WO2014006818A1 - 両頭研削装置及びワークの両頭研削方法 - Google Patents

両頭研削装置及びワークの両頭研削方法 Download PDF

Info

Publication number
WO2014006818A1
WO2014006818A1 PCT/JP2013/003476 JP2013003476W WO2014006818A1 WO 2014006818 A1 WO2014006818 A1 WO 2014006818A1 JP 2013003476 W JP2013003476 W JP 2013003476W WO 2014006818 A1 WO2014006818 A1 WO 2014006818A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
shaped holder
rotation axis
double
workpiece
Prior art date
Application number
PCT/JP2013/003476
Other languages
English (en)
French (fr)
Inventor
小林 健司
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to KR1020147036423A priority Critical patent/KR101908359B1/ko
Priority to SG11201408057UA priority patent/SG11201408057UA/en
Priority to US14/405,326 priority patent/US9669513B2/en
Priority to DE112013003038.1T priority patent/DE112013003038B4/de
Priority to CN201380035245.1A priority patent/CN104411455B/zh
Publication of WO2014006818A1 publication Critical patent/WO2014006818A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • B24B41/067Work supports, e.g. adjustable steadies radially supporting workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • B24B7/17Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers

Definitions

  • the present invention relates to a double-head grinding apparatus for simultaneously grinding both surfaces of a thin plate-like workpiece such as a semiconductor wafer, a quartz substrate for an exposure original plate, and a double-head grinding method for a workpiece.
  • Nanotopography is a kind of surface shape of a wafer, which shows irregularities of a wavelength component of 0.2 to 20 mm, which has a wavelength shorter than that of warp or warp and longer than the surface roughness, and has a PV value of 0. It is a very shallow swell component of 1 to 0.2 ⁇ m. This nanotopography is said to affect the yield of the STI (Shallow Trench Isolation) process in the device process, and a strict level is required for the silicon wafer as the device substrate along with the refinement of design rules.
  • STI Shallow Trench Isolation
  • Nanotopography is built in the silicon wafer processing process. In particular, it is easily deteriorated by a processing method having no reference surface, for example, wire saw cutting or double-head grinding, and it is important to improve and manage relative wire meandering in wire saw cutting and wafer warpage in double-head grinding.
  • FIG. 10 is a schematic view showing an example of a conventional double-head grinding apparatus.
  • the double-head grinding apparatus 101 includes a ring-shaped holder 102 that supports a thin plate-like workpiece W, and a pair of static pressure support members that support the ring-shaped holder 102 in a non-contact manner by a static pressure of a fluid.
  • 103 and a pair of grindstones 104 for simultaneously grinding both surfaces of the workpiece W supported by the ring-shaped holder 102.
  • the pair of static pressure support members 103 are respectively located on both sides of the side surface of the ring-shaped holder 102.
  • the grindstone 104 is attached to a motor 112 so that it can rotate at a high speed.
  • this double-head grinding apparatus 101 uses this double-head grinding apparatus 101 to first, the workpiece W is supported by the ring-shaped holder 102 along the radial direction from the outer peripheral surface side. Next, by rotating the ring-shaped holder 102, while rotating the workpiece W, a fluid is supplied between the ring-shaped holder 102 and each of the static pressure support members 103, and the ring-shaped holder 102 is subjected to the static pressure of the fluid. Support by. In this way, both surfaces of the workpiece W that rotates while being supported by the ring-shaped holder 102 and the static pressure support member 103 are ground using the grindstone 104 that rotates at high speed by the motor 112.
  • Patent Document 1 In conventional double-head grinding, there are many factors that deteriorate nanotopography.
  • Patent Document 1 it is known that the disorder of the position along the rotation axis of the ring-shaped holder is a major factor. . Therefore, as a support method for rotating the ring-shaped holder with high accuracy, a hydrostatic bearing that supports the ring-shaped holder in a non-contact manner by supplying fluid from both the rotation axis direction of the ring-shaped holder and the direction perpendicular to the rotation axis. It is known that it is preferable to use (Patent Document 2). However, even if such a hydrostatic bearing is used, nanotopography may be deteriorated, and there is a problem that stable and highly accurate nanotopography cannot be obtained.
  • the present invention has been made in view of the above-described problems, and improves variations in nanotopography that occurs depending on the work lot and grindstone, thereby obtaining a stable and highly accurate nanotopography for each grinding.
  • An object is to provide a double-head grinding apparatus and a double-head grinding method for a workpiece.
  • a ring-shaped holder capable of supporting a thin plate-like workpiece from the outer peripheral side along the radial direction, and both surfaces of the workpiece supported by the ring-shaped holder are provided.
  • a double-head grinding device having a pair of grinding wheels for grinding simultaneously, and further, the ring-shaped holder is moved by the static pressure of fluid supplied from both the rotation axis direction of the ring-shaped holder and the direction perpendicular to the rotation axis. It has a hydrostatic bearing that supports non-contact from both directions, and can control independently the supply pressure of the fluid supplied from the rotation axis direction and the fluid supplied from the direction perpendicular to the rotation axis.
  • a double-head grinding apparatus is provided.
  • the support rigidity in the direction of the rotation axis of the ring-shaped holder and the direction perpendicular to the rotation axis can be controlled independently, and even if the workpiece lot is changed or the grindstone is changed, A stable and highly accurate nanotopography can be obtained.
  • the load / displacement amount when the load is applied to the ring-shaped holder from the other direction is defined as rigidity A
  • the fluid is transferred from the direction perpendicular to the rotation shaft.
  • the load / displacement amount when the load is applied to the ring-shaped holder from the opposite direction in the state of supplying the rigidity is defined as rigidity B
  • the rigidity A is 200 gf / ⁇ m or less
  • the rigidity B is 800 gf / ⁇ m or more.
  • the supply pressure of the fluid can be controlled.
  • the thin plate-like workpiece is supported by the ring-shaped holder from the outer peripheral side along the radial direction and rotated, and both surfaces of the workpiece supported by the ring-shaped holder are supported by the pair of grindstones.
  • a double-head grinding method for a workpiece to be ground simultaneously wherein fluid is supplied from both the rotation axis direction of the ring-shaped holder and the direction perpendicular to the rotation axis while independently controlling the supply pressure.
  • a double-head grinding method for a workpiece wherein both surfaces of the workpiece are ground simultaneously while the ring-shaped holder is supported in a non-contact manner from both directions by the static pressure of the supplied fluid.
  • the support rigidity in the direction of the rotation axis of the ring-shaped holder and the direction perpendicular to the rotation axis can be controlled independently, and even if the workpiece lot is changed or the grindstone is changed, it is stable at each grinding. Highly accurate nanotopography.
  • the load / displacement amount when applying the load to the ring-shaped holder from the other direction in a state where the fluid is supplied from one direction of the rotation axis is defined as rigidity A
  • the direction from the direction perpendicular to the rotation axis is
  • rigidity B the rigidity A is 200 gf / ⁇ m or less
  • rigidity B 800 gf / ⁇ m or more. It is preferable to control the supply pressure of the fluid.
  • fluid is supplied from both the rotation axis direction of the ring-shaped holder and the direction perpendicular to the rotation axis while independently controlling the supply pressure, and the fluid supplied by the hydrostatic bearing Since both sides of the workpiece are ground simultaneously while supporting the ring-shaped holder in non-contact from both directions by the static pressure of the ring, the support rigidity in the direction of the rotation axis of the ring-shaped holder and the direction perpendicular to the rotation axis can be controlled independently. Even if the lot is changed or the wheel is changed, a highly accurate nanotopography can be obtained stably for each grinding.
  • the present invention is not limited to this.
  • the present inventor has intensively studied a method for reducing the influence of the raw material workpiece and the grindstone used in the method employing the hydrostatic bearing system for supporting the ring-shaped holder. As a result, the following was found.
  • the grinding state of the left and right sides differs depending on the shape of the raw material workpiece, the surface roughness of the front and back surfaces, and the self-generated action of the left and right grindstones. It is done. For this reason, the workpiece rotation surface with a balance between the left and right forces in each grinding process is slightly different, and the deviation of this workpiece rotation surface from the rotation surface of the ring-shaped holder causes a local processing pressure difference, resulting in a minute nanometer. It is thought that the topography deteriorated.
  • the balance of the left and right forces which differ for each grinding process, is balanced by reducing the support rigidity in the direction of the rotation axis of the ring holder and improving the degree of freedom of support. It is considered effective to allow the ring-shaped holder to rotate with respect to the workpiece rotation surface, and as a result, to eliminate the local processing pressure difference.
  • the conventional hydrostatic bearing is configured so that the fluid supplied from both the rotation axis direction of the ring-shaped holder and the direction perpendicular to the rotation axis is supplied from one supply source, and the supply pressures are all the same.
  • the fluid supplied in the rotation axis direction of the ring-shaped holder and the direction perpendicular to the rotation axis can be independently supplied, that is, the supply pressure can be controlled independently.
  • grinding can be performed while maintaining the support rigidity in the direction perpendicular to the rotation axis while improving the degree of freedom of support in the rotation axis direction.
  • stable and highly accurate nanotopography can be achieved. Can be obtained.
  • the present inventor further scrutinized the best mode for carrying out these and completed the present invention.
  • the double-head grinding apparatus 1 of the present invention mainly includes a ring-shaped holder 2 that supports a workpiece W, a hydrostatic bearing 3 that supports the ring-shaped holder 2 in a non-contact manner by a static pressure of a fluid, A pair of grindstones 4 for simultaneously grinding both surfaces of the workpiece W are provided.
  • the ring-shaped holder 2 supports the workpiece W from the outer peripheral side along the radial direction, and can rotate around the rotation axis.
  • the ring-shaped holder 2 holds a carrier 5 having a holding hole for inserting and supporting the wafer W in the center, a holder portion 6 for attaching the carrier 5, and the attached carrier 5.
  • the ring part 7 for this is comprised.
  • the carrier 5 is provided with an attachment hole 8 for attaching to the holder portion 6 with a screw or the like.
  • a drive gear 10 connected to the holder motor 9 is provided.
  • the drive gear 10 meshes with the internal gear portion 11, and the ring-shaped holder 2 can be rotated through the internal gear portion 11 by rotating the drive gear 10 by the holder motor 9.
  • a protrusion 14 protruding inward is formed at the edge of the holding hole of the carrier 5. This protrusion is adapted to the shape of a notch called a notch formed on the peripheral edge of the workpiece W, and can transmit the rotational movement of the ring-shaped holder 2 to the workpiece W.
  • the hydrostatic bearing 3 includes a bearing portion 3 a disposed to face both side surfaces of the ring-shaped holder 2, and a bearing portion 3 b disposed to face the outer peripheral surface of the ring-shaped holder 2. It consists of and.
  • the bearing portion 3a is provided with supply holes for supplying fluid to both side surfaces of the ring-shaped holder 2, and the bearing portion 3b is provided with supply holes for supplying fluid to the outer peripheral surface. Yes.
  • FIG. 3 As shown in FIG.
  • the fluid 13a is supplied from the fluid supply means 20 from the rotation axis direction of the ring-shaped holder 2 between the side surface of the ring-shaped holder 2 and the bearing portion 3a, and the fluid 13b is supplied. It is supplied between the outer peripheral surface of the ring-shaped holder 2 and the bearing portion 3b from a direction perpendicular to the rotation axis.
  • the ring-shaped holder 2 is supported in a non-contact state by the bearing 3a from the direction of the rotation axis and from the direction perpendicular to the direction of the rotation axis by the bearing 3b by the static pressure of the fluid thus supplied.
  • the fluid supply means 20 is configured to be able to independently control the supply pressures of the fluid 13a supplied from the rotation axis direction and the fluid 13b supplied from the direction perpendicular to the rotation axis.
  • the fluid supply means 20 is not particularly limited.
  • a pressure regulating valve is provided on the fluid supply path to adjust each supply pressure, or two completely independent fluid supply means are provided. Also good.
  • it does not specifically limit as a fluid supplied to the hydrostatic bearing 3 here For example, water and air can be used.
  • the grindstone 4 is connected to a grindstone motor 12 so that it can rotate at high speed.
  • the grindstone 4 is not specifically limited, The thing similar to the past can be used.
  • a count of # 3000 having an average abrasive grain size of 4 ⁇ m can be used.
  • a high count of count # 6000 to 8000 there may be mentioned one made of diamond abrasive grains having an average grain size of 1 ⁇ m or less and a vitrified bond material.
  • the rigidity of the ring-shaped holder 2 in the rotation axis direction and the direction perpendicular to the rotation axis can be increased. It can be controlled independently. For this reason, the supply pressure of the fluid supplied from the rotation axis direction of the ring-shaped holder 2 is lowered to reduce the rigidity of the ring-shaped holder 2 in this direction, that is, the degree of freedom of support is improved and the ring-shaped holder 2 is simultaneously improved.
  • the ring-shaped holder 2 can be supported in a state where the supply pressure of the fluid to be supplied from the direction perpendicular to the rotation axis is increased and the rigidity of the ring-shaped holder 2 in this direction is maintained sufficiently high. If the ring-shaped holder 2 is supported in this way, a local pressure difference can be suppressed during the grinding process, and even if the workpiece lot is changed or the grindstone is replaced, the nanometer is stably and highly accurate for each grinding. Topography can be obtained.
  • the amount (gf / ⁇ m) is defined as the rigidity A in the rotation axis direction.
  • the fluid is supplied from the direction perpendicular to the rotation axis, the load is applied to the ring-shaped holder 2 from the opposite direction, and the load / displacement amount (gf / ⁇ m) when the displacement amount of the ring-shaped holder 2 is measured is rotated.
  • a rigidity B in a direction perpendicular to the axis is assumed.
  • the fluid supply means 20 is preferably capable of controlling the fluid supply pressure so that the rigidity A is 200 gf / ⁇ m or less and the rigidity B is 800 gf / ⁇ m or more. If it is such, the above-mentioned local pressure difference can be suppressed more reliably, and a more accurate nanotopography can be obtained reliably and stably.
  • the supply water pressure is usually around 0.30 MPa unless a special pressure increasing means is used, and the upper limit of rigidity in this case is around 1500 gf / ⁇ m. Further, depending on the weight of the ring-shaped holder, a rigidity of 50 gf / ⁇ m or more is required to function as a hydrostatic bearing.
  • a thin plate-like workpiece W such as a silicon wafer is supported from the outer peripheral side along the radial direction by the ring-shaped holder 2.
  • the bearing portion 3 a faces both side surfaces of the ring-shaped holder 2
  • the bearing portion 3 b is on the outer peripheral surface of the ring-shaped holder 2. Arrange to face each other.
  • the fluid is supplied from the fluid supply means 20 through the supply hole of the hydrostatic bearing 3 from the direction of the rotation axis of the ring-shaped holder 2 between the side surface of the ring-shaped holder 2 and the bearing portion 3a. It supplies between the outer peripheral surface of the ring-shaped holder 2 and the bearing part 3b from the direction perpendicular
  • the rigidity in the direction of the rotation axis of the ring-shaped holder and the direction perpendicular to the rotation axis can be controlled independently as described in the double-head grinding apparatus of the present invention.
  • the degree of freedom of supporting the ring-shaped holder 2 in the direction of the rotation axis while maintaining the rigidity in the direction perpendicular to the rotation axis of the ring-shaped holder 2 sufficiently high Can be improved. As a result, even if the workpiece lot is changed or the grindstone is changed, a stable and highly accurate nanotopography can be obtained for each grinding.
  • the rigidity of the ring-shaped holder can be easily controlled by adjusting the supply pressure of the fluid to be supplied. Specifically, the rigidity can be increased by increasing the supply pressure, and the rigidity can be decreased by decreasing the supply pressure.
  • a preferable supply pressure of the fluid is such a supply pressure that the rigidity A in the rotation axis direction is 200 gf / ⁇ m or less and the rigidity B in the direction perpendicular to the rotation axis is 800 gf / ⁇ m or more. In this way, a highly accurate nanotopography can be obtained reliably and stably.
  • Example 1-4 Using a double-head grinding apparatus 1 of the present invention shown in FIG. 1, double-side grinding of a silicon wafer having a diameter of 300 mm was performed.
  • a whetstone SD # 3000 whetstone (Vitrified whetstone manufactured by Allied Material Co., Ltd.) made of vitrified bond was used.
  • the grinding amount was 40 ⁇ m.
  • Water was used as the fluid used to support the ring holder.
  • the supply pressure of the fluid supplied in the direction of the rotation axis of the ring-shaped holder and the direction perpendicular to the rotation axis was adjusted as follows.
  • eddy current type sensors 21 and 22 were installed to measure the displacement amount of the ring-shaped holder. Then, a load of 10 to 30 N is applied from the opposite side of the sensor by a force gauge, and the rigidity A and the rigidity B calculated by the load / displacement amount (gf / ⁇ m) are applied to the hydrostatic bearing so as to become desired values. Each feed water pressure was adjusted.
  • the rigidity B was set to 1200 gf / ⁇ m (Example 1), 800 gf / ⁇ m (Example 2), 600 gf / ⁇ m (Example 3), and 400 gf / ⁇ m (Example 4).
  • the nanotopography was evaluated when double-headed grinding of silicon wafers was performed with different parameters.
  • Example 1-4 results of Example 1-4 are shown in FIGS. 5-8, respectively, and the results of Comparative Examples are shown in FIG.
  • FIG. 5-8 it can be seen that nanotopography is improved by making the rigidity A smaller than the rigidity B in any of Examples 1-4.
  • the rigidity B is 800 gf / ⁇ m or more and the rigidity A is 200 gf / ⁇ m or less
  • the nanotopography is greatly improved as compared with the result of the comparative example. I understand that. Regarding this tendency, no clear difference was found between Example 1 and Example 2, and the same improvement effect was shown.
  • Example 1-4 the nanotopography was not deteriorated even when the work lot was changed or the grindstone was changed.
  • the double-head grinding apparatus and the double-head grinding method of the present invention improve the dispersion of the nanotopography that occurs depending on the work lot and the grinding wheel, and stably and highly accurate nanotopology for each grinding. It was confirmed that the graph could be obtained.
  • the supply pressure of the fluid such that the rigidity A is 200 gf / ⁇ m or less and the rigidity B is 800 gf / ⁇ m or more is a preferable condition in the present invention.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

 本発明は、薄板状のワークを径方向に沿って外周側から支持する自転可能なリング状ホルダーと、該リング状ホルダーにより支持された前記ワークの両面を同時に研削する一対の砥石とを有する両頭研削装置であって、更に、前記リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から供給される流体の静圧により前記リング状ホルダーを前記両方向から非接触支持する静圧軸受を具備し、前記自転軸方向から供給される流体と前記自転軸に垂直な方向から供給される流体の供給圧力をそれぞれ独立して制御可能なものであることを特徴とする両頭研削装置である。これにより、ワークのロットや砥石に依存して発生するナノトポグラフィーのばらつきを改善し、研削毎に安定して高精度なナノトポグラフィーを得ることができる両頭研削装置及びワークの両頭研削方法が提供される。

Description

両頭研削装置及びワークの両頭研削方法
 本発明は、半導体ウェーハ、露光原版用石英基板等の薄板状のワークの両面を同時に研削する両頭研削装置及びワークの両頭研削方法に関する。
 例えば、直径300mmに代表される大直径のシリコンウェーハを採用する先端デバイスでは、ナノトポグラフィーと呼ばれる表面うねり成分を小さくすることが求められている。ナノトポグラフィーとは、ウェーハの表面形状の一種で、ソリやwarpよりも波長が短く、表面粗さより波長の長い、0.2~20mmの波長成分の凹凸を示すものであり、PV値は0.1~0.2μmの極めて浅いうねり成分である。このナノトポグラフィーはデバイス工程におけるSTI(Shallow Trench Isolation)工程の歩留まりに影響すると言われ、デバイス基板となるシリコンウェーハに対し、デザインルールの微細化と共に厳しいレベルが要求されている。
 ナノトポグラフィーは、シリコンウェーハの加工工程で作り込まれるものである。特に基準面を持たない加工方法、例えばワイヤーソー切断や両頭研削で悪化しやすく、ワイヤーソー切断における相対的なワイヤーの蛇行や、両頭研削におけるウェーハのユガミの改善や管理が重要である。
 ここで、従来の両頭研削方法について説明する。図10は従来の両頭研削装置の一例を示す概略図である。
 図10に示すように、両頭研削装置101は、薄板状のワークWを支持する自転可能なリング状ホルダー102と、リング状ホルダー102を流体の静圧により非接触支持する一対の静圧支持部材103と、リング状ホルダー102により支持されたワークWの両面を同時に研削する一対の砥石104を備えている。一対の静圧支持部材103はリング状ホルダー102の側面の両側にそれぞれ位置している。砥石104はモータ112に取り付けられており、高速回転できるようになっている。
 この両頭研削装置101を用い、まず、リング状ホルダー102によりワークWを径方向に沿って外周面側から支持する。次に、リング状ホルダー102を自転させることにより、ワークWを自転させつつ、リング状ホルダー102とそれぞれの静圧支持部材103との間に流体を供給し、リング状ホルダー102を流体の静圧によって支持する。このようにしてリング状ホルダー102及び静圧支持部材103で支持されながら自転するワークWの両面をモータ112により高速回転する砥石104を用いて研削する。
 従来の両頭研削において、ナノトポグラフィーを悪化させる要因は多々あるが、例えば特許文献1に示されるように、リング状ホルダーの自転軸に沿った位置の乱れが大きな要因であることがわかっている。そのため、リング状ホルダーを精度良く回転させるための支持方法として、リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から流体を供給することでリング状ホルダーを非接触支持する静圧軸受を用いることが好適であることが知られている(特許文献2)。
 しかしながら、このような静圧軸受を用いても、ナノトポグラフィーが悪化してしまうことがあり、安定して高精度なナノトポグラフィーを得ることができないという問題がある。
特開2009-190125号公報 特開2011-161611号公報
 そこで、本発明者がナノトポグラフィーが悪化してしまう現象について詳細に調査したところ、特に原料ワークのロットが変わったり砥石交換を実施したりすると、ナノトポグラフィーが大きく変わってしまう現象が起こることが判明した。
 本発明は前述のような問題に鑑みてなされたもので、ワークのロットや砥石に依存して発生するナノトポグラフィーのばらつきを改善し、研削毎に安定して高精度なナノトポグラフィーを得ることができる両頭研削装置及びワークの両頭研削方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、薄板状のワークを径方向に沿って外周側から支持する自転可能なリング状ホルダーと、該リング状ホルダーにより支持された前記ワークの両面を同時に研削する一対の砥石とを有する両頭研削装置であって、更に、前記リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から供給される流体の静圧により前記リング状ホルダーを前記両方向から非接触支持する静圧軸受を具備し、前記自転軸方向から供給される流体と前記自転軸に垂直な方向から供給される流体の供給圧力をそれぞれ独立して制御可能なものであることを特徴とする両頭研削装置が提供される。
 このような両頭研削装置であれば、リング状ホルダーの自転軸方向と自転軸に垂直な方向の支持剛性を独立に制御でき、ワークのロットの変更や砥石交換を行ったとしても、研削毎に安定して高精度なナノトポグラフィーを得ることができるものとなる。
 このとき、前記自転軸の一方向から前記流体を供給した状態で他方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Aとし、前記自転軸に垂直な方向から前記流体を供給した状態で反対方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Bとしたとき、前記剛性Aが200gf/μm以下に、前記剛性Bが800gf/μm以上になるように前記流体の供給圧力を制御可能なものであることが好ましい。
 このようなものであれば、より高精度なナノトポグラフィーを確実に安定して得ることができるものとなる。
 また、本発明によれば、リング状ホルダーによって、薄板状のワークを径方向に沿って外周側から支持して自転させるとともに、一対の砥石によって、前記リング状ホルダーにより支持した前記ワークの両面を同時に研削するワークの両頭研削方法であって、前記リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から、供給圧力をそれぞれ独立して制御しながら流体を供給し、静圧軸受によって前記供給された流体の静圧により前記リング状ホルダーを前記両方向から非接触支持しながら前記ワークの両面を同時に研削することを特徴とするワークの両頭研削方法が提供される。
 このような方法であれば、リング状ホルダーの自転軸方向と自転軸に垂直な方向の支持剛性を独立に制御でき、ワークのロットの変更や砥石交換を行ったとしても、研削毎に安定して高精度なナノトポグラフィーを得ることができる。
 またこのとき、前記自転軸の一方向から前記流体を供給した状態で他方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Aとし、前記自転軸に垂直な方向から前記流体を供給した状態で反対方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Bとしたとき、前記剛性Aが200gf/μm以下に、前記剛性Bが800gf/μm以上になるように前記流体の供給圧力を制御することが好ましい。
 このようにすれば、より高精度なナノトポグラフィーを確実に安定して得ることができる。
 本発明では、両頭研削装置において、リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から、供給圧力をそれぞれ独立して制御しながら流体を供給し、静圧軸受によって供給された流体の静圧によりリング状ホルダーを前記両方向から非接触支持しながらワークの両面を同時に研削するので、リング状ホルダーの自転軸方向と自転軸に垂直な方向の支持剛性を独立に制御でき、ワークのロットの変更や砥石交換を行ったとしても、研削毎に安定して高精度なナノトポグラフィーを得ることができる。
本発明の両頭研削装置の一例を示す概略図である。 本発明の両頭研削装置のリング状ホルダーの一例を示す概略図である。(A)リング状ホルダーの側面図である。(B)リング状ホルダーのキャリアの側面図である。 静圧軸受によるリング状ホルダーの支持方法を説明する説明図である。 供給する流体の供給圧力の調整方法を説明する説明図である。 実施例1の結果を示す図である。 実施例2の結果を示す図である。 実施例3の結果を示す図である。 実施例4の結果を示す図である。 比較例の結果を示す図である。 従来の両頭研削装置の一例を示す概略図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上記したように、ナノトポグラフィーの悪化の要因として、原料ワークや使用する砥石の影響があることが本発明者の調査により判明した。更に、本発明者は、リング状ホルダーの支持に静圧軸受方式を採用した方法において、原料ワークや使用する砥石の影響を低減する方法について鋭意検討を重ねた。その結果、以下のことを見出した。
 従来の両頭研削においては、原料ワークの形状や表裏の面粗さ及び左右砥石の自生作用などの違いにより左右面の研削状態が異なり、ワークは左右より複雑な力を受けながら研削が進行すると考えられる。そのため、研削加工毎に左右の力のバランスが釣り合ったワーク回転面は微妙に異なり、このワーク回転面のリング状ホルダーの回転面に対する乖離が局所的な加工圧力差を生じさせて、微小なナノトポグラフィーの悪化を招いていると考えられる。
 このナノトポグラフィーの悪化を防止するためには、リング状ホルダーの自転軸方向の支持剛性を低下させて支持の自由度を向上させることで、研削加工毎に異なる左右の力のバランスが釣り合ったワーク回転面に対し、リング状ホルダーがならって回転できるようにし、その結果、局所的な加工圧力差をなくすことが有効と考えられる。
 しかし、従来の静圧軸受では、リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から供給する流体を1つの供給源から供給し、その供給圧力が全て同じになるように構成されているため、リング状ホルダーの自転軸方向の支持の自由度を向上させることにより、その自転軸に垂直な方向の支持剛性も同時に低下してしまう。そのため、リング状ホルダーの自転軸に垂直な方向の偏心回転が容易に発生するようになり、安定した研削加工を妨げてしまう。
 そこで、本発明では、リング状ホルダーの自転軸方向と自転軸に垂直な方向に供給される流体をそれぞれ独立に供給可能にすることで、すなわち、その供給圧力を独立して制御可能に構成すれば、自転軸方向の支持の自由度を向上させると同時に、自転軸に垂直な方向の支持剛性を維持しながら研削を行うことができ、その結果、安定してより高精度なナノトポグラフィーを得ることが可能となる。
 本発明者はこの検討結果を基に、更にこれらを実施するための最良の形態について精査し、本発明を完成させた。
 まず、本発明の両頭研削装置について説明する。
 図1に示すように、本発明の両頭研削装置1は、主に、ワークWを支持するリング状ホルダー2と、リング状ホルダー2を流体の静圧により非接触支持する静圧軸受3と、ワークWの両面を同時に研削する一対の砥石4を備えている。
 リング状ホルダー2はワークWを径方向に沿って外周側から支持するものであり、自転軸周りに自転可能である。図2(A)に示すように、リング状ホルダー2は中央にウェーハWを挿入して支持するための保持孔を有するキャリア5と、キャリア5を取り付けるホルダー部6と、取り付けたキャリア5を押さえるためのリング部7から構成される。図2(A)(B)に示すように、キャリア5にはホルダー部6にネジ等で取り付けるための取付穴8が設けられている。
 リング状ホルダー2を自転させるために、ホルダー用モータ9に接続された駆動歯車10が配設されている。駆動歯車10は内歯車部11と噛合っており、駆動歯車10をホルダー用モータ9により回転させることによって、内歯車部11を通じてリング状ホルダー2を自転させることが可能である。
 また、図2(A)に示すように、キャリア5の保持孔の縁部に内側に向かって突出した突起14が形成されている。この突起はワークWの周縁部に形成されたノッチと呼ばれる切り欠きの形状に適合し、リング状ホルダー2の回転動作をワークWに伝達することができるようになっている。
 リング状ホルダー2は、静圧軸受3により支持されることによって精度良く回転可能となっている。
 ここで、静圧軸受3について述べる。図3に示すように、静圧軸受3はリング状ホルダー2の両方の側面側に対向して配置される軸受部3aと、リング状ホルダー2の外周面に対向して配置される軸受部3bとで構成されている。軸受部3aにはリング状ホルダー2の両方の側面に対して流体を供給するための供給孔が設けられ、軸受部3bには外周面に対して流体を供給するための供給孔が設けられている。
 図3に示すように、これら供給孔を介し、流体供給手段20から流体13aがリング状ホルダー2の自転軸方向からリング状ホルダー2の側面と軸受部3aとの間に供給され、流体13bが自転軸に垂直な方向からリング状ホルダー2の外周面と軸受部3bとの間に供給される。
 このようにして供給された流体の静圧により、軸受部3aでその自転軸方向から、また、軸受部3bでその自転軸方向に垂直な方向からリング状ホルダー2を非接触の状態で支持する。
 流体供給手段20は、自転軸方向から供給される流体13aと自転軸に垂直な方向から供給される流体13bの供給圧力をそれぞれ独立して制御可能に構成される。これ以外、流体供給手段20は特に限定されず、例えば、流体の供給経路上に圧力調整弁を設けてそれぞれの供給圧力を調整したり、完全に独立した流体供給手段を2つ設けるようにしても良い。ここで静圧軸受3に供給する流体としては、特に限定されることはないが、例えば水や空気を用いることができる。
 図1に示すように、砥石4は砥石用モータ12に接続されており、高速回転できるようになっている。ここで、砥石4は特に限定されず、従来と同様のものを用いることができる。例えば、平均砥粒径が4μmの番手#3000のものを用いることができる。さらには、番手#6000~8000の高番手のものとすることも可能である。この例としては、平均粒径1μm以下のダイヤモンド砥粒とビトリファイドボンド材からなるものが挙げられる。
 このような両頭研削装置1であれば、静圧軸受3に供給する流体の供給圧力をそれぞれ独立して制御することで、リング状ホルダー2の自転軸方向と自転軸に垂直な方向の剛性を独立に制御できるものとなる。そのため、リング状ホルダー2の自転軸方向から供給する流体の供給圧力を低くしてこの方向のリング状ホルダー2の剛性を低下させ、すなわち、支持の自由度を向上させると同時に、リング状ホルダー2の自転軸に垂直な方向から供給する流体の供給圧力を高くしてこの方向のリング状ホルダー2の剛性を十分に高く維持した状態でリング状ホルダー2を支持することができる。このようにしてリング状ホルダー2を支持すれば、研削加工中に局所的な圧力差を抑制でき、ワークのロットの変更や砥石交換を行ったとしても、研削毎に安定して高精度なナノトポグラフィーを得ることができる。
 ここで、上記した剛性の定義については、自転軸の一方向から流体を供給した状態で他方向からリング状ホルダー2に加重をかけ、リング状ホルダー2の変位量を測定した際の加重/変位量(gf/μm)を自転軸方向の剛性Aとする。また、自転軸に垂直な方向から流体を供給した状態で反対方向からリング状ホルダー2に加重をかけ、リング状ホルダー2の変位量を測定した際の加重/変位量(gf/μm)を自転軸に垂直な方向の剛性Bとする。
 流体供給手段20は、この剛性Aが200gf/μm以下に、剛性Bが800gf/μm以上になるように流体の供給圧力を制御可能なものであることが好ましい。
 このようなものであれば、上記した局所的な圧力差をより確実に抑制でき、より高精度なナノトポグラフィーを確実に安定して得ることができる。
 なお、供給水圧は特別な増圧手段を用いなければ通常0.30MPa前後となり、この場合の剛性の上限は1500gf/μm前後である。また、リング状ホルダーの重さに依るが、静圧軸受として機能するには、50gf/μm以上の剛性が必要である。
 次に、本発明のワークの両頭研削方法について説明する。ここでは、図1-3に示す本発明の両頭研削装置1を用いた場合について説明する。
 まず、例えばシリコンウェーハなどの薄板状のワークWをリング状ホルダー2によって径方向に沿って外周側から支持する。このリング状ホルダー2を支持するための静圧軸受3を、上記したように、軸受部3aがリング状ホルダー2の両方の側面側に対向し、軸受部3bがリング状ホルダー2の外周面に対向するように配置する。
 次に、静圧軸受3の供給孔を介し、流体供給手段20から流体をリング状ホルダー2の自転軸方向からリング状ホルダー2の側面と軸受部3aとの間に供給し、また、流体を自転軸に垂直な方向からリング状ホルダー2の外周面と軸受部3bとの間に供給する。これら供給した流体の静圧により、軸受部3aでその自転軸方向から、また、軸受部3bでその自転軸方向に垂直な方向からリング状ホルダー2を非接触の状態で支持する。
 このようにしてリング状ホルダー2を静圧軸受3によってリング状ホルダー2の自転軸方向及び自転軸に垂直な方向の両方向から支持しながら、ホルダー用モータ9によりリング状ホルダー2を自転させつつ、砥石用モータ12により砥石4を回転させ、ワークWの両面を同時に研削する。
 本発明のワークの両頭研削方法によれば、上記した本発明の両頭研削装置で説明したのと同様に、リング状ホルダーの自転軸方向と自転軸に垂直な方向の剛性を独立に制御できるので、研削加工中に局所的な圧力差を抑制するために、リング状ホルダー2の自転軸に垂直な方向の剛性を十分に高く維持しつつ、リング状ホルダー2の自転軸方向の支持の自由度を向上させることができる。その結果、ワークのロットの変更や砥石交換を行ったとしても、研削毎に安定して高精度なナノトポグラフィーを得ることができる。
 このとき、リング状ホルダーの剛性は供給する流体の供給圧力を調整することで容易に制御できる。具体的には、供給圧力を高くすれば剛性を高く、供給圧力を低くすれば剛性を低く変化させることができる。例えば、好ましい流体の供給圧力は、上記した自転軸方向の剛性Aが200gf/μm以下に、自転軸に垂直な方向の剛性Bが800gf/μm以上にそれぞれなるような供給圧力である。
 このようにすれば、より高精度なナノトポグラフィーを確実に安定して得ることができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1-4)
 図1に示す本発明の両頭研削装置1を用い、直径300mmのシリコンウェーハの両頭研削を行った。砥石として、ビトリファイドボンドからなるSD#3000砥石(株式会社アライドマテリアル製 ビトリファイド砥石)を用いた。研削量は40μmとした。リング状ホルダーの支持のために用いた流体として水を使用した。
 リング状ホルダーの自転軸方向と自転軸に垂直な方向に供給する流体の供給圧力を以下のようにして調整した。
 図4に示すように、リング状ホルダーの変位量測定のため、渦電流タイプのセンサー21、22を設置した。そして、センサーの反対側からフォースゲージによって10~30Nの荷重をかけて、荷重/変位量(gf/μm)により算出される剛性A及び剛性Bが所望の値になるように静圧軸受へのそれぞれの供給水圧を調整した。
 各実施例1-4において、剛性Bを1200gf/μm(実施例1)、800gf/μm(実施例2)、600gf/μm(実施例3)、400gf/μm(実施例4)とし、剛性Aを変化させてシリコンウェーハの両頭研削を行った際のナノトポグラフィを評価した。
(比較例)
 リング状ホルダーの自転軸方向と自転軸に垂直な方向の両方向から供給する流体をそれぞれ独立に制御できない従来の両頭研削装置を用い、両方向から供給する流体の供給圧力を同じにした以外、実施例1と同様の条件でシリコンウェーハの両頭研削を行った。そして、供給圧力を変化させたときのナノトポグラフィを実施例1と同様に評価した。
(実施例1―4と比較例の結果)
 実施例1―4の結果をそれぞれ図5―8に、比較例の結果を図9に示す。
 図5-8に示すように、実施例1-4のいずれにおいても、剛性Aを剛性Bより小さくすることにより、ナノトポグラフィが改善されていることが分かる。特に、図5、図6に示すように、剛性Bが800gf/μm以上である場合において、剛性Aが200gf/μm以下になると、比較例の結果と比べナノトポグラフィーが大幅に改善されていることが分かる。この傾向について実施例1と実施例2には明確な差は見られず、同等の改善効果を示した。
 また、実施例1-4においては、ワークのロットの変更や砥石交換を行ったとしても、ナノトポグラフィーが悪化することはなかった。
 これに対し、比較例では、図9に示すように、剛性A及びBを変化させてもナノトポグラフィの改善は見られず、200gf/μm以下になると、ナノトポグラフィーが悪化傾向にあることが分かる。
 以上のように、本発明の両頭研削装置及びワークの両頭研削方法は、ワークのロットや砥石に依存して発生するナノトポグラフィーのばらつきを改善し、研削毎に安定して高精度なナノトポグラフィーを得ることができることが確認できた。特に、剛性Aが200gf/μm以下に、剛性Bが800gf/μm以上になるような流体の供給圧力が本発明のおける好適な条件であることが分かった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  薄板状のワークを径方向に沿って外周側から支持する自転可能なリング状ホルダーと、該リング状ホルダーにより支持された前記ワークの両面を同時に研削する一対の砥石とを有する両頭研削装置であって、
     更に、前記リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から供給される流体の静圧により前記リング状ホルダーを前記両方向から非接触支持する静圧軸受を具備し、前記自転軸方向から供給される流体と前記自転軸に垂直な方向から供給される流体の供給圧力をそれぞれ独立して制御可能なものであることを特徴とする両頭研削装置。
  2.  前記自転軸の一方向から前記流体を供給した状態で他方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Aとし、前記自転軸に垂直な方向から前記流体を供給した状態で反対方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Bとしたとき、前記剛性Aが200gf/μm以下に、前記剛性Bが800gf/μm以上になるように前記流体の供給圧力を制御可能なものであることを特徴とする請求項1に記載の両頭研削装置。
  3.  リング状ホルダーによって、薄板状のワークを径方向に沿って外周側から支持して自転させるとともに、一対の砥石によって、前記リング状ホルダーにより支持した前記ワークの両面を同時に研削するワークの両頭研削方法であって、
     前記リング状ホルダーの自転軸方向及び自転軸に垂直な方向の両方向から、供給圧力をそれぞれ独立して制御しながら流体を供給し、静圧軸受によって前記供給された流体の静圧により前記リング状ホルダーを前記両方向から非接触支持しながら前記ワークの両面を同時に研削することを特徴とするワークの両頭研削方法。
  4.  前記自転軸の一方向から前記流体を供給した状態で他方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Aとし、前記自転軸に垂直な方向から前記流体を供給した状態で反対方向から前記リング状ホルダーに加重をかけた際の加重/変位量を剛性Bとしたとき、前記剛性Aが200gf/μm以下に、前記剛性Bが800gf/μm以上になるように前記流体の供給圧力を制御することを特徴とする請求項3に記載のワークの両頭研削方法。
PCT/JP2013/003476 2012-07-03 2013-06-03 両頭研削装置及びワークの両頭研削方法 WO2014006818A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147036423A KR101908359B1 (ko) 2012-07-03 2013-06-03 양두 연삭 장치 및 워크의 양두 연삭 방법
SG11201408057UA SG11201408057UA (en) 2012-07-03 2013-06-03 Double-disc grinding apparatus and workpiece double-disc grinding method
US14/405,326 US9669513B2 (en) 2012-07-03 2013-06-03 Double-disc grinding apparatus and workpiece double-disc grinding method
DE112013003038.1T DE112013003038B4 (de) 2012-07-03 2013-06-03 Doppelseitenschleifmaschine und Doppelseitenschleifverfahren für Werkstücke
CN201380035245.1A CN104411455B (zh) 2012-07-03 2013-06-03 双面磨削装置及工件的双面磨削方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012149203A JP5724958B2 (ja) 2012-07-03 2012-07-03 両頭研削装置及びワークの両頭研削方法
JP2012-149203 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014006818A1 true WO2014006818A1 (ja) 2014-01-09

Family

ID=49881594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003476 WO2014006818A1 (ja) 2012-07-03 2013-06-03 両頭研削装置及びワークの両頭研削方法

Country Status (8)

Country Link
US (1) US9669513B2 (ja)
JP (1) JP5724958B2 (ja)
KR (1) KR101908359B1 (ja)
CN (1) CN104411455B (ja)
DE (1) DE112013003038B4 (ja)
SG (1) SG11201408057UA (ja)
TW (1) TW201417947A (ja)
WO (1) WO2014006818A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125412A1 (ja) * 2014-02-20 2015-08-27 信越半導体株式会社 ワークの両頭研削方法
CN114770366A (zh) * 2022-05-17 2022-07-22 西安奕斯伟材料科技有限公司 一种硅片双面研磨装置的静压板及硅片双面研磨装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383700B2 (ja) * 2015-04-07 2018-08-29 光洋機械工業株式会社 薄板状ワークの製造方法及び両頭平面研削装置
JP7159861B2 (ja) * 2018-12-27 2022-10-25 株式会社Sumco 両頭研削方法
CN110216539B (zh) * 2019-05-30 2021-10-01 南京东升冶金机械有限公司 一种薄壁结构件的精密双面磨削用机床
CN114274041B (zh) * 2021-12-24 2023-03-14 西安奕斯伟材料科技有限公司 双面研磨装置和双面研磨方法
CN115070604B (zh) * 2022-06-09 2023-09-29 西安奕斯伟材料科技股份有限公司 双面研磨装置和双面研磨方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304854A (ja) * 1993-04-20 1994-11-01 Koyo Mach Ind Co Ltd 両頭平面研削方法および装置
JPH10291146A (ja) * 1997-04-18 1998-11-04 Nippei Toyama Corp ウエハの加工方法及び平面研削盤及びワークレスト
JP2005223344A (ja) * 2004-02-05 2005-08-18 Siltronic Ag 半導体ウェーハ、該半導体ウェーハを製造するための装置および方法
JP2009190125A (ja) * 2008-02-14 2009-08-27 Shin Etsu Handotai Co Ltd ワークの両頭研削装置およびワークの両頭研削方法
JP2011161611A (ja) * 2010-02-15 2011-08-25 Shin Etsu Handotai Co Ltd キャリア取り付け方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6807674A (ja) * 1968-05-31 1969-12-02
US3560064A (en) * 1969-01-03 1971-02-02 Garrett Corp Servo controlled fluid bearing
US4643592A (en) * 1984-11-09 1987-02-17 Lewis David W Vibration limiting of rotating machinery through active control means
DE69617682T2 (de) * 1995-06-23 2002-05-08 Unova U.K. Ltd., Aylesbury Kurbelzapfenschleifmaschine
US6296553B1 (en) 1997-04-02 2001-10-02 Nippei Toyama Corporation Grinding method, surface grinder, workpiece support, mechanism and work rest
US6062959A (en) * 1997-11-05 2000-05-16 Aplex Group Polishing system including a hydrostatic fluid bearing support
GB2335875B (en) * 1998-04-02 2000-08-30 Nsk Ltd Sphere grinding apparatus
JP4143563B2 (ja) 2004-03-16 2008-09-03 住友重機械工業株式会社 ワーク保持装置及び両面加工装置
DE102007049810B4 (de) 2007-10-17 2012-03-22 Siltronic Ag Simultanes Doppelseitenschleifen von Halbleiterscheiben
JP5627114B2 (ja) * 2011-07-08 2014-11-19 光洋機械工業株式会社 薄板状ワークの研削方法及び両頭平面研削盤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304854A (ja) * 1993-04-20 1994-11-01 Koyo Mach Ind Co Ltd 両頭平面研削方法および装置
JPH10291146A (ja) * 1997-04-18 1998-11-04 Nippei Toyama Corp ウエハの加工方法及び平面研削盤及びワークレスト
JP2005223344A (ja) * 2004-02-05 2005-08-18 Siltronic Ag 半導体ウェーハ、該半導体ウェーハを製造するための装置および方法
JP2009190125A (ja) * 2008-02-14 2009-08-27 Shin Etsu Handotai Co Ltd ワークの両頭研削装置およびワークの両頭研削方法
JP2011161611A (ja) * 2010-02-15 2011-08-25 Shin Etsu Handotai Co Ltd キャリア取り付け方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125412A1 (ja) * 2014-02-20 2015-08-27 信越半導体株式会社 ワークの両頭研削方法
JP2015155129A (ja) * 2014-02-20 2015-08-27 信越半導体株式会社 ワークの両頭研削方法
CN105980103A (zh) * 2014-02-20 2016-09-28 信越半导体株式会社 工件的双头磨削方法
TWI602656B (zh) * 2014-02-20 2017-10-21 Shin-Etsu Handotai Co Ltd Workpiece double head grinding method
US9962802B2 (en) 2014-02-20 2018-05-08 Shin-Etsu Handotai Co., Ltd. Workpiece double-disc grinding method
CN114770366A (zh) * 2022-05-17 2022-07-22 西安奕斯伟材料科技有限公司 一种硅片双面研磨装置的静压板及硅片双面研磨装置
CN114770366B (zh) * 2022-05-17 2023-11-17 西安奕斯伟材料科技股份有限公司 一种硅片双面研磨装置的静压板及硅片双面研磨装置

Also Published As

Publication number Publication date
TWI560025B (ja) 2016-12-01
SG11201408057UA (en) 2015-01-29
JP5724958B2 (ja) 2015-05-27
KR20150032844A (ko) 2015-03-30
DE112013003038T5 (de) 2015-03-19
CN104411455B (zh) 2016-08-17
CN104411455A (zh) 2015-03-11
US20150147944A1 (en) 2015-05-28
JP2014008594A (ja) 2014-01-20
TW201417947A (zh) 2014-05-16
KR101908359B1 (ko) 2018-10-16
US9669513B2 (en) 2017-06-06
DE112013003038B4 (de) 2021-12-23

Similar Documents

Publication Publication Date Title
JP5724958B2 (ja) 両頭研削装置及びワークの両頭研削方法
JP4985451B2 (ja) ワークの両頭研削装置およびワークの両頭研削方法
JP3969956B2 (ja) 両面同時研削方法および両面同時研削盤並びに両面同時ラップ方法および両面同時ラップ盤
JP5930871B2 (ja) 研削加工装置およびその制御方法
JP2005238444A (ja) 両面同時研削方法および両面同時研削盤並びに両面同時ラップ方法および両面同時ラップ盤
JP7136953B2 (ja) 加工装置
JP2014156006A (ja) 半導体ウエハの同時両面研磨用の研磨パッドを調節する方法
CN108349058B (zh) 承载环、磨削装置及磨削方法
KR102115010B1 (ko) 화학적 기계적 연마층 사전 텍스쳐링 방법
WO2015072050A1 (ja) ワークの両面研磨装置及び両面研磨方法
JP2011161611A (ja) キャリア取り付け方法
JP2007098487A (ja) ウェーハ面取り装置
WO2018123420A1 (ja) ガラス板の端面加工方法、製造方法及びガラス板
JPH0732252A (ja) ワーク自転型研削加工方法、ワーク自転型研削盤及びシリコンウェハ並びにセラミック基板
JP7324889B2 (ja) 面取り加工システム
JP2019136784A (ja) 両面研削装置
JP7159861B2 (ja) 両頭研削方法
KR20120109039A (ko) 웨이퍼 연마 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405326

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147036423

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130030381

Country of ref document: DE

Ref document number: 112013003038

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813038

Country of ref document: EP

Kind code of ref document: A1