WO2013183471A1 - Appearance inspection device and appearance inspection method - Google Patents

Appearance inspection device and appearance inspection method Download PDF

Info

Publication number
WO2013183471A1
WO2013183471A1 PCT/JP2013/064574 JP2013064574W WO2013183471A1 WO 2013183471 A1 WO2013183471 A1 WO 2013183471A1 JP 2013064574 W JP2013064574 W JP 2013064574W WO 2013183471 A1 WO2013183471 A1 WO 2013183471A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
pass
difference
determination
inspection target
Prior art date
Application number
PCT/JP2013/064574
Other languages
French (fr)
Japanese (ja)
Inventor
比佐史 山本
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2013183471A1 publication Critical patent/WO2013183471A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention continuously captures appearance images of a plurality of circuit patterns and transfer patterns formed on a substrate to be inspected, such as a semiconductor wafer, a photomask, and a printed circuit board, and inspects the quality of the pattern.
  • the present invention relates to an inspection apparatus and an appearance inspection method.
  • a plurality of circuit patterns and transfer patterns formed in a matrix on a substrate such as a semiconductor wafer, photomask, or printed circuit board are visually inspected to determine whether the patterns are patterned in a predetermined state. Has been done. In this appearance inspection, the presence or absence of foreign matters contained in the pattern, chipping / peeling of the pattern, thinning / thickening of the pattern, etc. is inspected. As a specific visual inspection procedure, a pattern to be inspected is continuously imaged by an imaging camera, luminance information contained in an image acquired by imaging is extracted, and pass / fail judgment is performed based on the extracted luminance information It is carried out.
  • FIG. 8 is a plan view of a semiconductor wafer on which a plurality of patterns to be inspected are arranged.
  • FIG. 8 shows a state in which the semiconductor wafer Wz to be inspected is placed on the placement table 20.
  • the imaging is sequentially performed.
  • the images of the chips Dz (1) to Dz (N) obtained by sequentially capturing images in the above order are further subdivided into a matrix, and luminance information is acquired for each subdivided divided area.
  • FIG. 9 is an image diagram showing a divided region P (i, j) that is subdivided into a matrix with respect to the pattern of the chip Dz (n) picked up at the nth time.
  • n 1 to N
  • i 1 to I
  • j 1 to J (the same applies hereinafter).
  • the first chip Dz (1) to the fourth chip Dz (4) schematically represent circuit patterns using patterns in which two figures such as “F” having different line densities are overlapped.
  • Each of the chips Dz (1) to Dz (4) is subdivided into a matrix of I rows ⁇ J columns, and respective divided regions P (1, 1) to P (I, J) are set.
  • the luminance information Bz (1, i, j) of each divided region P (i, j) is acquired.
  • the acquired luminance information B (1, i, j) is determined to be good or bad based on an allowable range associated with the luminance information B0 (i, j) of the chip D0 serving as a determination reference pattern.
  • the chip Dz (1) is a non-defective product if the luminance information B (1, 1, 1) to B (1, i, j) of each divided region P is within the allowable range associated with the luminance information B0. Is determined.
  • the chip Dz (2) shown in FIG. 9B includes the defective pattern B1
  • the luminance information B of the divided area P of the portion is out of the allowable range associated with the luminance information B0 of the chip D0. It is determined as a defective product.
  • the chip Dz (3) shown in FIG. 9C does not include a defective pattern, and the luminance information B of the divided area P in the portion is within the allowable range associated with the luminance information B0 of the chip D0. It is determined as a non-defective product.
  • the chip Dz (4) shown in FIG. 9D includes the defective pattern B2, the luminance information B of the divided area P of the portion is out of the allowable range associated with the luminance information B0 of the chip D0. It is determined as a defective product.
  • the chip D0 serving as a determination reference pattern in order to define the chip D0 serving as a determination reference pattern as a non-defective model, a plurality of non-defective products are selected from images acquired in the past, and the positions of the selected images are determined.
  • the luminance information B of the corresponding divided area P is registered by averaging (for example, Patent Document 1).
  • the surrounding pattern is also acquired at the same time, the average data of the eight images around the inspection target pattern is set as a non-defective model, and compared with the central inspection target pattern.
  • the technique which performs is proposed (for example, patent document 2).
  • the pattern formed on the substrate to be inspected is formed through a film forming process and a patterning process.
  • the luminance information at the time of pattern inspection varies due to the influence of the film thickness change in the film forming process.
  • the influence of the change of the film thickness in the spin coating for applying the photoresist is large, and the film thickness gradually changes from the center of the substrate to the peripheral part. Therefore, in the pattern inspection after exposure / development, the luminance information of the inspection target pattern gradually changes from the center of the substrate to the peripheral portion.
  • FIG. 10 is a plan view of another semiconductor wafer on which a plurality of patterns to be inspected are arranged.
  • the semiconductor wafer W is affected by a change in film thickness in the film forming process. For this reason, the semiconductor wafer W is gradually thinned from the center in the outer peripheral direction, and the film thickness gradually changes, and the part C1 with a slightly thin film, the part C2 with an average film thickness, and the part C3 with a slightly thick film However, it occurs several times concentrically.
  • the semiconductor wafer W including such a change in film thickness
  • the form in which a non-defective product model is specified from images acquired in the past and a determination reference pattern for determining pass / fail is specified
  • the brightness of the acquired image it is possible to make an erroneous determination that a good product is a defective product.
  • an erroneous determination that a defective product is a good product may be made.
  • the present invention provides an appearance inspection apparatus and an appearance inspection method capable of performing strict pass / fail judgment without being affected by unevenness of film formation while maintaining good inspection resolution and a short inspection tact.
  • an appearance inspection apparatus that images and inspects the appearance of the pattern on a substrate on which a plurality of patterns are repeatedly patterned
  • a mounting table for mounting the substrate;
  • a moving stage unit for moving the mounting table in a predetermined direction;
  • An illumination unit that emits light toward the substrate;
  • An imaging unit for imaging a pattern on the substrate;
  • An image acquisition unit that acquires, as image data, a pattern on the substrate imaged by the imaging unit;
  • an inspection pattern specifying unit that specifies at least a part of the region as an inspection target pattern image;
  • About the inspection target pattern image a luminance information acquisition unit that acquires luminance information for each divided region divided into a matrix,
  • a determination reference pattern registration unit for registering the previously acquired inspection target pattern as a determination reference pattern;
  • a luminance difference calculation unit that compares the determination reference pattern with an inspection target pattern to be acquired next and is a target of pass / fail determination, and calculates a difference in luminance information for each of the divided
  • the reference value for the pass / fail judgment is: A standard deviation set for each of the divided areas; Multiplying the standard deviation by a multiplication factor; An offset value that is added to a value obtained by multiplying the standard deviation by the magnification factor,
  • the appearance inspection apparatus according to claim 1, further comprising a determination reference parameter registration unit that registers the offset value, the magnification count, and a standard deviation set for each divided region.
  • the invention according to claim 3
  • the determination reference pattern as a first inspection target pattern
  • the second inspection target pattern is the inspection target pattern that is acquired next and is the target of pass / fail judgment, Obtaining a third inspection target circuit pattern different from the two inspection target patterns;
  • a first luminance difference calculation unit for calculating a difference in luminance information between the first and second inspection target patterns;
  • a second luminance difference calculation unit for calculating a difference in luminance information between the first and third inspection target patterns;
  • In the pass / fail judgment section A first pass / fail determination unit that performs pass / fail determination on a difference in brightness information for each of the divided areas calculated by the first brightness difference calculation unit;
  • a second pass / fail determination unit that performs pass / fail determination on the difference in brightness information for each of the divided areas calculated by the second brightness difference calculation unit; If one of the result of the first pass / fail determination unit and the result of the second pass / fail determination unit is a pass determination, the part is determined to be a passable product,
  • the invention according to claim 4 4.
  • the invention described in claim 5 The inspection target pattern is replaced with the determination reference pattern if the inspection target pattern to be inspected is determined to be a non-defective product in the quality determination unit. It is an appearance inspection device.
  • the invention described in claim 6 Acquire the first to third inspection target patterns immediately after the start of inspection,
  • the difference between the luminance information of the first and second inspection target patterns is the first difference
  • the difference between the luminance information of the first and third inspection target patterns is the second difference
  • In the pass / fail judgment unit A pass / fail determination is made for each of the first difference and the second difference, Determined by the pass / fail determination unit,
  • the first inspection target pattern is registered as a non-defective product in the determination reference pattern registration unit if any one of the first difference and the second difference is determined to be good. 6.
  • An appearance inspection apparatus according to any one of 1 to 5.
  • a substrate mounting step for mounting the substrate on a mounting table;
  • a table moving step for moving the mounting table in a predetermined direction;
  • An illumination light irradiation step for irradiating light toward the substrate;
  • An image acquisition step of acquiring the pattern on the substrate imaged in the imaging step as image data;
  • An inspection pattern specifying step of specifying at least a part of the image data acquired in the image acquisition step as an inspection target pattern image;
  • For the inspection target pattern image a luminance information acquisition step for acquiring luminance information for each divided region divided in a matrix,
  • a determination reference pattern registration step for registering the previously acquired inspection target pattern as a determination reference pattern,
  • a luminance difference calculation step of comparing the determination reference pattern with an inspection target pattern to be acquired next and being a pass / fail determination target, and calculating a difference in luminance information for each of the divided regions
  • the invention according to claim 8 provides:
  • the reference value for the pass / fail judgment is: A standard deviation set for each of the divided areas; Multiplying the standard deviation by a multiplication factor; An offset value that is added to a value obtained by multiplying the standard deviation by the magnification factor, 8.
  • the invention according to claim 9 is: The determination reference pattern as a first inspection target pattern, Next, the second inspection target pattern is the inspection target pattern that is acquired next and is the target of pass / fail judgment, Obtaining a third test target circuit pattern different from the two different test target patterns;
  • a first luminance difference calculating step for calculating a difference in luminance information between the first and second inspection target patterns;
  • a second luminance difference calculating step for calculating a difference between luminance information of the first and third inspection target patterns;
  • a first pass / fail judgment step for performing pass / fail judgment on the difference of the brightness information for each of the divided areas calculated in the first brightness difference calculating step;
  • a second pass / fail determination step for determining pass / fail with respect to the difference in brightness information for each of the divided areas calculated in the second brightness difference calculating step; If any one of the result of the first pass / fail determination step and the result of the second pass / fail determination step is a pass determination, the portion is determined to be a
  • the invention according to claim 10 is: 10.
  • the invention according to claim 11 11.
  • the inspection target pattern is replaced with the determination reference pattern if the inspection target pattern to be inspected is determined to be non-defective in the pass / fail determination step. This is an appearance inspection method.
  • the invention according to claim 12 Acquire the first to third inspection target patterns immediately after the start of inspection,
  • the difference between the luminance information of the first and second inspection target patterns is the first difference
  • the difference between the luminance information of the first and third inspection target patterns is the second difference
  • a pass / fail determination is made for each of the first difference and the second difference, Determined in the pass / fail determination step
  • the registration of the determination reference pattern registration step is performed when one of the first difference and the second difference is determined to be good, and the first inspection target pattern is determined as non-defective.
  • the visual inspection method according to any one of 7 to 11.
  • the conceptual diagram which shows an example of the form which embodies this invention The conceptual diagram which shows the mode of the imaging in an example of the form which embodies this invention
  • the image acquisition flowchart in an example of the form which embodies the present invention The quality determination flowchart in an example of the embodiment embodying the present invention
  • the quality determination flowchart in another example of the embodiment embodying the present invention The quality determination flowchart in yet another example of the embodiment embodying the present invention
  • FIG. 1 is a conceptual diagram showing an example of a form for embodying the present invention, in which a perspective view of an apparatus used for acquiring an image and a block diagram of a configuration necessary for an appearance inspection by acquiring an image are combined.
  • the three axes of the orthogonal coordinate system are X, Y, and Z
  • the XY plane is the horizontal plane
  • the Z direction is the vertical direction.
  • the direction of the arrow is represented as the top
  • the opposite direction is represented as the bottom.
  • the appearance inspection apparatus 1 includes a placement table 20, a moving stage unit 2, an illumination unit 3, an imaging unit 4, an image acquisition unit 5, an inspection pattern specifying unit 6, and a luminance information acquisition unit 7. And a determination reference pattern registration unit 8, a luminance difference calculation unit 9, a quality reference registration unit 10, and a quality determination unit 11.
  • the mounting table 20 is for mounting the substrate W to be inspected, and has a flat surface in the XY direction.
  • the mounting table 20 has grooves and pores formed in a portion where a substrate to be inspected is mounted. Further, the grooves and pores are connected to a vacuum source and a compressed air source via an open / close valve.
  • the moving stage unit 2 moves the mounting table 20 to an arbitrary position on the XY plane.
  • the moving stage unit 2 includes an X-axis slider 21 and a Y-axis slider 22.
  • the X-axis slider 21 is mounted on the apparatus frame 1F, moves at a predetermined speed in the X direction, and can be stopped at an arbitrary position.
  • the Y-axis slider 22 is mounted on the X-axis slider 21, moves at a predetermined speed in the Y direction, and can be stopped at an arbitrary position.
  • the mounting table 20 is mounted on the Y-axis slider 22. Therefore, the moving stage unit 2 can move the mounting table 20 at a predetermined speed alone or in conjunction with each other in the X direction and the Y direction, and can stand still at an arbitrary position.
  • the illumination unit 3 irradiates light toward the substrate W to be inspected, and includes a light source unit 31.
  • the light source unit 31 is attached to the lens barrel 40, and the light 32 emitted from the light source unit 31 is reflected by the half mirror 41 incorporated in the lens barrel 40, passes through the objective lens 44a, and irradiates the substrate W. Is done.
  • the light source unit 31 can be exemplified by using strobe illumination as a specific example.
  • the strobe illumination is configured to repeat light emission at predetermined feed pitches in cooperation with the movement of the X-axis slider 21 and the Y-axis slider 22 of the moving stage unit 2.
  • the light source part 31 is not restricted to the form directly attached to the lens-barrel 40, The thing of the form light-guided using a light guide from the light source installed in another place may be sufficient.
  • the imaging unit 4 images a pattern on the substrate W to be inspected, and includes a lens barrel 40, a half mirror 41, an objective lens 44a, and an imaging camera 45.
  • the imaging camera 45 is configured to include a light receiving element 46, and among the light 35 irradiated to the substrate W, the light 42 reflected by the observation region V on the substrate W is an objective lens 42 a, a half mirror 41, An image that passes through the lens barrel 43 and is irradiated on the light receiving element 46 is output to the outside as image data.
  • imaging is performed simultaneously with the light emission of the strobe illumination, and image data is output. At this time, since the light emission time of the strobe illumination is very short, even an image captured during movement is captured in a state like a still image.
  • the image acquisition unit 5 acquires a pattern included in the observation region V on the substrate W imaged by the light receiving element 46 of the imaging camera 45 as image data.
  • the image acquisition unit 5 can be configured using a device called a so-called image processing apparatus.
  • the image processing apparatus include a unit type having an image processing function and a type using a board called an image processing board incorporated in a personal computer or a workstation.
  • the appearance inspection apparatus 1 Since the appearance inspection apparatus 1 according to the present invention is configured as described above, continuous imaging is performed while moving the mounting table 20 on which the substrate W to be inspected is placed at a predetermined speed, and the inspection object is inspected. Image data corresponding to the pattern can be acquired. Further, the acquired image data is judged as good or bad as described later.
  • the position of the pattern (chip D) patterned on the actual substrate W varies, and the moving speed of the moving stage unit 2 varies. To do. Therefore, even if the same part is intended to be imaged every time, it may be acquired in a slightly shifted state. Therefore, the range of the observation region V imaged by the imaging unit 5 is set to be slightly wider than the range in which the pattern (chip D) necessary for actual inspection can be observed.
  • FIG. 2 is a conceptual diagram showing a state of imaging in an example of a form embodying the present invention.
  • a state in which chips D (4) are sequentially imaged is shown.
  • the imaging camera 45 is imaging the third chip D (3).
  • the range of the observation region V set slightly wider than the chip D (3) is projected onto the light receiving element 46.
  • the inspection pattern specifying unit 6 specifies at least a part of the image data acquired by the image acquisition unit 5 as an inspection target pattern image.
  • the inspection pattern specifying unit 6 is configured by using a device called an image processing apparatus similar to the image acquiring unit 5, and specifying necessary for appearance inspection from the image data acquired by the image acquiring unit 5.
  • the inspection pattern is extracted. If it demonstrates using FIG. 2, the area
  • the processing to be specified is performed based on the alignment position of the periphery of each chip D (n), the peripheral pattern, and the relative position of the internal pattern, and the corresponding positions of the patterns to be compared in the processing described later are Make sure they are aligned.
  • the entire region of the observation region V and each chip D (n) are identified by extracting a necessary pattern, for example, by trimming unnecessary peripheral portions of the acquired image data, It can be used for comparison processing and luminance difference processing described later.
  • the luminance information acquisition unit 7 finely divides the image specified as the inspection target pattern image into a matrix, and acquires luminance information for each divided area P.
  • Each of the divided areas P is, for example, a minute area corresponding to each of the light receiving elements 46 of the imaging camera 45, or a group of several light receiving elements (100 ⁇ 100 or 1000 ⁇ 1000) or the like.
  • FIG. 3 is a conceptual diagram showing divided areas of an acquired image in an example of a form embodying the present invention.
  • the first chip D (1) to the fourth chip D (4) on the substrate W which is the specified pattern image to be inspected, are divided into a matrix-like divided region P of I rows ⁇ J columns.
  • luminance information about P (i, j) for each divided area of the nth chip D (n) is expressed as luminance information B (n, i, j).
  • the luminance information B (n, i, j) is determined by an output signal from the imaging camera 45 and is expressed by, for example, a value by an 8-bit signal (tone data from black: 0 to white: 255).
  • the determination reference pattern registration unit A registers the previously acquired inspection target pattern as a determination reference pattern. Specifically, the first inspection target pattern of the substrate to be inspected is set, the pattern inspected immediately before in the flow of sequential inspection, or the flow of sequential inspection Among them, the pattern determined to be non-defective is set last (in other words, immediately before). For example, the luminance information B (n ⁇ 1, i, j) of the “n ⁇ 1” th chip D (n ⁇ 1) immediately before the nth chip D (n) is stored in the determination reference pattern registration unit A. Register.
  • the luminance difference calculation unit 8 compares a determination reference pattern with an inspection target pattern that is acquired next and is a target of pass / fail determination, and calculates a difference in luminance information for each divided region corresponding to each position. is there. Specifically, the luminance information B (n, i, j) of the nth chip D (n) and the luminance of the “n ⁇ 1” th chip D (n ⁇ 1) registered as the determination reference pattern. A difference def (n, i, j) from the information B (n-1, i, j) is calculated using the following equation.
  • the pass / fail criterion registration unit B registers in advance a pass / fail judgment reference value for the difference in brightness information for each divided coordinate calculated by the brightness difference calculation unit for each divided region. Specifically, when the luminance information B is acquired as a value by an 8-bit signal (tone data from black: 0 to white: 255), the reference value for pass / fail judgment is ⁇ 5 in a certain range of divided areas.
  • the reference values for pass / fail judgment are set individually such that the reference value for pass / fail judgment is ⁇ 10 in the divided areas of another range, and the reference value for pass / fail judgment is ⁇ 20 in the divided areas of another range.
  • Table 1 shows an example of the pass / fail criterion table for the chip D (n) of the type K.
  • a criterion def0 (i, j) is defined for each divided region P (i, j).
  • the criterion def0 (i, j) corresponding to P (i, j) is defined as “20”, “10”, “5”, the luminance difference of the divided region P (i, j) is If it is “within ⁇ 20”, “within ⁇ 10”, or “within ⁇ 5”, it means that it can be determined as a non-defective product.
  • the data table of this determination criterion def0 (i, j) is registered in advance in association with the product information of the chip D.
  • the determination reference data table may be in the form exemplified above, but it is more preferable to do the following.
  • the criterion def0 (i, j) which is a criterion value for pass / fail judgment, is not a fixed value but a value represented by Equation (2).
  • the standard deviation ⁇ (i, j) set for each divided region P (i, j) is calculated from the distribution of luminance information of the pattern image to be inspected acquired from a plurality of chips that are known to be non-defective in advance.
  • the intermediate value between b1 and b2 is set as the sensitivity.
  • the above-determined a and b are inspected, and if over-detection does not occur, this value is adopted, and if over-detection occurs, the value of a is increased to 1) to 3) above. To implement.
  • Each criterion parameter thus set: standard deviation ⁇ (i, j), magnification factor b, offset value a set for each divided region P (i, j), and formula for calculating the criterion value
  • pass / fail determination is performed. In this pass / fail judgment, if def (i, j) is within a range of ⁇ ⁇ a + b ⁇ ⁇ (i, j) ⁇ , that is, if Formula (3) is satisfied, it is judged as a non-defective product.
  • the criterion def0 (i, j) is not a fixed value, Standard deviation ⁇ (i, j) for each divided region derived from a plurality of non-defective samples, It can be quickly set using two parameters a and b determined by the person in charge of inspection. By doing so, it is possible to perform inspection within a wide allowable range for a portion with originally large variation, and to perform inspection with a narrow allowable range for a portion with originally small variation.
  • the pass / fail judgment unit 9 performs pass / fail judgment for each divided region of the inspection target pattern based on the pass / fail judgment reference value. Specifically, when the reference value for pass / fail judgment is set to “5” in a certain area, the difference in luminance information of the corresponding divided areas between the previous image data and the subsequent image data is “ If it is “within ⁇ 5”, the product is judged as non-defective, otherwise it is judged as defective. Alternatively, as described above, the quality determination is performed as a non-defective product if Equation (3) is satisfied, and as a defective product if it is not considered.
  • the appearance inspection apparatus 1 Since the appearance inspection apparatus 1 according to the present invention has the above-described configuration, it is possible to perform pass / fail determination from the difference between the image data acquired first and the image data acquired later.
  • the result of the pass / fail judgment is displayed on an information display provided in the appearance inspection apparatus 1, stored in a data collection unit, or transmitted to a host computer connected to the appearance inspection apparatus 1 through a communication line.
  • the information display is configured using a so-called display monitor such as a liquid crystal display.
  • the data collection unit is configured using an information recording medium such as a memory or a hard disk.
  • FIG. 4 is an image acquisition flowchart in an example of a form embodying the present invention.
  • FIG. 4 shows a series of steps for acquiring image data of each inspection target pattern for each step in order to inspect a plurality of inspection target patterns arranged on the substrate W.
  • the substrate W to be inspected is placed on the placement table 20 of the appearance inspection apparatus 1 (s1: substrate placement step).
  • pre-registered inspection conditions and the like are read (s2), moved to a reference mark reading position formed on the substrate W, and an alignment operation is performed (s3).
  • the mounting table 20 is moved to the movement start position in the first row (s4), the moving stage unit 2 is moved at a predetermined speed, and the movement of the mounting table 20 is started (s5: table moving step). .
  • the current position information of the mounting table 20 is acquired from the X-axis position detector and the Y-axis position detector of the moving stage unit 2 (s6).
  • the imaging camera 45 Based on the acquired current position information of the mounting table 20, it is determined whether or not it is a position where the imaging camera 45 should image the substrate W (s 7). If the current position of the mounting table 20 is a position where the imaging camera 45 should image the substrate W, strobe illumination is emitted toward the substrate W (s8: illumination light irradiation step), and at the same time, it is reflected from the substrate W. The captured light is imaged by the imaging camera 45 (s9: imaging step).
  • the image data captured by the imaging camera 45 will be described in detail later, but an image is acquired and a pass / fail judgment is made (s10).
  • step s21 While continuing the movement of the mounting table 20, it is determined based on the current position information whether or not one line of imaging has been completed (s21). If it is determined that the imaging of the first row has been completed, the movement of the moving stage unit 2 is stopped (s22). On the other hand, if it is determined in step s21 that the imaging in the first row has not been completed, steps s8 to s21 are repeated.
  • step s22 it is determined whether or not the imaging of all the columns is completed on the substrate W (s23). If it is determined that all the imaging is completed, the substrate W is taken out from the mounting table 20 (s24). . On the other hand, if it is determined in step s23 that the imaging of all the rows has not been completed, the placement table 20 is moved to the measurement start position of the next row (s4), and the steps necessary for the series of image acquisition ( Repeat s4 to s23).
  • FIG. 5 is a pass / fail judgment flowchart in an example of a form embodying the present invention.
  • a series of steps for continuously determining pass / fail based on the image data acquired in step s10 is shown in detail for each step.
  • the pattern on the substrate W imaged in the imaging step (s9) is acquired as image data (s105: image acquisition step).
  • image data is acquired as image data (s105: image acquisition step).
  • inspection target pattern image is specified as an inspection target pattern image (s106: inspection pattern specifying step).
  • a so-called trimming process also referred to as a crop process
  • processing for extracting and specifying the inspection target pattern included in the image data is performed based on positioning reference marks arranged in and around the inspection target pattern.
  • the inspection target pattern image identified in step s106 is divided into a matrix and luminance information is acquired for each divided region (s107: luminance information acquisition step).
  • the nth chip D (n) on the substrate W is subdivided into I-row ⁇ J-column matrix-like divided areas to define individual divided areas P (i, j).
  • the luminance information B (n, i, j) is acquired for each divided region P (i, j).
  • the acquired luminance information B (n, i, j) is stored in a temporary storage memory in the image processing unit or stored in a data recording medium connected to the image processing unit.
  • the inspection target pattern that is, the (n ⁇ 1) -th chip D (n ⁇ 1) acquired immediately before the inspection target pattern is used as the determination reference pattern.
  • S10A determination reference pattern registration step
  • the luminance information B (n, i, j) of the nth chip D (n) and the luminance information B (n ⁇ 1) of the “n ⁇ 1” th chip D (n ⁇ 1) as the determination reference pattern. , I, j) is calculated (s108: luminance difference calculation step).
  • the pass / fail judgment standard def0 (n, i, j), which is the pass / fail judgment standard, is registered in advance (s10B: pass / fail standard registration step).
  • step s108 the luminance difference def (n, i, j) calculated in step s108 is compared with a pass / fail judgment criterion def0 (n, i, j), and each divided region P (i, j) of the nth chip D (n) is compared. J) is judged for pass / fail (s109: pass / fail judgment step).
  • the luminance information B (n, i, j) of the nth chip D (n) is updated and registered as a determination reference pattern used for the next (n + 1) th inspection (s110).
  • the determination for registering the offset value, the magnification factor, and the standard deviation set for each divided region is performed in the same manner as in the aspect related to the appearance inspection apparatus described above.
  • the method further includes a reference parameter registration step. By doing so, it is possible to perform a strict quality determination without being affected by film formation unevenness. In addition, it is not necessary to manually set the pass / fail judgment reference value for each divided area, so that it can be quickly reset and operated.
  • the subsequent inspection target pattern is determined as a defective product.
  • the determination reference pattern is set as the first inspection target pattern
  • the inspection target pattern to be acquired and passed next is set as the second inspection target pattern, and is different from these two inspection target patterns.
  • a third circuit pattern to be inspected is acquired. Then, the following two-step determination is performed so that the pass / fail determination can be performed correctly.
  • the appearance inspection apparatus 1B has the same apparatus configuration as the appearance inspection apparatus 1 described above, includes a first luminance difference calculation unit 7A and a second luminance difference calculation unit 7B, and replaces the pass / fail determination unit 9.
  • the pass / fail judgment unit 9B is included.
  • the first luminance difference calculation unit 7A has the same configuration as the luminance difference calculation unit 7 of the appearance inspection apparatus 1, but when inspecting the nth chip D (n), the n ⁇ 1th as described above.
  • the difference def (n, i, j) of luminance information is calculated in comparison with the chip D (n ⁇ 1).
  • the second luminance difference calculation unit 7B has the same configuration as the luminance difference calculation unit 7 of the appearance inspection apparatus 1, but when inspecting the nth chip D (n), the second luminance difference calculation unit 7B
  • the difference def (n + 1, i, j) of the luminance information is calculated by comparing with the (n + 1) th chip D (n + 1).
  • the pass / fail determination unit 9B further includes a first pass / fail determination unit 9A, a second pass / fail determination unit 9B, and an overall determination unit 5C.
  • the first pass / fail judgment unit 9A compares the brightness information difference def (n, i, j) with the pass / fail judgment criterion def0 (n, i, j) to make a pass / fail judgment, and the first pass / fail result is determined. Output as judgment result.
  • the second pass / fail judgment unit 9B compares the brightness information difference def (n + 1, i, j) with the pass / fail judgment criterion def0 (n, i, j) to make a pass / fail judgment, and the result of the pass / fail judgment is the second pass / fail. Output as judgment result.
  • the overall determination unit 9C determines that the part is “non-defective” if either the result of the first pass / fail determination unit or the result of the second pass / fail determination unit is “good”. If both the result of the first pass / fail determination unit and the result of the second pass / fail determination unit are “defective” determination, the part is determined to be “defective”.
  • the appearance inspection apparatus 1B When inspecting the nth chip D (n), the appearance inspection apparatus 1B according to the present invention not only compares with the image of the n ⁇ 1th chip D (n ⁇ 1) as described above, but also adds n + 1. The determination is made in consideration of the comparison result with the image of the second chip D (n + 1).
  • FIG. 6 is a pass / fail judgment flow chart in another example of a form embodying the present invention.
  • FIG. 6 shows a pass / fail judgment flow for the appearance inspection method corresponding to the appearance inspection apparatus 1B according to the present invention.
  • Steps s105 to s108 are the same as the appearance inspection method corresponding to the appearance inspection apparatus 1 shown in FIG.
  • step s109B first pass / fail judgment step. If it is a defective product, the judgment reference pattern is updated (s110), and the next (n + 1) th image is displayed. Obtaining (s125), specifying the inspection pattern (s126), obtaining the luminance information B (n + 1, i, j) (s127), and calculating the luminance difference def (n + 1, i, j) (s128).
  • a pass / fail judgment is performed on the luminance difference def (n + 1, i, j) (s129: second pass / fail judgment step). If def (n + 1, i, j) is within the judgment criteria, the nth chip D ( n) is determined as non-defective (s131). On the other hand, if def (n + 1, i, j) is not within the criterion, the nth chip D (n) is determined as a defective product (s132).
  • the chip D (n-1) is a good product
  • D (n) is a defective product
  • D (n + 1) is a good product. Even if the inspection target pattern is acquired, it is possible to correctly determine the quality of each.
  • the acquired inspection target pattern is preferably a pattern arranged at an adjacent position. If it does so, image data can be acquired at a fixed interval by making the illumination strobe light at a predetermined interval while moving the mounting table at a predetermined speed. By adjusting this interval to the processing tact of the appearance inspection apparatuses 1 and 1B, the inspection can be performed with the shortest processing tact.
  • the inspection target pattern determined as a non-defective product at the end is registered as a determination reference pattern. Specifically, when it is determined as “defective”, the pattern is not updated as the determination reference pattern, and the inspection target pattern determined as “non-defective” immediately before is maintained as the determination reference pattern. By doing so, even if defective products are continuously present, the defective product can be correctly determined as “defective” as compared with the determination reference pattern registered in advance as non-defective products.
  • FIG. 7 is a pass / fail judgment flow chart in still another example of the embodiment embodying the present invention, and shows a specific procedure for first judging whether or not the first chip of the substrate to be inspected is a non-defective product. ing.
  • the first to third inspection target patterns immediately after the start of inspection are acquired. Then, in the luminance difference calculation unit, The difference between the luminance information of the first and second inspection target patterns is the first difference, The difference between the luminance information of the first and third inspection target patterns is calculated as the second difference.
  • An image of the first chip D (1) immediately after the start of inspection is acquired (s305), and then an image of the second chip D (2) is acquired (s315), and the third chip D ( The image of 3) is acquired (s325).
  • the inspection pattern is specified (s306), and the luminance information B (1) is acquired (s307).
  • the inspection pattern is specified (s316), and the luminance information B (2) is acquired (s317).
  • the inspection pattern is specified (s326), and the luminance information B (3) is acquired (s327).
  • the luminance difference between the inspection target patterns of the first chip D (1) and the second chip D (2) is calculated as the first difference def (1-2) (s318). Further, the luminance difference between the inspection target patterns of the first chip D (1) and the third chip D (3) is calculated as the second difference def (1-3) (s328).
  • the pass / fail determination is performed on the first difference def (f1-2) and the second difference def (1-3), and if any of the pass / fail determination results of the first difference and the second difference is a pass / fail determination,
  • the first inspection target pattern is registered as a non-defective product in the determination reference pattern registration unit.
  • a pass / fail determination is made for the first difference def (1-2) (s319), and if it is determined as “defective product”, a pass / fail determination is made for the second difference def (1-3) (s329). If any of step s319 and step 329 is determined as “non-defective”, the chip D (1) as the first inspection target pattern is determined as non-defective (s331) and registered in the determination reference pattern registration unit. To do.
  • step s319 and step 329 are determined as “defective products”, the chip D (1) as the first pattern is determined as a defective product (s332).
  • the chip D (1) as the first pattern is determined as a defective product (s332).
  • an image of the fourth chip D (4) is subsequently acquired, and the same processing as described above is performed, and the second and third inspection patterns, and the second and fourth inspection patterns are obtained. Comparison is made, each difference is calculated, and pass / fail judgment is performed. By doing so, appearance inspection can be started without preparing a good product model as in the prior art.
  • the first inspection pattern in addition to obtaining the first to third inspection patterns, further obtaining a fourth pattern, the first inspection pattern and the first An appearance inspection apparatus and method in which the quality is determined based on the difference in luminance information of the second to fourth inspection patterns may be used. Then, there is non-regular film formation unevenness in the peripheral portion of the substrate to be inspected, and it is not possible to determine whether the first pattern is a non-defective product by simply comparing the first to third inspection patterns. Even in a case where it is determined as “defective product”, it is more preferable that the non-defective product can be correctly determined as “defective product” by adding the fourth pattern.
  • the imaging camera 45 a camera in which a 1-inch size light receiving element 46 having 2352 ⁇ 1728 effective vertical and horizontal effective pixels is incorporated is used.
  • a xenon flash lamp having a rated output of 40 W and a half width of about 1 usec is used. Since a plurality of objective lenses can be attached, an appropriate objective lens is selected according to the defect to be detected.
  • the objective lens 44 has a magnification of 1 ⁇ Observation field of view: length: 16.46 mm ⁇ width: 12.1 mm Pixel size is 7 ⁇ m
  • the objective lens 44 has a magnification of 10 times.
  • Observation field of view: length: 1.65 mm ⁇ width: 1.21 mm Pixel size is 0.7 ⁇ m It becomes.

Abstract

Provided is an appearance inspection device that can perform strict good-or-defective determination without being impacted by the unevenness of a formed film, while maintaining favorable examination resolution and short inspection takt time. More specifically, the following are provided: an examination pattern specifying section for specifying, as an examination-target pattern image, a partial region of image data acquired using an image acquisition section; a luminance information acquisition section for acquiring luminance information for each divided region in which examination-target pattern images are divided into a matrix shape; and a determination reference pattern registering section for registering a previously acquired examination-target pattern as a determination reference pattern. The appearance inspection device is characterized by being provided with the following: a luminance difference calculation section for comparing the determination reference pattern and an examination target pattern to be acquired next as a target of good-or-defective determination and thereby calculating the luminous information difference; a good-or-defective reference registration section for pre-registering in divided regions a good-or-defective determination reference value relating to luminance-information differences of divided regions calculated using the luminance difference calculation section; and a good-or-defective determination section for performing good-or-defective determination for the divided regions of the examination target pattern on the basis of the reference value of good-or-defective determination.

Description

外観検査装置及び外観検査方法Appearance inspection apparatus and appearance inspection method
 本発明は、半導体ウェハ、フォトマスク、プリント基板等の検査対象となる基板上に形成された、複数の回路パターンや転写パターンの外観画像を連続して撮像し、当該パターンの良否を検査する外観検査装置及び外観検査方法に関する。 The present invention continuously captures appearance images of a plurality of circuit patterns and transfer patterns formed on a substrate to be inspected, such as a semiconductor wafer, a photomask, and a printed circuit board, and inspects the quality of the pattern. The present invention relates to an inspection apparatus and an appearance inspection method.
 半導体ウェハ、フォトマスク、プリント基板等の基板上にマトリクス状に整列されて形成された複数の回路パターンや転写パターンについて、当該パターンがそれぞれ予め規定された状態でパターニングされているかどうか、外観検査が行われている。この外観検査では、パターン中に含まれる異物や、パターンの欠け・剥がれ、パターンの細り・太り等の有無について検査される。具体的な外観検査の手順としては、検査対象となるパターンを撮像カメラで連続して撮像し、撮像して取得された画像に含まれる輝度情報を抽出し、抽出した輝度情報に基づいて良否判定を行っている。 A plurality of circuit patterns and transfer patterns formed in a matrix on a substrate such as a semiconductor wafer, photomask, or printed circuit board are visually inspected to determine whether the patterns are patterned in a predetermined state. Has been done. In this appearance inspection, the presence or absence of foreign matters contained in the pattern, chipping / peeling of the pattern, thinning / thickening of the pattern, etc. is inspected. As a specific visual inspection procedure, a pattern to be inspected is continuously imaged by an imaging camera, luminance information contained in an image acquired by imaging is extracted, and pass / fail judgment is performed based on the extracted luminance information It is carried out.
 図8は、検査対象となる複数のパターンが配置された半導体ウエハの平面図である。
図8は、検査対象となる半導体ウェハWzが、載置テーブル20の上に載置されている様子が示されている。半導体ウエハWzには、複数のチップDz(n)(n=1~N)がパターニングされている。また、チップDz(n)は、図中に破線矢印に示す順序、つまり、Dz(1)、Dz(2)、Dz(3)、Dz(4)、・・・、Dz(N)の順で、順次撮像が行われる。上述の順で逐次撮像して取得された、各チップDz(1)~Dz(N)の画像は、各々がさらにマトリクス状に細分化され、細分化された分割領域毎に輝度情報が取得される。
FIG. 8 is a plan view of a semiconductor wafer on which a plurality of patterns to be inspected are arranged.
FIG. 8 shows a state in which the semiconductor wafer Wz to be inspected is placed on the placement table 20. A plurality of chips Dz (n) (n = 1 to N) are patterned on the semiconductor wafer Wz. Further, the chips Dz (n) are in the order indicated by the broken-line arrows in the drawing, that is, the order of Dz (1), Dz (2), Dz (3), Dz (4), ..., Dz (N). Thus, the imaging is sequentially performed. The images of the chips Dz (1) to Dz (N) obtained by sequentially capturing images in the above order are further subdivided into a matrix, and luminance information is acquired for each subdivided divided area. The
 図9は、n番目に撮像したチップDz(n)のパターンについてマトリクス状に細分化した分割領域P(i,j)を示すイメージ図である。ここで、n=1~N,i=1~I,j=1~Jである(以下同じ)。1番目のチップDz(1)~4番目のチップDz(4)は、線の濃さが異なる「F」の様な図形を2つ重ねたようなパターンを用いて回路パターンが模式的に表されている。各チップDz(1)~Dz(4)は、それぞれI行×J列のマトリクス状に細分化され、各分割領域P(1,1)~P(I,J)が設定される。 FIG. 9 is an image diagram showing a divided region P (i, j) that is subdivided into a matrix with respect to the pattern of the chip Dz (n) picked up at the nth time. Here, n = 1 to N, i = 1 to I, and j = 1 to J (the same applies hereinafter). The first chip Dz (1) to the fourth chip Dz (4) schematically represent circuit patterns using patterns in which two figures such as “F” having different line densities are overlapped. Has been. Each of the chips Dz (1) to Dz (4) is subdivided into a matrix of I rows × J columns, and respective divided regions P (1, 1) to P (I, J) are set.
 図9において、(a)には良品チップDz(1)が、(b)には不良パターンB1を含む不良品チップDz(2)が、(c)には良品チップDz(3)が、(d)には不良パターンB2を含む不良品チップDz(4)が、(e)には判定基準パターンとなる良品モデルとしてのチップD0が示されている。 9, (a) shows a non-defective chip Dz (1), (b) shows a non-defective chip Dz (2) including the defective pattern B1, (c) shows a non-defective chip Dz (3), d) shows a defective chip Dz (4) including the defective pattern B2, and (e) shows a chip D0 as a non-defective model serving as a determination reference pattern.
 図9(a)に示すチップDz(1)は、各分割領域P(i,j)の輝度情報Bz(1,i,j)が取得される。当該取得された輝度情報B(1,i,j)は、判定基準パターンとなるチップD0の輝度情報B0(i,j)に紐付けされた許容範囲に基づいて、良否判定が行われる。
チップDz(1)は、各分割領域Pの輝度情報B(1,1,1)~B(1,i,j)が、輝度情報B0に紐付けされた許容範囲の内であれば、良品として判定される。
In the chip Dz (1) illustrated in FIG. 9A, the luminance information Bz (1, i, j) of each divided region P (i, j) is acquired. The acquired luminance information B (1, i, j) is determined to be good or bad based on an allowable range associated with the luminance information B0 (i, j) of the chip D0 serving as a determination reference pattern.
The chip Dz (1) is a non-defective product if the luminance information B (1, 1, 1) to B (1, i, j) of each divided region P is within the allowable range associated with the luminance information B0. Is determined.
 図9(b)に示すチップDz(2)は、不良パターンB1を含んでいるため、当該部分の分割領域Pの輝度情報Bが、チップD0の輝度情報B0に紐付けされた許容範囲を外れ、不良品として判定される。
図9(c)に示すチップDz(3)は、不良パターンが含まれず、当該部分の分割領域Pの輝度情報Bが、チップD0の輝度情報B0に紐付けされた許容範囲の内であるので、良品として判定される。
図9(d)に示すチップDz(4)は、不良パターンB2を含んでいるため、当該部分の分割領域Pの輝度情報Bが、チップD0の輝度情報B0に紐付けされた許容範囲を外れ、不良品として判定される。
Since the chip Dz (2) shown in FIG. 9B includes the defective pattern B1, the luminance information B of the divided area P of the portion is out of the allowable range associated with the luminance information B0 of the chip D0. It is determined as a defective product.
The chip Dz (3) shown in FIG. 9C does not include a defective pattern, and the luminance information B of the divided area P in the portion is within the allowable range associated with the luminance information B0 of the chip D0. It is determined as a non-defective product.
Since the chip Dz (4) shown in FIG. 9D includes the defective pattern B2, the luminance information B of the divided area P of the portion is out of the allowable range associated with the luminance information B0 of the chip D0. It is determined as a defective product.
 従来の検査では、判定基準パターンとなるチップD0を良品モデルとして規定するために、過去に取得された画像の中から良品の基準となるものを複数選別し、当該選別された画像のそれぞれ位置が対応する分割領域Pの輝度情報Bを平均化するなどして、登録している(例えば、特許文献1)。 In the conventional inspection, in order to define the chip D0 serving as a determination reference pattern as a non-defective model, a plurality of non-defective products are selected from images acquired in the past, and the positions of the selected images are determined. The luminance information B of the corresponding divided area P is registered by averaging (for example, Patent Document 1).
 また他に、検査対象となるパターンと共に、その周囲のパターンも同時に取得し、検査対象パターンの周囲の8個の画像の平均データを良品モデルとして設定し、中央の検査対象パターンと比較して検査する技術が提案されている(例えば、特許文献2)。 In addition, along with the pattern to be inspected, the surrounding pattern is also acquired at the same time, the average data of the eight images around the inspection target pattern is set as a non-defective model, and compared with the central inspection target pattern. The technique which performs is proposed (for example, patent document 2).
特表2003-156475号公報Special Table 2003-156475 特開2005-156475号公報JP 2005-156475 A
 検査対象となる前記基板上に形成されたパターンは、成膜工程とパターニング工程を経て形成される。このとき、成膜工程での膜厚の変化の影響を受け、パターン検査する際の輝度情報にばらつきが生じる。特に、フォトレジストを塗布するスピンコートでの膜厚の変化の影響は大きく、基板中心から周辺部にかけて徐々に膜厚が変化する。そのため、露光・現像後のパターン検査では、基板中心から周辺部にかけて徐々に検査対象パターンの輝度情報が変化する。 The pattern formed on the substrate to be inspected is formed through a film forming process and a patterning process. At this time, the luminance information at the time of pattern inspection varies due to the influence of the film thickness change in the film forming process. In particular, the influence of the change of the film thickness in the spin coating for applying the photoresist is large, and the film thickness gradually changes from the center of the substrate to the peripheral part. Therefore, in the pattern inspection after exposure / development, the luminance information of the inspection target pattern gradually changes from the center of the substrate to the peripheral portion.
 図10は、検査対象となる複数のパターンが配置された別の半導体ウエハの平面図である。半導体ウェハWは、図8を用いて示した形態とは異なり、成膜工程での膜厚の変化の影響を受けている。そのため、半導体ウェハWは、中心から外周方向に欠けて徐々に膜厚が変化し、成膜がやや薄い部分C1と、平均的な成膜厚みの部分C2と、成膜がやや厚い部分C3とが、同心円状に幾重にも生じている。 FIG. 10 is a plan view of another semiconductor wafer on which a plurality of patterns to be inspected are arranged. Unlike the embodiment shown in FIG. 8, the semiconductor wafer W is affected by a change in film thickness in the film forming process. For this reason, the semiconductor wafer W is gradually thinned from the center in the outer peripheral direction, and the film thickness gradually changes, and the part C1 with a slightly thin film, the part C2 with an average film thickness, and the part C3 with a slightly thick film However, it occurs several times concentrically.
 しかし、このような膜厚の変化を含む半導体ウェハWの場合、過去に取得された画像の中から良品モデルを規定して良否判定のための判定基準パターンを規定する形態では、取得画像の明るさが異なることで、良品を不良品とする誤判定をする場合がある。また、このような現象を避けるために、良品とする許容範囲を広げると、不良品を良品とする誤判定をする場合がある。 However, in the case of the semiconductor wafer W including such a change in film thickness, in the form in which a non-defective product model is specified from images acquired in the past and a determination reference pattern for determining pass / fail is specified, the brightness of the acquired image In some cases, it is possible to make an erroneous determination that a good product is a defective product. In addition, in order to avoid such a phenomenon, if the allowable range for a non-defective product is widened, an erroneous determination that a defective product is a good product may be made.
 一方、検査対象画像とその周囲の隣接画像とを一度に観察し、周囲の隣接画像から平均画像を生成して検査のための基準パターンとする検査形態の場合は、以下のような問題を抱える。
1)撮像カメラの分解能が同じままだと、一度に観察する領域が広がるため、観察倍率が低くなる。そのため、検査対象パターンの分解能が下がってしまう。
2)検査対象パターンの分解能を維持しようとすると、撮像カメラの分解能を上げたり、撮像カメラの台数を増やしたりする必要があり、それに伴い取り扱う画像の情報量が多くなる。そのため、1回の処理にかかる時間が従来より長くなってしまう。
On the other hand, in the case of the inspection form in which the inspection target image and the neighboring adjacent images are observed at a time and an average image is generated from the neighboring neighboring images and used as a reference pattern for the inspection, the following problems are involved. .
1) If the resolution of the imaging camera remains the same, the observation area expands at a time, so the observation magnification is low. Therefore, the resolution of the inspection target pattern is lowered.
2) To maintain the resolution of the pattern to be inspected, it is necessary to increase the resolution of the imaging camera or increase the number of imaging cameras, and the amount of image information handled increases accordingly. Therefore, the time required for one process is longer than before.
 そこで、本発明は、良好な検査分解能と短い検査タクトを維持しつつ、成膜のむらの影響を受けずに厳密な良否判定が行える、外観検査装置及び外観検査方法を提供する。 Therefore, the present invention provides an appearance inspection apparatus and an appearance inspection method capable of performing strict pass / fail judgment without being affected by unevenness of film formation while maintaining good inspection resolution and a short inspection tact.
 以上の課題を解決するために、請求項1に記載の発明は、
 複数のパターンが繰り返しパターニングされた基板上の前記パターンの外観を撮像して検査する外観検査装置において、
前記基板を載置する載置テーブルと、
前記載置テーブルを所定方向に移動させる移動ステージ部と、
前記基板に向けて光を照射する照明部と、
前記基板上のパターンを撮像する撮像部と、
前記撮像部で撮像された前記基板上のパターンを画像データとして取得する画像取得部とを備え、
 前記画像取得部で取得された前記画像データのうち、少なくとも一部の領域を検査対象パターン画像として特定する検査パターン特定部と、
前記検査対象パターン画像について、マトリクス状に分割した分割領域毎に輝度情報を取得する輝度情報取得部と、
先に取得した検査対象パターンを判定基準パターンとして登録する判定基準パターン登録部とを備え、
前記判定基準パターンと、次に取得して良否判定の対象となる検査対象パターンとを比較して、比較パターンの位置が対応する前記分割領域毎の輝度情報の差分を算出する輝度差分算出部と、
前記輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対する良否判定の基準値を前記分割領域毎に予め登録しておく良否基準登録部と、
前記良否判定の基準値に基づいて前記検査対象パターンの前記分割領域毎に良否判定を行う良否判定部とを備えている
ことを特徴とする外観検査装置である。
In order to solve the above problems, the invention described in claim 1
In an appearance inspection apparatus that images and inspects the appearance of the pattern on a substrate on which a plurality of patterns are repeatedly patterned,
A mounting table for mounting the substrate;
A moving stage unit for moving the mounting table in a predetermined direction;
An illumination unit that emits light toward the substrate;
An imaging unit for imaging a pattern on the substrate;
An image acquisition unit that acquires, as image data, a pattern on the substrate imaged by the imaging unit;
Among the image data acquired by the image acquisition unit, an inspection pattern specifying unit that specifies at least a part of the region as an inspection target pattern image;
About the inspection target pattern image, a luminance information acquisition unit that acquires luminance information for each divided region divided into a matrix,
A determination reference pattern registration unit for registering the previously acquired inspection target pattern as a determination reference pattern;
A luminance difference calculation unit that compares the determination reference pattern with an inspection target pattern to be acquired next and is a target of pass / fail determination, and calculates a difference in luminance information for each of the divided regions corresponding to the position of the comparison pattern; ,
A pass / fail criterion registering unit that pre-registers, for each of the divided regions, a reference value for determining pass / fail for the difference in luminance information calculated for each of the divided regions calculated by the brightness difference calculating unit;
An appearance inspection apparatus comprising: a quality determination unit that performs quality determination for each of the divided regions of the inspection target pattern based on the quality determination reference value.
 請求項2に記載の発明は、
 前記良否判定の基準値は、
前記分割領域毎に設定された標準偏差と、
前記標準偏差に乗ずる倍率計数と、
前記標準偏差に前記倍率計数を乗じた値に加算するオフセット値とで構成されており、
 前記オフセット値と、前記倍率計数と、分割領域毎に設定された標準偏差とを登録する判定基準パラメータ登録部をさらに備えている
ことを特徴とする請求項1に記載の外観検査装置である。
The invention described in claim 2
The reference value for the pass / fail judgment is:
A standard deviation set for each of the divided areas;
Multiplying the standard deviation by a multiplication factor;
An offset value that is added to a value obtained by multiplying the standard deviation by the magnification factor,
The appearance inspection apparatus according to claim 1, further comprising a determination reference parameter registration unit that registers the offset value, the magnification count, and a standard deviation set for each divided region.
 請求項3に記載の発明は、
 前記判定基準パターンを1つ目の検査対象パターンとし、
前記次に取得して良否判定の対象となる検査対象パターンを2つ目の検査対象パターンとし、
前記2つの検査対象パターンとは別の、3つ目の検査対象回路パターンを取得し、
 前記輝度差分算出部には、
前記1つ目と前記2つ目の検査対象パターンの輝度情報の差分を算出する第1輝度差分算出部と、
前記1つ目と前記3つ目の検査対象パターンの輝度情報の差分を算出する第2輝度差分算出部とが備えられており、
 前記良否判定部には、
前記第1輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第1良否判定部と、
前記第2輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第2良否判定部とが備えられており、
第1良否判定部の結果と、第2良否判定部の結果のいずれかが良判定なら当該部位は良品と判定し、
第1良否判定部の結果と、第2良否判定部の結果のいずれもが不良判定なら当該部位は不良品と判定する、統括判定部が備えられている
ことを特徴とする、請求項1又は請求項2に記載の外観検査装置である。
The invention according to claim 3
The determination reference pattern as a first inspection target pattern,
Next, the second inspection target pattern is the inspection target pattern that is acquired next and is the target of pass / fail judgment,
Obtaining a third inspection target circuit pattern different from the two inspection target patterns;
In the luminance difference calculation unit,
A first luminance difference calculation unit for calculating a difference in luminance information between the first and second inspection target patterns;
A second luminance difference calculation unit for calculating a difference in luminance information between the first and third inspection target patterns;
In the pass / fail judgment section,
A first pass / fail determination unit that performs pass / fail determination on a difference in brightness information for each of the divided areas calculated by the first brightness difference calculation unit;
A second pass / fail determination unit that performs pass / fail determination on the difference in brightness information for each of the divided areas calculated by the second brightness difference calculation unit;
If one of the result of the first pass / fail determination unit and the result of the second pass / fail determination unit is a pass determination, the part is determined to be a passable product,
The integrated determination unit is provided, wherein if both the result of the first pass / fail determination unit and the result of the second pass / fail determination unit are determined to be defective, the part is determined to be a defective product. An appearance inspection apparatus according to claim 2.
 請求項4に記載の発明は、
 検査対象となる前記検査対象パターンが、前記判定基準パターンと隣接している
ことを特徴とする、請求項1~3のいずれかに記載の外観検査装置である。
The invention according to claim 4
4. The appearance inspection apparatus according to claim 1, wherein the inspection target pattern to be inspected is adjacent to the determination reference pattern.
 請求項5に記載の発明は、
 検査対象となる前記検査対象パターンが前記良否判定部において良品と判定されれば、当該検査対象パターンと前記判定基準パターンと置換する
ことを特徴とする、請求項1~4のいずれかに記載の外観検査装置である。
The invention described in claim 5
5. The inspection target pattern is replaced with the determination reference pattern if the inspection target pattern to be inspected is determined to be a non-defective product in the quality determination unit. It is an appearance inspection device.
 請求項6に記載の発明は、
 検査開始直後の第1番目から第3番目までの検査対象パターンを取得し、
 前記輝度差分算出部では、
第1番目と第2番目の検査対象パターンの輝度情報の差分を第1差分とし、
第1番目と第3番目の検査対象パターンの輝度情報の差分を第2差分とし、
 前記良否判定部では、
前記第1差分と、前記第2差分について、それぞれ良否判定が行われ、
 前記良否判定部で判定された、
前記第1差分と前記第2差分の良否判定結果のいずれかが良判定なら、第1番目の検査対象パターンは良品として、前記判定基準パターン登録部に登録する
ことを特徴とする、請求項1~5のいずれかに記載の外観検査装置である。
The invention described in claim 6
Acquire the first to third inspection target patterns immediately after the start of inspection,
In the luminance difference calculation unit,
The difference between the luminance information of the first and second inspection target patterns is the first difference,
The difference between the luminance information of the first and third inspection target patterns is the second difference,
In the pass / fail judgment unit,
A pass / fail determination is made for each of the first difference and the second difference,
Determined by the pass / fail determination unit,
The first inspection target pattern is registered as a non-defective product in the determination reference pattern registration unit if any one of the first difference and the second difference is determined to be good. 6. An appearance inspection apparatus according to any one of 1 to 5.
 請求項7に記載の発明は、
 複数のパターンが繰り返しパターニングされた基板上の前記パターンの外観を撮像して検査する外観検査方法において、
前記基板を載置テーブルに載置する基板載置ステップと、
前記載置テーブルを所定方向に移動させるテーブル移動ステップと、
前記基板に向けて光を照射する照明光照射ステップと、
前記基板上のパターンを撮像する撮像ステップと、
前記撮像ステップで撮像された前記基板上のパターンを画像データとして取得する画像取得ステップとを有し、
 前記画像取得ステップで取得された前記画像データのうち、少なくとも一部の領域を検査対象パターン画像として特定する検査パターン特定ステップと、
前記検査対象パターン画像について、マトリクス状に分割した分割領域毎に輝度情報を取得する輝度情報取得ステップと、
先に取得した検査対象パターンを判定基準パターンとして登録する判定基準パターン登録ステップとを有し、
前記判定基準パターンと、次に取得して良否判定の対象となる検査対象パターンとを比較して、前記位置が対応する前記分割領域毎の輝度情報の差分を算出する輝度差分算出ステップと、
前記輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対する良否判定の基準値を前記分割領域毎に予め登録しておく良否基準登録ステップと、
前記良否判定の基準値に基づいて前記検査対象パターンの前記分割領域毎に良否判定を行う良否判定ステップとを有している
ことを特徴とする外観検査方法である。
The invention described in claim 7
In an appearance inspection method for imaging and inspecting the appearance of the pattern on a substrate on which a plurality of patterns are repeatedly patterned,
A substrate mounting step for mounting the substrate on a mounting table;
A table moving step for moving the mounting table in a predetermined direction;
An illumination light irradiation step for irradiating light toward the substrate;
An imaging step of imaging a pattern on the substrate;
An image acquisition step of acquiring the pattern on the substrate imaged in the imaging step as image data;
An inspection pattern specifying step of specifying at least a part of the image data acquired in the image acquisition step as an inspection target pattern image;
For the inspection target pattern image, a luminance information acquisition step for acquiring luminance information for each divided region divided in a matrix,
A determination reference pattern registration step for registering the previously acquired inspection target pattern as a determination reference pattern,
A luminance difference calculation step of comparing the determination reference pattern with an inspection target pattern to be acquired next and being a pass / fail determination target, and calculating a difference in luminance information for each of the divided regions corresponding to the position;
A pass / fail criterion registration step of pre-registering, for each of the divided regions, a reference value for determining pass / fail for the difference in luminance information for each of the divided regions calculated by the brightness difference calculating unit;
An appearance inspection method comprising: a quality determination step for performing quality determination for each of the divided regions of the inspection target pattern based on the quality determination reference value.
 請求項8に記載の発明は、
 前記良否判定の基準値は、
前記分割領域毎に設定された標準偏差と、
前記標準偏差に乗ずる倍率計数と、
前記標準偏差に前記倍率計数を乗じた値に加算するオフセット値とで構成されており、
 前記オフセット値と、前記倍率計数と、分割領域毎に設定された標準偏差とを登録する判定基準パラメータ登録ステップをさらに有している
ことを特徴とする請求項7に記載の外観検査方法である。
The invention according to claim 8 provides:
The reference value for the pass / fail judgment is:
A standard deviation set for each of the divided areas;
Multiplying the standard deviation by a multiplication factor;
An offset value that is added to a value obtained by multiplying the standard deviation by the magnification factor,
8. The appearance inspection method according to claim 7, further comprising a determination criterion parameter registration step of registering the offset value, the magnification count, and a standard deviation set for each divided region. .
 請求項9に記載の発明は、
 前記判定基準パターンを1つ目の検査対象パターンとし、
前記次に取得して良否判定の対象となる検査対象パターンを2つ目の検査対象パターンとし、
 前記2つの異なる検査対象パターンとは別の、3つ目の検査対象回路パターンを取得するステップを有し、
 前記輝度差分算出ステップには、
1つ目と2つ目の検査対象パターンの輝度情報の差分を算出する第1輝度差分算出ステップと、
1つ目と3つ目の検査対象パターンの輝度情報の差分を算出する第2輝度差分算出ステップとを有し、
 前記良否判定ステップには、
前記第1輝度差分算出ステップで算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第1良否判定ステップと、
前記第2輝度差分算出ステップで算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第2良否判定ステップとを有し、
前記第1良否判定ステップの結果と、前記第2良否判定ステップの結果のいずれかが良判定なら当該部位は良品と判定し、
前記第1良否判定ステップの結果と、前記第2良否判定ステップの結果のいずれもが不良判定なら当該部位は不良品と判定する、統括判定ステップをさらに有している
ことを特徴とする、請求項7又は請求項8に記載の外観検査方法である。
The invention according to claim 9 is:
The determination reference pattern as a first inspection target pattern,
Next, the second inspection target pattern is the inspection target pattern that is acquired next and is the target of pass / fail judgment,
Obtaining a third test target circuit pattern different from the two different test target patterns;
In the luminance difference calculation step,
A first luminance difference calculating step for calculating a difference in luminance information between the first and second inspection target patterns;
A second luminance difference calculating step for calculating a difference between luminance information of the first and third inspection target patterns;
In the pass / fail judgment step,
A first pass / fail judgment step for performing pass / fail judgment on the difference of the brightness information for each of the divided areas calculated in the first brightness difference calculating step;
A second pass / fail determination step for determining pass / fail with respect to the difference in brightness information for each of the divided areas calculated in the second brightness difference calculating step;
If any one of the result of the first pass / fail determination step and the result of the second pass / fail determination step is a pass determination, the portion is determined to be a passable product,
The system further comprises an overall determination step in which if both the result of the first pass / fail determination step and the result of the second pass / fail determination step are determined to be defective, the part is determined to be a defective product. The visual inspection method according to claim 7 or claim 8.
 請求項10に記載の発明は、
 検査対象となる前記検査対象パターンが、前記判定基準パターンと隣接している
ことを特徴とする、請求項7~9に記載の外観検査方法である。
The invention according to claim 10 is:
10. The appearance inspection method according to claim 7, wherein the inspection target pattern to be inspected is adjacent to the determination reference pattern.
 請求項11に記載の発明は、
 検査対象となる前記検査対象パターンが前記良否判定ステップにおいて良品と判定されれば、当該検査対象パターンと前記判定基準パターンと置換する
ことを特徴とする、請求項7~10のいずれかに記載の外観検査方法である。
The invention according to claim 11
11. The inspection target pattern is replaced with the determination reference pattern if the inspection target pattern to be inspected is determined to be non-defective in the pass / fail determination step. This is an appearance inspection method.
 請求項12に記載の発明は、
 検査開始直後の第1番目から第3番目までの検査対象パターンを取得し、
 前記輝度差分算出ステップでは、
第1番目と第2番目の検査対象パターンの輝度情報の差分を第1差分とし、
第1番目と第3番目の検査対象パターンの輝度情報の差分を第2差分とし、
 前記良否判定ステップでは、
前記第1差分と、前記第2差分について、それぞれ良否判定が行われ、
 前記良否判定ステップで判定された、
前記第1差分と前記第2差分の良否判定結果のいずれかが良判定なら、第1番目の検査対象パターンは良品として、前記判定基準パターン登録ステップの登録を行う
ことを特徴とする、請求項7~11のいずれかに記載の外観検査方法である。
The invention according to claim 12
Acquire the first to third inspection target patterns immediately after the start of inspection,
In the luminance difference calculation step,
The difference between the luminance information of the first and second inspection target patterns is the first difference,
The difference between the luminance information of the first and third inspection target patterns is the second difference,
In the pass / fail judgment step,
A pass / fail determination is made for each of the first difference and the second difference,
Determined in the pass / fail determination step,
The registration of the determination reference pattern registration step is performed when one of the first difference and the second difference is determined to be good, and the first inspection target pattern is determined as non-defective. The visual inspection method according to any one of 7 to 11.
 本発明にかかる外観検査装置及び外観検査方法を用いれば、良好な検査分解能と短い検査タクトを維持しつつ、成膜のむらの影響を受けずに厳密な良否判定が行える。
By using the appearance inspection apparatus and the appearance inspection method according to the present invention, it is possible to perform strict pass / fail judgment without being affected by unevenness of film formation while maintaining good inspection resolution and short inspection tact.
本発明を具現化する形態の一例を示す概念図The conceptual diagram which shows an example of the form which embodies this invention 本発明を具現化する形態の一例における撮像の様子を示す概念図The conceptual diagram which shows the mode of the imaging in an example of the form which embodies this invention 本発明を具現化する形態の一例における取得画像の分割領域を示す概念図The conceptual diagram which shows the division area of the acquisition image in an example of the form which embodies this invention 本発明を具現化する形態の一例における画像取得フロー図The image acquisition flowchart in an example of the form which embodies the present invention 本発明を具現化する形態の一例における良否判定フロー図The quality determination flowchart in an example of the embodiment embodying the present invention 本発明を具現化する形態の別の一例における良否判定フロー図The quality determination flowchart in another example of the embodiment embodying the present invention 本発明を具現化する形態のさらに別の一例における良否判定フロー図The quality determination flowchart in yet another example of the embodiment embodying the present invention 検査対象となる複数のパターンが配置された半導体ウエハの平面図A plan view of a semiconductor wafer on which a plurality of patterns to be inspected are arranged 撮像したチップDのパターンについてマトリクス状に細分化した分割領域Pを示すイメージ図The image figure which shows the division area P subdivided in the matrix form about the pattern of the imaged chip | tip D 検査対象となる複数のパターンが配置された別の半導体ウエハの平面図Plan view of another semiconductor wafer on which a plurality of patterns to be inspected are arranged
 本発明を実施するための形態について、図を用いながら説明する。
図1は、本発明を具現化する形態の一例を示す概念図であり、画像を取得するために用いる機器の斜視図と、画像取得して外観検査に必要な構成のブロック図が複合的に記載されている。
図1において直交座標系の3軸をX、Y、Zとし、XY平面を水平面、Z方向を鉛直方向とする。特にZ方向は矢印の方向を上とし、その逆方向を下と表現する。
DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram showing an example of a form for embodying the present invention, in which a perspective view of an apparatus used for acquiring an image and a block diagram of a configuration necessary for an appearance inspection by acquiring an image are combined. Are listed.
In FIG. 1, the three axes of the orthogonal coordinate system are X, Y, and Z, the XY plane is the horizontal plane, and the Z direction is the vertical direction. In particular, in the Z direction, the direction of the arrow is represented as the top, and the opposite direction is represented as the bottom.
 本発明にかかる外観検査装置1は、載置テーブル20と、移動ステージ部2と、照明部3と、撮像部4と、画像取得部5と、検査パターン特定部6と、輝度情報取得部7と、判定基準パターン登録部8と、輝度差分算出部9と、良否基準登録部10と、良否判定部11とを含んで構成されている。 The appearance inspection apparatus 1 according to the present invention includes a placement table 20, a moving stage unit 2, an illumination unit 3, an imaging unit 4, an image acquisition unit 5, an inspection pattern specifying unit 6, and a luminance information acquisition unit 7. And a determination reference pattern registration unit 8, a luminance difference calculation unit 9, a quality reference registration unit 10, and a quality determination unit 11.
 載置テーブル20は、検査対象となる基板Wを載置するものであり、XY方向に平坦な面をなしている。載置テーブル20は、検査対象となる基板が載置される部分に溝や細孔が形成されている。さらに当該溝や細孔は、開閉バルブを経由して、真空源や圧空源に接続されている。 The mounting table 20 is for mounting the substrate W to be inspected, and has a flat surface in the XY direction. The mounting table 20 has grooves and pores formed in a portion where a substrate to be inspected is mounted. Further, the grooves and pores are connected to a vacuum source and a compressed air source via an open / close valve.
 移動ステージ部2は、載置テーブル20をXY平面の任意の位置に移動させるものである。移動ステージ部2は、X軸スライダー21と、Y軸スライダー22とを含んで構成されている。X軸スライダー21は、装置フレーム1F上に取り付けられており、X方向に所定の速度で移動し、任意の位置で静止することができる。Y軸スライダー22は、X軸スライダー21上に取り付けられており、Y方向に所定の速度で移動し、任意の位置で静止することができる。載置テーブル20は、Y軸スライダー22上に取り付けられている。そのため、移動ステージ部2は、載置テーブル20をX方向とY方向に単独で或いは連動して、所定の速度で移動させ、任意の位置で静止させることができる。 The moving stage unit 2 moves the mounting table 20 to an arbitrary position on the XY plane. The moving stage unit 2 includes an X-axis slider 21 and a Y-axis slider 22. The X-axis slider 21 is mounted on the apparatus frame 1F, moves at a predetermined speed in the X direction, and can be stopped at an arbitrary position. The Y-axis slider 22 is mounted on the X-axis slider 21, moves at a predetermined speed in the Y direction, and can be stopped at an arbitrary position. The mounting table 20 is mounted on the Y-axis slider 22. Therefore, the moving stage unit 2 can move the mounting table 20 at a predetermined speed alone or in conjunction with each other in the X direction and the Y direction, and can stand still at an arbitrary position.
 照明部3は、検査対象となる基板Wに向けて光を照射するものであり、光源部31を含んで構成されている。光源部31は、鏡筒40に取り付けられており、光源部31から放出された光32は、鏡筒40に組み込まれたハーフミラー41で反射され、対物レンズ44aを通過して基板Wに照射される。光源部31は、具体例としてストロボ照明を用いることを例示できる。当該ストロボ照明は、移動ステージ部2のX軸スライダー21やY軸スライダー22の移動と連携して、所定の送りピッチ毎に発光を繰り返すように構成される。なお、光源部31は、鏡筒40に直接取り付ける形態に限られず、別の場所に設置した光源からライトガイドを用いて導光する形態のものでも良い。 The illumination unit 3 irradiates light toward the substrate W to be inspected, and includes a light source unit 31. The light source unit 31 is attached to the lens barrel 40, and the light 32 emitted from the light source unit 31 is reflected by the half mirror 41 incorporated in the lens barrel 40, passes through the objective lens 44a, and irradiates the substrate W. Is done. The light source unit 31 can be exemplified by using strobe illumination as a specific example. The strobe illumination is configured to repeat light emission at predetermined feed pitches in cooperation with the movement of the X-axis slider 21 and the Y-axis slider 22 of the moving stage unit 2. In addition, the light source part 31 is not restricted to the form directly attached to the lens-barrel 40, The thing of the form light-guided using a light guide from the light source installed in another place may be sufficient.
 撮像部4は、検査対象となる基板W上のパターンを撮像するものであり、鏡筒40と、ハーフミラー41と、対物レンズ44aと、撮像カメラ45とを含んで構成されている。
撮像カメラ45は、受光素子46を含んで構成されており、基板Wに照射された光35のうち、基板W上の観察領域Vで反射された光42が、対物レンズ42a、ハーフミラー41、鏡筒43を通過して、受光素子46に照射された画像を、外部に画像データとして出力する。
具体的には、前記ストロボ照明の発光と同時に撮像を行い、画像データを出力する。このとき、ストロボ照明の発光時間は極めて短いため、移動中に撮像された画像であっても、静止画のような状態で撮像される。
The imaging unit 4 images a pattern on the substrate W to be inspected, and includes a lens barrel 40, a half mirror 41, an objective lens 44a, and an imaging camera 45.
The imaging camera 45 is configured to include a light receiving element 46, and among the light 35 irradiated to the substrate W, the light 42 reflected by the observation region V on the substrate W is an objective lens 42 a, a half mirror 41, An image that passes through the lens barrel 43 and is irradiated on the light receiving element 46 is output to the outside as image data.
Specifically, imaging is performed simultaneously with the light emission of the strobe illumination, and image data is output. At this time, since the light emission time of the strobe illumination is very short, even an image captured during movement is captured in a state like a still image.
 画像取得部5は、撮像カメラ45の受光素子46で撮像された基板W上の観察領域Vに含まれるパターンを画像データとして取得するものである。
具体的には、画像取得部5は、いわゆる画像処理装置と呼ばれる機器を用いて構成することができる。この画像処理装置は、画像処理機能を有するユニット型の形態のものや、画像処理ボードと呼ばれる基板をパソコンやワークステーション等に組み込んで使用する形態ものもが例示できる。
The image acquisition unit 5 acquires a pattern included in the observation region V on the substrate W imaged by the light receiving element 46 of the imaging camera 45 as image data.
Specifically, the image acquisition unit 5 can be configured using a device called a so-called image processing apparatus. Examples of the image processing apparatus include a unit type having an image processing function and a type using a board called an image processing board incorporated in a personal computer or a workstation.
 本発明にかかる外観検査装置1は、上記のような構成をしているので、検査対象となる基板Wを載置した載置テーブル20を所定の速度で移動させながら連続撮像して、検査対象パターンに対応する画像データを取得することができる。さらに取得した画像データは、後述の様にして良否判定される。 Since the appearance inspection apparatus 1 according to the present invention is configured as described above, continuous imaging is performed while moving the mounting table 20 on which the substrate W to be inspected is placed at a predetermined speed, and the inspection object is inspected. Image data corresponding to the pattern can be acquired. Further, the acquired image data is judged as good or bad as described later.
 なお、基板W上のパターンを連続的に撮像する際、実際の基板W上にパターニングされているパターン(チップD)の位置にばらつきがあったり、移動ステージ部2の移動速度にばらつきが生じたりする。そのため、毎回同じ部位を撮像しているつもりでも、若干位置ずれした状態で取得されることがある。そのため、撮像部5で撮像される観察領域Vの範囲は、実際の検査に必要なパターン(チップD)が観察できる範囲よりもやや広く設定しておく。 Note that when the pattern on the substrate W is continuously imaged, the position of the pattern (chip D) patterned on the actual substrate W varies, and the moving speed of the moving stage unit 2 varies. To do. Therefore, even if the same part is intended to be imaged every time, it may be acquired in a slightly shifted state. Therefore, the range of the observation region V imaged by the imaging unit 5 is set to be slightly wider than the range in which the pattern (chip D) necessary for actual inspection can be observed.
 図2は、本発明を具現化する形態の一例における撮像の様子を示す概念図である。
図2には、撮像カメラ45が矢印Vsで示す方向に相対移動しながら、基板W上にN個配列されているチップD(N)の内、1番目のチップD(1)~4番目のチップD(4)を順次撮像していく様子が示されている。図2に示す時刻において、撮像カメラ45は、3番目のチップD(3)を撮像している。さらにこの時、レンズなどの光学部品は図示を省略するが、受光素子46には、当該チップD(3)よりもやや広く設定された観察領域Vの範囲が投影されている。
FIG. 2 is a conceptual diagram showing a state of imaging in an example of a form embodying the present invention.
In FIG. 2, the first camera D (1) to the fourth chip among the N chips D (N) arranged on the substrate W while the imaging camera 45 moves relatively in the direction indicated by the arrow Vs. A state in which chips D (4) are sequentially imaged is shown. At the time shown in FIG. 2, the imaging camera 45 is imaging the third chip D (3). Further, at this time, although optical components such as a lens are not shown, the range of the observation region V set slightly wider than the chip D (3) is projected onto the light receiving element 46.
 検査パターン特定部6は、画像取得部5で取得された画像データのうち、少なくとも一部の領域を検査対象パターン画像として特定するものである。
具体的には、この検査パターン特定部6は、画像取得部5と同じく画像処理装置と呼ばれる機器を用いて構成され、画像取得部5で取得された画像データの中から外観検査に必要な特定の検査パターンを抽出する。
図2を用いて説明すると、観察領域V全体の領域に含まれる、3番目のチップD(3)に対応する領域を検査対象パターン画像として特定する。当該特定する処理は、各チップD(n)の周辺に設けられたアライメントマークや、周辺パターン、内部パターンの相対位置に基づいて行い、後述の処理で比較対象となるパターン同士の対応する位置が揃う様にする。
The inspection pattern specifying unit 6 specifies at least a part of the image data acquired by the image acquisition unit 5 as an inspection target pattern image.
Specifically, the inspection pattern specifying unit 6 is configured by using a device called an image processing apparatus similar to the image acquiring unit 5, and specifying necessary for appearance inspection from the image data acquired by the image acquiring unit 5. The inspection pattern is extracted.
If it demonstrates using FIG. 2, the area | region corresponding to the 3rd chip | tip D (3) included in the area | region of the whole observation area | region V will be specified as a test object pattern image. The processing to be specified is performed based on the alignment position of the periphery of each chip D (n), the peripheral pattern, and the relative position of the internal pattern, and the corresponding positions of the patterns to be compared in the processing described later are Make sure they are aligned.
 このようにすれば、観察領域V全体の領域と、各チップD(n)は、取得した画像データの不必要な周辺部をトリミング処理するなどして、必要なパターンを抽出して特定され、後述する比較処理や輝度差分処理のために用いることができる。 In this way, the entire region of the observation region V and each chip D (n) are identified by extracting a necessary pattern, for example, by trimming unnecessary peripheral portions of the acquired image data, It can be used for comparison processing and luminance difference processing described later.
 輝度情報取得部7は、検査対象パターン画像として特定した画像をマトリクス状に細かく分割し、分割した個々の分割領域P毎に輝度情報を取得するものである。この分割した個々の分割領域Pは、例えば、撮像カメラ45の受光素子46、一つずつに対応するような微小領域としたり、或いは、いくつかの受光素子のグループ(100×100とか、1000×1000とか)に対応するような領域としたりする。 The luminance information acquisition unit 7 finely divides the image specified as the inspection target pattern image into a matrix, and acquires luminance information for each divided area P. Each of the divided areas P is, for example, a minute area corresponding to each of the light receiving elements 46 of the imaging camera 45, or a group of several light receiving elements (100 × 100 or 1000 × 1000) or the like.
 図3は、本発明を具現化する形態の一例における取得画像の分割領域を示す概念図である。図3には、特定された検査対象パターン画像である基板W上の1番目のチップD(1)~4番目のチップD(4)について、I行×J列のマトリクス状の分割領域Pに細分化された、個々の分割領域P(i,j)の配列の様子が示されている。なお、i=1~I,j=1~J(以下同じ)である。 FIG. 3 is a conceptual diagram showing divided areas of an acquired image in an example of a form embodying the present invention. In FIG. 3, the first chip D (1) to the fourth chip D (4) on the substrate W, which is the specified pattern image to be inspected, are divided into a matrix-like divided region P of I rows × J columns. The state of the arrangement of the subdivided individual divided areas P (i, j) is shown. Note that i = 1 to I and j = 1 to J (hereinafter the same).
 また、n番目のチップD(n)の個々の分割領域をP(i,j)についての輝度情報は、輝度情報B(n,i,j)として表現する。この輝度情報B(n,i,j)は、撮像カメラ45からの出力信号により決定され、例えば8ビット信号による値(黒:0~白:255までの階調データ)で表現される。 Also, the luminance information about P (i, j) for each divided area of the nth chip D (n) is expressed as luminance information B (n, i, j). The luminance information B (n, i, j) is determined by an output signal from the imaging camera 45 and is expressed by, for example, a value by an 8-bit signal (tone data from black: 0 to white: 255).
 判定基準パターン登録部Aは、先に取得した検査対象パターンを判定基準パターンとして登録するものである。具体的には、検査対象となる基板の最初の検査対象パターンを設定したり、逐次検査を行うフローの中で常に1つ前に検査したパターンを設定したり、或いは、逐次検査を行うフローの中で最後に(言い換えれば直前に)良品と判定されたパターンを設定したりする。
例えば、n番目のチップD(n)の1つ前「n-1」番目のチップD(n-1)の輝度情報B(n-1,i,j)を、判定基準パターン登録部Aに登録しておく。
The determination reference pattern registration unit A registers the previously acquired inspection target pattern as a determination reference pattern. Specifically, the first inspection target pattern of the substrate to be inspected is set, the pattern inspected immediately before in the flow of sequential inspection, or the flow of sequential inspection Among them, the pattern determined to be non-defective is set last (in other words, immediately before).
For example, the luminance information B (n−1, i, j) of the “n−1” th chip D (n−1) immediately before the nth chip D (n) is stored in the determination reference pattern registration unit A. Register.
 輝度差分算出部8は、判定基準パターンと、次に取得して良否判定の対象となる検査対象パターンとを比較して、それぞれ位置が対応する分割領域毎の輝度情報の差分を算出するものである。
具体的には、n番目のチップD(n)の輝度情報B(n,i,j)と、判定基準パターンとして登録されている「n-1」番目のチップD(n-1)の輝度情報B(n-1,i,j)との差分def(n,i,j)を、次の数式を用いて算出する。
The luminance difference calculation unit 8 compares a determination reference pattern with an inspection target pattern that is acquired next and is a target of pass / fail determination, and calculates a difference in luminance information for each divided region corresponding to each position. is there.
Specifically, the luminance information B (n, i, j) of the nth chip D (n) and the luminance of the “n−1” th chip D (n−1) registered as the determination reference pattern. A difference def (n, i, j) from the information B (n-1, i, j) is calculated using the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 良否基準登録部Bは、輝度差分算出部で算出された分割座標毎の輝度情報の差分に対する良否判定の基準値を、分割領域毎に予め登録しておくものである。
具体的には、輝度情報Bが8ビット信号による値(黒:0~白:255までの階調データ)で取得される場合に、ある範囲の分割領域では良否判定の基準値が±5、別の範囲の分割領域では良否判定の基準値が±10、さらに別の範囲の分割領域では良否判定の基準値が±20というように、個別に良否判定の基準値を設定しておく。
The pass / fail criterion registration unit B registers in advance a pass / fail judgment reference value for the difference in brightness information for each divided coordinate calculated by the brightness difference calculation unit for each divided region.
Specifically, when the luminance information B is acquired as a value by an 8-bit signal (tone data from black: 0 to white: 255), the reference value for pass / fail judgment is ± 5 in a certain range of divided areas. The reference values for pass / fail judgment are set individually such that the reference value for pass / fail judgment is ± 10 in the divided areas of another range, and the reference value for pass / fail judgment is ± 20 in the divided areas of another range.
 表1は、品種KのチップD(n)についての良否基準テーブルの例を示すものである。
分割領域P(i,j)毎に判定基準def0(i,j)が規定されている。
Table 1 shows an example of the pass / fail criterion table for the chip D (n) of the type K.
A criterion def0 (i, j) is defined for each divided region P (i, j).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
例えば、P(i,j)に対応する判定基準def0(i,j)が、「20」「10」「5」と規定されていれば、当該分割領域P(i,j)の輝度差分が「±20以内」「±10以内」「±5以内」なら良品と判定して良いという意味である。
この判定基準def0(i,j)のデータテーブルは、チップDの品種情報と紐付けて、予め登録しておく。
For example, if the criterion def0 (i, j) corresponding to P (i, j) is defined as “20”, “10”, “5”, the luminance difference of the divided region P (i, j) is If it is “within ± 20”, “within ± 10”, or “within ± 5”, it means that it can be determined as a non-defective product.
The data table of this determination criterion def0 (i, j) is registered in advance in association with the product information of the chip D.
 判定基準のデータテーブルは、上述で例示した形態でも良いが、次の様にすることが、より好ましい。
良否判定の基準値となる、判定基準def0(i,j)を、固定値ではなく、数式(2)で表される値とする。
The determination reference data table may be in the form exemplified above, but it is more preferable to do the following.
The criterion def0 (i, j), which is a criterion value for pass / fail judgment, is not a fixed value but a value represented by Equation (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このとき、分割領域P(i,j)毎に設定された標準偏差σ(i,j)、倍率計数b、オフセット値aとする。 At this time, the standard deviation σ (i, j), magnification factor b, and offset value a set for each divided region P (i, j) are used.
 分割領域P(i,j)毎に設定された標準偏差σ(i,j)は、予め良品と分かっている複数のチップから取得した検査対象パターン画像の輝度情報の分布から算出する。
尚、倍率係数a,bについては下記のような手順で設定する。あらかじめ検出したい欠陥が存在するチップと、良品のチップを準備しておく。初期値として、オフセット値a=0とする。
1)検出したい欠陥を見逃さないぎりぎりの倍率計数b(=b1)を求める。
2)一方で、その良品が不良にならないぎりぎりの倍率計数b(=b2)を求める。
3)このb1とb2の中間値を感度として設定する。
このように決めた、a,bに対して検査を行い、過検出が発生しなければ、この値を採用し、過検出が発生すれば、aの値を増やして上記の1)~3)を実施する。
The standard deviation σ (i, j) set for each divided region P (i, j) is calculated from the distribution of luminance information of the pattern image to be inspected acquired from a plurality of chips that are known to be non-defective in advance.
The magnification factors a and b are set according to the following procedure. A chip having a defect to be detected and a good chip are prepared in advance. As an initial value, the offset value a = 0.
1) Find the last magnification factor b (= b1) that does not miss the defect to be detected.
2) On the other hand, a magnification factor b (= b2) is calculated, which is the last minute that the non-defective product does not become defective.
3) The intermediate value between b1 and b2 is set as the sensitivity.
The above-determined a and b are inspected, and if over-detection does not occur, this value is adopted, and if over-detection occurs, the value of a is increased to 1) to 3) above. To implement.
 このようにして設定された各判定基準パラメータ:分割領域P(i,j)毎に設定された標準偏差σ(i,j)、倍率計数b、オフセット値aと、判定基準値を算出する数式(2)に基づいて、良否判定を行う。この良否判定は、def(i,j)が、±{a+b・σ(i,j)}の範囲内つまり、数式(3)が満たされる状態であれば、良品と判定される。 Each criterion parameter thus set: standard deviation σ (i, j), magnification factor b, offset value a set for each divided region P (i, j), and formula for calculating the criterion value Based on (2), pass / fail determination is performed. In this pass / fail judgment, if def (i, j) is within a range of ± {a + b · σ (i, j)}, that is, if Formula (3) is satisfied, it is judged as a non-defective product.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このように、判定基準def0(i,j)を、固定値ではなく、
複数の良品サンプルから導き出される分割領域毎の標準偏差σ(i,j)と、
検査担当者が定める2つのパラメータa,bとを用いて、迅速に設定することができる。
そうすることで、元々ばらつきの大きな部位に対しては、広い許容範囲内での検査とし、元々ばらつきの小さい部位に対しては、狭い許容範囲での検査とすることができる。
In this way, the criterion def0 (i, j) is not a fixed value,
Standard deviation σ (i, j) for each divided region derived from a plurality of non-defective samples,
It can be quickly set using two parameters a and b determined by the person in charge of inspection.
By doing so, it is possible to perform inspection within a wide allowable range for a portion with originally large variation, and to perform inspection with a narrow allowable range for a portion with originally small variation.
 さらに、検査を繰り返す中で、最初に決めた良否判定の基準値を変更する必要が生じた場合にも迅速に対応ができる。つまり、不良判定となったものでも良品とすべきものが表れれば、当該パターンの画像を含め、再度、分割領域毎に設定された標準偏差σ(i,j)、倍率計数b、オフセット値aの値を決め直すことができる。 Furthermore, it is possible to respond quickly when it becomes necessary to change the reference value of the pass / fail judgment determined at the beginning while repeating the inspection. That is, if a defective product appears to be a non-defective product, the standard deviation σ (i, j), magnification factor b, and offset value a set for each divided region are included again including the image of the pattern. Can be re-determined.
 そうすることで、想定していなかった成膜むらの影響が生じ誤検出となった場合でも、検査条件を最適なものに再設定し、成膜のむらの影響を受けずに厳密な良否判定が行えるようになる。また、良否判定の基準値を分割領域毎に手作業で設定する必要がなくなり、迅速に再設定し、運用することができる。
尚、これらの値は判定基準パラメータとして、検査品種毎に設定することが好ましい。
By doing so, even if a film formation unevenness that was not anticipated was caused and a false detection was detected, the inspection conditions were reset to the optimum one, and a strict pass / fail judgment was made without being affected by the film formation unevenness. You can do it. In addition, it is not necessary to manually set the pass / fail judgment reference value for each divided area, so that it can be quickly reset and operated.
In addition, it is preferable to set these values for each inspection type as determination criterion parameters.
 良否判定部9は、良否判定の基準値に基づいて検査対象パターンの分割領域毎に良否判定を行うものである。
具体的には、ある範囲の領域において、良否判定の基準値が「5」と設定されている場合、先の画像データと後の画像データとの対応する分割領域の輝度情報の差分が、「±5以内」なら良品とし、それ以外なら不良品として、良否判定を行う。或いは、上述したように、数式(3)が満たされれば良品とし、見なされなければ不良品として、良否判定を行う。
The pass / fail judgment unit 9 performs pass / fail judgment for each divided region of the inspection target pattern based on the pass / fail judgment reference value.
Specifically, when the reference value for pass / fail judgment is set to “5” in a certain area, the difference in luminance information of the corresponding divided areas between the previous image data and the subsequent image data is “ If it is “within ± 5”, the product is judged as non-defective, otherwise it is judged as defective. Alternatively, as described above, the quality determination is performed as a non-defective product if Equation (3) is satisfied, and as a defective product if it is not considered.
 本発明にかかる外観検査装置1は、上述の様な構成をしているので、先に取得した画像データと、後に取得した画像データとの差分から、良否判定を行うことができる。
良否判定した結果は、外観検査装置1に備えられた情報表示器に表示させたり、データ収集部に蓄積させたり、外観検査装置1と通信回線で接続されたホストコンピュータにデータ送信したりする。情報表示器は、液晶ディスプレイなどの、いわゆる表示モニタを用いて構成される。データ収集部は、メモリーやハードディスクなどの情報記録媒体を用いて構成される。
Since the appearance inspection apparatus 1 according to the present invention has the above-described configuration, it is possible to perform pass / fail determination from the difference between the image data acquired first and the image data acquired later.
The result of the pass / fail judgment is displayed on an information display provided in the appearance inspection apparatus 1, stored in a data collection unit, or transmitted to a host computer connected to the appearance inspection apparatus 1 through a communication line. The information display is configured using a so-called display monitor such as a liquid crystal display. The data collection unit is configured using an information recording medium such as a memory or a hard disk.
 本発明にかかる外観検査方法は、以下に述べる、画像取得フローと、画像取得後の良否判定フローとを行うことにより実施できる。
[画像取得フロー]
図4は、本発明を具現化する形態の一例における画像取得フロー図である。
図4には、基板W上に複数配置された検査対象パターンを検査するために、各検査対象パターンの画像データを取得する一連のフローが、ステップ毎に示されている。
The appearance inspection method according to the present invention can be carried out by performing an image acquisition flow and a quality determination flow after image acquisition described below.
[Image acquisition flow]
FIG. 4 is an image acquisition flowchart in an example of a form embodying the present invention.
FIG. 4 shows a series of steps for acquiring image data of each inspection target pattern for each step in order to inspect a plurality of inspection target patterns arranged on the substrate W.
 先ず、検査対象となる基板Wを、外観検査装置1の載置テーブル20に載置する(s1:基板載置ステップ)。
次に、予め登録しておいた検査条件などを読み出し(s2)、基板W上に形成されている基準マークの読み取り位置へ移動してアライメント動作を行う(s3)。
First, the substrate W to be inspected is placed on the placement table 20 of the appearance inspection apparatus 1 (s1: substrate placement step).
Next, pre-registered inspection conditions and the like are read (s2), moved to a reference mark reading position formed on the substrate W, and an alignment operation is performed (s3).
 続いて、第1列目の移動開始位置へ載置テーブル20を移動させ(s4)、所定の速度で移動ステージ部2を動かし、載置テーブル20の移動を開始する(s5:テーブル移動ステップ)。
載置テーブル20を動かしながら、移動ステージ部2のX軸位置検出器及びY軸位置検出器から、載置テーブル20の現在位置情報を取得する(s6)。
Subsequently, the mounting table 20 is moved to the movement start position in the first row (s4), the moving stage unit 2 is moved at a predetermined speed, and the movement of the mounting table 20 is started (s5: table moving step). .
While moving the mounting table 20, the current position information of the mounting table 20 is acquired from the X-axis position detector and the Y-axis position detector of the moving stage unit 2 (s6).
 取得した載置テーブル20の現在位置情報に基づいて、撮像カメラ45で基板Wを撮像すべき位置かどうか判断(s7)する。載置テーブル20の現在位置が、撮像カメラ45で基板Wを撮像すべき位置であれば、基板Wに向けてストロボ照明を発光させ(s8:照明光照射ステップ)、同時に、基板Wから反射された光を撮像カメラ45で撮像を行う(s9:撮像ステップ)。 Based on the acquired current position information of the mounting table 20, it is determined whether or not it is a position where the imaging camera 45 should image the substrate W (s 7). If the current position of the mounting table 20 is a position where the imaging camera 45 should image the substrate W, strobe illumination is emitted toward the substrate W (s8: illumination light irradiation step), and at the same time, it is reflected from the substrate W. The captured light is imaged by the imaging camera 45 (s9: imaging step).
 撮像カメラ45で撮像した画像データは、詳細を後述するが、画像取得して良否判定を行う(s10)。 The image data captured by the imaging camera 45 will be described in detail later, but an image is acquired and a pass / fail judgment is made (s10).
 載置テーブル20の移動を継続させつつ、現在位置情報に基づいて、一列の撮像が終了したかどうかを判断する(s21)。一列目の撮像が終了したと判断されれば、移動ステージ部2の移動を停止させる(s22)。一方、ステップs21において、一列目の撮像が終了していないと判断されれば、上記ステップs8~s21を繰り返す。 While continuing the movement of the mounting table 20, it is determined based on the current position information whether or not one line of imaging has been completed (s21). If it is determined that the imaging of the first row has been completed, the movement of the moving stage unit 2 is stopped (s22). On the other hand, if it is determined in step s21 that the imaging in the first row has not been completed, steps s8 to s21 are repeated.
 次に、上記ステップs22の後、基板Wにおいて全列の撮像が終了かどうかを判断し(s23)、全ての撮像が終了と判断されれば、基板Wを載置テーブル20から取り出す(s24)。一方、上記ステップs23で、全列の撮像が終了していないと判断されれば、次列の計測開始位置へ載置テーブル20を移動させ(s4)、上記一連の画像取得に必要なステップ(s4~s23)を繰り返す。 Next, after the above step s22, it is determined whether or not the imaging of all the columns is completed on the substrate W (s23). If it is determined that all the imaging is completed, the substrate W is taken out from the mounting table 20 (s24). . On the other hand, if it is determined in step s23 that the imaging of all the rows has not been completed, the placement table 20 is moved to the measurement start position of the next row (s4), and the steps necessary for the series of image acquisition ( Repeat s4 to s23).
 [画像取得後の良否判定フロー]
図5は、本発明を具現化する形態の一例における良否判定フロー図である。
図5には、上記ステップs10で取得した画像データに基づいて、連続的に良否判定を行う一連のフローが、ステップ毎に詳細に示されている。
[Flow of pass / fail judgment after image acquisition]
FIG. 5 is a pass / fail judgment flowchart in an example of a form embodying the present invention.
In FIG. 5, a series of steps for continuously determining pass / fail based on the image data acquired in step s10 is shown in detail for each step.
 先ず、撮像ステップ(s9)で撮像された基板W上のパターンを画像データとして取得する(s105:画像取得ステップ)。
次に、取得した画像データのうち、少なくとも一部の領域を検査対象パターン画像として特定する(s106:検査パターン特定ステップ)。このステップでの処理は、検査に必要な領域より外側の不必要な部分を取り除く、いわゆるトリミング処理(クロップ処理とも呼ばれる)が行われる。或いは、検査対象パターンの内部や周辺に配置された位置決め基準マークに基づいて、画像データに含まれる検査対象パターンを抽出して特定する処理が行われる。
First, the pattern on the substrate W imaged in the imaging step (s9) is acquired as image data (s105: image acquisition step).
Next, at least a part of the acquired image data is specified as an inspection target pattern image (s106: inspection pattern specifying step). In this step, a so-called trimming process (also referred to as a crop process) is performed to remove unnecessary portions outside the area necessary for the inspection. Alternatively, processing for extracting and specifying the inspection target pattern included in the image data is performed based on positioning reference marks arranged in and around the inspection target pattern.
 上記ステップs106で特定された検査対象パターン画像は、マトリクス状に分割され、分割領域毎に輝度情報が取得される(s107:輝度情報取得ステップ)。
このステップs107では、例えば、基板W上のn番目のチップD(n)は、I行×J列のマトリクス状の分割領域に細分化されて個々の分割領域P(i,j)が規定され、個々の分割領域P(i,j)毎に輝度情報B(n,i,j)が取得される。
取得された各輝度情報B(n,i,j)は、画像処理ユニット内の一時記憶用メモリーに保持したり、画像処理ユニットに接続されたデータ記録媒体に保存したりする。
The inspection target pattern image identified in step s106 is divided into a matrix and luminance information is acquired for each divided region (s107: luminance information acquisition step).
In this step s107, for example, the nth chip D (n) on the substrate W is subdivided into I-row × J-column matrix-like divided areas to define individual divided areas P (i, j). The luminance information B (n, i, j) is acquired for each divided region P (i, j).
The acquired luminance information B (n, i, j) is stored in a temporary storage memory in the image processing unit or stored in a data recording medium connected to the image processing unit.
 なお、n番目のチップD(n)について検査をする場合、当該検査対象パターンの1つ前に取得した検査対象パターン(つまり、n-1番目のチップD(n-1)を、判定基準パターンとして登録しておく(s10A:判定基準パターン登録ステップ)。 When the n-th chip D (n) is inspected, the inspection target pattern (that is, the (n−1) -th chip D (n−1)) acquired immediately before the inspection target pattern is used as the determination reference pattern. (S10A: determination reference pattern registration step).
 そして、n番目のチップD(n)の輝度情報B(n,i,j)と、判定基準パターンとしての「n-1」番目のチップD(n-1)の輝度情報B(n-1,i,j)との輝度差分def(n,i,j)を算出する(s108:輝度差分算出ステップ)。 The luminance information B (n, i, j) of the nth chip D (n) and the luminance information B (n−1) of the “n−1” th chip D (n−1) as the determination reference pattern. , I, j) is calculated (s108: luminance difference calculation step).
 なお、良否判定の基準となる良否判定基準def0(n,i,j)は、予め登録しておく(s10B:良否基準登録ステップ)。 In addition, the pass / fail judgment standard def0 (n, i, j), which is the pass / fail judgment standard, is registered in advance (s10B: pass / fail standard registration step).
 そして、ステップs108で算出した輝度差分def(n,i,j)が、良否判定基準def0(n,i,j)と比較され、n番目のチップD(n)の各分割領域P(i,j)について良否の判定が行う(s109:良否判定ステップ)。 Then, the luminance difference def (n, i, j) calculated in step s108 is compared with a pass / fail judgment criterion def0 (n, i, j), and each divided region P (i, j) of the nth chip D (n) is compared. J) is judged for pass / fail (s109: pass / fail judgment step).
 そして、n番目のチップD(n)の輝度情報B(n,i,j)は、次(n+1番目)の検査に用いる判定基準パターンとして更新し、登録する(s110)。
 
Then, the luminance information B (n, i, j) of the nth chip D (n) is updated and registered as a determination reference pattern used for the next (n + 1) th inspection (s110).
 尚、上述の外観検査方法に係る実施形態においては、上述した外観検査装置に係る形態と同様に、前記オフセット値と、前記倍率計数と、分割領域毎に設定された標準偏差とを登録する判定基準パラメータ登録ステップをさらに有することが好ましい。そうすれば、成膜のむらの影響を受けずに厳密な良否判定が行えるようになる。また、良否判定の基準値を分割領域毎に手作業で設定する必要がなくなり、迅速に再設定し、運用することができる。 In the embodiment according to the above-described appearance inspection method, the determination for registering the offset value, the magnification factor, and the standard deviation set for each divided region is performed in the same manner as in the aspect related to the appearance inspection apparatus described above. Preferably, the method further includes a reference parameter registration step. By doing so, it is possible to perform a strict quality determination without being affected by film formation unevenness. In addition, it is not necessary to manually set the pass / fail judgment reference value for each divided area, so that it can be quickly reset and operated.
 [第2形態]
先の検査対象パターンが良品で、後の検査対象パターンが不良品の場合、後の検査対象パターンは不良品として判定される。しかし、その後の検査対象パターンが良品であっても、差分による判定を行うと、良否判定が正しく行えない。そのため、判定基準パターンを1つ目の検査対象パターンとし、次に取得して良否判定の対象となる検査対象パターンを2つ目の検査対象パターンとし、これら2つの検査対象パターンとは別の、3つ目の検査対象回路パターンを取得する。そして、以下に示すような2段階の判定を行って良否判定が正しく行えるようにする。
[Second form]
When the previous inspection target pattern is a non-defective product and the subsequent inspection target pattern is a defective product, the subsequent inspection target pattern is determined as a defective product. However, even if the subsequent pattern to be inspected is a non-defective product, if the determination is made based on the difference, the quality determination cannot be performed correctly. Therefore, the determination reference pattern is set as the first inspection target pattern, the inspection target pattern to be acquired and passed next is set as the second inspection target pattern, and is different from these two inspection target patterns. A third circuit pattern to be inspected is acquired. Then, the following two-step determination is performed so that the pass / fail determination can be performed correctly.
 本発明にかかる外観検査装置1Bは、上述した外観検査装置1と同じ装置構成をしつつ、第1輝度差分算出部7Aと、第2輝度差分算出部7Bとを備え、良否判定部9に代えて良否判定部9Bを含んで構成されている。 The appearance inspection apparatus 1B according to the present invention has the same apparatus configuration as the appearance inspection apparatus 1 described above, includes a first luminance difference calculation unit 7A and a second luminance difference calculation unit 7B, and replaces the pass / fail determination unit 9. The pass / fail judgment unit 9B is included.
 第1輝度差分算出部7Aは、外観検査装置1の輝度差分算出部7と同じ構成のものであるが、n番目のチップD(n)を検査する際、上述の様にしてn-1番目のチップD(n-1)と比較して輝度情報の差分def(n,i,j)を算出するものである。
第2輝度差分算出部7Bは、外観検査装置1の輝度差分算出部7と同じ構成のものであるが、n番目のチップD(n)を検査する際、n番目のチップD(n)と、n+1番目のチップD(n+1)とを比較して輝度情報の差分def(n+1,i,j)を算出するものである。
The first luminance difference calculation unit 7A has the same configuration as the luminance difference calculation unit 7 of the appearance inspection apparatus 1, but when inspecting the nth chip D (n), the n−1th as described above. The difference def (n, i, j) of luminance information is calculated in comparison with the chip D (n−1).
The second luminance difference calculation unit 7B has the same configuration as the luminance difference calculation unit 7 of the appearance inspection apparatus 1, but when inspecting the nth chip D (n), the second luminance difference calculation unit 7B The difference def (n + 1, i, j) of the luminance information is calculated by comparing with the (n + 1) th chip D (n + 1).
 良否判定部9Bは、さらに第1良否判定部9Aと、第2良否判定部9Bと、統括判定部5Cとを含んで構成されている。
第1良否判定部9Aは、輝度情報の差分def(n,i,j)と良否判定基準def0(n,i,j)とを比較して良否判定を行い、良否判定した結果を第1良否判定結果として出力する。
第2良否判定部9Bは、輝度情報の差分def(n+1,i,j)と良否判定基準def0(n,i,j)とを比較して良否判定を行い、良否判定した結果を第2良否判定結果として出力する。
統括判定部9Cは、第1良否判定部の結果と、第2良否判定部の結果のいずれかが「良」判定なら当該部位は「良品」と判定し、
第1良否判定部の結果と、第2良否判定部の結果のいずれもが「不良」判定なら当該部位は「不良品」と判定するものである。
The pass / fail determination unit 9B further includes a first pass / fail determination unit 9A, a second pass / fail determination unit 9B, and an overall determination unit 5C.
The first pass / fail judgment unit 9A compares the brightness information difference def (n, i, j) with the pass / fail judgment criterion def0 (n, i, j) to make a pass / fail judgment, and the first pass / fail result is determined. Output as judgment result.
The second pass / fail judgment unit 9B compares the brightness information difference def (n + 1, i, j) with the pass / fail judgment criterion def0 (n, i, j) to make a pass / fail judgment, and the result of the pass / fail judgment is the second pass / fail. Output as judgment result.
The overall determination unit 9C determines that the part is “non-defective” if either the result of the first pass / fail determination unit or the result of the second pass / fail determination unit is “good”.
If both the result of the first pass / fail determination unit and the result of the second pass / fail determination unit are “defective” determination, the part is determined to be “defective”.
 本発明にかかる外観検査装置1Bは、n番目のチップD(n)を検査する際、上述の様にしてn-1番目のチップD(n-1)の画像との比較だけでなく、n+1番目のチップD(n+1)の画像との比較結果も考慮して、判定を行うように構成されている。 When inspecting the nth chip D (n), the appearance inspection apparatus 1B according to the present invention not only compares with the image of the n−1th chip D (n−1) as described above, but also adds n + 1. The determination is made in consideration of the comparison result with the image of the second chip D (n + 1).
 図6は、本発明を具現化する形態の別の一例における良否判定フロー図である。
図6には、本発明にかかる外観検査装置1Bに対応する外観検査方法についての良否判定フローが示されている。ステップs105~s108までは、図5を用いて示した外観検査装置1に対応する外観検査方法と同じである。
FIG. 6 is a pass / fail judgment flow chart in another example of a form embodying the present invention.
FIG. 6 shows a pass / fail judgment flow for the appearance inspection method corresponding to the appearance inspection apparatus 1B according to the present invention. Steps s105 to s108 are the same as the appearance inspection method corresponding to the appearance inspection apparatus 1 shown in FIG.
 ステップs108の後、良否判定が行われ(s109B:第1良否判定ステップ)、不良品とされれば、判定基準パターンを更新する(s110)のと並行して、次(n+1番目)の画像を取得し(s125)、検査パターンを特定し(s126)、輝度情報B(n+1,i,j)を取得し(s127)、輝度差分def(n+1,i,j)を算出する(s128)。 After step s108, a pass / fail judgment is made (s109B: first pass / fail judgment step). If it is a defective product, the judgment reference pattern is updated (s110), and the next (n + 1) th image is displayed. Obtaining (s125), specifying the inspection pattern (s126), obtaining the luminance information B (n + 1, i, j) (s127), and calculating the luminance difference def (n + 1, i, j) (s128).
 その後、輝度差分def(n+1,i,j)について良否判定が行われ(s129:第2良否判定ステップ)、def(n+1,i,j)が判定基準以内であれば、n番目のチップD(n)を良品として判定する(s131)。一方、def(n+1,i,j)が判定基準以内でなければ、n番目のチップD(n)を不良品として判定する(s132)。 Thereafter, a pass / fail judgment is performed on the luminance difference def (n + 1, i, j) (s129: second pass / fail judgment step). If def (n + 1, i, j) is within the judgment criteria, the nth chip D ( n) is determined as non-defective (s131). On the other hand, if def (n + 1, i, j) is not within the criterion, the nth chip D (n) is determined as a defective product (s132).
 本発明にかかる外観検査装置1B並びに外観検査方法は、上述の様な構成をしているので、チップD(n-1)として良品、D(n)として不良品、D(n+1)として良品の検査対象パターンが取得されたとしても、それぞれの良否について正しく判定することができる。 Since the appearance inspection apparatus 1B and the appearance inspection method according to the present invention are configured as described above, the chip D (n-1) is a good product, D (n) is a defective product, and D (n + 1) is a good product. Even if the inspection target pattern is acquired, it is possible to correctly determine the quality of each.
 [第3形態]
本発明にかかる外観検査装置1,1B並びに外観検査方法において、取得する検査対象パターンは、隣接する位置に配置されたパターンであることが好ましい。そうすれば、載置テーブルを所定の速度で移動させながら、所定の間隔で照明をストロボ発光させることで、一定のインターバルで画像データが取得できる。このインターバルを、外観検査装置1,1Bの処理タクトに合わせることで、最短の処理タクトで検査を行うことができる。
[Third embodiment]
In the appearance inspection apparatuses 1 and 1B and the appearance inspection method according to the present invention, the acquired inspection target pattern is preferably a pattern arranged at an adjacent position. If it does so, image data can be acquired at a fixed interval by making the illumination strobe light at a predetermined interval while moving the mounting table at a predetermined speed. By adjusting this interval to the processing tact of the appearance inspection apparatuses 1 and 1B, the inspection can be performed with the shortest processing tact.
 [第4形態]
本発明にかかる外観検査装置1,1B並びに外観検査方法により検査を行っている中で、不良品が連続して存在する場合もあり得る。
その様な場合、上述の形態では、「良品」の次の「不良品は」不良品と判定されるが、
「不良品」の後の「不良品」を「良品」と判定してしまうおそれがある。
[Fourth form]
While the inspection is performed by the appearance inspection apparatuses 1 and 1B and the appearance inspection method according to the present invention, defective products may exist continuously.
In such a case, in the above-described form, the “defective product” next to the “defective product” is determined as a defective product.
There is a possibility that a “defective product” after a “defective product” is determined as a “defective product”.
 そのため、最後に(言い換えれば直前に)良品として判定された検査対象パターンを判定基準パターンとして登録しておくことが好ましい。
具体的には、「不良」と判定された場合は、当該パターンを判定基準パターンとして更新せず、その直前に「良品」として判定された検査対象パターンを判定基準パターンとして維持しておく。
そうすることで、不良品が連続して存在したとしても、予め良品として登録されている判定基準パターンと比較して、不良品を「不良」と正しく判定することができる。
Therefore, it is preferable that the inspection target pattern determined as a non-defective product at the end (in other words, immediately before) is registered as a determination reference pattern.
Specifically, when it is determined as “defective”, the pattern is not updated as the determination reference pattern, and the inspection target pattern determined as “non-defective” immediately before is maintained as the determination reference pattern.
By doing so, even if defective products are continuously present, the defective product can be correctly determined as “defective” as compared with the determination reference pattern registered in advance as non-defective products.
 [第5形態]
 上述の第1~第4形態における検査を行うに際し、検査対象となる基板の最初のチップが、良品かどうかを最初に判定する必要がある。
図7は、本発明を具現化する形態のさらに別の一例における良否判定フロー図であり、検査対象となる基板の最初のチップが、良品かどうかを最初に判定する具体的な手順が示されている。
[Fifth embodiment]
When performing the inspection in the first to fourth embodiments, it is necessary to first determine whether or not the first chip of the substrate to be inspected is a non-defective product.
FIG. 7 is a pass / fail judgment flow chart in still another example of the embodiment embodying the present invention, and shows a specific procedure for first judging whether or not the first chip of the substrate to be inspected is a non-defective product. ing.
 先ず、検査開始直後の第1番目~第3番目の検査対象パターンを取得する。
そして、輝度差分算出部において、
第1番目と第2番目の検査対象パターンの輝度情報の差分を第1差分とし、
第1番目と第3番目の検査対象パターンの輝度情報の差分を第2差分として算出する。
First, the first to third inspection target patterns immediately after the start of inspection are acquired.
Then, in the luminance difference calculation unit,
The difference between the luminance information of the first and second inspection target patterns is the first difference,
The difference between the luminance information of the first and third inspection target patterns is calculated as the second difference.
 具体的には、
検査開始直後の第1番目のチップD(1)の画像を取得し(s305)、続いて、第2番目のチップD(2)の画像を取得し(s315)、第3番目のチップD(3)の画像を取得する(s325)。
第1番目のチップD(1)の画像を取得した後、検査パターンを特定し(s306)、輝度情報B(1)を取得する(s307)。
第2番目のチップD(2)の画像を取得した後、検査パターンを特定し(s316)、輝度情報B(2)を取得する(s317)。
第3番目のチップD(3)の画像を取得した後、検査パターンを特定し(s326)、輝度情報B(3)を取得する(s327)。
そして、第1番目のチップD(1)と第2番目のチップD(2)の検査対象パターンの輝度差分を第1差分def(1-2)として算出する(s318)。
また、第1番目のチップD(1)と第3番目のチップD(3)の検査対象パターンの輝度差分を第2差分def(1-3)として算出する(s328)。
In particular,
An image of the first chip D (1) immediately after the start of inspection is acquired (s305), and then an image of the second chip D (2) is acquired (s315), and the third chip D ( The image of 3) is acquired (s325).
After acquiring the image of the first chip D (1), the inspection pattern is specified (s306), and the luminance information B (1) is acquired (s307).
After acquiring the image of the second chip D (2), the inspection pattern is specified (s316), and the luminance information B (2) is acquired (s317).
After acquiring the image of the third chip D (3), the inspection pattern is specified (s326), and the luminance information B (3) is acquired (s327).
Then, the luminance difference between the inspection target patterns of the first chip D (1) and the second chip D (2) is calculated as the first difference def (1-2) (s318).
Further, the luminance difference between the inspection target patterns of the first chip D (1) and the third chip D (3) is calculated as the second difference def (1-3) (s328).
 続いて、第1差分def(f1-2)と第2差分def(1-3)について、良否判定をおこない、第1差分と第2差分との良否判定の結果のいずれかが良判定なら、第1番目の検査対象パターンは良品として、前記判定基準パターン登録部に登録する。 Subsequently, the pass / fail determination is performed on the first difference def (f1-2) and the second difference def (1-3), and if any of the pass / fail determination results of the first difference and the second difference is a pass / fail determination, The first inspection target pattern is registered as a non-defective product in the determination reference pattern registration unit.
 具体的には、
第1差分def(1-2)について良否判定を行い(s319)、「不良品」と判定されれば、第2差分def(1-3)について良否判定を行う(s329)。
ステップs319と、ステップ329のいずれかが「良品」として判定されれば、第1番目の検査対象パターンとなるチップD(1)は、良品として判定(s331)し、判定基準パターン登録部に登録する。
In particular,
A pass / fail determination is made for the first difference def (1-2) (s319), and if it is determined as “defective product”, a pass / fail determination is made for the second difference def (1-3) (s329).
If any of step s319 and step 329 is determined as “non-defective”, the chip D (1) as the first inspection target pattern is determined as non-defective (s331) and registered in the determination reference pattern registration unit. To do.
 もし、ステップs319と、ステップ329のいずれも「不良品」として判定されれば、第1番目のパターンであるチップD(1)は不良品として判定(s332)される。
この場合、引き続いて検査する際に、次の第2番目のパターンが、良品か、不良品かが不明である。そのため、続いて第4番目のチップD(4)の画像を取得し、上述と同様の処理を行い、第2番目と第3番目の検査パターン、第2番目と第4番目の検査パターン同士を比較し、それぞれの差分を算出し、良否判定を行う。そうすることで、従来技術のように予め良品モデルを準備することなく、外観検査を開始できる。
If both step s319 and step 329 are determined as “defective products”, the chip D (1) as the first pattern is determined as a defective product (s332).
In this case, when subsequently inspecting, it is unclear whether the next second pattern is a good product or a defective product. Therefore, an image of the fourth chip D (4) is subsequently acquired, and the same processing as described above is performed, and the second and third inspection patterns, and the second and fourth inspection patterns are obtained. Comparison is made, each difference is calculated, and pass / fail judgment is performed. By doing so, appearance inspection can be started without preparing a good product model as in the prior art.
 或いは、上記第5形態とは別の形態で、第1番目~第3番目の検査パターンを取得するのに加え、さらに第4番目のパターンを取得して、第1番目の検査パターンと、第2番目~第4番目の検査パターンの輝度情報の差分に基づいて良否判定をする形態の外観検査装置及び方法としても良い。そうすれば、検査対象となる基板周辺部分に規定外の成膜むらがあり、第1番目~第3番目の検査パターンを比較するだけでは、第1番目のパターンが良品か判別できずに「不良品」と判定していたケースでも、第4番目のパターンを加えることで良品を正しく「良品」と判定することができるので、より好ましい。 Alternatively, in a form different from the fifth form, in addition to obtaining the first to third inspection patterns, further obtaining a fourth pattern, the first inspection pattern and the first An appearance inspection apparatus and method in which the quality is determined based on the difference in luminance information of the second to fourth inspection patterns may be used. Then, there is non-regular film formation unevenness in the peripheral portion of the substrate to be inspected, and it is not possible to determine whether the first pattern is a non-defective product by simply comparing the first to third inspection patterns. Even in a case where it is determined as “defective product”, it is more preferable that the non-defective product can be correctly determined as “defective product” by adding the fourth pattern.
 [実施例]
撮像カメラ45として、縦・横の有効画素が2352×1728画素の、1インチサイズの受光素子46が組み込まれたものを用いる。
ストロボ照明として、定格出力40W、半値幅約1usecの、キセノンフラッシュランプを用いる。
対物レンズは、複数取り付ける事が出来るので、検出したい欠陥に応じて、適切な対物レンズを選択する事になる。
例えば、
対物レンズ44は、倍率が1倍で、
観察視野は、縦:16.46mm × 横:12.1mm
画素サイズは、7μm
対物レンズ44は、倍率が10倍で、
観察視野は、縦:1.65mm × 横:1.21mm
画素サイズは、0.7μm
となる。

















[Example]
As the imaging camera 45, a camera in which a 1-inch size light receiving element 46 having 2352 × 1728 effective vertical and horizontal effective pixels is incorporated is used.
As the strobe illumination, a xenon flash lamp having a rated output of 40 W and a half width of about 1 usec is used.
Since a plurality of objective lenses can be attached, an appropriate objective lens is selected according to the defect to be detected.
For example,
The objective lens 44 has a magnification of 1 ×
Observation field of view: length: 16.46 mm × width: 12.1 mm
Pixel size is 7μm
The objective lens 44 has a magnification of 10 times.
Observation field of view: length: 1.65 mm × width: 1.21 mm
Pixel size is 0.7μm
It becomes.

















  1  外観検査装置
  1B 外観検査装置
  2  移動ステージ部
  3  照明部
  4  撮像部
  5  画像取得部
  6  検査パターン特定部
  7  輝度情報取得部
  8  輝度差分算出部
  9  良否判定部
  9B 良否判定部
  A  判定基準パターン登録部
  B  良否基準登録部
  W  検査対象となる基板
  V  撮像領域
 20  載置テーブル
 21  X軸スライダー
 22  Y軸スライダー
 23  θ軸テーブル
 31  光源部
 32  放出された光
 41  ハーフミラー
 42  反射された光
 43  鏡筒
 44  対物レンズ
 45  撮像カメラ
 46  受光素子
DESCRIPTION OF SYMBOLS 1 Appearance inspection apparatus 1B Appearance inspection apparatus 2 Moving stage part 3 Illumination part 4 Imaging part 5 Image acquisition part 6 Inspection pattern specific | specification part 7 Luminance information acquisition part 8 Luminance difference calculation part 9 Pass / fail judgment part 9B Pass / fail judgment part A Registration of judgment reference pattern Part B Pass / fail standard registration part W Substrate to be inspected V Imaging area 20 Placement table 21 X-axis slider 22 Y-axis slider 23 θ-axis table 31 Light source part 32 Released light 41 Half mirror 42 Reflected light 43 Lens tube 44 Objective lens 45 Imaging camera 46 Light receiving element

Claims (12)

  1.  複数のパターンが繰り返しパターニングされた基板上の前記パターンの外観を撮像して検査する外観検査装置において、
    前記基板を載置する載置テーブルと、
    前記載置テーブルを所定方向に移動させる移動ステージ部と、
    前記基板に向けて光を照射する照明部と、
    前記基板上のパターンを撮像する撮像部と、
    前記撮像部で撮像された前記基板上のパターンを画像データとして取得する画像取得部とを備え、
     前記画像取得部で取得された前記画像データのうち、少なくとも一部の領域を検査対象パターン画像として特定する検査パターン特定部と、
    前記検査対象パターン画像について、マトリクス状に分割した分割領域毎に輝度情報を取得する輝度情報取得部と、
    先に取得した検査対象パターンを判定基準パターンとして登録する判定基準パターン登録部とを備え、
    前記判定基準パターンと、次に取得して良否判定の対象となる検査対象パターンとを比較して、比較パターンの位置が対応する前記分割領域毎の輝度情報の差分を算出する輝度差分算出部と、
    前記輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対する良否判定の基準値を前記分割領域毎に予め登録しておく良否基準登録部と、
    前記良否判定の基準値に基づいて前記検査対象パターンの前記分割領域毎に良否判定を行う良否判定部とを備えている
    ことを特徴とする外観検査装置。
    In an appearance inspection apparatus that images and inspects the appearance of the pattern on a substrate on which a plurality of patterns are repeatedly patterned,
    A mounting table for mounting the substrate;
    A moving stage unit for moving the mounting table in a predetermined direction;
    An illumination unit that emits light toward the substrate;
    An imaging unit for imaging a pattern on the substrate;
    An image acquisition unit that acquires, as image data, a pattern on the substrate imaged by the imaging unit;
    Among the image data acquired by the image acquisition unit, an inspection pattern specifying unit that specifies at least a part of the region as an inspection target pattern image;
    About the inspection target pattern image, a luminance information acquisition unit that acquires luminance information for each divided region divided into a matrix,
    A determination reference pattern registration unit for registering the previously acquired inspection target pattern as a determination reference pattern;
    A luminance difference calculation unit that compares the determination reference pattern with an inspection target pattern to be acquired next and is a target of pass / fail determination, and calculates a difference in luminance information for each of the divided regions corresponding to the position of the comparison pattern; ,
    A pass / fail criterion registering unit that pre-registers, for each of the divided regions, a reference value for determining pass / fail for the difference in luminance information calculated for each of the divided regions calculated by the brightness difference calculating unit;
    An appearance inspection apparatus comprising: a quality determination unit that performs quality determination for each of the divided regions of the inspection target pattern based on the quality determination reference value.
  2.  前記良否判定の基準値は、
    前記分割領域毎に設定された標準偏差と、
    前記標準偏差に乗ずる倍率計数と、
    前記標準偏差に前記倍率計数を乗じた値に加算するオフセット値とで構成されており、
     前記オフセット値と、前記倍率計数と、分割領域毎に設定された標準偏差とを登録する判定基準パラメータ登録部をさらに備えている
    ことを特徴とする請求項1に記載の外観検査装置。
    The reference value for the pass / fail judgment is:
    A standard deviation set for each of the divided areas;
    Multiplying the standard deviation by a multiplication factor;
    An offset value that is added to a value obtained by multiplying the standard deviation by the magnification factor,
    The visual inspection apparatus according to claim 1, further comprising a determination criterion parameter registration unit that registers the offset value, the magnification count, and a standard deviation set for each divided region.
  3.  前記判定基準パターンを1つ目の検査対象パターンとし、
    前記次に取得して良否判定の対象となる検査対象パターンを2つ目の検査対象パターンとし、
    前記2つの検査対象パターンとは別の、3つ目の検査対象回路パターンを取得し、
     前記輝度差分算出部には、
    前記1つ目と前記2つ目の検査対象パターンの輝度情報の差分を算出する第1輝度差分算出部と、
    前記1つ目と前記3つ目の検査対象パターンの輝度情報の差分を算出する第2輝度差分算出部とが備えられており、
     前記良否判定部には、
    前記第1輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第1良否判定部と、
    前記第2輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第2良否判定部とが備えられており、
    第1良否判定部の結果と、第2良否判定部の結果のいずれかが良判定なら当該部位は良品と判定し、
    第1良否判定部の結果と、第2良否判定部の結果のいずれもが不良判定なら当該部位は不良品と判定する、統括判定部が備えられている
    ことを特徴とする、請求項1又は請求項2に記載の外観検査装置。
    The determination reference pattern as a first inspection target pattern,
    Next, the second inspection target pattern is the inspection target pattern that is acquired next and is the target of pass / fail judgment,
    Obtaining a third inspection target circuit pattern different from the two inspection target patterns;
    In the luminance difference calculation unit,
    A first luminance difference calculation unit for calculating a difference in luminance information between the first and second inspection target patterns;
    A second luminance difference calculation unit for calculating a difference in luminance information between the first and third inspection target patterns;
    In the pass / fail judgment section,
    A first pass / fail determination unit that performs pass / fail determination on a difference in brightness information for each of the divided areas calculated by the first brightness difference calculation unit;
    A second pass / fail determination unit that performs pass / fail determination on the difference in brightness information for each of the divided areas calculated by the second brightness difference calculation unit;
    If one of the result of the first pass / fail determination unit and the result of the second pass / fail determination unit is a pass determination, the part is determined to be a passable product,
    The integrated determination unit is provided, wherein if both the result of the first pass / fail determination unit and the result of the second pass / fail determination unit are determined to be defective, the part is determined to be a defective product. The appearance inspection apparatus according to claim 2.
  4.  検査対象となる前記検査対象パターンが、前記判定基準パターンと隣接している
    ことを特徴とする、請求項1~3のいずれかに記載の外観検査装置。
    The appearance inspection apparatus according to claim 1, wherein the inspection target pattern to be inspected is adjacent to the determination reference pattern.
  5.  検査対象となる前記検査対象パターンが前記良否判定部において良品と判定されれば、当該検査対象パターンと前記判定基準パターンと置換する
    ことを特徴とする、請求項1~4のいずれかに記載の外観検査装置。
    5. The inspection target pattern is replaced with the determination reference pattern if the inspection target pattern to be inspected is determined to be a non-defective product in the quality determination unit. Appearance inspection device.
  6.  検査開始直後の第1番目から第3番目までの検査対象パターンを取得し、
     前記輝度差分算出部では、
    第1番目と第2番目の検査対象パターンの輝度情報の差分を第1差分とし、
    第1番目と第3番目の検査対象パターンの輝度情報の差分を第2差分とし、
     前記良否判定部では、
    前記第1差分と、前記第2差分について、それぞれ良否判定が行われ、
     前記良否判定部で判定された、
    前記第1差分と前記第2差分の良否判定結果のいずれかが良判定なら、第1番目の検査対象パターンは良品として、前記判定基準パターン登録部に登録する
    ことを特徴とする、請求項1~5のいずれかに記載の外観検査装置。
    Acquire the first to third inspection target patterns immediately after the start of inspection,
    In the luminance difference calculation unit,
    The difference between the luminance information of the first and second inspection target patterns is the first difference,
    The difference between the luminance information of the first and third inspection target patterns is the second difference,
    In the pass / fail judgment unit,
    A pass / fail determination is made for each of the first difference and the second difference,
    Determined by the pass / fail determination unit,
    The first inspection target pattern is registered as a non-defective product in the determination reference pattern registration unit if any one of the first difference and the second difference is determined to be good. The visual inspection apparatus according to any one of 1 to 5.
  7.  複数のパターンが繰り返しパターニングされた基板上の前記パターンの外観を撮像して検査する外観検査方法において、
    前記基板を載置テーブルに載置する基板載置ステップと、
    前記載置テーブルを所定方向に移動させるテーブル移動ステップと、
    前記基板に向けて光を照射する照明光照射ステップと、
    前記基板上のパターンを撮像する撮像ステップと、
    前記撮像ステップで撮像された前記基板上のパターンを画像データとして取得する画像取得ステップとを有し、
     前記画像取得ステップで取得された前記画像データのうち、少なくとも一部の領域を検査対象パターン画像として特定する検査パターン特定ステップと、
    前記検査対象パターン画像について、マトリクス状に分割した分割領域毎に輝度情報を取得する輝度情報取得ステップと、
    先に取得した検査対象パターンを判定基準パターンとして登録する判定基準パターン登録ステップとを有し、
    前記判定基準パターンと、次に取得して良否判定の対象となる検査対象パターンとを比較して、前記位置が対応する前記分割領域毎の輝度情報の差分を算出する輝度差分算出ステップと、
    前記輝度差分算出部で算出された前記分割領域毎の輝度情報の差分に対する良否判定の基準値を前記分割領域毎に予め登録しておく良否基準登録ステップと、
    前記良否判定の基準値に基づいて前記検査対象パターンの前記分割領域毎に良否判定を行う良否判定ステップとを有している
    ことを特徴とする外観検査方法。
    In an appearance inspection method for imaging and inspecting the appearance of the pattern on a substrate on which a plurality of patterns are repeatedly patterned,
    A substrate mounting step for mounting the substrate on a mounting table;
    A table moving step for moving the mounting table in a predetermined direction;
    An illumination light irradiation step for irradiating light toward the substrate;
    An imaging step of imaging a pattern on the substrate;
    An image acquisition step of acquiring the pattern on the substrate imaged in the imaging step as image data;
    An inspection pattern specifying step of specifying at least a part of the image data acquired in the image acquisition step as an inspection target pattern image;
    For the inspection target pattern image, a luminance information acquisition step for acquiring luminance information for each divided region divided in a matrix,
    A determination reference pattern registration step for registering the previously acquired inspection target pattern as a determination reference pattern,
    A luminance difference calculation step of comparing the determination reference pattern with an inspection target pattern to be acquired next and being a pass / fail determination target, and calculating a difference in luminance information for each of the divided regions corresponding to the position;
    A pass / fail criterion registration step of pre-registering, for each of the divided regions, a reference value for determining pass / fail for the difference in luminance information for each of the divided regions calculated by the brightness difference calculating unit;
    An appearance inspection method comprising: a quality determination step for performing quality determination for each of the divided regions of the inspection target pattern based on the quality determination reference value.
  8.  前記良否判定の基準値は、
    前記分割領域毎に設定された標準偏差と、
    前記標準偏差に乗ずる倍率計数と、
    前記標準偏差に前記倍率計数を乗じた値に加算するオフセット値とで構成されており、
     前記オフセット値と、前記倍率計数と、分割領域毎に設定された標準偏差とを登録する判定基準パラメータ登録ステップをさらに有している
    ことを特徴とする請求項7に記載の外観検査方法。
    The reference value for the pass / fail judgment is:
    A standard deviation set for each of the divided areas;
    Multiplying the standard deviation by a multiplication factor;
    An offset value that is added to a value obtained by multiplying the standard deviation by the magnification factor,
    The visual inspection method according to claim 7, further comprising a determination criterion parameter registration step of registering the offset value, the magnification count, and a standard deviation set for each divided region.
  9.  前記判定基準パターンを1つ目の検査対象パターンとし、
    前記次に取得して良否判定の対象となる検査対象パターンを2つ目の検査対象パターンとし、
     前記2つの異なる検査対象パターンとは別の、3つ目の検査対象回路パターンを取得するステップを有し、
     前記輝度差分算出ステップには、
    1つ目と2つ目の検査対象パターンの輝度情報の差分を算出する第1輝度差分算出ステップと、
    1つ目と3つ目の検査対象パターンの輝度情報の差分を算出する第2輝度差分算出ステップとを有し、
     前記良否判定ステップには、
    前記第1輝度差分算出ステップで算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第1良否判定ステップと、
    前記第2輝度差分算出ステップで算出された前記分割領域毎の輝度情報の差分に対して良否判定を行う第2良否判定ステップとを有し、
    前記第1良否判定ステップの結果と、前記第2良否判定ステップの結果のいずれかが良判定なら当該部位は良品と判定し、
    前記第1良否判定ステップの結果と、前記第2良否判定ステップの結果のいずれもが不良判定なら当該部位は不良品と判定する、統括判定ステップをさらに有している
    ことを特徴とする、請求項7又は請求項8に記載の外観検査方法。
    The determination reference pattern as a first inspection target pattern,
    Next, the second inspection target pattern is the inspection target pattern that is acquired next and is the target of pass / fail judgment,
    Obtaining a third test target circuit pattern different from the two different test target patterns;
    In the luminance difference calculation step,
    A first luminance difference calculating step for calculating a difference in luminance information between the first and second inspection target patterns;
    A second luminance difference calculating step for calculating a difference between luminance information of the first and third inspection target patterns;
    In the pass / fail judgment step,
    A first pass / fail judgment step for performing pass / fail judgment on the difference of the brightness information for each of the divided areas calculated in the first brightness difference calculating step;
    A second pass / fail determination step for determining pass / fail with respect to the difference in brightness information for each of the divided areas calculated in the second brightness difference calculating step;
    If any one of the result of the first pass / fail determination step and the result of the second pass / fail determination step is a pass determination, the portion is determined to be a passable product,
    The system further comprises an overall determination step in which if both the result of the first pass / fail determination step and the result of the second pass / fail determination step are determined to be defective, the part is determined to be a defective product. Item 7. The appearance inspection method according to item 7 or item 8.
  10.  検査対象となる前記検査対象パターンが、前記判定基準パターンと隣接している
    ことを特徴とする、請求項7~9に記載の外観検査方法。
    10. The appearance inspection method according to claim 7, wherein the inspection target pattern to be inspected is adjacent to the determination reference pattern.
  11.  検査対象となる前記検査対象パターンが前記良否判定ステップにおいて良品と判定されれば、当該検査対象パターンと前記判定基準パターンと置換する
    ことを特徴とする、請求項7~10のいずれかに記載の外観検査方法。
    11. The inspection target pattern is replaced with the determination reference pattern if the inspection target pattern to be inspected is determined to be non-defective in the pass / fail determination step. Appearance inspection method.
  12.  検査開始直後の第1番目から第3番目までの検査対象パターンを取得し、
     前記輝度差分算出ステップでは、
    第1番目と第2番目の検査対象パターンの輝度情報の差分を第1差分とし、
    第1番目と第3番目の検査対象パターンの輝度情報の差分を第2差分とし、
     前記良否判定ステップでは、
    前記第1差分と、前記第2差分について、それぞれ良否判定が行われ、
     前記良否判定ステップで判定された、
    前記第1差分と前記第2差分の良否判定結果のいずれかが良判定なら、第1番目の検査対象パターンは良品として、前記判定基準パターン登録ステップの登録を行う
    ことを特徴とする、請求項7~11のいずれかに記載の外観検査方法。
    Acquire the first to third inspection target patterns immediately after the start of inspection,
    In the luminance difference calculation step,
    The difference between the luminance information of the first and second inspection target patterns is the first difference,
    The difference between the luminance information of the first and third inspection target patterns is the second difference,
    In the pass / fail judgment step,
    A pass / fail determination is made for each of the first difference and the second difference,
    Determined in the pass / fail determination step,
    The registration of the determination reference pattern registration step is performed when one of the first difference and the second difference is determined to be good, and the first inspection target pattern is determined as non-defective. The appearance inspection method according to any one of 7 to 11.
PCT/JP2013/064574 2012-06-04 2013-05-27 Appearance inspection device and appearance inspection method WO2013183471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-126912 2012-06-04
JP2012126912A JP2013250225A (en) 2012-06-04 2012-06-04 Visual inspection device and visual inspection method

Publications (1)

Publication Number Publication Date
WO2013183471A1 true WO2013183471A1 (en) 2013-12-12

Family

ID=49711864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064574 WO2013183471A1 (en) 2012-06-04 2013-05-27 Appearance inspection device and appearance inspection method

Country Status (3)

Country Link
JP (1) JP2013250225A (en)
TW (1) TW201405120A (en)
WO (1) WO2013183471A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012655B2 (en) * 2014-03-28 2016-10-25 東レエンジニアリング株式会社 Inspection condition data generation method and inspection condition data generation system for wafer inspection apparatus
JP6351408B2 (en) * 2014-07-08 2018-07-04 アズビル株式会社 Image inspection apparatus and image inspection method
JP6936577B2 (en) * 2017-01-20 2021-09-15 株式会社Screenホールディングス Misalignment amount acquisition device, inspection device, misalignment amount acquisition method and inspection method
JP7048979B2 (en) * 2019-07-24 2022-04-06 株式会社ホニック Step forming inspection method
JP7353717B2 (en) 2019-11-22 2023-10-02 株式会社指月電機製作所 Inspection method and apparatus for metallized film
CN111239152B (en) * 2020-01-02 2023-11-17 长江存储科技有限责任公司 Wafer detection method, device and equipment
JP2023041413A (en) * 2021-09-13 2023-03-24 ファスフォードテクノロジ株式会社 Die bonding device and manufacturing method of semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205811A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Method for detecting flaw
JPH05281151A (en) * 1992-04-02 1993-10-29 Nippondenso Co Ltd Inspection apparatus for wafer pattern
JPH0618428A (en) * 1992-07-01 1994-01-25 Seiko Epson Corp Defect inspection method an manufacture of semiconductor unit
JPH0727708A (en) * 1993-07-09 1995-01-31 Sony Corp Inspecting method for defect in wafer
JP2000105203A (en) * 1998-07-28 2000-04-11 Hitachi Ltd Defect inspecting device and method
JP2000131240A (en) * 1998-10-28 2000-05-12 Tokyo Seimitsu Co Ltd Pattern comparing method, and device for visual inspection
JP2007149837A (en) * 2005-11-25 2007-06-14 Tokyo Seimitsu Co Ltd Device, system, and method for inspecting image defect
JP2007192759A (en) * 2006-01-23 2007-08-02 Hitachi High-Technologies Corp Flaw inspection device and method
JP2008058111A (en) * 2006-08-30 2008-03-13 Hitachi High-Technologies Corp Defect inspection device and defect inspection method
JP2009002743A (en) * 2007-06-20 2009-01-08 Hitachi High-Technologies Corp Visual inspection method, device therefor, and image processing evaluation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205811A (en) * 1985-03-11 1986-09-12 Hitachi Ltd Method for detecting flaw
JPH05281151A (en) * 1992-04-02 1993-10-29 Nippondenso Co Ltd Inspection apparatus for wafer pattern
JPH0618428A (en) * 1992-07-01 1994-01-25 Seiko Epson Corp Defect inspection method an manufacture of semiconductor unit
JPH0727708A (en) * 1993-07-09 1995-01-31 Sony Corp Inspecting method for defect in wafer
JP2000105203A (en) * 1998-07-28 2000-04-11 Hitachi Ltd Defect inspecting device and method
JP2000131240A (en) * 1998-10-28 2000-05-12 Tokyo Seimitsu Co Ltd Pattern comparing method, and device for visual inspection
JP2007149837A (en) * 2005-11-25 2007-06-14 Tokyo Seimitsu Co Ltd Device, system, and method for inspecting image defect
JP2007192759A (en) * 2006-01-23 2007-08-02 Hitachi High-Technologies Corp Flaw inspection device and method
JP2008058111A (en) * 2006-08-30 2008-03-13 Hitachi High-Technologies Corp Defect inspection device and defect inspection method
JP2009002743A (en) * 2007-06-20 2009-01-08 Hitachi High-Technologies Corp Visual inspection method, device therefor, and image processing evaluation system

Also Published As

Publication number Publication date
JP2013250225A (en) 2013-12-12
TW201405120A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
WO2013183471A1 (en) Appearance inspection device and appearance inspection method
US7460219B2 (en) Method for optically inspecting a wafer by sequentially illuminating with bright and dark field light beams wherein the images from the bright and dark field illuminated regions are spatially offset
US6292260B1 (en) System and method of optically inspecting surface structures on an object
TWI289719B (en) Inspection system imager method for inspecting surfaces for defect and method for fabricating electrical circuit
US20100302364A1 (en) Three dimensional shape measurement apparatus and method
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
JP2004226319A (en) Visual inspection apparatus and image acquisition method
KR20160124029A (en) Inspection method and template
KR20100067659A (en) Monitoring apparatus, monitoring method, inspecting apparatus and inspecting method
JP2002107912A (en) Device and method for pattern inspection
CN111146105B (en) Defect inspection device and method
JP2011123019A (en) Image inspection apparatus
KR101320183B1 (en) Method for inspecting pattern defect, apparatus for inspecting pattern defect, method of manufacturing photomask, and method of manufacturing substrate for display device
KR20120105149A (en) Method and apparatus for automatic optical inspection of flat panel substrate
JP4111613B2 (en) Semiconductor inspection method and apparatus
JP2008068284A (en) Apparatus and method for correcting defect, and method for manufacturing pattern substrate
JP2000283929A (en) Wiring pattern inspection method, and its device
CN114222909A (en) Wafer appearance inspection device and method
JP2008175818A (en) Surface inspection apparatus and method
JP2014534420A (en) Method for generating height information of substrate inspection apparatus
JP2009075068A (en) Device and method for inspecting pattern
JP7362324B2 (en) Inspection method, manufacturing method and inspection device for image display device
JP2006275780A (en) Pattern inspection method
JP2012154895A (en) Defect inspection method and defect inspection device
JPH0522176B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799935

Country of ref document: EP

Kind code of ref document: A1