WO2013184790A1 - Interchangeable flow restricting orifice for clamshell coupler - Google Patents
Interchangeable flow restricting orifice for clamshell coupler Download PDFInfo
- Publication number
- WO2013184790A1 WO2013184790A1 PCT/US2013/044297 US2013044297W WO2013184790A1 WO 2013184790 A1 WO2013184790 A1 WO 2013184790A1 US 2013044297 W US2013044297 W US 2013044297W WO 2013184790 A1 WO2013184790 A1 WO 2013184790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sleeve
- flow
- flange
- flow restricting
- tube
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L23/00—Flanged joints
- F16L23/006—Attachments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/02—Influencing flow of fluids in pipes or conduits
- F15D1/025—Influencing flow of fluids in pipes or conduits by means of orifice or throttle elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/02—Energy absorbers; Noise absorbers
- F16L55/027—Throttle passages
- F16L55/02709—Throttle passages in the form of perforated plates
- F16L55/02718—Throttle passages in the form of perforated plates placed transversely
Definitions
- the present disclosure relates to a system for restricting fluid flow along a fluid path. More particularly, the present disclosure relates to a system of interchangeable orifices for restricting fluid flow along a fluid path.
- Flow restriction is used to tune a flow of fluid conveyed in systems where full flow capacity is not desired to balance conveyance systems. Examples of where such flow restriction is desirable includes fuel lines for aircraft or land or sea vehicles.
- temporary methods of creating flow restriction may be used to tune the system to determine a proper restriction orifice size. Once the proper restriction orifice size is determined, a flange containing a permanent flow restriction orifice is designed and used where the flow restriction is required in the system.
- the temporary components are not qualified for permanent use. For example, in aircraft fuel lines, the temporary components may not be flight qualified.
- Figures 1 and 2 illustrate a cross-section and a cut-away perspective view, respectively, of a prior art tube assembly 100.
- the assembly 100 includes a first tube Ti having a first flange Fi adjacent a second tube T 2 having a second flange F 2 .
- the flanges are surrounded by a sleeve S, and o-rings O or other seals are placed between the first and second flanges Fi, F 2 and the sleeve S to prevent fluid from leaking, and to lock the joint together.
- a coupler assembly C captures the sleeve and secures the first and second flanges F 1? F 2 together.
- the coupler assembly C is a clamshell design, having a first and second semi-circular component hingedly connected and configured to be locked in a closed position.
- the second flange F 2 is configured to receive a removable orifice plate 110 having an orifice with a diameter smaller than the inner diameter of the first and second tubes Ti, T 2 , thereby restricting flow of fluid.
- the orifice plate 110 is shown as having a single orifice that is substantially circular, it should be understood that a plurality of orifices of different shapes may be employed.
- the second flange F 2 has a groove and shoulder on the inner diameter to receive the removable orifice plate 110.
- the tube assembly 100 may be disassembled to allow an operator to remove the orifice plate 110 and replace it with another removable orifice plate having an orifice of a different size. By removing and replacing orifice plates, an operator may test different sized orifices to arrive at a desirable fluid flow, thereby tuning the system.
- the removable orifice plate 110 contains accommodations for hardware that secures it to the second flange F 2 .
- a seal 120 is disposed between the second flange F 2 and the removable orifice plate 110 (illustrated here as an o-ring) to prevent flow around the removable orifice plate 110.
- a retaining wire 130 is employed to hold the removable orifice plate 110 in place.
- Figure 3 is a cross-section of an exemplary final tube assembly 200 having a restrictive fiange 210.
- the restrictive flange 210 is custom-made.
- the restrictive flange may be a flight-qualified component.
- a system for testing fluid flow includes a first tube, a first flange disposed on an end of the first tube, a second tube, and a second flange disposed on an end of the second tube.
- the second flange is adjacent the first flange.
- a flow restricting sleeve surrounds the first flange and the second flange.
- the flow restricting sleeve has an inner surface and an outer surface, with a web extending from the inner surface and defining an orifice. The web extends between the first flange and the second flange.
- a coupler assembly surrounds the flow restricting sleeve.
- Figure 1 is a cross-section of a prior art tube assembly 100
- Figure 2 is a cut-away perspective view of the prior art tube assembly 100
- Figure 3 is a cross-section of an exemplary final tube assembly 200
- Figure 4 is a perspective view of a prior art sleeve S for a tube assembly
- Figure 5 is a perspective view of one embodiment of a flow restricting sleeve 300 for a tube assembly
- Figure 6 is a cross-section of one embodiment of a tube assembly 400 having the flow restricting sleeve 300;
- Figure 7 is a cut-away perspective view of the tube assembly 400;
- Figure 8 is a front view of the prior art final tube assembly 200; and
- Figure 9 is a front view of the tube assembly 400.
- Figure 4 is a perspective view of a prior art sleeve S for a tube assembly.
- the prior art sleeve S has an inner diameter and an outer diameter, and a plurality of ribs R on an outer surface configured to receive the coupler assembly.
- ribs may be configured differently or omitted entirely.
- the prior art sleeve may have different surface finishes.
- FIG. 5 is a perspective view of one embodiment of a flow restricting sleeve 300 for a tube assembly.
- the flow restricting sleeve 300 has substantially the same outer diameter and inner diameter of the sleeve S of an existing tube assembly.
- the flow restricting sleeve 300 further includes ribs R that are substantially the same as the ribs R of the sleeve S of an existing tube assembly. Therefore, the flow restricting sleeve 300 may be employed in place of the sleeve S of an existing tube assembly. It should be understood that additional features or finishes may be employed on the inner or outer surface of the flow restricting sleeve 300 to match such features on an existing sleeve S.
- the flow restricting sleeve 300 may be configured for any tube assembly.
- the flow restricting sleeve 300 can be captured by a coupler assembly C in the same manner as a flight-qualified sleeve, and provide the same seal across the sleeves.
- the flow restricting sleeve 300 further includes a web 310 having an orifice 320.
- the web 310 is positioned halfway along the axis of the sleeve 300.
- the web may be off-center.
- the orifice 320 is substantially circular. In alternative embodiments (not shown), the orifice may be oval, square, triangular, or any geometric shape. In other alternative embodiments (not shown), the web may include two or more orifices.
- the orifice 320 is machined.
- a plurality of flow restricting sleeves 300 may be provided, wherein each flow restricting sleeve has an orifice of a different size.
- at least one flow restricting sleeve is provided without an orifice. Such a sleeve would allow an operator to create an orifice of any desired size, such as by drilling or punching the web.
- Figures 6 and 7 illustrate a cross-section and a cutaway perspective view, respectively, of one embodiment of a tube assembly 400 including the flow restricting sleeve 300.
- the assembly 400 includes a first tube Ti having a first flange 410 adjacent a second tube T 2 having a second flange 420.
- the first flange 410 is substantially the same as the second flange 420.
- the first flange 410 is spaced from the second flange 420 by a gap having a length 1.
- the flanges 410, 420 are surrounded by the sleeve 300, such that the web 310 extends through the gap between the first flange 410 and the second flange 420. Accordingly, the web 310 has a thickness of less than 1.
- O-rings O or other seals are placed between the first and second flanges 410, 420 and the sleeve S to prevent fluid from leaking, and to lock the joint together.
- a coupler assembly C captures the sleeve and secures the first and second flanges 410, 420 together.
- the coupler assembly C is a clamshell design, having first and second semi-circular components that are hingedly connected and configured to be locked in a closed position.
- an operator may test different flow restricting sleeves, with each flow restricting sleeve having a different orifice configuration.
- the coupler assembly C is removed, and the flow restricting sleeve 300 containing one specific size of orifice is removed.
- a flow restricting sleeve containing a different size of orifice is then put in place, and the coupler assembly C is reassembled over the sleeve and flanges 410, 420. This process may be repeated multiple times until the operator achieves a desired fluid flow.
- the operator may remove the flow restricting sleeve 300 in the manner described above.
- the operator may then remove one of the flanges 410, 420 and replace it with a unitary flange and orifice plate having an orifice with the desired dimensions, such as in the exemplary final tube assembly 200 illustrated in Figure 3.
- the unitary flange and orifice plate may be a flight-qualified component.
- the restricting sleeve 300 may be constructed of a material having a color different from that of a flight-qualified component.
- the flow restricting sleeve 300 is colored red via a dyed aluminum anodizing process during manufacture. The color red is used to indicate components that are not to be used for flight.
- the flow restricting sleeve 300 may use other colors, or other visual indicia to indicate that the sleeve is not a flight-qualified component.
- Figure 8 is a front view of the prior art final tube assembly 200.
- Figure 9 is a front view of the tube assembly 400.
- the coupler assembly C that captures the sleeve contains inspection holes H in its perimeter that are used to visually verify that a sleeve is installed.
- an inspector can see through the inspection holes H that the sleeve S is a flight-qualified component having a first color. Should a flow restricting sleeve 300 be inadvertently left in a tube assembly, an inspector can see the second color through the inspection holes H, indicating that a non-flight component is present.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computational Mathematics (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Evolutionary Computation (AREA)
- Architecture (AREA)
- Measuring Volume Flow (AREA)
- Pipe Accessories (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13730986.0A EP2917627A1 (en) | 2012-06-05 | 2013-06-05 | Interchangeable flow restricting orifice for clamshell coupler |
US14/404,966 US10552552B2 (en) | 2012-06-05 | 2013-06-05 | Interchangeable flow restricting orifice for clamshell coupler |
CA2872035A CA2872035A1 (en) | 2012-06-05 | 2013-06-05 | Interchangeable flow restricting orifice for clamshell coupler |
CN201380029801.4A CN104769349B (en) | 2012-06-05 | 2013-06-05 | Interchangeable flow restricting orifice for clamshell coupler |
BR112014025591A BR112014025591A2 (en) | 2012-06-05 | 2013-06-05 | flow restricting sleeve, fluid flow testing system and method for fluid flow testing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261655988P | 2012-06-05 | 2012-06-05 | |
US61/655,988 | 2012-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013184790A1 true WO2013184790A1 (en) | 2013-12-12 |
Family
ID=48672816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/044297 WO2013184790A1 (en) | 2012-06-05 | 2013-06-05 | Interchangeable flow restricting orifice for clamshell coupler |
Country Status (6)
Country | Link |
---|---|
US (1) | US10552552B2 (en) |
EP (1) | EP2917627A1 (en) |
CN (1) | CN104769349B (en) |
BR (1) | BR112014025591A2 (en) |
CA (1) | CA2872035A1 (en) |
WO (1) | WO2013184790A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11485556B1 (en) * | 2018-02-26 | 2022-11-01 | Vincent Charles Brenner | Vessel connector |
CA3047289A1 (en) | 2019-06-19 | 2020-12-19 | Slurryflo Valve Corporation | Flow centralizer for valve assembly |
CA3047469A1 (en) | 2019-06-20 | 2020-12-20 | Slurryflo Valve Corporation | Gate valve |
US11691752B2 (en) * | 2019-10-15 | 2023-07-04 | The Boeing Company | Dual walled tube flexible joint seal systems and methods |
US11841103B2 (en) * | 2021-04-09 | 2023-12-12 | Globalfoundries U.S. Inc. | Pipe assembly having an angled plate and fabrication methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2952600A1 (en) * | 1979-12-28 | 1981-07-02 | Juval Dr.-Ing. 8000 München Mantel | Pipe noise damping equipment - comprises resilient outer or inner pipe section with breathing action |
EP0747621A1 (en) * | 1995-06-08 | 1996-12-11 | Robert Bosch Gmbh | Hydraulic control valve in modular design |
DE10354845A1 (en) * | 2003-11-24 | 2005-06-30 | Intega Hans J. Jehl Gmbh | Pipeline connection component e.g. for flushing-medium connection in for high purity gas system, has end-piece which is axially stretched by pipe so that it is pressed onto opening |
EP1821020A1 (en) * | 2006-02-18 | 2007-08-22 | Minimax GmbH & Co KG | Connector for liquid gas pipes having grooves |
US20090322078A1 (en) * | 2008-06-30 | 2009-12-31 | Eaton Corporation | Coupling Assembly |
EP2287538A1 (en) * | 2009-07-07 | 2011-02-23 | Conductos Denia, S.L. | Connecting part for ventilation ducts and such like |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1515853A (en) * | 1921-11-12 | 1924-11-18 | Michigan Valve Foundry And Eng | Pipe |
US1662374A (en) * | 1925-12-21 | 1928-03-13 | Clay G Woodmansee | Orifice valve |
US2187662A (en) * | 1938-08-17 | 1940-01-16 | Gulf Research Development Co | Controller for gas flow |
US2614423A (en) * | 1947-10-07 | 1952-10-21 | James H Carbone | Fluid flow orifice structure |
US2842962A (en) * | 1953-10-29 | 1958-07-15 | Kent Ltd G | Pressure differential producing device |
US3565117A (en) * | 1967-11-02 | 1971-02-23 | Hancock Brick And Tile Co The | Plain end sewer pipe |
US3605251A (en) * | 1970-03-27 | 1971-09-20 | Raffa Angelo | Method and device used in installing cables in conduits |
US3958603A (en) * | 1973-05-14 | 1976-05-25 | The Nash Engineering Company | Insert for movable diaphragm type flow control valve |
US4503594A (en) * | 1982-10-25 | 1985-03-12 | Mcjunkin Corporation | Method for fabricating an orifice fitting for a gas pressure differential-measuring system |
US4625780A (en) * | 1983-03-22 | 1986-12-02 | Burnham Craig C | Vortex connector |
US5482249A (en) * | 1994-06-21 | 1996-01-09 | Fisher Controls International, Inc. | Fluid control valve with attenuator and dynamic seal |
US5529244A (en) * | 1994-10-04 | 1996-06-25 | S. C. Johnson & Son, Inc. | Aspirator liquid blending device using multiple restrictors |
US6672139B2 (en) * | 1999-06-28 | 2004-01-06 | Inflow Products, Inc. | Leak testing device and a coupling therefor |
US6655413B2 (en) * | 2001-04-11 | 2003-12-02 | Securus, Inc. | Method and apparatus for pressure testing pipe lines |
US6848477B2 (en) * | 2003-01-14 | 2005-02-01 | Visteon Global Technologies, Inc. | Fuel pressure damping system and method |
US6863088B2 (en) * | 2003-02-28 | 2005-03-08 | Surpass Industry Co., Ltd | Replaceable oriface unit |
US6971682B2 (en) * | 2003-04-15 | 2005-12-06 | Adel Wiggins Group, Transdigm, Inc. | Coupling assembly |
NL1025624C2 (en) | 2004-03-03 | 2005-09-07 | Solvist | Flow restriction device for use in drug metering device, has opening having specific diameter, formed in plastic baffle which is formed integrally with conduit |
DE102004021934A1 (en) * | 2004-04-30 | 2005-12-01 | Saargummi Gmbh | Butt-joint for motor vehicle`s door, has prefabricated connector provided between ends of tube shaped sealing profiles, where cross sections of connector are attached at outer and/or inner cross sections of profiles |
US7264020B2 (en) * | 2005-06-29 | 2007-09-04 | James Wolk | Accessible test fitting for a plumbing system |
WO2007136778A2 (en) * | 2006-05-19 | 2007-11-29 | Teva Pharmaceutical Industries, Ltd. | Fusion proteins, uses thereof and processes for producing same |
US7726332B2 (en) * | 2006-12-16 | 2010-06-01 | Steve Fiske | Durable water heating system providing rapid hot water delivery |
CA2582655C (en) * | 2007-02-14 | 2014-04-22 | Gabe Coscarella | Pipe clamp with built in test fitting |
WO2009036044A1 (en) * | 2007-09-10 | 2009-03-19 | Joel David Bell | Flow restrictor cartridge for fluid flow measurements |
US20170307125A1 (en) * | 2016-04-23 | 2017-10-26 | The Boeing Company | Orifice Fitting |
-
2013
- 2013-06-05 US US14/404,966 patent/US10552552B2/en active Active
- 2013-06-05 WO PCT/US2013/044297 patent/WO2013184790A1/en active Application Filing
- 2013-06-05 CA CA2872035A patent/CA2872035A1/en not_active Abandoned
- 2013-06-05 CN CN201380029801.4A patent/CN104769349B/en active Active
- 2013-06-05 BR BR112014025591A patent/BR112014025591A2/en not_active IP Right Cessation
- 2013-06-05 EP EP13730986.0A patent/EP2917627A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2952600A1 (en) * | 1979-12-28 | 1981-07-02 | Juval Dr.-Ing. 8000 München Mantel | Pipe noise damping equipment - comprises resilient outer or inner pipe section with breathing action |
EP0747621A1 (en) * | 1995-06-08 | 1996-12-11 | Robert Bosch Gmbh | Hydraulic control valve in modular design |
DE10354845A1 (en) * | 2003-11-24 | 2005-06-30 | Intega Hans J. Jehl Gmbh | Pipeline connection component e.g. for flushing-medium connection in for high purity gas system, has end-piece which is axially stretched by pipe so that it is pressed onto opening |
EP1821020A1 (en) * | 2006-02-18 | 2007-08-22 | Minimax GmbH & Co KG | Connector for liquid gas pipes having grooves |
US20090322078A1 (en) * | 2008-06-30 | 2009-12-31 | Eaton Corporation | Coupling Assembly |
EP2287538A1 (en) * | 2009-07-07 | 2011-02-23 | Conductos Denia, S.L. | Connecting part for ventilation ducts and such like |
Also Published As
Publication number | Publication date |
---|---|
CA2872035A1 (en) | 2013-12-12 |
US10552552B2 (en) | 2020-02-04 |
CN104769349B (en) | 2017-05-03 |
EP2917627A1 (en) | 2015-09-16 |
BR112014025591A2 (en) | 2017-07-04 |
US20160063143A1 (en) | 2016-03-03 |
CN104769349A (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2917627A1 (en) | Interchangeable flow restricting orifice for clamshell coupler | |
DE69419608T2 (en) | LEAK DETECTOR AND METHOD | |
US10113669B2 (en) | Pass-through bulkhead seal fitting | |
EP2604983B1 (en) | Magnetizing device for a core magnetic flow meter | |
DE102011055378B4 (en) | Adjustment and measuring system for steam turbine nozzle arrangement | |
DE102015114047B4 (en) | Heated flow conditioning systems and methods of use | |
DE102013217756A1 (en) | Silencer for a motor vehicle | |
EP2915961B1 (en) | Unit for assembly on a hydraulic fluid tank of a jet engine | |
DE102015000957A1 (en) | Flange and adapter for double-walled pipe arrangement | |
DE102015105058A1 (en) | Flow straightener | |
EP2778630B1 (en) | Nuclear magnetic resonance flow meter | |
DE2932280A1 (en) | Tube testing system - uses inserted cylinder forming test chamber between inflated sealing rings and leaving free inner passage | |
DE2330593A1 (en) | CERAMIC FLOW TRANSDUCER | |
EP3646000B1 (en) | Test device for determining the particle loading of highly pressurised hydrogen | |
EP3948038B1 (en) | Assembly and method to correct an offset between two pipe flanges | |
WO2018054750A1 (en) | Closure element for closing the housing of a headlamp | |
DE202007016602U1 (en) | Duct system with testing device | |
US20070227602A1 (en) | Fluid distribution assembly and corresponding use | |
EP2711550A2 (en) | Drain vent for petrochemical/chemical fluid pumping device and method of making the same | |
DE102015209177A1 (en) | External cylinder with an external housing | |
DE102021209738B3 (en) | Coupling device for an NMR flow cell for alignment independent of the magnetic field and NMR spectrometer | |
DE102017130037A1 (en) | Leak detection TOOL | |
DE102016014471A1 (en) | Calibration device and method for calibrating a layer thickness measuring device | |
DE102021131714B4 (en) | gas supply device for a welding device | |
AT514224B1 (en) | Method for connecting a plurality of tank elements and tank device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13730986 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2872035 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013730986 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014025591 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112014025591 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141014 |