WO2013188392A2 - Apparatus and method for supporting idle mode load balancing - Google Patents
Apparatus and method for supporting idle mode load balancing Download PDFInfo
- Publication number
- WO2013188392A2 WO2013188392A2 PCT/US2013/045165 US2013045165W WO2013188392A2 WO 2013188392 A2 WO2013188392 A2 WO 2013188392A2 US 2013045165 W US2013045165 W US 2013045165W WO 2013188392 A2 WO2013188392 A2 WO 2013188392A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless
- load
- wireless carrier
- idle mode
- observation period
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 230000008859 change Effects 0.000 claims abstract description 64
- 238000012937 correction Methods 0.000 claims abstract description 13
- 239000000969 carrier Substances 0.000 abstract description 103
- 230000006870 function Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241000338137 Teratosphaeria nubilosa Species 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/09—Management thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0071—Allocation based on fairness other than the proportional kind
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
- H04L5/0087—Timing of allocation when data requirements change
- H04L5/0089—Timing of allocation when data requirements change due to addition or removal of users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0284—Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/09—Management thereof
- H04W28/0958—Management thereof based on metrics or performance parameters
Definitions
- the invention relates generally to wireless communication networks and, more specifically but not exclusively, to idle mode load balancing in wireless communication networks.
- a wireless device may transition between various states, including an idle mode state in which the wireless device is idle within the wireless access network.
- WCDMA Wideband Code Division Multiple Access
- UE User Equipment
- a Radio Resource Control Idle referred to as the Radio Resource Control Idle
- RRCJDLE Long Term Evolution
- a UE may be in an idle mode state referred to as the LTE-ldle state.
- the Radio Access Network RAN
- RAB Radio Access Bearer
- the UE when a UE is in the idle mode state, the UE is still contribute to the signaling load in the core network (e.g., due to location updates as the UE moves) or paging load. Additionally, an increase in the active load on the wireless system may result when idle mode UEs become active, which may in turn result in sudden network congestion.
- an apparatus includes a processor and a memory communicatively connected to the processor, where the processor is configured to determine a number of idle mode wireless devices associated with a wireless carrier based on a change in load on the wireless carrier during an observation period.
- a computer-readable storage medium stores instructions which, when executed by a computer, cause the computer to perform a method including a step of determining a number of idle mode wireless devices associated with a wireless carrier based on a change in load on the wireless carrier during an observation period.
- a method which includes a step of determining, using at least one processor, a number of idle mode wireless devices associated with a wireless carrier based on a change in load on the wireless carrier during an observation period.
- FIG. 1 depicts a high-level block diagram of an exemplary wireless system
- FIG. 2 depicts one embodiment of a method for performing idle mode load balancing for a set of wireless carriers
- FIG. 3 depicts one embodiment of a method for determining a number of idle mode UEs associated with a wireless carrier
- FIG. 4 depicts one embodiment of a method for determining a change in load on a wireless carrier during an observation period
- FIG. 5 depicts a high-level block diagram of a computer suitable for use in performing functions described herein.
- idle mode load balancing enables balancing of idle mode wireless devices across wireless carriers. This may ensure that the possibility of congestion on any given wireless carrier is reduced (or, in at least some cases, even minimized) when the idle mode wireless devices become active.
- relative load levels on the wireless carriers are determined, relative numbers of idle mode wireless devices on the respective wireless carriers are inferred based on the relative load levels on the wireless carriers, and idle mode load balancing is performed based on the relative numbers of idle mode wireless devices on the respective wireless carriers.
- the idle mode load balancing capability includes embodiments for determining information indicative of the relative numbers of idle mode wireless devices on wireless carriers in a set of wireless carriers for use in performing idle mode load balancing for the set of wireless carriers.
- the idle mode load balancing capability obviates the need to determine the absolute numbers of idle mode wireless devices on the wireless carriers since idle mode load balancing can be invoked for one or more of the wireless carriers when there is a disproportionate number of idle mode wireless devices on one or more of the wireless carriers relative to the other wireless carrier(s) of the set of wireless carriers.
- the idle mode load balancing capability may be utilized within various other types of wireless systems in which an idle mode state (or similar state) is supported for the wireless user devices (e.g., other types of Third Generation (3G) wireless systems, Fourth Generation (4G) wireless systems (e.g., Long Term Evolution (LTE)), or the like, as well as various combinations thereof).
- 3G Third Generation
- 4G Fourth Generation
- LTE Long Term Evolution
- FIG. 1 depicts a high-level block diagram of an exemplary wireless system.
- the wireless system 100 includes a core network 1 10, a plurality of Radio Network Controllers (RNCs) 120, a plurality of Base Stations (BSs) 130, a plurality of User Equipments (UEs) 140, and a plurality of Idle Mode Load Balancers (IMLBs) 150.
- RNCs Radio Network Controllers
- BSs Base Stations
- UEs User Equipments
- IMLBs Idle Mode Load Balancers
- the core network 1 10 supports the RNCs 120, facilitating
- the plurality of RNCs 120 includes RNCs 120 - 120 R , each of which is communicatively connected to the core network 1 10.
- the RNCs 20i - 120 R each support one or more of the BSs 130 (although it will be appreciated that an RNC typically supports multiple BSs). As depicted in FIG. 1 , RNC 120! , supports BSs 130i and 130 2 , each of which is communicatively connected to RNC 120 As further depicted in FIG. 1 , RNC 120 R supports BS 130 M , which is communicatively connected to RNC 120R. The connections of the remaining BSs 130 to the RNCs 120 are omitted for purposes of clarity.
- the BSs 130! - 130 M each support a plurality of wireless carriers 132 132 N (collectively, wireless carriers 132), where each wireless carrier 132 is capable of supporting a plurality of UEs 140, respectively.
- BS 130! includes a plurality of wireless carriers 132 132 N , each of which supports a plurality of UEs 140, respectively.
- the other BSs 130 2 - 130M are similarly configured (although it will be appreciated that the numbers of wireless carriers 132 supported by BSs 130 may vary across the respective BSs 130).
- the boxes labeled "wireless carrier 132" in FIG. 1 may represent the capability of the respective BSs 130 to support the wireless carriers 132.
- a wireless carrier 132 is understood to have a load associated therewith which changes over time as new sessions are originated and existing sessions are terminated.
- the load on a wireless carrier 132 is understood to be equal to or indicative of a number of active sessions on the wireless carrier 132 (i.e., use of the term "load” herein when referring to a wireless carrier 132, unless otherwise indicated, refers to the number of active sessions on the wireless carrier 132 or information indicative of the number of active sessions on the wireless carrier 132).
- the UEs 140 each are configured to access at least one of the BSs
- the UEs 140 may include any suitable types of wireless user devices (e.g., laptop computers, tablet computers, smart phones, cellular phones, and the like).
- the UEs 140 are configured to operate in various states, including, among others, idle mode state.
- a UE 140 may enter an idle mode state in which the UE 140 is not active on the RAN (and, indeed, the RAN is unaware of its presence) and one or more active states in which the UE 140 is active on the RAN.
- the UEs 140 are configured to enter the Radio Resource Control Idle (RRCJDLE) state standardized in WCDMA systems.
- RRCJDLE Radio Resource Control Idle
- the UE 140 while the RAN is unaware of the presence of a UE 140 when the UE 140 is in idle mode state, the UE 140 still contributes to load on the system 100, such as via signaling load in the core network 110 (e.g., due to location updates as the UE 140 moves around) or paging load. Additionally, it is noted that a UE 140 in the idle mode state also may contribute to the active load on the system 100 when the UE 140 becomes active. It is noted that a UE 140 that is in the idle mode state is referred to herein as an idle mode UE 140.
- the system 100 is configured to perform idle mode load balancing for balancing idle mode UEs 140 across wireless carriers 132 of BSs 130. As depicted in FIG. 1 , idle mode load balancing within the system 100 may be performed at any suitable granularity using the !MLBs 150. For example, the system 100 may be configured to perform idle mode load balancing for balancing idle mode UEs 140 across any suitable combinations of wireless carriers 132n - 132 M N of BSs 130i - 130 M .
- the BSs 130i - 130M include a respective plurality of IMLBs 150 B i - 150 B M (collectively, IMLBs 150 B ) where an IMLB 150 B of a BS 130 is configured to perform idle mode load balancing for some or all of the wireless carriers 132 supported by the BS 130.
- the RNCs 120 120 R include a respective plurality of IMLBs 150 R - 150 RR (collectively, IMLBs 150 R ), where an IMLB 150 R of an RNC 120 is configured to perform idle mode load balancing for any of the wireless carriers 132 of any of the BSs 130 supported by the RNC 120 (e.g., for a group of wireless carriers 132 within a BS 130, for a group of wireless carriers 132 of multiple BSs 130, or the like, as well as various combinations thereof).
- core network 110 includes an IMLB 150 c , which is configured to perform idle mode load balancing for any of the wireless carriers 132 of any of the BSs 130 served by core network 110 (e.g., for a group of wireless carriers 132 within a BS 130, for a group of wireless carriers 132 across BSs 130 of a single RNC 120, for a group of wireless carriers 132 across BSs 130 of multiple RNCs 120, or the like, as well as various combinations thereof).
- IMLBs 150 may be configured to support idle mode load balancing across carriers associated with different radio access technologies (RATs).
- RATs radio access technologies
- IMLBs 150 B , 150 R , and 150 c may be referred to collectively herein as IMLBs 150. It is noted that various combinations of such embodiments (e.g., using any suitable number of IMLBs 150 deployed at any suitable level(s) of the communication hierarchy) may be used to support idle mode load balancing at any suitable granularity.
- the IMLBs 150 each are configured to perform idle mode load balancing for a set of wireless carriers 132 supporting UEs 140 in order to balance idle mode UEs 140 across the wireless carriers 132.
- an IMLB 150 is configured to perform idle mode load balancing for a set of wireless carriers 132 by determining relative numbers of idle mode UEs 140 of the wireless carriers 132 and performing idle mode load balancing for the set of wireless carriers 132 based on the relative numbers of idle mode UEs 140 of the wireless carriers 132.
- an IMLB 150 is configured to determine relative numbers of idle mode UEs 140 of the wireless carriers 132 for which idle mode load balancing is to be performed based on changes in load on the wireless carriers 132 during the observation period. It is noted that the change in load on a wireless carrier 132 may be an increase in load on the wireless carrier 132 or a decrease in load on the wireless carrier 132. In one embodiment, for a given set of the wireless carriers 132, the relative numbers of idle mode UEs 140 on the wireless carriers 132 may be inferred from rates of change of load on the respective wireless carriers 132 during an observation period, where the rates of change of load on the respective wireless carriers 132 may be determined based on changes in the loads on the respective wireless carriers 132 during the observation period.
- the rate of change of load on a wireless carrier 132 during an observation period may be indicative of a number of session originations on the wireless carrier 132 during the observation period.
- the number of session originations on a wireless carrier 132 during an observation period may be indicative of (e.g., proportional to) the number of idle mode UEs 140 on the wireless carrier 132 (e.g., the higher the number of session originations on the wireless carrier 132 during the observation period, the higher the likelihood of a higher number of idle mode UEs 140 on the wireless carrier 132 during the observation period).
- the number of session originations on a wireless carrier 132 during an observation period is indicative of the rate of change of load on the wireless carrier 132 during the observation period and, similarly, the number of idie mode UEs on the wireless carrier 132 during the observation period may be estimated based on the rate of change of load on the wireless carrier 132 during the observation period.
- the rate of change of load on a wireless carrier 132 during an observation period is not necessarily equal to the number of session originations on the wireless carrier 132 during the observation period. This is due to the fact that some of the sessions may have terminated during the observation period. As a result, the rate of change of load on a wireless carrier 132 during an observation period may be greater than the number of session originations on the wireless carrier 132 during the observation period where there is at least one session termination on the wireless carrier 132 during the observation period.
- the rate of change of ioad on the wireless carrier 132 during the observation period is increased by an amount corresponding to the estimated decrease in the rate of change of load on the wireless carrier 132 due to session terminations during the observation period that subtract from the rate of change of load on the wireless carrier 132 during the observation period.
- the load on the wireless carrier 132 that is contributed by session terminations on the wireless carrier 132 is added back into the observed load on the wireless carrier 132 in order to counteract any reduction of the observed load on the wireless carrier 132 due to the session terminations (i.e., the observed load on the wireless carrier 132 is increased by an amount that corresponds to an amount of load increase that would have been observed on the wireless carrier 132 had there been no session terminations during the observation period, because those terminated sessions would have contributed to the load increase on the wireiess carrier 132).
- the number of session terminations on a wireless carrier 132 is assumed to be a fixed fraction of the total active load on the wireless carrier 132 and, therefore, since the active load on the wireless carrier 132 can be determined, the number of session terminations can be computed.
- idle mode load balancing is invoked for a given wireless carrier 132 when the loading level and the rate of change of load on the wireless carrier 132 are relatively high as compared with the other wireless carrier(s) 132 in the set of wireless carriers 132.
- the !MLBs 150 may be configured to perform idle mode load balancing for a set of wireless carriers 132 based on the relative numbers of idle mode UEs 140 of the wireless carriers 132 as depicted and described with respect to FIGs. 2-4.
- the IMLBs 150 may be configured to perform various other functions in support of and/or in conjunction with idle mode load balancing.
- core network 110 RNCs 120, BSs 130, wireless carriers 132, UEs 140, and IMLBs 150
- any other suitable numbers and/or arrangements of core network 1 10, RNCs 120, BSs 130, wireless carriers 132, UEs 140, and/or IMLBs 150 may be used.
- FIG. 2 depicts one embodiment of a method for performing idle mode load balancing for a set of wireless carriers. Although primarily depicted and described as being performed serially, at least a portion of the stops of method 200 may be performed contemporaneously and/or in a different order than presented in FIG. 2.
- step 210 method 200 begins.
- numbers of idle mode UEs associated with the wireless carriers of a set of wireless carriers are determined.
- the number of idle mode UEs associated with a given wireless carrier may be determined based on a change in load on the wireless carrier during the observation period.
- the number of idle mode UEs associated with a given wireless carrier may be determined as depicted and described with respect to FIGs. 3 and 4.
- relative numbers of idle mode UEs associated with the wireless carriers in the set of wireless carriers are determined based on the numbers of idle mode UEs associated with the wireless carriers in the set of wireless carriers.
- the relative numbers of idle mode UEs may be determined, based on the numbers of idle mode UEs associated with the wireless carriers, in any suitable manner.
- the relative numbers of idle mode UEs may be determined by selecting, from the numbers of idle mode UEs associated with individual wireless carriers of the set of wireless carriers, the iowest number of idle mode UEs and using this Iowest number of idle mode UEs as a reference for determining the relative numbers of idle mode UEs (e.g., via comparison of the Iowest number of idle mode UEs for any wireless carrier to each of the other numbers of idle mode UEs for the other wireless carriers).
- the relative numbers of idle mode UEs may be determined by selecting, from the numbers of idle mode UEs associated with individual wireless carriers of the set of wireless carriers, the highest number of associated idle mode UEs and using this highest number of idle mode UEs associated with a wireless carrier as a reference for determining the relative numbers of idle mode UEs (e.g., via comparison of the highest number of idle mode UEs to each of the other numbers of idle mode UEs for the other wireless carriers of the set of wireless carriers).
- the relative numbers of idle mode UEs associated with the wireless carriers in the set of wireless carriers may be represented using any suitable information (e.g., values indicative of the numbers of idle mode UEs estimated for each of the wireless carriers, values indicative of ratios of numbers of idle mode UEs estimated for each of the wireless carriers, or the like).
- the determination of the relative numbers of idle mode UEs associated with the wireless carriers in the set of wireless carriers may be better understood by way of reference to an example. For example, consider a case in which idle mode load balancing is being performed for a set of wireless carriers that includes three wireless carriers. In this example, assume that a determination is made that the first wireless carrier is estimated to have ten idle mode wireless devices, the second wireless carrier is estimated to have twelve idle mode wireless devices, and the third wireless carrier is estimated to have fifteen idle mode wireless devices. In this example, the information indicative of the relative numbers of idle mode UEs associated with the wireless carriers indicated that the second wireless carrier has 20% more idle mode UEs as compared to the first wireless carrier and that the third wireless carrier has 50% more idle mode UEs as compared to the first wireless carrier.
- method 200 proceeds to step 260, where method 200 ends. If load balancing is to be performed, method 200 proceeds to step 250.
- load balancing is performed for the wireless carriers in the set of wireless carriers based on the relative number of idle mode UEs associated with the wireless carriers in the set of wireless carriers.
- the idle mode load balancing for balancing the idle mode UEs across the wireless carriers in the set of wireless carriers based on the relative numbers of idle mode UEs on the wireless carriers, may be performed in any suitable manner.
- idle mode load balancing for balancing the idle mode UEs across the wireless carriers in the set of wireless carriers may be performed via modification of one or more cell reseiection parameters, via modification of bias levels, to cause redistribution of UEs (including idle mode UEs) across the wireless carriers in the set of wireless carriers.
- step 260 method 200 ends.
- method 200 ends. Although primarily depicted and described as ending (for purposes of clarity), it will be appreciated that method 200 may be repeated as often as necessary and/or desirable (e.g., periodically, in response to one or more conditions, or the like, as well as various combinations thereof).
- FIG. 3 depicts one embodiment of a method for determining a number of idle mode UEs associated with a wireless carrier. It is noted that method 220 of FIG. 3 may be performed for each of the wireless carriers considered during method 200 of FIG. 2. Although primarily depicted and described as being performed serially, it is noted that the steps of method 220 may be performed contemporaneously and/or different order than presented in FIG. 3.
- method 220 begins.
- a change in load on a wireless carrier during an observation period is determined.
- the change in load on the wireless carrier may be a change in load on the wireless carrier that accounts for both session originations on the wireless carrier during the observation period and, when applicable, session terminations on the wireless carrier during the observation period.
- the observation period may be any suitable length of time (e.g., one minute, two minutes, ten minutes, or any other suitable length of time).
- the change in load on the wireless carrier during an observation period may be determined as depicted and described with respect to FIG. 4.
- the number of idle mode UEs associated with the wireless carrier is determined based on the change in load on the wireless carrier during the observation period.
- the number of idle mode UEs associated with the wireless carrier may be determined based on the change in load on the wireless carrier during the observation period in any suitable manner (e.g., as a proportionality value based on the value of the change in load on the wireless carrier during the observation period, based on historical information indicative of the relationship between rate of change of load on a wireless terminal and the number of idle mode UEs on the wireless carrier, or the like).
- FIG. 4 depicts one embodiment of a method for determining a change in load on a wireless carrier during an observation period. It is noted that method 320 of FIG. 4 may be performed for each of the wireless carriers considered during method 200 of FIG. 2. Although primarily depicted and described herein as being performed serially, it is noted that the steps of method 320 may be performed contemporaneously and/or in a different order than presented in FIG. 4.
- method 320 begins.
- an observed change in load on a wireless carrier during the observation period is determined.
- the observed change in load on the wireless carrier during the observation period is determined as a difference between the observed load at the end of the observation period (LOADT 2 ) and the load at the beginning of the observation period (LOAD T i ).
- the values of the load at different times may be determined based on monitoring of the load on the wireless carrier.
- the monitoring of the load on the wireless carrier may be performed in any suitable manner (e.g., via monitoring of standards-based load information exchanged via RIM messaging and/or using any other suitable techniques).
- a load contributed by session terminations on the wireless carrier during the observation period is determined.
- the load contributed by session terminations may be determined as K multiplied by [observed load at beginning of observation period (LOAD T i )], where K is an adjustment value.
- K is an adjustment value.
- the value of K may be determined in a number of ways (e.g., measured, estimated, or the like).
- the value of K may be measured by determining the number of session terminations on the wireless carrier during the observation period, determining the total number of active sessions on the wireless carrier at the beginning of the observation period, and dividing the number of session terminations on the wireless carrier during the observation period by the total number of active sessions on the wireless carrier at the beginning of the observation period.
- the value of K may be estimated based on historical information. In at least some cases, it is reasonable to assume that, for a given geographic region, the fraction of session terminations on the wireless carrier, as a percentage of the overall load on the wireless carrier, is substantially constant across most (if not all) carriers.
- the value of K may be determined by (a) determining, based on historical statistics of session terminations, an estimated number of session
- the value of K for the observation period may be determined based on historical values of K.
- the change in load on the wireless carrier during the observation period is determined.
- the change in load on the wireless carrier during the observation period may be determined as a sum of the observed change in load (from step 420) and the load contributed by session terminations (from step 430). It is noted that, since the change in load on the wireless carrier is determined for an observation period, the change in load during the observation period also may be considered to be a rate of change of load on the wireless carrier.
- step 450 method 320 ends.
- FIG. 5 depicts a high-level block diagram of a computer suitable for use in performing functions described herein.
- the computer 500 includes a processor 502 (e.g., a central processing unit (CPU) and/or other suitable processor(s)) and a memory 504 (e.g., random access memory (RAM), read only memory (ROM), and the like).
- processor 502 e.g., a central processing unit (CPU) and/or other suitable processor(s)
- memory 504 e.g., random access memory (RAM), read only memory (ROM), and the like.
- the computer 500 also may include a cooperating module/process 505.
- the cooperating process 505 can be loaded into memory 504 and executed by the processor 502 to implement functions as discussed herein and, thus, cooperating process 505 (including associated data structures) can be stored on a computer readable storage medium, e.g., RAM memory, magnetic or optical drive or diskette, and the like.
- the computer 500 also may include one or more input/output devices 506 (e.g., a user input device (such as a keyboard, a keypad, a mouse, and the like), a user output device (such as a display, a speaker, and the like), an input port, an output port, a receiver, a transmitter, one or more storage devices (e.g., a tape drive, a floppy drive, a hard disk drive, a compact disk drive, and the like), or the like, as well as various combinations thereof).
- input/output devices 506 e.g., a user input device (such as a keyboard, a keypad, a mouse, and the like), a user output device (such as a display, a speaker, and the like), an input port, an output port, a receiver, a transmitter, one or more storage devices (e.g., a tape drive, a floppy drive, a hard disk drive, a compact disk drive, and the like), or the like, as well
- computer 500 depicted in FIG. 5 provides a genera! architecture and functionality suitable for implementing functional elements described herein and/or portions of functional elements described herein.
- the computer 500 provides a general architecture and functionality suitable for implementing one or more of an element of core network 110, a portion of an element of core network 110, an RNC 120, a portion of an RNC 120, a BS 130, a portion of a BS 130, a UE 140, a portion of a UE 140, an IMLB 150, a portion of an IMLB 150, or the like.
- An apparatus comprising:
- processors configured to:
- the processor is configured to:
- the processor is configured to:
- the processor is configured to determine the change in load on the wireless carrier based on the observed change in load on the wireless carrier and the load correction by summing the observed change in load on the wireless carrier and the load correction.
- the wireless carrier is a first wireless carrier, the processor further configured to:
- the processor is configured to:
- a computer-readable storage medium storing instructions which, when executed by a computer, cause the computer to perform a method, the method comprising:
- a method comprising:
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13732735.9A EP2862383A2 (en) | 2012-06-14 | 2013-06-11 | Apparatus and method for supporting idle mode load balancing |
JP2015517356A JP6301320B2 (en) | 2012-06-14 | 2013-06-11 | Apparatus and method for supporting idle mode load balancing |
CN201380031681.1A CN104412642B (en) | 2012-06-14 | 2013-06-11 | Equipment, method and storage medium for supporting idle mode load balancing |
KR1020147034804A KR101611817B1 (en) | 2012-06-14 | 2013-06-11 | Apparatus and method for supporting idle mode load balancing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/517,765 US9397804B2 (en) | 2012-06-14 | 2012-06-14 | Apparatus and method for supporting idle mode load balancing |
US13/517,765 | 2012-06-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013188392A2 true WO2013188392A2 (en) | 2013-12-19 |
WO2013188392A3 WO2013188392A3 (en) | 2014-03-13 |
Family
ID=48703877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/045165 WO2013188392A2 (en) | 2012-06-14 | 2013-06-11 | Apparatus and method for supporting idle mode load balancing |
Country Status (6)
Country | Link |
---|---|
US (1) | US9397804B2 (en) |
EP (1) | EP2862383A2 (en) |
JP (1) | JP6301320B2 (en) |
KR (1) | KR101611817B1 (en) |
CN (1) | CN104412642B (en) |
WO (1) | WO2013188392A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160192370A1 (en) * | 2014-12-29 | 2016-06-30 | Verizon Patent And Licensing Inc. | Idle mode load balancing |
JP2017527208A (en) * | 2014-08-08 | 2017-09-14 | 日本電気株式会社 | Communication system using idle mode terminal balancing |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6270832B2 (en) * | 2012-06-27 | 2018-01-31 | クアルコム,インコーポレイテッド | Network-driven cell reselection method for UE playing EMBMS content in unicast idle mode |
GB2540806B (en) * | 2015-07-29 | 2018-10-17 | Samsung Electronics Co Ltd | Idle mode load balancing |
US9967776B1 (en) | 2015-10-22 | 2018-05-08 | Sprint Spectrum L.P. | Iidle-mode load equalization |
KR102394203B1 (en) * | 2017-07-07 | 2022-05-04 | 삼성전자주식회사 | Apparatus and method for load distribution of base station in wireless communication system |
US20220051135A1 (en) * | 2020-08-14 | 2022-02-17 | Samsung Electronics Co., Ltd. | Load balancing using data-efficient learning |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6987749B2 (en) * | 2004-06-22 | 2006-01-17 | Motorola, Inc. | Method for radio bearer optimization through an adaptive access probability factor |
US8023932B2 (en) * | 2006-02-10 | 2011-09-20 | Microsoft Corporation | Managing subscribers on a cellular network |
US8374622B2 (en) * | 2006-12-13 | 2013-02-12 | Hewlett-Packard Development Company, L.P. | Call admission control for Wi-Fi |
CN101617244B (en) * | 2007-01-18 | 2012-11-14 | 艾利森电话股份有限公司 | Improved load estimation for a cell in a wireless network |
US8515430B2 (en) * | 2008-04-01 | 2013-08-20 | Nec Corporation | Wireless communication system, base station, wireless communication method, and program |
WO2009149600A1 (en) * | 2008-06-13 | 2009-12-17 | Huawei Technologies Co., Ltd. | Method of load balancing in a mobile communications system |
US20100015926A1 (en) * | 2008-07-18 | 2010-01-21 | Luff Robert A | System and methods to monitor and analyze events on wireless devices to predict wireless network resource usage |
EP3661071B1 (en) * | 2009-04-28 | 2023-11-29 | Mitsubishi Electric Corporation | Mobile communication system, base station and user equipment using coordinated and uncoordinated communication modes |
WO2011067862A1 (en) | 2009-12-04 | 2011-06-09 | 富士通株式会社 | Base station device, mobile terminal, communication system, and radio communication method |
JP5660049B2 (en) * | 2009-12-17 | 2015-01-28 | 日本電気株式会社 | Load distribution system, load distribution method, apparatus and program constituting load distribution system |
WO2012053952A1 (en) * | 2010-10-21 | 2012-04-26 | Telefonaktiebolaget Lm Eriksson (Publ) | Spectrum sharing in multi-rat radio base stations |
KR101518148B1 (en) | 2010-11-02 | 2015-05-06 | 후지쯔 가부시끼가이샤 | Cell specifying method, base station, mobile station |
-
2012
- 2012-06-14 US US13/517,765 patent/US9397804B2/en not_active Expired - Fee Related
-
2013
- 2013-06-11 CN CN201380031681.1A patent/CN104412642B/en not_active Expired - Fee Related
- 2013-06-11 EP EP13732735.9A patent/EP2862383A2/en not_active Withdrawn
- 2013-06-11 JP JP2015517356A patent/JP6301320B2/en not_active Expired - Fee Related
- 2013-06-11 KR KR1020147034804A patent/KR101611817B1/en not_active IP Right Cessation
- 2013-06-11 WO PCT/US2013/045165 patent/WO2013188392A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017527208A (en) * | 2014-08-08 | 2017-09-14 | 日本電気株式会社 | Communication system using idle mode terminal balancing |
US10805851B2 (en) | 2014-08-08 | 2020-10-13 | Nec Corporation | Communications system with idle mode terminal balancing |
US20160192370A1 (en) * | 2014-12-29 | 2016-06-30 | Verizon Patent And Licensing Inc. | Idle mode load balancing |
US9661670B2 (en) * | 2014-12-29 | 2017-05-23 | Verizon Patent And Licensing Inc. | Idle mode load balancing |
US9872204B2 (en) | 2014-12-29 | 2018-01-16 | Verizon Patent And Licensing Inc. | Idle mode load balancing |
Also Published As
Publication number | Publication date |
---|---|
JP6301320B2 (en) | 2018-03-28 |
KR101611817B1 (en) | 2016-04-12 |
KR20150013287A (en) | 2015-02-04 |
US20130336110A1 (en) | 2013-12-19 |
CN104412642B (en) | 2018-10-30 |
WO2013188392A3 (en) | 2014-03-13 |
EP2862383A2 (en) | 2015-04-22 |
JP2015527773A (en) | 2015-09-17 |
CN104412642A (en) | 2015-03-11 |
US9397804B2 (en) | 2016-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9397804B2 (en) | Apparatus and method for supporting idle mode load balancing | |
US20130121147A1 (en) | Controlling Uplink Congestion in a Wireless Communication Network | |
US8295235B2 (en) | Load balancing multiple among multiple carriers in a sector | |
CA2891804C (en) | Device and method for configuring almost blank subframe and heterogeneous wireless communication network | |
US9844024B2 (en) | Determination of the real tracking-area when dynamic-TA techniques are applied | |
CN110784894B (en) | LTE system load balancing method and device | |
EP3644646A1 (en) | Load-balancing method and apparatus | |
US11438269B2 (en) | Systems and methods for congestion control in an integrated access and backhaul network | |
US20230099649A1 (en) | Application Awareness of Credit Conditions in Communication Network | |
CN111629404A (en) | Communication method and device | |
US8954074B2 (en) | Method and apparatus for triggering cell reselection based on a resource suspension | |
US9912559B2 (en) | Method and apparatus for load-balancing gateway elements | |
CN111587599A (en) | Channel selection in wireless networks | |
CN106793093B (en) | Service processing method and device | |
US20170034710A1 (en) | Method, Apparatus and System | |
US20210360539A1 (en) | Adaptive Mobile Network Operation | |
US20240008137A1 (en) | Radio access network connection time management at user equipment | |
CN111417145B (en) | Information processing method and device | |
US9125212B2 (en) | Apparatus and method for switching a wireless communication scheme | |
CN109474959A (en) | A kind of method and apparatus of cell access | |
WO2013024443A1 (en) | Wireless communications cell reselection | |
CN109587740B (en) | Method and equipment for reducing service load of cell | |
CN110831089A (en) | Channel switching method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13732735 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013732735 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147034804 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015517356 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13732735 Country of ref document: EP Kind code of ref document: A2 |