus main body is determined. Measuring. However, the present invention is not limited thereto, and in general, in order to measure the relative position of the second member whose relative position with respect to the first member is variable, a polarization beam splitter fixedly attached to the first member, A diffraction grating attached to two members can be used. For example, in the first embodiment described above, the polarization beam splitter PBS is attached to the wafer stage WS, the diffraction grating 10 is attached to the exposure apparatus body, and the relative position of the wafer stage WS whose relative position with respect to the exposure apparatus body is variable is measured. You can also In addition, when the position measurement apparatus of the present invention is applied to the position measurement of a stage that moves while holding an object, one of the polarization beam splitter and the diffraction grating is attached to the stage. Further, the diffraction grating 10 may be provided on the back surface of the wafer stage WS, and the polarization beam splitter PBS may be disposed on the surface plate side from the wafer stage.
 また、上述の第1実施形態では、回折格子10との間の光路を2往復した測定光と、参照部材RMとの間の光路を2往復した参照光との干渉光に基づいて、露光装置本体に対する相対位置が可変であるウェハステージWSの相対位置を計測している。しかしながら、これに限定されることなく、例えば回折格子との間の光路を1往復した測定光と、参照部材との間の光路を1往復した参照光との干渉光に基づいて、計測対象部材の相対位置を計測することもできる。 Further, in the above-described first embodiment, the exposure apparatus is based on the interference light between the measurement light that has reciprocated twice along the optical path between the diffraction grating 10 and the reference light that has reciprocated twice along the optical path between the reference member RM. The relative position of the wafer stage WS whose relative position with respect to the main body is variable is measured. However, the measurement target member is not limited to this, for example, based on the interference light between the measurement light that reciprocates once in the optical path between the diffraction grating and the reference light that reciprocates once in the optical path between the reference member. The relative position of can also be measured.
 図12は、第2実施形態にかかる位置計測装置を備えた露光装置の構成を概略的に示す図である。図13は、第2実施形態の位置計測装置を構成する回折格子および計測ユニットの配置を概略的に示す図である。第2実施形態は第1実施形態と類似の構成を有するが、第2実施形態にかかる位置計測装置1Aの構成が第1実施形態の位置計測装置1と相違している。したがって、図12および図13では、図1および図2に示す構成要素と同様の機能を有する要素に、図1および図2と同じ参照符号を付している。以下、第1実施形態との相違点に着目して第2実施形態の構成および作用を説明する。 FIG. 12 is a view schematically showing a configuration of an exposure apparatus provided with the position measuring apparatus according to the second embodiment. FIG. 13 is a diagram schematically showing the arrangement of diffraction gratings and measurement units that constitute the position measurement apparatus of the second embodiment. The second embodiment has a configuration similar to that of the first embodiment, but the configuration of the position measuring device 1A according to the second embodiment is different from the position measuring device 1 of the first embodiment. Therefore, in FIG. 12 and FIG. 13, the elements having the same functions as those shown in FIG. 1 and FIG. Hereinafter, the configuration and operation of the second embodiment will be described focusing on differences from the first embodiment.
 第2実施形態の露光装置は、ウェハステージWS(ひいてはウェハW)のX方向の位置、Y方向の位置、Z方向の位置、X軸廻りの回転方向の位置、Y軸廻りの回転方向の位置、およびZ軸廻りの回転方向の位置をリアルタイムに計測する位置計測装置1Aを備えている。位置計測装置1Aは、図12および図13に示すように、ウェハWを挟んでX方向に間隔を隔てて設置された一対の反射型の回折格子110と、投影光学系PLを挟んでX方向に並んで設置された4つの計測ユニット111とを有する。図13では、ウェハWの中心Waと投影光学系PLの光軸AXとがXY平面において同じ位置にある基準的な状態を示している。 The exposure apparatus according to the second embodiment includes a position in the X direction, a position in the Y direction, a position in the Z direction, a position in the rotational direction around the X axis, and a position in the rotational direction around the Y axis of the wafer stage WS (and thus the wafer W). And a position measuring device 1A that measures the position in the rotation direction around the Z axis in real time. As shown in FIGS. 12 and 13, the position measuring apparatus 1 </ b> A includes a pair of reflective diffraction gratings 110 that are installed with a gap in the X direction with the wafer W interposed therebetween, and the projection optical system PL with the X direction interposed therebetween. And four measuring units 111 installed side by side. FIG. 13 shows a reference state in which the center Wa of the wafer W and the optical axis AX of the projection optical system PL are at the same position in the XY plane.
 回折格子110は、例えばY方向に沿って細長い矩形状の外形を有し、ウェハステージWSに固定的に(あるいは着脱自在に)取り付けられている。4つの計測ユニット111は、ウェハステージWSと隔絶された露光装置本体に固定的に取り付けられている。4つの計測ユニット111のうち、第1の対の計測ユニット111は投影光学系PLの+X方向側においてX方向に並んで配置され、第2の対の計測ユニット111は投影光学系PLの-X方向側においてX方向に並んで配置されている。 The diffraction grating 110 has, for example, an elongated rectangular outer shape along the Y direction, and is fixedly (or detachably) attached to the wafer stage WS. The four measurement units 111 are fixedly attached to the exposure apparatus main body isolated from the wafer stage WS. Of the four measurement units 111, the first pair of measurement units 111 are arranged side by side in the X direction on the + X direction side of the projection optical system PL, and the second pair of measurement units 111 are -X of the projection optical system PL. They are arranged side by side in the X direction on the direction side.
 以下、説明を簡単にするために、一対の回折格子110は、ウェハWの中心Waを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有するものとする。また、4つの計測ユニット111は、投影光学系PLの光軸AXを通ってX方向に延びる軸線に沿うように光軸AXを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有するものとする。さらに、静止している露光装置本体に対して、ウェハステージWSが移動するものとする。 Hereinafter, in order to simplify the description, it is assumed that the pair of diffraction gratings 110 are arranged symmetrically with respect to an axis extending in the Y direction through the center Wa of the wafer W and have the same configuration. The four measuring units 111 are symmetrically arranged with respect to the axis extending in the Y direction through the optical axis AX so as to be along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration as each other. It shall have. Further, it is assumed that the wafer stage WS moves with respect to the stationary exposure apparatus main body.
 以下、位置計測装置1Aの具体的な構成および作用の説明に先立ち、位置計測装置1Aにおける計測原理について説明する。図14は、ウェハステージに取り付けられた回折格子のX方向位置およびY方向位置の計測原理について説明する図である。図14を参照すると、露光装置本体に固定的に取り付けられた偏光ビームスプリッターPBSに、同一光路にp偏光成分とs偏光成分とを含む計測光131がX方向に沿って入射する。また、計測光131の光路から+Z方向に間隔を隔てた光路に沿って、同一光路にp偏光成分とs偏光成分とを含む計測光132がX方向に沿って入射する。 Hereinafter, the measurement principle of the position measurement apparatus 1A will be described prior to the description of the specific configuration and operation of the position measurement apparatus 1A. FIG. 14 is a diagram for explaining the measurement principle of the X-direction position and the Y-direction position of the diffraction grating attached to the wafer stage. Referring to FIG. 14, measurement light 131 including a p-polarized component and an s-polarized component enters the same optical path along the X direction on a polarizing beam splitter PBS fixedly attached to the exposure apparatus body. Further, along the optical path spaced in the + Z direction from the optical path of the measurement light 131, the measurement light 132 including the p-polarized component and the s-polarized component is incident along the X direction on the same optical path.
 偏光ビームスプリッターPBSに入射した計測光131のうち、偏光分離面でZ方向に反射されたs偏光の光は、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板133に入射する。1/4波長板133を経て円偏光になった光は、偏向部材134aによりXZ平面内においてZ方向に対して斜め方向に偏向された後、ウェハステージWSに取り付けられた反射型の回折格子110上の点状の領域(以下、単に「領域」という)135aに、回折格子110のリトロー角で斜め入射する。 Of the measurement light 131 incident on the polarization beam splitter PBS, s-polarized light reflected in the Z direction on the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 133. The light that has been circularly polarized through the quarter-wave plate 133 is deflected obliquely with respect to the Z direction in the XZ plane by the deflecting member 134a, and then the reflective diffraction grating 110 attached to the wafer stage WS. The incident light is obliquely incident on the upper dotted area (hereinafter, simply referred to as “area”) 135 a at the Littrow angle of the diffraction grating 110.
 偏光部材としての1/4波長板133は、偏光ビームスプリッターPBSのXY平面に沿った光学面PBSaに接するように取り付けられている。偏向部材134aは、1/4波長板133上の所要位置に取り付けられ、X方向に沿った一次元周期構造の回折パターンを有する。回折格子110は、偏光ビームスプリッターPBSに対してXY平面にほぼ平行な入射面を向けた平行平面板の形態を有する。回折格子110には、X方向およびY方向に沿った二次元周期構造を有する回折パターンが設けられている。 The quarter wave plate 133 as a polarizing member is attached so as to be in contact with the optical surface PBSa along the XY plane of the polarizing beam splitter PBS. The deflecting member 134a is attached to a required position on the quarter wavelength plate 133 and has a one-dimensional periodic structure diffraction pattern along the X direction. The diffraction grating 110 has a form of a plane parallel plate with an incident surface substantially parallel to the XY plane with respect to the polarization beam splitter PBS. The diffraction grating 110 is provided with a diffraction pattern having a two-dimensional periodic structure along the X direction and the Y direction.
 回折格子110上の領域135aに回折格子110のリトロー角で斜め入射した光に応じて、回折格子110への入射光路と同じ光路に沿って回折格子110から斜め方向に-1次回折光131aが発生する。回折格子110から斜め方向に発生した円偏光の測定光である-1次回折光131aは、偏向部材134aによりZ方向に偏向された後、1/4波長板133を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。 In response to light obliquely incident on the region 135a on the diffraction grating 110 with the Littrow angle of the diffraction grating 110, the first-order diffracted light 131a is generated obliquely from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110. To do. The minus first-order diffracted light 131a, which is circularly polarized measurement light generated from the diffraction grating 110 in an oblique direction, is deflected in the Z direction by the deflecting member 134a, then becomes p-polarized light through the quarter-wave plate 133, and is polarized light. It propagates inside the splitter PBS and passes through the polarization separation surface.
 回折格子110のリトロー角(1次回折光のリトロー角)は、回折格子110へ入射する光ビームと、この入射ビームに対応して発生する1次回折光とが平行になるときの光ビームの入射角として定義される。光ビームがリトロー角で回折格子110へ入射すると、回折格子110の格子パターン面の高さ(Z方向位置)が変化しても1次回折光の横シフトが発生しないため、干渉光の強度が変化しないという利点がある。 The Littrow angle (Littrow angle of the first-order diffracted light) of the diffraction grating 110 is the incident angle of the light beam when the light beam incident on the diffraction grating 110 and the first-order diffracted light generated corresponding to the incident beam are parallel to each other. Is defined as When the light beam is incident on the diffraction grating 110 at the Littrow angle, even if the height (Z-direction position) of the grating pattern surface of the diffraction grating 110 changes, the lateral shift of the first-order diffracted light does not occur. There is an advantage of not.
 偏光ビームスプリッターPBSに入射した計測光131のうち、偏光分離面を透過したp偏光の光は、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板136に入射する。偏光部材としての1/4波長板136は、偏光ビームスプリッターPBSのYZ平面に沿った光学面PBSbに接するように取り付けられている。1/4波長板136を経て円偏光になった光は、1/4波長板136に接するように設けられた平面状の反射面137に入射する。反射面137により反射された円偏光の参照光131bは、1/4波長板136を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でZ方向へ反射される。 Of the measurement light 131 incident on the polarization beam splitter PBS, the p-polarized light transmitted through the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 136. The quarter wave plate 136 as a polarizing member is attached so as to be in contact with the optical surface PBSb along the YZ plane of the polarizing beam splitter PBS. The light that has been circularly polarized through the quarter-wave plate 136 is incident on a planar reflecting surface 137 provided in contact with the quarter-wave plate 136. The circularly-polarized reference light 131b reflected by the reflecting surface 137 becomes s-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and is reflected in the Z direction by the polarization separation surface.
 なお、図14の構成では、参照部材RMの参照面としての反射面137が1/4波長板136に接するように設けられているが、これに限定されることなく、1/4波長板136から間隔を隔てて反射面137を有するミラーを参照部材RMとして配置しても良い。換言すると、参照部材RMは、偏光ビームスプリッターPBSに対してYZ平面に沿った入射面を向けた平行平面板の形態を有するミラーであっても良い。この場合、参照部材RMは、偏光ビームスプリッターPBSと同様に、露光装置本体に固定的に取り付けられる。 In the configuration of FIG. 14, the reflective surface 137 as the reference surface of the reference member RM is provided so as to contact the quarter wavelength plate 136, but the quarter wavelength plate 136 is not limited thereto. A mirror having a reflective surface 137 at a distance from each other may be disposed as the reference member RM. In other words, the reference member RM may be a mirror having the form of a plane parallel plate with the incident surface along the YZ plane facing the polarization beam splitter PBS. In this case, the reference member RM is fixedly attached to the exposure apparatus body in the same manner as the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の測定光(-1次回折光)131aと、偏光分離面で反射されたs偏光の参照光(0次反射光)131bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに取り付けられたコーナーキューブのような折返し部材138aに入射する。折返し部材138aの作用により+X方向へ平行移動されて偏光ビームスプリッターPBSへ戻されたp偏光の測定光131aおよびs偏光の参照光131bは、偏光ビームスプリッターPBSの偏光分離面に入射する。 The p-polarized measurement light (−1st-order diffracted light) 131a transmitted through the polarization separation surface of the polarization beam splitter PBS and the s-polarized reference light (0th-order reflected light) 131b reflected by the polarization separation surface are on the same path. And propagates through the inside of the polarization beam splitter PBS, and enters the folding member 138a such as a corner cube attached to the polarization beam splitter PBS. The p-polarized measurement light 131a and the s-polarized reference light 131b that have been translated in the + X direction by the action of the folding member 138a and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS.
 偏光分離面を透過したp偏光の測定光131aは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板133に入射する。1/4波長板133を経て円偏光になった測定光131aは、回折格子110上において領域135aから+X方向に間隔を隔てた領域135bに、回折格子110のリトロー角で斜め入射する。回折格子110上の領域135bに回折格子110のリトロー角で斜め入射した光131aに応じて、回折格子110への入射光路と同じ光路に沿って回折格子110から斜め方向に-1次回折光131aaが発生する。 The p-polarized measurement light 131 a that has passed through the polarization separation surface propagates through the polarization beam splitter PBS and enters the quarter-wave plate 133. The measurement light 131 a that has been circularly polarized through the quarter-wave plate 133 is incident on the diffraction grating 110 obliquely at a Littrow angle of the diffraction grating 110 into a region 135 b spaced from the region 135 a in the + X direction. In response to the light 131a obliquely incident on the region 135b on the diffraction grating 110 at the Littrow angle of the diffraction grating 110, the minus first-order diffracted light 131aa is obliquely directed from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110. appear.
 回折格子110上の領域135aへ入射する光の入射経路(ひいては-1次回折光131aが射出される射出経路)と、領域135bへ入射する光の入射経路(ひいては-1次回折光131aaが射出される射出経路)とは互いに平行である。回折格子110から斜め方向に発生した円偏光の測定光である-1次回折光131aaは、偏向部材134aによりZ方向に偏向された後、1/4波長板133を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向へ反射される。 An incident path of light incident on the region 135a on the diffraction grating 110 (and thus an emission path through which the −1st order diffracted light 131a is emitted) and an incident path of light incident on the region 135b (and thus the −1st order diffracted light 131aa are emitted). Are parallel to each other. The −1st-order diffracted light 131aa, which is a circularly polarized measurement light generated from the diffraction grating 110 in an oblique direction, is deflected in the Z direction by the deflecting member 134a, then becomes s-polarized light through the quarter-wave plate 133, and the polarized beam It propagates inside the splitter PBS and is reflected in the X direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面でX方向へ反射されたs偏光の参照光131bは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板136に入射する。1/4波長板136を経て円偏光になった参照光131bは、参照面としての反射面137により反射された後、1/4波長板136を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。偏光分離面でX方向に反射されたs偏光の測定光131aaと、偏光分離面を透過したp偏光の参照光131bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSから射出される。 The s-polarized reference light 131 b reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS and enters the quarter wavelength plate 136. The reference light 131b that has been circularly polarized through the quarter-wave plate 136 is reflected by the reflecting surface 137 as a reference surface, and then becomes p-polarized light through the quarter-wave plate 136, and the inside of the polarization beam splitter PBS. Is transmitted through the polarization splitting surface. The s-polarized measurement light 131aa reflected in the X direction on the polarization separation surface and the p-polarized reference light 131b transmitted through the polarization separation surface propagate through the polarization beam splitter PBS along the same path, and are polarized. Ejected from the beam splitter PBS.
 一方、偏光ビームスプリッターPBSに入射した計測光132のうち、偏光分離面でZ方向に反射されたs偏光の光は、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板133に入射する。1/4波長板133を経て円偏光になった光は、偏向部材134bによりYZ平面内においてZ方向に対して斜め方向に偏向された後、回折格子110上の領域135cに回折格子110のリトロー角で斜め入射する。偏向部材134bは、偏向部材134aと同様に、1/4波長板133上の所要位置に取り付けられ、X方向に沿った一次元周期構造の回折パターンを有する。 On the other hand, of the measurement light 132 incident on the polarization beam splitter PBS, the s-polarized light reflected in the Z direction on the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter wavelength plate 133. . The light that has been circularly polarized through the quarter-wave plate 133 is deflected obliquely with respect to the Z direction in the YZ plane by the deflecting member 134b, and then the Littrow of the diffraction grating 110 in the region 135c on the diffraction grating 110. Incident at an angle. Similarly to the deflection member 134a, the deflection member 134b is attached to a required position on the quarter-wave plate 133 and has a one-dimensional periodic structure diffraction pattern along the X direction.
 回折格子110上の領域135cに回折格子110のリトロー角で斜め入射した光に応じて、回折格子110への入射光路と同じ光路に沿って回折格子110から斜め方向に+1次回折光132aが発生する。回折格子110上の領域135aへ入射する光の入射経路(ひいては-1次回折光131aが射出される射出経路)と、領域135cへ入射する光の入射経路(ひいては+1次回折光132aが射出される射出経路)とは、領域135aと領域135cとの中間位置を通ってYZ平面に平行な面に関して対称である。回折格子110から斜め方向に発生した円偏光の測定光である+1次回折光132aは、偏向部材134bによりZ方向に偏向された後、1/4波長板133を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。 In accordance with the light obliquely incident on the region 135c on the diffraction grating 110 at the Littrow angle of the diffraction grating 110, the first-order diffracted light 132a is generated obliquely from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110. . An incident path of light incident on the region 135a on the diffraction grating 110 (and thus an exit path from which the −1st order diffracted light 131a is emitted) and an incident path of light incident on the region 135c (and an exit from which the + 1st order diffracted light 132a is emitted). The path) is symmetric with respect to a plane parallel to the YZ plane through an intermediate position between the region 135a and the region 135c. The + 1st-order diffracted light 132a, which is circularly polarized measurement light generated in the oblique direction from the diffraction grating 110, is deflected in the Z direction by the deflecting member 134b, then becomes p-polarized light through the quarter-wave plate 133, and is polarized beam splitter. Propagates through the PBS and passes through the polarization separation surface.
 偏光ビームスプリッターPBSに入射した計測光132のうち、偏光分離面を透過したp偏光の光は、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板136に入射する。1/4波長板136を経て円偏光になった光は、参照部材RMの参照面としての反射面137に入射する。反射面137により反射された円偏光の参照光132bは、1/4波長板136を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でZ方向へ反射される。 Of the measurement light 132 incident on the polarization beam splitter PBS, the p-polarized light transmitted through the polarization separation surface propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 136. The light that has been circularly polarized through the quarter-wave plate 136 enters a reflecting surface 137 as a reference surface of the reference member RM. The circularly-polarized reference light 132b reflected by the reflecting surface 137 becomes s-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and is reflected in the Z direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の測定光132aと、偏光分離面で反射されたs偏光の参照光132bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに取り付けられたコーナーキューブのような折返し部材138bに入射する。折返し部材138bの作用により+X方向へ平行移動されて偏光ビームスプリッターPBSへ戻されたp偏光の測定光132aおよびs偏光の参照光132bは、偏光ビームスプリッターPBSの偏光分離面に入射する。 The p-polarized measurement light 132a transmitted through the polarization separation surface of the polarization beam splitter PBS and the s-polarized reference light 132b reflected by the polarization separation surface propagate through the polarization beam splitter PBS along the same path. Then, the light enters the folding member 138b such as a corner cube attached to the polarization beam splitter PBS. The p-polarized measurement light 132a and the s-polarized reference light 132b that have been translated in the + X direction and returned to the polarization beam splitter PBS by the action of the folding member 138b are incident on the polarization separation surface of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の測定光132aは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板133に入射する。1/4波長板133を経て円偏光になった測定光132aは、回折格子110上において領域135cから+X方向に間隔を隔てた領域135dに、回折格子110のリトロー角で斜め入射する。回折格子110上の領域135dに回折格子110のリトロー角で斜め入射した光132aに応じて、回折格子110への入射光路と同じ光路に沿って回折格子110から斜め方向に+1次回折光132aaが発生する。 The p-polarized measurement light 132a that has passed through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS and enters the quarter-wave plate 133. The measurement light 132 a that has become circularly polarized light through the quarter-wave plate 133 is incident obliquely at a Littrow angle of the diffraction grating 110 on the diffraction grating 110 to a region 135 d that is spaced from the region 135 c in the + X direction. In response to the light 132a obliquely incident on the region 135d on the diffraction grating 110 at the Littrow angle of the diffraction grating 110, the first-order diffracted light 132aa is generated obliquely from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110. To do.
 回折格子110上の領域135cへ入射する光の入射経路(ひいては+1次回折光132aが射出される射出経路)と、領域135dへ入射する光の入射経路(ひいては+1次回折光132aaが射出される射出経路)とは互いに平行である。回折格子110から斜め方向に発生した円偏光の測定光である+1次回折光132aaは、偏向部材134bによりZ方向に偏向された後、1/4波長板133を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向へ反射される。 An incident path of light incident on the region 135c on the diffraction grating 110 (and thus an exit path from which the + 1st order diffracted light 132a is emitted) and an incident path of light incident on the region 135d (and an exit path from which the + 1st order diffracted light 132aa is emitted). Are parallel to each other. The + 1st-order diffracted light 132aa, which is circularly polarized measurement light generated in the oblique direction from the diffraction grating 110, is deflected in the Z direction by the deflecting member 134b, and then becomes s-polarized light through the quarter-wave plate 133, and the polarization beam splitter. It propagates inside the PBS and is reflected in the X direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面でX方向へ反射されたs偏光の参照光132bは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板136に入射する。1/4波長板136を経て円偏光になった参照光132bは、反射面137により反射された後、1/4波長板136を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。偏光分離面でX方向に反射されたs偏光の測定光132aaと、偏光分離面を透過したp偏光の参照光132bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSから射出される。 The s-polarized reference light 132 b reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS propagates inside the polarization beam splitter PBS and enters the quarter-wave plate 136. The reference light 132b that has been circularly polarized through the quarter-wave plate 136 is reflected by the reflecting surface 137, then becomes p-polarized light through the quarter-wave plate 136, propagates inside the polarization beam splitter PBS, Transmits through the polarization separation surface. The s-polarized measurement light 132aa reflected in the X direction on the polarization separation surface and the p-polarized reference light 132b transmitted through the polarization separation surface propagate through the polarization beam splitter PBS along the same path, and are polarized. Ejected from the beam splitter PBS.
 こうして、計測光131に対応して互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光(-1次回折光)131aaとp偏光の参照光131bとの干渉光を光電検出して得られる第1検出信号と、計測光132に対応して互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光(+1次回折光)132aaとp偏光の参照光132bとの干渉光を光電検出して得られる第2検出信号との差に基づいて、回折格子110上の計測点135のX方向位置、ひいてはウェハステージWSの計測点135におけるX方向位置が計測される。一般的には、露光装置本体に対する相対位置が可変であるウェハステージWSの計測点135におけるX方向に沿った相対位置が計測される。計測点135は、領域135aと領域135dとの中間位置(ひいては領域135bと領域135cとの中間位置)である。 Thus, the interference light between the s-polarized measurement light (−1st order diffracted light) 131aa and the p-polarized reference light 131b emitted from the polarization beam splitter PBS along the same path corresponding to the measurement light 131 is photoelectrically detected. Between the first detection signal obtained in this manner and the s-polarized measurement light (+ 1st order diffracted light) 132aa and the p-polarized reference light 132b emitted from the polarization beam splitter PBS along the same path corresponding to the measurement light 132. Based on the difference from the second detection signal obtained by photoelectrically detecting the interference light, the X-direction position of the measurement point 135 on the diffraction grating 110 and, consequently, the X-direction position at the measurement point 135 of the wafer stage WS are measured. In general, the relative position along the X direction at the measurement point 135 of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured. The measurement point 135 is an intermediate position between the area 135a and the area 135d (as a result, an intermediate position between the area 135b and the area 135c).
 なお、図14に示す構成では、Z方向に間隔を隔てた一対のX方向光路に沿って偏光ビームスプリッターPBSに入射する一対の計測光131および132に対応して、s偏光の測定光(-1次回折光)131aaとp偏光の参照光131bとの干渉光、およびs偏光の測定光(+1次回折光)132aaとp偏光の参照光132bとの干渉光を検出している。同様に、参照符号などの図示を省略するが、Y方向に間隔を隔てた一対のX方向光路に沿って偏光ビームスプリッターPBSに入射する一対の計測光131yおよび132yに対応して、s偏光の測定光(-1次回折光)131yaaとp偏光の参照光131ybとの干渉光、およびs偏光の測定光(+1次回折光)132yaaとp偏光の参照光132ybとの干渉光を検出することができる。 In the configuration shown in FIG. 14, s-polarized measurement light (−) corresponds to a pair of measurement light beams 131 and 132 that enter the polarization beam splitter PBS along a pair of X-direction optical paths spaced in the Z direction. Interference light between the first-order diffracted light) 131aa and the p-polarized reference light 131b, and interference light between the s-polarized measurement light (+ 1st-order diffracted light) 132aa and the p-polarized reference light 132b are detected. Similarly, although illustration of reference numerals and the like is omitted, s-polarized light corresponding to the pair of measurement beams 131y and 132y incident on the polarization beam splitter PBS along the pair of X-direction optical paths spaced in the Y-direction. Interference light between measurement light (−1st order diffracted light) 131yaa and p-polarized reference light 131yb, and interference light between s-polarized measurement light (+ 1st order diffracted light) 132yaa and p-polarized reference light 132yb can be detected. .
 したがって、X方向位置の計測の場合と同様に、計測光131yに対応して互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光131yaaとp偏光の参照光131ybとの干渉光を光電検出して得られる第3検出信号と、計測光132yに対応して互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光132yaaとp偏光の参照光132ybとの干渉光を光電検出して得られる第4検出信号との差に基づいて、回折格子110上の計測点135yのY方向位置、ひいてはウェハステージWSの計測点135yにおけるY方向位置が計測される。一般的には、露光装置本体に対する相対位置が可変であるウェハステージWSの計測点135yにおけるY方向に沿った相対位置が計測される。後述するように、Y方向位置の計測点135yを、X方向位置の計測点135x(上述の計測点135)と一致させても良い。 Therefore, similarly to the measurement of the position in the X direction, the interference between the s-polarized measurement light 131yaa and the p-polarized reference light 131yb emitted from the polarization beam splitter PBS along the same path corresponding to the measurement light 131y. A third detection signal obtained by photoelectrically detecting light and an s-polarized measurement light 132yaa and a p-polarized reference light 132yb emitted from the polarization beam splitter PBS along the same path corresponding to the measurement light 132y. Based on the difference from the fourth detection signal obtained by photoelectrically detecting the interference light, the position in the Y direction of the measurement point 135y on the diffraction grating 110, and hence the position in the Y direction at the measurement point 135y of the wafer stage WS are measured. In general, the relative position along the Y direction at the measurement point 135y of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable is measured. As will be described later, the measurement point 135y at the Y direction position may coincide with the measurement point 135x at the X direction position (the above-described measurement point 135).
 図15は、ウェハステージに取り付けられた回折格子のZ方向位置の計測原理について説明する図である。図15を参照すると、露光装置本体に固定的に取り付けられた偏光ビームスプリッター(すなわち回折格子110のX方向位置およびY方向位置の計測に用いられる偏光ビームスプリッター)PBSに、同一光路にp偏光成分とs偏光成分とを含む計測光141がX方向に沿って入射する。偏光ビームスプリッターPBSに入射した計測光141のうち、偏光分離面でZ方向に反射されたs偏光の光は、偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSのXY平面に沿った光学面PBSaに接するように取り付けられた1/4波長板133(すなわち回折格子110のX方向位置およびY方向位置の計測に用いられる1/4波長板)を経て円偏光になり、ウェハステージWSに取り付けられた回折格子110上の領域143aに入射する。 FIG. 15 is a diagram for explaining the measurement principle of the position in the Z direction of the diffraction grating attached to the wafer stage. Referring to FIG. 15, a polarization beam splitter (that is, a polarization beam splitter used for measuring the X-direction position and the Y-direction position of the diffraction grating 110) PBS fixedly attached to the exposure apparatus main body PBS, and p-polarization component in the same optical path. And the measurement light 141 including the s-polarized component are incident along the X direction. Of the measurement light 141 incident on the polarization beam splitter PBS, the s-polarized light reflected in the Z direction on the polarization separation surface propagates inside the polarization beam splitter PBS and is optical along the XY plane of the polarization beam splitter PBS. A quarter-wave plate 133 (that is, a quarter-wave plate used for measurement of the X-direction position and the Y-direction position of the diffraction grating 110) mounted so as to be in contact with the surface PBSa becomes circularly polarized light, and is applied to the wafer stage WS. The light enters the region 143 a on the attached diffraction grating 110.
 回折格子110上の領域143aに入射した円偏光の光に応じて、回折格子110からZ方向に沿って0次光(正反射光)である測定光141aが発生する。回折格子110からZ方向に沿って発生した測定光141aは、1/4波長板133を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬した後に、偏光分離面を透過する。偏光ビームスプリッターPBSに入射した計測光141のうち、偏光分離面を透過したp偏光の光は、偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSのYZ平面に沿った光学面PBSbに接するように取り付けられた1/4波長板136(すなわち回折格子110のX方向位置およびY方向位置の計測に用いられる1/4波長板)を経て円偏光になり、1/4波長板136に接するように設けられた平面状の反射面137(すなわち回折格子110のX方向位置およびY方向位置の計測に用いられる参照面)に入射する。 In response to the circularly polarized light that has entered the region 143a on the diffraction grating 110, measurement light 141a that is zero-order light (regular reflection light) is generated along the Z direction from the diffraction grating 110. The measurement light 141a generated along the Z direction from the diffraction grating 110 becomes p-polarized light through the quarter-wave plate 133, propagates through the polarization beam splitter PBS, and then passes through the polarization separation surface. Of the measurement light 141 incident on the polarization beam splitter PBS, the p-polarized light transmitted through the polarization separation surface propagates through the polarization beam splitter PBS and contacts the optical surface PBSb along the YZ plane of the polarization beam splitter PBS. The quarter-wave plate 136 (that is, a quarter-wave plate used for measuring the X-direction position and the Y-direction position of the diffraction grating 110) is circularly polarized and is in contact with the quarter-wave plate 136. Is incident on the planar reflecting surface 137 (that is, a reference surface used for measurement of the X-direction position and the Y-direction position of the diffraction grating 110).
 このように、図15における偏光ビームスプリッターPBS、1/4波長板133,136、および参照部材RMとしての反射面137は、図14の構成要素と共通である。反射面137により反射された円偏光の参照光141bは、1/4波長板136を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でZ方向に反射される。偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の測定光141aと偏光分離面でZ方向へ反射されたs偏光の参照光141bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSに取り付けられた折返し部材146に入射する。折返し部材146の作用により+X方向へ平行移動されて偏光ビームスプリッターPBSへ戻されたp偏光の測定光141aおよびs偏光の参照光141bは、偏光ビームスプリッターPBSの偏光分離面に入射する。 As described above, the polarizing beam splitter PBS, the quarter- wave plates 133 and 136, and the reflecting surface 137 as the reference member RM in FIG. 15 are common to the components in FIG. The circularly-polarized reference light 141b reflected by the reflecting surface 137 becomes s-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and is reflected in the Z direction by the polarization separation surface. The p-polarized measurement light 141a transmitted through the polarization separation surface of the polarization beam splitter PBS and the s-polarized reference light 141b reflected in the Z direction by the polarization separation surface pass through the inside of the polarization beam splitter PBS along the same path. Propagate and enter the folding member 146 attached to the polarization beam splitter PBS. The p-polarized measurement light 141a and the s-polarized reference light 141b that have been translated in the + X direction by the action of the folding member 146 and returned to the polarization beam splitter PBS are incident on the polarization separation surface of the polarization beam splitter PBS.
 偏光ビームスプリッターPBSの偏光分離面を透過したp偏光の測定光141aは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板133を経て円偏光になり、回折格子110上の領域143aから+X方向に間隔を隔てた領域143bに入射する。回折格子110上の領域143bに入射した円偏光の光141aに応じて、回折格子110からZ方向に沿って0次光である測定光141aaが発生する。回折格子110からZ方向に沿って発生した測定光141aaは、1/4波長板133を経てs偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面でX方向に反射される。 The p-polarized measurement light 141 a that has passed through the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light via the quarter-wave plate 133, and from the region 143 a on the diffraction grating 110. The light enters the region 143b spaced in the + X direction. In response to the circularly polarized light 141 a incident on the region 143 b on the diffraction grating 110, measurement light 141 aa that is zero-order light is generated along the Z direction from the diffraction grating 110. The measurement light 141aa generated along the Z direction from the diffraction grating 110 becomes s-polarized light through the quarter-wave plate 133, propagates inside the polarization beam splitter PBS, and is reflected in the X direction by the polarization separation surface.
 偏光ビームスプリッターPBSの偏光分離面で反射されたs偏光の参照光141bは、偏光ビームスプリッターPBSの内部を伝搬し、1/4波長板136を経て円偏光になり、参照面である反射面137に入射する。反射面137により反射された円偏光の参照光141bは、1/4波長板136を経てp偏光になり、偏光ビームスプリッターPBSの内部を伝搬し、偏光分離面を透過する。偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の測定光141aaと、偏光分離面を透過したp偏光の参照光141bとは、互いに同じ経路に沿って偏光ビームスプリッターPBSの内部を伝搬し、偏光ビームスプリッターPBSから射出される。 The s-polarized reference light 141b reflected by the polarization separation surface of the polarization beam splitter PBS propagates through the polarization beam splitter PBS, becomes circularly polarized light through the quarter wavelength plate 136, and is a reflection surface 137 that is a reference surface. Is incident on. The circularly-polarized reference light 141b reflected by the reflecting surface 137 becomes p-polarized light through the quarter-wave plate 136, propagates through the polarization beam splitter PBS, and passes through the polarization separation surface. The s-polarized measurement light 141aa reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS and the p-polarization reference light 141b transmitted through the polarization separation surface are arranged along the same path with each other in the polarization beam splitter PBS. And is emitted from the polarization beam splitter PBS.
 こうして、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出されたs偏光の測定光141aaとp偏光の参照光141bとの干渉光を光電検出して得られる検出信号に基づいて、回折格子110上において領域143aと領域143bとの中間に位置する計測点143のZ方向位置、ひいてはウェハステージWS上の計測点143におけるZ方向位置が計測される。一般的には、露光装置本体に対する相対位置が可変であるウェハステージWSの計測点143におけるZ方向に沿った相対位置が計測される。 Thus, on the diffraction grating 110 based on the detection signal obtained by photoelectrically detecting the interference light between the s-polarized measurement light 141aa and the p-polarized reference light 141b emitted from the polarization beam splitter PBS along the same path. , The Z-direction position of the measurement point 143 located between the area 143a and the area 143b, and thus the Z-direction position of the measurement point 143 on the wafer stage WS is measured. Generally, the relative position along the Z direction is measured at the measurement point 143 of the wafer stage WS whose relative position with respect to the exposure apparatus main body is variable.
 図16は、第2実施形態にかかる位置計測装置の構成を概略的に示す図である。図16を参照すると、第2実施形態の位置計測装置1Aは、4つの計測ユニット111(図16では1つの計測ユニット111だけを示している)、計測用光源112、分岐ユニット113、ライトガイド114、および処理部115を備えている。計測ユニット111は、偏光ビームスプリッターPBS、1/4波長板133,136、偏向部材134a,134b、参照部材RMの反射面としての反射面137、折返し部材138a,138b,146、および入出力ユニット111Aを有し、露光装置本体に固定的に取り付けられている。ただし、図16では、図面の明瞭化のために、計測ユニット111の一部を構成する偏向部材134a,134b、および折返し部材138a,138b,146の図示を省略している。一例として、計測用光源112、分岐ユニット113、ライトガイド114、および処理部115は、4つの計測ユニット111に対して共通に設けられている。 FIG. 16 is a diagram schematically showing the configuration of the position measuring apparatus according to the second embodiment. Referring to FIG. 16, the position measurement apparatus 1A of the second embodiment includes four measurement units 111 (only one measurement unit 111 is shown in FIG. 16), a measurement light source 112, a branch unit 113, and a light guide 114. And a processing unit 115. The measurement unit 111 includes a polarizing beam splitter PBS, quarter- wave plates 133 and 136, deflecting members 134a and 134b, a reflecting surface 137 as a reflecting surface of the reference member RM, folding members 138a, 138b, and 146, and an input / output unit 111A. And is fixedly attached to the exposure apparatus main body. However, in FIG. 16, the deflection members 134 a and 134 b and the folding members 138 a, 138 b, and 146 that constitute a part of the measurement unit 111 are not illustrated for the sake of clarity. As an example, the measurement light source 112, the branch unit 113, the light guide 114, and the processing unit 115 are provided in common for the four measurement units 111.
 計測用光源112として、He-Neレーザ光源、半導体レーザ光源などを用いることができる。計測用光源112から供給された光は、分岐ユニット113においてs偏光の光とp偏光の光とに分離され、例えばデュアルコアのライトガイド114を介して、各計測ユニット111の入出力ユニット111Aに供給される。すなわち、ライトガイド114の一方のコアを介して伝搬したs偏光の光と他方のコアを介して伝搬したp偏光の光とが、入出力ユニット111Aに供給される。入出力ユニット111Aは、コリメータ、ビームスプリッターなどを有し、互いに異なる光路に沿って供給されたp偏光の光およびs偏光の光から、互いに同じ光路に沿ったp偏光成分とs偏光成分とを含む計測光を所要数だけ生成する。入出力ユニット111Aで生成された複数の計測光は、X方向に沿ってそれぞれ射出され、偏光ビームスプリッターPBSに入射する。 As the measurement light source 112, a He—Ne laser light source, a semiconductor laser light source, or the like can be used. The light supplied from the measurement light source 112 is separated into s-polarized light and p-polarized light in the branch unit 113, and is input to the input / output unit 111A of each measurement unit 111 via, for example, a dual-core light guide 114. Supplied. That is, the s-polarized light propagated through one core of the light guide 114 and the p-polarized light propagated through the other core are supplied to the input / output unit 111A. The input / output unit 111A includes a collimator, a beam splitter, and the like, and generates p-polarized component and s-polarized component along the same optical path from p-polarized light and s-polarized light supplied along different optical paths. The required number of measurement lights are generated. The plurality of measurement lights generated by the input / output unit 111A are respectively emitted along the X direction and enter the polarization beam splitter PBS.
 具体的に、プリズム型の偏光ビームスプリッターPBSの入出力ユニット111A側の光学面には、4組のX方向位置計測用の計測光151x,152x,153x,154xと、4組のY方向位置計測用の計測光151y,152y,153y,154yと、5つのZ方向位置計測用の計測光161,162,163,164,165とが入射する。計測光151x~154xは、図14における一対の計測光131,132にそれぞれ対応している。計測光151y~154yは、図14を参照して上述したY方向位置計測用の一対の計測光131y,132yにそれぞれ対応している。計測光161~165は、図15における計測光141にそれぞれ対応している。 Specifically, on the optical surface of the prism type polarization beam splitter PBS on the input / output unit 111A side, four sets of measurement light 151x, 152x, 153x, 154x for measuring the X direction position, and four sets of Y direction position measurement. Measurement light 151y, 152y, 153y, 154y and five measurement lights 161, 162, 163, 164, 165 for measuring the Z-direction position are incident. The measurement lights 151x to 154x correspond to the pair of measurement lights 131 and 132 in FIG. The measurement lights 151y to 154y correspond to the pair of measurement lights 131y and 132y for Y-direction position measurement described above with reference to FIG. The measurement lights 161 to 165 correspond to the measurement light 141 in FIG.
 ただし、図16では、図面の明瞭化のために、計測光151x~154xによりX方向位置がそれぞれ計測される計測点135xa,135xb,135xc,135xdまでの経路、および計測光151y~154yによりY方向位置が計測される計測点135ya,135yb,135yc,135ydまでの経路を、図中実線状の単線により表現している。また、計測光161~165によりZ方向位置が計測される計測点143a,143b,143c,143d,143eまでの経路を、図中破線状の単線により表現している。第2実施形態では、一例として、図17に示すように、4つの計測点135xa~135xdと、対応する4つの計測点135ya~135ydとがそれぞれ互いに一致している。図17では、回折格子110の入射面110aにおける計測点135xa~135xd,135ya~135yd,143a~143eの位置を黒丸で示し、各計測点に関連して入射する光の位置を白丸で示している。 However, in FIG. 16, for the sake of clarity, the paths to the measurement points 135xa, 135xb, 135xc, and 135xd where the X direction positions are measured by the measurement lights 151x to 154x, and the Y direction by the measurement lights 151y to 154y, respectively. A route to the measurement points 135ya, 135yb, 135yc, and 135yd where the position is measured is represented by a solid line in the drawing. In addition, the path to the measurement points 143a, 143b, 143c, 143d, and 143e where the position in the Z direction is measured by the measurement lights 161 to 165 is represented by a single line in the form of a broken line in the figure. In the second embodiment, as an example, as shown in FIG. 17, four measurement points 135xa to 135xd and corresponding four measurement points 135ya to 135yd are respectively coincident with each other. In FIG. 17, the positions of the measurement points 135xa to 135xd, 135ya to 135yd, and 143a to 143e on the incident surface 110a of the diffraction grating 110 are indicated by black circles, and the positions of incident light related to the respective measurement points are indicated by white circles. .
 図17を参照すると、回折格子110の入射面110aが、モジュール寸法Lにしたがってクリッド状に仮想分割されている。そして、4つの計測光151x~154x,151y~154yに対応する4つの計測点135xa~135xd;135ya~135ydは、一辺が4×Lの正方形の四隅に位置している。計測光162に対応する計測点143bは、4つの計測点135xa~135xd;135ya~135ydが規定する正方形の中心に位置している。計測光161,163に対応する計測点143a,143cは、計測光162に対応する計測点143bからX方向に距離3×Lだけそれぞれ離れている。計測光164,165に対応する計測点143d,143eは、計測光162に対応する計測点143bからY方向に距離3×Lだけそれぞれ離れている。 Referring to FIG. 17, the incident surface 110 a of the diffraction grating 110 is virtually divided into a lid shape according to the module dimension L. The four measurement points 135xa to 135xd; 135ya to 135yd corresponding to the four measurement lights 151x to 154x and 151y to 154y are located at the four corners of a square having a side of 4 × L. The measurement point 143b corresponding to the measurement light 162 is located at the center of the square defined by the four measurement points 135xa to 135xd; 135ya to 135yd. The measurement points 143a and 143c corresponding to the measurement beams 161 and 163 are separated from the measurement point 143b corresponding to the measurement beam 162 by a distance of 3 × L in the X direction. The measurement points 143d and 143e corresponding to the measurement lights 164 and 165 are separated from the measurement point 143b corresponding to the measurement light 162 by a distance of 3 × L in the Y direction.
 計測光151x~154xに対応する計測点135xa~135xdに関連して回折格子110の入射面110aに入射する光の位置は、計測点135xa~135xdを挟んでX方向に並んだ4つの位置である。計測光151y~154yに対応する計測点135ya~135ydに関連して回折格子110の入射面110aに入射する光の位置は、計測点135ya~135ydを中心とするY方向に細長い長方形の四隅の位置である。計測光161~165に対応する計測点143a~143eに関連して回折格子110の入射面110aに入射する光の位置は、計測点143a~143eを挟んでX方向に並んだ2つの位置である。 The positions of light incident on the incident surface 110a of the diffraction grating 110 in relation to the measurement points 135xa to 135xd corresponding to the measurement lights 151x to 154x are four positions arranged in the X direction across the measurement points 135xa to 135xd. . The positions of the light incident on the incident surface 110a of the diffraction grating 110 in relation to the measurement points 135ya to 135yd corresponding to the measurement lights 151y to 154y are the positions of the four corners of a rectangle elongated in the Y direction with the measurement points 135ya to 135yd as the center. It is. The positions of light incident on the incident surface 110a of the diffraction grating 110 in relation to the measurement points 143a to 143e corresponding to the measurement lights 161 to 165 are two positions arranged in the X direction with the measurement points 143a to 143e interposed therebetween. .
 各計測光151x~154xについて、回折格子110との間の光路を2往復して偏光分離面でX方向に反射されたs偏光の測定光と、参照部材RMの参照面としての反射面137との間の光路を2往復して偏光分離面を透過したp偏光の参照光とは、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。こうして、計測光151xに対応した測定光と参照光との干渉光151xa,151xbが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット111Aに入射する。同様に、計測光152x~154xに対応した測定光と参照光との干渉光152xa,152xb;153xa,153xb;154xa,154xbが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット111Aに入射する。 With respect to each of the measurement lights 151x to 154x, the s-polarized measurement light reflected in the X direction by the polarization separation surface after reciprocating the optical path between the diffraction grating 110 and the reflection surface 137 as a reference surface of the reference member RM, The p-polarized reference light that has passed through the optical path between the two and transmitted through the polarization separation surface is emitted from the polarization beam splitter PBS along the same path. Thus, the interference lights 151xa and 151xb between the measurement light and the reference light corresponding to the measurement light 151x are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 111A. Similarly, interference light 152xa, 152xb; 153xa, 153xb; 154xa, 154xb between the measurement light and the reference light corresponding to the measurement lights 152x to 154x are emitted from the polarization beam splitter PBS along the same path, and input / output unit Incident on 111A.
 また、各計測光151y~154yについて、回折格子110との間の光路を2往復して偏光分離面でX方向に反射されたs偏光の測定光と、参照部材RMの参照面としての反射面137との間の光路を2往復して偏光分離面を透過したp偏光の参照光とは、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。こうして、計測光151yに対応した測定光と参照光との干渉光151ya,151ybが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット111Aに入射する。同様に、計測光152y~154yに対応した測定光と参照光との干渉光152ya,152yb;153ya,153yb;154ya,154ybが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット111Aに入射する。 Further, for each of the measurement lights 151y to 154y, the s-polarized measurement light reflected in the X direction by the polarization separation surface after two reciprocations of the optical path between the diffraction grating 110 and the reflection surface as the reference surface of the reference member RM The p-polarized reference light that has passed through the polarization separation surface after two reciprocations in the optical path to 137 is emitted from the polarization beam splitter PBS along the same path. Thus, the interference lights 151ya and 151yb of the measurement light and the reference light corresponding to the measurement light 151y are emitted from the polarization beam splitter PBS along the same path and enter the input / output unit 111A. Similarly, interference lights 152ya, 152yb; 153ya, 153yb; 154ya, 154yb between the measurement light and the reference light corresponding to the measurement lights 152y to 154y are emitted from the polarization beam splitter PBS along the same path, and are input / output units. Incident on 111A.
 入出力ユニット111Aは、各干渉光を光電検出して得られる検出信号を処理部115に供給する。処理部115は、干渉光151xaを光電検出して得られる検出信号と、干渉光151xbを光電検出して得られる検出信号との差に基づいて、回折格子110上において計測光151xに対応する計測点135xaのX方向位置を求める。また、処理部115は、干渉光151yaを光電検出して得られる検出信号と、干渉光151ybを光電検出して得られる検出信号との差に基づいて、回折格子110上において計測光151yに対応する計測点135yaのY方向位置を求める。 The input / output unit 111A supplies a detection signal obtained by photoelectrically detecting each interference light to the processing unit 115. The processing unit 115 performs measurement corresponding to the measurement light 151x on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference light 151xa and a detection signal obtained by photoelectric detection of the interference light 151xb. The X direction position of the point 135xa is obtained. Further, the processing unit 115 corresponds to the measurement light 151y on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference light 151ya and a detection signal obtained by photoelectric detection of the interference light 151yb. The Y direction position of the measurement point 135ya to be obtained is obtained.
 同様に、処理部115は、干渉光152xa~154xaを光電検出して得られる検出信号と、干渉光152xb~154xbを光電検出して得られる検出信号との差に基づいて、回折格子110上において計測光152x~154xにそれぞれ対応する計測点135xb~135xdのX方向位置を求める。また、処理部115は、干渉光152ya~154yaを光電検出して得られる検出信号と、干渉光152yb~154ybを光電検出して得られる検出信号との差に基づいて、回折格子110上において計測光152y~154yにそれぞれ対応する計測点135yb~135ydのY方向位置を求める。処理部115で得られた回折格子110上の4つの計測点135xa~135xdのX方向位置および4つの計測点135ya~135ydのY方向位置の計測結果、ひいてはウェハステージWSの4つの計測点135xa~135xd;135ya~135ydにおけるX方向位置およびY方向位置の計測結果は、制御系CRに供給される。 Similarly, the processing unit 115 generates a signal on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference lights 152xa to 154xa and a detection signal obtained by photoelectric detection of the interference lights 152xb to 154xb. The X direction positions of the measurement points 135xb to 135xd corresponding to the measurement lights 152x to 154x are obtained. Further, the processing unit 115 performs measurement on the diffraction grating 110 based on a difference between a detection signal obtained by photoelectric detection of the interference lights 152ya to 154ya and a detection signal obtained by photoelectric detection of the interference lights 152yb to 154yb. The Y direction positions of the measurement points 135yb to 135yd corresponding to the lights 152y to 154y are obtained. The measurement results of the X measurement positions of the four measurement points 135xa to 135xd and the Y measurement positions of the four measurement points 135ya to 135yd obtained on the diffraction grating 110 obtained by the processing unit 115, and thus the four measurement points 135xa to 135xa of the wafer stage WS. 135xd: The measurement results of the X direction position and the Y direction position in 135ya to 135yd are supplied to the control system CR.
 また、各計測光161~165について、回折格子110との間の光路を2往復して偏光ビームスプリッターPBSの偏光分離面でX方向に反射されたs偏光の測定光と、参照部材RMの参照面としての反射面137との間の光路を2往復して偏光分離面を透過したp偏光の参照光とは、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出される。こうして、計測光161~165に対応した測定光と参照光との干渉光161a,162a,163a,164a,165aが、互いに同じ経路に沿って偏光ビームスプリッターPBSから射出され、入出力ユニット111Aに入射する。 Further, for each of the measurement beams 161 to 165, the s-polarized measurement beam reflected in the X direction by the polarization separation surface of the polarization beam splitter PBS after reciprocating the optical path between the diffraction grating 110 and the reference member RM is referred to. The p-polarized reference light that has passed through the polarization separation surface after reciprocating twice along the optical path between the reflection surface 137 as a surface is emitted from the polarization beam splitter PBS along the same path. In this way, the interference lights 161a, 162a, 163a, 164a, 165a of the measurement light corresponding to the measurement lights 161 to 165 and the reference light are emitted from the polarization beam splitter PBS along the same path and incident on the input / output unit 111A. To do.
 入出力ユニット111Aは、干渉光161a~165aを光電検出して得られる検出信号を処理部115に供給する。処理部115は、干渉光161a~165aを光電検出して得られる検出信号に基づいて、回折格子110上において各計測光161~165にそれぞれ対応する5つの計測点143a~143eのZ方向位置を求める。処理部115で得られた回折格子110上の5つの計測点143a~143eのZ方向位置の計測結果、ひいてはウェハステージWSの5つの計測点143a~143eにおけるZ方向位置の計測結果は、制御系CRに供給される。 The input / output unit 111A supplies a detection signal obtained by photoelectrically detecting the interference lights 161a to 165a to the processing unit 115. Based on the detection signal obtained by photoelectrically detecting the interference lights 161a to 165a, the processing unit 115 determines the positions in the Z direction of the five measurement points 143a to 143e corresponding to the measurement lights 161 to 165 on the diffraction grating 110, respectively. Ask. The measurement results of the Z direction positions of the five measurement points 143a to 143e on the diffraction grating 110 obtained by the processing unit 115, and consequently the measurement results of the Z direction positions of the five measurement points 143a to 143e of the wafer stage WS, are controlled by the control system. Supplied to CR.
 なお、ウェハWを保持したウェハステージWSは、露光に際して、XY平面に沿った所定の範囲に亘ってステップ移動する。第2実施形態では、4つの計測ユニット111および一対の反射型の回折格子110が、少なくとも1つの計測ユニット111とこれに対向する回折格子110との協働作用によりウェハステージWSの位置計測を常に行うことができるように配置されている。一般に、計測ユニットの数および配置、回折格子の数および配置などについては、様々な形態が可能である。 Note that the wafer stage WS holding the wafer W is stepped over a predetermined range along the XY plane during exposure. In the second embodiment, the four measurement units 111 and the pair of reflective diffraction gratings 110 always measure the position of the wafer stage WS by the cooperative action of at least one measurement unit 111 and the diffraction grating 110 facing the measurement unit 111. Arranged to be able to do. In general, various forms are possible for the number and arrangement of measurement units, the number and arrangement of diffraction gratings, and the like.
 上述したように、第2実施形態にかかる位置計測装置1Aは、露光装置本体(第1部材)に対する相対位置が可変であるウェハステージ(第2部材)WSの相対位置を計測する。具体的に、位置計測装置1Aは、露光装置本体に固定的に取り付けられた偏光ビームスプリッターPBSおよび参照部材RMと、ウェハステージWSに取り付けられてX方向およびY方向に沿った二次元周期構造を有する反射型の回折格子110とを備えている。 As described above, the position measuring apparatus 1A according to the second embodiment measures the relative position of the wafer stage (second member) WS whose relative position with respect to the exposure apparatus main body (first member) is variable. Specifically, the position measuring apparatus 1A has a polarization beam splitter PBS and a reference member RM fixedly attached to the exposure apparatus main body, and a two-dimensional periodic structure attached to the wafer stage WS along the X direction and the Y direction. And a reflective diffraction grating 110.
 位置計測装置1Aでは、露光装置本体に固定的に取り付けられた単一の偏光ビームスプリッターPBSを用いて、ウェハステージWSの4つの計測点135xa~135xd;135ya~135ydにおけるX方向位置およびY方向位置と、ウェハステージWSの5つの計測点143a~143eにおけるZ方向位置とを、いわゆるヘテロダイン干渉方式により同時に計測する。その結果、ウェハステージWSの複数点におけるX方向位置、Y方向位置およびZ方向位置に加えて、ウェハステージWSのX軸廻りの回転の位置、Y軸廻りの回転の位置、およびZ軸廻りの回転の位置も同時に計測される。 In the position measuring apparatus 1A, using a single polarization beam splitter PBS fixedly attached to the exposure apparatus main body, the X measurement position and the Y direction position at the four measurement points 135xa to 135xd; 135ya to 135yd of the wafer stage WS. And the Z-direction positions at the five measurement points 143a to 143e of the wafer stage WS are simultaneously measured by a so-called heterodyne interference method. As a result, in addition to the X-direction position, the Y-direction position, and the Z-direction position at a plurality of points on the wafer stage WS, the rotation position of the wafer stage WS around the X-axis, the rotation position around the Y-axis, and the Z-axis position The position of rotation is also measured at the same time.
 また、位置計測装置1Aでは、回折格子110のリトロー角で斜め入射した光に応じて回折格子110への入射光路と同じ光路に沿って回折格子110から斜め方向に発生する1次回折光である測定光と、これに対応する参照光との干渉に基づいて、回折格子110(ひいてはウェハステージWS)のX方向位置およびY方向位置を計測している。このとき、回折格子110への入射光および回折格子110から射出される測定光は、1/4波長板133を介して偏光ビームスプリッターPBSに取り付けられた偏向部材134a,134bの同一領域を往復する。その結果、偏光ビームスプリッターPBS(ひいては計測ユニット111)と回折格子110との間の測定光の光路を短くすることができる。 Further, in the position measuring apparatus 1A, measurement is a first-order diffracted light generated in an oblique direction from the diffraction grating 110 along the same optical path as the incident light path to the diffraction grating 110 in accordance with light obliquely incident at the Littrow angle of the diffraction grating 110. Based on the interference between the light and the corresponding reference light, the X-direction position and the Y-direction position of the diffraction grating 110 (and thus the wafer stage WS) are measured. At this time, the incident light to the diffraction grating 110 and the measurement light emitted from the diffraction grating 110 reciprocate in the same region of the deflecting members 134a and 134b attached to the polarization beam splitter PBS via the quarter wavelength plate 133. . As a result, the optical path of the measurement light between the polarization beam splitter PBS (and thus the measurement unit 111) and the diffraction grating 110 can be shortened.
 以上のように、第2実施形態にかかる位置計測装置1Aでは、計測ユニット111と回折格子110との間の測定光の光路長を小さくすることができるので、雰囲気揺らぎに起因する計測誤差を小さく抑えて、ウェハステージWSの位置計測を安定的に且つ高精度に行うことができる。したがって、第2実施形態の露光装置では、雰囲気揺らぎに起因する計測誤差を小さく抑えてウェハステージWSの位置計測を安定的に且つ高精度に行う位置計測装置1を用いて、投影光学系PLに対してウェハステージWS上のウェハWを高精度に位置合わせすることができ、ひいては良好な投影露光を行うことができる。 As described above, in the position measurement apparatus 1A according to the second embodiment, since the optical path length of the measurement light between the measurement unit 111 and the diffraction grating 110 can be reduced, the measurement error due to the atmospheric fluctuation is reduced. Thus, the position measurement of the wafer stage WS can be stably and highly accurately performed. Therefore, in the exposure apparatus of the second embodiment, the position measurement apparatus 1 that stably and highly accurately measures the position of the wafer stage WS while suppressing the measurement error caused by the atmospheric fluctuation is used in the projection optical system PL. On the other hand, the wafer W on the wafer stage WS can be aligned with high accuracy, and hence good projection exposure can be performed.
 また、第2実施形態では、露光装置本体に固定的に取り付けられた単一の偏光ビームスプリッターPBSを用いているので、ウェハWの面内方向であるX方向およびY方向に沿ったウェハステージWSの位置計測と、ウェハWの法線方向であるZ方向に沿ったウェハステージWSの位置計測とを同時に且つ安定的に行うことができる。 In the second embodiment, since a single polarization beam splitter PBS fixedly attached to the exposure apparatus main body is used, the wafer stage WS along the X direction and the Y direction, which are in-plane directions of the wafer W, is used. And the position measurement of the wafer stage WS along the Z direction, which is the normal direction of the wafer W, can be performed simultaneously and stably.
 ところで、第2実施形態では、回折格子110のX方向位置およびY方向位置の計測に際して、回折格子110において回折パターンを覆うように設けられる光透過部の表面の平坦度の誤差が検出信号に混入して、いわゆる平坦度誤差に起因する計測誤差が発生する恐れがある。この平坦度の誤差は、回折格子110のX方向位置を計測する第1計測部による計測信号と、回折格子110のY方向位置を計測する第2計測部による計測信号との差分信号を用いてもキャンセルすることができない。 By the way, in the second embodiment, when measuring the position in the X direction and the Y direction of the diffraction grating 110, an error in the flatness of the surface of the light transmission portion provided so as to cover the diffraction pattern in the diffraction grating 110 is mixed in the detection signal. As a result, a measurement error due to a so-called flatness error may occur. The flatness error is obtained by using a difference signal between a measurement signal from the first measurement unit that measures the X-direction position of the diffraction grating 110 and a measurement signal from the second measurement unit that measures the Y-direction position of the diffraction grating 110. Cannot be canceled.
 そこで、第2実施形態では、回折格子110のZ方向位置を計測する第3計測部の計測結果、すなわち回折格子110のZ方向位置の分布に関する計測結果を利用して、上記平坦度の誤差に起因する、第1計測部および第2計測部による計測誤差を補正する。この際に、複数の第3計測部の計測点同士の間隔(計測軸間隔)を、複数の第1計測部の計測点同士の間隔(計測軸間隔)および複数の第2計測部の計測点同士の間隔(計測軸間隔)以下に設定することにより、第1計測部および第2計測部による計測誤差を補正することができる。 Therefore, in the second embodiment, the measurement result of the third measurement unit that measures the Z-direction position of the diffraction grating 110, that is, the measurement result regarding the distribution of the Z-direction position of the diffraction grating 110 is used to reduce the flatness error. The measurement error caused by the first measurement unit and the second measurement unit is corrected. At this time, the interval between the measurement points of the plurality of third measurement units (measurement axis interval) is set to the interval between the measurement points of the plurality of first measurement units (measurement axis interval) and the measurement point of the plurality of second measurement units. The measurement error by the first measurement unit and the second measurement unit can be corrected by setting the interval to the interval (measurement axis interval) or less.
 具体的に、第2実施形態では、図17に示すように、4つのX方向計測点135xa~135xd同士の間隔は(4×L)であり、4つのY方向計測点135ya~135yd同士の間隔も(4×L)であり、5つのZ方向計測点143a~143e同士の間隔は(3×L)である。すなわち、5つのZ方向計測点同士の間隔(3×L)は、4つのX方向計測点同士の間隔(4×L)および4つのY方向計測点同士の間隔(4×L)以下に設定されている。したがって、第2実施形態では、回折格子110のX方向位置およびY方向位置の計測に際して、平坦度誤差に起因する計測誤差を補正することができる。 Specifically, in the second embodiment, as shown in FIG. 17, the interval between the four X direction measurement points 135xa to 135xd is (4 × L), and the interval between the four Y direction measurement points 135ya to 135yd is shown. (4 × L), and the interval between the five Z-direction measurement points 143a to 143e is (3 × L). That is, the interval (3 × L) between the five Z direction measurement points is set to be less than or equal to the interval between the four X direction measurement points (4 × L) and the interval between the four Y direction measurement points (4 × L). Has been. Therefore, in the second embodiment, it is possible to correct the measurement error due to the flatness error when measuring the position in the X direction and the Y direction of the diffraction grating 110.
 ただし、X方向計測点の数および位置、Y方向計測点の数および位置、Z方向計測点の数および位置などについては、上述の計測点同士の間隔の条件を満たす様々な形態が可能である。一例として、図18に示すように、8つのZ方向計測点143同士の間隔を(2×L)に設定して十字状に配置する構成も可能である。図18に示す例では、X方向計測点35xおよびY方向計測点135yの数および位置が図17に示す例と同じである。したがって、図18の変形例においても、8つのZ方向計測点同士の間隔(2×L)は、4つのX方向計測点同士の間隔(4×L)および4つのY方向計測点同士の間隔(4×L)以下に設定されている。 However, with respect to the number and position of the X direction measurement points, the number and position of the Y direction measurement points, the number and position of the Z direction measurement points, various forms that satisfy the above-described interval between the measurement points are possible. . As an example, as shown in FIG. 18, a configuration is possible in which the intervals between the eight Z-direction measurement points 143 are set to (2 × L) and arranged in a cross shape. In the example shown in FIG. 18, the numbers and positions of the X direction measurement points 35x and the Y direction measurement points 135y are the same as the example shown in FIG. Accordingly, also in the modified example of FIG. 18, the interval between the eight Z-direction measurement points (2 × L) is the interval between the four X-direction measurement points (4 × L) and the interval between the four Y-direction measurement points. It is set to (4 × L) or less.
 なお、第1計測部および第2計測部による計測結果から、回折格子110上に設けられる光透過部の平坦度の誤差を除去することができれば、例えば一方の干渉光(計測光131に対応して得られる干渉光)の出力信号と、他方の干渉光(計測光132に対応して得られる干渉光)の出力信号とを独立に扱うことによって、X方向の補正ピッチを実質的に半分とし、X方向の補正誤差も抑えることができる。当然、例えば一方の干渉光(計測光131yに対応して得られる干渉光)の出力信号と、他方の干渉光(計測光132yに対応して得られる干渉光)の出力信号とを独立に扱うことによって、Y方向の補正ピッチを実質的に半分とし、Y方向の補正誤差も抑えることができる。 If the flatness error of the light transmitting portion provided on the diffraction grating 110 can be removed from the measurement results obtained by the first measurement unit and the second measurement unit, for example, one interference light (corresponding to the measurement light 131). The output signal of the interference light obtained in this way and the output signal of the other interference light (interference light obtained corresponding to the measurement light 132) are handled independently, so that the correction pitch in the X direction is substantially halved. The correction error in the X direction can also be suppressed. Naturally, for example, the output signal of one interference light (interference light obtained corresponding to the measurement light 131y) and the output signal of the other interference light (interference light obtained corresponding to the measurement light 132y) are handled independently. As a result, the correction pitch in the Y direction can be substantially halved, and correction errors in the Y direction can be suppressed.
 なお、上述の第2実施形態では、偏光ビームスプリッターPBSを経た光を偏向して回折格子110上の所定領域に回折格子110のリトロー角で斜め入射させる偏向部材134a,134bとして、所定方向に沿った周期構造の回折パターンを有する回折格子を用いる例を示している。しかしながら、これに限定されることなく、偏向部材の具体的な構成については様々な形態が可能である。一例として、図19に示すように、回折作用およびプリズム作用を有する偏向部材181を用いることもできる。図19の変形例にかかる偏向部材181では、周期的な回折パターンを有する回折格子が、全体としてくさび状の光透過部材上に形成されている。偏向部材181は、偏光ビームスプリッターPBSの光学面PBSaに取り付けられた1/4波長板133上の所要位置に取り付けられている。また、プリズム作用のみを有する偏向部材を用いても良い。この場合、偏向部材181から周期的な回折パターンを有する回折格子を除いた形態、すなわち全体としてくさび状の光透過部材の形態となる。 In the second embodiment described above, the deflecting members 134a and 134b that deflect light passing through the polarizing beam splitter PBS and obliquely enter a predetermined region on the diffraction grating 110 at the Littrow angle of the diffraction grating 110 along a predetermined direction. In this example, a diffraction grating having a diffraction pattern having a periodic structure is used. However, the present invention is not limited to this, and various forms are possible for the specific configuration of the deflecting member. As an example, a deflecting member 181 having a diffractive action and a prism action can be used as shown in FIG. In the deflecting member 181 according to the modification of FIG. 19, a diffraction grating having a periodic diffraction pattern is formed on a wedge-shaped light transmitting member as a whole. The deflecting member 181 is attached to a required position on the quarter-wave plate 133 attached to the optical surface PBSa of the polarization beam splitter PBS. Further, a deflecting member having only a prism action may be used. In this case, the deflecting member 181 is removed from the diffraction grating having a periodic diffraction pattern, that is, a wedge-shaped light transmitting member as a whole.
 また、領域135a(135c)に入射する測定光と、領域135b(135d)に入射する測定光とを、互いに平行である関係から若干ずらせても良い。この構成により、回折格子110での回折時に発生する恐れがある楕円偏光成分を取り除いて更なる高精度化を図ることができる。この場合、偏向部材として回折格子134a(134b)を用いるときには、領域135a(135c)に入射する測定光が通過する部分と、領域135b(135d)に入射する測定光が通過する部分とで回折格子のピッチを変えておけば良い。また、偏向部材としてプリズム作用を持つくさび状の光透過部材を用いるときには、領域135a(135c)に入射する測定光が通過する部分と、領域135b(135d)に入射する測定光が通過する部分とでくさび角を異ならせておけば良い。 Further, the measurement light incident on the region 135a (135c) and the measurement light incident on the region 135b (135d) may be slightly shifted from the relationship of being parallel to each other. With this configuration, it is possible to further improve the accuracy by removing the elliptically polarized light component that may occur during diffraction by the diffraction grating 110. In this case, when the diffraction grating 134a (134b) is used as the deflecting member, the diffraction grating includes a portion through which the measurement light incident on the region 135a (135c) passes and a portion through which the measurement light incident on the region 135b (135d) passes. You can change the pitch. When a wedge-shaped light transmitting member having a prism action is used as the deflecting member, a portion through which the measurement light incident on the region 135a (135c) passes, and a portion through which the measurement light incident on the region 135b (135d) passes. You just need to make the wedge angle different.
 また、上述の第2実施形態では、露光装置においてウェハWを保持して移動するウェハステージWSの位置計測に対して、本発明の位置計測装置を適用している。しかしながら、ウェハステージ(基板ステージ)に限定されることなく、一般に、物体を保持して移動するステージの位置計測に対しても同様に本発明の位置計測装置を適用することができる。一例として、例えば図20に示すように、第2実施形態において転写すべきパターンが設けられたマスクMを保持して移動するマスクステージMSの位置計測に対して、本発明の位置計測装置を適用することもできる。 In the second embodiment described above, the position measuring apparatus of the present invention is applied to the position measurement of the wafer stage WS that moves while holding the wafer W in the exposure apparatus. However, the present invention is not limited to a wafer stage (substrate stage), and in general, the position measuring apparatus of the present invention can be similarly applied to position measurement of a stage that holds and moves an object. As an example, for example, as shown in FIG. 20, the position measurement apparatus of the present invention is applied to position measurement of a mask stage MS that holds and moves a mask M provided with a pattern to be transferred in the second embodiment. You can also
 ステップ・アンド・スキャン方式では、マスクMを保持したマスクステージMSが走査方向であるY方向に沿って移動する。図20の変形例にかかる位置計測装置1Aは、マスクMを挟んでX方向に間隔を隔てて設置された一対の反射型の回折格子110と、マスクMを挟んで(ひいては投影光学系PLを挟んで)X方向に間隔を隔てて設置された一対の計測ユニット111とを有する。図20では、マスクMのパターン領域PAの中心PAaと投影光学系PLの光軸AXとがXY平面において同じ位置にある基準的な状態を示している。 In the step-and-scan method, the mask stage MS holding the mask M moves along the Y direction that is the scanning direction. A position measuring apparatus 1A according to the modification of FIG. 20 includes a pair of reflective diffraction gratings 110 that are installed with a gap in the X direction with a mask M interposed therebetween, and a mask M (and thus a projection optical system PL). And a pair of measuring units 111 that are spaced apart in the X direction. FIG. 20 shows a reference state in which the center PAa of the pattern area PA of the mask M and the optical axis AX of the projection optical system PL are at the same position on the XY plane.
 回折格子110は、例えばY方向に沿って細長い矩形状の外形を有し、マスクステージMSに固定的に(あるいは着脱自在に)取り付けられている。一対の計測ユニット111は、マスクステージMSと隔絶された露光装置本体に固定的に取り付けられている。一例として、一対の回折格子110はマスクMのパターン領域PAの中心PAaを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有する。また、一対の計測ユニット111は、投影光学系PLの光軸AXを通ってX方向に延びる軸線に沿うように光軸AXを通ってY方向に延びる軸線に関して対称に配置され、且つ互いに同じ構成を有する。 The diffraction grating 110 has, for example, an elongated rectangular outer shape along the Y direction, and is fixedly (or detachably) attached to the mask stage MS. The pair of measurement units 111 is fixedly attached to the exposure apparatus main body isolated from the mask stage MS. As an example, the pair of diffraction gratings 110 are arranged symmetrically with respect to an axis extending in the Y direction through the center PAa of the pattern area PA of the mask M, and have the same configuration. The pair of measurement units 111 are arranged symmetrically with respect to the axis extending in the Y direction through the optical axis AX so as to extend along the axis extending in the X direction through the optical axis AX of the projection optical system PL, and have the same configuration. Have
 また、上述の第2実施形態では、偏光ビームスプリッターPBSが露光装置本体に取り付けられ、回折格子110がウェハステージWSに取り付けられ、露光装置本体に対する相対位置が可変であるウェハステージWSの相対位置を計測している。しかしながら、これに限定されることなく、一般に、第1部材に対する相対位置が可変である第2部材の相対位置を計測するために、第1部材に固定的に取り付けられた偏光ビームスプリッターと、第2部材に取り付けられた回折格子とを用いることができる。例えば、上述の第2実施形態において、偏光ビームスプリッターPBSをウェハステージWSに取り付け、回折格子110を露光装置本体に取り付けて、露光装置本体に対する相対位置が可変であるウェハステージWSの相対位置を計測することもできる。また、物体を保持して移動するステージの位置計測に対して本発明の位置計測装置を適用する場合、偏光ビームスプリッターおよび回折格子のうちの一方がステージに取り付けられる。また、ウェハステージWSの裏面に回折格子110を設け、ウェハステージよりも定盤側に偏光ビームスプリッターPBSを配置することもできる。 In the second embodiment described above, the polarization beam splitter PBS is attached to the exposure apparatus main body, the diffraction grating 110 is attached to the wafer stage WS, and the relative position of the wafer stage WS with respect to the exposure apparatus main body is variable. Measuring. However, the present invention is not limited thereto, and in general, in order to measure the relative position of the second member whose relative position with respect to the first member is variable, a polarization beam splitter fixedly attached to the first member, A diffraction grating attached to two members can be used. For example, in the second embodiment described above, the polarization beam splitter PBS is attached to the wafer stage WS, the diffraction grating 110 is attached to the exposure apparatus body, and the relative position of the wafer stage WS that is variable relative to the exposure apparatus body is measured. You can also In addition, when the position measurement apparatus of the present invention is applied to the position measurement of a stage that moves while holding an object, one of the polarization beam splitter and the diffraction grating is attached to the stage. Further, the diffraction grating 110 may be provided on the back surface of the wafer stage WS, and the polarization beam splitter PBS may be disposed on the surface plate side from the wafer stage.
 また、上述の第2実施形態では、回折格子110との間の光路を2往復した測定光と、参照部材RMとの間の光路を2往復した参照光との干渉光に基づいて、露光装置本体に対する相対位置が可変であるウェハステージWSの相対位置を計測している。これにより、例えばウェハステージWSがX軸廻りまたはY軸廻りに傾いたとしても、精度良く相対位置を計測できる。しかしながら、これに限定されることなく、例えば回折格子との間の光路を1往復した測定光と、参照部材との間の光路を1往復した参照光との干渉光に基づいて、計測対象部材の相対位置を計測することもできる。 Further, in the above-described second embodiment, the exposure apparatus is based on the interference light between the measurement light that has reciprocated twice along the optical path between the diffraction grating 110 and the reference light that has reciprocated twice along the optical path between the reference member RM. The relative position of the wafer stage WS whose relative position with respect to the main body is variable is measured. Thereby, for example, even if the wafer stage WS is tilted around the X axis or the Y axis, the relative position can be measured with high accuracy. However, the measurement target member is not limited to this, for example, based on the interference light between the measurement light that reciprocates once in the optical path between the diffraction grating and the reference light that reciprocates once in the optical path between the reference member. The relative position of can also be measured.
 なお、上述の実施形態において、偏光ビームスプリッターPBSを保持する保持部材として、非磁性体材料で構成しても良い。この場合、ステージをリニアモータや平面モータ等で駆動する際に、当該モータからの磁束の影響によって偏光ビームスプリッターに加わる応力に起因する計測誤差を低減できる。 In the above-described embodiment, the holding member that holds the polarization beam splitter PBS may be made of a non-magnetic material. In this case, when the stage is driven by a linear motor, a planar motor, or the like, measurement errors caused by stress applied to the polarization beam splitter due to the influence of magnetic flux from the motor can be reduced.
 また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。かかる可変成形マスクを用いる場合には、ウェハ又はガラスプレート等のワークピースが搭載されるステージが、可変成形マスクに対して走査されるので、このワークピースの位置を位置検出システムを用いて計測することで、上記実施形態と同等の効果を得ることができる。 In the above-described embodiment, a light transmission mask (reticle) in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. Instead of this reticle, For example, as disclosed in US Pat. No. 6,778,257, an electronic mask (variable shaping mask, which forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, as disclosed in US Pat. No. 6,778,257. Also called an active mask or an image generator, for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used. When such a variable molding mask is used, a stage on which a workpiece such as a wafer or glass plate is mounted is scanned with respect to the variable molding mask, and the position of the workpiece is measured using a position detection system. Thus, an effect equivalent to that of the above embodiment can be obtained.
 また、例えば国際公開第2001/035168号に開示されているように、干渉縞をウェハW上に形成することによって、ウェハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記実施形態を適用することができる。
 さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウェハ上で合成し、1回のスキャン露光によってウェハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
Further, as disclosed in, for example, International Publication No. 2001/035168, an exposure apparatus (lithography system) that forms a line-and-space pattern on a wafer W by forming interference fringes on the wafer W. The above embodiment can also be applied.
Furthermore, as disclosed in, for example, US Pat. No. 6,611,316, two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scanning exposure. The above embodiment can also be applied to an exposure apparatus that performs double exposure of two shot areas almost simultaneously.
 なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウェハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。 In the above embodiment, the object on which the pattern is to be formed (the object to be exposed to which the energy beam is irradiated) is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.
 露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシーン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウェハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。 The use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing, but for example, an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head, an image sensor It can be widely applied to exposure apparatuses for manufacturing (CCD, etc.), micromachines, DNA chips, and the like. Further, in order to manufacture reticles or masks used in not only microdevices such as semiconductor elements but also light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The above embodiment can also be applied to an exposure apparatus that transfers a circuit pattern.
 なお、上記の実施形態においては、ステップ・アンド・スキャン方式の投影露光装置を例に挙げて説明しているが、ステップ・アンド・リピート方式の投影露光装置の位置計測装置にも本発明を適用することができる。 In the above embodiment, a step-and-scan type projection exposure apparatus is described as an example, but the present invention is also applied to a position measurement apparatus of a step-and-repeat type projection exposure apparatus. can do.
 上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus may be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
 次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図21は、半導体デバイスの製造工程を示すフローチャートである。図21に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の投影露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。 Next, a device manufacturing method using the exposure apparatus according to the above-described embodiment will be described. FIG. 21 is a flowchart showing a manufacturing process of a semiconductor device. As shown in FIG. 21, in the semiconductor device manufacturing process, a metal film is vapor-deposited on a wafer W to be a semiconductor device substrate (step S40), and a photoresist, which is a photosensitive material, is applied on the vapor-deposited metal film. (Step S42). Subsequently, using the projection exposure apparatus of the above-described embodiment, the pattern formed on the mask (reticle) M is transferred to each shot area on the wafer W (step S44: exposure process), and the wafer W after the transfer is completed. Development, that is, development of the photoresist to which the pattern has been transferred (step S46: development process).
 その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。ここで、レジストパターンとは、上述の実施形態の投影露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の投影露光装置は、フォトレジストが塗布されたウェハWを感光性基板としてパターンの転写を行う。 Thereafter, using the resist pattern generated on the surface of the wafer W in step S46 as a mask, processing such as etching is performed on the surface of the wafer W (step S48: processing step). Here, the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the pattern transferred by the projection exposure apparatus of the above-described embodiment is generated, and the recess penetrates the photoresist layer. It is. In step S48, the surface of the wafer W is processed through this resist pattern. The processing performed in step S48 includes, for example, at least one of etching of the surface of the wafer W or film formation of a metal film or the like. In step S44, the projection exposure apparatus of the above-described embodiment performs pattern transfer using the wafer W coated with the photoresist as a photosensitive substrate.
 図22は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図22に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルタ形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の投影露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の投影露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。 FIG. 22 is a flowchart showing a manufacturing process of a liquid crystal device such as a liquid crystal display element. As shown in FIG. 22, in the liquid crystal device manufacturing process, a pattern forming process (step S50), a color filter forming process (step S52), a cell assembling process (step S54), and a module assembling process (step S56) are sequentially performed. In the pattern forming process of step S50, a predetermined pattern such as a circuit pattern and an electrode pattern is formed on the glass substrate coated with a photoresist as the plate P using the projection exposure apparatus of the above-described embodiment. The pattern forming step includes an exposure step of transferring the pattern to the photoresist layer using the projection exposure apparatus of the above-described embodiment, and development of the plate P on which the pattern is transferred, that is, development of the photoresist layer on the glass substrate. And a developing step for generating a photoresist layer having a shape corresponding to the pattern, and a processing step for processing the surface of the glass substrate through the developed photoresist layer.
 ステップS52のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。 In the color filter forming process in step S52, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction. In the cell assembly process in step S54, a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S50 and the color filter formed in step S52. Specifically, for example, a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter. In the module assembling process in step S56, various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S54.
 また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。 In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD, etc.), micromachine, thin film magnetic head, and DNA chip. Furthermore, the present invention can also be applied to an exposure process (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed using a photolithography process.
 また、本発明は、例えば米国特許公開第2011/0096315号などに開示される液浸型露光装置の位置計測装置にも適用することができる。
 また、照明光学系ILは、ArFエキシマレーザ光(波長193nm)に限らず、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
The present invention can also be applied to a position measuring apparatus of an immersion type exposure apparatus disclosed in, for example, US Patent Publication No. 2011/0096315.
Further, the illumination optical system IL is not limited to ArF excimer laser light (wavelength 193 nm). For example, as disclosed in US Pat. No. 7,023,610, a DFB semiconductor laser or fiber laser is used as vacuum ultraviolet light. A single wavelength laser beam in the infrared or visible range oscillated from is amplified with, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and converted into ultraviolet light using a nonlinear optical crystal. Harmonics may be used.
 また、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。
 なお、これまでの説明で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。
The above-described embodiment can also be applied to an exposure apparatus that uses a charged particle beam such as an electron beam or an ion beam.
It should be noted that all publications relating to the exposure apparatus and the like cited in the above description, international publication, US patent application specification and US patent specification disclosure are incorporated herein by reference.
1,1A 位置計測装置
10,110 回折格子
11,111 計測ユニット
11A,111A 入出力ユニット
12,112 計測用光源
13,113 分岐ユニット
14,114 ライトガイド
15,115 処理部
PBS 偏光ビームスプリッター
RM 参照部材
LS 露光用光源
IL 照明光学系
M マスク
MS マスクステージ
PL 投影光学系
W ウェハ
WS ウェハステージ
DRw ウェハステージ駆動系
CR 制御系
1, 1A Position measuring device 10, 110 Diffraction grating 11, 111 Measuring unit 11A, 111A Input / output unit 12, 112 Measuring light source 13, 113 Branch unit 14, 114 Light guide 15, 115 Processing section PBS Polarizing beam splitter RM Reference member LS exposure light source IL illumination optical system M mask MS mask stage PL projection optical system W wafer WS wafer stage DRw wafer stage drive system CR control system

Claims (63)

  1. 第1部材に対する相対位置が可変である第2部材の相対位置を計測する位置計測装置において、
     前記第1部材に固定的に取り付けられた偏光ビームスプリッターと、
     前記第2部材に取り付けられて、第1方向に沿った周期構造を有する反射型の回折格子と、
     前記偏光ビームスプリッター内の第1経路を経て前記回折格子に入射した第1偏光の光に応じて前記回折格子から発生する前記第1方向に沿った回折光である第1測定光と、該第1測定光に対応する第2偏光の第1参照光との干渉に基づいて、前記第2部材の前記第1方向に沿った相対位置を計測する第1計測部と、
     前記偏光ビームスプリッター内の第2経路を経て前記回折格子に入射した光に応じて前記回折格子から第2方向に沿って発生する0次光である第2測定光と、該第2測定光に対応する第2参照光との干渉に基づいて、前記第2部材の前記第2方向に沿った相対位置を計測する第2計測部とを備えていることを特徴とする位置計測装置。
    In the position measuring device that measures the relative position of the second member whose relative position with respect to the first member is variable,
    A polarizing beam splitter fixedly attached to the first member;
    A reflective diffraction grating attached to the second member and having a periodic structure along a first direction;
    A first measurement light which is a diffracted light along the first direction generated from the diffraction grating in response to the first polarized light incident on the diffraction grating via a first path in the polarization beam splitter; A first measurement unit that measures a relative position of the second member along the first direction based on interference with the second polarized first reference light corresponding to one measurement light;
    A second measurement light that is zero-order light generated along the second direction from the diffraction grating in response to the light incident on the diffraction grating via the second path in the polarization beam splitter; and the second measurement light A position measurement device comprising: a second measurement unit that measures a relative position of the second member along the second direction based on interference with the corresponding second reference light.
  2. 前記第1部材に固定的に取り付けられて、前記第1参照光を回折する回折面と前記第2参照光を反射する反射面とを有する参照部材を備えることを特徴とする請求項1に記載の位置計測装置。 The reference member according to claim 1, further comprising a reference member fixedly attached to the first member and having a diffraction surface that diffracts the first reference light and a reflection surface that reflects the second reference light. Position measuring device.
  3. 前記第1計測部は、前記回折格子から発生した前記第1測定光のうちの+1次回折光である+1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第1偏向部材と、前記回折格子から発生した前記第1測定光のうちの-1次回折光である-1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第2偏向部材とを有し、前記+1次回折測定光と該+1次回折測定光に対応する+1次回折参照光との干渉および前記-1次回折測定光と該-1次回折測定光に対応する-1次回折参照光との干渉に基づいて、前記第2部材の前記第1方向に沿った相対位置を計測することを特徴とする請求項1または2に記載の位置計測装置。 The first measurement unit includes a first deflection member that deflects + 1st-order diffracted measurement light, which is + 1st-order diffracted light among the first measurement light generated from the diffraction grating, and guides it to the polarization beam splitter; and the diffraction grating A second deflecting member that deflects the -1st order diffracted measurement light, which is the -1st order diffracted light of the first measured light generated from the first measured light, and guides it to the polarization beam splitter. Based on the interference with the + 1st order diffracted reference light corresponding to the + 1st order diffracted measuring light and the interference between the -1st order diffracted measuring light and the −1st order diffracted measured light corresponding to the −1st order diffracted measuring light, The position measuring device according to claim 1, wherein a relative position of the two members along the first direction is measured.
  4. 前記第1計測部は、前記第1偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第1折返し部材と、前記第2偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第2折返し部材と、前記第1折返し部材および前記偏光ビームスプリッターを経た光の入射に応じて前記回折格子から発生した+1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第3偏向部材と、前記第2折返し部材および前記偏光ビームスプリッターを経た光の入射に応じて前記回折格子から発生した-1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第4偏向部材とをさらに有することを特徴とする請求項3に記載の位置計測装置。 The first measurement unit includes a first folding member that translates the light that has passed through the first deflection member and the polarization beam splitter and returns the light to the polarization beam splitter, and light that has passed through the second deflection member and the polarization beam splitter. A second folding member that translates and returns the polarization beam splitter to the polarizing beam splitter, and deflects the + 1st-order diffraction measurement light generated from the diffraction grating in response to the incident light through the first folding member and the polarizing beam splitter. The polarization beam splitter deflects −1st-order diffraction measurement light generated from the diffraction grating in response to incidence of light that has passed through the third deflection member that guides to the polarization beam splitter, the second folding member, and the polarization beam splitter. The position measuring device according to claim 3, further comprising a fourth deflecting member that leads to the position.
  5. 前記第1部材に固定的に取り付けられて、前記偏光ビームスプリッターを経た光を回折する第1回折面と、前記第1折返し部材および前記偏光ビームスプリッターを経た光を回折する第2回折面とを有する参照部材を備えることを特徴とする請求項4に記載の位置計測装置。 A first diffractive surface that is fixedly attached to the first member and diffracts the light that has passed through the polarizing beam splitter; and a second diffractive surface that diffracts the light that has passed through the first folding member and the polarizing beam splitter. The position measuring device according to claim 4, further comprising a reference member having the reference member.
  6. 前記第1回折面は二次元周期構造を有する回折パターンを有し、前記第2回折面は一次元周期構造を有する回折パターンを有することを特徴とする請求項5に記載の位置計測装置。 The position measuring apparatus according to claim 5, wherein the first diffraction surface has a diffraction pattern having a two-dimensional periodic structure, and the second diffraction surface has a diffraction pattern having a one-dimensional periodic structure.
  7. 前記第1偏向部材乃至前記第4偏向部材は、前記第1方向に沿った周期構造の回折パターンを有することを特徴とする請求項4乃至6のいずれか1項に記載の位置計測装置。 The position measuring apparatus according to claim 4, wherein the first deflection member to the fourth deflection member have a diffraction pattern having a periodic structure along the first direction.
  8. 前記第1偏向部材乃至前記第4偏向部材の前記回折パターンは、前記偏光ビームスプリッターの前記回折格子と対向する光学面に形成されていることを特徴とする請求項7に記載の位置計測装置。 The position measurement apparatus according to claim 7, wherein the diffraction patterns of the first deflection member to the fourth deflection member are formed on an optical surface facing the diffraction grating of the polarization beam splitter.
  9. 前記第1折返し部材および前記第2折返し部材は、前記偏光ビームスプリッターに固定的に取り付けられていることを特徴とする請求項4乃至8のいずれか1項に記載の位置計測装置。 The position measuring device according to claim 4, wherein the first folding member and the second folding member are fixedly attached to the polarization beam splitter.
  10. 前記第2計測部は、前記偏光ビームスプリッターを経た前記第1偏光の光を円偏光に変更して前記回折格子へ導き且つ前記回折格子から発生する前記第2測定光を前記第2偏光に変更して前記偏光ビームスプリッターへ導く第1偏光部材を有し、前記第2偏光の前記第2測定光と前記第2参照光との干渉に基づいて、前記第2部材の前記第2方向に沿った相対位置を計測することを特徴とする請求項1乃至9のいずれか1項に記載の位置計測装置。 The second measurement unit converts the first polarized light that has passed through the polarization beam splitter into circularly polarized light, guides it to the diffraction grating, and changes the second measurement light generated from the diffraction grating to the second polarized light. And a first polarizing member that guides to the polarizing beam splitter, and along the second direction of the second member based on interference between the second measurement light of the second polarization and the second reference light. The position measuring apparatus according to claim 1, wherein the relative position is measured.
  11. 前記第2計測部は、前記第1偏光部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第3折返し部材と、該第3折返し部材および前記偏光ビームスプリッターを経た前記第2偏光の光を円偏光に変更して前記回折格子へ導き且つ前記回折格子から発生した前記第2測定光を前記第1偏光に変更して前記偏光ビームスプリッターへ導く第2偏光部材とをさらに有することを特徴とする請求項10に記載の位置計測装置。 The second measurement unit includes a third folding member that translates the light that has passed through the first polarizing member and the polarizing beam splitter and returns the light to the polarizing beam splitter, and the third folding member and the polarizing beam splitter that pass through the third measuring member. A second polarizing member that converts the second polarized light into circularly polarized light and guides it to the diffraction grating, and converts the second measurement light generated from the diffraction grating into the first polarized light and guides it to the polarizing beam splitter; The position measuring device according to claim 10, further comprising:
  12. 前記第1偏光部材および前記第2偏光部材は、前記偏光ビームスプリッターに固定的に取り付けられた波長板を有することを特徴とする請求項11に記載の位置計測装置。 The position measuring apparatus according to claim 11, wherein the first polarizing member and the second polarizing member have a wave plate fixedly attached to the polarizing beam splitter.
  13. 前記第3折返し部材は、前記偏光ビームスプリッターに固定的に取り付けられていることを特徴とする請求項11または12に記載の位置計測装置。 The position measuring device according to claim 11 or 12, wherein the third folding member is fixedly attached to the polarization beam splitter.
  14. 前記第1部材に固定的に取り付けられた参照部材を備え、
     前記参照部材における前記第2参照光の光路には反射面が設けられていることを特徴とする請求項10乃至13のいずれか1項に記載の位置計測装置。
    A reference member fixedly attached to the first member;
    The position measuring device according to claim 10, wherein a reflection surface is provided in an optical path of the second reference light in the reference member.
  15. 前記回折格子は、前記第1方向および第3方向に沿った二次元周期構造を有し、
     前記偏光ビームスプリッター内の第3経路を経て前記回折格子に入射した前記第1偏光の光に応じて前記回折格子から発生する前記第3方向に沿った回折光である第3測定光と、該第3測定光に対応する前記第2偏光の第3参照光との干渉に基づいて、前記第2部材の前記第3方向に沿った相対位置を計測する第3計測部をさらに備えていることを特徴とする請求項1乃至14のいずれか1項に記載の位置計測装置。
    The diffraction grating has a two-dimensional periodic structure along the first direction and the third direction,
    A third measurement light which is a diffracted light along the third direction generated from the diffraction grating in response to the light of the first polarization incident on the diffraction grating via a third path in the polarization beam splitter; A third measuring unit configured to measure a relative position of the second member along the third direction based on interference with the third reference light of the second polarized light corresponding to the third measuring light; The position measuring device according to claim 1, wherein:
  16. 前記第3計測部は、前記回折格子から発生した前記第3測定光のうちの+1次回折光である第2の+1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第5偏向部材と、前記回折格子から発生した前記第3測定光のうちの-1次回折光である第2の-1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第6偏向部材とを有し、前記第2の+1次回折測定光と該第2の+1次回折測定光に対応する第2の+1次回折参照光との干渉および前記第2の-1次回折測定光と該第2の-1次回折測定光に対応する第2の-1次回折参照光との干渉に基づいて、前記第2部材の前記第3方向に沿った相対位置を計測することを特徴とする請求項15に記載の位置計測装置。 The third measurement unit includes a fifth deflecting member that deflects the second + 1st order diffracted measurement light, which is the + 1st order diffracted light of the third measurement light generated from the diffraction grating, and guides it to the polarization beam splitter; A sixth deflecting member that deflects second-first-order diffracted measurement light, which is -1st-order diffracted light of the third measurement light generated from the diffraction grating, and guides it to the polarization beam splitter; Interference between the second + 1st order diffracted measurement light and the second + 1st order diffracted reference light corresponding to the second + 1st order diffracted measurement light, and the second -1st order diffracted measurement light and the second -1st order The relative position along the third direction of the second member is measured based on interference with the second-first order diffraction reference light corresponding to the folding measurement light. Position measuring device.
  17. 前記第3計測部は、前記第5偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第4折返し部材と、前記第6偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第5折返し部材と、前記第4折返し部材および前記偏光ビームスプリッターを経た光の入射に応じて前記回折格子から発生した前記第2の+1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第7偏向部材と、前記第5折返し部材および前記偏光ビームスプリッターを経た光の入射に応じて前記回折格子から発生した前記第2の-1次回折測定光を偏向して前記偏光ビームスプリッターへ導く第8偏向部材とをさらに有することを特徴とする請求項16に記載の位置計測装置。 The third measurement unit includes a fourth folding member that translates the light that has passed through the fifth deflection member and the polarization beam splitter and returns the light to the polarization beam splitter, and the light that has passed through the sixth deflection member and the polarization beam splitter. A fifth folding member that translates the light into the polarization beam splitter, and the second + 1st-order diffraction measurement light generated from the diffraction grating in response to the incidence of light that has passed through the fourth folding member and the polarization beam splitter. And the second −1st-order diffracted measurement light generated from the diffraction grating in response to incidence of light that has passed through the fifth folding member and the polarization beam splitter. And an eighth deflecting member that deflects the light to the polarizing beam splitter. Position measuring device.
  18. 前記第5偏向部材乃至前記第8偏向部材は、前記第3方向に沿った周期構造を有する回折パターンを有することを特徴とする請求項17に記載の位置計測装置。 The position measurement apparatus according to claim 17, wherein each of the fifth to eighth deflection members has a diffraction pattern having a periodic structure along the third direction.
  19. 前記第5偏向部材乃至前記第8偏向部材の前記回折パターンは、前記偏光ビームスプリッターの前記回折格子と対向する光学面に形成されていることを特徴とする請求項18に記載の位置計測装置。 19. The position measuring apparatus according to claim 18, wherein the diffraction patterns of the fifth deflection member to the eighth deflection member are formed on an optical surface facing the diffraction grating of the polarization beam splitter.
  20. 前記第4折返し部材および前記第5折返し部材は、前記偏光ビームスプリッターに固定的に取り付けられていることを特徴とする請求項17乃至19のいずれか1項に記載の位置計測装置。 The position measuring device according to claim 17, wherein the fourth folding member and the fifth folding member are fixedly attached to the polarization beam splitter.
  21. 前記第1経路と前記第3経路とは共通の経路であり、
     前記第1折返し部材と前記第4折返し部材とは、共通のコーナーキューブを有し、
     前記第2折返し部材と前記第5折返し部材とは、共通のコーナーキューブを有することを特徴とする請求項17乃至20のいずれか1項に記載の位置計測装置。
    The first route and the third route are common routes,
    The first folded member and the fourth folded member have a common corner cube,
    21. The position measuring device according to claim 17, wherein the second folded member and the fifth folded member have a common corner cube.
  22. 前記第1方向と前記第2方向と前記第3方向とは互いに直交することを特徴とする請求項15乃至21のいずれか1項に記載の位置計測装置。 The position measurement apparatus according to any one of claims 15 to 21, wherein the first direction, the second direction, and the third direction are orthogonal to each other.
  23. 前記第1部材に固定的に取り付けられて、前記第2参照光を回折して前記第2の+1次回折測定光と前記第2の-1次回折測定光とを発生させる回折面を有する参照部材を備えることを特徴とする請求項15乃至22のいずれか1項に記載の位置計測装置。 A reference fixedly attached to the first member and having a diffractive surface that diffracts the second reference light to generate the second + 1st order diffracted measurement light and the second -1st order diffracted measurement light. The position measuring device according to any one of claims 15 to 22, further comprising a member.
  24. 前記第1部材に固定的に取り付けられた参照部材を備え、
     前記参照部材の参照面において、前記第1参照光および前記第3参照光の反射領域には周期構造を有する回折パターンがそれぞれ設けられ、前記第2参照光の反射領域には平面状の反射面が設けられていることを特徴とする請求項15乃至23のいずれか1項に記載の位置計測装置。
    A reference member fixedly attached to the first member;
    In the reference surface of the reference member, a diffraction pattern having a periodic structure is provided in each of the reflection regions of the first reference light and the third reference light, and a planar reflection surface is provided in the reflection region of the second reference light. The position measuring device according to claim 15, wherein the position measuring device is provided.
  25. 前記第1偏光は前記偏光ビームスプリッターの偏光分離面に対するs偏光およびp偏光のうちの一方であり、前記第2偏光はs偏光およびp偏光のうちの他方であることを特徴とする請求項1乃至24のいずれか1項に記載の位置計測装置。 2. The first polarized light is one of s-polarized light and p-polarized light with respect to a polarization separation surface of the polarizing beam splitter, and the second polarized light is the other of s-polarized light and p-polarized light. 25. The position measuring device according to any one of items 24 to 24.
  26. 前記偏光ビームスプリッター内の前記第1経路と前記第2経路とは互いに異なる経路であることを特徴とする請求項1乃至25のいずれか1項に記載の位置計測装置。 26. The position measuring apparatus according to claim 1, wherein the first path and the second path in the polarization beam splitter are different paths.
  27. 前記第2部材は、前記第1部材に対する相対位置が可変であって、前記第1方向に沿った周期構造を有する反射型の回折格子が設けられ、
     前記第1計測部は、前記偏光ビームスプリッターを経て前記第1方向を含む第1平面内の所定経路に沿って前記回折格子に斜め入射した光に応じて前記回折格子から前記第1平面内の前記所定経路に沿って発生する回折光である第1測定光と、該第1測定光に対応する第1参照光との干渉光に基づいて、前記第2部材の前記第1方向に沿った相対位置を計測し、且つ前記偏光ビームスプリッターを経た光を偏向して第1経路に沿って前記回折格子上の第1領域に、前記反射型の回折格子のリトロー角で斜め入射させる第1偏向部材を有することを特徴とする請求項1乃至26のいずれか1項に記載の位置計測装置。
    The second member is provided with a reflective diffraction grating having a variable relative position to the first member and having a periodic structure along the first direction.
    The first measurement unit passes through the polarization beam splitter, and passes from the diffraction grating in the first plane according to light obliquely incident on the diffraction grating along a predetermined path in the first plane including the first direction. Based on the interference light between the first measurement light, which is diffracted light generated along the predetermined path, and the first reference light corresponding to the first measurement light, the second member along the first direction. A first deflection that measures a relative position and deflects light passing through the polarization beam splitter and obliquely enters the first region on the diffraction grating along a first path at a Littrow angle of the reflective diffraction grating. 27. The position measuring apparatus according to claim 1, further comprising a member.
  28. 第1部材に対する相対位置が可変であって、第1方向に沿った周期構造を有する反射型の回折格子が設けられた第2部材の相対位置を計測する位置計測装置において、
     前記第1部材に固定的に取り付けられた偏光ビームスプリッターと、
     前記偏光ビームスプリッターを経て前記第1方向を含む第1平面内の所定経路に沿って前記回折格子に斜め入射した光に応じて前記回折格子から前記第1平面内の前記所定経路に沿って発生する回折光である第1測定光と、該第1測定光に対応する第1参照光との干渉光に基づいて、前記第2部材の前記第1方向に沿った相対位置を計測する第1計測部とを備え、
     前記第1計測部は、前記偏光ビームスプリッターを経た光を偏向して第1経路に沿って前記回折格子上の第1領域に、前記反射型の回折格子のリトロー角で斜め入射させる第1偏向部材を有することを特徴とする位置計測装置。
    In the position measurement device for measuring the relative position of the second member provided with a reflection type diffraction grating having a variable relative position with respect to the first member and having a periodic structure along the first direction,
    A polarizing beam splitter fixedly attached to the first member;
    Generated from the diffraction grating along the predetermined path in the first plane in response to light obliquely incident on the diffraction grating along a predetermined path in the first plane including the first direction via the polarizing beam splitter First relative position of the second member along the first direction is measured based on interference light between the first measurement light that is diffracted light and the first reference light corresponding to the first measurement light. With a measuring unit,
    The first measurement unit deflects light that has passed through the polarization beam splitter, and obliquely enters the first region on the diffraction grating along the first path at a Littrow angle of the reflective diffraction grating. A position measuring device having a member.
  29. 前記偏光ビームスプリッターは、前記第1方向を含む平面に設けられた主面を備え、前記第1偏向部材は前記主面上に設けられていることを特徴とする請求項27または28に記載の位置計測装置。 29. The polarization beam splitter includes a main surface provided on a plane including the first direction, and the first deflection member is provided on the main surface. Position measuring device.
  30. 前記第1計測部は、前記偏光ビームスプリッターを経た光を偏向して第2経路に沿って前記回折格子上の第2領域に前記回折格子のリトロー角で斜め入射させる第2偏向部材を有し、前記回折格子の前記第1領域から前記第1経路に沿って発生した前記第1測定光の干渉光と、前記回折格子の前記第2領域から前記第2経路に沿って発生した前記第1測定光の干渉光とに基づいて、前記第1領域と前記第2領域との間の第1計測位置における前記第2部材の前記第1方向に沿った相対位置を計測することを特徴とする請求項27乃至29のいずれか1項に記載の位置計測装置。 The first measurement unit includes a second deflecting member that deflects light that has passed through the polarization beam splitter and obliquely enters the second region on the diffraction grating along the second path at a Littrow angle of the diffraction grating. , Interference light of the first measurement light generated from the first region of the diffraction grating along the first path, and the first light generated from the second region of the diffraction grating along the second path. A relative position along the first direction of the second member at a first measurement position between the first region and the second region is measured based on interference light of measurement light. 30. The position measuring device according to any one of claims 27 to 29.
  31. 前記第1偏向部材および前記第2偏向部材は、前記第1方向に沿った周期構造の回折パターンを有することを特徴とする請求項30に記載の位置計測装置。 31. The position measuring apparatus according to claim 30, wherein the first deflection member and the second deflection member have a diffraction pattern having a periodic structure along the first direction.
  32. 前記偏光ビームスプリッターは、前記第1方向を含む平面に設けられた主面を備え、前記第1偏向部材および前記第2偏向部材は前記主面上に設けられていることを特徴とする請求項31に記載の位置計測装置。 The polarizing beam splitter includes a main surface provided on a plane including the first direction, and the first deflecting member and the second deflecting member are provided on the main surface. 31. The position measurement apparatus according to 31.
  33. 前記第1計測部は、前記第1偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第1折返し部材と、前記第2偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第2折返し部材と、前記第1折返し部材および前記偏光ビームスプリッターを経た光を偏向して前記第1経路と平行な第3経路に沿って前記回折格子上の第3領域に斜め入射させる第3偏向部材と、前記第2折返し部材および前記偏光ビームスプリッターを経た光を偏向して前記第2経路と平行な第4経路に沿って前記回折格子上の第4領域に斜め入射させる第4偏向部材とを有し、前記第1計測位置は前記第1領域と前記第4領域との中間に位置することを特徴とする請求項30乃至32のいずれか1項に記載の位置計測装置。 The first measurement unit includes a first folding member that translates the light that has passed through the first deflection member and the polarization beam splitter and returns the light to the polarization beam splitter, and light that has passed through the second deflection member and the polarization beam splitter. A second folding member that translates and returns the polarized beam splitter to the polarizing beam splitter, and deflects the light that has passed through the first folding member and the polarizing beam splitter to deflect the diffraction grating along a third path parallel to the first path. A third deflecting member that obliquely enters the third region above, the light that has passed through the second folding member and the polarization beam splitter, and deflects the light on the diffraction grating along a fourth path parallel to the second path. And a fourth deflecting member that obliquely enters the fourth region, wherein the first measurement position is located between the first region and the fourth region. Position measuring device according to any one of Motomeko 30 to 32.
  34. 前記第3偏向部材および前記第4偏向部材は、前記第1方向に沿った周期構造の回折パターンを有することを特徴とする請求項33に記載の位置計測装置。 34. The position measuring apparatus according to claim 33, wherein the third deflection member and the fourth deflection member have a diffraction pattern having a periodic structure along the first direction.
  35. 前記第1偏向部材と前記第3偏向部材とは一体に形成され、前記第2偏向部材と前記第4偏向部材とは一体に形成されていることを特徴とする請求項33または34に記載の位置計測装置。 The said 1st deflection member and the said 3rd deflection member are integrally formed, The said 2nd deflection member and the said 4th deflection member are integrally formed, The Claim 33 or 34 characterized by the above-mentioned. Position measuring device.
  36. 前記第1計測部は、前記偏光ビームスプリッターを経た第1偏光の光を円偏光に変更して前記回折格子へ導き且つ前記回折格子から発生した前記第1測定光を第2偏光に変更して前記偏光ビームスプリッターへ導く第1偏光部材を有することを特徴とする請求項27乃至35のいずれか1項に記載の位置計測装置。 The first measurement unit changes the first polarized light that has passed through the polarization beam splitter to circularly polarized light, guides it to the diffraction grating, and changes the first measurement light generated from the diffraction grating to second polarized light. 36. The position measuring apparatus according to claim 27, further comprising a first polarizing member that leads to the polarizing beam splitter.
  37. 前記第1偏光部材は、前記第1偏向部材と前記偏光ビームスプリッターとの間に取り付けられた波長板を有することを特徴とする請求項36に記載の位置計測装置。 37. The position measuring apparatus according to claim 36, wherein the first polarizing member has a wave plate attached between the first deflecting member and the polarizing beam splitter.
  38. 前記第1部材に固定的に取り付けられた第1参照部材を備え、
     前記第1参照部材における前記第1参照光の光路には平面状の反射面が設けられていることを特徴とする請求項27乃至37のいずれか1項に記載の位置計測装置。
    A first reference member fixedly attached to the first member;
    38. The position measuring device according to claim 27, wherein a planar reflecting surface is provided in an optical path of the first reference light in the first reference member.
  39. 前記回折格子は、前記第1方向および第2方向に沿った二次元周期構造を有し、
     前記偏光ビームスプリッターを経て前記第2方向を含む第2平面内の所定経路に沿って前記回折格子に斜め入射した光に応じて前記回折格子から前記第2平面内の前記所定経路に沿って発生する回折光である第2測定光と、該第2測定光に対応する第2参照光との干渉光に基づいて、前記第2部材の前記第2方向に沿った相対位置を計測する第2計測部をさらに備えていることを特徴とする請求項27乃至38のいずれか1項に記載の位置計測装置。
    The diffraction grating has a two-dimensional periodic structure along the first direction and the second direction;
    Generated from the diffraction grating along the predetermined path in the second plane in response to light obliquely incident on the diffraction grating along a predetermined path in the second plane including the second direction via the polarizing beam splitter A second position measuring the relative position of the second member in the second direction based on interference light between the second measurement light that is diffracted light and the second reference light corresponding to the second measurement light. The position measuring device according to any one of claims 27 to 38, further comprising a measuring unit.
  40. 前記第2計測部は、前記偏光ビームスプリッターを経た光を偏向して第5経路に沿って前記回折格子上の第5領域に前記回折格子のリトロー角で斜め入射させる第5偏向部材と、前記偏光ビームスプリッターを経た光を偏向して第6経路に沿って前記回折格子上の第6領域に前記回折格子のリトロー角で斜め入射させる第6偏向部材とを有し、前記回折格子の前記第5領域から前記第5経路に沿って発生した前記第2測定光の干渉光と、前記回折格子の前記第6領域から前記第6経路に沿って発生した前記第2測定光の干渉光とに基づいて、前記第5領域と前記第6領域との間の第2計測位置における前記第2部材の前記第2方向に沿った相対位置を計測することを特徴とする請求項39に記載の位置計測装置。 The second measurement unit deflects the light that has passed through the polarization beam splitter and obliquely enters the fifth region on the diffraction grating along the fifth path at a Littrow angle of the diffraction grating; and A sixth deflecting member that deflects light that has passed through the polarization beam splitter and obliquely enters the sixth region on the diffraction grating along the sixth path at a Littrow angle of the diffraction grating, Interference light of the second measurement light generated from the fifth region along the fifth path and interference light of the second measurement light generated from the sixth region of the diffraction grating along the sixth path. 40. The position according to claim 39, wherein a relative position along the second direction of the second member at a second measurement position between the fifth area and the sixth area is measured based on the position. Measuring device.
  41. 前記第5偏向部材および前記第6偏向部材は、前記第2方向に沿った周期構造の回折パターンを有することを特徴とする請求項40に記載の位置計測装置。 41. The position measuring apparatus according to claim 40, wherein the fifth deflecting member and the sixth deflecting member have a diffraction pattern having a periodic structure along the second direction.
  42. 前記第2計測部は、前記第5偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第3折返し部材と、前記第6偏向部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第4折返し部材と、前記第3折返し部材および前記偏光ビームスプリッターを経た光を偏向して前記第5経路と平行な第7経路に沿って前記回折格子上の第7領域に斜め入射させる第7偏向部材と、前記第4折返し部材および前記偏光ビームスプリッターを経た光を偏向して前記第6経路と平行な第8経路に沿って前記回折格子上の第8領域に斜め入射させる第8偏向部材とをさらに有し、前記第2計測位置は前記第5領域と前記第8領域との中間に位置することを特徴とする請求項40または41に記載の位置計測装置。 The second measurement unit includes a third folding member that translates the light that has passed through the fifth deflection member and the polarization beam splitter and returns the light to the polarization beam splitter, and the light that has passed through the sixth deflection member and the polarization beam splitter. A fourth folding member that translates and returns the polarized beam splitter to the polarization beam splitter, and deflects the light that has passed through the third folding member and the polarization beam splitter to deflect the diffraction grating along a seventh path parallel to the fifth path. A seventh deflecting member that is obliquely incident on the upper seventh region; and the light that has passed through the fourth folding member and the polarization beam splitter is deflected to travel on the diffraction grating along an eighth path parallel to the sixth path. An eighth deflecting member that obliquely enters the eighth region, and the second measurement position is located between the fifth region and the eighth region. Position measuring device according to claim 40 or 41.
  43. 前記第7偏向部材および前記第8偏向部材は、前記第2方向に沿った周期構造の回折パターンを有することを特徴とする請求項42に記載の位置計測装置。 43. The position measuring apparatus according to claim 42, wherein the seventh deflection member and the eighth deflection member have a diffraction pattern having a periodic structure along the second direction.
  44. 前記第5偏向部材と前記第7偏向部材とは一体に形成され、前記第6偏向部材と前記第8偏向部材とは一体に形成されていることを特徴とする請求項42または43に記載の位置計測装置。 The said 5th deflection member and the said 7th deflection member are integrally formed, and the said 6th deflection member and the said 8th deflection member are integrally formed, 44 or 43 characterized by the above-mentioned. Position measuring device.
  45. 前記第2計測部は、前記偏光ビームスプリッターを経た第1偏光の光を円偏光に変更して前記回折格子へ導き且つ前記回折格子から発生した前記第2測定光を第2偏光に変更して前記偏光ビームスプリッターへ導く第2偏光部材を有することを特徴とする請求項39乃至44のいずれか1項に記載の位置計測装置。 The second measuring unit changes the first polarized light that has passed through the polarization beam splitter to circularly polarized light, guides it to the diffraction grating, and changes the second measurement light generated from the diffraction grating to second polarized light. The position measuring device according to any one of claims 39 to 44, further comprising a second polarizing member that leads to the polarizing beam splitter.
  46. 前記第2偏光部材は、前記第5偏向部材と前記偏光ビームスプリッターとの間に取り付けられた波長板を有することを特徴とする請求項45に記載の位置計測装置。 46. The position measuring apparatus according to claim 45, wherein the second polarizing member includes a wave plate attached between the fifth deflecting member and the polarizing beam splitter.
  47. 前記第1折返し部材と前記第3折返し部材とは、共通のコーナーキューブを有し、
     前記第2折返し部材と前記第4折返し部材とは、共通のコーナーキューブを有することを特徴とする請求項33乃至46のいずれか1項に記載の位置計測装置。
    The first folded member and the third folded member have a common corner cube,
    47. The position measuring apparatus according to claim 33, wherein the second folded member and the fourth folded member have a common corner cube.
  48. 前記第1部材に固定的に取り付けられた第2参照部材を備え、
     前記第2参照部材における前記第2参照光の光路には平面状の反射面が設けられていることを特徴とする請求項39乃至47のいずれか1項に記載の位置計測装置。
    A second reference member fixedly attached to the first member;
    48. The position measuring device according to claim 39, wherein a planar reflecting surface is provided in an optical path of the second reference light in the second reference member.
  49. 前記偏光ビームスプリッターを経て前記回折格子に入射した光に応じて前記回折格子から第3方向に沿って発生する0次光である第3測定光と、該第3測定光に対応する第3参照光との干渉光に基づいて、前記第2部材の前記第3方向に沿った相対位置を計測する第3計測部をさらに備えていることを特徴とする請求項27乃至48のいずれか1項に記載の位置計測装置。 Third measurement light that is zero-order light generated along the third direction from the diffraction grating according to light incident on the diffraction grating via the polarization beam splitter, and a third reference corresponding to the third measurement light 49. The apparatus according to any one of claims 27 to 48, further comprising a third measurement unit that measures a relative position of the second member along the third direction based on interference light with light. The position measuring device described in 1.
  50. 前記第3計測部は、前記偏光ビームスプリッターを経た第1偏光の光を円偏光に変更して前記回折格子上の第9領域へ導き且つ前記回折格子上の前記第9領域から発生する前記第3測定光を第2偏光に変更して前記偏光ビームスプリッターへ導く第3偏光部材を有することを特徴とする請求項49に記載の位置計測装置。 The third measuring unit converts the first polarized light that has passed through the polarization beam splitter into circularly polarized light, guides it to a ninth region on the diffraction grating, and generates the first light generated from the ninth region on the diffraction grating. 50. The position measuring apparatus according to claim 49, further comprising a third polarizing member that changes the third measuring light into the second polarized light and guides the measured light to the polarizing beam splitter.
  51. 前記第3計測部は、前記第3偏光部材および前記偏光ビームスプリッターを経た光を平行移動させて前記偏光ビームスプリッターへ戻す第5折返し部材と、該第5折返し部材および前記偏光ビームスプリッターを経た前記第2偏光の光を円偏光に変更して前記回折格子上の第10領域へ導き且つ前記回折格子上の前記第10領域から発生した前記第3測定光を前記第1偏光に変更して前記偏光ビームスプリッターへ導く第4偏光部材とをさらに有することを特徴とする請求項50に記載の位置計測装置。 The third measuring unit translates the light passing through the third polarizing member and the polarizing beam splitter and returns the light to the polarizing beam splitter, and the third measuring unit passes through the fifth folding member and the polarizing beam splitter. The second polarized light is changed to circularly polarized light and led to the tenth region on the diffraction grating, and the third measurement light generated from the tenth region on the diffraction grating is changed to the first polarized light to change the first polarized light. 51. The position measuring apparatus according to claim 50, further comprising a fourth polarizing member that leads to the polarizing beam splitter.
  52. 前記第3偏光部材および前記第4偏光部材は、前記偏光ビームスプリッターに取り付けられた波長板を有することを特徴とする請求項51に記載の位置計測装置。 52. The position measuring apparatus according to claim 51, wherein the third polarizing member and the fourth polarizing member have a wave plate attached to the polarizing beam splitter.
  53. 前記第5折返し部材は、前記偏光ビームスプリッターに取り付けられていることを特徴とする請求項51または52に記載の位置計測装置。 53. The position measurement apparatus according to claim 51, wherein the fifth folding member is attached to the polarization beam splitter.
  54. 前記第1部材に固定的に取り付けられた第3参照部材を備え、
     前記第3参照部材における前記第3参照光の光路には平面状の反射面が設けられていることを特徴とする請求項49乃至53のいずれか1項に記載の位置計測装置。
    A third reference member fixedly attached to the first member;
    54. The position measuring apparatus according to claim 49, wherein a planar reflecting surface is provided in an optical path of the third reference light in the third reference member.
  55. 前記第1参照部材乃至前記第3参照部材は共通の反射面を有し、
     前記共通の反射面は、前記偏光ビームスプリッターに取り付けられた波長板に接するように設けられていることを特徴とする請求項54に記載の位置計測装置。
    The first reference member to the third reference member have a common reflecting surface,
    55. The position measurement apparatus according to claim 54, wherein the common reflection surface is provided so as to contact a wave plate attached to the polarization beam splitter.
  56. 複数の前記第1計測部と、複数の前記第3計測部とをさらに備え、
     前記複数の第3計測部による前記回折格子上での複数の計測位置の間隔は、前記複数の第1計測部による前記回折格子上での複数の計測位置の間隔以下であることを特徴とする請求項49乃至55のいずれか一項に記載の位置計測装置。
    A plurality of the first measurement units; and a plurality of the third measurement units.
    The interval between the plurality of measurement positions on the diffraction grating by the plurality of third measurement units is equal to or less than the interval between the plurality of measurement positions on the diffraction grating by the plurality of first measurement units. The position measuring device according to any one of claims 49 to 55.
  57. 前記回折格子は、前記第1方向および第2方向に沿った二次元周期構造を有し、
     前記偏光ビームスプリッターを経て前記第2方向を含む第2平面内の所定経路に沿って前記回折格子に斜め入射した光に応じて前記回折格子から前記第2平面内の前記所定経路に沿って発生する回折光である第2測定光と、該第2測定光に対応する第2参照光との干渉に基づいて、前記第2部材の前記第2方向に沿った相対位置を計測する、複数の第2計測部をさらに備え、
     前記複数の第3計測部による前記回折格子上での複数の計測位置の間隔は、前記複数の第2計測部による前記回折格子上での複数の計測位置の間隔以下であることを特徴とする請求項56に記載の位置検出装置。
    The diffraction grating has a two-dimensional periodic structure along the first direction and the second direction;
    Generated from the diffraction grating along the predetermined path in the second plane in response to light obliquely incident on the diffraction grating along a predetermined path in the second plane including the second direction via the polarizing beam splitter Measuring a relative position of the second member in the second direction based on interference between the second measurement light that is diffracted light and the second reference light corresponding to the second measurement light. A second measuring unit;
    The interval between the plurality of measurement positions on the diffraction grating by the plurality of third measurement units is equal to or less than the interval between the plurality of measurement positions on the diffraction grating by the plurality of second measurement units. 57. The position detection device according to claim 56.
  58. 前記第1偏光は前記偏光ビームスプリッターの偏光分離面に対するs偏光およびp偏光のうちの一方であり、前記第2偏光はs偏光およびp偏光のうちの他方であることを特徴とする請求項34乃至57のいずれか1項に記載の位置計測装置。 The first polarized light is one of s-polarized light and p-polarized light with respect to a polarization separation surface of the polarization beam splitter, and the second polarized light is the other of s-polarized light and p-polarized light. 58. The position measuring device according to any one of 57 to 57.
  59. 物体を保持するステージと、該ステージを移動させる駆動部とを備えたステージ装置において、
     請求項1乃至58のいずれか1項に記載の位置計測装置を備え、
     前記偏光ビームスプリッターおよび前記回折格子のうちの一方が前記ステージに取り付けられていることを特徴とするステージ装置。
    In a stage apparatus comprising a stage that holds an object and a drive unit that moves the stage,
    A position measuring device according to any one of claims 1 to 58 is provided,
    One of the polarizing beam splitter and the diffraction grating is attached to the stage.
  60. 並列的に配置された複数の前記位置計測装置を備えていることを特徴とする請求項59に記載のステージ装置。 60. The stage device according to claim 59, comprising a plurality of the position measuring devices arranged in parallel.
  61. 所定のパターンを基板に露光する露光装置において、
     前記基板を保持して移動する請求項59または60に記載のステージ装置を備えていることを特徴とする露光装置。
    In an exposure apparatus that exposes a predetermined pattern on a substrate,
    61. An exposure apparatus comprising the stage apparatus according to claim 59, wherein the stage apparatus moves while holding the substrate.
  62. 前記偏光ビームスプリッターおよび前記回折格子のうちの一方が前記ステージに取り付けられ、前記偏光ビームスプリッターおよび前記回折格子のうちの他方が露光装置本体に取り付けられていることを特徴とする請求項61に記載の露光装置。 62. One of the polarizing beam splitter and the diffraction grating is attached to the stage, and the other of the polarizing beam splitter and the diffraction grating is attached to an exposure apparatus main body. Exposure equipment.
  63. 請求項61または62に記載の露光装置を用いて、前記所定のパターンを前記基板に露光することと、
     前記所定のパターンが転写された前記基板を現像し、前記所定のパターンに対応する形状のマスク層を前記基板の表面に形成することと、
     前記マスク層を介して前記基板の表面を加工することと、を含むことを特徴とするデバイス製造方法。
    Using the exposure apparatus according to claim 61 or 62, exposing the predetermined pattern onto the substrate;
    Developing the substrate to which the predetermined pattern is transferred, and forming a mask layer having a shape corresponding to the predetermined pattern on the surface of the substrate;
    Processing the surface of the substrate through the mask layer. A device manufacturing method comprising:
PCT/JP2013/056243 2012-07-06 2013-03-07 Position measurement device, stage apparatus, exposure equipment, and device manufacturing method WO2014006935A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-152749 2012-07-06
JP2012152749 2012-07-06
JP2012-177123 2012-08-09
JP2012177123 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014006935A1 true WO2014006935A1 (en) 2014-01-09

Family

ID=49881700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056243 WO2014006935A1 (en) 2012-07-06 2013-03-07 Position measurement device, stage apparatus, exposure equipment, and device manufacturing method

Country Status (1)

Country Link
WO (1) WO2014006935A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159032A1 (en) * 2015-03-30 2017-11-24 株式会社ニコン Imaging device and imaging apparatus
CN113448189A (en) * 2020-03-26 2021-09-28 上海微电子装备(集团)股份有限公司 Alignment system and photoetching machine
US11480861B2 (en) 2017-03-21 2022-10-25 Magic Leap, Inc. Low-profile beam splitter
US11835723B2 (en) 2017-03-21 2023-12-05 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501656A (en) * 1984-03-16 1986-08-07 ヒユ−ズ・エアクラフト・カンパニ− A device that accurately aligns different grids stacked on top of each other and measures gaps.
JPH06160020A (en) * 1992-11-20 1994-06-07 Canon Inc Measuring device
JPH11248913A (en) * 1998-03-03 1999-09-17 Nikon Corp Band-narrowing element
JP2002231616A (en) * 2001-02-05 2002-08-16 Nikon Corp Instrument and method for measuring position aligner and method of exposure, and method of manufacturing device
JP2003202204A (en) * 2002-01-07 2003-07-18 Nikon Corp Interferometer, exposure device and exposure method
JP2005156559A (en) * 2003-11-25 2005-06-16 Asml Netherlands Bv Improved lithograph interferometer system
JP2005252246A (en) * 2004-02-04 2005-09-15 Nikon Corp Exposure device and exposure method, method of controlling position and method of fabricating the device
JP2006060214A (en) * 2004-08-16 2006-03-02 Asml Netherlands Bv Method and apparatus of angular-resolved spectroscopic lithography characterization
JP2007127625A (en) * 2005-09-15 2007-05-24 Asml Netherlands Bv Position measurement unit, measurement system, and lithographic apparatus comprising such position measurement unit
JP2007171206A (en) * 2005-12-23 2007-07-05 Agilent Technol Inc Littrow interferometer
WO2009075103A1 (en) * 2007-12-11 2009-06-18 Nikon Corporation Moving body device, exposure device, pattern formation device, and device manufacturing method
WO2011039036A2 (en) * 2009-09-30 2011-04-07 Carl Zeiss Smt Gmbh Optical system, in particular in a microlithographic projection exposure apparatus
JP2013026272A (en) * 2011-07-15 2013-02-04 Nikon Corp Encoder device, optical device, and exposure device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501656A (en) * 1984-03-16 1986-08-07 ヒユ−ズ・エアクラフト・カンパニ− A device that accurately aligns different grids stacked on top of each other and measures gaps.
JPH06160020A (en) * 1992-11-20 1994-06-07 Canon Inc Measuring device
JPH11248913A (en) * 1998-03-03 1999-09-17 Nikon Corp Band-narrowing element
JP2002231616A (en) * 2001-02-05 2002-08-16 Nikon Corp Instrument and method for measuring position aligner and method of exposure, and method of manufacturing device
JP2003202204A (en) * 2002-01-07 2003-07-18 Nikon Corp Interferometer, exposure device and exposure method
JP2005156559A (en) * 2003-11-25 2005-06-16 Asml Netherlands Bv Improved lithograph interferometer system
JP2005252246A (en) * 2004-02-04 2005-09-15 Nikon Corp Exposure device and exposure method, method of controlling position and method of fabricating the device
JP2006060214A (en) * 2004-08-16 2006-03-02 Asml Netherlands Bv Method and apparatus of angular-resolved spectroscopic lithography characterization
JP2007127625A (en) * 2005-09-15 2007-05-24 Asml Netherlands Bv Position measurement unit, measurement system, and lithographic apparatus comprising such position measurement unit
JP2007171206A (en) * 2005-12-23 2007-07-05 Agilent Technol Inc Littrow interferometer
WO2009075103A1 (en) * 2007-12-11 2009-06-18 Nikon Corporation Moving body device, exposure device, pattern formation device, and device manufacturing method
WO2011039036A2 (en) * 2009-09-30 2011-04-07 Carl Zeiss Smt Gmbh Optical system, in particular in a microlithographic projection exposure apparatus
JP2013026272A (en) * 2011-07-15 2013-02-04 Nikon Corp Encoder device, optical device, and exposure device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159032A1 (en) * 2015-03-30 2017-11-24 株式会社ニコン Imaging device and imaging apparatus
US11480861B2 (en) 2017-03-21 2022-10-25 Magic Leap, Inc. Low-profile beam splitter
US11835723B2 (en) 2017-03-21 2023-12-05 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
US12038587B2 (en) 2017-03-21 2024-07-16 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
CN113448189A (en) * 2020-03-26 2021-09-28 上海微电子装备(集团)股份有限公司 Alignment system and photoetching machine
CN113448189B (en) * 2020-03-26 2022-11-15 上海微电子装备(集团)股份有限公司 Alignment system and photoetching machine

Similar Documents

Publication Publication Date Title
JP5489068B2 (en) POSITION MEASUREMENT SYSTEM, EXPOSURE APPARATUS, POSITION MEASUREMENT METHOD, EXPOSURE METHOD, DEVICE MANUFACTURING METHOD, TOOL AND MEASUREMENT METHOD
JP5741868B2 (en) Pattern forming method, pattern forming apparatus, and device manufacturing method
JP5622068B2 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method
TWI548868B (en) A method of measuring a photomask transmittance distribution, a program, a computer-readable medium, a control method of an exposure apparatus, an exposure method, and an exposure apparatus, and a device manufacturing method
US8264666B2 (en) Exposure apparatus, exposure method, and method of manufacturing device
EP1852894A1 (en) Exposure method and apparatus, and electronic device manufacturing method
CN107407894B (en) Measuring apparatus and measuring method, exposure apparatus and exposure method, and device manufacturing method
KR101605567B1 (en) Exposure method, exposure apparatus, and method for producing device
US20100068655A1 (en) Position measuring module, position measuring apparatus, stage apparatus, exposure apparatus and device manufacturing method
US9243896B2 (en) Two axis encoder head assembly
WO2014006935A1 (en) Position measurement device, stage apparatus, exposure equipment, and device manufacturing method
JP2012004564A (en) Exposure method, exposure apparatus and method of manufacturing device
WO2012073483A1 (en) Mark detection method, light exposure method and light exposure device, and method for manufacturing device
JP5505685B2 (en) Projection optical system, and exposure method and apparatus
WO2013168457A1 (en) Surface position measurement device, surface position measurement method, exposure device, and device production method
JP3736271B2 (en) Mask, projection optical system inspection method and exposure method, and projection optical system inspection device and exposure apparatus
WO2013168456A1 (en) Surface position measurement device, exposure device, and device production method
WO2016159295A1 (en) Exposure device, method for producing flat panel display, method for producing device, and exposure method
JP5699419B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2007027350A (en) Exposure apparatus and method, and electronic device manufacturing method
JP5622126B2 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method
JP4807100B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JPH09326348A (en) Scanning aligner and scanning exposure method
JP2007085876A (en) Interferometer system, exposure apparatus, and device manufacturing method
JP4729899B2 (en) Scanning projection exposure apparatus, mask stage running correction method, and microdevice manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP