New! View global litigation for patent families

WO2013188331A1 - Detergent composition - Google Patents

Detergent composition

Info

Publication number
WO2013188331A1
WO2013188331A1 PCT/US2013/045070 US2013045070W WO2013188331A1 WO 2013188331 A1 WO2013188331 A1 WO 2013188331A1 US 2013045070 W US2013045070 W US 2013045070W WO 2013188331 A1 WO2013188331 A1 WO 2013188331A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
suitable
preferably
acid
include
detergent
Prior art date
Application number
PCT/US2013/045070
Other languages
French (fr)
Inventor
Steven George PATTERSON
Philip Frank Souter
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz, glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite, attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite, attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/382Vegetable products, e.g. soya meal, wood flour, sawdust
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease, amylase
    • C11D3/38672Granulated or coated enzymes

Abstract

Detergent compositions are described having more than one enzyme, in particular having a multi-enzyme co-particle as well as methods of making and using such detergents. The compositions also have low levels of zeolite and phosphate builders and a moisture sink to minimize interaction between enzymes.

Description

DETERGENT COMPOSITION

FIELD OF INVENTION

This invention relates to detergent compositions comprising more than one enzyme as well as methods of making and using such detergents.

BACKGROUND OF THE INVENTION

There is increasing pressure on natural resources, especially energy and water and also demand on use of petrochemicals continues to grow. Detergent compositions comprising enzymes have been known for many years and offer the opportunity to deliver outstanding cleaning, care and freshness benefits from detergents particularly in low water and/or low temperature washes, while reducing the need to rely so heavily on petrochemical-based materials. Such a formulation approach does bring with it considerable challenges associated with how to deliver consistent outstanding cleaning from products that need to be stable on shelf for many months in an affordable manner. This problem is particularly acute in warmer parts of the world.

In IP.com disclosure IPCOM000200739D it is disclosed that uniform enzyme granule distribution can be improved by incorporating two or more enzymes combined in one co-granule. Each enzyme will then be present in more granules securing a more uniform distribution of enzymes in the detergent. This also reduces the physical segregation of different enzymes due to different particle sizes. However, for detergent compositions stored under conditions of high temperature and/or humidity, interaction between enzymes in an enzyme cogranule can lead to loss of enzyme activity, in particular when one of the enzymes is protease. This problem is particularly acute in detergent compositions comprising low levels of typical strong builders i.e. zeolite and phosphate builders.

SUMMARY OF THE INVENTION

The present invention relates to a detergent composition comprising (a) a multi-enzyme co- granule; (b) less than 10 wt zeolite (anhydrous basis); and (c) less than 10 wt phosphate salt (anhydrous basis), wherein said enzyme co-granule comprises from 10 to 98 wt% moisture sink component and the composition additionally comprises from 20 to 80 wt% detergent moisture sink component.

The invention also relates to a method of treating and/or cleaning a surface, preferably a fabric surface comprising the steps of (i) contacting said surface with the detergent composition as claimed and described herein in an aqueous wash liquor, (ii) rinsing and/or drying the surface. Preferably the temperature of the aqueous liquor is from 5 - 25 °C and preferably the aqueous liquor comprises from O.lg/1 to 3g/l of surfactant. DETAILED DESCRIPTION OF THE INVENTION

Definitions

As used herein "detergent composition" means consumer and institutional products, including but not limited to cleaning and/or treatment compositions, particularly cleaning compositions for laundry, dishwashing, and hard surface cleaning products, other cleaners, and cleaning systems all for the care and cleaning of inanimate surfaces, as well as fabric conditioner products and other products designed specifically for the care and maintenance of fabrics. Such detergent composition are generally intended to be used or consumed in the form in which they are sold. Such products include laundry and rinse additive and/or care, hard surface cleaning and/or treatment including floor and toilet bowl cleaners. Preferably the compositions of the invention are laundry or dish-washing detergents, most preferably laundry detergents. Typically the compositions of the invention are solid i.e. in granular or powder-form, which may optionally be incorporated into a unit-dose detergent composition such as a tablet or pouch which may be single or multi-compartment. However, they may be liquid, gel or paste-form. In a pouch the composition of the invention will be present within a water-soluble film. Where the pouch is multi-compartment, the composition of the invention will be present in one or more

compartments. Further compositions, not in accordance with the invention may be provided in one or more further compartments of the multi-component pouch. All of such products which are applicable may be in standard, concentrated or even highly concentrated form even to the extent that such products may in certain aspect be non- aqueous.

As used herein, articles such as "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described. As used herein, the terms "include", "includes" and "including" are meant to be non- limiting. As used herein, the term "solid" includes granular, powder, bar and tablet product forms. Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions. All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated. Multi-Enzyme Co- ranule

The multi-enzyme co-granule comprises at least two enzymes, or at least three or four or more enzymes, preferably selected from the group consisting of first-wash lipases, cleaning cellulases, xyloglucanases, perhydrolases, peroxidases, lipoxygenases, laccases, hemicellulases, proteases, care cellulases, cellobiose dehydrogenases, xylanases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases,

phenoloxidases, ligninases, pullulanases, tannases, pentosanases, lichenases glucanases, arabinosidases, hyaluronidase, chondroitinase, amylases, and mixtures thereof. Preferably the co-granule comprises (a) one or more enzymes selected from the group consisting of first- wash lipases, cleaning cellulases, xyloglucanases, perhydrolases, peroxidases, lipoxygenases, laccases and mixtures thereof. Preferred enzymes from group (a) are first wash lipases. In addition the co-granule preferably comprises (b) one or more enzymes selected from the group consisting of hemicellulases, proteases, care cellulases, cellobiose dehydrogenases, xylanases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, ligninases, pullulanases, tannases, pentosanases, lichenases glucanases, arabinosidases, hyaluronidase, chondroitinase, amylases, and mixtures thereof. Preferably the co-granule comprises a protease enzyme.

The co-granule may comprise for example at least two enzymes, for example including: (i) protease and amylase; (ii) portease and cellulase; (iii) protease and first wash lipase; (iv) cellulase an first wash lipase; (v) amylase and cellulase; or (vi) amylase and first wash lipase. Alternatively the co-granule may comprise at least three enzymes, for example including (i) protease, first wash lipase and cellulase; (ii) protease, amylase and cellulase; (iii) protease, amylase and first wash lipase; (iv) first wash lipase, amylase and cellulase. Alternatively, the co- granule may comprise at least four enzymes, for example including (i) protease, amylase, first wash lipase and cellulase; (ii) protease, amylase, first wash lipase and mannanase.

The amount of total active enzyme protein incorporated into the co-granule is typically delivers from 0.2 to 1.0wt% active enzyme in the detergent composition.

Moisture Sink Component

The moisture sink component is present in the co-granule in amounts of from 10 to 99 wt of the co-granule. Preferably the moisture sink material is herein understood a material that in its anhydrous form can take water to become hydrated and it can easily give up the hydration water when it is placed in a drier or warmer environment. Preferably the moisture sink materials for use in the composition of the invention have a difference in density between the anhydrous and hydrated form of at least 0.8 g/cm3, more preferably at least 1 g/cm3 and especially at least 1.2 g/cm3. This difference in densities provides a mechanism to break particle:particle crystal bridges that have formed as a result of water condensing as the powder temperature fell below the dew point associated with that powder. As the temperature increases following a period of cooling (as in a temperature cycle), the hydrated material forming a crystal bridge between particles reverts to the anhydrous (or less hydrated) form. The higher crystal density associated with the anhydrous (or less hydrated) form provides a mechanism for breaking these crystal bridges due to the reduction in crystal volume. This allows that a period of low temperature does not negatively and permanently affect the structure of the powder and contributes to good handling properties of the composition.

Preferably the moisture sink component is present in amounts from 30, 50 or even 60 wt of the co-granule, up to 90 or 95 wt based on the co-granule. Examples of suitable moisture sink components are capable of absorbing moisture. Suitable moisture sink components are preferably selected from the group consisting of (a) hydratable salts, (b) dessicated clays, (c) bio-filler, and (d) mixtures thereof. Useful as hydratable salts are typically sodium, calcium, magnesium salts, preferably sodium salts of carbonate, chloride, citrate and sulphate and mixtures thereof. Anhydrous sodium carbonate may be preferred. Light sodium carbonate may be preferred.

As examples of suitable clays are talc, calcite, kaolin, dolomite and bentonite. Preferred dessicated clays have a moisture content of from 0.1 to 20 wt free moisture, more preferably from 0.1 to 15 or even 0.1 to 10 or even 5 wt free moisture;

Suitable as bio-filler is any water soluble or water insoluble agricultural by-product.

Examples of water-insoluble agricultural by-products are described in WO2007/147698.

Preferred bio-fillers have a moisture content of from 0.1 to 20 wt free moisture, more preferably from 0.1 to 15 or even 0.1 to 10 wt or even 5 wt free moisture;

The particle size of the moisture sink component is preferably such that at least 90 wt of the particles of moisture sink component have a diameter less than 700 or even less than 500 or

300 or 250 microns or even less than 100 microns.

The weight ratio of moisture sink component to active enzyme protein in the co-granule is preferably from 10: 1 or 20: 1 or 50:1 or 10:1 up to 100:1 or 90:1 or 75:1.

Enzyme co-granules Suitable enzyme co-granules for use herein include those formed according to any of the below technologies:

a) Spray dried products, wherein a liquid enzyme-containing solution is atomised in a spray drying tower to form small droplets which during their way down the drying tower dry to form an enzyme-containing particulate material. Very small particles can be produced this way (Michael S. Showell (editor); Powdered detergents; Surfactant Science Series; 1998; vol. 71; page 140-142; Marcel Dekker).

b) Layered products, wherein the enzyme is coated as a layer around a pre-formed inert core particle, wherein an enzyme-containing solution is atomised, typically in a fluid bed apparatus wherein the pre-formed core particles are fluidised, and the enzyme-containing solution adheres to the core particles and dries up to leave a layer of dry enzyme on the surface of the core particle. Particles of a desired size can be obtained this way if a useful core particle of the desired size can be found. This type of product is described in e.g. WO 97/23606

c) Absorbed core particles, wherein rather than coating the enzyme as a layer around the core, the enzyme is absorbed onto and/or into the surface of the core. Such a process is described in WO

97/39116.

d) Extrusion or pelletized products, wherein an enzyme-containing paste is pressed to pellets or under pressure is extruded through a small opening and cut into particles which are subsequently dried. Such particles usually have a considerable size because of the material in which the extrusion opening is made (usually a plate with bore holes) sets a limit on the allowable pressure drop over the extrusion opening. Also, very high extrusion pressures when using a small opening increase heat generation in the enzyme paste, which is harmful to the enzyme. (Michael S.

Showell (editor); Powdered detergents; Surfactant Science Series; 1998; vol. 71; page 140-142; Marcel Dekker)

e) Prilled products or, wherein an enzyme powder is suspended in molten wax and the suspension is sprayed, e.g. through a rotating disk atomiser, into a cooling chamber where the droplets quickly solidify (Michael S. Showell (editor); Powdered detergents; Surfactant Science Series; 1998; vol. 71; page 140-142; Marcel Dekker). The product obtained is one wherein the enzyme is uniformly distributed throughout an inert material instead of being concentrated on its surface. Also US 4,016,040 and US 4,713,245 are documents relating to this technique

f) Mixer granulation products, wherein an enzyme-containing liquid is added to a dry powder composition of conventional granulating components. The liquid and the powder in a suitable proportion are mixed and as the moisture of the liquid is absorbed in the dry powder, the components of the dry powder will start to adhere and agglomerate and particles will build up, forming granulates comprising the enzyme. Such a process is described in US 4,106,991 (NOVO NORDISK) and related documents EP 170360 Bl, EP 304332 Bl, EP 304331, WO 90/09440 and WO 90/09428. In a particular product of this process wherein various high-shear mixers can be used as granulators, granulates consisting of the enzyme, fillers and binders etc. are mixed with cellulose fibres to reinforce the particles to give the so-called T-granulate. Reinforced particles, being more robust, release less enzymatic dust.

Preferred enzyme co-granules, for use in the composition of the invention, have a core- shell structure. In preferred core-shell embodiments the core comprises a central part, preferably free of enzymes, and a surrounding layer containing enzymes and the shell comprises a plurality of layers, the most outer layer being a protective layer. In preferred embodiments the central part of the core and at least one of the layers of the shell comprise an moisture sink material.

Preferably the central part of the core represents from 1% to 60%, more preferably from 3% to 50% and especially from 5% to 40% by weight of the total particle. Preferably the layer comprising the moisture sink material represents from 0.5% to 40%, more preferably from 1% to 30% and especially from 3% to 20% by weight of the total particle. Preferably the most outer layer comprises polyvinyl alcohol, more preferably titanium oxide (for aesthetic reasons) and especially a combination thereof. Preferably the protective layer represents from 0.05% to 20%, more preferably from 0.1% to 15% and especially from 1% to 3% by weight of the total particle. The enzyme granulate can also contain adjunct materials such as antioxidants, dyes, activators, solubilizers, binders, etc. Enzymes according to this embodiment can be made by a fluid bed layering process similar to that described in US 5,324,649, US 6,602,841 Bl and

US2008/0206830A1.

Enzymes according to this embodiment can also be made by a combination of processes. Such enzyme co-granules are built around a core that can be free of enzymes or contain enzymes (preferably comprising an moisture sink material, more preferably sodium sulphate) that can be made using a variety of processes including use of either a mixer granulator or an extruder. The cores are then treated in a fluid bed process wherein the enzyme is sprayed onto the core. The core is then coated by a layer, preferably comprising an moisture sink material, and more preferably sodium sulphate and finally is coated with a polymer selected from the group comprising hydroxpropylmethylcellulose and/or polyvinylalcohol and derivatives thereof, optionally also containing additional titanium dioxide, polyethylene glycol and/or kaolin or any mixtures thereof. Processes suitable for making the enzyme granulate for use herein are described in US 6,348,442 B2, US 2004/0033927 Al, USP 7,273,736, WO 00/01793, US 6,268,329 Bl and US2008/0206830A1. Preferably, the granulate comprises from about 30% to about 75%, preferably from about 40 to about 50% by weight of the granulate of an moisture sink material, selected from the group comprising sodium sulphate, sodium citrate and mixtures thereof, preferably sodium sulphate.

Preferably, the enzyme co-granules have a weight geometric mean particle size of from about 200 μιη to about 1200 μιη, more preferably from about 300 μιη to about 1000 μιη and especially from about 400 μιη to about 600 μιη.

In addition to the co-granule, the compositions of the invention comprise less than 10 wt% zeolite (anhydrous basis), more preferably less than 7 or 5 or even below 3wt% zeolite. Zeolite may even be completely absent from the detergent compositions of the invention.

In addition to the co-granule, the compositions of the invention comprise less than 10 wt% phosphate salt (anhydrous basis), more preferably less than 7 or 5 or even below 3wt% phosphate salt. Phosphate salts may even be completely absent from the detergent compositions of the invention.

In addition the compositions of the invention comprise from 20 to 80 wt% detergent moisture sink, preferably from 25, or 30 or 35 or 40 wt% to 75 wt% detergent moisture sink. Suitable detergent moisture sink components are capable of absorbing moisture and selected from the group consisting of (a) hydratable sulphate salts, (b) dessicated clays, (c) bio-filler, and (d) mixtures thereof. Useful salts are typically as hydratable sodium, calcium, magnesium salts of sulphate and mixtures thereof. Sodium sulphate is particularly preferred, most preferably in its anhydrous form. Light salts may also be preferred.

As examples of suitable clays are talc, calcite, kaolin, dolomite and bentonite. Preferred dessicated clays have a moisture content of from 0.1 to 20 wt% free moisture, more preferably from 0.1 to 15 or even 0.1 to 10 or even 5 wt% free moisture.

Suitable as bio-filler is any water soluble or water insoluble agricultural by-product. Examples of water-insoluble agricultural by-products are described in WO2007/147698.

Preferred bio-fillers have a moisture content of from 0.1 to 20 wt% free moisture, more preferably from 0.1 to 15 or even 0.1 to 10 wt% or even 5 wt% free moisture.

Sodium sulphate is the most preferred detergent moisture sink component.

The detergent moisture sink component may be dry-added to other detergent adjunct ingredients or may be incorporated into the detergent composition via a pre- formed particle such as an agglomerate or blown powder (particulate formed from a spray-drying process), or may be incorporated via a mixture of these routes. In a preferred composition the detergent moisture sink component is incorporated into the detergent composition as a dry-added particulate component comprising at least 80 wt , or even at least 90 wt or even at least 95 wt of the detergent moisture sink and in addition via a blown powder comprising from 15 to 70 wt , or from 20 to 60 wt based on the blown powder, of the detergent moisture sink component.

Typically where the moisture sink component is incorporated via an agglomerate particle and/or blown powder particle such particle will comprise at least 10 wt surfactant, based on the weight of the particle. In a particularly preferred composition of the invention, the compostion will comprise dry-added sodium sulphate and blown powder and/or agglomerate, preferably blown powder, comprising sodium sulphate.

In accordance with a preferred aspect of the invention, the detergent composition additionally comprises a dye transfer inhibiting agent and/or a fabric hueing agents.

Adjunct Materials

The detergent compositions of the invention may comprise one or more (detergent) adjunct materials. These may enhance cleaning performance, for treatment of the substrate to be cleaned, or modify the aesthetics of the composition for example as is the case with perfumes, speckles, colorants, dyes or the like. The levels of any such adjuncts incorporated in the composition of the invention any fabric and home care product are in addition to any materials previously recited for incorporation. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the consumer product and the nature of the cleaning operation for which it is to be used. Suitable adjunct materials include, but are not limited to, surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents and/or pigments. Examples of suitable adjuncts are described below. In addition to the disclosure below, suitable examples of such other adjuncts and levels of use are found in U.S. Patent Nos. 5,576,282, 6,306,812 Bl and 6,326,348 Bl that are incorporated by reference.

Fabric Hueing Agents: The composition may comprise a fabric hueing agent. Suitable fabric hueing agents include dyes, dye-clay conjugates, and pigments. Suitable dyes include small molecule dyes and polymeric dyes. Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.I.) classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof.

In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Colourists, Bradford, UK) numbers Direct Violet 9, Direct Violet 35, Direct Violet 48, Direct Violet 51, Direct Violet 66, Direct Violet 99, Direct Blue 1, Direct Blue 71, Direct Blue 80, Direct Blue 279, Acid Red 17, Acid Red 73, Acid Red 88, Acid Red 150, Acid Violet 15, Acid Violet 17, Acid Violet 24, Acid Violet 43, Acid Red 52, Acid Violet 49, Acid Blue 15, Acid Blue 17, Acid Blue 25, Acid Blue 29, Acid Blue 40, Acid Blue 45, Acid Blue 75, Acid Blue 80, Acid Blue 83, Acid Blue 90 and Acid Blue 113, Acid Black 1, Basic Violet 1, Basic Violet 3, Basic Violet 4, Basic Violet 10, Basic Violet 35, Basic Blue 3, Basic Blue 16, Basic Blue 22, Basic Blue 47, Basic Blue 66, Basic Blue 75, Basic Blue 159 and mixtures thereof. In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Colourists, Bradford, UK) numbers Acid Violet 17, Acid Violet 43, Acid Red 52,

Acid Red 73, Acid Red 88, Acid Red 150, Acid Blue 25, Acid Blue 29, Acid Blue 45, Acid Blue 113, Acid Black 1, Direct Blue 1, Direct Blue 71, Direct Violet 51 and mixtures thereof. In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Colourists, Bradford, UK) numbers Acid Violet 17, Direct Blue 71, Direct Violet 51, Direct Blue 1, Acid Red 88, Acid Red 150, Acid Blue 29, Acid Blue 113 or mixtures thereof.

Suitable polymeric dyes include polymeric dyes selected from the group consisting of polymers containing conjugated chromogens (dye-polymer conjugates) and polymers with chromogens co-polymerized into the backbone of the polymer and mixtures thereof.

In another aspect, suitable polymeric dyes include polymeric dyes selected from the group consisting of fabric-substantive colorants sold under the name of Liquitint® (Milliken, Spartanburg, South Carolina, USA), dye-polymer conjugates formed from at least one reactive dye and a polymer selected from the group consisting of polymers comprising a moiety selected from the group consisting of a hydroxyl moiety, a primary amine moiety, a secondary amine moiety, a thiol moiety and mixtures thereof. In still another aspect, suitable polymeric dyes include polymeric dyes selected from the group consisting of Liquitint® (Milliken, Spartanburg, South Carolina, USA) Violet CT, carboxymethyl cellulose (CMC) conjugated with a reactive blue, reactive violet or reactive red dye such as CMC conjugated with C.I. Reactive Blue 19, sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S-ACMC, alkoxylated triphenyl-methane polymeric colourants, alkoxylated thiophene polymeric colourants, and mixtures thereof.

Suitable dye clay conjugates include dye clay conjugates selected from the group comprising at least one cationic/basic dye and a smectite clay, and mixtures thereof. In another aspect, suitable dye clay conjugates include dye clay conjugates selected from the group consisting of one cationic/basic dye selected from the group consisting of C.I. Basic Yellow 1 through 108, C.I. Basic Orange 1 through 69, C.I. Basic Red 1 through 118, C.I. Basic Violet 1 through 51, C.I. Basic Blue 1 through 164, C.I. Basic Green 1 through 14, C.I. Basic Brown 1 through 23, CI Basic Black 1 through 11, and a clay selected from the group consisting of

Montmorillonite clay, Hectorite clay, Saponite clay and mixtures thereof. In still another aspect, suitable dye clay conjugates include dye clay conjugates selected from the group consisting of: Montmorillonite Basic Blue B7 C.I. 42595 conjugate, Montmorillonite Basic Blue B9 C.I. 52015 conjugate, Montmorillonite Basic Violet V3 C.I. 42555 conjugate, Montmorillonite Basic Green Gl C.I. 42040 conjugate, Montmorillonite Basic Red Rl C.I. 45160 conjugate, Montmorillonite C.I. Basic Black 2 conjugate, Hectorite Basic Blue B7 C.I. 42595 conjugate, Hectorite Basic Blue B9 C.I. 52015 conjugate, Hectorite Basic Violet V3 C.I. 42555 conjugate, Hectorite Basic Green Gl C.I. 42040 conjugate, Hectorite Basic Red Rl C.I. 45160 conjugate, Hectorite C.I. Basic Black 2 conjugate, Saponite Basic Blue B7 C.I. 42595 conjugate, Saponite Basic Blue B9 C.I. 52015 conjugate, Saponite Basic Violet V3 C.I. 42555 conjugate, Saponite Basic Green Gl C.I. 42040 conjugate, Saponite Basic Red Rl C.I. 45160 conjugate, Saponite C.I. Basic Black 2 conjugate and mixtures thereof.

Suitable pigments include pigments selected from the group consisting of flavanthrone, indanthrone, chlorinated indanthrone containing from 1 to 4 chlorine atoms, pyranthrone, dichloropyranthrone, monobromodichloropyranthrone, dibromodichloropyranthrone, tetrabromopyranthrone, perylene-3,4,9,10-tetracarboxylic acid diimide, wherein the imide groups may be unsubstituted or substituted by C1-C3 -alkyl or a phenyl or heterocyclic radical, and wherein the phenyl and heterocyclic radicals may additionally carry substituents which do not confer solubility in water, anthrapyrimidinecarboxylic acid amides, violanthrone,

isoviolanthrone, dioxazine pigments, copper phthalocyanine which may contain up to 2 chlorine atoms per molecule, polychloro-copper phthalocyanine or polybromochloro-copper

phthalocyanine containing up to 14 bromine atoms per molecule and mixtures thereof. In another aspect, suitable pigments include pigments selected from the group consisting of Ultramarine Blue (C.I. Pigment Blue 29), Ultramarine Violet (C.I. Pigment Violet 15) and mixtures thereof.

The aforementioned fabric hueing agents can be used in combination (any mixture of fabric hueing agents can be used). Suitable fabric hueing agents can be purchased from Aldrich, Milwaukee, Wisconsin, USA; Ciba Specialty Chemicals, Basel, Switzerland; BASF,

Ludwigshafen, Germany; Dayglo Color Corporation, Mumbai, India; Organic Dyestuffs Corp., East Providence, Rhode Island, USA; Dystar, Frankfurt, Germany; Lanxess, Leverkusen, Germany; Megazyme, Wicklow, Ireland; Clariant, Muttenz, Switzerland; Avecia, Manchester, UK and/or made in accordance with the examples contained herein. Suitable hueing agents are described in more detail in US 7,208,459 B2.

Encapsulates: The composition may comprise an encapsulate. In one aspect, an encapsulate comprising a core, a shell having an inner and outer surface, said shell encapsulating said core.

In one aspect of said encapsulate, said core may comprise a material selected from the group consisting of perfumes; brighteners; dyes; insect repellants; silicones; waxes; flavors; vitamins; fabric softening agents; skin care agents in one aspect, paraffins; enzymes; antibacterial agents; bleaches; sensates; and mixtures thereof; and said shell may comprise a material selected from the group consisting of poly ethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; aminoplasts, in one aspect said aminoplast may comprise a polyureas, polyurethane, and/or polyureaurethane, in one aspect said polyurea may comprise polyoxymethyleneurea and/or melamine formaldehyde; polyolefins; polysaccharides, in one aspect said polysaccharide may comprise alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof. In one aspect of said encapsulate, said core may comprise perfume. In one aspect of said encapsulate, said shell may comprise melamine formaldehyde and/or cross linked melamine formaldehyde.

In a one aspect, suitable encapsulates may comprise a core material and a shell, said shell at least partially surrounding said core material, is disclosed. At least 75%, 85% or even 90% of said encapsulates may have a fracture strength of from about 0.2 MPa to about 10 MPa, from about 0.4 MPa to about 5MPa, from about 0.6 MPa to about 3.5 MPa, or even from about 0.7 MPa to about 3MPa; and a benefit agent leakage of from 0% to about 30%, from 0% to about 20%, or even from 0% to about 5%. In one aspect, at least 75%, 85% or even 90% of said encapsulates may have a particle size of from about 1 microns to about 80 microns, about 5 microns to 60 microns, from about 10 microns to about 50 microns, or even from about 15 microns to about 40 microns. In one aspect, at least 75%, 85% or even 90% of said encapsulates may have a particle wall thickness of from about 30 nm to about 250 nm, from about 80 nm to about 180 nm, or even from about 100 nm to about 160 nm.

In one aspect, said encapsulates' core material may comprise a material selected from the group consisting of a perfume raw material and/or optionally a material selected from the group consisting of vegetable oil, including neat and/or blended vegetable oils including caster oil, coconut oil, cottonseed oil, grape oil, rapeseed, soybean oil, corn oil, palm oil, linseed oil, safflower oil, olive oil, peanut oil, coconut oil, palm kernel oil, castor oil, lemon oil and mixtures thereof; esters of vegetable oils, esters, including dibutyl adipate, dibutyl phthalate, butyl benzyl adipate, benzyl octyl adipate, tricresyl phosphate, trioctyl phosphate and mixtures thereof;

straight or branched chain hydrocarbons, including those straight or branched chain hydrocarbons having a boiling point of greater than about 80 °C; partially hydrogenated terphenyls, dialkyl phthalates, alkyl biphenyls, including monoisopropylbiphenyl, alkylated naphthalene, including dipropylnaphthalene, petroleum spirits, including kerosene, mineral oil and mixtures thereof; aromatic solvents, including benzene, toluene and mixtures thereof; silicone oils; and mixtures thereof.

In one aspect, said encapsulates' wall material may comprise a suitable resin including the reaction product of an aldehyde and an amine, suitable aldehydes include, formaldehyde. Suitable amines include melamine, urea, benzoguanamine, glycoluril, and mixtures thereof. Suitable melamines include, methylol melamine, methylated methylol melamine, imino melamine and mixtures thereof. Suitable ureas include, dimethylol urea, methylated dimethylol urea, urea-resorcinol, and mixtures thereof.

In one aspect, suitable formaldehyde scavengers may be employed with the encapsulates, for example, in a capsule slurry and/or added to a consumer product before, during or after the encapsulates are added to such consumer product.

Suitable capsules that can be made by following the teaching of USPA 2008/0305982 Al; and/or USPA 2009/0247449 Al. Alternatively, suitable capsules can be purchased from

Appleton Papers Inc. of Appleton, Wisconsin USA.

In addition, the materials for making the aforementioned encapsulates can be obtained from Solutia Inc. (St Louis, Missouri U.S.A.), Cytec Industries (West Paterson, New Jersey

U.S.A.), sigma-Aldrich (St. Louis, Missouri U.S.A.), CP Kelco Corp. of San Diego, California, USA; BASF AG of Ludwigshafen, Germany; Rhodia Corp. of Cranbury, New Jersey, USA; Hercules Corp. of Wilmington, Delaware, USA; Agrium Inc. of Calgary, Alberta, Canada, ISP of New Jersey U.S.A., Akzo Nobel of Chicago, IL, USA; Stroever Shellac Bremen of Bremen, Germany; Dow Chemical Company of Midland, MI, USA; Bayer AG of Leverkusen, Germany; Sigma-Aldrich Corp., St. Louis, Missouri, USA.

Polymers: The consumer product may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinyl-pyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid co-polymers.

The consumer product may comprise one or more amphiphilic cleaning polymers such as the compound having the following general structure: bis((C2H50)(C2H40)n)(CH3)-N+- CxH2x-N+-(CH3)-bis((C2H50)(C2H40)n), wherein n = from 20 to 30, and x = from 3 to 8, or sulphated or sulphonated variants thereof.

The consumer product may comprise amphiphilic alkoxylated grease cleaning polymers which have balanced hydrophilic and hydrophobic properties such that they remove grease particles from fabrics and surfaces. Specific embodiments of the amphiphilic alkoxylated grease cleaning polymers of the present invention comprise a core structure and a plurality of alkoxylate groups attached to that core structure. These may comprise alkoxylated poly alky lenimines, preferably having an inner polyethylene oxide block and an outer polypropylene oxide block.

Carboxylate polymer - The detergent composition of the present invention may also include one or more carboxylate polymers such as a maleate/acrylate random copolymer or polyacrylate homopolymer. In one aspect, the carboxylate polymer is a polyacrylate

homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da.

Soil release polymer - The detergent composition of the present invention may also include one or more soil release polymers having a structure as defined by one of the following structures (I), (II) or (III):

Figure imgf000014_0001

(II) -[(OCHR3-CHR4)b-0-OC-sAr-CO-]e

(III) -[(OCHR5-CHR6)c-OR7]f wherein: a, b and c are from 1 to 200;

d, e and f are from 1 to 50;

Ar is a 1,4-substituted phenylene;

sAr is 1,3-substituted phenylene substituted in position 5 with SC^Me;

Me is Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are Ci-Cis alkyl or C2-Cio hydroxyalkyl, or mixtures thereof;

R1, R2, R3, R4, R5 and R6 are independently selected from H or Ci-Cis n- or iso-alkyl; and R7 is a linear or branched Ci-Cis alkyl, or a linear or branched C2-C30 alkenyl, or a cycloalkyl group with 5 to 9 carbon atoms, or a C8-C30 aryl group, or a C6-C30 arylalkyl group.

Suitable soil release polymers are polyester soil release polymers such as Repel-o-tex polymers, including Repel-o-tex SF, SF-2 and SRP6 supplied by Rhodia. Other suitable soil release polymers include Texcare polymers, including Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN300 and SRN325 supplied by Clariant. Other suitable soil release polymers are Marloquest polymers, such as Marloquest SL supplied by Sasol.

Cellulosic polymer - The detergent composition of the present invention may also include one or more cellulosic polymers including those selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose. In one aspect, the cellulosic polymers are selected from the group comprising carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof. In one aspect, the carboxymethyl cellulose has a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.

Enzymes: In addition to the enzymes present in the co-granule, the detergent composition may comprise one or more additional enzymes which provide cleaning performance and/or fabric care benefits. Examples of suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, β-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof. A typical combination is an enzyme cocktail that may comprise, for example, a protease and lipase in conjunction with amylase. When present in the detergent composition of the invention, the aforementioned additional enzymes may be present at levels from about 0.00001% to about 2%, from about 0.0001% to about 1% or even from about 0.001% to about 0.5% enzyme protein by weight of the consumer product. The detailed information given below relates to enzymes suitable for incorporation into the co-granule or the detergent composition more generally other than via the co-granule.

In one aspect preferred enzymes would include a protease. Suitable proteases include metalloproteases and serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62). Suitable proteases include those of animal, vegetable or microbial origin. In one aspect, such suitable protease may be of microbial origin. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases. In one aspect, the suitable protease may be a serine protease, such as an alkaline microbial protease or/and a trypsin-type protease. Examples of suitable neutral or alkaline proteases include:

(a) subtilisins (EC 3.4.21.62), including those derived from Bacillus, such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in US 6,312,936 Bl, US 5,679,630, US 4,760,025, US7,262,042 and WO09/021867.

(b) trypsin-type or chymotrypsin-type proteases, such as trypsin (e.g. , of porcine or bovine origin), including the Fusarium protease described in WO 89/06270 and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146.

(c) metalloproteases, including those derived from Bacillus amyloliquefaciens described in WO 07/044993A2.

Preferred proteases include those derived from Bacillus gibsonii or Bacillus Lentus. Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®,

Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3® , FN4®,

Excellase® and Purafect OXP® by Genencor International, those sold under the tradename

Opticlean® and Optimase® by Solvay Enzymes, those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the folowing mutations S99D + SlOl R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) - all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao.

Suitable alpha- amylases include those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included. A preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus, Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, DSM 9375 (USP 7,153,818) DSM 12368, DSMZ no. 12649, KSM AP1378 (WO 97/00324), KSM K36 or KSM K38 (EP 1,022,334). Preferred amylases include:

(a) the variants described in WO 94/02597, WO 94/18314, W096/23874 and WO 97/43424, especially the variants with substitutions in one or more of the following positions versus the enzyme listed as SEQ ID No. 2 in WO 96/23874: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181 , 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444.

(b) the variants described in USP 5,856,164 and W099/23211, WO 96/23873,

WO00/60060 and WO 06/002643, especially the variants with one or more substitutions in the following positions versus the AA560 enzyme listed as SEQ ID No. 12 in WO 06/002643:

26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 203, 214, 231, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 461, 471, 482, 484, preferably that also contain the deletions of D183* and G184*.

(c) variants exhibiting at least 90% identity with SEQ ID No. 4 in WO06/002643, the wild-type enzyme from Bacillus SP722, especially variants with deletions in the 183 and 184 positions and variants described in WO 00/60060, which is incorporated herein by reference.

(d) variants exhibiting at least 95% identity with the wild-type enzyme from Bacillus sp.707 (SEQ ID NO:7 in US 6,093, 562), especially those comprising one or more of the following mutations M202, M208, S255, R172, and/or M261. Preferably said amylase comprises one or more of M202L, M202V, M202S, M202T, M202I, M202Q, M202W, S255N and/or R172Q. Particularly preferred are those comprising the M202L or M202T mutations.

Suitable commercially available alpha-amylases include DURAMYL®, LIQUEZYME®,

TERMAMYL®, TERMAMYL ULTRA®, NATALASE®, SUPRAMYL®, STAINZYME®, STAINZYME PLUS®, FUNGAMYL® and BAN® (Novozymes A/S, Bagsvaerd, Denmark), KEMZYM® AT 9000 Biozym Biotech Trading GmbH Wehlistrasse 27b A- 1200 Wien Austria, RAPID ASE® , PURASTAR®, ENZYSIZE®, OPTISIZE HT PLUS® and PURASTAR

OXAM® (Genencor International Inc., Palo Alto, California) and KAM® (Kao, 14-10

Nihonbashi Kayabacho, 1-chome, Chuo-ku Tokyo 103-8210, Japan). In one aspect, suitable amylases include NATALASE®, STAINZYME® and STAINZYME PLUS® and mixtures thereof. In one aspect, such enzymes may be selected from the group consisting of: lipases, including "first wash lipases" such as those described in U.S. Patent 6,939,702 Bl and US PA 2009/0217464. In one aspect, the lipase is a first-wash lipase, preferably a variant of the wild- type lipase from Thermomyces lanuginosus comprising T231R and N233R mutations. The wild- type sequence is the 269 amino acids (amino acids 23 - 291) of the Swissprot accession number Swiss-Prot 059952 (derived from Thermomyces lanuginosus (Humicola lanuginosa)). Preferred lipases would include those sold under the tradenames Lipex® and Lipolex®.

In one aspect, other preferred enzymes include microbial-derived endoglucanases exhibiting endo-beta-l,4-glucanase activity (E.C. 3.2.1.4), including a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:2 in 7,141,403B2) and mixtures thereof. Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme® (Novozymes A/S, Bagsvaerd, Denmark).

Other preferred enzymes include pectate lyases sold under the tradenames Pectawash®, Pectaway®, Xpect® and mannanases sold under the tradenames Mannaway® (all from

Novozymes A S, Bagsvaerd, Denmark), and Purabrite® (Genencor International Inc., Palo Alto, California).

Bleaching Agents: The detergent composition of the present invention may comprise one or more bleaching agents. Suitable bleaching agents other than bleaching catalysts include photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, pre-formed peracids and mixtures thereof. In general, when a bleaching agent is used, the detergent composition of the present invention may comprise from about 0.1% to about 50% or even from about 0.1% to about 25% bleaching agent by weight of the subject consumer product. Examples of suitable bleaching agents include:

(1) photobleaches for example sulfonated zinc phthalocyanine sulfonated aluminium phthalocyanines, xanthene dyes and mixtures thereof;

(2) preformed peracids: Suitable preformed peracids include, but are not limited to, compounds selected from the group consisting of percarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymonosulfuric acids and salts, for example, Oxone ®, and mixtures thereof. Suitable percarboxylic acids include hydrophobic and hydrophilic peracids having the formula R-(C=0)0-0-M wherein R is an alkyl group, optionally branched, having, when the peracid is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the peracid is hydrophilic, less than 6 carbon atoms or even less than 4 carbon atoms; and M is a counterion, for example, sodium, potassium or hydrogen. The pre-formed peroxyacid or salt thereof is preferably a peroxycarboxylic acid or salt thereof, typically having a chemical structure corresponding to the following chemical formula:

O

Θ Φ

R14— C- O- -O Y wherein: R is selected from alkyl, aralkyl, cycloalkyl, aryl or heterocyclic groups; the R group can be linear or branched, substituted or unsubstituted; and Y is any suitable counter-ion that achieves electric charge neutrality, preferably Y is selected from hydrogen, sodium or potassium. Preferably, R14 is a linear or branched, substituted or unsubstituted C6-i4 alkyl. When the peracid is hydrophobic, preferably R14 has from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the peracid is hydrophilic, R14 preferably has less than 6 carbon atoms or even less than 4 carbon atoms. Preferably, the peroxyacid or salt thereof is selected from peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, any salt thereof, or any combination thereof. Particularly preferred peroxyacids are phthalimido-peroxy- alkanoic acids, in particular ε-phthahlimido peroxy hexanoic acid (PAP). Preferably, the peroxyacid or salt thereof has a melting point in the range of from 30°C to 60°C.

The pre-formed peroxyacid or salt thereof can also be a peroxysulphonic acid or salt thereof, typically having a chemical structure corresponding to the following chemical formula:

Figure imgf000019_0001
wherein: R is selected from alkyl, aralkyl, cycloalkyl, aryl or heterocyclic groups; the R group can be linear or branched, substituted or unsubstituted; and Z is any suitable counter-ion that achieves electric charge neutrality, preferably Z is selected from hydrogen, sodium or potassium. Preferably R15 is a linear or branched, substituted or unsubstituted C6-9 alkyl.

Preferably such bleach components may be present in the compositions of the invention in an amount from 0.01 to 50%, most preferably from 0.1% to 20%; (3) sources of hydrogen peroxide, for example, inorganic perhydrate salts, including alkali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate),

percarbonate, persulphate, perphosphate, persilicate salts and mixtures thereof. In one aspect of the invention the inorganic perhydrate salts are selected from the group consisting of sodium salts of perborate, percarbonate and mixtures thereof. When employed, inorganic perhydrate salts are typically present in amounts of from 0.05 to 40 wt , or 1 to 30 wt of the overall fabric and home care product and are typically incorporated into such fabric and home care products as a crystalline solid that may be coated. Suitable coatings include, inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as water- soluble or dispersible polymers, waxes, oils or fatty soaps; and

(4) bleach activators having R-(C=0)-L wherein R is an alkyl group, optionally branched, having, when the bleach activator is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the bleach activator is hydrophilic, less than 6 carbon atoms or even less than 4 carbon atoms; and L is leaving group. Examples of suitable leaving groups are benzoic acid and derivatives thereof - especially benzene sulphonate. Suitable bleach activators include dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED) and nonanoyloxybenzene sulphonate (NOBS). Suitable bleach activators are also disclosed in WO 98/17767. While any suitable bleach activator may be employed, in one aspect of the invention the subject consumer product may comprise NOBS, TAED or mixtures thereof.

When present, the peracid and/or bleach activator is generally present in the consumer product in an amount of from about 0.1 to about 60 wt , from about 0.5 to about 40 wt % or even from about 0.6 to about 10 wt based on the fabric and home care product. One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof.

The amounts of hydrogen peroxide source and peracid or bleach activator may be selected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1:1 to 35:1, or even 2:1 to 10:1.

(5) organic bleach catalysts - The detergent composition of the present invention may also include one or more bleach catalysts capable of accepting an oxygen atom from a peroxyacid and/or salt thereof, and transferring the oxygen atom to an oxidizeable substrate. Suitable bleach catalysts include, but are not limited to: iminium cations and polyions; iminium zwitterions; modified amines; modified amine oxides; N-sulphonyl imines; N-phosphonyl imines; N-acyl imines; thiadiazole dioxides; perfluoroimines; cyclic sugar ketones and mixtures thereof, as described in USPA 2007/0173430 Al.

In one aspect, the bleach catalyst has a structure corresponding to general formula below:

Figure imgf000021_0001
wherein R is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2- butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso- nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl;

(6) Metal-based bleach catalysts - The bleach component may be provided by a catalytic metal complex. One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly

ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water- soluble salts thereof. Such catalysts are disclosed in U.S. 4,430,243. Preferred catalysts are described in WO09/839406, US6218351 and WOOO/012667. Particularly preferred are transition metal catalyst or ligands therefore that are cross-bridged po'ly eniate N-donor ligands.

If desired, the compositions herein can be catalyzed by means of a manganese compound. Such compounds and levels of use are well known in the art and include, for example, the manganese- based catalysts disclosed in U.S. 5,576,282.

Cobalt bleach catalysts useful herein are known, and are described, for example, in U.S.

5,597,936; U.S. 5,595,967. Such cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. 5,597,936, and U.S. 5,595,967.

Compositions herein may also suitably include a transition metal complex of ligands such as bispidones (US 7,501,389) and/or macropolycyclic rigid ligands - abbreviated as "MRLs". As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per hundred million of the active MRL species in the aqueous washing medium, and will typically provide from about 0.005 ppm to about 25 ppm, from about 0.05 ppm to about 10 ppm, or even from about 0.1 ppm to about 5 ppm, of the MRL in the wash liquor.

Suitable transition-metals in the instant transition-metal bleach catalyst include, for example, manganese, iron and chromium. Suitable MRLs include 5,12-diethyl-l,5,8,12- tetraazabicyclo[6.6.2]hexadecane.

Suitable transition metal MRLs are readily prepared by known procedures, such as taught for example in U.S. 6,225,464 and WO 00/32601.

Surfactants: The detergent composition according to the present invention may comprise a surfactant or surfactant system wherein the surfactant can be selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi- polar nonionic surfactants and mixtures thereof. When present, surfactant is typically present at a level of from about 0.1% to about 60%, from about 1% to about 50% or even from about 5% to about 40% by weight of the subject consumer product.

Suitable anionic detersive surfactants include sulphate and sulphonate detersive surfactants. Suitable sulphonate detersive surfactants include alkyl benzene sulphonate, in one aspect, Cio-13 alkyl benzene sulphonate. Suitable alkyl benzene sulphonate (LAS)may be obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, such as those supplied by Sasol under the tradename Isochem® or those supplied by Petresa under the tradename Petrelab®, other suitable LAB include high 2- phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®. A suitable anionic detersive surfactant is alkyl benzene sulphonate that is obtained by DETAL catalyzed process, although other synthesis routes, such as HF, may also be suitable. Suitable sulphate detersive surfactants include alkyl sulphate, in one aspect, Cs-is alkyl sulphate, or predominantly C12 alkyl sulphate. Another suitable sulphate detersive surfactant is alkyl alkoxylated sulphate, in one aspect, alkyl ethoxylated sulphate, in one aspect, a Cs-is alkyl alkoxylated sulphate, in another aspect,a Cs-is alkyl ethoxylated sulphate, typically the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, or from 0.5 to 10, typically the alkyl alkoxylated sulphate is a Cs-is alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, from 0.5 to 7, from 0.5 to 5 or even from 0.5 to 3. The alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un- substituted.

The detersive surfactant may be a mid-chain branched detersive surfactant, in one aspect, a mid-chain branched anionic detersive surfactant, in one aspect, a mid-chain branched alkyl sulphate and/or a mid-chain branched alkyl benzene sulphonate, for example a mid-chain branched alkyl sulphate. In one aspect, the mid-chain branches are C1-4 alkyl groups, typically methyl and/or ethyl groups.

Suitable non-ionic detersive surfactants are selected from the group consisting of: C8-C18 alkyl ethoxylates, such as, NEODOL® non-ionic surfactants from Shell; C6-Ci2 alkyl phenol alkoxylates wherein the alkoxylate units may be ethyleneoxy units, propyleneoxy units or a mixture thereof; C12-C18 alcohol and C6-Ci2 alkyl phenol condensates with ethylene

oxide/propylene oxide block polymers such as Pluronic® from BASF; C14-C22 mid-chain branched alcohols; C14-C22 mid-chain branched alkyl alkoxylates, typically having an average degree of alkoxylation of from 1 to 30; alkylpolysaccharides, in one aspect, alky lpoly glycosides; polyhydroxy fatty acid amides; ether capped poly (oxy alkylated) alcohol surfactants; and mixtures thereof. Suitable non-ionic detersive surfactants include alkyl polyglucoside and/or an alkyl alkoxylated alcohol. In one aspect, non-ionic detersive surfactants include alkyl alkoxylated alcohols, in one aspect C8-18 alkyl alkoxylated alcohol, for example a C8-18 alkyl ethoxylated alcohol, the alkyl alkoxylated alcohol may have an average degree of alkoxylation of from 1 to 50, from 1 to 30, from 1 to 20, or from 1 to 10. In one aspect, the alkyl alkoxylated alcohol may be a C8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, from 1 to 7, more from 1 to 5 or from 3 to 7. The alkyl alkoxylated alcohol can be linear or branched, and substituted or un-substituted.

Suitable cationic detersive surfactants include alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof. Suitable cationic detersive surfactants are quaternary ammonium compounds having the general formula: (R)(R!)(R2)(R3)N+ X wherein, R is a linear or branched, substituted or unsubstituted C6-i8 alkyl or alkenyl moiety, Ri and R2 are independently selected from methyl or ethyl moieties, R3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety, X is an anion which provides charge neutrality, suitable anions include: halides, for example chloride; sulphate; and sulphonate. Suitable cationic detersive surfactants are mono-C6-is alkyl mono-hydroxyethyl di-methyl quaternary ammonium chlorides. Highly suitable cationic detersive surfactants are mono-Cs-io alkyl mono- hydroxyethyl di-methyl quaternary ammonium chloride, mono-Cio-12 alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride and mono-Cio alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride.

Chelating Agents: The detergent composition herein may contain a chelating agent. Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof. When a chelating agent is used, the subject consumer product may comprise from about 0.005% to about 15% or even from about 3.0% to about 10% chelating agent by weight of the subject consumer product. Suitable chelants include DTPA (Diethylene triamine pentaacetic acid), HEDP (Hydroxyethane diphosphonic acid), DTPMP (Diethylene triamine penta(methylene phosphonic acid)), l,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt hydrate, ethylenediamine, diethylene triamine, ethylenediaminedisuccinic acid (EDDS), N- hydroxyethylethylenediaminetri-acetic acid (HEDTA), triethylenetetraaminehexaacetic acid (TTHA), N-hydroxyethyliminodiacetic acid (HEIDA), dihydroxyethylglycine (DHEG), ethylenediaminetetrapropionic acid (EDTP) and derivatives thereof.

Dye Transfer Inhibiting Agents: The detergent composition of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. When present in a subject consumer product, the dye transfer inhibiting agents may be present at levels from about 0.0001% to about 10%, from about 0.01% to about 5% or even from about 0.1% to about 3% by weight of the consumer product. Brighteners: The detergent composition of the present invention can also contain additional components that may tint articles being cleaned, such as fluorescent brighteners.

The composition may comprise C.I. fluorescent brightener 260 in alpha-crystalline form having the following structure:

Figure imgf000024_0001
In one aspect, the brightener is a cold water soluble brightener, such as the C.I.

fluorescent brightener 260 in alpha-crystalline form.

In one aspect the brightener is predominantly in alpha-crystalline form, which means that typically at least 50wt , at least 75wt , at least 90wt , at least 99wt , or even substantially all, of the C.I. fluorescent brightener 260 is in alpha-crystalline form. The brightener is typically in micronized particulate form, having a weight average primary particle size of from 3 to 30 micrometers, from 3 micrometers to 20 micrometers, or from 3 to 10 micrometers.

The composition may comprise C.I. fluorescent brightener 260 in beta-crystalline form, and the weight ratio of: (i) C.I. fluorescent brightener 260 in alpha-crystalline form, to (ii) C.I. fluorescent brightener 260 in beta-crystalline form may be at least 0.1, or at least 0.6. BE680847 relates to a process for making C.I fluorescent brightener 260 in alpha-crystalline form.

Suitable fluorescent brightener levels include lower levels of from about 0.01, from about 0.05, from about 0.1 or even from about 0.2 wt % to upper levels of 0.5 or even 0.75 wt .

Silicate salts - The detergent composition of the present invention can also contain silicate salts, such as sodium or potassium silicate. The composition may comprise from 0wt to less than 10wt silicate salt, to 9wt , or to 8wt , or to 7wt , or to 6wt , or to 5wt , or to 4wt , or to 3wt , or even to 2wt , and preferably from above 0wt , or from 0.5wt , or even from lwt silicate salt. A suitable silicate salt is sodium silicate.

Dispersants - The detergent composition of the present invention can also contain dispersants. Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.

Enzyme Stabilizers - Enzymes for use in the detergent composition can be stabilized by various techniques. The enzymes employed herein can be stabilized by the presence of water- soluble sources of calcium and/or magnesium ions in the finished fabric and home care products that provide such ions to the enzymes. In the case of detergent compositions comprising protease, a reversible protease inhibitor, such as a boron compound, or compounds such as calcium formate, sodium formate and 1 ,2-propane diol can be added to further improve stability. Solvents - Suitable solvents include water and other solvents such as lipophilic fluids. Examples of suitable lipophilic fluids include siloxanes, other silicones, hydrocarbons, glycol ethers, glycerine derivatives such as glycerine ethers, perfluorinated amines, perfluorinated and hydrofluoroether solvents, low-volatility nonfluorinated organic solvents, diol solvents, other environmentally-friendly solvents and mixtures thereof. Processes of Making the Detergent Composition

The detergent composition of the present invention are preferably in granular form, optionally the granules being incorporated into a unit dose detergent composition as described above.

Method of Use

The present invention includes a method of treating and/or cleaning a surface, preferably a fabric surface comprising the steps of (i) contacting said surface with a composition according to any of claims 1 to 11 in an aqueous wash liquor, (ii) rinsing and/or drying the surface, preferably the temperature of the aqueous liquor is from 5 - 25 °C and preferably the aqueous liquor comprises from 0.1 g/1 to 3g/l of surfactant.

Co-granule Example 1

Enzyme co-granules are prepared according to the process described in example 1 of

US2008/0206830A1, however the granules each comprising the enzymes as outlined and in the weight ratios in the formulation examples below. Thus the enzyme granules comprise a core of enzyme, sucrose/starch and magnesium sulphate heptahydrate (relative weight ratio

approximately 6:68:27), and a coating comprising polyvinyl alcohol, titanium dioxide and nonionic surfactant (relative weight ratio approximately 40:50: 10). The enzyme concentration in the granules is approximately 40g/kg.

Formulation Examples 1-7

Granular laundry detergent compositions designed for hand washing or top-loading washing machines.

Figure imgf000026_0001

Figure imgf000027_0001

*enzymes added via the co-granule from co-granule example 1.

Examples 8-13

Granular laundry detergent compositions designed for front- loading automatic washing machines.

8 9 10 11 12 13

(wt ) (wt ) (wt ) (wt ) (wt ) (wt )

Linear alkylbenzenesulfonate 8 7.1 7 6.5 7.5 7.5

AE3S 0 4.8 0 5.2 4 4

CI 2- 14 Alkylsulfate 1 0 1 0 0 0

AE7 2.2 0 3.2 0 0 0

Cio-12 Dimethyl 0 0 hydroxyethylammonium chloride 0.75 0.94 0.98 0.98

Crystalline layered silicate (δ- 0 0 Na2Si205) 4.1 0 4.8 0

Zeolite A 5 0 5 0 2 2

Citric Acid 3 5 3 4 2.5 3

Sodium Carbonate 15 20 14 20 23 20

Silicate 2R (Si02:Na20 at ratio 0 0

2:1) 0.08 0 0.11 0

Soil release agent 0.75 0.72 0.71 0.72 0 0

Acrylic Acid/Maleic Acid 2.6 3.8

Copolymer 1.1 3.7 1.0 3.7 Carboxymethylcellulose 0.15 1.4 0.2 1.4 1 0.5

Protease (84 mg active/g)* 0.2 0.2 0.3 0.15 0.12 0.13

Amylase (20 mg active/g)* 0.2 0.15 0.2 0.3 0.15 0.15

First wash Lipase (18.00 mg 0 0 active/g)* 0.05 0.15 0.1 0

Amylase (8.65 mg active/g)* 0.1 0.2 0 0 0.15 0.15

Cellulase (15.6 mg active/g)* 0 0 0 0 0.1 0.1

TAED 3.6 4.0 3.6 4.0 2.2 1.4

Percarbonate 13 13.2 13 13.2 16 12

EDDS 0.2 0.2 0.2 0.2 0.2 0.2

HEDP 0.2 0.2 0.2 0.2 0.2 0.2

MgS04 0.42 0.42 0.42 0.42 0.4 0.4

Perfume 0.5 0.6 0.5 0.6 0.6 0.6

Suds suppressor agglomerate 0.05 0.1 0.05 0.1 0.06 0.05

Soap 0.45 0.45 0.45 0.45 0 0

Sulphonated zinc phthalocyanine 0 0

(active) 0.0007 0.0012 0.0007 0

CMC 0.01 0.01 0 0.01 0 0

Direct Violet 9/99/66 and/or 0 0

Solvent Violet 13 (active) 0 0 0.0001 0.0001

Anhydrous sodium sulfate 27 30 30 32 26 35

Water & Miscellaneous Ba] ance

Remark: all enzyme levels expressed as % enzyme raw material

*enzymes added via the co-granule from co-granule example 1.

Any of the above compositions is used to launder fabrics at a concentration of 7000 to 10000 ppm in water, 20-90 °C, and a 5:1 watencloth ratio. The typical pH is about 10. The fabrics are then dried. In one aspect, the fabrics are actively dried using a dryer. In one aspect, the fabrics are actively dried using an iron. In another aspect, the fabrics are merely allowed to dry on a line wherein they are exposed to air and optionally sunlight. Raw Materials and Notes For Composition Examples 1-20

Alkylbenzenesulfonate, linear average aliphatic carbon chain length Cn-C12.

AE3S is C12-15 alkyl ethoxy (3) sulfate .

AE7 is C12-15 alcohol ethoxylate, with an average degree of ethoxylation of 7.

AE9 is C12-13 alcohol ethoxylate, with an average degree of ethoxylation of 9.

HSAS is a mid-branched primary alkyl sulfate with carbon chain length of about 16-17

Chelants may be diethylenetetraamine pentaacetic acid (DTP A), sodium hydroxyethane di phosphonate (HEDP) or sodium ethylene diamine-Ν,Ν- disuccinic acid (S,S)isomer (EDDS) Savinase®, Natalase®, Stainzyme®, Lipex®, Celluclean™, Mannaway® and Whitezyme® are all products of Novozymes, Bagsvaerd, Denmark. Fluorescent Brightener 1 is Tinopal® AMS, Fluorescent Brightener 2 is Tinopal® CBS-X,

Sulphonated zinc phthalocyanine

NOBS is sodium nonanoyloxybenzenesulfonate.

TAED is tetraacetylethylenediamine.

Soil release agent is Repel-o-tex® PF, supplied by Rhodia, Paris, France

Acrylic Acid/Maleic Acid Copolymer is m wt 70,000 and acrylate:maleate ratio 70:30.

HSAS is mid-branched alkyl sulfate as disclosed in US 6,020,303 and US 6,060,443

Liquitint® Violet CT is supplied by Milliken, Spartanburg, South Carolina, USA

Random graft copolymer is a polyvinyl acetate grafted polyethylene oxide copolymer having a polyethylene oxide backbone and multiple polyvinyl acetate side chains (m wt about 6000, weight ratio of the polyethylene oxide to polyvinyl acetateabout 40 to 60).

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean

"about 40 mm".

Claims

CLAIMS What is claimed is:
1. A detergent composition comprising:
(a) a multi-enzyme co-granule;
(b) less than 10 wt zeolite (anhydrous basis);
(c) less than 10 wt phosphate salt (anhydrous basis), wherein said enzyme co-granule comprises from 10 to 98 wt% moisture sink component;
(d) and the composition additionally comprises from 20 to 80 wt% detergent moisture sink component.
2. A detergent composition according to claim 1 wherein the multi-enzyme cogranule comprises (a) one or more enzymes selected from the group consisting of first- wash lipases, cleaning cellulases, xyloglucanases, perhydrolases, peroxidases, lipoxygenases, laccases and mixtures thereof; and (b) one or more enzymes selected from the group consisting of hemicellulases, proteases, care cellulases, cellobiose dehydrogenases, xylanases, phospho lipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, ligninases, pullulanases, tannases, pentosanases, lichenases glucanases, arabinosidases, hyaluronidase, chondroitinase, amylases, and mixtures thereof.
3. A detergent composition according to claim 1 or claim 2 wherein the multi-enzyme cogranule comprises a protease enzyme.
4. A detergent composition according to any preceding claim wherein the multi-enzyme co-granule comprises a lipase.
5. A detergent composition according to any preceding claim wherein the multi-enzyme co-granule comprises lipase and protease in a weight ratio of at least 2:5 up to 5:2, preferably from 2:5 to 1 : 1.
6. A detergent composition according to any preceding claim wherein the detergent moisture sink component comprises a hydratable salt, preferably sodium sulphate.
7. A detergent composition according to any preceding claim comprising the detergent moisture sink component in an amount of at least 25 wt%, or even at least 30 wt%.
8. A detergent composition according to any preceding claim wherein the moisture sink component and the total active enzyme are present in the multi-enzyme co-granule in a weight ratio from 4: 1 or 6: 1 or 8: 1 or 10:1 up to 100: 1 or 60: 1 or 40: 1.
9. A detergent composition according to any preceding claim wherein the multi-enzyme co-granule comprises a coating selected from the group comprising titanium dioxide, polyvinyl alcohol, hydroxypropyl methycellulose, methyl cellulose, polycarboxylates, kaolin, polyethyelne glycols and mixtures thereof.
10. A detergent composition according to any preceding claim wherein the moisture sink component is selected from the group consisting of: sodium carbonate, preferably anhydrous sodium carbonate, dessicated clay, preferably desiccated clays comprising from 0.1 to 15 wt% free moisture, more preferably from 0.1 to 10% free moisture; sodium sulphate, preferably anhydrous sodium sulphate; sodium chloride, preferably anhydrous sodium chloride; bio-filler comprising from 0 or from 0.1 to 15% or 10% free moisture and mixtures thereof.
11. A detergent composition according to any preceding claim additionally comprising a dye transfer inhibiting agent.
12. A detergent composition according to any preceding claim additionally comprising a fabric shading dye, such as a solvent or disperse dye, or an acid dye or a direct dye or mixtures thereof and/or pigment or mixtures thereof.
13. A detergent composition according to any preceding claim comprising one or more of the following adjuncts:
(a) an encapsulate comprising a perfume, said encapsulate preferably comprising a perfume micro-capsule ;
(b) a surfactant system preferably comprising an anionic surfactant and a nonionic surfactant preferably in the weight ratio from 20: 1 to 1 : 10 or 1 : 1 ;
(c) a silicate salt preferably comprising a material selected from the group consisting of sodium silicate, potassium silicate and mixtures thereof;
(d) a carboxylate polymer preferably comprising a material selected from the group consisting of maleate/acrylate random copolymer or polyacrylate homopolymer and mixtures thereof;
(e) a soil release polymer preferably comprising a material selected from the group consisting of terephthalate co-polymers and mixtures thereof;
(f) a cellulosic polymer preferably comprising a material selected from the group consisting of alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose and mixtures thereof;
(g) a chelant preferably comprising a material selected from the group consisting of DTPA (Diethylene triamine pentaacetic acid), HEDP (Hydroxyethane diphosphonic acid), DTPMP (Diethylene triamine penta(methylene phosphonic acid)),
ethylenediaminedisuccinic acid (EDDS), l,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt hydrate, derivatives of said chelants; and
(h) mixtures thereof.
14. A composition according to any preceding claim additionally comprising at least 2.5 wt , preferably at least 5 wt up to 35 wt sodium percarbonate, optionally coated for protection against moisture, optionally additionally comprising one or more bleach particles selected from the group consisting of: (a) a bleach catalyst preferably comprising a material selected from the group consisting of iminium cations, iminium polyions; iminium zwitterions; modified amines; modified amine oxides; N-sulphonyl imines; N-phosphonyl imines; N-acyl imines; thiadiazole dioxides;
perfluoroimines; cyclic sugar ketones and transition metal catalysts or ligands for the formation thereof, or mixtures thereof;
(b) a bleach activator preferably comprising a material selected from the group consisting of dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED), nonanoyloxybenzene sulphonate (NOBS) and mixtures thereof;
(c) a metal catalyst;
(d) a photo-bleach, preferably zinc and/or aluminium phthalocyanine compounds, Food red, erythrosine and/or Rose Bengal; and
(e) mixtures thereof.
15. A method of treating and/or cleaning a surface, preferably a fabric surface comprising the steps of (i) contacting said surface with a composition according to any of claims 1 to 11 in an aqueous wash liquor, (ii) rinsing and/or drying the surface, preferably the temperature of the aqueous liquor is from 5 - 25 °C and preferably the aqueous liquor comprises from O. lg/1 to 3g/l of surfactant.
PCT/US2013/045070 2012-06-11 2013-06-11 Detergent composition WO2013188331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20120171551 EP2674475A1 (en) 2012-06-11 2012-06-11 Detergent composition
EP12171551.0 2012-06-11

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN 201380030796 CN104364364A (en) 2012-06-11 2013-06-11 Detergent composition
RU2014149582A RU2612142C2 (en) 2012-06-11 2013-06-11 Detergent composition
JP2015516278A JP2015528828A (en) 2012-06-11 2013-06-11 Detergent composition

Publications (1)

Publication Number Publication Date
WO2013188331A1 true true WO2013188331A1 (en) 2013-12-19

Family

ID=48570026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/045070 WO2013188331A1 (en) 2012-06-11 2013-06-11 Detergent composition

Country Status (5)

Country Link
EP (2) EP2674475A1 (en)
JP (1) JP2015528828A (en)
CN (1) CN104364364A (en)
RU (1) RU2612142C2 (en)
WO (1) WO2013188331A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121134A1 (en) * 2014-02-11 2015-08-20 Novozymes A/S Detergent composition, method and use of detergent composition
WO2016135351A1 (en) 2015-06-30 2016-09-01 Novozymes A/S Laundry detergent composition, method for washing and use of composition
WO2016162558A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Detergent composition
WO2016162556A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Laundry method, use of dnase and detergent composition
WO2017046260A1 (en) 2015-09-17 2017-03-23 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2017046232A1 (en) 2015-09-17 2017-03-23 Henkel Ag & Co. Kgaa Detergent compositions comprising polypeptides having xanthan degrading activity
WO2017060505A1 (en) 2015-10-07 2017-04-13 Novozymes A/S Polypeptides
WO2017064269A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptide variants
WO2017142743A1 (en) 2016-02-15 2017-08-24 Novozymes A/S Microbial culture, composition, use and method
WO2017186943A1 (en) 2016-04-29 2017-11-02 Novozymes A/S Detergent compositions and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2914707A2 (en) * 2012-11-05 2015-09-09 Novozymes A/S Enzyme compositions enabling re-use of water in laundry
US20160244699A1 (en) * 2013-10-15 2016-08-25 Danisco Us Inc. Clay Granule
EP3037512B1 (en) * 2014-12-22 2018-02-28 The Procter and Gamble Company Process for recycling detergent pouches
WO2017037097A1 (en) * 2015-09-01 2017-03-09 Novozymes A/S Laundry method
GB201520125D0 (en) * 2015-11-16 2015-12-30 Reckitt Benckiser Vanish B V Composition

Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451935A (en) * 1966-04-25 1969-06-24 Procter & Gamble Granular enzyme-containing laundry composition
US4016040A (en) 1969-12-10 1977-04-05 Colgate-Palmolive Company Preparation of enzyme-containing beads
US4106991A (en) 1976-07-07 1978-08-15 Novo Industri A/S Enzyme granulate composition and process for forming enzyme granulates
GB2085937A (en) * 1980-10-24 1982-05-06 Kao Corp Enzyme-containing bleaching composition
US4430243A (en) 1981-08-08 1984-02-07 The Procter & Gamble Company Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions
US4713245A (en) 1984-06-04 1987-12-15 Mitsui Toatsu Chemicals, Incorporated Granule containing physiologically-active substance, method for preparing same and use thereof
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
EP0304331A2 (en) 1987-08-21 1989-02-22 Novo Nordisk A/S Method for production of an enzyme granulate
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
EP0170360B1 (en) 1984-05-29 1989-08-09 Novo Nordisk A/S Enzyme containing granulates suitable for use as detergent additives
WO1990009440A1 (en) 1989-02-20 1990-08-23 Novo Nordisk A/S Enzyme containing granulate and method for production thereof
WO1990009428A1 (en) 1989-02-20 1990-08-23 Novo Nordisk A/S Detergent additive granulate and method for production thereof
EP0304332B1 (en) 1987-08-21 1993-07-14 Novo Nordisk A/S Enzyme containing granulate and method for production thereof
WO1994002597A1 (en) 1992-07-23 1994-02-03 Novo Nordisk A/S MUTANT α-AMYLASE, DETERGENT, DISH WASHING AGENT, AND LIQUEFACTION AGENT
US5318714A (en) * 1988-03-14 1994-06-07 Novo Nordisk A/S Stabilized particulate composition
US5324649A (en) 1991-10-07 1994-06-28 Genencor International, Inc. Enzyme-containing granules coated with hydrolyzed polyvinyl alcohol or copolymer thereof
WO1994016064A1 (en) * 1993-01-18 1994-07-21 Novo Nordisk A/S Enzyme containing granulate, method for production thereof, and use thereof
WO1994018314A1 (en) 1993-02-11 1994-08-18 Genencor International, Inc. Oxidatively stable alpha-amylase
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1996023874A1 (en) 1995-02-03 1996-08-08 Novo Nordisk A/S A method of designing alpha-amylase mutants with predetermined properties
WO1996023873A1 (en) 1995-02-03 1996-08-08 Novo Nordisk A/S Amylase variants
US5576282A (en) 1995-09-11 1996-11-19 The Procter & Gamble Company Color-safe bleach boosters, compositions and laundry methods employing same
WO1997000324A1 (en) 1995-06-14 1997-01-03 Kao Corporation Gene encoding alkaline liquefying alpha-amylase
US5595967A (en) 1995-02-03 1997-01-21 The Procter & Gamble Company Detergent compositions comprising multiperacid-forming bleach activators
US5597936A (en) 1995-06-16 1997-01-28 The Procter & Gamble Company Method for manufacturing cobalt catalysts
WO1997023606A1 (en) 1995-12-22 1997-07-03 Genencor International, Inc. Enzyme containing coated granules
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
WO1997039116A1 (en) 1996-04-12 1997-10-23 Novo Nordisk A/S Enzyme-containing granules and process for the production thereof
WO1997043424A1 (en) 1996-05-14 1997-11-20 Genencor International, Inc. MODIFIED α-AMYLASES HAVING ALTERED CALCIUM BINDING PROPERTIES
WO1998017767A1 (en) 1996-10-18 1998-04-30 The Procter & Gamble Company Detergent compositions
WO1998039406A1 (en) 1997-03-07 1998-09-11 The Procter & Gamble Company Bleach compositions
US5856164A (en) 1994-03-29 1999-01-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1999023211A1 (en) 1997-10-30 1999-05-14 Novo Nordisk A/S α-AMYLASE MUTANTS
WO2000001793A1 (en) 1998-06-30 2000-01-13 Novozymes A/S A new improved enzyme containing granule
US6020303A (en) 1996-04-16 2000-02-01 The Procter & Gamble Company Mid-chain branched surfactants
WO2000012667A1 (en) 1998-09-01 2000-03-09 Unilever Plc Composition and method for bleaching a substrate
US6060443A (en) 1996-04-16 2000-05-09 The Procter & Gamble Company Mid-chain branched alkyl sulfate surfactants
WO2000032601A2 (en) 1998-11-30 2000-06-08 The Procter & Gamble Company Process for preparing cross-bridged tetraaza macrocycles
US6093562A (en) 1996-02-05 2000-07-25 Novo Nordisk A/S Amylase variants
EP1022334A2 (en) 1998-12-21 2000-07-26 Kao Corporation Novel amylases
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
US6218351B1 (en) 1998-03-06 2001-04-17 The Procter & Gamble Compnay Bleach compositions
US6225464B1 (en) 1997-03-07 2001-05-01 The Procter & Gamble Company Methods of making cross-bridged macropolycycles
US6268329B1 (en) 1998-06-30 2001-07-31 Nouozymes A/S Enzyme containing granule
US6306812B1 (en) 1997-03-07 2001-10-23 Procter & Gamble Company, The Bleach compositions containing metal bleach catalyst, and bleach activators and/or organic percarboxylic acids
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
US6326348B1 (en) 1996-04-16 2001-12-04 The Procter & Gamble Co. Detergent compositions containing selected mid-chain branched surfactants
US6602841B1 (en) 1997-12-20 2003-08-05 Genencor International, Inc. Granule with hydrated barrier material
US20040033927A1 (en) 2002-07-01 2004-02-19 Novozymes A/S Stabilization of granules
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
WO2006002643A2 (en) 2004-07-05 2006-01-12 Novozymes A/S Alpha-amylase variants with altered properties
US7153818B2 (en) 2000-07-28 2006-12-26 Henkel Kgaa Amylolytic enzyme extracted from bacillus sp. A 7-7 (DSM 12368) and washing and cleaning agents containing this novel amylolytic enzyme
WO2007044993A2 (en) 2005-10-12 2007-04-19 Genencor International, Inc. Use and production of storage-stable neutral metalloprotease
US7208459B2 (en) 2004-06-29 2007-04-24 The Procter & Gamble Company Laundry detergent compositions with efficient hueing dye
US20070173430A1 (en) 2006-01-23 2007-07-26 The Procter & Gamble Company Composition comprising a lipase and a bleach catalyst
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
US7273736B2 (en) 1999-10-01 2007-09-25 Novozymes A/S Method for preparing an enzyme containing granule
WO2007147698A1 (en) 2006-06-19 2007-12-27 Unilever Plc Laundry composition
US20080305982A1 (en) 2007-06-11 2008-12-11 Johan Smets Benefit agent containing delivery particle
WO2009021867A2 (en) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents containing proteases
US7501389B2 (en) 2003-10-31 2009-03-10 Conopco Inc. Bispidon-derivated ligands and complexes thereof for catalytically bleaching a substrate
US20090217464A1 (en) 2008-02-29 2009-09-03 Philip Frank Souter Detergent composition comprising lipase
US20090247449A1 (en) 2008-03-26 2009-10-01 John Allen Burdis Delivery particle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE680847A (en) 1963-05-27 1966-11-14
US4767557A (en) * 1985-06-28 1988-08-30 The Procter & Gamble Company Dry bleach and stable enzyme granular composition
EP0206418B1 (en) * 1985-06-28 1991-11-13 THE PROCTER & GAMBLE COMPANY Dry bleach and stable enzyme granular composition
DE4315397A1 (en) * 1993-05-08 1994-11-10 Henkel Kgaa Cleaning composition preventing tarnishing of table silver in dishwashing machines
GB9407533D0 (en) * 1994-04-13 1994-06-08 Procter & Gamble Detergent compositions
JP2002513563A (en) * 1998-05-01 2002-05-14 ザ、プロクター、エンド、ギャンブル、カンパニー Laundry detergent and / or fabric care composition containing a modified transferase
DE69900736T2 (en) * 1998-07-17 2002-08-29 Procter & Gamble A process for the production of detergent tablets
US20050187130A1 (en) * 2004-02-23 2005-08-25 Brooker Alan T. Granular laundry detergent composition comprising an anionic detersive surfactant, and low levels of, or no, zeolite builders and phosphate builders
DE102006018780A1 (en) * 2006-04-20 2007-10-25 Henkel Kgaa Granules of a sensitive washing or cleaning agent ingredient
WO2008084093A3 (en) * 2007-01-11 2009-01-08 Novozymes As Particles comprising active compounds
KR20100123694A (en) * 2008-02-14 2010-11-24 다니스코 유에스 인크. Small enzyme-containing granules

Patent Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451935A (en) * 1966-04-25 1969-06-24 Procter & Gamble Granular enzyme-containing laundry composition
US4016040A (en) 1969-12-10 1977-04-05 Colgate-Palmolive Company Preparation of enzyme-containing beads
US4106991A (en) 1976-07-07 1978-08-15 Novo Industri A/S Enzyme granulate composition and process for forming enzyme granulates
GB2085937A (en) * 1980-10-24 1982-05-06 Kao Corp Enzyme-containing bleaching composition
US4430243A (en) 1981-08-08 1984-02-07 The Procter & Gamble Company Bleach catalyst compositions and use thereof in laundry bleaching and detergent compositions
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
EP0170360B1 (en) 1984-05-29 1989-08-09 Novo Nordisk A/S Enzyme containing granulates suitable for use as detergent additives
US4713245A (en) 1984-06-04 1987-12-15 Mitsui Toatsu Chemicals, Incorporated Granule containing physiologically-active substance, method for preparing same and use thereof
EP0304332B1 (en) 1987-08-21 1993-07-14 Novo Nordisk A/S Enzyme containing granulate and method for production thereof
EP0304331A2 (en) 1987-08-21 1989-02-22 Novo Nordisk A/S Method for production of an enzyme granulate
WO1989006270A1 (en) 1988-01-07 1989-07-13 Novo-Nordisk A/S Enzymatic detergent
US5318714A (en) * 1988-03-14 1994-06-07 Novo Nordisk A/S Stabilized particulate composition
WO1990009428A1 (en) 1989-02-20 1990-08-23 Novo Nordisk A/S Detergent additive granulate and method for production thereof
WO1990009440A1 (en) 1989-02-20 1990-08-23 Novo Nordisk A/S Enzyme containing granulate and method for production thereof
US5352604A (en) 1989-08-25 1994-10-04 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
US5324649A (en) 1991-10-07 1994-06-28 Genencor International, Inc. Enzyme-containing granules coated with hydrolyzed polyvinyl alcohol or copolymer thereof
WO1994002597A1 (en) 1992-07-23 1994-02-03 Novo Nordisk A/S MUTANT α-AMYLASE, DETERGENT, DISH WASHING AGENT, AND LIQUEFACTION AGENT
WO1994016064A1 (en) * 1993-01-18 1994-07-21 Novo Nordisk A/S Enzyme containing granulate, method for production thereof, and use thereof
WO1994018314A1 (en) 1993-02-11 1994-08-18 Genencor International, Inc. Oxidatively stable alpha-amylase
US5679630A (en) 1993-10-14 1997-10-21 The Procter & Gamble Company Protease-containing cleaning compositions
US5856164A (en) 1994-03-29 1999-01-05 Novo Nordisk A/S Alkaline bacillus amylase
WO1996023874A1 (en) 1995-02-03 1996-08-08 Novo Nordisk A/S A method of designing alpha-amylase mutants with predetermined properties
US5595967A (en) 1995-02-03 1997-01-21 The Procter & Gamble Company Detergent compositions comprising multiperacid-forming bleach activators
WO1996023873A1 (en) 1995-02-03 1996-08-08 Novo Nordisk A/S Amylase variants
WO1997000324A1 (en) 1995-06-14 1997-01-03 Kao Corporation Gene encoding alkaline liquefying alpha-amylase
US5597936A (en) 1995-06-16 1997-01-28 The Procter & Gamble Company Method for manufacturing cobalt catalysts
US5576282A (en) 1995-09-11 1996-11-19 The Procter & Gamble Company Color-safe bleach boosters, compositions and laundry methods employing same
WO1997023606A1 (en) 1995-12-22 1997-07-03 Genencor International, Inc. Enzyme containing coated granules
US6093562A (en) 1996-02-05 2000-07-25 Novo Nordisk A/S Amylase variants
WO1997039116A1 (en) 1996-04-12 1997-10-23 Novo Nordisk A/S Enzyme-containing granules and process for the production thereof
US6020303A (en) 1996-04-16 2000-02-01 The Procter & Gamble Company Mid-chain branched surfactants
US6326348B1 (en) 1996-04-16 2001-12-04 The Procter & Gamble Co. Detergent compositions containing selected mid-chain branched surfactants
US6060443A (en) 1996-04-16 2000-05-09 The Procter & Gamble Company Mid-chain branched alkyl sulfate surfactants
WO1997043424A1 (en) 1996-05-14 1997-11-20 Genencor International, Inc. MODIFIED α-AMYLASES HAVING ALTERED CALCIUM BINDING PROPERTIES
WO1998017767A1 (en) 1996-10-18 1998-04-30 The Procter & Gamble Company Detergent compositions
US6306812B1 (en) 1997-03-07 2001-10-23 Procter & Gamble Company, The Bleach compositions containing metal bleach catalyst, and bleach activators and/or organic percarboxylic acids
WO1998039406A1 (en) 1997-03-07 1998-09-11 The Procter & Gamble Company Bleach compositions
US6225464B1 (en) 1997-03-07 2001-05-01 The Procter & Gamble Company Methods of making cross-bridged macropolycycles
US6312936B1 (en) 1997-10-23 2001-11-06 Genencor International, Inc. Multiply-substituted protease variants
WO1999023211A1 (en) 1997-10-30 1999-05-14 Novo Nordisk A/S α-AMYLASE MUTANTS
US6602841B1 (en) 1997-12-20 2003-08-05 Genencor International, Inc. Granule with hydrated barrier material
US20080206830A1 (en) 1997-12-20 2008-08-28 Becker Nathaniel T Granule with hydrated barrier material
US6218351B1 (en) 1998-03-06 2001-04-17 The Procter & Gamble Compnay Bleach compositions
US6268329B1 (en) 1998-06-30 2001-07-31 Nouozymes A/S Enzyme containing granule
WO2000001793A1 (en) 1998-06-30 2000-01-13 Novozymes A/S A new improved enzyme containing granule
US6348442B2 (en) 1998-06-30 2002-02-19 Novozymes A/S Enzyme containing granule
WO2000012667A1 (en) 1998-09-01 2000-03-09 Unilever Plc Composition and method for bleaching a substrate
WO2000032601A2 (en) 1998-11-30 2000-06-08 The Procter & Gamble Company Process for preparing cross-bridged tetraaza macrocycles
EP1022334A2 (en) 1998-12-21 2000-07-26 Kao Corporation Novel amylases
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
US7273736B2 (en) 1999-10-01 2007-09-25 Novozymes A/S Method for preparing an enzyme containing granule
US7153818B2 (en) 2000-07-28 2006-12-26 Henkel Kgaa Amylolytic enzyme extracted from bacillus sp. A 7-7 (DSM 12368) and washing and cleaning agents containing this novel amylolytic enzyme
US7262042B2 (en) 2001-12-20 2007-08-28 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning products comprising said alkaline protease
US20040033927A1 (en) 2002-07-01 2004-02-19 Novozymes A/S Stabilization of granules
US7501389B2 (en) 2003-10-31 2009-03-10 Conopco Inc. Bispidon-derivated ligands and complexes thereof for catalytically bleaching a substrate
WO2005052146A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
WO2005052161A2 (en) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
US7208459B2 (en) 2004-06-29 2007-04-24 The Procter & Gamble Company Laundry detergent compositions with efficient hueing dye
WO2006002643A2 (en) 2004-07-05 2006-01-12 Novozymes A/S Alpha-amylase variants with altered properties
WO2007044993A2 (en) 2005-10-12 2007-04-19 Genencor International, Inc. Use and production of storage-stable neutral metalloprotease
US20070173430A1 (en) 2006-01-23 2007-07-26 The Procter & Gamble Company Composition comprising a lipase and a bleach catalyst
WO2007147698A1 (en) 2006-06-19 2007-12-27 Unilever Plc Laundry composition
US20080305982A1 (en) 2007-06-11 2008-12-11 Johan Smets Benefit agent containing delivery particle
WO2009021867A2 (en) 2007-08-10 2009-02-19 Henkel Ag & Co. Kgaa Agents containing proteases
US20090217464A1 (en) 2008-02-29 2009-09-03 Philip Frank Souter Detergent composition comprising lipase
US20090247449A1 (en) 2008-03-26 2009-10-01 John Allen Burdis Delivery particle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL S. SHOWELL: "Surfactant Science Series", vol. 71, 1998, article "Powdered detergents", pages: 140 - 142
MICHAEL S. SHOWELL: "Surfactant Science Series", vol. 71, 1998, MARCEL DEKKER, article "Powdered detergents", pages: 140 - 142

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121134A1 (en) * 2014-02-11 2015-08-20 Novozymes A/S Detergent composition, method and use of detergent composition
WO2016162558A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Detergent composition
WO2016162556A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Laundry method, use of dnase and detergent composition
WO2016135351A1 (en) 2015-06-30 2016-09-01 Novozymes A/S Laundry detergent composition, method for washing and use of composition
WO2017046260A1 (en) 2015-09-17 2017-03-23 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2017046232A1 (en) 2015-09-17 2017-03-23 Henkel Ag & Co. Kgaa Detergent compositions comprising polypeptides having xanthan degrading activity
WO2017060505A1 (en) 2015-10-07 2017-04-13 Novozymes A/S Polypeptides
WO2017064269A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptide variants
WO2017142743A1 (en) 2016-02-15 2017-08-24 Novozymes A/S Microbial culture, composition, use and method
WO2017186943A1 (en) 2016-04-29 2017-11-02 Novozymes A/S Detergent compositions and uses thereof

Also Published As

Publication number Publication date Type
RU2612142C2 (en) 2017-03-02 grant
JP2015528828A (en) 2015-10-01 application
RU2014149582A (en) 2016-07-10 application
EP2674475A1 (en) 2013-12-18 application
CN104364364A (en) 2015-02-18 application
EP2674476A1 (en) 2013-12-18 application

Similar Documents

Publication Publication Date Title
WO2009111258A2 (en) Detergent composition comprising lipase
WO2009090576A2 (en) Cleaning and/or treatment compositions
US20120129752A1 (en) Low built detergent composition comprising bluing agent
WO2011072117A1 (en) Fabric and home care products
WO2011140316A1 (en) Consumer products with protease variants
US20120304402A1 (en) Laundry care compositions containing dyes
US20110257063A1 (en) Mildly Alkaline, Low-Built, Solid Fabric Treatment Detergent Composition Comprising Perhydrolase
WO2013169536A1 (en) A laundry detergent composition comprising a particle having hueing agent and clay
WO2013003659A1 (en) Cleaning compositions comprising amylase variants reference to a sequence listing
EP2581438A1 (en) Detergent composition
WO2013006871A2 (en) Laundry care compositions containing dyes
WO2014040010A2 (en) Cleaning compositions comprising structured particles
US20140255330A1 (en) Mixed Sugar Compositions
EP1867708A1 (en) Detergent Compositions
WO2011156297A2 (en) Compacted liquid laundry detergent composition comprising lipase of bacterial origin
WO2013142486A1 (en) Laundry care compositions containing dyes
US20090172895A1 (en) Enzyme and fabric hueing agent containing compositions
US20110021408A1 (en) Compositions containing benefit agent delivery particles
US20130123162A1 (en) Consumer products
US20110257060A1 (en) Laundry detergent composition comprising bleach particles that are suspended within a continuous liquid phase
US20110005004A1 (en) Method of laundering fabric using a compacted liquid laundry detergent composition
US20110099725A1 (en) Method of laundring fabric using a compacted laundry detergent composition
US20110021406A1 (en) Mildly Alkaline, Low-Built, Solid Fabric Treatment Detergent Composition Comprising Phthalimido Peroxy Caproic Acid
WO2011156298A2 (en) Solid detergent composition comprising lipase of bacterial origin
US20130232700A1 (en) Washing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13730450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2015516278

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase in:

Ref document number: 2014149582

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030417

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13730450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 112014030417

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141204