WO2013187984A1 - Compositions and methods for enhancing the efficacy of contraceptive microbicides - Google Patents

Compositions and methods for enhancing the efficacy of contraceptive microbicides Download PDF

Info

Publication number
WO2013187984A1
WO2013187984A1 PCT/US2013/032510 US2013032510W WO2013187984A1 WO 2013187984 A1 WO2013187984 A1 WO 2013187984A1 US 2013032510 W US2013032510 W US 2013032510W WO 2013187984 A1 WO2013187984 A1 WO 2013187984A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
compositions
lactic acid
acid
matrix
Prior art date
Application number
PCT/US2013/032510
Other languages
French (fr)
Inventor
Wendell Guthrie
Original Assignee
Evofem, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49758600&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013187984(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MX2014015307A priority Critical patent/MX365905B/en
Priority to UAA201500194A priority patent/UA115876C2/en
Priority to KR1020157000465A priority patent/KR102062599B1/en
Priority to CN201380030151.5A priority patent/CN104487054A/en
Priority to US14/410,841 priority patent/US20150202216A1/en
Priority to AU2013274815A priority patent/AU2013274815B2/en
Priority to EP13804259.3A priority patent/EP2861215A4/en
Priority to SG11201408243VA priority patent/SG11201408243VA/en
Priority to BR112014030984-1A priority patent/BR112014030984B1/en
Application filed by Evofem, Inc. filed Critical Evofem, Inc.
Priority to AP2014008149A priority patent/AP2014008149A0/en
Priority to NZ703203A priority patent/NZ703203A/en
Priority to EA201590008A priority patent/EA201590008A1/en
Priority to JP2015517245A priority patent/JP6352907B2/en
Publication of WO2013187984A1 publication Critical patent/WO2013187984A1/en
Priority to IL235812A priority patent/IL235812B/en
Priority to ZA2015/00111A priority patent/ZA201500111B/en
Priority to US14/864,673 priority patent/US9566232B2/en
Priority to HK15109540.9A priority patent/HK1208809A1/en
Priority to US15/410,632 priority patent/US20170128396A1/en
Priority to AU2017206199A priority patent/AU2017206199B2/en
Priority to US16/239,314 priority patent/US10568855B2/en
Priority to US16/738,868 priority patent/US11439610B2/en
Priority to US17/823,020 priority patent/US11992472B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/18Feminine contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV

Definitions

  • compositions and methods for contraception that also enhance the efficacy of microbicides.
  • Such compositions serve the dual purpose of preventing pregnancy and lessening the risk of spreading sexually transmitted diseases.
  • HIV Human immunodeficiency virus
  • AIDS acquired immunodeficiency syndrome
  • the heterosexual transmission of AIDS is the prevalent mode of transmission of AIDS, accounting for about 90% of all HIV infections in women. Therefore, significant attention has been directed to investigating measures that block sexual spreading of HIV infection.
  • preventive measures are the primary tools that can presently reduce transmission of HIV.
  • the consistent and correct use of condoms represents an effective barrier to prevent HIV transmission.
  • the risk of acquiring infection can only be significantly reduced if condoms are used for almost all sexual intercourse in HIV prevalent communities; a result that can not be achieved despite intensive prevention programs to increase condom use.
  • microbicidal agents capable of preventing and/or reducing the spread of a variety of sexually transmitted diseases (STDs) in addition to Herpes Simplex Virus (HSV) and HIV.
  • STDs sexually transmitted diseases
  • HSV Herpes Simplex Virus
  • a microbicide is any agent that kills or deactivates disease-causing microbes, including viruses.
  • IAPAC International Association of Physicians in AIDS CARE
  • the definition of microbicides also includes interventions that can block or prevent infection, as well as amplification of the body's natural defenses to prevent infection through sexual acts.
  • microbicides should have little or no side effects at an effective microbicidal concentration. Accordingly, the drug used as a microbicide should have little or no immunosuppressive activity at an effective microbicidal concentration. In addition, the ideal microbicide should sufficiently withstand varying temperatures and acceptably function within varied pH ranges (ranges of alkaline and acidic levels in the vagina). Further, it should not eliminate the natural beneficial lactobacilli that reside in the vagina and contribute to vaginal health.
  • Topical microbicides would be even more beneficial if they also had contraceptive capabilities. Contraception is also important for women with STDs to prevent transmitting diseases to future generation, especially since many women with STDs are of childbearing age.
  • dual-purpose spermicidal microbicides have detergent ingredients that disrupt cell membranes.
  • the most widely used vaginal spermicide, nonoxynol-9 (N-9) because of its membrane disruptive properties, has been shown to damage the cervicovaginal epithelium, cause an acute inflammatory tissue response, alter vaginal microflora, and enhance the risk of promoting opportunistic infections in the genitourinary tract.
  • N-9 is also toxic to vaginal and cervical cells which increases the permeability of vaginal tissue. It can also kill the Lactobacillus sp. that populate the vaginal tract and are generally regarded as beneficial. Lactobacillus produce lactic acid and hydrogen peroxide, which helps maintain the acidic p 11 of the vagina ( ⁇ pH 3.5 to 5.0) and a healthy vaginal flora. At this pH, a number of STD-causing organisms like HIV are inactivated.
  • spermicidal microbicides in the form of vaginal creams and ointments are currently available over the counter or by prescription. Still others are in various stages of development. Examples include octoxynol-9 and benzalkonium chloride.
  • Gels designed to control vaginal pH are also available, such as AciJelTM (Ortho-McNeil Pharmaceutical Corp., Raritan, N.J.) which is a water dispersible buffered gel having a pH of 3.9 to 4.1 . It is used to restore and maintain normal vaginal acidity.
  • Such gels are designed to control vaginal pH and are not specifically designed to prevent STDs and/or contraception, and thus do not always possess effective microbicidal activity.
  • vaginal contraceptive compositions often containing N-9 as an active ingredient, are generally known in the art. While presently marketed vaginal contraceptive formulations aid in preventing pregnancy, their ability to effectively prevent STDs, particularly HIV/ AIDS, is very l imited. Moreover, recent analyses show that N-9, when used frequently by women at high risk may actually increase the risk of HIV infection (WHO 2002, WHO/CONRAD technical consultation on nonoxynol-9, Geneva). [0008] Additionally, several microbicides under development contain anti-retroviral agents that had originally been developed for the treatment of patients with HIV infection. However, only temporary and limited benefits are observed in HIV-infected patients treated with any of the actual anti-retrovirals or combinations thereof.
  • BufferGelTM ReProtect LLC, Baltimore, Md
  • BufferGelTM is a negatively charged, nonabsorbable, high molecular weight polymer gel that is designed to maintain vaginal pH below 5 in the presence of semen.
  • BufferGelTM is formulated from a polymer comprised of carboxylated monomers. The polymers have buffering capacity which help control the vaginal pH.
  • BufferGelTM is designed to be used with a device to be inserted into the vagina and positioned over the cervix. As such, to be effective, the device must remain in position over the cervix. Removal of the device or a shift of its position relative to the cervix can destroy, or at least significantly reduce, its effectiveness.
  • compositions and methods that provide improved contraceptive and microbicidal activity in order to prevent or reduce the risk of transmission of STDs, including HIV and HSV-2 while simultaneously preventing unwanted pregnancies.
  • Such compositions should be useful for vaginal administration in effective doses that do not inactivate Lactobacillus sp. or cause overt vaginal irritation or other toxicity.
  • the present disclosure is directed to contraceptive microbicide and antiviral compositions and methods of use thereof, such compositions including: (a) an effective amount of a bioadhesive (wherein the bioadhesive includes (i) a matrix-forming compound; (ii) a bioadhesive compound that may be the same or different from the matrix-forming compound; and (iii) lactic acid); (b) 1 -(6-aminopurin-9-yl)propan-2- yloxymethylphosphonic acid, or a physiologically functional derivative thereof; and (c) a pharmaceutically acceptable carrier.
  • a bioadhesive wherein the bioadhesive includes (i) a matrix-forming compound; (ii) a bioadhesive compound that may be the same or different from the matrix-forming compound; and (iii) lactic acid); (b) 1 -(6-aminopurin-9-yl)propan-2- yloxymethylphosphonic acid, or
  • such compositions generally have a pi I of 5.0 or below, and in further embodiments, such compositions are not in a matrix state until they come in contact with ejaculate.
  • the lactic acid is L- lactic acid.
  • compositions may also include a humectant and/or a preservative.
  • the present disclosure is directed to contraceptive microbicide and antiviral compositions and methods of use thereof, such compositions including: (a) a matrix-forming compound; (b) a bioadhesive compound that may be the same or different from the matrix-forming compound; (c) lactic acid; (d) l -(6-aminopurin-9-yl)propan-2- yloxymethylphosphonic acid or a physiologically functional derivative thereof; and (e) a pharmaceutically acceptable carrier.
  • such compositions generally have a pH of 5.0 or below, and in further embodiments, the compositions have buffering capabilities such that the pH is maintained below 5.0 in the presence of a normal amount of ejacualte.
  • compositions and methods for contraception that also enhance the efficacy of microbicides.
  • Such compositions serve the dual purpose of preventing pregnancy and lessening the risk of spreading sexually transmitted diseases. More specifically, the compositions and methods disclosed herein relate to synergistic
  • contraceptive microbicide and antiviral compositions comprising a combination of a contraceptive microbicide and an antiviral agent in an acidic carrier that enhances the efficacy of both the contraceptive microbicide and antiviral agent.
  • microbicide and “microbicidal” refer to a compound capable of preventing or inhibiting the growth and/or preventing or reducing the infectivity of microbes, including viruses, bacteria, fungi and algae.
  • STL sexually transmitted disease
  • STD sexually transmitted infection
  • STI sexually transmitted infection
  • An STL is an illness or pathophysiological condition that has a significant probability of transmission between humans by means of any form of sexual contact, including kissing.
  • STD may also encompass a person who is infected, and may potentially infect others, without showing signs of disease or infection.
  • synergy and “synergistic” mean that the effect achieved with the compounds used together is greater than the sum of the effects that results from using the compounds separately, i.e. greater than what would be predicted based on the two active ingredients administered separately.
  • a synergistic effect may be attained when the compounds are: (1) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen.
  • a synergistic antiviral effect denotes an antiviral effect which is greater than the predicted purely additive effects of the individual compounds of the combination.
  • physiologically functional derivative refers to a pharmaceutically active compound with equivalent or near equivalent physiological functionality to Acidform or tenofovir when administered in combination with another pharmaceutically active compound in a combination of the disclosure.
  • physiologically functional derivative includes any: physiologically acceptable salt, ether, ester, prodrug, solvate, stereoisomer including enantiomer, diastereomer or stereoisomerically enriched or racemic mixture, and any other compound which upon administration to the recipient, is capable of providing (directly or indirectly) such a compound or an antiviral-active metabolite or residue thereof.
  • the term "contacting" refers to any suitable method of bringing one or more of the contraceptive microbicide and antiviral compounds described herein into contact with a sexual ly-transmitted or sexually-acquired microbe or microbial cell, as described herein. In vitro or ex vivo, this is achieved by exposing the microbe or microbial cell to the microbicide in a suitable medium. For exemplary in vivo applications, topical methods of administration are suitable as described herein.
  • matrix is meant to refer to a plurality of different molecules that form a three-dimensional structure via ionic interactions there between.
  • pH of 4 or below means a pH that is less than 4.5.
  • buffering capabilities means the ability to maintain a desired pH when contacted with a compound having a different pH.
  • buffering capabilities means the ability to maintain a healthy vaginal pH in the presence of normal amounts of ejaculate.
  • contacted with ejaculate means the presence of semen in the volume normally occurring during ejaculation, e.g., between 0.1 to 1 1 milliliters (Rehan, et al., Fertil Steril. 1975, 26:492-502).
  • the contraceptive microbicide and antiviral compositions and methods disclosed prevent or reduce the risk of the transmission of STDs and/or common vaginal infections.
  • STDs include, but are not limited to, HIV/AIDS, herpes (caused by herpes simplex virus type 1 (HSV-1 ) or herpes simplex virus type 2 (HSV-2), gonorrhea, chlamydia, syphilis, and trichomoniasis.
  • Non-limiting examples of common vaginal infections include bacterial vaginosis (BV) and vaginal candidiasis. Similar compositions and methods of application of such compositions, as described herein, can be used for preventing or treating STDs and/or common vaginal infections.
  • compositions of the present disclosure comprise a combination of a bioadhesive agent with contraceptive and microbicidal properties (i.e. a "contraceptive microbcide") and a particular antiviral agent, tenofovir.
  • a bioadhesive agent with contraceptive and microbicidal properties i.e. a "contraceptive microbcide”
  • tenofovir a particular antiviral agent
  • the contraceptive microbicide has bioadhesive properties and buffering capabilities.
  • contraceptive microbicide forms a matrix that traps the sperm, and the buffering capabilities keep the pi I at a low level further inactivating the sperm.
  • Tenofovir is an antiretroviral drug designed to inhibit reverse transcriptase.
  • the prodrug form of tenofovir, tenofovir disproxyl fumarate, has been approved by the U.S. Food and Drug Administration for treating HIV and chronic hepatitis B and may be effective against other viruses such as herpes. (Andrei, et al., Cell Host Microbe.. 10:379-89, 201 1 ).
  • a synergistic effect is achieved between the two components.
  • the negatively charged monophosphate moiety of tenofovir forms ionic interactions with the matrix forming agent and/or bioadhesive compound, which is further enhanced by lactic acid.
  • the matrix When the matrix is formed, it facilitates prolonged release of the tenofovir, thus enhancing efficacy.
  • compositions of the present disclosure exhibit improved efficacy because the tenofovir concentration is maintained between effective and toxic levels, due to the fact that the matrix formation and bioadhesive properties inhibit the dilution of the drug away from the delivery point, thereby improving targeting and localization of the drug.
  • bioadhesion increases the intimacy and duration of contact between the tenofovir and the mucosal surface. The combined effects of this enhanced, direct drug absorption, and the decrease in excretion rate that results from reduced diffusion and improved localization significantly enhances bioavailability of the drug and allows for a smaller dosage and less frequent administration.
  • Tenofovir (Gilead Science, Inc. )
  • Tenofovir which includes derivatives, analogues, prodrugs and salts thereof, belongs to a class of antiretroviral drugs known as nucleotide analogue reverse transcriptase inhibitors (NtRTIs), which block reverse transcriptase. It has the chemical name l-(6- aminopurin-9-yl)propan-2-yloxymethylphosphonic acid [CAS Registry number: 147127-20- 6]. The structure of tenofovir is shown below:
  • Tenof ' ovir is a competitive inhibitor of other naturally occurring nucleotides, and its ultimate biological activity is viral DNA chain termination.
  • Tenofovir is a novel nucleotide analog with antiviral activity against both HIV and Hepatitis B.
  • the mechanism of tenofovir is similar to that of nucleoside analogs, which interferes with reverse transcriptase and prevents translation of viral genetic material into viral DNA.
  • the NtRTIs are chemically pre-activated with the presence of a phosphate group. Since the phosphorylation step is not necessary, nucleotide analogs can incorporate into viral DNA chain more rapidly than nucleoside analogs. More importantly, this will bypass a viral mechanism of nucleoside resistance.
  • the contractive microbicide is Acidform (also known as Amphora® (U.S. Patent No. 6,706,276, WO 01/66084), which is a gel that, when placed in a body orifice (e.g., vagina), forms a matrix upon contact with ejaculate and thus entraps and inactivates spermatozoa and/or STI) and STI-causing microbes.
  • the contraceptive microbicide contains (1 ) a matrix-forming compound, (2) a bioadhesive compound, and (3) lactic acid. Some compounds, such as chitosan, can act as both the matrix-forming compound and the bioadhesive compound.
  • the Acidform used generally contains (1 ) about 1 - 10% of one or more matrix-forming compounds, (2) about 1-10% of one or more bioadhesive compounds, and (3) about 1 -10% of lactic acid.
  • the Acidform composition contains (1 ) about 3-5% of one or more matrix-forming compounds, (2) about 2.5-6% of one or more bioadhesive compounds, and (3) about 1 -7% of lactic acid.
  • the Acidform composition contains (1 ) about 3.5-4.5% of one or more matrix- forming compounds, (2) about 2.5-3.5% of one or more bioadhesive compounds, and (3) about 1 -4% of lactic acid.
  • the Acidform used generally contains (1) about 1 - 10% of one or more matrix-forming compounds, (2) about 1-10% of one or more bioadhesive compounds, and (3) about 1 - 10% of L-lactic acid.
  • the Acidform composition contains (1 ) about 3-5% of one or more matrix-forming compounds, (2) about 2.5-6% of one or more bioadhesive compounds, and (3) about 1-7% of L-lactic acid.
  • the Acidform composition contains (1 ) about 3.5-4.5% of one or more matrix-forming compounds, (2) about 2.5-3.5% of one or more bioadhesive
  • Matrix-forming compounds suitable for use in the present disclosure should be stable over a wide pH range, especially over the normal acidic pll values found in the vagina.
  • Suitable matrix-forming compounds include, for example, alginic acid, chitosan, gel] an gum, poloxamer, and the like.
  • Alginic acid is a generally linear glycouronan polymer containing a mixture of -(1 ,4)-D-gulosyuronic acid and -( 1 ,4)-D-gulosyuronic acid residues.
  • the molecular weight of the alginic acid is the range of about 20,000 to about 300,000 g/mole, in other embodiments in the range of about 20,000 to about 250,000 g/mole, and in further embodiments about 240,000 g/mole.
  • Alginic acid is expected to form insoluble alginates by interacting with monovalent and divalent cations (especially Na + , K ⁇ and Ca ++ ) in seminal plasma. Since vaginal fluids generally contain very little Ca ++ , the semisolid matrix is formed only when ejaculate is present. In such cases, the semisolid matrix will trap STD-causing microbes and spermatozoa so that they cannot migrate through the lower female genital tract.
  • Alginates also swell in contact with water, thereby assisting in maintaining the desired gel or matrix structure within the vagina.
  • alginic acid or salts of alginic acid may also contribute to the acid buffering activity of Acidform since they have a pH of about 1 .5 to about 3.5 in an aqueous solution.
  • alginic acid may also contribute to the bioadhesive nature of the present formulations and, therefore, assist in providing bioadhesive activity. Because of its high molecular weight, alginic acid will not be absorbed by the body. Thus, its matrix-forming, bioadhesive, and acid-buffering properties will be maintained so as long as the gel remains in the vagina.
  • Bioadhesive compounds suitable for use in the present dislcosure include, for example, xanthan gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, chitosan, polycarbophil, carbopol, and the like.
  • the bioadhesive compound is xanthan gum, a high molecular weight polysaccharide gum containing D-glucosyl, D-mannosyl, and D-glucosyluronic acid residues and varying proportions of O-acetyl and pyruvic acid acetal.
  • the primary structure is a cellulose backbone with trisaccharide side chains; the repeating unit is a pentasaccharide.
  • the molecular weight is greater than about 106 g/mole.
  • the contraceptive microbicide further comprises lactic acid or other buffering agents that act to maintain the pH of the vagina within its normal acidic range (i.e., a pH of less than about 5 and more preferably in the range of about 3.5 to about 4.5) even in the presence of normal amounts of ejaculate.
  • suitable buffering agents include, but are not limited to, for example, citric acid, potassium acid tartrate, benzoic acid, alginic acid, sorbic acid, fumaric acid, ascorbic acid, stearic acid, oleic acid, tartaric acid, edetic acid ethylenediaminetetracetic acid, acetic acid, malic acid, and the like.
  • the acids may be added as free acids, hydrates, or pharmaceutically acceptable salts.
  • the free acids can be converted to the corresponding salts in situ (i.e., within the vagina).
  • several buffering agents are included in the Acidform composition to provide increased buffering capacity.
  • Alginic acid of course, can function as both a matrix-forming agent and a buffering agent. Since alginic acid will not be absorbed by the body, its acid buffering effect will be longer lasting as compared to the other buffering agents which may be absorbed by the body.
  • the pharmaceutical carrier is water.
  • Other pharmaceutically acceptable carriers that are suitable for vaginal delivery are well know and can be used in place of water.
  • One example of a suitable pharmaceutically acceptable carrier is petrolatum, such as white petrolatum.
  • Additional optional excipients that may be used in the compositions of the present disclosure may also include humectants.
  • Suitable humectants include, but are not limited to, for example, glycerol, polyethylene glycols, propylene glycols, sorbitol, triacetin, and the like.
  • glycerol is used to prevent the formation of a dry film on the gel when placed within the vagina. Glycerol may also act as a lubricant.
  • the compositions may also include a preservative.
  • Suitable preservatives include, but are not limited to, for example, benzoic acid, sodium benzoate, methylparaben, ethylparaben, butylparaben, propylparaben, benzyalkonium chloride, phenylmercuric nitrate, chlorhexidine, and the like.
  • benzoic acid is used and may also contribute to the buffering capacity of the Acidform gel.
  • the contraceptive microbicide is further described as follows: the matrix-forming compound is alginic acid; the bioadhesive compound is xanthan gum and/or hydroxycellulose; lactic acid is used or is substituted by citric acid, benzoic acid or potassium acid tartrate; glycerol is included as a humectant; benzoic acid is used as a preservative; and water is the pharmaceutically acceptable carrier.
  • the composition contains xanthan gum, alginic acid, lactic acid, citric acid, benzoic acid, potassium bitartrate, glycerol, and water.
  • the lactic acid is L-lactic acid.
  • lactic acid or other suitable buffering agents are used to maintain the p 11 of the vagina within its normal acidic range (i.e., a p I I of less than about 5 and more preferably in the range of about 3.5 to about 4.5) even in the presence of normal amounts of ejaculate.
  • a p I I of less than about 5 and more preferably in the range of about 3.5 to about 4.5
  • lactic acid significantly increases the microbicidal potency in relation to other natural vaginal defense mechanisms, such as hydrogen peroxide.
  • the contraceptive microbicide when formulated using lactic acid as a buffering agent, possesses significantly greater microbicidal activity than formulations that do not use lactic acid as a buffering agent.
  • lactic acid results in greater inactivation of microbes, including viruses, in comparison to compounds such as hydrogen peroxide or acetic acid at equivalent pH.
  • the mechanism of action by which lactic acid increases microbicidal potency is believed to be the disruption of the cell membranes of gram-negative bacteria, and also acts to inactivate HIV and HSV-2.
  • lactic acid has two isomers, one is known as L-(+)-lactic acid or (S)-lactic acid and the other is D-(-)-lactic acid or (R)-lactic acid.
  • L-(+)-lactic acid or (S)-lactic acid is known as L-(+)-lactic acid or (S)-lactic acid and the other is D-(-)-lactic acid or (R)-lactic acid.
  • Lactic acid is produced by lactic acid bacteria such as Lactobacillus species.
  • lactic acid bacteria generally produce both D and L lactic acid.
  • lactic acid bacteria can be difficult to grow.
  • Recombinant methods can be used to specifically manufacture L-lactic acid using hosts that easier to grow such as yeast or Escherichia coli. (Ishida et al, Appl Environ Microbiol. 2005 April; 71 (4): 1964-1970 and Dien et al., J Ind Microbiol Biotechnol. 2001 Oct;27(4):259-64.)
  • purified L-lactic acid can be purchased from established chemical suppliers such as Sigma-Aldrich ® (St. Louis, Missouri).
  • the pharmaceutical composition may be in the form of a gel, a semi-solid, a cream, and/or a lotion.
  • the microbicide may be administered as a topical ointment applied to the lining of the vagina and/or cervix and/or rectum, which can be accomplished as a gel, cream, lotion, non-aqueous or aqueous solution used to flush the vaginal or rectal cavity, and/or a vaginal or rectal suppository.
  • the contraceptive microbicide and antiviral composition may be administered in a spray formulation.
  • the contraceptive microbicide and antiviral compositions may be delivered using microbicide-impregnated diaphragms and female and male condoms.
  • the balance of the compositions may optionally comprise one or more cosmetic ingredients.
  • cosmetic ingredients are known to those skilled in the art and are often referred to in the art as diluents, solvents, and adjuvants.
  • cosmetic ingredients include, for example; water, ethyl alcohol, isopropyl alcohol, glycerin, glycerol propylene glycol, sorbitol, and other high molecular weight alcohols.
  • contraceptive compositions may contain minor amounts of other additives, such as, for example; stabilizers, surfactants, menthol, eucalyptus oil, other essential oils, fragrances, and the like.
  • additives such as, for example; stabilizers, surfactants, menthol, eucalyptus oil, other essential oils, fragrances, and the like.
  • the selection and amounts of cosmetic ingredients, other additives, and blending procedures can be carried out in accordance with techniques well-known in the art.
  • the present disclosure involves the topical application of contraceptive mcirobicide and antiviral compositions as described herein.
  • topical application includes application the body cavities as well as to the skin.
  • the aforementioned compositions are applied to a body cavity such as the vagina, anus, rectum or mouth.
  • topical application may be carried out before, during or after intercourse, or alternatively, carried out independent from intercourse.
  • the contraceptive microbicide and antiviral compositions of the present disclosure may be delivered to the vagina of a mammal by any means known to those skilled in the art. Typical forms for delivery of the compositions include, for example; creams, lotions, gels, foams, intervaginal devices such as sponges and suppositories, and films.
  • the contraceptive microbicide and antiviral compositions may be used as personal care products, such as, for example, condom lubricants, and the like.
  • Such lubricants may comprise commonly known ingredients such as, for example: humectants, e.g., glycerin, sorbitol, mannitol, glycols and glycol ethers; buffers, e.g., glucono-d-lactone; germicides or bactericides, e.g., chlorhexidine gluconate; preservatives, e.g., methylparaben; viscosifiers, e.g., hydroxyethyl cellulose, etc.; other adjuvants, e.g., colors and fragrances; in addition to the compositions of the present disclosure.
  • humectants e.g., glycerin, sorbitol, mannitol, glycols and glycol ethers
  • buffers e.g., glucono-d-lactone
  • germicides or bactericides e.g., chlorhexidine gluconate
  • the physical properties, e.g., viscosity, of such delivery forms may vary widely.
  • the viscosity of a gel form of the composition of the present disclosure e.g., 150,000 centipoise
  • the viscosity of lotion form of the composition of the present disclosure e.g., 100 centipoise.
  • Further details concerning the materials, ingredients, proportions and procedures of such delivery forms can be selected in accordance with techniques well-known in the art.
  • the contraceptive mcirobicide and antiviral compositions of the present disclosure are preferably administered to the vagina of the mammal in a dosage which is effective to immobilize sperm present in the vagina and/or to inhibit their penetration in cervical mucus.
  • Typical dosages range between about 1 - 10 grams, or between 3-7 grams, or between 4-6 grams of the composition.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Virology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Urology & Nephrology (AREA)
  • Inorganic Chemistry (AREA)
  • AIDS & HIV (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Dispersion Chemistry (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

The present disclosure relates to compositions and methods for contraception that also enhance the efficacy of microbicides. Such compositions serve the dual purpose of preventing pregnancy and lessening the risk of spreading sexually transmitted diseases. More specifically, the compositions and methods relate to syngergistic contraceptive microbicide and antiviral compositions comprising a combination of a contraceptive microbicide and an antiviral agent in an acidic carrier that enhances the efficacy of both the contraceptive microbicide and antiviral agent.

Description

COMPOSITIONS AND METHODS FOR ENHANCING THE EFFICACY OF CONTRACEPTIVE MICROBICIDES
TECHNICAL FIELD
[0001] The present disclosure relates to compositions and methods for contraception that also enhance the efficacy of microbicides. Such compositions serve the dual purpose of preventing pregnancy and lessening the risk of spreading sexually transmitted diseases.
BACKGROUND OF INVENTION
[0002] Human immunodeficiency virus (HIV), the etiologic agent of acquired immunodeficiency syndrome (AIDS ) is the fastest growing cause of death in women of reproductive age. Worldwide, the heterosexual transmission of AIDS is the prevalent mode of transmission of AIDS, accounting for about 90% of all HIV infections in women. Therefore, significant attention has been directed to investigating measures that block sexual spreading of HIV infection. As there is no effective treatment or vaccine against AIDS, preventive measures are the primary tools that can presently reduce transmission of HIV. For example, the consistent and correct use of condoms represents an effective barrier to prevent HIV transmission. However, the risk of acquiring infection can only be significantly reduced if condoms are used for almost all sexual intercourse in HIV prevalent communities; a result that can not be achieved despite intensive prevention programs to increase condom use.
[0003] Significant emphasis has been placed on the development of intravaginal microbicidal agents capable of preventing and/or reducing the spread of a variety of sexually transmitted diseases (STDs) in addition to Herpes Simplex Virus (HSV) and HIV. The development of microbicides for topical use represents an important alternative to condom usage. A microbicide is any agent that kills or deactivates disease-causing microbes, including viruses. According to the International Association of Physicians in AIDS CARE (IAPAC), the definition of microbicides also includes interventions that can block or prevent infection, as well as amplification of the body's natural defenses to prevent infection through sexual acts.
[0004] Ideally, microbicides should have little or no side effects at an effective microbicidal concentration. Accordingly, the drug used as a microbicide should have little or no immunosuppressive activity at an effective microbicidal concentration. In addition, the ideal microbicide should sufficiently withstand varying temperatures and acceptably function within varied pH ranges (ranges of alkaline and acidic levels in the vagina). Further, it should not eliminate the natural beneficial lactobacilli that reside in the vagina and contribute to vaginal health.
[0005] Topical microbicides would be even more beneficial if they also had contraceptive capabilities. Contraception is also important for women with STDs to prevent transmitting diseases to future generation, especially since many women with STDs are of childbearing age. At present, a majority of commercially available dual-purpose spermicidal microbicides have detergent ingredients that disrupt cell membranes. The most widely used vaginal spermicide, nonoxynol-9 (N-9), because of its membrane disruptive properties, has been shown to damage the cervicovaginal epithelium, cause an acute inflammatory tissue response, alter vaginal microflora, and enhance the risk of promoting opportunistic infections in the genitourinary tract. N-9 is also toxic to vaginal and cervical cells which increases the permeability of vaginal tissue. It can also kill the Lactobacillus sp. that populate the vaginal tract and are generally regarded as beneficial. Lactobacillus produce lactic acid and hydrogen peroxide, which helps maintain the acidic p 11 of the vagina (~pH 3.5 to 5.0) and a healthy vaginal flora. At this pH, a number of STD-causing organisms like HIV are inactivated.
[0006] Other spermicidal microbicides in the form of vaginal creams and ointments are currently available over the counter or by prescription. Still others are in various stages of development. Examples include octoxynol-9 and benzalkonium chloride. Gels designed to control vaginal pH are also available, such as AciJel™ (Ortho-McNeil Pharmaceutical Corp., Raritan, N.J.) which is a water dispersible buffered gel having a pH of 3.9 to 4.1 . It is used to restore and maintain normal vaginal acidity. Such gels are designed to control vaginal pH and are not specifically designed to prevent STDs and/or contraception, and thus do not always possess effective microbicidal activity.
[0007] As discussed, presently marketed vaginal contraceptive compositions, often containing N-9 as an active ingredient, are generally known in the art. While presently marketed vaginal contraceptive formulations aid in preventing pregnancy, their ability to effectively prevent STDs, particularly HIV/ AIDS, is very l imited. Moreover, recent analyses show that N-9, when used frequently by women at high risk may actually increase the risk of HIV infection (WHO 2002, WHO/CONRAD technical consultation on nonoxynol-9, Geneva). [0008] Additionally, several microbicides under development contain anti-retroviral agents that had originally been developed for the treatment of patients with HIV infection. However, only temporary and limited benefits are observed in HIV-infected patients treated with any of the actual anti-retrovirals or combinations thereof. The limited ability of these agents to decrease viral burden, the rapid development of resistance and the toxic side-effects of most drugs has limited their long-term efficacy. One major problem associated with the administration of antiviral agents to patients is their poor ability to penetrate and target infected cells. Rapid drug clearance and the toxicity of parent compounds or metabolites also constitute some of the major drawbacks that may slow down the development and use of many antiviral agents. Given the severe toxicity of antiviral agents actually available to treat AIDS and other viral diseases and their limited ability to target infected cells, strategies aimed at reaching therapeutic levels of drugs into infected cells and reducing toxicity is needed.
1 00 J One of the more recently studied antimicrobials is BufferGel™ (ReProtect LLC, Baltimore, Md), which has undergone clinical trials. It is a negatively charged, nonabsorbable, high molecular weight polymer gel that is designed to maintain vaginal pH below 5 in the presence of semen. As detailed in U.S. Patent No. 5,617,877, BufferGel™ is formulated from a polymer comprised of carboxylated monomers. The polymers have buffering capacity which help control the vaginal pH. However, for contraceptive purposes, BufferGel™ is designed to be used with a device to be inserted into the vagina and positioned over the cervix. As such, to be effective, the device must remain in position over the cervix. Removal of the device or a shift of its position relative to the cervix can destroy, or at least significantly reduce, its effectiveness.
[0010] Recent studies have shown that a significant contribution to the antimicrobial properties naturally present in the vagina is primarily due to the microbicidal activity of the lactic acid molecule, and is not necessarily due to low pH alone or to the presence of hydrogen peroxide. (O'Hanlon et al., BMC Infect Dis., 1 1 :200, 201 1 ). In particular, it has been shown that in vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid, but to a much lesser extent with other acids at the same pH.
[0011] Accordingly, there is a need for dual purpose contraceptive mierobicide and antiviral compositions and methods that provide improved contraceptive and microbicidal activity in order to prevent or reduce the risk of transmission of STDs, including HIV and HSV-2 while simultaneously preventing unwanted pregnancies. Such compositions should be useful for vaginal administration in effective doses that do not inactivate Lactobacillus sp. or cause overt vaginal irritation or other toxicity.
SUMMARY OF INVENTION
[0012] The embodiments disclosed below satisfy this need. The following simplified summary is provided in order to establish a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview, and is not intended to identify key/critical elements or to delineate the scope of the claimed subject matter.
[0013] In an exemplary embodiment, the present disclosure is directed to contraceptive microbicide and antiviral compositions and methods of use thereof, such compositions including: (a) an effective amount of a bioadhesive (wherein the bioadhesive includes (i) a matrix-forming compound; (ii) a bioadhesive compound that may be the same or different from the matrix-forming compound; and (iii) lactic acid); (b) 1 -(6-aminopurin-9-yl)propan-2- yloxymethylphosphonic acid, or a physiologically functional derivative thereof; and (c) a pharmaceutically acceptable carrier. In various embodiments, such compositions generally have a pi I of 5.0 or below, and in further embodiments, such compositions are not in a matrix state until they come in contact with ejaculate. In other embodiments, the lactic acid is L- lactic acid.
[0014] In additional embodiments of the present disclosure, the compositions may also include a humectant and/or a preservative.
[0015] In another embodiment, the present disclosure is directed to contraceptive microbicide and antiviral compositions and methods of use thereof, such compositions including: (a) a matrix-forming compound; (b) a bioadhesive compound that may be the same or different from the matrix-forming compound; (c) lactic acid; (d) l -(6-aminopurin-9-yl)propan-2- yloxymethylphosphonic acid or a physiologically functional derivative thereof; and (e) a pharmaceutically acceptable carrier. In various embodiments, such compositions generally have a pH of 5.0 or below, and in further embodiments, the compositions have buffering capabilities such that the pH is maintained below 5.0 in the presence of a normal amount of ejacualte.
[0016] Other aspects of the disclosure are found throughout the specification. DETAILED DESCRIPTION OF INVENTION
[0017] Disclosed herein are compositions and methods for contraception that also enhance the efficacy of microbicides. Such compositions serve the dual purpose of preventing pregnancy and lessening the risk of spreading sexually transmitted diseases. More specifically, the compositions and methods disclosed herein relate to synergistic
contraceptive microbicide and antiviral compositions comprising a combination of a contraceptive microbicide and an antiviral agent in an acidic carrier that enhances the efficacy of both the contraceptive microbicide and antiviral agent.
[0018] To facilitate understanding of the disclosure that follows, a number of terms are defined below.
[0019] When the terms "one," "a," or "an" are used in this disclosure, they mean "at least one" or "one or more," unless otherwise indicated.
[0020] As used herein, the terms "microbicide" and "microbicidal" refer to a compound capable of preventing or inhibiting the growth and/or preventing or reducing the infectivity of microbes, including viruses, bacteria, fungi and algae.
[0021] As used herein, the term "sexually transmitted disease" is used interchangeably with "STD," "sexually transmitted infection," "STI" and/or the plural thereof. An STL) is an illness or pathophysiological condition that has a significant probability of transmission between humans by means of any form of sexual contact, including kissing. The term STD may also encompass a person who is infected, and may potentially infect others, without showing signs of disease or infection.
[0022] The terms "synergy" and "synergistic" mean that the effect achieved with the compounds used together is greater than the sum of the effects that results from using the compounds separately, i.e. greater than what would be predicted based on the two active ingredients administered separately. A synergistic effect may be attained when the compounds are: (1) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen. A synergistic antiviral effect denotes an antiviral effect which is greater than the predicted purely additive effects of the individual compounds of the combination. [0023] As used herein, the term "physiologically functional derivative" refers to a pharmaceutically active compound with equivalent or near equivalent physiological functionality to Acidform or tenofovir when administered in combination with another pharmaceutically active compound in a combination of the disclosure. As used herein, the term "physiologically functional derivative" includes any: physiologically acceptable salt, ether, ester, prodrug, solvate, stereoisomer including enantiomer, diastereomer or stereoisomerically enriched or racemic mixture, and any other compound which upon administration to the recipient, is capable of providing (directly or indirectly) such a compound or an antiviral-active metabolite or residue thereof.
[0024] As used herein, the term "contacting" refers to any suitable method of bringing one or more of the contraceptive microbicide and antiviral compounds described herein into contact with a sexual ly-transmitted or sexually-acquired microbe or microbial cell, as described herein. In vitro or ex vivo, this is achieved by exposing the microbe or microbial cell to the microbicide in a suitable medium. For exemplary in vivo applications, topical methods of administration are suitable as described herein.
[0025] As used herein, the term "matrix" is meant to refer to a plurality of different molecules that form a three-dimensional structure via ionic interactions there between.
[0026] The term "pH of 4 or below" means a pH that is less than 4.5.
[0027] The term "buffering capabilities" means the ability to maintain a desired pH when contacted with a compound having a different pH. In particular, buffering capabilities means the ability to maintain a healthy vaginal pH in the presence of normal amounts of ejaculate.
[0028] The term "contacted with ejaculate" means the presence of semen in the volume normally occurring during ejaculation, e.g., between 0.1 to 1 1 milliliters (Rehan, et al., Fertil Steril. 1975, 26:492-502).
[0029] The contraceptive microbicide and antiviral compositions and methods disclosed prevent or reduce the risk of the transmission of STDs and/or common vaginal infections. STDs include, but are not limited to, HIV/AIDS, herpes (caused by herpes simplex virus type 1 (HSV-1 ) or herpes simplex virus type 2 (HSV-2), gonorrhea, chlamydia, syphilis, and trichomoniasis. Non-limiting examples of common vaginal infections include bacterial vaginosis (BV) and vaginal candidiasis. Similar compositions and methods of application of such compositions, as described herein, can be used for preventing or treating STDs and/or common vaginal infections.
[0030] The compositions of the present disclosure comprise a combination of a bioadhesive agent with contraceptive and microbicidal properties (i.e. a "contraceptive microbcide") and a particular antiviral agent, tenofovir. The contraceptive microbicide has bioadhesive properties and buffering capabilities. Upon contact with semen, the
contraceptive microbicide forms a matrix that traps the sperm, and the buffering capabilities keep the pi I at a low level further inactivating the sperm. Tenofovir is an antiretroviral drug designed to inhibit reverse transcriptase. The prodrug form of tenofovir, tenofovir disproxyl fumarate, has been approved by the U.S. Food and Drug Administration for treating HIV and chronic hepatitis B and may be effective against other viruses such as herpes. (Andrei, et al., Cell Host Microbe.. 10:379-89, 201 1 ). In exemplary embodiments, a synergistic effect is achieved between the two components. More particularly, the negatively charged monophosphate moiety of tenofovir forms ionic interactions with the matrix forming agent and/or bioadhesive compound, which is further enhanced by lactic acid. When the matrix is formed, it facilitates prolonged release of the tenofovir, thus enhancing efficacy.
[0031] It is further believed that the compositions of the present disclosure exhibit improved efficacy because the tenofovir concentration is maintained between effective and toxic levels, due to the fact that the matrix formation and bioadhesive properties inhibit the dilution of the drug away from the delivery point, thereby improving targeting and localization of the drug. In this context, bioadhesion increases the intimacy and duration of contact between the tenofovir and the mucosal surface. The combined effects of this enhanced, direct drug absorption, and the decrease in excretion rate that results from reduced diffusion and improved localization significantly enhances bioavailability of the drug and allows for a smaller dosage and less frequent administration.
Tenofovir (Gilead Science, Inc. )
[0032] Tenofovir, which includes derivatives, analogues, prodrugs and salts thereof, belongs to a class of antiretroviral drugs known as nucleotide analogue reverse transcriptase inhibitors (NtRTIs), which block reverse transcriptase. It has the chemical name l-(6- aminopurin-9-yl)propan-2-yloxymethylphosphonic acid [CAS Registry number: 147127-20- 6]. The structure of tenofovir is shown below:
Figure imgf000009_0001
[0033] . Tenof'ovir is a competitive inhibitor of other naturally occurring nucleotides, and its ultimate biological activity is viral DNA chain termination. Tenofovir is a novel nucleotide analog with antiviral activity against both HIV and Hepatitis B. The mechanism of tenofovir is similar to that of nucleoside analogs, which interferes with reverse transcriptase and prevents translation of viral genetic material into viral DNA. Unlike the nucleoside analogs, the NtRTIs are chemically pre-activated with the presence of a phosphate group. Since the phosphorylation step is not necessary, nucleotide analogs can incorporate into viral DNA chain more rapidly than nucleoside analogs. More importantly, this will bypass a viral mechanism of nucleoside resistance.
Contraceptive Microbicide
[0034] In one embodiment, the contractive microbicide is Acidform (also known as Amphora® (U.S. Patent No. 6,706,276, WO 01/66084), which is a gel that, when placed in a body orifice (e.g., vagina), forms a matrix upon contact with ejaculate and thus entraps and inactivates spermatozoa and/or STI) and STI-causing microbes. In one general embodiment, the contraceptive microbicide contains (1 ) a matrix-forming compound, (2) a bioadhesive compound, and (3) lactic acid. Some compounds, such as chitosan, can act as both the matrix-forming compound and the bioadhesive compound.
[0035] In exemplary embodiments, the Acidform used generally contains (1 ) about 1 - 10% of one or more matrix-forming compounds, (2) about 1-10% of one or more bioadhesive compounds, and (3) about 1 -10% of lactic acid. In other embodiments of, the Acidform composition contains (1 ) about 3-5% of one or more matrix-forming compounds, (2) about 2.5-6% of one or more bioadhesive compounds, and (3) about 1 -7% of lactic acid. In other embodiments, the Acidform composition contains (1 ) about 3.5-4.5% of one or more matrix- forming compounds, (2) about 2.5-3.5% of one or more bioadhesive compounds, and (3) about 1 -4% of lactic acid.
[0036] In other exemplary embodiment, the Acidform used generally contains (1) about 1 - 10% of one or more matrix-forming compounds, (2) about 1-10% of one or more bioadhesive compounds, and (3) about 1 - 10% of L-lactic acid. In other embodiments, the Acidform composition contains (1 ) about 3-5% of one or more matrix-forming compounds, (2) about 2.5-6% of one or more bioadhesive compounds, and (3) about 1-7% of L-lactic acid. In other embodiments, the Acidform composition contains (1 ) about 3.5-4.5% of one or more matrix-forming compounds, (2) about 2.5-3.5% of one or more bioadhesive
compounds, and (3) about 1 -4% of L-lactic acid.
[0037] Matrix-forming compounds suitable for use in the present disclosure should be stable over a wide pH range, especially over the normal acidic pll values found in the vagina. Suitable matrix-forming compounds include, for example, alginic acid, chitosan, gel] an gum, poloxamer, and the like. Alginic acid is a generally linear glycouronan polymer containing a mixture of -(1 ,4)-D-gulosyuronic acid and -( 1 ,4)-D-gulosyuronic acid residues. Generally, the molecular weight of the alginic acid is the range of about 20,000 to about 300,000 g/mole, in other embodiments in the range of about 20,000 to about 250,000 g/mole, and in further embodiments about 240,000 g/mole. Alginic acid is expected to form insoluble alginates by interacting with monovalent and divalent cations (especially Na+, K\ and Ca++) in seminal plasma. Since vaginal fluids generally contain very little Ca++, the semisolid matrix is formed only when ejaculate is present. In such cases, the semisolid matrix will trap STD-causing microbes and spermatozoa so that they cannot migrate through the lower female genital tract. Alginates also swell in contact with water, thereby assisting in maintaining the desired gel or matrix structure within the vagina. Of course, alginic acid or salts of alginic acid may also contribute to the acid buffering activity of Acidform since they have a pH of about 1 .5 to about 3.5 in an aqueous solution. Furthermore, alginic acid may also contribute to the bioadhesive nature of the present formulations and, therefore, assist in providing bioadhesive activity. Because of its high molecular weight, alginic acid will not be absorbed by the body. Thus, its matrix-forming, bioadhesive, and acid-buffering properties will be maintained so as long as the gel remains in the vagina. Moreover, due to the innate bioadhesive properties of the trapping gel, it will normally remain within the vagina for about 12 to 24 hours (or even longer) if not removed by the woman. [0038] Bioadhesive compounds suitable for use in the present dislcosure include, for example, xanthan gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, chitosan, polycarbophil, carbopol, and the like. In at least one embodiment, the bioadhesive compound is xanthan gum, a high molecular weight polysaccharide gum containing D-glucosyl, D-mannosyl, and D-glucosyluronic acid residues and varying proportions of O-acetyl and pyruvic acid acetal. The primary structure is a cellulose backbone with trisaccharide side chains; the repeating unit is a pentasaccharide. Generally, the molecular weight is greater than about 106 g/mole.
[0039] The contraceptive microbicide further comprises lactic acid or other buffering agents that act to maintain the pH of the vagina within its normal acidic range (i.e., a pH of less than about 5 and more preferably in the range of about 3.5 to about 4.5) even in the presence of normal amounts of ejaculate. Besides lactic acid, suitable buffering agents include, but are not limited to, for example, citric acid, potassium acid tartrate, benzoic acid, alginic acid, sorbic acid, fumaric acid, ascorbic acid, stearic acid, oleic acid, tartaric acid, edetic acid ethylenediaminetetracetic acid, acetic acid, malic acid, and the like. The acids may be added as free acids, hydrates, or pharmaceutically acceptable salts. Of course, the free acids can be converted to the corresponding salts in situ (i.e., within the vagina). In various exemplary embodiments, several buffering agents are included in the Acidform composition to provide increased buffering capacity. Alginic acid, of course, can function as both a matrix-forming agent and a buffering agent. Since alginic acid will not be absorbed by the body, its acid buffering effect will be longer lasting as compared to the other buffering agents which may be absorbed by the body.
Pharmaceutically Acceptable Carrier
[0040] In one embodiment, the pharmaceutical carrier is water. Other pharmaceutically acceptable carriers that are suitable for vaginal delivery are well know and can be used in place of water. One example of a suitable pharmaceutically acceptable carrier is petrolatum, such as white petrolatum.
Optional Ingredients
[0041] Additional optional excipients that may be used in the compositions of the present disclosure may also include humectants. Suitable humectants include, but are not limited to, for example, glycerol, polyethylene glycols, propylene glycols, sorbitol, triacetin, and the like. In one exemplary embodiment, glycerol is used to prevent the formation of a dry film on the gel when placed within the vagina. Glycerol may also act as a lubricant. Additionally, the compositions may also include a preservative. Suitable preservatives include, but are not limited to, for example, benzoic acid, sodium benzoate, methylparaben, ethylparaben, butylparaben, propylparaben, benzyalkonium chloride, phenylmercuric nitrate, chlorhexidine, and the like. In one exemplary embodiment, benzoic acid is used and may also contribute to the buffering capacity of the Acidform gel.
[0042] In one exemplary embodiment of the present disclosure, the contraceptive microbicide is further described as follows: the matrix-forming compound is alginic acid; the bioadhesive compound is xanthan gum and/or hydroxycellulose; lactic acid is used or is substituted by citric acid, benzoic acid or potassium acid tartrate; glycerol is included as a humectant; benzoic acid is used as a preservative; and water is the pharmaceutically acceptable carrier. In another embodiment, the composition contains xanthan gum, alginic acid, lactic acid, citric acid, benzoic acid, potassium bitartrate, glycerol, and water. In another embodiment, the lactic acid is L-lactic acid.
[0043] As discussed, lactic acid or other suitable buffering agents are used to maintain the p 11 of the vagina within its normal acidic range (i.e., a p I I of less than about 5 and more preferably in the range of about 3.5 to about 4.5) even in the presence of normal amounts of ejaculate. In particular, it has been discovered that lactic acid significantly increases the microbicidal potency in relation to other natural vaginal defense mechanisms, such as hydrogen peroxide. This feature was previously unknown to those of skill in the art, and the inventors of the present disclosure have surprisingly found that the contraceptive microbicide, when formulated using lactic acid as a buffering agent, possesses significantly greater microbicidal activity than formulations that do not use lactic acid as a buffering agent.
[0044] Specifically, the presence of lactic acid results in greater inactivation of microbes, including viruses, in comparison to compounds such as hydrogen peroxide or acetic acid at equivalent pH. The mechanism of action by which lactic acid increases microbicidal potency is believed to be the disruption of the cell membranes of gram-negative bacteria, and also acts to inactivate HIV and HSV-2.
[0045] More specifically, lactic acid has two isomers, one is known as L-(+)-lactic acid or (S)-lactic acid and the other is D-(-)-lactic acid or (R)-lactic acid. Recent discovery has shown that the L form of lactic acid is more potent in inactivating HIV than D or racemic lactic acid. While the precise mechanism of how L-lactic acid invactivates HIV is unknown, the stereochemical dependent activity suggests that it acts on proteins. (Purcell et al., AIDS Res Hum Retroviruses. 2012 Nov;28(l 1 ): 1389-96.)
[0046] Lactic acid is produced by lactic acid bacteria such as Lactobacillus species. However, lactic acid bacteria generally produce both D and L lactic acid. Furthermore, lactic acid bacteria can be difficult to grow. Recombinant methods can be used to specifically manufacture L-lactic acid using hosts that easier to grow such as yeast or Escherichia coli. (Ishida et al, Appl Environ Microbiol. 2005 April; 71 (4): 1964-1970 and Dien et al., J Ind Microbiol Biotechnol. 2001 Oct;27(4):259-64.) Alternatively, purified L-lactic acid can be purchased from established chemical suppliers such as Sigma-Aldrich® (St. Louis, Missouri).
[0047] The pharmaceutical composition may be in the form of a gel, a semi-solid, a cream, and/or a lotion. Generally, the microbicide may be administered as a topical ointment applied to the lining of the vagina and/or cervix and/or rectum, which can be accomplished as a gel, cream, lotion, non-aqueous or aqueous solution used to flush the vaginal or rectal cavity, and/or a vaginal or rectal suppository. In other embodiments, the contraceptive microbicide and antiviral composition may be administered in a spray formulation. In addition, the contraceptive microbicide and antiviral compositions may be delivered using microbicide-impregnated diaphragms and female and male condoms.
[0048] Furthermore, in addition to the contraceptive microbicide and antiviral compositions disclosed herein, the balance of the compositions, i.e., typically from about 0-10% weight, or from about 0.1 -5% weight, or from about 0.1 -3% weight, may optionally comprise one or more cosmetic ingredients. Such cosmetic ingredients are known to those skilled in the art and are often referred to in the art as diluents, solvents, and adjuvants. Typically, cosmetic ingredients include, for example; water, ethyl alcohol, isopropyl alcohol, glycerin, glycerol propylene glycol, sorbitol, and other high molecular weight alcohols. In addition, contraceptive compositions may contain minor amounts of other additives, such as, for example; stabilizers, surfactants, menthol, eucalyptus oil, other essential oils, fragrances, and the like. The selection and amounts of cosmetic ingredients, other additives, and blending procedures can be carried out in accordance with techniques well-known in the art.
[0049] In exemplary embodiments, the present disclosure involves the topical application of contraceptive mcirobicide and antiviral compositions as described herein. In the context of the present disclosure, it is to be understood that the term topical application includes application the body cavities as well as to the skin. Thus, for example, the aforementioned compositions are applied to a body cavity such as the vagina, anus, rectum or mouth.
Furthermore, the topical application may be carried out before, during or after intercourse, or alternatively, carried out independent from intercourse.
[0050] It is to be understood that the contraceptive microbicide and antiviral compositions of the present disclosure may be delivered to the vagina of a mammal by any means known to those skilled in the art. Typical forms for delivery of the compositions include, for example; creams, lotions, gels, foams, intervaginal devices such as sponges and suppositories, and films. In addition, the contraceptive microbicide and antiviral compositions may be used as personal care products, such as, for example, condom lubricants, and the like. Such lubricants may comprise commonly known ingredients such as, for example: humectants, e.g., glycerin, sorbitol, mannitol, glycols and glycol ethers; buffers, e.g., glucono-d-lactone; germicides or bactericides, e.g., chlorhexidine gluconate; preservatives, e.g., methylparaben; viscosifiers, e.g., hydroxyethyl cellulose, etc.; other adjuvants, e.g., colors and fragrances; in addition to the compositions of the present disclosure. Those skilled in the art will recognize that the physical properties, e.g., viscosity, of such delivery forms may vary widely. For example, the viscosity of a gel form of the composition of the present disclosure, e.g., 150,000 centipoise, may be substantially higher than the viscosity of lotion form of the composition of the present disclosure, e.g., 100 centipoise. Further details concerning the materials, ingredients, proportions and procedures of such delivery forms can be selected in accordance with techniques well-known in the art.
[0051] In various embodiments, the contraceptive mcirobicide and antiviral compositions of the present disclosure are preferably administered to the vagina of the mammal in a dosage which is effective to immobilize sperm present in the vagina and/or to inhibit their penetration in cervical mucus. Typical dosages range between about 1 - 10 grams, or between 3-7 grams, or between 4-6 grams of the composition.
[0052] It will be readily apparent to those skilled in the art that other compounds functioning as precursors, analogs and derivatives such as salts and esters of the present compounds can be utilized.
[0053] The disclosure set forth above is provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use embodiments of the compositions and methods, and are not intended to limit the scope of what the inventors regard as their invention. Modifications of the above-described modes (for carrying out the disclosure that are obvious to persons of skill in the art) are intended to be within the scope of the following claims. All publications, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety as if each such publication, patent or patent application were specifically and individually indicated to be incorporated herein by reference.

Claims

CLAIMS What is claimed is:
1. A contraceptive microbicide and antiviral composition comprising:
(a) a contraceptive microbicide comprising:
(i) a matrix-forming compound;
(ii) a bioadhesive compound that may be the same or different from the matrix-forming compound; and
(iii) lactic acid;
(b) l -(6-aminopurin-9-yl)propan-2-yloxymethylphosphonic acid or a physiologically functional derivative thereof; and
(c) a pharmaceutically acceptable carrier;
wherein the composition has a pH o 4 or below; and
wherein the composition has buffering capabilities and maintains a pH below neutral when contacted with ejaculate.
2. The composition of claim 1 , wherein the composition is in a nonmatrix state until it comes in contact with ejaculate.
3. The composition of claim 1 , wherein the composition further comprises a humectant.
4. The composition of claim 1 , wherein the composition further comprises a preservative.
5. The composition of claim 1 , wherein the lactic acid is L-lactic acid.
6. A composition comprising:
(a) a matrix-forming compound;
(b) a bioadhesive compound that may be the same or different from the matrix- forming compound;
(c) lactic acid;
(d) l -(6-aminopurin-9-yl)propan-2-yloxymethylphosphonic acid or a physiologically functional derivative thereof; and
(e) a pharmaceutically acceptable carrier; wherein the composition has a pH of 5.0 or below; and
wherein the composition has buffering capabilities and maintains a pH below 5.0 in the presence of normal amounts of ejaculate.
7. A method for reducing the risk of spreading a sexually transmitted disease and preventing contraception comprising administering an effective amount of the composition according to claim 1.
PCT/US2013/032510 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides WO2013187984A1 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
AP2014008149A AP2014008149A0 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
EA201590008A EA201590008A1 (en) 2012-06-13 2013-03-15 COMPOSITIONS AND METHODS TO IMPROVE THE EFFICIENCY OF BACTERICIDAL CONTRACEPTIVES
KR1020157000465A KR102062599B1 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
CN201380030151.5A CN104487054A (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US14/410,841 US20150202216A1 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
AU2013274815A AU2013274815B2 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
EP13804259.3A EP2861215A4 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
SG11201408243VA SG11201408243VA (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
BR112014030984-1A BR112014030984B1 (en) 2012-06-13 2013-03-15 Compositions and methods to increase the effectiveness of contraceptive microbicides
UAA201500194A UA115876C2 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
NZ703203A NZ703203A (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
MX2014015307A MX365905B (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides.
JP2015517245A JP6352907B2 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the effectiveness of contraceptive fungicides
IL235812A IL235812B (en) 2012-06-13 2014-11-20 Compositions and methods for enhancing the efficacy of contraceptive microbicides
ZA2015/00111A ZA201500111B (en) 2012-06-13 2015-01-08 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US14/864,673 US9566232B2 (en) 2012-06-13 2015-09-24 Compositions and methods for enhancing the efficacy of contraceptive microbicides
HK15109540.9A HK1208809A1 (en) 2012-06-13 2015-09-29 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US15/410,632 US20170128396A1 (en) 2012-06-13 2017-01-19 Compositions and methods for enhancing the efficacy of contraceptive microbicides
AU2017206199A AU2017206199B2 (en) 2012-06-13 2017-07-19 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US16/239,314 US10568855B2 (en) 2012-06-13 2019-01-03 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US16/738,868 US11439610B2 (en) 2012-06-13 2020-01-09 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US17/823,020 US11992472B2 (en) 2012-06-13 2022-08-29 Compositions and methods for enhancing the efficacy of contraceptive microbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261659368P 2012-06-13 2012-06-13
US61/659,368 2012-06-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/410,841 A-371-Of-International US20150202216A1 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides
US14/864,673 Continuation US9566232B2 (en) 2012-06-13 2015-09-24 Compositions and methods for enhancing the efficacy of contraceptive microbicides

Publications (1)

Publication Number Publication Date
WO2013187984A1 true WO2013187984A1 (en) 2013-12-19

Family

ID=49758600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/032510 WO2013187984A1 (en) 2012-06-13 2013-03-15 Compositions and methods for enhancing the efficacy of contraceptive microbicides

Country Status (17)

Country Link
US (6) US20150202216A1 (en)
EP (2) EP3308771A1 (en)
JP (2) JP6352907B2 (en)
KR (1) KR102062599B1 (en)
CN (2) CN104487054A (en)
AP (1) AP2014008149A0 (en)
AU (2) AU2013274815B2 (en)
BR (1) BR112014030984B1 (en)
EA (1) EA201590008A1 (en)
HK (1) HK1208809A1 (en)
IL (1) IL235812B (en)
MX (2) MX365905B (en)
NZ (1) NZ703203A (en)
SG (1) SG11201408243VA (en)
UA (1) UA115876C2 (en)
WO (1) WO2013187984A1 (en)
ZA (1) ZA201500111B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566232B2 (en) 2012-06-13 2017-02-14 Evofem, Inc. Compositions and methods for enhancing the efficacy of contraceptive microbicides
US11337989B2 (en) 2013-12-19 2022-05-24 Evofem, Inc. Compositions and methods for inhibiting inflammation and diseases using an alginic acid-based antimicrobial compound
US11419835B2 (en) 2016-10-04 2022-08-23 Evofem, Inc. Method of treatment and prevention of bacterial vaginosis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD920853S1 (en) * 2018-09-14 2021-06-01 Porsche Lizenz—und Handelsgesellschaft mbH & Co. KG Bicycle
US11850303B2 (en) 2020-10-27 2023-12-26 Uqora, Inc. Gel and a suppository and methods to provide the gel and suppository

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617877A (en) 1994-06-29 1997-04-08 Moench; Thomas R. Method for acidifying an ejaculate of semen
US20040009223A1 (en) * 2000-03-07 2004-01-15 Rush-Presbyterian-St. Luke's Medical Center Compositions and methods for trapping and inactivating pathogenic microbes and spermatozoa
WO2010138823A1 (en) * 2008-05-30 2010-12-02 Reprotect, Inc. Compositions and methods for inactivation of pathogens at genital tract surfaces
US20110159091A1 (en) * 2007-05-24 2011-06-30 Alan Stone Rapidly dispersible vaginal tablet that provides a bioadhesive gel

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1213323B (en) * 1986-08-07 1989-12-20 Crinos Industria Farmaco COMPOSITION FOR LOCAL USE WITH ACTS VIRULICIDE, DISINFECTANT AND / OR BACTERICIDE SPERMICIDE
US4999342A (en) 1988-08-16 1991-03-12 Ortho Pharmaceutical Corporation Long lasting contraceptive suppository composition and methods of use
JP3202365B2 (en) 1992-12-04 2001-08-27 株式会社紀文フードケミファ Method for separating oligomannuronic acid by degree of polymerization
US5667492A (en) 1994-10-07 1997-09-16 Columbia Laboratories, Inc. Use and composition of an anti-sexually transmitted diseases formulation
FR2728464B1 (en) 1994-12-22 1997-04-30 Innothera Lab Sa UNITAL GALENIC FORM, PROCESS FOR OBTAINING SAME AND USES THEREOF
US6093394A (en) 1997-04-11 2000-07-25 Gynelogix, Inc. Vaginal lactobacillus medicant
AU1661901A (en) 1999-11-24 2001-06-04 Cargill Dow Llc Improved lactic acid processing; methods; arrangements; and, products
JP2009102407A (en) 2001-03-08 2009-05-14 Rohto Pharmaceut Co Ltd G-rich alginic acid-containing composition
US20020177624A1 (en) 2001-03-16 2002-11-28 Calvin Hanna Acetate-lactate buffering vaginal gel and for method of making same and treating bacterial vaginosis
ITMI20010913A1 (en) 2001-05-04 2002-11-04 Univ Pavia COMPOSITIONS WITH CONTROLLED RELEASE OF LACTIC ACID AT VAGINAL LEVEL
US20040242459A1 (en) 2001-06-11 2004-12-02 Forrest Michael J Method for treating inflammatory diseases by administering a ppar-delta agonist
US20060105008A1 (en) 2002-03-28 2006-05-18 Nawaz Ahmad Compositions and methods for reducing vaginal pH
US20130150810A1 (en) 2002-04-30 2013-06-13 The Population Council, Inc. Intravaginal ring for the delivery of unique combinations of antimicrobial compositions
AU2003252694A1 (en) 2002-07-26 2004-02-16 Mikasa Seiyaku Co., Ltd. External preparation
US7820145B2 (en) 2003-08-04 2010-10-26 Foamix Ltd. Oleaginous pharmaceutical and cosmetic foam
DK1635847T3 (en) 2003-06-13 2019-10-28 Idh Holding Aps Treatment of symptoms associated with bacterial vaginosis
US20050272700A1 (en) 2004-05-10 2005-12-08 Servet Buyuktimkin Topical treatment and prevention of human papilloma virus (HPV) infection
RU2257197C1 (en) 2004-05-12 2005-07-27 Дулькис Мария Дмитриевна Vaginal suppository eliciting with contraceptive effect
UA93354C2 (en) * 2004-07-09 2011-02-10 Гилиад Сайенсиз, Инк. Topical antiviral formulations
CN101534863A (en) 2006-11-10 2009-09-16 日本乐敦制药株式会社 Composition for skin or mucosal application
US7659259B2 (en) 2006-12-21 2010-02-09 Bausch & Lomb Incorporated Method of treating inflammation of the eye
CN101677980B (en) 2007-03-30 2013-10-23 莱克瑞股份公司 Use of oligomers of lactic acid in treatment of gynaecological disorders
US8464245B2 (en) 2007-06-27 2013-06-11 Flexera Software Llc Method and system for software virtualization directly from an installation package
TW200927141A (en) 2007-11-22 2009-07-01 Bayer Schering Pharma Oy Vaginal delivery system
JP2011518140A (en) * 2008-04-16 2011-06-23 シプラ・リミテッド Topical combination including antifungal and antiviral drugs
CN101559036B (en) * 2008-04-18 2012-02-08 上海医药工业研究院 Conception control gel composition for vagina as well as preparation method and application thereof
EP2130531A1 (en) 2008-06-04 2009-12-09 Rolf Kullgren AB Vaginal suppository comprising lactic acid
BRPI0803568B8 (en) * 2008-08-14 2021-05-25 Biolab San Us Farm Ltda mucoadhesive composition
US20120070476A1 (en) 2009-05-29 2012-03-22 Moench Thomas R Compositions and Methods for Inactivation of Pathogens at Genital Tract Surfaces
WO2010142761A1 (en) 2009-06-10 2010-12-16 Ultimorphix Technologies B.V. The succinate of tenofovir disoproxil
EP2704694A4 (en) 2011-05-02 2014-11-19 Aptalis Pharmatech Inc Rapid dissolve tablet compositions for vaginal administration
CN107823123A (en) 2011-06-28 2018-03-23 化学研究有限公司 High dose mucosal adhesive metronidazole aqueous gel preparation and its purposes for treating bacterial vaginosis BV
RU2014141897A (en) 2012-03-19 2016-05-20 Др. Аугуст Вольфф Гмбх Унд Ко. Кг Арцнаймиттель APPLICATION OF AMPHOTERIC SURFACE-ACTIVE SUBSTANCES FOR THE PREVENTION AND TREATMENT OF PATHOGENIC VAGINAL VAGINAL BIOFILMS IN VAGINAL INFECTIONS
BR112014030984B1 (en) 2012-06-13 2022-05-24 Evofem, Inc Compositions and methods to increase the effectiveness of contraceptive microbicides
WO2014041378A2 (en) 2012-09-14 2014-03-20 Cipla Limited Topical pharmaceutical composition
WO2015027071A1 (en) 2013-08-21 2015-02-26 Georgia Regents Research Institute, Inc. Gpr81 agonists and methods thereof for promoting production of secretory iga
WO2015070072A1 (en) 2013-11-07 2015-05-14 Evofem, Inc. Methods for manufacturing contraceptive microbicides with antiviral properties
CN114452298A (en) 2013-12-19 2022-05-10 伊沃菲姆股份有限公司 Compositions and methods for inhibiting inflammation and disease using alginic acid-based antimicrobial compounds
US9801839B2 (en) 2014-02-28 2017-10-31 Macfarlane Burnet Institute For Medical Research And Public Health Pty Ltd Therapeutic method
WO2018049326A1 (en) 2016-09-12 2018-03-15 Evofem Biosciences, Inc. Combination gel for sexually transmitted infections
US11419835B2 (en) 2016-10-04 2022-08-23 Evofem, Inc. Method of treatment and prevention of bacterial vaginosis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617877A (en) 1994-06-29 1997-04-08 Moench; Thomas R. Method for acidifying an ejaculate of semen
US20040009223A1 (en) * 2000-03-07 2004-01-15 Rush-Presbyterian-St. Luke's Medical Center Compositions and methods for trapping and inactivating pathogenic microbes and spermatozoa
US20110159091A1 (en) * 2007-05-24 2011-06-30 Alan Stone Rapidly dispersible vaginal tablet that provides a bioadhesive gel
WO2010138823A1 (en) * 2008-05-30 2010-12-02 Reprotect, Inc. Compositions and methods for inactivation of pathogens at genital tract surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2861215A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566232B2 (en) 2012-06-13 2017-02-14 Evofem, Inc. Compositions and methods for enhancing the efficacy of contraceptive microbicides
US10568855B2 (en) 2012-06-13 2020-02-25 Evofem, Inc. Compositions and methods for enhancing the efficacy of contraceptive microbicides
US11439610B2 (en) 2012-06-13 2022-09-13 Evofem, Inc. Compositions and methods for enhancing the efficacy of contraceptive microbicides
US11337989B2 (en) 2013-12-19 2022-05-24 Evofem, Inc. Compositions and methods for inhibiting inflammation and diseases using an alginic acid-based antimicrobial compound
US11419835B2 (en) 2016-10-04 2022-08-23 Evofem, Inc. Method of treatment and prevention of bacterial vaginosis

Also Published As

Publication number Publication date
CN110693812A (en) 2020-01-17
EP3308771A1 (en) 2018-04-18
BR112014030984A2 (en) 2017-06-27
AU2013274815A1 (en) 2015-01-22
US11439610B2 (en) 2022-09-13
US11992472B2 (en) 2024-05-28
EA201590008A1 (en) 2015-05-29
JP2018109034A (en) 2018-07-12
US20150202216A1 (en) 2015-07-23
ZA201500111B (en) 2016-01-27
EP2861215A1 (en) 2015-04-22
US10568855B2 (en) 2020-02-25
NZ703203A (en) 2016-07-29
IL235812B (en) 2020-05-31
MX2014015307A (en) 2015-07-06
US9566232B2 (en) 2017-02-14
CN104487054A (en) 2015-04-01
US20230241013A1 (en) 2023-08-03
AU2013274815B2 (en) 2017-04-20
HK1208809A1 (en) 2016-03-18
US20170128396A1 (en) 2017-05-11
MX365905B (en) 2019-06-18
BR112014030984B1 (en) 2022-05-24
KR102062599B1 (en) 2020-01-06
KR20150018636A (en) 2015-02-23
SG11201408243VA (en) 2015-01-29
EP2861215A4 (en) 2015-04-22
MX2019007176A (en) 2019-08-16
AU2017206199B2 (en) 2019-03-28
JP2015519395A (en) 2015-07-09
US20190133978A1 (en) 2019-05-09
US20200147015A1 (en) 2020-05-14
UA115876C2 (en) 2018-01-10
IL235812A0 (en) 2015-01-29
JP6352907B2 (en) 2018-07-04
AU2017206199A1 (en) 2017-08-03
AP2014008149A0 (en) 2014-12-31
US20160008276A1 (en) 2016-01-14
JP6738573B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
US11992472B2 (en) Compositions and methods for enhancing the efficacy of contraceptive microbicides
AU2020202835B2 (en) Compositions and methods for inhibiting inflammation and diseases using an alginic acid-based antimicrobial compound
WO2015070072A1 (en) Methods for manufacturing contraceptive microbicides with antiviral properties
OA17704A (en) Compositions and methods for enhancing the efficacy of contraceptive microbicides.
EA041271B1 (en) CONTRACEPTIVE MICROBICIDE COMPOSITION AND METHOD FOR PREVENTION OF SEXUALLY TRANSMITTED DISEASES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 235812

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2015517245

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/015307

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14410841

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201500023

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157000465

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201590008

Country of ref document: EA

Ref document number: A201500194

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2013804259

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013274815

Country of ref document: AU

Date of ref document: 20130315

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030984

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014030984

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141210