WO2014001647A2 - An aroma milk composition - Google Patents
An aroma milk composition Download PDFInfo
- Publication number
- WO2014001647A2 WO2014001647A2 PCT/FI2013/050715 FI2013050715W WO2014001647A2 WO 2014001647 A2 WO2014001647 A2 WO 2014001647A2 FI 2013050715 W FI2013050715 W FI 2013050715W WO 2014001647 A2 WO2014001647 A2 WO 2014001647A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lactis
- milk
- diacetylactis
- strain
- biovar
- Prior art date
Links
- 235000013336 milk Nutrition 0.000 title claims abstract description 219
- 239000008267 milk Substances 0.000 title claims abstract description 219
- 210000004080 milk Anatomy 0.000 title claims abstract description 219
- 239000000203 mixture Substances 0.000 title claims abstract description 161
- 241000194035 Lactococcus lactis Species 0.000 claims abstract description 213
- 235000014897 Streptococcus lactis Nutrition 0.000 claims abstract description 142
- 238000004519 manufacturing process Methods 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 49
- 235000013365 dairy product Nutrition 0.000 claims abstract description 48
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 claims description 112
- 235000014121 butter Nutrition 0.000 claims description 91
- 239000000047 product Substances 0.000 claims description 68
- 239000002609 medium Substances 0.000 claims description 62
- 235000019197 fats Nutrition 0.000 claims description 52
- 239000006071 cream Substances 0.000 claims description 38
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 17
- 238000005273 aeration Methods 0.000 claims description 14
- 235000021243 milk fat Nutrition 0.000 claims description 14
- 235000013310 margarine Nutrition 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 108010079058 casein hydrolysate Proteins 0.000 claims description 11
- 239000001963 growth medium Substances 0.000 claims description 11
- 239000003264 margarine Substances 0.000 claims description 11
- 235000013861 fat-free Nutrition 0.000 claims description 10
- 235000010746 mayonnaise Nutrition 0.000 claims description 9
- 235000008983 soft cheese Nutrition 0.000 claims description 9
- 235000021262 sour milk Nutrition 0.000 claims description 9
- 239000008268 mayonnaise Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 229940041514 candida albicans extract Drugs 0.000 claims description 7
- 239000012138 yeast extract Substances 0.000 claims description 7
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 6
- 239000008101 lactose Substances 0.000 claims description 6
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 5
- 235000015155 buttermilk Nutrition 0.000 claims description 3
- 230000001580 bacterial effect Effects 0.000 abstract description 8
- 239000007858 starting material Substances 0.000 description 42
- 239000003925 fat Substances 0.000 description 39
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 20
- 235000013305 food Nutrition 0.000 description 16
- 239000000796 flavoring agent Substances 0.000 description 11
- 235000019640 taste Nutrition 0.000 description 11
- 239000004310 lactic acid Substances 0.000 description 10
- 235000014655 lactic acid Nutrition 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 235000019634 flavors Nutrition 0.000 description 9
- 235000013351 cheese Nutrition 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 235000015142 cultured sour cream Nutrition 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000005862 Whey Substances 0.000 description 5
- 108010046377 Whey Proteins Proteins 0.000 description 5
- 102000007544 Whey Proteins Human genes 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 238000010411 cooking Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 238000009928 pasteurization Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- GHBSPIPJMLAMEP-UHFFFAOYSA-N 6-pentyloxan-2-one Chemical compound CCCCCC1CCCC(=O)O1 GHBSPIPJMLAMEP-UHFFFAOYSA-N 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241000194034 Lactococcus lactis subsp. cremoris Species 0.000 description 2
- 241000194041 Lactococcus lactis subsp. lactis Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 235000014969 Streptococcus diacetilactis Nutrition 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 235000014048 cultured milk product Nutrition 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- BJRNKVDFDLYUGJ-RMPHRYRLSA-N hydroquinone O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-RMPHRYRLSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000020183 skimmed milk Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- PLXMOAALOJOTIY-FPTXNFDTSA-N Aesculin Natural products OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)[C@H]1Oc2cc3C=CC(=O)Oc3cc2O PLXMOAALOJOTIY-FPTXNFDTSA-N 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WNBCMONIPIJTSB-BGNCJLHMSA-N Cichoriin Natural products O([C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1)c1c(O)cc2c(OC(=O)C=C2)c1 WNBCMONIPIJTSB-BGNCJLHMSA-N 0.000 description 1
- GUBGYTABKSRVRQ-UHFFFAOYSA-N D-Cellobiose Natural products OCC1OC(OC2C(O)C(O)C(O)OC2CO)C(O)C(O)C1O GUBGYTABKSRVRQ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-Fructose Natural products OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 229920002444 Exopolysaccharide Polymers 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 241000192132 Leuconostoc Species 0.000 description 1
- 244000172809 Leuconostoc cremoris Species 0.000 description 1
- 235000017632 Leuconostoc cremoris Nutrition 0.000 description 1
- 241001468194 Leuconostoc mesenteroides subsp. dextranicum Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 240000002129 Malva sylvestris Species 0.000 description 1
- 235000006770 Malva sylvestris Nutrition 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- DKXNBNKWCZZMJT-UHFFFAOYSA-N O4-alpha-D-Mannopyranosyl-D-mannose Natural products O=CC(O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O DKXNBNKWCZZMJT-UHFFFAOYSA-N 0.000 description 1
- AYRXSINWFIIFAE-UHFFFAOYSA-N O6-alpha-D-Galactopyranosyl-D-galactose Natural products OCC1OC(OCC(O)C(O)C(O)C(O)C=O)C(O)C(O)C1O AYRXSINWFIIFAE-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NGFMICBWJRZIBI-JZRPKSSGSA-N Salicin Natural products O([C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O1)c1c(CO)cccc1 NGFMICBWJRZIBI-JZRPKSSGSA-N 0.000 description 1
- 235000014962 Streptococcus cremoris Nutrition 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002535 acidifier Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- NGFMICBWJRZIBI-UHFFFAOYSA-N alpha-salicin Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229960000271 arbutin Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000020247 cow milk Nutrition 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- -1 diacetyl Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XHCADAYNFIFUHF-TVKJYDDYSA-N esculin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=C1)O)=CC2=C1OC(=O)C=C2 XHCADAYNFIFUHF-TVKJYDDYSA-N 0.000 description 1
- 229940093496 esculin Drugs 0.000 description 1
- AWRMZKLXZLNBBK-UHFFFAOYSA-N esculin Natural products OC1OC(COc2cc3C=CC(=O)Oc3cc2O)C(O)C(O)C1O AWRMZKLXZLNBBK-UHFFFAOYSA-N 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000021001 fermented dairy product Nutrition 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- DLRVVLDZNNYCBX-CQUJWQHSSA-N gentiobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-CQUJWQHSSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000020251 goat milk Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229960002160 maltose Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000016046 other dairy product Nutrition 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BJRNKVDFDLYUGJ-UHFFFAOYSA-N p-hydroxyphenyl beta-D-alloside Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- NGFMICBWJRZIBI-UJPOAAIJSA-N salicin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1CO NGFMICBWJRZIBI-UJPOAAIJSA-N 0.000 description 1
- 229940120668 salicin Drugs 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 235000020254 sheep milk Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/123—Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
- A23C9/1234—Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C13/00—Cream; Cream preparations; Making thereof
- A23C13/12—Cream preparations
- A23C13/16—Cream preparations containing, or treated with, microorganisms, enzymes, or antibiotics; Sour cream
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C15/00—Butter; Butter preparations; Making thereof
- A23C15/02—Making thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C15/00—Butter; Butter preparations; Making thereof
- A23C15/12—Butter preparations
- A23C15/123—Addition of microorganisms or cultured milk products; Addition of enzymes; Addition of starter cultures other than destillates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C19/00—Cheese; Cheese preparations; Making thereof
- A23C19/02—Making cheese curd
- A23C19/032—Making cheese curd characterised by the use of specific microorganisms, or enzymes of microbial origin
- A23C19/0323—Making cheese curd characterised by the use of specific microorganisms, or enzymes of microbial origin using only lactic acid bacteria, e.g. Pediococcus and Leuconostoc species; Bifidobacteria; Microbial starters in general
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C19/00—Cheese; Cheese preparations; Making thereof
- A23C19/06—Treating cheese curd after whey separation; Products obtained thereby
- A23C19/068—Particular types of cheese
- A23C19/076—Soft unripened cheese, e.g. cottage or cream cheese
- A23C19/0765—Addition to the curd of additives other than acidifying agents, dairy products, proteins except gelatine, fats, enzymes, microorganisms, NaCl, CaCl2 or KCl; Foamed fresh cheese products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/005—Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
- A23D7/0053—Compositions other than spreads
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/007—Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/20—Synthetic spices, flavouring agents or condiments
- A23L27/24—Synthetic spices, flavouring agents or condiments prepared by fermentation
- A23L27/25—Dairy flavours
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2400/00—Lactic or propionic acid bacteria
- A23V2400/11—Lactobacillus
- A23V2400/139—Diacetylactis
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2400/00—Lactic or propionic acid bacteria
- A23V2400/11—Lactobacillus
- A23V2400/157—Lactis
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2400/00—Lactic or propionic acid bacteria
- A23V2400/21—Streptococcus, lactococcus
- A23V2400/219—Diacetilactis
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2400/00—Lactic or propionic acid bacteria
- A23V2400/21—Streptococcus, lactococcus
- A23V2400/231—Lactis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/46—Streptococcus ; Enterococcus; Lactococcus
Definitions
- Butter and fat spread are foods in the form of an emulsion, mainly water-in-oil type emulsion, comprising principally an aqueous phase and edible fats and oils mainly composed of triglycerides of fatty acids of vegetable, animal, milk or marine origin.
- IDF standard fat spreads shall be classified into three groups i.e., milk fat products, mixed fat products and marga- rine products, based on the origin of the fat.
- butter has been manufactured by separating milk into cream (about 40%) and heat-treating it. Then the cream is ripened and fer- mented using selected lactic acid bacteria and churned into butter.
- the butter manufacture has been simplified with different methods during decades. Fermenting/souring of butter can be made for example by adding selected lactic acid bacteria as such or together with naturally produced lactic acid directly to butter grains after churning. It is also known to use lot of diacetyl containing distillate produced by natural fermentation as such or with naturally produced lactic acid.
- raw material milk is separated into cream containing about 40 % fat and to a non-fat milk
- the present invention relates to a method for manufacturing butter using Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E- 123249.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Nutrition Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Dairy Products (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to n aroma milk composition and a method of producing it. Further, the present invention relates to use of the aroma milk composition in the manufacture of a dairy product. Finally, the present invention relates to a new bacterial strain of Lactococcus lactis
ssp.lactis.
Description
AN AROMA MILK COMPOSITION
FIELD OF THE INVENTION
The present invention relates to an aroma milk composition and a method of producing it. In addition, the present invention relates to use of the aroma milk composition in the manufacture of a dairy product. Further, the present invention relates to a process for manufacturing butter. Finally, the present invention relates to a new bacterial strain of Lactococcus lactis ssp. lactis biovar. diacetylactis.
BACKGROUND OF THE INVENTION
Butter and fat spread are foods in the form of an emulsion, mainly water-in-oil type emulsion, comprising principally an aqueous phase and edible fats and oils mainly composed of triglycerides of fatty acids of vegetable, animal, milk or marine origin. According to IDF standard fat spreads shall be classified into three groups i.e., milk fat products, mixed fat products and marga- rine products, based on the origin of the fat.
In milk fat products such as butter, the fat is 100% from milk fat. In mixed fat products, 10-80% of the total fat is milk fat and in margarine products only 3% (max.) of the total fat is milk fat. The maximum fat content shall be about 90%.
Butter is a dairy product, which has been made for centuries by churning and working fresh or fermented cream or milk. It is a water-in-oil emulsion, which contain at least 80% milk fat (also referring to as butterfat) and not more than 16% water, less than 2% of non-fat milk solids, and optionally salt. Butter is made as sweet cream butter or fermented cream butter, both of which can be salted. The aroma profiles of these two butters are very different. The aroma compounds of the fermented cream butter are formed by the fermentation of lactic acid bacteria, diacetyl being one of the most important ones.
Diacetyl is produced by the metabolism of a particular lactic acid bacterium, for instance, Lactococcus lactis ssp. lactis biov. diacetylactis -spec- ies. In the sugar metabolism by L. lactis -species glucose and lactose are converted to lactic acid more than 90%. Depending on the growth conditions L. lactis can also produce aroma compounds as diacetyl. The biosynthesis of these aroma compounds and lactic acid are closely related and they all have the same carbon source, pyruvate. Pyruvate can be metabolized from both glucose and citrate. LDH-enzyme can convert pyruvate to lactic acid. Without
active LDH, acetate and a-acetolactate can be produced, a-acetolactate is a precursor for diacetyl, which is composed from that only by chemical oxidation. The metabolism route depends on the bacterial energy demand and demands for specific end products. The factors affecting diacetyl production are type of bacterial strain, oxygen, citrate, pH and temperature.
The aroma of soured butter is mainly composed of diacetyl, δ- decalactone, butyric acid and capronic acid.
Traditionally, butter has been manufactured by separating milk into cream (about 40%) and heat-treating it. Then the cream is ripened and fer- mented using selected lactic acid bacteria and churned into butter. The butter manufacture has been simplified with different methods during decades. Fermenting/souring of butter can be made for example by adding selected lactic acid bacteria as such or together with naturally produced lactic acid directly to butter grains after churning. It is also known to use lot of diacetyl containing distillate produced by natural fermentation as such or with naturally produced lactic acid.
Butter is nowadays commonly produced by a process where sweet cream is turned into fermented butter by adding mixed starter(s) or starter distillate^) after churning. The butter manufacturing process using starter distillate is described in Figure 1 .
Mixed starters are bacterial cultures containing several bacterial strains. They are commonly used in dairy industry. The mixed starters used in dairy products can be divided into mesophilic and thermophilic starters according to optimum growth temperature. Mesophilic starter cultures, composed of acid-forming lactococci and often of flavor producers, are used in the production of fermented cream butter, fermented milk products and of many cheese varieties. The starter cultures are usually composed of different species or of several strains of a single species
Major problem associated with the use of the conventional mesophilic cultures, such as lactococcal species, is bacteriophages infections which are common and has a large economic impact. Some strains that are strong producers of polysaccharides, for example exopolysaccharides, are sensitive to bacteriophages as well. Consequently, dramatic adverse effect on the texture of the final fermented product can then be seen.
Starter distillate (aroma distillate, lactic starter distillate) is a steam distillate of special lactic cultures, such as a culture of at least one of species
Streptococcus lactis (now Lactococcus), S. cremoris, S. lactis subsp. diacety- lactis, Leuconostoc citrovorum, and L. dextranicum grown on a medium consisting of skim milk and citric acid (0.1 %). Starter distillate contains more than 98% water and a mixture of butterlike flavor compounds of which diacetyl is the major aroma compound (80 to 90%). Besides diacetyl, starter distillate typically contains acetaldehyde, ethyl formate, ethyl acetate, acetone, ethyl alcohol, 2- butanone, acetic acid, and acetoin. Depending on the diacetyl content and the intended use, the distillate is used in a dosage of 0.05 to 0.2%.
Bylund G, Butter and dairy spreads in Dairy processing handbook (Tetra Pak Processing Systems AB, Sweden, p 263-78, 1995) describes in detail different stages of processes for manufacturing butter and dairy spreads.
BRIEF DESCRIPTION OF THE INVENTION
The present invention relates to a new aroma milk composition having a high amount of aroma compounds, especially diacetyl, which is an im- portant aroma substance in dairy products such as butter. The aroma milk composition of the present invention comprises at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or Lactococcus lactis strains, and diacetyl in an amount of at least 50 mg/kg, based on the weight of a milk based medium.
The aroma milk composition of the present invention is well suited for use as a starter culture and/or as an aroma forming agent, a flavouring agent, and/or an adjuvant.
The present invention also relates to a method of producing an aroma milk composition comprising at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain or L. lactis strain as diacetyl producing strain and diacetyl at least in an amount of 50 mg/kg in a milk based medium, based on the weight of the medium.
Further, the present invention relates to use of the aroma milk composition of the present invention in the manufacture of a dairy/food product, such as milk fat products, mixed fat products, margarine products, edible fat, fat mixture, butter, a spread, a fresh/soft cheese, a cottage cheese, a cream, a sour cream, a mayonnaise, sour milk, quark or another milk-based and/or milk- derived product or any other products desiring a natural buttery flavour.
Additionally, the present invention relates to a dairy/food or nutri- tional product comprising said aroma milk composition.
The present invention also relates to a method of manufacturing butter using an aroma milk composition comprising at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl at least in an amount of 50 mg/kg.
The present invention further relates to Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains producing diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium during 10-28 hours of cultivation.
In addition, the present invention relates to new bacterial strain Lac- tococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 and to an aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
The present invention further relates to an aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E- 123249 as the diacetyl producing strain.
The present invention also relates to a method of manufacturing butter using Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E- 123249 and/or an aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
In addition, the present invention relates to a use of the strain Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 in food industry and to edible food or nutritional products, such as dairy products, which contain or which have been prepared by using said strain.
The objects of the invention are achieved by compositions, uses and methods characterized by what is stated in the independent claims. The preferred embodiments of the invention are disclosed in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a butter manufacturing process using starter distillate. Figure 2 shows the butter manufacturing process using the aroma milk composition of the present invention.
Figure 3 shows the results of Example 1 .
Figure 4 shows the results of Example 2.
Figure 5 shows the results of Example 3.
DETAILED DESCRIPTION OF THE INVENTION
There is a continuous need for compositions which contain desired aroma compounds, such as diacetyl, and which can be used as a natural raw material and/or an ingredient in the manufacture of food products to produce natural butter flavor into the food products.
The invention is based on a finding that certain Lactococcus lactis ssp. lactis biovar. diacetylactis strains and Lactococcus lactis strains are able to produce aroma compounds, especially diacetyl, in high amounts into their milk based growth media. Accordingly, these Lactococcus lactis ssp. lactis biovar. diacetylactis cultures or L. lactis cultures (aroma milk compositions) can be used in the production of a food product by adding a required/desired amount of the culture to the product, optionally during the manufacturing process of said product or separately to otherwise finished product. These Lactococcus lactis ssp. lactis biovar. diacetylactis cultures or L. lactis cultures (aro- ma milk compositions) can be used as such or as in the form of a lysate, a concentrate, a granulate, a pellet or a lyophilisate.
The present invention relates to an aroma milk composition comprising at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in high amount i.e., in an amount of 50 mg/kg, at the minimum, in a milk based medium. In one embodiment, the aroma milk composition comprises at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and at least one L. lactis strain, and diacetyl in an amount of 50 mg/kg, at the minimum, in a milk based medium. In another embodiment, the aroma milk composition comprises two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains and diacetyl in an amount of 50 mg/kg, at the minimum, in a milk based medium. In another embodiment, the aroma milk composition comprises one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and one L. lactis strain and diacetyl in an amount of 50 mg/kg, at the minimum, in a milk based medium. In another embodiment, the aroma milk composition comprises two or more Lactococcus lactis ssp. lactis biovar. diacetylactis and/or L. lactis strains and diacetyl in an amount of 50 mg/kg, at the minimum, in a milk based medium. In another embodiment, an aroma milk composition comprises at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg,
at the minimum, in the milk based medium. In another embodiment, an aroma milk composition comprises at least two Lactococcus lactis ssp. lactis biovar. diacetylactis strains or at least two L. lactis strains, and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in the milk based medium. In an additional embodiment, the aroma milk composition comprises one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and one L. lactis strain, and diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in the milk based medium. In a certain embodiment, the aroma milk composition consists of one Lactococcus lactis ssp. lactis biovar. di- acetylactis strain and one L. lactis strain, and contains diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in the milk based medium.
In one embodiment, the at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains are able to produce diacetyl in an amount of 50 mg/kg, at the minimum, during 10 to 28 hours cultivation in a milk based medium. In another embodiment, the at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains are able to produce diacetyl in an amount of 50 mg/kg, at the minimum, during 16 to 28 hours cultivation in a milk based medium. In a further embodiment, the at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains are able to produce diacetyl in an amount of 50 mg/kg, at the minimum, during 20 to 26 hours cultivation in a milk based medium. In a certain embodiment, the aroma composition com- prises Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E- 123249.
In the aroma milk composition of the present invention Lactococcus lactis ssp. lactis biovar. diacetylactis and/or L. lactis strain(s) can be either viable and active or living or non-viable (inactive) or dead (heat-killed, sonicated, shocked, irradiated or lysed). The sensory characteristics of butter manufactured with aroma milk composition containing an inactivated Lactococcus lactis ssp. lactis biovar. diacetylactis strain did not differ essentially from butter manufactured with aroma milk composition containing an active Lactococcus lactis ssp. lactis biovar. diacetylactis strain.
The aroma milk composition of the invention may also include other microorganisms contained in starters used in the food industry, specifically in the dairy industry. There are numeral well-documented strains of starters, which are commercially available from producers such as Chr Hansen A/S, Denmark, and Danisco/Wiesby GmbH, Germany.
The present invention further relates to Lactococcus lactis ssp. lactis biovar. diacetylactis strains or L. lactis strains producing diacetyl in an amount of 50 mg/kg, at the minimum, based on the weight of a milk based medium during 10 to 28 hours of cultivation. In one embodiment, a Lactococ- cus lactis ssp. lactis biovar. diacetylactis strain or a L. lactis strain produces diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based medium during 10 to 28 hours of cultivation. In another embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain or a L. lactis strain produces diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium during 16 to 28 hours of cultivation. In another embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain or a L. lactis strain produces diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based medium during 16 to 28 hours cultivation in a milk based medium. In a further embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain or a L. lactis strain produces diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium during 20 to 26 hours of cultivation. In another further embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain or a L. lactis strain produces diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based medium during 20 to 26 hours of cultivation.
The present invention further relates to strains Lactococcus lactis ssp. lactis biovar. diacetylactis and L. lactis producing together diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based me- dium during 10 to 28 hours of cultivation. In one embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain and a L. lactis strain produce diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based medium during 10 to 28 hours of cultivation. In one embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain and a L. lactis strain produce diacetyl in an amount of 50 mg/kg, at the minimum, based on the weight of a milk based medium during 16 to 28 hours
of cultivation. In another embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain and a L. lactis strain produce diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based medium during 16 to 28 hours of cultivation. In a further embodi- ment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain and a L. lactis strain produce diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium during 20 to 26 hours of cultivation. In another further embodiment, a Lactococcus lactis ssp. lactis biovar. diacetylactis strain and a L. lactis strain produce diacetyl in an amount of 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based medium during 20 to 26 hours of cultivation.
In a further embodiment, the Lactococcus lactis ssp. lactis biovar. diacetylactis strain or the L. lactis strain is not a metabolically modified mutant. In another further embodiment, the Lactococcus lactis ssp. lactis biovar. di- acetylactis strain or L. lactis strain is a metabolically modified mutant. Metabolic modification includes NAHD-oxidase (NOX) overproduction and/or a-aceto- lactate decarboxylase (ALDB) inactivation, for example.
As used herein, the term "milk based medium" (or milk based growth medium) refers to a medium containing milk, whey or combinations of milk and whey as such obtained from a milk producing animal (a cow, a sheep, a goat, a camel or a mare, for example) or pre-treated/pre-processed as desired, for example as a concentrate or as a hydrolysate or as enzyme treated milk or whey. The milk based medium can be prepared from one or more components obtained from milk and/or whey by various separation techniques, membrane techniques or combinations thereof, such as micro- and ultrafiltration permeates. The milk based medium may also contain whey or casein hydrolysate(s). The milk based medium for culturing the Lactococcus lactis ssp. lactis biovar. diacetylactis and/or L. lactis strain(s) and producing the aroma milk composition comprises in addition to lactose typically also citrate, yeast extract and/or casein hydrolysate.
The present invention is also directed to a method of producing an aroma milk composition comprising at least one diacetyl producing strain selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of at least 50 mg/kg in a milk based medium, which method comprises
- providing at least one Lactococcus lactis ssp. lactis biovar. diacety- lactis strain or L. lactis strain and a growth medium comprising lactose, citrate, yeast extract and/or casein hydrolysate, and mixing said strain with said medium; and
- incubating the mixture thus obtained for 10 to 28 hours in conditions optimized with regard to aeration and temperature to provide the aroma milk composition comprising at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and/or L. lactis strain, and diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium.
In a certain embodiment, the invention is directed to a method of producing an aroma milk composition comprising at least one diacetyl producing strain selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of at least 100 mg/kg, 150 mg/kg or 200 mg/kg in a milk based medium.
In a certain embodiment, the method of producing an aroma milk composition comprises one diacetyl producing strain selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains or L. lactis strains. In a certain embodiment, the method of producing an aroma milk composition comprises at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains. In a certain embodiment, the method of producing an aroma milk composition comprises two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains or L. lactis strains. In one embodiment, the method of producing an aroma milk composition comprises Lactococcus lactis ssp. lactis biovar. di- acetylactis strain(s). In another embodiment, the method of producing an aroma milk composition comprises one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and one L. lactis strain. In a certain embodiment, the method of producing an aroma milk composition comprises Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
In one embodiment, the incubation/culturing time is in the range of
16 to 28 hours. In another embodiment the incubation/culturing time is in the range of 20 to 26 hours.
In one embodiment, the citrate concentration of the growth medium is in the range of 0.80-1 .40%. In another embodiment, the citrate concentra- tion of the growth medium is in the range of 1 .00-1 .10%.
In one embodiment, the yeast extract and/or casein hydrolysate concentration of the growth medium is in the range of 0-0.5%. In another embodiment, the yeast extract and/or casein hydrolysate concentration of the growth medium is in the range of 0.25-0.5%.
In one embodiment, the aeration is in the range of 0.3-1 .1 vvm (vvm
= gas volume flow per unit of liquid volume per minute (volume per volume per minute)). In another embodiment, the aeration is in the range of 0.4-0.9 vvm. In another embodiment, the aeration is in the range of 0.55-0.9 vvm. In the aeration, the culture is mixed to dissolve the oxygen using mixers, mixing rates and other mixing conditions known by a person skilled in the art.
In one embodiment, the temperature is in the range of 27 to 33°C. In another embodiment temperature is in the range of 29 to 31 °C.
In a further embodiment, the method of producing an aroma milk composition comprising at least one Lactococcus lactis ssp. lactis biovar. di- acetylactis strain and/or L. lactis strain and diacetyl in an amount of 50 mg/kg, at the minimum, based on the weight of a milk based medium comprises
- providing at least one Lactococcus lactis ssp. lactis biovar. diacety- lactis strain and/or L. lactis strain and a growth medium comprising lactose, citrate, yeast extract and/or casein hydrolysate, and mixing said strain with said medium; and
- incubating the mixture thus obtained for 16-28 hours wherein the citrate concentration is 1 .00-1 .10%, the concentration of yeast extract and/or casein hydrolysate is in the range of 0.25-0.5%, the aeration is in the range of 0.4-0.9 vvm, and the temperature is in the range of 29 to 31 °C to provide said aroma milk composition.
In one embodiment, the pH of the aroma milk composition is in the range of 4.8-5.4. In another embodiment, the pH of the aroma milk composition is in the range of 5.0-5.2.
The ability of a Lactococcus lactis ssp. lactis biovar. diacetylactis strain or a L. lactis strain to produce high amount of diacetyl is important and useful for example in the manufacture of dairy products, such as butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk. Thus, the aroma milk composition of the present invention can be used in the manufacture of food/dairy products for providing taste (flavor) of butter. Depending on the diacetyl content of the aroma milk composition, the intended use and the
dairy product, the aroma milk composition is typically used in a dosage of 0.3 to 3%.
Specifically, the aroma milk composition of the present invention can be used in the manufacture of butter instead of a starter distillate and/or a mixed starter. Accordingly, the present invention relates to a use of the aroma milk composition in the manufacture of butter.
Further, the present invention relates to a process for manufacturing butter. Butter is made as sweet cream butter or fermented (or soured or cultured or lactic) cream butter, both of which can be salted.
In one embodiment, a process for manufacturing butter from raw material milk is as follows:
a) raw material milk is separated into cream containing about 40% fat and to a non-fat milk,
b) the non-fat milk obtained in step (a) is optionally used to produce an aroma milk composition,
c) the cream obtained in step (a) is pasteurized and optionally ripened,
d) then the cream is churned to separate butter grains and buttermilk,
e) the butter grains obtained in the step (d) are worked, f) aroma milk composition, optionally produced from the non-fat milk obtained from step (a), is added to the grains, standardized, and worked to butter, and
g) optionally the butter product is packed.
In another embodiment, a process for manufacturing butter from raw material milk is as follows:
a) raw material milk is separated into cream containing about 40 % fat and to a non-fat milk,
b) the non-fat milk obtained in step (a) is used to produce an aroma milk composition,
c) the cream obtained in step (a) is pasteurized and optionally ripened,
d) then the cream is churned to separate butter grains and buttermilk,
e) the butter grains obtained in the step (d) are worked,
f) aroma milk composition produced from the non-fat milk obtained from step (a), is added to the grains, standardized, and worked to butter, and g) optionally the butter product is packed.
Separation, pasteurization, ripening, churning, working and stand- ardization are done using typical methods and conditions known by the person skilled in the art.
In one embodiment, the aroma milk composition comprises at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of at least 50 mg/kg in a milk based medium. In another embodiment, the aroma milk composition comprises at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of at least 100 mg/kg, 150 mg/kg or 200 mg/kg in a milk based medium. In a certain embodiment, the aroma milk composition comprises two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains or L. lactis strains and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In another embodiment, the aroma milk composition comprises one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and one L. lactis strain and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In a further embodiment, the aroma milk composition comprises at least one diacetyl producing strain selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains or L. lactis strains and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In one embodiment, the aroma milk composition comprises Lactococcus lactis ssp. lactis biovar. diacetylactis strain(s). In a certain embodiment, the aroma milk composition comprises Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
The aroma milk composition can be used together with or instead of a starter distillate in a butter manufacture process. In addition, the aroma milk composition can be used together with or instead of a mixed starter in a butter manufacture process. In one embodiment, the aroma milk composition is used instead of a starter distillate in a butter manufacture process. In another embodiment, the aroma milk composition is used instead of a mixed starter in a butter manufacture process.
A butter manufacturing process with the aroma milk composition of the present invention is described in Figure 2.
Correspondingly, in the manufacture of other dairy products, such as milk fat products, mixed fat products, margarine products, edible fats, fat mixtures, spreads, fresh/soft cheeses, cottage cheeses, creams, sour creams, mayonnaises and sour milks, techniques known for these dairy products per se are generally used as far as various process conditions, such as temperature, time, mixing, and heat treatment, are concerned.
In the manufacture of spreads, the manufacture technique is a known emulsification technology combined with surface scraper crystallization, i.e. margarine technology. Said technology is commonly used in the manufacture of margarines, fat mixtures and recombined products within a wide range of fat content (e.g. 25 to 90%).
The manufacture of spreads may be divided into the following parts: preparation of an aqueous phase and a fat phase, emulsification, pasteurization, cooling/crystallization, and packaging. The ingredients are weighed and mixed as a batch, processed and cooled continuously. The smaller ingredients, such as emulsifiers, stabilizers, salt, preservatives, colour, aroma and vitamins, are dispersed in to the phases according to solubility. The aqueous phase con- tains the water-soluble ingredients while the fat phase contains the fat-soluble ingredients. In terms of manufacture technology, it is characteristic of the manufacture of a spread that the ingredients are added in a certain order.
In these processes the aroma milk composition can be added to the process in an appropriate process step or stage known by a person skilled in the art.
Fat mixtures and spreads are, as is well known, manufactured using either a mixer technique or an emulsion technique.
The aroma milk composition can be added to the butter component used as a raw material in the manufacture of fat mixture/blends and blended spreads. Alternatively, it can be added during the mixing phase to the emulsion or to the product flow.
The present invention is further directed to a dairy product, which comprises an aroma milk composition comprising at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, based on the weight of a milk based
medium. In one embodiment, the dairy product comprises an aroma milk composition comprising at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and at least one L. lactis strain, and diacetyl in high amount i.e., in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In another embodiment, the dairy product comprises an aroma milk composition comprising two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In another embodiment, the dairy product comprises an aroma milk composition comprising one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and one L. lactis strain, and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In another embodiment, the dairy product comprises an aroma milk composition comprising two or more Lactococcus lactis ssp. lactis biovar. diacetylactis and/or L. lactis strains, and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in a milk based medium. In a further embodiment, the dairy product comprises an aroma milk composition comprising at least two Lactococcus lactis ssp. lactis biovar. diacetylactis strains or at least two L. lactis strains, and diacetyl in an amount of 50 mg/kg, 100 mg/kg, 150 mg/kg or 200 mg/kg, at the minimum, in the milk based medium. In a certain embodiment, the dairy product comprises an aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
The present invention is also directed to a dairy product produced by using said aroma milk composition. In one embodiment of the present invention, the dairy product is a milk fat product, a mixed fat product, a margarine product, an edible fat, a fat mixture, butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk. In another embodiment, the dairy product is butter. The products of the present invention have butter like taste and/or aroma (natural butter flavour).
The dairy products, such as butter, cream, cooking cream, sour cream, fresh cheese and mixed fat spread, comprising an aroma milk composition comprising at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains, and diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium, were found to have palatable sensory characteristics.
With the aroma milk composition of the present invention it is possible to include in dairy products, such as cream, cooking cream, sour cream, fresh cheese, mixed fat spread, butter like flavor and aroma and/or balanced taste. Further, it was found that the aroma milk composition of the present invention did not cause any adverse tastes to the products or interfere with the conventional manufacturing processes.
In addition, the present invention is directed to the strain Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, which is able to produce aroma compounds, especially diacetyl in an amount of 50 mg/kg, at the mini- mum, in its growth medium during 10 to 28 hours of cultivation. Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 has been deposited with the depository authority VTT Culture Collection, Espoo, Finland (VTTCC) under accession number VTT E-123249.
Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E- 123249) is Gram-positive, facultative anaerobe, cocci in short chains, meso- philic (with optimum temperature of about 30°C). The strain ferments at least the following carbohydrates (sugars, sugar alcohols): D-ribose, D-galactose, D- glucose, D-fructose, D-mannose, N-acetylglucosamine, arbutin, esculin, sali- cin, D-cellobiose, D-maltose, D-lactose, D-trehalose, amidon and gentiobiose (API 50 CHL, bioMerieux).
Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E- 123249) can be cultured in MRS-broth (deMan, J. C, M. Rogosa, and M. E. Sharpe. J. Bacteriol. 23:130. 1960), in Nickels and Leesment medium (ISO 17792/IDF 180 Standard, Milk, milk products and mesophilic starter cultures - Enumeration of citrate-fermenting lactic acid bacterial - Colony-count technique at 25°C) or in modified KCA broth (Saxelin Maija-Liisa, et al., 1986. Applied and Environmental Microbiology 52:771 -777).
In the present invention it was surprisingly found that Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 was able to pro- duce diacetyl in an amount of at least four times higher than the starters known in the art in a medium containing lactose and citrate when each strain/starter culture was cultured in its optimal conditions. Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 was found to be much stronger producer of diacetyl than commercially available culture Probat 505 FRO 500 DCU (Danisco A S, Denmark), a mixed starter containing Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp.
lactis biovar. diacetylactis and Leuconostoc mesenteroides subsp. cremoris. Furthermore, Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E-123249) was found to be more potential producer of diacetyl than commercially available mixed starter C27 (CSK, The Netherlands).
In regulated conditions (citrate concentration 1 .0-1 .1 %, aeration
0.4-0.9 vvm, 29-31 °C) Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 produced diacetyl in an amount of 100 mg/kg, 150 mg/kg, 200 mg/kg and even in an amount of 240 mg/kg during a cultivation of 20 to 26 hours. Determination of diacetyl was made with static HS-GC-MS (headspace- gas chromatography-mass spectrometry) gas chromatography described in Miettinen SM et al., 2002, J Agric. Food Chem. 50, 4232-9.
The present invention is also directed to an aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E- 123249. In one embodiment, the aroma milk composition comprises only Lac- tococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 as the diacetyl producing strain. In another embodiment, the aroma milk composition comprises in addition to Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 at least one other Lactococcus lactis ssp. lactis biovar. diacetylactis strain. In a further embodiment, the other Lactococcus lactis ssp. lactis biovar. diacetylactis strain is a strain able to produce diacetyl in an amount of 50 mg/kg at the minimum during 10 to 28 hours of cultivation. In another embodiment, the aroma milk composition comprises in addition to Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 at least one Lactococcus lactis strain. In another embodiment, the aroma milk compo- sition comprises in addition to Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E-123249), one Lactococcus lactis strain. In a further embodiment, the L. lactis strain is a strain able to produce diacetyl in an amount of 50 mg/kg, at the minimum, during 10 to 28 hours of cultivation. In a certain embodiment, the aroma milk composition comprises strains Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E-123249), and Lactococcus lactis 1002 (Valio Oy). The aroma milk composition of the invention may also include other microorganisms contained in starters used in the food industry, specifically in the dairy industry.
In the aroma milk composition of the present invention, Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 can be either viable and active or living or non-viable (inactive) or dead (heat-killed, sonicated, shocked, irradiated or lysed).
The aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 can be used in the manufacture of food/dairy products for providing taste (flavor) of butter. In one embodiment, the present invention relates to a use of Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition com- prising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E- 123249 in the manufacture of butter. Further, the present invention relates to a method for manufacturing butter using Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E- 123249. In one embodiment of the invention, Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E- 123249 is used instead of a starter distillate or a mixed starter in a butter manufacturing process. In another embodiment, Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E- 123249 is used together with a starter distillate or mixed starter in a butter manufacturing process.
The present invention is further directed to a dairy product compris- ing Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249. The present invention is also directed to a dairy product produced by using Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 and/or the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E- 123249. In one embodiment of the present invention, the dairy product is a milk fat product, a mixed fat product, a margarine product, an edible fat, a fat mixture, butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk. In another embodiment, the dairy product is butter.
The term "dairy product" is intended to cover all consumable milk- based products that can be solid, jellied or liquid which are produced by using the aroma milk composition of the invention as an aroma forming compound, as a starter alone or in combination with conventional starters. The dairy prod- uct can be derived from, e.g., cow's milk, goat's milk, sheep's milk, skimmed milk, whole milk or milk recombined from powdered milk.
In the preparation of the dairy products, the optimum conditions for an economic, inexpensive and efficient production process are employed. For example, conventional heat treatment methods such as pasteurization (heating for example at about 72°C for at least 15 seconds), ESL treatment (heating for example at about 130°C for 1 to 2 seconds), UHT treatment (heating for example at about 138°C for 2 to 4 seconds) or high temperature pasteurization (heating at 95°C for 5 minutes), are employed.
In one embodiment of the invention, the aroma milk composition of the invention is used in the preparation of a fermented dairy product.
The fermentation conditions such as, starter culture(s), temperature, pH and time for the production of fermented milk products or ingredients are selected to meet the requirements of the final product. The selection of suitable conditions belongs to knowledge of a person skilled in the art.
The dairy product could be produced by using the conventional fermentation procedures of the dairy industry or alternatively, the product can be soured with a chemical acidifying agent.
The following examples illustrate the present invention. The examples are not to be construed to limit the claims in any manner whatsoever. EXAMPLE 1
PRODUCTION OF DIACETYL
Strains Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E-123249), and Lactococcus lactis 1002 (Valio Oy) were fermented in 500 ml recomposed milk medium supplemented with 0.25% casein hydrolysate in the temperature of 30°C and with 400 rpm mixing. Further 0.2 ml structol was added for preventing foaming.
In the fermentation of the strain DL 2126 citrate concentration was 1 .1 % and the aeration was 275 ml/min whereas for the strain 1002 citrate concentration was 1 .3% and the aeration was 295 ml/min.
Commercially available starters Probat 505 FRO 500 DCU (Dan- isco) ja C27 (CSK) were fermented in 500 ml recomposed milk medium supplemented with 0.25% casein hydrolysate in the temperature of 30°C and with 50 or 150 rpm mixing depending on the aeration. The aeration was 0-50 ml/min. Further 0.2 ml structol was added for preventing foaming. In the fermentation of Probat 505 FRO 500 DCU 6 citrate concentration was 1 .1 % and C27-stater citrate concentration was 1 .4%.
Strains Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E-123249) and L. lactis 1002 produced diacetyl in amounts of 200 mg/kg and 60 mg/kg, respectively whereas the amounts produced by the commercial starters Probat 505 FRO 500 DCU and C27 were 20 mg/kg and 29 mg/kg, respectively.
Determination of diacetyl was made with static HS-GC-MS (head- space-gas chromatography-mass spectrometry) gas chromatography as de- scribed in Miettinen S.M., et al., 2002, J Agric. Food Chem. 50, 4232-9.
The results are presented in Figure 3.
EXAMPLE 2
SENSORY CHARACTERSTICS OF THE BUTTERS
The butters were manufactured according to the process described in Figure 2, wherein either 1 % or 2% of the aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 was added to the butter grains after working.
The buttery taste, freshness, acidity and savor of these two butters were compared with a reference butter produced according to the process de- scribed in Figure 1 using a commercial starter distillate. The value for the buttery taste, freshness, acidity and savor of this reference product was set to 0.
The evaluation was done by a panel of 6 panelists trained to taste and evaluate butters and fat spreads.
The results are presented in Figure 4. EXAMPLE 3
DIACETYL CONTENTS OF BUTTERS
Diacetyl amounts in butters containing aroma milk composition comprising Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 (VTT E- 123249) were measured with static HS-GC-MS (headspace-gas chromatog-
raphy-mass spectrometry) gas chromatography as described in Miettinen et al., 2002, J Agric. Food Chem. 50, 4232-9.
DL2126 butter (churned) was made in traditional batch churn wherein the aroma milk composition was added to the butter grains in the churn. DL2126 butter (mixed) was made by mixing the aroma milk composition with finished butter, which did not contain starter distillate. Reference sample was a commercially available butter with was manufactured with starter distillate.
DL2126 butter (churned) contained diacetyl in an amount of about
5 mg/kg. DL2126 butter (mixed) contained diacetyl in an amount of 13 mg/kg whereas the reference butter contained diacetyl in an amount of less than 1 mg/kg. The results are presented in Figure 5.
EXAMPLE 4
SENSORY CHARACTERISTICS OF SOME DAIRY PRODUCTS
The aroma milk composition of the present invention was added to commercially available cream (double cream, 35% fat), cooking cream (15% fat), sour cream (10% fat, fresh cheese (13% fat), quark (0.3% fat), fat spread (82% fat). After the addition, the products were stored in the temperature of 5°C.
TABLE 1
Product The addition of the aroma milk composition
The sensory evaluations were made after five days of storage by comparing the aroma milk composition containing products with similar products without any addition of the aroma milk composition.
These evaluations showed that in neutral products, such as cream, cooking cream and fat spread, the aroma milk composition provided flavored and butter like taste to the products. Also clear differences in the flavors of these products were observed which also increased with the increasing amount of the aroma milk composition. There were no big differences between
the different additions of the aroma milk composition with regard to the taste of the products. The aroma milk composition did not coagulate the creams.
In soured products such as fresh cheese, quark and sour cream, the aroma milk composition clearly rounded the taste, balanced and made the products full flavored. In each product group the sample produced with the minimum amount of the aroma milk composition differed clearly from the reference product which was not supplemented with the aroma milk composition. Big differences between the added amounts of the aroma milk composition were not observed. EXAMPLE 5
PRODUCTION OF THE AROMA MILK COMPOSITION
The aroma milk compositions comprising the strain Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 were produced by culturing the strain in a milk based growth medium regulated with regard to the citrate concentration (1 .0-1 .1 %), aeration (0.4-0.9 vvm) and temperature (29- 31 °C) for 20 to 26 hours.
Diacetyl contents of the milk aroma compositions were 100 mg/kg, 150 mg/kg, 200 mg/kg and 240 mg/kg depending on the exact conditions.
Determination of diacetyl was made with static HS-GC-MS (head- space-gas chromatography-mass spectrometry) gas chromatography described in Miettinen S.M. et al., 2002, J Agric. Food Chem. 50, 4232-9.
EXAMPLE 6
THE AROMA MILK COMPOSITION WITH SELECTED DIACETYL PRODUCING STRAIN(S)
The aroma milk compositions comprising the strain Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 (composition A), the strain Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E- 123249 together with the strain Lactococcus lactis 1002 (Valio Oy) (composition B), and the strain Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126 VTT E-123249 together with the commercial starter Probat 505 FRO 500 DCU (Danisco) (composition C) were produced by culturing the strain(s)/starter in 500 ml recomposed milk medium supplemented with 0.25% casein hydrolysate, and 1 .1 % citrate (1 .1 % trisodium citrate) in the temperature of 30°C and with 400 rpm mixing for 21 hours. Further 0.025 ml structol was added for preventing foaming. The aeration was 150 ml/min.
Diacetyl contents of the produced milk aroma compositions were about 180 mg/kg (composition A), about 140 mg/kg (composition B), and about 230 mg/kg (composition C) depending on the diacetyl producing strain(s) selection.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Claims
1 . An aroma milk composition comprising at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains and diacetyl in an amount of at least 50 mg/kg in a milk based medium.
2. The aroma milk composition according to claim 1 , wherein the composition comprises at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and at least one L. lactis strain.
3. The aroma milk composition according to claim 1 , wherein the composition comprises two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains.
4. The aroma milk composition according to any one of claims 1 to 3, wherein the composition comprises one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and one L. lactis strain.
5. A method of preparing an aroma milk composition comprising at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and/or L. lactis strain as diacetyl producing strain, and diacetyl in an amount of at least 50 mg/kg in a milk based medium which method comprises
- providing at least one Lactococcus lactis ssp. lactis biovar. diacety- lactis strain or L. lactis strain and a growth medium comprising lactose, citrate, yeast extract and/or casein hydrolysate, and mixing said strain with said medium; and
- incubating the mixture thus obtained for 10 to 28 hours in conditions optimized with regard to pH, aeration, mixing and temperature to provide the aroma milk composition comprising at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain or L. lactis strain and diacetyl in an amount of 50 mg/kg at the minimum based on the weight of a milk based medium.
6. The method according to claim 5 wherein the aroma milk composition comprises at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain and/or L. lactis strain as diacetyl producing strain, and diacetyl in an amount of at least 100 mg/kg, preferably 150 mg/kg, preferably 200 mg/kg in a milk based medium.
7. The method according to claim 5 or claim 6 wherein at least one Lactococcus lactis ssp. lactis biovar. diacetylactis strain is provided.
8. The method according to any one of claims 5 to 7, wherein at least two diacetyl producing strains selected from Lactococcus lactis ssp. lactis biovar. diacetylactis strains and/or L. lactis strains are provided.
9. An aroma milk composition produced according to the method of any one of claims 5 to 8.
10. A use of the aroma milk composition according to any one of claims 1-4 or 9 in the manufacture of a dairy product.
1 1 . The use according to claim 10, wherein the product is a milk fat product, a mixed fat product, a margarine product, an edible fat, a fat blend, butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk.
12. A dairy product containing the aroma milk composition of any one of claims 1 to 4 or 9.
13. A dairy product prepared by using the aroma milk composition according to any one of claims 1 to 4 or 9 in the manufacture of the product.
14. The product according to claim 12 or claim 13, wherein the product is a milk fat product, a mixed fat product, a margarine product, an edible fat, a fat blend, butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk.
15. Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
16. A use of Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249 in the manufacture of a dairy product.
17. The use according to claim 16, wherein the product is a milk fat product, a mixed fat product, a margarine product, an edible fat, a fat mixture, butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk.
18. A dairy product containing Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
19. A dairy product prepared by using Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
20. The product according to claim 18 or claim 19, wherein the product is a milk fat product, a mixed fat product, a margarine product, an edible fat, a fat mixture, butter, a spread, a fresh/soft cheese, a cream, a mayonnaise or sour milk.
21 . The aroma milk composition according to any one of claims 1 to 4 or 9, wherein one of the Lactococcus lactis ssp. lactis biovar. diacetylactis strains is Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E- 123249.
22. The method according to any one of claims 5 to 8, wherein one of the Lactococcus lactis ssp. lactis biovar. diacetylactis strains is Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
23. The use according to claim 10 or claim 1 1 , wherein one of Lactococcus lactis ssp. lactis biovar. diacetylactis strains is Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
24. The dairy product according to any one of claims 12 to 14, wherein one of the Lactococcus lactis ssp. lactis biovar. diacetylactis strains is Lactococcus lactis ssp. lactis biovar. diacetylactis DL2126, VTT E-123249.
25. A process for manufacturing butter from raw material milk com- prising
a) raw material milk is separated into cream containing about 40% fat and to a non-fat milk,
b) optionally the non-fat milk obtained in step (a) is used to produce an aroma milk composition,
c) the cream obtained in step (a) is pasteurized and optionally ripened, d) then the cream is churned to separate butter grains and buttermilk, e) the butter grains obtained in the (d) are worked,
f) the aroma milk composition of any of claims 1 to 4, 9 or 21 , optionally produced from the non-fat milk obtained from step (a), is added to the grains and standardized,
g) finished butter is produced, and
h) optionally the butter product is packed.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/409,950 US20150289531A1 (en) | 2012-06-29 | 2013-06-27 | An aroma milk composition comprising diacetyl and uses thereof |
EP13745445.0A EP2866575A2 (en) | 2012-06-29 | 2013-06-27 | An aroma milk composition comprising diacetyl and uses thereof |
RU2015101759A RU2641264C2 (en) | 2012-06-29 | 2013-06-27 | Flavoured milk composition |
US15/950,659 US20180255797A1 (en) | 2012-06-29 | 2018-04-11 | Aroma milk composition comprising diacetyl and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20125755 | 2012-06-29 | ||
FI20125755A FI20125755L (en) | 2012-06-29 | 2012-06-29 | Flavored milk composition |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/409,950 A-371-Of-International US20150289531A1 (en) | 2012-06-29 | 2013-06-27 | An aroma milk composition comprising diacetyl and uses thereof |
US15/950,659 Division US20180255797A1 (en) | 2012-06-29 | 2018-04-11 | Aroma milk composition comprising diacetyl and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014001647A2 true WO2014001647A2 (en) | 2014-01-03 |
WO2014001647A3 WO2014001647A3 (en) | 2014-02-20 |
Family
ID=48917569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI2013/050715 WO2014001647A2 (en) | 2012-06-29 | 2013-06-27 | An aroma milk composition |
Country Status (5)
Country | Link |
---|---|
US (2) | US20150289531A1 (en) |
EP (1) | EP2866575A2 (en) |
FI (1) | FI20125755L (en) |
RU (1) | RU2641264C2 (en) |
WO (1) | WO2014001647A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112770639A (en) * | 2018-08-07 | 2021-05-07 | 科·汉森有限公司 | Process for producing fermented milk soft cheese products |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4191782A (en) * | 1976-08-09 | 1980-03-04 | Microlife Technics, Inc. | Method for diacetyl flavor and aroma development in creamed cottage cheese |
GB1597068A (en) * | 1978-05-30 | 1981-09-03 | Milk Marketing Board | Cultured butter or fully ripened cream butter |
JP2901008B2 (en) * | 1989-11-28 | 1999-06-02 | 明治乳業株式会社 | Diacetyl and acetoin fermentation by lactic acid bacteria |
US6406724B1 (en) * | 2000-09-12 | 2002-06-18 | Kraft Foods Holdings, Inc. | Natural biogenerated cheese flavoring system |
UA95297C2 (en) * | 2009-01-30 | 2011-07-25 | Национальный Университет Пищевых Технологий | Method to make butter with filler |
EP2292731B1 (en) * | 2009-08-13 | 2018-04-04 | DuPont Nutrition Biosciences ApS | Method for preparing complex cultures |
CA2821363C (en) * | 2010-12-20 | 2019-10-15 | Nestec S.A. | Flavour modulation by fermenting a milk source for multi-flavour formation with a cocktail of bacteria strains |
-
2012
- 2012-06-29 FI FI20125755A patent/FI20125755L/en not_active Application Discontinuation
-
2013
- 2013-06-27 RU RU2015101759A patent/RU2641264C2/en active
- 2013-06-27 US US14/409,950 patent/US20150289531A1/en not_active Abandoned
- 2013-06-27 WO PCT/FI2013/050715 patent/WO2014001647A2/en active Application Filing
- 2013-06-27 EP EP13745445.0A patent/EP2866575A2/en not_active Withdrawn
-
2018
- 2018-04-11 US US15/950,659 patent/US20180255797A1/en not_active Abandoned
Non-Patent Citations (7)
Title |
---|
BYLUND G: "Butter and dairy spreads in Dairy processing handbook", 1995, TETRA PAK PROCESSING SYSTEMS AB, pages: 263 - 78 |
DEMAN; J. C., M. ROGOSA; M. E. SHARPE, J. BACTERIOL, vol. 23, 1960, pages 130 |
MIETTINEN ET AL., J AGRIC. FOOD CHEM., vol. 50, 2002, pages 4232 - 9 |
MIETTINEN S.M. ET AL., J AGRIC. FOOD CHEM., vol. 50, 2002, pages 4232 - 9 |
MIETTINEN SM ET AL., J AGRIC. FOOD CHEM., vol. 50, 2002, pages 4232 - 9 |
SAXELIN MAIJA-LIISA ET AL., AP- PLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 52, 1986, pages 771 - 777 |
See also references of EP2866575A2 |
Also Published As
Publication number | Publication date |
---|---|
FI20125755L (en) | 2013-12-30 |
WO2014001647A3 (en) | 2014-02-20 |
RU2015101759A (en) | 2016-08-20 |
RU2641264C2 (en) | 2018-01-16 |
EP2866575A2 (en) | 2015-05-06 |
US20180255797A1 (en) | 2018-09-13 |
US20150289531A1 (en) | 2015-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6506688B2 (en) | Fermented milk with suppressed acidity rise and method for producing the same | |
JP2017104120A (en) | Fermented milk with improved flavor and manufacturing method therefor | |
AU2018204698A1 (en) | Lactobacillus fermentum bacteria with antifungal activity | |
US10368559B2 (en) | Streptococcus thermophilus strains | |
Kumar et al. | Natural and cultured buttermilk | |
WO2015068790A1 (en) | Fermented milk showing suppressed increase in acidity and method for producing same | |
US20180235249A1 (en) | Lactobacillus fermentum bacteria reducing the concentration of acetaldehyde | |
RU2593944C2 (en) | Taste and flavor modulation by biotechnology using bacterial strains, which provide a creamy taste and aroma | |
CN110934191B (en) | Method for providing cheese flavor for milk or milk beverage by using fermented cream | |
US20180255797A1 (en) | Aroma milk composition comprising diacetyl and uses thereof | |
Pappa et al. | Chemical, microbiological and sensory characteristics of ‘Tsalafouti’traditional Greek dairy product | |
RU2391844C2 (en) | Method of manufacturing fermented milk butter | |
JP5748261B2 (en) | Fresh cheese | |
Baranowska | Intensification of the synthesis of flavour compounds in yogurt by milk enrichment with their precursors | |
RU2441390C1 (en) | Production method of milk whey beverage | |
US11992023B2 (en) | Fermented milk soft cheese product and process of making same | |
JP2018157784A (en) | Process for producing fermented milk | |
WO2018142193A1 (en) | Method and system for producing yogurt-based food product | |
WO2023112941A1 (en) | Fermented composition and method for producing same | |
US20230097047A1 (en) | Salty yoghurt or yoghurt-like product and process | |
US20240074447A1 (en) | Milk powder composition | |
Imran et al. | Fermented Indigenous Indian Milk Products | |
Kurenkov et al. | Review of starters for the production of various dairy products | |
WO2022238329A1 (en) | Compositions and methods for producing fermented milk products | |
RU2414137C2 (en) | Method for production of cultured butter (versions) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13745445 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14409950 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013745445 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015101759 Country of ref document: RU Kind code of ref document: A |