WO2013191245A1 - 濁水処理システムおよび濁水処理方法 - Google Patents

濁水処理システムおよび濁水処理方法 Download PDF

Info

Publication number
WO2013191245A1
WO2013191245A1 PCT/JP2013/066951 JP2013066951W WO2013191245A1 WO 2013191245 A1 WO2013191245 A1 WO 2013191245A1 JP 2013066951 W JP2013066951 W JP 2013066951W WO 2013191245 A1 WO2013191245 A1 WO 2013191245A1
Authority
WO
WIPO (PCT)
Prior art keywords
muddy water
filter medium
water treatment
vacuum suction
tank
Prior art date
Application number
PCT/JP2013/066951
Other languages
English (en)
French (fr)
Inventor
健吾 西田
洋介 志方
小谷 謙二
彰 河崎
正志 大寺
Original Assignee
環境ソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環境ソリューションズ株式会社 filed Critical 環境ソリューションズ株式会社
Publication of WO2013191245A1 publication Critical patent/WO2013191245A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/063Underpressure, vacuum

Definitions

  • the present invention relates to a muddy water treatment system and a muddy water treatment method for purifying muddy water.
  • a filter press is generally used as a dehydrating and solidifying technique that can meet this requirement, but the apparatus is a large-scale pressurizing apparatus, and requires a wide installation area including pretreatment equipment.
  • a filter press with a large capacity for example, a filter chamber volume of 5 m 3 or more
  • the capacity increases, the number of filter chambers increases (for example, 100 chambers or more), and it takes a lot of time to peel off the cake and clean the filter cloth. ⁇ 6 hours or more).
  • the filter press requires turbid water treatment equipment composed of a flocculant stirring tank, a coagulation sedimentation separation water tank, a pH adjustment tank, a neutralization tank, and the like.
  • a muddy water tank is required.
  • the flocculant is mixed into the discharged dehydrated cake, in many cases, disposal as industrial waste is required, which is a problem from the viewpoint of recycling and cost.
  • Patent Document 1 discloses a suction method by immersing a membrane module in which a separation membrane is disposed in a filtration tank and suctioning the secondary side of the membrane module.
  • the membrane module is cleaned by aerating air from the secondary side of the membrane module to the primary side.
  • Patent Document 2 when thin filtration material is used for suction filtration or drainage of muddy water or muddy matter, the workpiece is vibrated, and cake peeling by suction and blowing is performed with the workpiece.
  • a liquid separation method is described in which filtration or liquid removal is performed while moving the cake layer formed alternately and repeatedly in a short cycle while contacting.
  • a filtration device that uses a filter medium and immerses in a muddy water tank and performs muddy water treatment or dehydration solidification treatment requires supply of muddy water and water level control by other means.
  • turbid water treatment turbid water having a low concentration (about 1000 ppm) is a treatment target, and further, a device for discharging the separation residue accumulated in the filtration tank is required.
  • the dehydration and solidification process although it depends on the processing capacity, it is inevitable that the apparatus becomes large and complicated and the production cost becomes high in order to achieve full automation.
  • An object of the present invention is to provide a turbid water treatment system and a turbid water treatment method that enable automatic supply of turbid water to a filtration tank by vacuum suction and automatic water level management.
  • the present invention is a turbid water treatment system for treating turbid water containing suspended solids, for performing a filtration process by immersing the turbid water in the filtration tank and a sealed filtration tank for filtering the turbid water.
  • At least one filter medium, a transfer passage for transferring muddy water from a turbid water storage source to the filter tank, and a vacuum suction means connected to the filter medium, and vacuum suction by the vacuum suction means Thus, a negative pressure is formed in the filtration tank through the filter medium, and turbid water is transferred from the storage source to the filter tank through the transfer channel, and the suspended substance is applied to the surface of the filter medium. It is a muddy water treatment system to be attached.
  • the air supply means connected to the filter medium, and the exhaust means for discharging the supplied gas from the filtration tank, after the vacuum suction by the vacuum suction means is stopped
  • the suspended material adhering to the surface of the filter medium is peeled off by supplying air to the inside of the filter medium by the air supply means, and the supplied gas is discharged from the filter tank by the exhaust means. Is preferred.
  • the turbid water treatment system includes a discharge channel for discharging the residue from the filter tank, and is supplied from the filter tank through the discharge channel by supplying air into the filter medium by the air supply means. It is preferable to discharge the residue.
  • the filter medium includes a plurality of filter media and includes a vacuum chamber disposed in the middle of a vacuum suction path connecting each filter medium and the vacuum suction means.
  • the present invention is also a turbid water treatment method for treating turbid water containing suspended solids, wherein at least one filter medium is placed in a sealed filtration tank for filtering turbid water, and vacuum suction is performed. Muddy water that forms a negative pressure in the filtration tank through the filter medium, transfers muddy water from the storage source of muddy water to the filter tank through a transfer channel, and adheres the suspended substance to the surface of the filter medium. It is a processing method.
  • the suspended matter adhering to the surface of the filter medium is peeled off by supplying air to the inside of the filter medium, and the supplied gas is filtered. It is preferable to discharge from the tank.
  • the residue is discharged from the filtration tank through the discharge flow path by supplying air into the filter medium.
  • the filter medium includes a plurality of filter media and includes a vacuum chamber disposed in the middle of a vacuum suction path for vacuum suction of each filter medium.
  • FIG. 1 shows a schematic configuration of an example of a muddy water treatment system according to an embodiment of the present invention, and the configuration will be described.
  • the muddy water treatment system 1 according to the present embodiment is mainly used for filtering muddy water and securing filtered water.
  • the muddy water treatment system 1 includes a sealed filtration tank 10 for filtering muddy water, a filtration device 12 having at least one filter medium 26 for performing a filtration treatment by immersing in muddy water in the filter tank 10, and muddy water.
  • the muddy water treatment system 1 includes an air supply device 20 as an air supply means connected to a filter medium, an exhaust port 22 as an exhaust means for discharging the supplied gas from the filtration tank 10, and treated muddy water from the filtration tank 10. And a discharge channel 30 for discharging the gas.
  • one end of the transfer flow path 28 is immersed in the muddy water 50 to be treated in the muddy water tank 14 to be treated, and the other end is connected to the upper inlet of the filtration tank 10.
  • a check valve 32 is provided on the way.
  • One end of the discharge channel 30 is connected to the lower outlet of the filtration tank 10, and the other end is configured to discharge the treated muddy water 52 to the treated muddy water tank 16.
  • a stop valve 34 is provided.
  • the filter medium 26 of the filter device 12 has a hollow shape, and is connected to a vacuum chamber 24 provided in the upper part of the filter tank 10 by a pipe 43 connected to the inside of the filter medium 26.
  • a pipe 45 is connected to the vacuum chamber 24, the other end of the pipe 45 is branched, one is connected to the suction side of the vacuum suction device 18 via a valve 40 by a pipe 46, and the other is connected by a pipe 48.
  • the valve 42 is connected to the air supply side of the air supply device 20.
  • the pipes 43, 45, and 46 function as a vacuum suction path, and the pipes 48, 45, and 43 function as an air supply path.
  • An exhaust port 22 is provided in the upper part of the sealed filtration tank 10 and is exhausted through an exhaust valve 36.
  • the muddy water treatment system 1 includes five filter media 26, but the number of filter media 26 may be at least one and is not limited thereto.
  • the upper portions of the filter media of the plurality of filter media 26 are connected to the vacuum chamber 24 provided in the upper portion of the filtration tank 10 by the pipe 43 connected to the inside of the filter media 26.
  • the lower portions of the filter media 26 are connected to each other by a pipe 44.
  • the valve 40 is opened, the valve 42 and the exhaust valve 36 are closed, and the vacuum suction device 18 is operated to start vacuum suction.
  • vacuum suction By vacuum suction, a negative pressure is formed in the filtration tank 10 through the filter medium 26, the check valve 32 is opened (the check valve 34 is closed), and the transfer muddy water tank 14 transfers the transfer flow path.
  • the turbid water 50 to be treated such as turbid water containing suspended solids (SS component) is transferred to the filtration tank 10 through 28, and the turbid water 50 to be treated is filtered by the filter medium 26 (vacuum suction filtration step).
  • the filtered water filtered by the filter medium 26 is introduced into the vacuum chamber 24 through the pipe 43, and then discharged out of the system through the pipes 45 and 46.
  • the muddy water 50 to be treated can be automatically supplied from the muddy water tank 14 to be treated to the filtration tank 10 by vacuum suction. Moreover, since the water level of the muddy water in the filtration tank 10 is kept substantially constant, it is not necessary to perform water level management by a sensor, a float valve, or the like. That is, it can be said that the filter medium 26 plays the role of a filtration and water level management sensor by installing the filter medium 26 in the sealed filter tank 10.
  • a simple means such as a vacuum suction device makes it possible to automatically supply turbid water and manage the water level. This makes it possible to reduce equipment costs and improve workability by reducing the number of incidental equipment and simplifying and automating the equipment.
  • the vacuum suction is stopped by closing the valve 40 and the exhaust valve 36 and the valve 42 are opened, and then the air supply device 20 is operated to start air supply.
  • a gas such as air is pumped into the filter medium 26
  • the gas is discharged from the surface of the filter medium 26, and suspended substances such as sludge adhering to the surface of the filter medium 26 are peeled off and dropped (underwater peeling process). ).
  • the gas that has passed through the filter medium 26 is exhausted from the exhaust valve 36.
  • the rise in the water level in the filtration tank 10 due to the expansion of the filter medium 26 may be absorbed by providing a space above the filter medium 26. Further, at least a part of the treated muddy water may be discharged to the treated muddy water tank 16 through the discharge channel 30.
  • the exhaust valve 36 may be closed as long as separation is possible while discharging the treated muddy water through the discharge channel 30.
  • the treated turbid water in the filter tank 10 continues to pass through the discharge channel 30 by the pressurized air. It is discharged into the treated muddy water tank 16 (air supply / discharge step). Turbid water treatment is performed by repeating the vacuum suction filtration step, the underwater peeling step, and the air supply / discharge step.
  • the muddy water tank 14 to be treated is not particularly limited as long as it stores muddy water to be treated and can connect or immerse at least one end of the transfer channel 28.
  • one end of the transfer channel 28 is immersed in the muddy water to be treated in the muddy water tank 14 to be treated, and vacuum suction processing is performed.
  • One end of the transfer channel 28 may be directly immersed in a processing target such as a river or a lake to perform a vacuum suction process.
  • the filter medium 26 used for the muddy water treatment is, for example, a cloth material and has a filtration function that allows moisture to pass through but does not allow a suspended substance or the like of a predetermined size to pass through. Appropriate ventilation is provided so that gas is discharged from the outside.
  • the shape and material of the filter medium 26 are not particularly limited as long as they can capture and separate suspended substances from water to be treated such as turbid water. What is necessary is just to select the shape and material of the filter medium 26 according to the property of the to-be-processed water used as a process target, the property, etc. of the suspended substance contained.
  • the shape of the filter medium 26 is not particularly limited as long as it is hollow.
  • a cylindrical shape such as a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, a plate shape, a spherical shape, or a polygonal shape.
  • the plate shape is preferable.
  • the filter medium is not swelled as much as possible and that as many filter media as possible be installed in the filter tank.
  • a plate-shaped filter medium 26 having one or more filter chambers 68 as shown in FIG. 4 can be used.
  • the filter medium 26 shown in FIG. 4 has a configuration in which one or more filter chambers 68 are formed by bonding filter cloths by the welded portion 72.
  • the filtered water filtered by the filter medium 26 is discharged from the inside of each filter chamber 68 through the lower water collection pipe 70.
  • Each filter chamber 68 may be inserted with a plate-like panel material or the like having a flow path through which filtered water passes.
  • the vacuum suction device 18 is not particularly limited as long as it can perform vacuum suction, and examples thereof include a vacuum pump and an ejector, and a device having a high degree of vacuum and a high displacement is preferable.
  • the air supply device 20 is not particularly limited as long as it can supply a gas such as air, and examples thereof include a compressor.
  • the air supplied to the filter medium 26 may be supplied from the upper part or the lower part of the filter medium 26, but sludge and the like can be peeled off from the surface of the filter medium in a substantially uniform state. Therefore, it is preferable to supply air from the lower part.
  • the vacuum chamber 24 temporarily stores filtered water filtered by each filter medium 26 when a plurality of filter media 26 are used.
  • a filtration flow rate close to the total of the filtration flow rates of the respective filter media 26 can be secured. Further, when a plurality of filter media 26 are used, it is possible to suppress the backflow of filtered water from one filter media to the other filter media.
  • the vacuum chamber 24 is provided in the upper part of the filtration tank 10 in the example of FIG. 1, you may install in the lower part or side surface of the filtration tank 10. FIG. Moreover, if appropriate piping is implemented, it may be provided outside the filtration tank 10.
  • the transfer channel 28 may be installed at any position in the filtration tank 10.
  • the discharge channel 30 may be attached to a lower outlet of the filtration tank 10 or an arbitrary position of the discharge pipe, and may be attached downward or horizontally.
  • the discharge of the residue from the filtration tank 10 may be performed by installing a separate air supply line in the transfer flow path 28 or the filtration tank 10 and directly supplying the air into the filtration tank 10.
  • the treated muddy water stored in the treated muddy water tank 16 may be further subjected to sludge dewatering and solidification as necessary.
  • the treatment muddy water tank 16 is not particularly limited as long as it can store the treatment muddy water 52.
  • the schematic structure of the other example of the muddy water processing system which concerns on embodiment of this invention is shown in FIG. 2, and the structure is demonstrated.
  • the muddy water treatment system 3 according to the present embodiment is mainly used for filtering muddy water to produce a cake of filtrate.
  • the muddy water treatment system 3 includes a sealed filtration tank 10 for filtering muddy water, a filtration device 12 having at least one filter medium 26 for performing a filtration treatment by immersing in muddy water in the filtration tank 10, and muddy water.
  • the muddy water treatment system 3 discharges the solidified cake from the air supply device 20 as the air supply means connected to the filter medium, the air inlet 74 as the muddy water discharge means for discharging muddy water from the filter tank 10, and the filter tank 10. And a discharge port 58 (which may also function as an exhaust means).
  • one end of the transfer channel 28 is immersed in the muddy water 50 to be treated in the muddy water tank 14 to be treated, and the other end is connected to the lower inlet of the filtration tank 10.
  • a valve 60 is provided in the middle. Note that the valve 60 may not be provided.
  • the discharge port 58 is sealed by a bottom lid 56 that can be opened and closed.
  • the discharge port 58 is configured to discharge the solidified cake onto a belt conveyor 54 serving as a cake collection unit, for example.
  • the filter medium 26 of the filter device 12 has a hollow shape, and is connected to a vacuum chamber 24 provided in the upper part of the filter tank 10 by a pipe 43 connected to the inside of the filter medium 26.
  • One end of a pipe 45 is connected to the vacuum chamber 24, the other end of the pipe 45 is branched, one is connected to the suction side of the vacuum suction device 18 via a valve 40 by a pipe 46, and the other is connected by a pipe 48.
  • the valve 42 is connected to the air supply side of the air supply device 20.
  • the pipes 43, 45, and 46 function as a vacuum suction path, and the pipes 48, 45, and 43 function as an air supply path.
  • An air suction port 74 is provided in the upper portion of the sealed filtration tank 10 so that air is introduced through a suction valve 76.
  • An air supply port 66 is provided in the upper part of the filtration tank 10, and one end of a pipe 64 is connected to the air supply port 66 through an air supply valve 62, and the other end is upstream of the valve 42 of the pipe 48. It is connected.
  • the muddy water treatment system 3 includes five filter media 26, but the number of filter media 26 may be at least one and is not limited thereto.
  • the upper portions of the filter media of the plurality of filter media 26 are connected to the vacuum chamber 24 provided in the upper portion of the filtration tank 10 by the pipe 43 connected to the inside of the filter media 26.
  • the lower portions of the filter media 26 are connected to each other by a pipe 44.
  • the valves 40 and 60 are opened, the valve 42, the suction valve 76, and the air supply valve 62 are closed, and the vacuum suction device 18 is operated to start vacuum suction.
  • a negative pressure is formed in the filtration tank 10 through the filter medium 26, and muddy water 50 to be treated such as turbid water containing suspended substances (SS components) from the muddy water tank 14 to be treated through the transfer channel 28.
  • SS components suspended substances
  • Is transferred to the filtration tank 10 and the filtered muddy water 50 is filtered by the filter medium 26 (vacuum suction filtration process).
  • the filtered water filtered by the filter medium 26 is introduced into the vacuum chamber 24 through the pipe 43, and then discharged out of the system through the pipes 45 and 46.
  • the suction valve 76 is opened and the muddy water to be treated remaining in the filtration tank 10 is naturally discharged to the muddy water tank 14 to be treated (discharge process).
  • the air supply device 20 is operated to start air supply, and the muddy water to be treated remaining in the filtration tank 10 is treated. You may forcibly discharge to the muddy water tank 14. This shortens the discharge time of the muddy water to be treated to the muddy water tank 14 to be treated.
  • the suction valve 76 is closed when naturally discharged while the vacuum suction is continued, and the air supply valve 62 when discharged forcibly. Is closed and the bottom cover 56 is opened, so that the filtration device 12 is in the air dry state (air dry process). Thereafter, the air supply device 20 is operated to supply air, and when a gas such as air is pumped into the filter medium 26, the gas is discharged from the surface of the filter medium 26 and the sludge adhered to the surface of the filter medium 26.
  • the suspended substances such as detach and fall off (peeling process).
  • the peeled cake may be collected by installing a belt conveyor 54 or the like in the lower part of the filtration tank 10.
  • the air supply device 20 is stopped.
  • the solidification process is performed by repeating the vacuum suction filtration process, the discharge process, the air drying process, and the peeling process.
  • the cake dropped from the surface of the filter medium 26 has a low moisture content, can be easily transported, and can be reused depending on the application.
  • the filtration time in the filtration tank 10 is 15 to 20 minutes, the cake peeling time is about 10 minutes, and one work cycle of about 30 minutes is sufficient.
  • This has a processing capacity of about 8 to 12 times that of the standard work cycle of the filter press, which is 4 to 6 hours (including back washing time).
  • a significant reduction of about 20 to 30% is possible.
  • the installation work of the system may be about 2 to 3 days.
  • the filter medium 26 used for the solidification process is, for example, a cloth material, and has a filtration function that allows moisture to pass through but does not allow a suspended substance or the like of a predetermined size to pass through. It has moderate air-blocking properties so that it expands.
  • the shape and material of the filter medium 26 are not particularly limited as long as they can capture and separate suspended substances from water to be treated such as turbid water. What is necessary is just to select the shape and material of the filter medium 26 according to the property of the to-be-processed water used as a process target, the property, etc. of the suspended substance contained.
  • the shape of the filter medium 26 is not particularly limited as long as it is hollow or becomes hollow when inflated.
  • a cylindrical shape such as a cylindrical shape, an elliptical cylindrical shape, or a polygonal cylindrical shape is used.
  • it has a plate shape, a spherical shape, a polygonal shape, etc. preferable.
  • the transfer flow path 28 is immersed in the lower part of the muddy water tank 14 to be treated.
  • region of the to-be-processed muddy water tank 14 is supplied in the filtration tank 10, and a substantially uniform cake can be produced.
  • the air supply to the filter medium 26 may be supplied from the upper part of the filter medium 26 or from the lower part.
  • FIG. 3 is an example in which the vacuum chamber 24 is installed on the lower side surface of the filtration tank 10. Thereby, it can suppress that filtered water retains in the inside of the filter medium 26 or the piping 44.
  • the muddy water to be treated is, for example, muddy water generated at civil engineering / construction sites, muddy water due to improvement of bottom sediments such as rivers / lakes / ponds / canals, muddy water, and muddy water after soil washing
  • Turbid water containing clay, silt, etc. turbid water containing chemical substances such as cement, phytoplankton such as blue sea urchin, turbid water containing zooplankton such as red tide, foods such as miso, soy sauce, sake lees, fruit juice
  • muddy water containing food residues such as For example, various muddy water treatments from the discharge level to the securing of drinking water are possible.
  • Example 1 A flat filter cloth (air permeability) in a cylindrical resin filtration tank (inner diameter: 230 mm, height: 1000 mm, volume: 41.5 L / m) having a lower end opened and a vacuum suction port and an exhaust port installed at the top. 100 cm 3 / cm 2 / min, width 200 mm ⁇ height 700 mm, filter cloth area 0.28 m 2 ) were installed and immersed in a muddy water tank to be treated. The filter cloth was connected to a vacuum suction port, and the vacuum suction line was branched halfway. One was connected to a vacuum suction device via a valve A, and the other was connected to a compressor via a valve B. The vacuum port and exhaust port were also connected by hose piping.
  • valve A When vacuum suction is started with valve A opened and valve B and exhaust valve closed, a negative pressure is formed in the filtration tank through the filter cloth, and the turbid water in the muddy water tank to be treated is at the upper end of the filter cloth in the filtration tank. Rose to. Even if the filtered water was discharged out of the system, this state was always maintained (the water level was constant), and the filtration treatment could be continued. Further, when the exhaust valve connected to the vacuum suction port was opened, the air above the filtration tank was discharged, the water level further increased, and the water level could be maintained at an arbitrary position by closing the valve.
  • the muddy water to be treated could be automatically supplied to the filtration tank by vacuum suction. Moreover, the water level in the filtration tank was always constant.
  • Example 2 Next, the correlation between the filtration time and the amount of filtered water was confirmed. First, vacuum suction for 1 minute was performed, and air supply separation by a compressor for 30 seconds, followed by vacuum suction for 10 minutes, air supply separation for 30 seconds, and vacuum suction for 10 minutes were performed. Table 1 shows the water level in the filtrate collection tank and the filtration flow rate.
  • 1,3 Turbid water treatment system 10 filtration tank, 12 filtration device, 14 treated muddy water tank, 16 treatment muddy water tank, 18 vacuum suction device, 20 air supply device, 22 exhaust port, 24 vacuum chamber, 26 filter media, 28 transfer Flow path, 30 discharge flow path, 32, 34 check valve, 36 exhaust valve, 38 discharge valve, 40, 42, 60 valve, 43, 44, 45, 46, 48, 64 pipe, 50 treated muddy water, 52 treatment Turbid water, 54 belt conveyor, 56 bottom lid, 58 outlet, 62 air supply valve, 66 air supply port, 68 filter chamber, 70 lower water collecting pipe, 72 welded part, 74 air intake port, 76 intake valve.

Abstract

 真空吸引による濾過槽への濁水の自動供給と自動水位管理を可能とする濁水処理システムを提供する。懸濁物質を含む濁水を処理するための濁水処理システム1であって、濁水を濾過するための密閉された濾過槽10と、濾過槽10中の濁水に浸漬して濾過処理を行うための少なくとも1つの濾過材26と、濁水の貯留源から濾過槽10に濁水を移送するための移送流路28と、濾過材26に接続された真空吸引装置18と、を備え、真空吸引装置18により真空吸引することによって濾過材26を介して濾過槽10内に負圧を形成し、移送流路28を通して貯留源から濾過槽10に濁水を移送するとともに、濾過材26の表面に懸濁物質を付着させる濁水処理システム1である。

Description

濁水処理システムおよび濁水処理方法
 本発明は、濁水を浄化するための濁水処理システムおよび濁水処理方法に関する。
 建設現場等で発生する濁水の処理や、比較的小規模の閉鎖水域の浄化に伴う濁水の処理には、排水中の懸濁物質(SS成分、例えば、粘土、シルト、セメント成分等の微細土や、植物プランクトン、動物プランクトン、食品、食品残渣等)の除去や固化、脱水が避けられない要件である。
 この要件に対応できる脱水固化技術としてフィルタープレスの活用が一般的であるが、装置が大規模な加圧装置であり、前処理設備を含む広い設置面積が要求される。また、大容量(例えば、濾室容積5m以上)のフィルタープレスを使用する場合、運搬、組み立て、試運転、調整、基礎工事等のため、準備期間に例えば0.5~1ヶ月程度の日数が必要となり、短期間の現場の濁水処理には適さない。大容量になるにしたがって濾室数が多くなり(例えば、100室以上)、ケーキの剥離および濾布の洗浄等に多大な時間を要し、作業のサイクルタイムが大幅に長くなる(例えば、4~6時間以上)。
 また、フィルタープレスは、凝集剤撹拌槽、凝集沈降分離水槽、pH調整槽、中和槽等より構成される濁水処理設備を必要とし、連続処理をする場合は、処理中の濁水を貯留する大容量の濁水槽が必要となる。さらに、凝集剤が排出脱水ケーキに混入するため、多くの場合、産業廃棄物としての処分が必要となり、再資源化の観点からも、コスト面でも課題となっている。
 凝集剤等の薬品を使用しない濁水処理装置としては、例えば、特許文献1には、濾過槽内に分離膜を配設した膜モジュールを浸漬し、膜モジュールの二次側を吸引することによる吸引圧、あるいは水面のヘッド差による圧力を膜間差圧として膜モジュールによる濾過を行う汚濁水の濾過方法において、膜モジュールの二次側より一次側へエアーを通気させることにより、膜モジュールの洗浄処理を行う汚濁水の濾過方法が記載されている。
 また、特許文献2には、薄い濾過材を使用して泥水または泥状物の吸引濾過または脱液を行う場合に、被処理物を振動させること、吸引とブローによるケーキ剥離を被処理物と接触しつつ交互に短周期で繰返し、形成されるケーキ層を移動させつつ濾過または脱液を行う液分離法が記載されている。
 しかし、濁水処理装置において、特許文献1,2のような単なる真空吸引による濾過方法では、通常ポンプを用いて濾過槽中へ濁水を供給しており、濾過槽中の濁水の水位を管理するために、センサの設置やフロート弁等によるレベル管理が必要となる。また、濾過槽中の濁水を排出する場合もポンプを用いて実施しているのが一般的である。
 濾過材を使用し、濁水槽内に浸漬して濁水処理や脱水固化処理を行う濾過装置は、別の手段により濁水の供給と水位管理が必要である。濁水処理においては、低濃度(1000ppm程度)の濁水を処理対象としており、さらに濾過槽内に溜まった剥離残渣を排出する機材も必要となる。また脱水固化処理においては、処理能力にもよるが、完全自動化をはかるには装置が大型・複雑化し、製作コストが高くなることが避けられない。
特開平9-168727号公報 特許第2741197号公報
 本発明の目的は、真空吸引による濾過槽への濁水の自動供給と自動水位管理を可能とする濁水処理システムおよび濁水処理方法を提供することにある。
 本発明は、懸濁物質を含む濁水を処理するための濁水処理システムであって、濁水を濾過するための密閉された濾過槽と、前記濾過槽中の濁水に浸漬して濾過処理を行うための少なくとも1つの濾過材と、濁水の貯留源から前記濾過槽に濁水を移送するための移送流路と、前記濾過材に接続された真空吸引手段と、を備え、前記真空吸引手段により真空吸引することによって前記濾過材を介して前記濾過槽内に負圧を形成し、前記移送流路を通して前記貯留源から前記濾過槽に濁水を移送するとともに、前記濾過材の表面に前記懸濁物質を付着させる濁水処理システムである。
 また、前記濁水処理システムにおいて、前記濾過材に接続された送気手段と、送気された気体を前記濾過槽から排出する排気手段と、を備え、前記真空吸引手段による真空吸引を停止した後、前記送気手段により前記濾過材の内部に送気することにより前記濾過材の表面に付着した懸濁物質を剥離するとともに、送気された気体を前記排気手段により前記濾過槽から排出することが好ましい。
 また、前記濁水処理システムにおいて、前記濾過槽から残留物を排出するための排出流路を備え、前記送気手段により前記濾過材の内部に送気することによって前記排出流路を通して前記濾過槽から前記残留物を排出することが好ましい。
 また、前記濁水処理システムにおいて、前記濾過材は、複数の濾過材からなり、各濾過材と前記真空吸引手段とを接続する真空吸引経路の途中に配置された真空室を備えることが好ましい。
 また、本発明は、懸濁物質を含む濁水を処理する濁水処理方法であって、濁水を濾過するための密閉された濾過槽中に少なくとも1つの濾過材を設置して、真空吸引することによって前記濾過材を介して前記濾過槽内に負圧を形成し、移送流路を通して濁水の貯留源から前記濾過槽に濁水を移送するとともに、前記濾過材の表面に前記懸濁物質を付着させる濁水処理方法である。
 また、前記濁水処理方法において、真空吸引を停止した後、前記濾過材の内部に送気することにより前記濾過材の表面に付着した懸濁物質を剥離するとともに、送気された気体を前記濾過槽から排出することが好ましい。
 また、前記濁水処理方法において、前記濾過材の内部に送気することによって排出流路を通して前記濾過槽から残留物を排出することが好ましい。
 また、前記濁水処理方法において、前記濾過材は、複数の濾過材からなり、各濾過材を真空吸引する真空吸引経路の途中に配置された真空室を備えることが好ましい。
 本発明では、真空吸引により濾過材を介して濾過槽内に負圧を形成することによって、濾過槽への濁水の自動供給と自動水位管理が可能となる。
本発明の実施形態に係る濁水処理システムの一例を示す概略構成図である。 本発明の実施形態に係る濁水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る濁水処理システムの他の例を示す概略構成図である。 本発明の実施形態に係る濁水処理システムにおける濾過材の一例を示す概略構成図である。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
<濁水処理>
 本発明の実施形態に係る濁水処理システムの一例の概略構成を図1に示し、その構成について説明する。本実施形態に係る濁水処理システム1は、主に、濁水を濾過処理し、濾過水を確保するために用いられる。濁水処理システム1は、濁水を濾過するための密閉された濾過槽10と、濾過槽10中の濁水に浸漬して濾過処理を行うための少なくとも1つの濾過材26を有する濾過装置12と、濁水の貯留源である被処理濁水槽14から濾過槽10に濁水を移送するための移送流路28と、濾過材26に接続された真空吸引手段としての真空吸引装置18とを備える。濁水処理システム1は、濾過材に接続された送気手段としての送気装置20と、送気された気体を濾過槽10から排出する排気手段としての排気口22と、濾過槽10から処理濁水を排出するための排出流路30とをさらに備えていてもよい。
 図1の濁水処理システム1において、移送流路28の一端は被処理濁水槽14中の被処理濁水50に浸漬され、他端は濾過槽10の上部の入口に接続され、移送流路28の途中には逆止バルブ32が設けられている。排出流路30の一端は濾過槽10の下部出口に接続され、他端は処理濁水槽16に処理濁水52を排出するようになっており、排出流路30の途中には排出バルブ38、逆止バルブ34が設けられている。濾過装置12の濾過材26は中空状になっており、濾過材26の内部と接続された配管43により濾過槽10の上部に設けられた真空室24に接続されている。真空室24には、配管45の一端が接続され、配管45の他端は分岐して一方は配管46によりバルブ40を介して真空吸引装置18の吸引側と接続され、もう一方は配管48によりバルブ42を介して送気装置20の送気側と接続されている。配管43,45,46は、真空吸引経路として機能し、配管48,45,43は、送気経路として機能する。密閉された濾過槽10の上部には排気口22が設けられ、排気バルブ36を介して排気されるようになっている。図1の例では、濁水処理システム1は5つの濾過材26を有するが、濾過材26の数は少なくとも1つであればよく、これに限定されるものではない。
 複数の濾過材26の各濾過材の上部はそれぞれ上記の通り、濾過材26内部と接続された配管43により濾過槽10の上部に設けられた真空室24に接続されている。各濾過材26の下部は配管44により互いに接続されている。
 次に、濁水処理システム1の動作および濁水処理方法について図1を参照して説明する。
 バルブ40を開状態、バルブ42、排気バルブ36を閉状態として、真空吸引装置18を作動させて真空吸引を開始する。真空吸引されることによって濾過材26を介して濾過槽10内に負圧が形成され、逆止バルブ32が開状態となり(逆止バルブ34は閉状態)、被処理濁水槽14から移送流路28を通して懸濁物質(SS成分)を含む濁水等の被処理濁水50が濾過槽10に移送され、濾過材26によって被処理濁水50の濾過処理が行われる(真空吸引濾過工程)。濾過材26により濾過処理された濾過水は、配管43を通って真空室24に導入され、その後、配管45,46を通して系外へ排出される。一方、濾過物である懸濁物質等は、濾過材26の表面に付着される。この際、被処理濁水50が濾過材26の上端に達すると、濾過槽10上部の残留空気が排出されないため水位の上昇が止まる。真空吸引が継続しているため、濾過材26を介して系外に排出された濾過水量と同等量の被処理濁水50が濾過槽10内に連続的に供給され、濾過槽10内の水位がほぼ一定に保たれる。
 このように本構成により、真空吸引により濁水の貯留源である被処理濁水槽14から被処理濁水50を濾過槽10に自動供給することができる。また、濾過槽10中の濁水の水位がほぼ一定に保たれるため、センサやフロート弁等による水位管理を行わなくてもよい。すなわち、密閉された濾過槽10に濾過材26を設置することにより、濾過材26が濾過および水位管理センサの役割を果たしているといえる。
 したがって、真空吸引による濾過を実施する濁水処理装置において、被処理水である濁水の自動供給と自動水位管理を簡便な手段で実現することができる。真空吸引装置という簡便な手段で濁水の自動供給と自動水位管理が可能となり、これにより、付帯設備の削減と装置の簡素化および自動化とにより設備コストの低減と作業性の向上が可能となる。
 濾過材26の表面に、汚泥等の懸濁物質が付着すると通水性が低下し、濾過水の量が減少する。そこで、バルブ40を閉状態として真空吸引を停止させ、排気バルブ36、バルブ42を開状態とした後、送気装置20を作動させて送気を開始する。濾過材26の内部に空気等の気体を圧送すると濾過材26の表面より気体が排出され、濾過材26の表面に付着していた汚泥等の懸濁物質は剥離して落下する(水中剥離工程)。濾過材26を通過した気体は排気バルブ36より排気される。濾過材26の膨張による濾過槽10内の水位の上昇は、濾過材26の上部に空間を設けて吸収すればよい。また、排出流路30を通して処理濁水の少なくとも一部を処理濁水槽16に排出してもよい。なお、排出流路30を通して処理濁水を排出しながらの剥離が可能であれば、排気バルブ36を閉状態としてもよい。濾過材26の表面に付着していた汚泥等の懸濁物質が十分に剥離したら、必要に応じて排気バルブ36を閉じると、引き続き圧気により濾過槽10内の処理濁水は、排出流路30を通して処理濁水槽16に排出される(送気排出工程)。以上の真空吸引濾過工程、水中剥離工程および送気排出工程を繰り返すことにより、濁水処理が行われる。
 本構成により、真空吸引による濾過と圧気による付着物の剥離を実施する濁水処理装置において、被処理水である濁水の自動供給と自動水位管理および剥離残渣の排出を簡便な手段で実現することができる。真空吸引装置と送気装置という簡便な手段で濁水の自動供給と自動水位管理、付着物の水中剥離と水中剥離物の排出が可能となり、これにより、付帯設備の削減と装置の簡素化および自動化とにより設備コストのより一層の低減と作業性の向上が可能となる。
 また、本処理方法では、凝集剤を用いなくてもよいため、凝集剤撹拌槽、pH調整槽、中和槽などの水槽を設ける必要がなく、設備の軽減につながる。凝集剤等の添加物を含まないため、ケーキを産業廃棄物処理する必要がなく、オンサイトで再利用可能となり、コスト低減効果も高い。
 被処理濁水槽14は、被処理濁水を貯留し、少なくとも移送流路28の一端を接続または浸漬可能なものであればよく、特に制限はない。図1の濁水処理システム1において、被処理濁水槽14中の被処理濁水に移送流路28の一端が浸漬されて真空吸引処理が行われるが、被処理濁水槽14を設けずに、池、河川、湖等の処理対象に移送流路28の一端が直接浸漬されて真空吸引処理が行われてもよい。
 濁水処理に用いられる濾過材26は例えば布材で、水分は通すが、所定の大きさの懸濁物質等は通さない濾過機能を有し、さらに内側に空気等の気体が注入されると内部から外側に気体を排出するように適度な通気性を備えている。濾過材26の形状および材質は、濁水等の被処理水から懸濁物質を捕捉、分離することができるものであればよく、特に制限はない。濾過材26の形状および材質は、処理対象となる被処理水の性状、含まれる懸濁物質等の性状等に応じて選択すればよい。濾過材26の形状は、中空状のものであればよく、特に制限はないが、例えば、円筒形状、楕円筒形状、多角筒形状等の筒型形状や、板形状、球形状、多角形形状等であり、板形状が好ましい。濾過面積を大きくするためには、できるだけ濾過材が膨らまないような構成とし、できるだけ多くの濾過材を濾過槽内に設置するとよい。
 例えば、図4に示すような、1つ以上の濾室68を有する板形状の濾過材26を用いることができる。図4に示す濾過材26は、濾布を溶着部72によって貼り合わせて1つ以上の濾室68が形成された構成となっている。濾過材26により濾過処理された濾過水は、各濾室68内から下部集水管70を通って排出されるようになっている。各濾室68には濾過水が通過するための流路を形成した板状等のパネル材等を挿入してもよい。
 真空吸引装置18としては、真空吸引できるものであればよく、特に制限はないが、例えば、真空ポンプ、エジェクタ等が挙げられ、高い真空度と高排気量を有する装置が好ましい。
 送気装置20としては、空気等の気体を送気できるものであればよく、特に制限はないが、例えば、コンプレッサ等が挙げられる。
 濾過材26への送気は、濾過材26の上部から送気しても下部から送気してもよいが、濾過材の表面からほぼ一様の状態で汚泥等を剥離することができる等の点で、下部から送気することが好ましい。
 真空室24は、複数の濾過材26を用いた場合に、各濾過材26により濾過処理された濾過水を一時的に貯留する。真空室24を介することにより、複数の濾過材26を用いた場合に、各濾過材26の濾過流量の合計に近い濾過流量を確保することができる。また、複数の濾過材26を用いた場合に、一方の濾過材から他方の濾過材に濾過水が逆流することを抑制することができる。
 真空室24は、図1の例では濾過槽10の上部に設けられているが、濾過槽10の下部または側面に設置してもよい。また適切な配管が実施されれば、濾過槽10の外部に設けられていてもよい。
 移送流路28は、濾過槽10のどの位置に設置してもよい。
 排出流路30は、濾過槽10の下部出口または排出管の任意の位置にバルブを取り付け、下方または水平方向に取り付けてもよい。
 濾過槽10からの残留物の排出は、移送流路28または濾過槽10に別途送気ラインを設置し、濾過槽10内に直接送気することにより実施してもよい。
 処理濁水槽16に貯留された処理濁水は、必要に応じてさらに汚泥脱水固化処理されてもよい。
 処理濁水槽16は、処理濁水52を貯留可能なものであればよく、特に制限はない。
<固化処理>
 本発明の実施形態に係る濁水処理システムの他の例の概略構成を図2に示し、その構成について説明する。本実施形態に係る濁水処理システム3は、主に、濁水を濾過処理し、濾過物のケーキを作製するために用いられる。濁水処理システム3は、濁水を濾過するための密閉された濾過槽10と、濾過槽10中の濁水に浸漬して濾過処理を行うための少なくとも1つの濾過材26を有する濾過装置12と、濁水の貯留源である被処理濁水槽14から濾過槽10に濁水を移送するための移送流路28と、濾過材26に接続された真空吸引手段としての真空吸引装置18とを備える。濁水処理システム3は、濾過材に接続された送気手段としての送気装置20と、濾過槽10から濁水を排出する濁水排出手段としての大気吸入口74と、濾過槽10から固化ケーキを排出するための排出口58(排気手段としても機能することがある)とをさらに備えていてもよい。
 図2の濁水処理システム3において、移送流路28の一端は被処理濁水槽14中の被処理濁水50に浸漬され、他端は濾過槽10の下部の入口に接続され、移送流路28の途中にはバルブ60が設けられている。なお、バルブ60を設けなくてもよい。排出口58は、開閉可能な底蓋56により密閉されている。排出口58は例えばケーキ回収手段としてのベルトコンベア54上に固化ケーキを排出するようになっている。濾過装置12の濾過材26は中空状になっており、濾過材26の内部と接続された配管43により濾過槽10の上部に設けられた真空室24に接続されている。真空室24には、配管45の一端が接続され、配管45の他端は分岐して一方は配管46によりバルブ40を介して真空吸引装置18の吸引側と接続され、もう一方は配管48によりバルブ42を介して送気装置20の送気側と接続されている。配管43,45,46は、真空吸引経路として機能し、配管48,45,43は、送気経路として機能する。密閉された濾過槽10の上部には大気吸入口74が設けられ、吸入バルブ76を介して大気が導入されるようになっている。また、濾過槽10の上部には送気口66が設けられ、送気口66には送気バルブ62を介して配管64の一端が接続され、他端は配管48のバルブ42の上流側に接続されている。図2の例では、濁水処理システム3は5つの濾過材26を有するが、濾過材26の数は少なくとも1つであればよく、これに限定されるものではない。
 複数の濾過材26の各濾過材の上部はそれぞれ上記の通り、濾過材26内部と接続された配管43により濾過槽10の上部に設けられた真空室24に接続されている。各濾過材26の下部は配管44により互いに接続されている。
 次に、濁水処理システム3の動作および濁水処理方法について図2を参照して説明する。
 バルブ40,60を開状態、バルブ42、吸入バルブ76、送気バルブ62を閉状態として、真空吸引装置18を作動させて真空吸引を開始する。真空吸引されることによって濾過材26を介して濾過槽10内に負圧が形成され、被処理濁水槽14から移送流路28を通して懸濁物質(SS成分)を含む濁水等の被処理濁水50が濾過槽10に移送され、濾過材26によって被処理濁水50の濾過処理が行われる(真空吸引濾過工程)。濾過材26により濾過処理された濾過水は、配管43を通って真空室24に導入され、その後、配管45,46を通して系外へ排出される。一方、濾過物である懸濁物質等は、濾過材26の表面に付着される。この際、被処理濁水50が濾過材26の上端に達すると、濾過槽10上部の残留空気が排出されないため水位の上昇が止まる。真空吸引が継続しているため、濾過材26を介して系外に排出された濾過水量と同等量の被処理濁水50が濾過槽10内に連続的に供給され、濾過槽10内の水位がほぼ一定に保たれる。
 濾過材26の表面に、汚泥等の懸濁物質が付着すると通水性が低下し、濾過水の量が減少する。そこで、真空吸引をかけた状態で、吸入バルブ76を開状態として、濾過槽10に残った被処理濁水を被処理濁水槽14へ自然排出する(排出工程)。また、吸入バルブ76を閉状態とし、バルブ42、送気バルブ62を開状態とした後、送気装置20を作動させて送気を開始し、濾過槽10に残った被処理濁水を被処理濁水槽14へ強制排出してもよい。これにより被処理濁水の被処理濁水槽14への排出時間が短縮化される。
 濾過槽10に残った被処理濁水が被処理濁水槽14へ排出された後、真空吸引を続行した状態で、自然排出した場合は吸入バルブ76を閉状態、強制排出した場合は送気バルブ62を閉状態とし、底蓋56を開放することにより濾過装置12は気中乾燥状態となる(気中乾燥工程)。その後、送気装置20を作動させて送気を行い、濾過材26の内部に空気等の気体を圧送すると濾過材26の表面より気体が排出され、濾過材26の表面に付着していた汚泥等の懸濁物質は剥離して落下する(剥離工程)。剥離したケーキは、濾過槽10の下部にベルトコンベア54等を設置し回収してもよい。濾過材26の表面に付着していた汚泥等の懸濁物質が十分に剥離したら、送気装置20を停止する。以上の真空吸引濾過工程、排出工程、気中乾燥工程、剥離工程を繰り返すことにより、固化処理が行われる。濾過材26の表面から落下したケーキは、含水率が低く、容易に搬送することができ、また用途に応じて再利用することも可能である。
 本構成により、固化処理においては濾過装置12を濾過槽10外に移動しなくてもよく、濾過材26の付着物をケーキとして回収することができる。
 したがって、真空吸引による固化処理を実施する濁水処理装置において、被処理水である濁水の自動供給と自動水位管理および固化ケーキの剥離回収を簡便な手段で実現することができる。これにより、付帯設備の削減と装置の簡素化および自動化とにより設備コストのより一層の低減と作業性の向上が可能となる。
 システムの規模にもよるが、例えば、濾過槽10中での濾過時間15分~20分、ケーキ剥離時間10分程度で、1作業サイクルは30分程度もあれば十分である。これはフィルタープレスの標準作業サイクル4~6時間(逆洗浄時間を含む)に比べて8倍~12倍程度の処理能力を有するので、同一処理能力として、装置重量、所要装置面積(フィルタープレスの20~30%程度)の大幅な削減が可能である。システムの設置工事は2~3日程度でよい。
 固化処理に用いられる濾過材26は例えば布材で、水分は通すが、所定の大きさの懸濁物質等は通さない濾過機能を有し、さらに内側に空気等の気体が注入されると内部が膨張するように適度な通気遮断性を備えている。濾過材26の形状および材質は、濁水等の被処理水から懸濁物質を捕捉、分離することができるものであればよく、特に制限はない。濾過材26の形状および材質は、処理対象となる被処理水の性状、含まれる懸濁物質等の性状等に応じて選択すればよい。濾過材26の形状は、中空状のもの、または膨らんだときに中空状になるものであればよく、特に制限はないが、例えば、円筒形状、楕円筒形状、多角筒形状等の筒型形状や、板形状、球形状、多角形形状等であり、効率良く表面に付着した懸濁物の剥離が行われるために膨らんだときに角部がなるべくないように、円筒形状、楕円筒形状が好ましい。
 図2,3の濁水処理システム3では、移送流路28は被処理濁水槽14の下部に浸漬されている。これにより、被処理濁水槽14の高濃度域の被処理濁水50が濾過槽10内に供給され、略均一なケーキを作製することができる。
 濾過材26への送気は、濾過材26の上部から送気しても下部から送気してもよい。
 真空室24は、図2の例では濾過槽10の上部に設けられているが、濾過槽10の下部または側面に設置してもよい。図3は、真空室24を濾過槽10の下部側面に設置した例である。これにより、濾過材26内部や配管44内に濾過水が滞留するのを抑制することができる。
 本実施形態において、処理対象となる被処理濁水としては、例えば、土木・建築現場等で発生する濁水、河川・湖沼・池・運河等の底質改善や浚渫に伴う濁水、土壌洗浄後の濁水、粘土・シルト等を含む濁水、セメント成分等の化学物質を含む濁水、アオコ等の植物プランクトンや、赤潮等の動物プランクトン等を含む濁水、味噌、醤油等の食品や、酒粕、果汁の絞り滓等の食品残渣等を含む濁水等が挙げられるが、これらに限定されるものではない。例えば、放流レベルから飲料水の確保まで多様な濁水処理が可能である。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
[実施例1]
 下端が開放され、上部には真空吸引ポートと排気ポートが設置された円筒状の樹脂製濾過槽(内径230mm、高さ1000mm、容積41.5L/m)内に平板状の濾布(通気度100cm/cm/min、幅200mm×高さ700mm、濾布面積0.28m)を設置し、被処理濁水槽に浸漬した。濾布は真空吸引ポートに接続され、真空吸引ラインは途中分岐しており、一方はバルブAを介して真空吸引装置と接続し、他方はバルブBを介してコンプレッサと接続した。また、真空ポートと排気ポートも、ホース配管にて接続した。
 バルブAを開状態、バルブBおよび排気バルブを閉状態として、真空吸引を開始すると濾布を介して濾過槽内に負圧が形成され、被処理濁水槽の濁水が濾過槽内の濾布上端まで上昇した。濾過水が系外に排出されても常にこの状態を保ち(水位一定)、濾過処理を継続することができた。また、真空吸引ポートに接続された排気バルブを開状態とすると濾過槽上部の空気が排出され水位は更に上昇し、バルブを閉状態にすることにより任意の位置で水位を保つことができた。真空ポートと排気バルブの接続を解除し、排気バルブより大気を導入すると濾過槽内の水位は低下し、濁水が被処理濁水槽に回収された。また、真空吸引が継続しているため、濾布表面に付着したケーキ(濾過物)は、引き続き気中乾燥状態となる。次に、真空吸引を停止し、コンプレッサを作動させてケーキの剥離を実施した。
 このように、真空吸引により被処理濁水を濾過槽に自動供給することができた。また、濾過槽内の水位も常に一定であった。
[実施例2]
 次に、濾過時間と濾過水量の相関性の確認を行った。まず1分間の真空吸引を行い、30秒間のコンプレッサによる送気剥離、その後10分間の真空吸引、30秒間の送気剥離、10分間の真空吸引を行った。濾過水回収槽内の水位および濾過流量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、効率的に濾過水量を確保するには、真空吸引による濾過時間を3分とし、その後、送気による水中剥離処理を実施するのが好ましいことが示唆される。
 1,3 濁水処理システム、10 濾過槽、12 濾過装置、14 被処理濁水槽、16 処理濁水槽、18 真空吸引装置、20 送気装置、22 排気口、24 真空室、26 濾過材、28 移送流路、30 排出流路、32,34 逆止バルブ、36 排気バルブ、38 排出バルブ、40,42,60 バルブ、43,44,45,46,48,64 配管、50 被処理濁水、52 処理濁水、54 ベルトコンベア、56 底蓋、58 排出口、62 送気バルブ、66 送気口、68 濾室、70 下部集水管、72 溶着部、74 大気吸入口、76 吸入バルブ。

Claims (8)

  1.  懸濁物質を含む濁水を処理するための濁水処理システムであって、
     濁水を濾過するための密閉された濾過槽と、
     前記濾過槽中の濁水に浸漬して濾過処理を行うための少なくとも1つの濾過材と、
     濁水の貯留源から前記濾過槽に濁水を移送するための移送流路と、
     前記濾過材に接続された真空吸引手段と、
     を備え、
     前記真空吸引手段により真空吸引することによって前記濾過材を介して前記濾過槽内に負圧を形成し、前記移送流路を通して前記貯留源から前記濾過槽に濁水を移送するとともに、前記濾過材の表面に前記懸濁物質を付着させることを特徴とする濁水処理システム。
  2.  請求項1に記載の濁水処理システムであって、
     前記濾過材に接続された送気手段と、
     送気された気体を前記濾過槽から排出する排気手段と、
     を備え、
     前記真空吸引手段による真空吸引を停止した後、前記送気手段により前記濾過材の内部に送気することにより前記濾過材の表面に付着した懸濁物質を剥離するとともに、送気された気体を前記排気手段により前記濾過槽から排出することを特徴とする濁水処理システム。
  3.  請求項2に記載の濁水処理システムであって、
     前記濾過槽から処理濁水を排出するための排出流路を備え、
     前記送気手段により前記濾過材の内部に送気することによって前記排出流路を通して前記濾過槽から前記処理濁水を排出することを特徴とする濁水処理システム。
  4.  請求項1~3のいずれか1項に記載の濁水処理システムであって、
     前記濾過材は、複数の濾過材からなり、
     各濾過材と前記真空吸引手段とを接続する真空吸引経路の途中に配置された真空室を備えることを特徴とする濁水処理システム。
  5.  懸濁物質を含む濁水を処理する濁水処理方法であって、
     濁水を濾過するための密閉された濾過槽中に少なくとも1つの濾過材を設置して、真空吸引することによって前記濾過材を介して前記濾過槽内に負圧を形成し、移送流路を通して濁水の貯留源から前記濾過槽に濁水を移送するとともに、前記濾過材の表面に前記懸濁物質を付着させることを特徴とする濁水処理方法。
  6.  請求項5に記載の濁水処理方法であって、
     真空吸引を停止した後、前記濾過材の内部に送気することにより前記濾過材の表面に付着した懸濁物質を剥離するとともに、送気された気体を前記濾過槽から排出することを特徴とする濁水処理方法。
  7.  請求項6に記載の濁水処理方法であって、
     前記濾過材の内部に送気することによって排出流路を通して前記濾過槽から処理濁水を排出することを特徴とする濁水処理方法。
  8.  請求項5~7のいずれか1項に記載の濁水処理方法であって、
     前記濾過材は、複数の濾過材からなり、
     各濾過材を真空吸引する真空吸引経路の途中に配置された真空室を備えることを特徴とする濁水処理方法。
PCT/JP2013/066951 2012-06-21 2013-06-20 濁水処理システムおよび濁水処理方法 WO2013191245A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-139460 2012-06-21
JP2012139460A JP2014000559A (ja) 2012-06-21 2012-06-21 濁水処理システムおよび濁水処理方法

Publications (1)

Publication Number Publication Date
WO2013191245A1 true WO2013191245A1 (ja) 2013-12-27

Family

ID=49768838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066951 WO2013191245A1 (ja) 2012-06-21 2013-06-20 濁水処理システムおよび濁水処理方法

Country Status (2)

Country Link
JP (1) JP2014000559A (ja)
WO (1) WO2013191245A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040050A (ja) * 2018-09-13 2020-03-19 オルガノ株式会社 膜ろ過方法および膜ろ過装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297415B2 (ja) * 2014-05-29 2018-03-20 一般社団法人グリーンディール推進協会 濁水処理システムおよび濁水処理方法
JP6386860B2 (ja) * 2014-10-03 2018-09-05 一般社団法人グリーンディール推進協会 濁水処理装置および濁水処理方法
CN105107247B (zh) * 2015-07-17 2017-04-12 浙江省海洋水产研究所 一种抽吸式养殖尾水颗粒物清除设备
CN110721508A (zh) * 2019-09-11 2020-01-24 浙江省海洋水产研究所 一种浮游植物浓缩过滤装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270797A (ja) * 2004-03-24 2005-10-06 Kowa Kikai Sekkei Kogyo Kk 廃液処理装置
JP2007152223A (ja) * 2005-12-05 2007-06-21 Clean Technology Co Ltd 水の浄化装置、排ガス処理装置用の浄化装置並びに排ガス処理装置用の浄化システム
JP2011078950A (ja) * 2009-10-09 2011-04-21 Parker Engineering Kk 固形物微粒子懸濁液処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH657066A5 (de) * 1981-05-12 1986-08-15 Mueller Drm Ag Verfahren zur kontinuierlichen eindickung von suspensionen.
JP4606116B2 (ja) * 2004-10-21 2011-01-05 前澤工業株式会社 ろ過装置
US8309711B2 (en) * 2009-08-07 2012-11-13 Corn Products Development Inc. Filtration of corn starch followed by washing and collection of the resultant corn starch cake

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270797A (ja) * 2004-03-24 2005-10-06 Kowa Kikai Sekkei Kogyo Kk 廃液処理装置
JP2007152223A (ja) * 2005-12-05 2007-06-21 Clean Technology Co Ltd 水の浄化装置、排ガス処理装置用の浄化装置並びに排ガス処理装置用の浄化システム
JP2011078950A (ja) * 2009-10-09 2011-04-21 Parker Engineering Kk 固形物微粒子懸濁液処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEO UMEZAKI ET AL.: "A System of Dehydration, Purification, and Reduction for Dredged Soil (Part 1) -Dehydration and Purification of Bed Mud in Lake Suwa Added Natural Zeolite Using Multi-drain Vacuum Aspirating System", THE ANNALS OF ENVIRONMENTAL SCIENCE, vol. 34, 31 March 2012 (2012-03-31), pages 84 - 92 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040050A (ja) * 2018-09-13 2020-03-19 オルガノ株式会社 膜ろ過方法および膜ろ過装置

Also Published As

Publication number Publication date
JP2014000559A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
US7981301B2 (en) Method and apparatus for treatment of contaminated liquid
US20080029459A1 (en) Water treatment Method and water treatment equipment
WO2013191245A1 (ja) 濁水処理システムおよび濁水処理方法
RU2410336C2 (ru) Установка для очистки жидкости, способ промывки половолоконного фильтра и применение способа промывки половолоконного фильтра
JP5717061B2 (ja) 真空吸引処理方法および真空吸引処理システム
JP6788894B2 (ja) 濁水処理装置および濁水処理方法
JP2002273261A (ja) 膜磁気分離装置
JP2015077530A (ja) 造水方法および造水装置
CN111410269A (zh) 一种用于煤矿矿井水深度处理的超滤系统
JP6297415B2 (ja) 濁水処理システムおよび濁水処理方法
JP5094573B2 (ja) 緩速濾過装置
WO2010150790A1 (ja) 吸引式濾過濃縮方法および吸引式濾過濃縮装置
JP2010207762A (ja) 膜型メタン発酵処理装置およびメタン発酵処理方法
JP5102913B2 (ja) 膜濾過の逆洗排水を濃縮する装置および方法
JP2011041907A (ja) 水処理システム
JP2010131472A (ja) 膜濾過の逆洗排水を濃縮する装置および方法
JP6386860B2 (ja) 濁水処理装置および濁水処理方法
JP5636040B2 (ja) 固液分離方法
KR100985064B1 (ko) 이동식 실시간 수질정화장치
CN205999228U (zh) 垃圾渗滤液处理系统
JP2003266061A (ja) 有水ガスホルダ内の廃水処理方法及びその装置
JP2013075291A (ja) 膜ろ過システムおよびその運転制御方法
CN212770346U (zh) 一种塑料清洗废水处理设备
JP2000117264A (ja) 浄水システム
JP2006055852A (ja) ろ過体の洗浄方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807312

Country of ref document: EP

Kind code of ref document: A1