WO2013182913A2 - Stereolithography system - Google Patents

Stereolithography system Download PDF

Info

Publication number
WO2013182913A2
WO2013182913A2 PCT/IB2013/001873 IB2013001873W WO2013182913A2 WO 2013182913 A2 WO2013182913 A2 WO 2013182913A2 IB 2013001873 W IB2013001873 W IB 2013001873W WO 2013182913 A2 WO2013182913 A2 WO 2013182913A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
axis
stereolithography
construction
stereolithographie
Prior art date
Application number
PCT/IB2013/001873
Other languages
German (de)
French (fr)
Other versions
WO2013182913A3 (en
Inventor
Mark Vehse
Hermann Seitz
Jörg Hennig
Original Assignee
Universität Rostock
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Rostock filed Critical Universität Rostock
Publication of WO2013182913A2 publication Critical patent/WO2013182913A2/en
Publication of WO2013182913A3 publication Critical patent/WO2013182913A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a stereolithography system for the production of.
  • DE 10 2009 009 503 B3 relates to a device and a method for
  • the device consists of a laser for generating a laser beam for the curing of the material and a workpiece carrier which can be directly irradiated by the laser.
  • the device has an optical device, in particular a mirror, with which the laser beam is deflected, so that the workpiece carrier with the laser is also indirectly irradiating bar.
  • Electrode processing body (ECM) for workpieces is described in which the stamp is produced by stereolithography.
  • the electrode body is built up layer by layer in a liquid plastic bath.
  • the desired cross section of a layer of the electrode body is generated by means of a laser, which is movable both in the horizontal plane and adjustable in height.
  • the laser is moved according to the desired contour in the horizontal plane and exposed by appropriate exposure, a portion of the plastic layer of the liquid plastic and cured.
  • Apparatus for producing ceramic shaped bodies by sintering selected locations of a ceramic material with a laser beam to form the shaped body To produce the shaped body, the liquid suspension or plastic mass is applied in layers and the respective layer of the material is sintered with the laser beam at selected locations.
  • the laser beam is preferably controlled by means of the layered design data.
  • the device for the production of ceramic moldings has a
  • Laser unit for generating a laser beam with means for controlled
  • the means for the controlled alignment of the laser beam are preferably designed as laser scanners, wherein the control of the laser scanner is carried out by means of digital design data for the molded part.
  • the laser unit is moved by a robot arm over the surface of the applied layer and imaged the corresponding layer of the molded article to be produced on the applied layer.
  • Solid reinforcing materials are mixed with the liquid medium such that at least a portion of the solid reinforcing agent is disposed in the layer of liquid medium between the upper surface of the last formed layer and the upper surface of the liquid medium.
  • An acoustic field is then generated in the liquid medium such that the acoustic field is present in at least a portion of the layer of liquid medium between the top surface of the last formed layer and the top surface of the liquid medium, thereby curing the liquid medium.
  • US 2004 094 728 A describes an apparatus for sintering and, if appropriate, removal and / or labeling and for subsequent reworking of the finished workpiece by means of electromagnetic radiation bundled.
  • the device consists of a machine housing, in which a space is housed.
  • a scanner In the upper area of the installation space, a scanner is arranged, in which the beam of a sintered laser is coupled.
  • a height-adjustable workpiece platform and a material supply device are provided, with which powdery or also pasty or liquid sintered material can be transported from a storage container into the process area via the workpiece platform.
  • the scanner is movable in the upper region of the installation space, can be moved in one axis, is arranged on a scanner support bridge which can be moved by motor means over the workpiece platform, the scanner support bridge being arranged parallel to one another in two widths the construction vessel corresponding distance from each other, carriers running in the second axis runs.
  • Motorized drive elements of the scanner carrier are connected to a control computer, which is responsible for the entire process sequence. During the construction process, this control computer controls both the movement of the scanner over the workpiece platform and the movement of the scanner mirror in the housing of the scanner.
  • Moving the scanner along the x-axis and the y-axis also allows a displacement of the scanner along the z-axis, allowing the scanner to move over the workpiece platform or in adjacent areas
  • the two mutually parallel carriers run in turn as a bridge to two vertically arranged carrier in the form of linear axes on the right and left wall of the building vessel.
  • the irradiation of the beam of the sintered laser into the area of the scanner carrier takes place parallel to the axes of the suspension of the scanner carrier and via deflection mirrors to the optical input of the scanner.
  • Stereolithography system can lead.
  • the invention according to DE 100 53 741 C1 relates to a device for sintering, ablating and / or inscribing by means of electromagnetic bundled radiation, in particular laser sintering machine and / or laser surface processing machine with a housing space accommodated in a machine housing, in or above which a light guide, in particular a by means of a
  • Workpiece platform is removable as a removable element from the space
  • the height-adjustable workpiece platform, the reservoir and the coater are designed as a contiguous removable from the space process platform exchange unit and to carry out the same or different Machining processes further process platform exchange units of the same or different configurations in the space can be introduced.
  • the cross slide for the movable in all directions scanner is designed as a movable in the y-direction carrier bridge on which a linear actuator for the z-axis is arranged with a laser scanner.
  • This support bridge runs on two parallel to each other, arranged in a width of the construction vessel corresponding distance from each other, movable in x-axis carriers.
  • the laser beam is guided over a variety of mirrors along the carrier and the carrier bridge and the linear drive for the z-axis to the laser scanner.
  • the parallel arranged carrier and the carrier bridge are designed as linear drives.
  • the biologically decomposable polymer implant is described.
  • the method uses a stereolithography apparatus using a
  • 3D CAD image chains of one or more photopolymer and photoinitiator form a layered polymeric prosthetic implant.
  • a photocurable, bioerodible polymer the solution of poly (propylene) fumarate (PPF) and a solvent for adjusting the viscosity of the solution will be described.
  • PPF poly (propylene) fumarate
  • the solution is placed in a container in the stereolithography apparatus (a commercially available SLA 250 stereolithography unit).
  • stereolithography apparatus a commercially available SLA 250 stereolithography unit.
  • Container includes a z-axis movable structural panel for supporting each of the covalently bonded layers of the polymeric prosthetic implant exposed to UV light energy in successive layers of the solution.
  • the UV light energy is generated by means of a commercially available UV laser, whereby the beam of the laser is controlled by a vector-based scanner mirror in the x- and y-axis.
  • Axis is movably arranged above the container (www.klartext-pr.de / .... / article / The culture of prototyping .pdf).
  • Beam conditioning (expander, shutter, etc.), laser scanner for beam deflection and F-theta lens for offset compensation of the laser focus described.
  • Laser beam is guided over two rotating mirrors to reach the entire construction field. If you need a high resolution very exact motors are needed. In addition, the focus must be constantly corrected by the F-theta lens, so that the working distance varies depending on the laser beam / surface angle. An additional disadvantage is that the laser beam penetrates very obliquely into the polymer in the edge region. The scanner, the F-theta lens and the sufficient
  • Powerful beam source are very expensive to buy. Due to the constantly changing angle substrate / laser beam, no teleoptics or replaceable optics can be positioned above the bath.
  • the device shown in US 55 95 703 A for the manufacture of an object by stereolithography is of a per se known construction.
  • This apparatus mainly comprises a container filled with a liquid photopolymerizable prepolymer, a container mounted therein
  • Prepolymer can be moved up and down, and a
  • Laser beam source which can be moved by a mechanism, also not shown, according to a certain pattern over the surface of the liquid prepolymer.
  • a 2D optomechanical laser scanner is a solution in which the laser beam is not controlled by a scanner with rotating mirrors, but rather by a plurality of parallel-displaceable deflection mirrors (Gandhi, PS et al., Micromech., Microeng., No 20, pp. 1 1, 2010). Due to the guidance over right angles, the laser focus can always be positioned vertically above the construction field.
  • the decisive disadvantages are the number of deflection mirrors required. Since the deflecting mirrors are guided dynamically, a high degree of precision is required in each mirror drive and also in the flatness of the mirror. Furthermore, a loss of the laser power of approx. 10% is to be expected on every reflecting surface. Therefore, a powerful beam source is needed here as well. Both Factors, precision at several points and laser power drive up the costs for the system technology.
  • a further development with regard to the production of several identical components parallel to one another is provided by the design with several parallel-guided glass fibers on an X-Y plotter.
  • the laser is controlled via shutters and beam guiding optics.
  • a glass fiber bundle then multiplies the beam source and via an X-Y plotter system, the contour is processed line by line or via vectors.
  • the multiplication achieves the construction of several identical components in parallel with normal incidence of the laser radiation.
  • Multiplying the beam source allows for parallel fabrication of components (K.lkuta et al., "New Micro Stereo Lithography for freely movable 3D Microstructure", IEEE, pp. 290-295, 1998).
  • the processing speed compared to a scanner optics will hardly increase.
  • the components cause the splitting of the laser beam from the beam source (the collimator) as well as the exact uniform distribution of the laser power on the individual fiber strands. If not every fiber delivers identical parameters, the quality / dimensional accuracy of the components suffers.
  • the use of fibers with UV lasers often leads to one
  • the Colamm method avoids the problems of re-coating with a wiper.
  • the resin is exposed through a window at the bottom of the vessel.
  • the component is "glued" to the build platform and then lifted up layer by layer.It is important here that the hardened resin does not adhere to the glass pane.
  • the laser beam is supplied via scanner or glass fiber and there are also the disadvantages described above with this method.
  • Digital Light Processing is another modification of stereolithography.
  • the polymerization of the resin takes place here by visible, non-coherent light.
  • the required pattern is imaged directly onto the resin either through micromirrors or through a dynamic LCD mask.
  • the entire layer is cured at the same time.
  • the disadvantage of this method is that the size of the construction field or the number of pixels (pixels) are fixed. The higher the resolution of the structures to be built, the smaller they are
  • optical beam conditioning devices such as expanders and shutters
  • beam deflection systems such as laser scanners, rotating or parallel
  • slidable deflection mirrors systems for offset compensation of the beam, such as F-theta lenses or devices for beam guidance, such as glass fibers, on.
  • the stereolithography equipment in particular the micro stereolithography equipment costly and expensive and limit the applications of stereolithography.
  • high-performance lasers must be used, which in turn are also very expensive due to the losses occurring in the jet preparation.
  • the object of the invention is to create a new suspension of the radiation source and a much simplified beam shaping and steering for stereolithography equipment, with significant cost savings through the reduction of components and sensitive components while increasing the
  • the object is achieved by a stereolithography system that from a receiving block (12) for movable in y- and x-axis
  • Laser source (6) with the beam exit directed vertically downwards in the direction of the resin-filled building vessel (1), via a fastening means (5) on
  • the supply can be easily ensured by trailing cable.
  • the focusing optics (7) can be designed as exchangeable focusing optics (7). This makes it possible to produce different line widths in the photopolymerization and to optimize the resolution and the processing speed. In the case of a static optics, only one resolution is fixed per job. It exists however also the possibility to replace this static optics by a motor-driven telescope or by a powered nosepiece and thus dynamically adjust the stroke width of the laser beam while modulating the laser power during the construction process. As a result, the processing speed is greatly increased.
  • FIG. 1 is a schematic representation of the stereolithography system
  • FIG. 1 shows a schematic representation with the essential components for the stereolithography according to the invention.
  • a linear axis system is mounted on a granite receiving block (12).
  • the laser source (6) is mounted via a suitable fastening element (5) so that the beam exit of the laser beam perpendicular to the resin (10 ) filled construction vessel (1) shows.
  • a diode laser is used as the laser source (6).
  • the holder with the integrated focusing optics (7) is fixed, which focuses the exiting laser light (8) directly in the required plane.
  • the layered structure of the component (9) either by line-wise or vectorial method of the laser source (6) respectively.
  • the laser beam hardens the liquid photopolymer.
  • Liquid photopolymer is cured by a laser beam in thin layers with a standard layer thickness in the range of 0.05-0.25 mm, in micro-stereolithography also up to 1 ⁇ m.
  • the process takes place in the construction vessel (1) which is filled with the photopolymer, in this example with epoxy resin.
  • the construction vessel (1) the movable in z-axis construction platform (2) in the epoxy resin by dipping the construction platform (2) in the z-axis, then by the amount of
  • the epoxy resin Layer thickness in the z-axis moved up and applied with a wiper, the epoxy resin.
  • the laser source (6) is guided over the build platform (2) by means of the x and y axes (4, 3) and the epoxy resin is cured by the laser beam.
  • the laser source (6) is moved line by line over the construction field and modulated position-dependent via its digital input.
  • the workpiece is lowered a few millimeters into the liquid and returned to a position which is lower than the previous one by the amount of a layer thickness.
  • the epoxy over the component is then evenly distributed by a wiper.
  • the laser source (6) travels on the new layer over the surfaces to be cured by means of the crossed arrangement of the x and y axes (4,3), controlled by a computer. After curing, the next step takes place so that gradually a three-dimensional part is created.
  • support structures are typically also included in the fabrication because the laser-cured resin is still relatively soft and certain features (eg, overhangs) are to be securely fixed during the build process.
  • the building platform (2) with the / the part (s) from the construction vessel (1) is moved out.
  • the model is removed from the build platform, from the
  • the laser source (6) and the focusing optics (7) are moved directly over the building vessel (1) and so over the entire construction field by means of linear axes, wherein the beam exit and so that the laser beam always remains vertically above the construction vessel.
  • the system according to the invention does not require deflecting mirrors, glass fibers or similar beam-influencing components.
  • Stereolithography system is thus significantly simpler with otherwise identical performance and requires laser sources with significantly lower performance (diode laser). This creates a significant cost advantage over all previous laser-based stereolithography systems. Furthermore, through the use of only two linear drives, which also still independent
  • the vertical angle of incidence of the laser radiation avoids the usual laser scanner procedure exposure with a non-perpendicular angle of incidence in the edge region of the construction field and thus ensures a consistently high manufacturing precision over the entire construction field. Furthermore, there is no aging effect on functional components (e.g., fiber optics), and the system is easy to maintain because a replaced laser does not need to be adjusted to the optical system.
  • functional components e.g., fiber optics
  • the system according to the invention can likewise be used in laser sintering and in laser cutting and labeling by means of laser sources.

Abstract

The invention relates to a device for producing three-dimensional components by a process of stereolithography. The stereolithography system consists of a receiving block (12) for receiving the linear drives (34), which can move as an intersecting arrangement in a y- and x-axis, and for receiving a construction vessel (1) having an integrated construction platform (2) that can move in a z-axis, the intersecting arrangement of the linear drives for the y-axis (3) and for the x-axis (4) being arranged in vertical direction, perpendicularly above the construction vessel (1). A laser source (6) is directed by the beam outlet perpendicularly downwards towards the construction vessel (1) filled with resin, and is secured to the linear drive for the x-axis (4) by a securing means (5); and integrated focussing optics (7) can be attached directly to the laser source (6) via a holding element (9).

Description

Stereolithographie- System  Stereolithography system
Die Erfindung betrifft ein Stereolithographie- System zur Herstellung von. The invention relates to a stereolithography system for the production of.
dreidimensionalen Bauteilen. three-dimensional components.
Die DE 10 2009 009 503 B3 betrifft eine Vorrichtung und ein Verfahren zur DE 10 2009 009 503 B3 relates to a device and a method for
Herstellung eines Werkstücks gemäß eines Rapid-Prototyping-Verfahrens mit einem Laser zum Erzeugen eines Laserstrahls für das Aushärten eines Werkstoffs und einem Werkstückträger, der durch den Laser aus einem vorgegebenen Producing a workpiece according to a rapid prototyping method with a laser for generating a laser beam for curing a material and a workpiece carrier, which by the laser from a predetermined
Raumwinkelbereich direkt bestrahlbar ist. Die Vorrichtung besteht aus einem Laser zum Erzeugen eines Laserstrahls für das Aushärten des Werkstoffs und einem Werkstückträger, der durch den Laser direkt bestrahlbar ist. Darüber hinaus weist die Vorrichtung eine Optikeinrichtung, insbesondere einen Spiegel auf, mit der der Laserstrahl umgelenkt wird, so dass der Werkstückträger mit dem Laser auch indirekt bestrahl bar ist. Solid angle range is directly irradiated. The device consists of a laser for generating a laser beam for the curing of the material and a workpiece carrier which can be directly irradiated by the laser. In addition, the device has an optical device, in particular a mirror, with which the laser beam is deflected, so that the workpiece carrier with the laser is also indirectly irradiating bar.
In der DE 10 2004 057 527 B4 wird ein Verfahren zur Herstellung eines  In DE 10 2004 057 527 B4 a process for the preparation of a
Elektrodenkörpers für die elektro- chemische Bearbeitung (ECM) für Werkstücke beschrieben, wobei der Stempel im Stereolithographie-Verfahren hergestellt wird. Im Rapid Prototyping- Verfahren (RP) wird der Elektrodenkörper in einem flüssige Kunststoffbad schichtweise aufgebaut. Hierzu wird mittels eines Lasers, der sowohl in der Horizontalebene verfahrbar als auch höhenverstellbar ist, der gewünschte Querschnitt einer Schicht des Elektrodenkörpers erzeugt. Dazu wird der Laser entsprechend der gewünschten Kontur in der Horizontalebene verfahren und durch entsprechendes Belichten ein Teil der Kunststoffschicht des flüssigen Kunststoffs belichtet und damit ausgehärtet. Electrode processing body (ECM) for workpieces is described in which the stamp is produced by stereolithography. In the rapid prototyping process (RP), the electrode body is built up layer by layer in a liquid plastic bath. For this purpose, the desired cross section of a layer of the electrode body is generated by means of a laser, which is movable both in the horizontal plane and adjustable in height. For this purpose, the laser is moved according to the desired contour in the horizontal plane and exposed by appropriate exposure, a portion of the plastic layer of the liquid plastic and cured.
Die Erfindung gemäß US 2003 001313 A offenbart ein Verfahren und eine  The invention according to US 2003 001313 A discloses a method and a
Vorrichtung zur Herstellung von keramischen Formkörpern durch Sintern von ausgewählten Stellen eines keramischen Materials mit einem Laserstrahl zur Bildung des Formkörpers. Zur Herstellung des Formkörpers wird die flüssige Suspension oder plastische Masse schichtweise aufgetragen und die jeweilige Schicht des Materials mit dem Laserstrahl an ausgewählten Stellen gesintert. Hierbei wird der Laserstrahl vorzugsweise mittels der schichtweisen Konstruktionsdaten gesteuert. Die Vorrichtung zur Herstellung von keramischen Formkörpern hat eine Apparatus for producing ceramic shaped bodies by sintering selected locations of a ceramic material with a laser beam to form the shaped body. To produce the shaped body, the liquid suspension or plastic mass is applied in layers and the respective layer of the material is sintered with the laser beam at selected locations. In this case, the laser beam is preferably controlled by means of the layered design data. The device for the production of ceramic moldings has a
Auflagefläche, eine Auftragseinheit zum Auftragen von Schichten eines keramischen Materials, eine Trocknungseinheit für die aufgetragenen Schichten und eine Support surface, an application unit for applying layers of a ceramic Materials, a drying unit for the applied layers and a
Lasereinheit zur Erzeugung eines Laserstrahls mit Mitteln zum gesteuerten Laser unit for generating a laser beam with means for controlled
Ausrichten des Laserstrahls auf ausgewählte Stellen einer jeweiligen Schicht des keramischen Materials, um das bestrahlte Material zu sintern und den Formkörper zu bilden. Die Mittel zum gesteuerten Ausrichten des Laserstrahls sind vorzugsweise als Laserscanner ausgebildet, wobei die Steuerung des Laserscanners mittels digitaler Konstruktionsdaten für das Formteil erfolgt. Damit kann eine Herstellung eines Prototyps direkt aus den Konstruktionsdaten erfolgen. Die Lasereinheit wird von einem Roboterarm über die Oberfläche der aufgetragenen Schicht bewegt und die entsprechende Schicht des herzustellenden Formkörpers auf der aufgetragenen Schicht abgebildet. Aligning the laser beam to selected locations of a respective layer of the ceramic material to sinter the irradiated material and form the shaped body. The means for the controlled alignment of the laser beam are preferably designed as laser scanners, wherein the control of the laser scanner is carried out by means of digital design data for the molded part. Thus, a production of a prototype can be done directly from the design data. The laser unit is moved by a robot arm over the surface of the applied layer and imaged the corresponding layer of the molded article to be produced on the applied layer.
Die US 2002 185 782 (A1 ) beschreibt ein Verfahren zum Herstellen eines  US 2002 185 782 (A1) describes a method for producing a
dreidimensionalen Objektes durch Stereolithographie. Feste Verstärkungsmaterialien werden mit dem flüssigen Medium gemischt, so dass zumindest ein Teil der festen Verstärkungsmittel in der Schicht des flüssigen Mediums zwischen der oberen Fläche der zuletzt gebildeten Schicht und der oberen Oberfläche des flüssigen Mediums angeordnet ist. Ein akustisches Feld wird dann in dem flüssigen Medium erzeugt, so dass das akustische Feld in mindestens einem Teil der Schicht des flüssigen Mediums zwischen der oberen Fläche der zuletzt gebildeten Schicht und der oberen Oberfläche des flüssigen Mediums vorhanden ist, wobei das flüssige Medium ausgehärtet wird. three-dimensional object by stereolithography. Solid reinforcing materials are mixed with the liquid medium such that at least a portion of the solid reinforcing agent is disposed in the layer of liquid medium between the upper surface of the last formed layer and the upper surface of the liquid medium. An acoustic field is then generated in the liquid medium such that the acoustic field is present in at least a portion of the layer of liquid medium between the top surface of the last formed layer and the top surface of the liquid medium, thereby curing the liquid medium.
In der US 2004 094 728 A wird eine Vorrichtung zum Sintern und gegebenenfalls Abtragen und/oder Beschriften und zur anschließenden Überarbeitung des fertiggestellten Werkstückes mittels elektromagnetischer gebündelter Strahlung beschrieben. Die Vorrichtung besteht aus einem Maschinengehäuse, in dem ein Bauraum untergebracht ist. Im oberen Bereich des Bauraums ist ein Scanner angeordnet, in dem der Strahl eines Sinter-Lasers eingekoppelt wird. Im unteren Bereich des Bauraums sind eine höhenverfahrbare Werkstückplattform sowie eine Materialzuführungseinrichtung vorgesehen, mit der pulverartiges oder auch pastöses oder flüssiges Sintermaterial aus einem Vorratsbehälter in den Prozessbereich über die Werkstückplattform transportiert werden kann. Der Scanner ist im oberen Bereich des Bauraums beweglich, in einer Achse verfahrbar, an einer über der Werkstückplattform motorisch verfahrbaren Scanner- Trägerbrücke angeordnet, wobei der Scanner-Trägerbrücke auf zwei parallel zueinander, in einem der Breite des Baugefäßes entsprechenden Abstand voneinander, Trägern in der zweiten Achse verfahrbar läuft. Motorische Antriebselemente des Scanner- Trägers sind an einen Steuerungsrechner angeschlossen, der für den gesamten Prozessablauf zuständig ist. Dieser Steuerungsrechner steuert während des Bauprozesses sowohl die Bewegung des Scanners über die Werkstückplattform als auch die Bewegung des Scannerspiegels im Gehäuse des Scanners. Neben einer möglichen US 2004 094 728 A describes an apparatus for sintering and, if appropriate, removal and / or labeling and for subsequent reworking of the finished workpiece by means of electromagnetic radiation bundled. The device consists of a machine housing, in which a space is housed. In the upper area of the installation space, a scanner is arranged, in which the beam of a sintered laser is coupled. In the lower region of the construction space, a height-adjustable workpiece platform and a material supply device are provided, with which powdery or also pasty or liquid sintered material can be transported from a storage container into the process area via the workpiece platform. The scanner is movable in the upper region of the installation space, can be moved in one axis, is arranged on a scanner support bridge which can be moved by motor means over the workpiece platform, the scanner support bridge being arranged parallel to one another in two widths the construction vessel corresponding distance from each other, carriers running in the second axis runs. Motorized drive elements of the scanner carrier are connected to a control computer, which is responsible for the entire process sequence. During the construction process, this control computer controls both the movement of the scanner over the workpiece platform and the movement of the scanner mirror in the housing of the scanner. In addition to a possible
Verschiebung des Scanners entlang der x-Achse und der y-Achse ist auch eine Verschiebung des Scanners entlang der z-Achse möglich, wodurch der Scanner über die Werkstückplattform oder auch in daneben liegenden Bereichen Moving the scanner along the x-axis and the y-axis also allows a displacement of the scanner along the z-axis, allowing the scanner to move over the workpiece platform or in adjacent areas
höhenverfahrbar ist. Dazu laufen die zwei parallel zueinander angeordneten Träger wiederum als Brücke auf jeweils zwei vertikal angeordnete Träger in Form von Linearachsen an der rechten und linken Wand des Baugefäßes. Die Einstrahlung des Strahls des Sinter-Lasers in den Bereich des Scanner-Trägers erfolgt parallel zu den Achsen der Aufhängung des Scanner-Trägers und über Ablenkspiegel zum optischen Eingang des Scanners. is height-adjustable. For this purpose, the two mutually parallel carriers run in turn as a bridge to two vertically arranged carrier in the form of linear axes on the right and left wall of the building vessel. The irradiation of the beam of the sintered laser into the area of the scanner carrier takes place parallel to the axes of the suspension of the scanner carrier and via deflection mirrors to the optical input of the scanner.
Neben den hohen Aufwand durch die Anordnung der drei Linearachsen bei der Zwei- Achs- Verfahrbarkeit beziehungsweise der sieben Linearachsen bei der Drei- Achs- Verfahrbarkeit und den Einsatz von vier Spiegel entstehen Probleme bei der  In addition to the high expenditure due to the arrangement of the three linear axes in the two-axis mobility or the seven linear axes in the three-axis mobility and the use of four mirrors problems arise in the
Synchronisation der Motoren der Linearachsen, die bis zum Totalausfall der Synchronization of the motors of the linear axes, which until the total failure of the
Stereolithographie- Anlage führen können. Stereolithography system can lead.
Die Erfindung gemäß DE 100 53 741 C1 betrifft eine Vorrichtung zum Sintern, Abtragen und/oder Beschriften mittels elektromagnetischer gebündelter Strahlung, insbesondere Laser-Sintermaschine und/oder Laser- Oberflächenbearbeitungsmaschine mit einem in einem Maschinengehäuse untergebrachten Bauraum, in oder über welchem eine Lichtleiteinrichtung, insbesondere ein mittels einer  The invention according to DE 100 53 741 C1 relates to a device for sintering, ablating and / or inscribing by means of electromagnetic bundled radiation, in particular laser sintering machine and / or laser surface processing machine with a housing space accommodated in a machine housing, in or above which a light guide, in particular a by means of a
Kreuzschlittenanordnung in alle Richtungen verfahrbaren Scanner, in dem der Strahl einer Sinter-Energiequelle eingekoppelt wird, eine höhenverfahrbare Cross slide arrangement in all directions movable scanner, in which the beam of a sintered energy source is coupled, a height-adjustable
Werkstückplattform sowie eine Materialzuführungseinrichtung mit einem zur Workpiece platform and a material supply device with a for
Zuführung von Sinter-Material aus einem Vorratsbehälter in den Prozessbereich über der Werkstückplattform dienenden Beschichter angeordnet sind, wobei die Supplying sintered material from a reservoir in the process area above the workpiece platform serving coater are arranged, wherein the
Werkstückplattform als Wechselelement aus dem Bauraum entnehmbar ist, wobei die höhenverfahrbare Werkstückplattform, der Vorratsbehälter und der Beschichter als zusammenhängend aus dem Bauraum entnehmbare Prozessplattform- Wechseleinheit ausgebildet sind und zur Durchführung gleicher oder anderer Bearbeitungsprozesse weitere Prozessplattform-Wechseleinheiten gleicher oder unterschiedlicher Ausbildungen in den Bauraum einbringbar sind. Workpiece platform is removable as a removable element from the space, the height-adjustable workpiece platform, the reservoir and the coater are designed as a contiguous removable from the space process platform exchange unit and to carry out the same or different Machining processes further process platform exchange units of the same or different configurations in the space can be introduced.
Der Kreuzschlittens für den in alle Richtungen verfahrbaren Scanner ist als eine in y- Richtung verfahrbare Trägerbrücke ausgebildet, an der ein Linearantrieb für die z- Achse mit einem Laserscanner angeordnet ist. Diese Trägerbrücke läuft auf zwei parallel zueinander, in einem der Breite des Baugefäßes entsprechende Abstand voneinander angeordneten, in x- Achse verfahrbaren Trägern. Der Laserstrahl wird über eine Vielzahl von Spiegeln entlang der Träger und der Trägerbrücke sowie des Linearantrieb für die z- Achse zum Laserscanner geführt. Die parallel angeordneten Träger und die Trägerbrücke sind als Linearantriebe ausgebildet. The cross slide for the movable in all directions scanner is designed as a movable in the y-direction carrier bridge on which a linear actuator for the z-axis is arranged with a laser scanner. This support bridge runs on two parallel to each other, arranged in a width of the construction vessel corresponding distance from each other, movable in x-axis carriers. The laser beam is guided over a variety of mirrors along the carrier and the carrier bridge and the linear drive for the z-axis to the laser scanner. The parallel arranged carrier and the carrier bridge are designed as linear drives.
Wie in der Erfindung gemäß US 2004 094 728 A entstehen neben dem hohen Aufwand durch die Anordnung der vier Linearantriebe und den Einsatz von fünf Spiegeln Problem bei der Synchronisation der Motoren der Linearantriebe, die bis zum Totalausfall der Stereolithographie- Anlage führen können. Des Weiteren müssen in dieser Lösung leistungsstarke Laser mit einem hohen Energie- und Kostenaufwand zum Ausgleich des Verlustes an Energie durch die Spiegel eingesetzt werden As in the invention according to US 2004 094 728 A arise in addition to the high cost of the arrangement of the four linear actuators and the use of five mirrors problem in the synchronization of the motors of the linear drives, which can lead to total failure of stereolithography system. Furthermore, this solution requires the use of powerful lasers with high energy and cost to compensate for the loss of energy through the mirrors
In der US 2002 171 178 (A1 ) wird ein Verfahren zur Herstellung eines  In US 2002 171 178 (A1) is a method for producing a
dreidimensionalen, prothetischen und ein poröses Netzwerk aufweisendes three-dimensional, prosthetic and porous network
Implantats aus biologisch zersetzbaren Polymer beschrieben Das Verfahren verwendet eine Stereolithographie- Vorrichtung, wobei mittels eines The biologically decomposable polymer implant is described. The method uses a stereolithography apparatus using a
dreidimensionalen CAD-Bildes Ketten von einem oder mehreren Photopolymerren und einem Photoinitiator ein aus Schichten zusammengesetztes, polymeres prothetisches Implantats bilden . Als ein photohärtbares, bioerodierbares Polymer wird die Lösung aus Poly (propylen)-fumarat (PPF) und einem Lösungsmittel zur Einstellung der Viskosität der Lösung beschrieben. Während des Herstellungsprozesses wird die Lösung in einem Behälter in der Stereolithographie- Vorrichtung (einer handelsüblichen Stereolithographie-Anlage SLA 250) angeordnet. Der 3D CAD image chains of one or more photopolymer and photoinitiator form a layered polymeric prosthetic implant. As a photocurable, bioerodible polymer, the solution of poly (propylene) fumarate (PPF) and a solvent for adjusting the viscosity of the solution will be described. During the manufacturing process, the solution is placed in a container in the stereolithography apparatus (a commercially available SLA 250 stereolithography unit). Of the
Behälter enthält eine in z- Achse bewegliche Bauplatte zum Tragen jedes der kovalent gebundenen Schichten des polymeren prothetischen Implantats, die der UV-Lichtenergie bei aufeinander folgenden Schichten der Lösung ausgesetzt werden. Die UV- Lichtenergie wird mittels eines handelsüblichen UV- Lasers erzeugt, wobei der Strahl des Lasers über Scannerspiegel auf Vektorbasis in der in x- und y- Achse bewegbar über dem Behälter angeordnet ist (www. klartext-pr.de/.... /artikel/Die Kultur der Prototypenherstellung .pdf). Container includes a z-axis movable structural panel for supporting each of the covalently bonded layers of the polymeric prosthetic implant exposed to UV light energy in successive layers of the solution. The UV light energy is generated by means of a commercially available UV laser, whereby the beam of the laser is controlled by a vector-based scanner mirror in the x- and y-axis. Axis is movably arranged above the container (www.klartext-pr.de / .... / article / The culture of prototyping .pdf).
In der US 45.753.30B1 wird eine Anlage mit externer Laserquelle, optischer  In US 45.753.30B1 is a system with external laser source, optical
Strahlaufbereitung (Expander, Shutter, etc.), Laserscanner zur Strahlablenkung und F-Theta-Linse zur Versatzkompensation des Laserfokus beschrieben. Der Beam conditioning (expander, shutter, etc.), laser scanner for beam deflection and F-theta lens for offset compensation of the laser focus described. Of the
Laserstrahl wird über zwei rotierende Spiegel geführt, um das gesamte Baufeld zu erreichen. Benötigt man eine hohe Auflösung werden sehr exakte Motoren benötigt. Außerdem muss der Fokus ständig durch die F-Theta-Linse korrigiert werden, so dass der Arbeitsabstand je nach Winkel Laserstrahl/Oberfläche variiert. Ein zusätzlicher Nachteil ist, dass der Laserstrahl im Randbereich sehr schräg in das Polymer eindringt. Der Scanner, die F-Theta-Linse und die ausreichend Laser beam is guided over two rotating mirrors to reach the entire construction field. If you need a high resolution very exact motors are needed. In addition, the focus must be constantly corrected by the F-theta lens, so that the working distance varies depending on the laser beam / surface angle. An additional disadvantage is that the laser beam penetrates very obliquely into the polymer in the edge region. The scanner, the F-theta lens and the sufficient
leistungsstarke Strahlquelle sind in ihrer Anschaffung sehr teuer. Aufgrund der sich ständig ändernden Winkel Substrat/Laserstrahl kann auch keine Teleoptik oder austauschbare Optik über dem Bad positioniert werden. Powerful beam source are very expensive to buy. Due to the constantly changing angle substrate / laser beam, no teleoptics or replaceable optics can be positioned above the bath.
Die in der US 55 95 703 A dargestellte Vorrichtung für das Fertigen eines Objekts durch Stereolithographie ist von einer an sich bekannten Konstruktion.  The device shown in US 55 95 703 A for the manufacture of an object by stereolithography is of a per se known construction.
Diese Vorrichtung umfasst in der Hauptsache einen Behälter, gefüllt mit einem flüssigen fotopolymerisierbaren Präpolymer, ein darin angebrachtes  This apparatus mainly comprises a container filled with a liquid photopolymerizable prepolymer, a container mounted therein
Plateau, das durch einen nicht dargestellten Mechanismus in dem flüssigen  Plateau, which by a mechanism not shown in the liquid
Präpolymer auf- und abwärts bewegt werden kann, und eine  Prepolymer can be moved up and down, and a
Laserstrahlquelle, die durch einen ebenfalls nicht dargestellten Mechanismus gemäß einem bestimmten Muster über die Oberfläche des flüssigen Präpolymers bewegt werden kann.  Laser beam source, which can be moved by a mechanism, also not shown, according to a certain pattern over the surface of the liquid prepolymer.
Als ein 2D-optomechanisch Laserscanner wird eine Lösung bezeichnet, bei der der Laserstrahl nicht durch einen Scanner mit rotierenden Spiegeln gesteuert wird, sondern über mehrere parallel verschiebbare Umlenkspiegel (Gandhi, P.S. et. al. Micromech. Microeng., no 20, pp 1 -1 1 , 2010). Durch die Führung über rechte Winkel kann der Laserfokus immer senkrecht über dem Baufeld positioniert werden. Die entscheidenden Nachteile sind die Anzahl der benötigten Umlenkspiegel. Da die Umlenkspiegel dynamisch geführt werden, wird ein hohes Maß an Präzision in jedem Spiegelantrieb und auch in der Planheit des Spiegels benötigt. Des Weiteren ist auf jeder spiegelnden Oberfläche mit einem Verlust der Laserleistung von ca. 10% zu rechnen. Daher wird auch hier eine leistungsstarke Strahlquelle benötigt. Beide Faktoren, Präzision an mehreren Stellen und Laserleistung, treiben die Kosten für die Anlagentechnik in die Höhe. A 2D optomechanical laser scanner is a solution in which the laser beam is not controlled by a scanner with rotating mirrors, but rather by a plurality of parallel-displaceable deflection mirrors (Gandhi, PS et al., Micromech., Microeng., No 20, pp. 1 1, 2010). Due to the guidance over right angles, the laser focus can always be positioned vertically above the construction field. The decisive disadvantages are the number of deflection mirrors required. Since the deflecting mirrors are guided dynamically, a high degree of precision is required in each mirror drive and also in the flatness of the mirror. Furthermore, a loss of the laser power of approx. 10% is to be expected on every reflecting surface. Therefore, a powerful beam source is needed here as well. Both Factors, precision at several points and laser power drive up the costs for the system technology.
Eine Weiterentwicklung bezüglich der Fertigung mehrerer identischer Bauteile parallel zueinander bietet die Bauform mit mehreren parallel geführten Glasfasern auf einem X-Y-Plotter. Der Laser wird über Shutter und Strahlführungsoptiken gesteuert. Ein Glasfaserbündel multipliziert dann die Strahlquelle und über ein X-Y- Plottersystem wird die Kontur zeilenhaft oder über Vektoren abgearbeitet. Durch die Multiplikation erreicht man den Bau mehrerer identischer Komponenten parallel bei senkrechtem Einfall der Laserstrahlung. Der Einsatz von Glasfasern zum  A further development with regard to the production of several identical components parallel to one another is provided by the design with several parallel-guided glass fibers on an X-Y plotter. The laser is controlled via shutters and beam guiding optics. A glass fiber bundle then multiplies the beam source and via an X-Y plotter system, the contour is processed line by line or via vectors. The multiplication achieves the construction of several identical components in parallel with normal incidence of the laser radiation. The use of glass fibers for
Multiplizieren der Strahlquelle ermöglicht das parallele Herstellen von Bauteilen (K.lkuta et.al."New Mikro Stereo Lithography for freely movable 3 D Mikro Structure", IEEE, pp. 290-295, 1998). Die Bearbeitungsgeschwindigkeit gegenüber einer Scanneroptik wird sich aber kaum erhöhen. Probleme bereiten die Komponenten zum Aufspalten des Laserstrahls aus der Strahlquelle (der Kollimator) sowie die exakte gleichförmige Verteilung der Laserleistung auf die einzelnen Faserstränge. Liefert nicht jede Faser identische Parameter, leidet die Qualität/Maßhaltigkeit der Bauteile. Außerdem führt der Einsatz von Fasern mit UV-Lasern oft zu einem Multiplying the beam source allows for parallel fabrication of components (K.lkuta et al., "New Micro Stereo Lithography for freely movable 3D Microstructure", IEEE, pp. 290-295, 1998). The processing speed compared to a scanner optics will hardly increase. The components cause the splitting of the laser beam from the beam source (the collimator) as well as the exact uniform distribution of the laser power on the individual fiber strands. If not every fiber delivers identical parameters, the quality / dimensional accuracy of the components suffers. In addition, the use of fibers with UV lasers often leads to one
Altem ngsprozess der Faser. Um genügend Licht in alle Fasern zu verteilen, muss auch genügend Leistung zur Verfügung stehen. Aufgrund der Vielzahl an teuren Einzelkomponenten wie Laser, Kollimator, Fasern und Antriebsachsen für die Fasern ist die Anlagentechnik sehr kostenintensiv. Old process of fiber. To distribute enough light into all fibers, enough power must be available. Due to the large number of expensive individual components such as laser, collimator, fibers and drive axes for the fibers, the system technology is very cost-intensive.
Das Colamm-Verfahren (Maruo, S. et. al. Sensors and Actuators, vol A 100, pp. 70- 76, 2002) umgeht die Probleme des Recoatings mit einem Wischer. Dazu wird durch ein Fenster am Boden des Gefäßes das Harz belichtet. Das Bauteil wird an der Bauplattform„festgeklebt" und dann schichtweise angehoben. Wichtig ist hier, dass das ausgehärtete Harz nicht an der Glasscheibe haften bleibt. Die Zuführung des Laserstrahls erfolgt über Scanner oder Glasfaser und es bestehen auch bei diesem Verfahren die oben beschriebenen Nachteile.  The Colamm method (Maruo, S. et al., Sensors and Actuators, vol A 100, pp. 70-76, 2002) avoids the problems of re-coating with a wiper. For this purpose, the resin is exposed through a window at the bottom of the vessel. The component is "glued" to the build platform and then lifted up layer by layer.It is important here that the hardened resin does not adhere to the glass pane.The laser beam is supplied via scanner or glass fiber and there are also the disadvantages described above with this method.
Andere technische Lösungen für die Stereolithographie bieten sogenannte  Other technical solutions for stereolithography offer so-called
Maskenverfahren. Bezeichnet werden diese Varianten als flächige Bearbeitung. Dabei kommt kein Laser, sondern eine UV-Lampe zum Einsatz. Durch eine schaltbare LCD-Maske oder vorgefertigte Masken können dann die Konturen für die jeweilige Schicht in einem Arbeitsgang erzeugt werden (Ikuta, K. IEEE, pp. 290- 295, 1998). Anwendung findet diese Technik jeweils mit der Bearbeitung von oben sowie auch, angelehnt an das Colamm-Verfahren, von unten (Schuster, M. et. al. Journal of Polymer Sience: Part A: Polymer Chemistry, vol. 47, pp. 7070-7089, 2009) Mask process. These variants are referred to as surface processing. Here, no laser, but a UV lamp is used. By means of a switchable LCD mask or prefabricated masks, the contours for the respective layer can then be produced in one operation (Ikuta, K. IEEE, pp. 290-295, 1998). Application finds this technique respectively with the processing from above as well also based on the Colamm method, from the bottom (Schuster, M. et al., Journal of Polymer Science: Part A: Polymer Chemistry, vol 47, pp. 7070-7089, 2009).
Das Digital Light Processing (DLP) ist eine weitere Modifikation der Stereolithographie. Die Polymerisation des Harzes erfolgt hier durch sichtbares, nicht kohärentes Licht. Das erforderliche Muster wird entweder durch Mikrospiegel oder durch eine dynamische LCD Maske direkt auf das Harz abgebildet. Es wird die gesamte Schicht gleichzeitig ausgehärtet. Nachteilig bei dieser Methode ist, dass die Größe des Baufeldes bzw. die Anzahl der Bildpunkte (Pixel) fest sind. Je höher die Auflösung der zu bauenden Strukturen gewählt wird, desto kleiner sind diese Digital Light Processing (DLP) is another modification of stereolithography. The polymerization of the resin takes place here by visible, non-coherent light. The required pattern is imaged directly onto the resin either through micromirrors or through a dynamic LCD mask. The entire layer is cured at the same time. The disadvantage of this method is that the size of the construction field or the number of pixels (pixels) are fixed. The higher the resolution of the structures to be built, the smaller they are
Strukturen. Gebräuchliche Systeme erreichen innerhalb der x y-Ebene Auflösungen von 1 bis zu 5 μπι bei einer Schichtdicke von 10 m (Maier, Ch. Diplomarbeit „Herstellung biometrischer Materialien mit Rapid- Protoyping- Verfahren" Universität Wien 2005). Structures. Common systems reach within the x y-level resolutions of 1 to 5 μπι at a layer thickness of 10 m (Maier, Ch. Diploma thesis "Production of biometric materials with Rapid Protoyping method" University of Vienna 2005).
Da bei diesen beiden Verfahren keine Laserquelle zum Einsatz kommt, betreffen diese Verfahren nicht unmittelbar die Erfindung.  Since no laser source is used in these two methods, these methods do not directly affect the invention.
Alle im Stand der Technik beschriebenen Vorrichtungen für die Stereolithographie weisen Einrichtungen zur optischen Strahlaufbereitung, wie Expander und Shutter, Anlagen zur Strahlablenkung, wie Laserscanner, rotierender oder parallel  All stereolithography devices described in the prior art include optical beam conditioning devices such as expanders and shutters, beam deflection systems such as laser scanners, rotating or parallel
verschiebbare Umlenkspiegel, Anlagen zur Versatzkompensation des Strahls, wie F- Theta- Linsen oder Vorrichtungen zur Strahlführung, wie Glasfasern, auf. Damit werden die Anlagen für die Stereolithographie, insbesondere der Mikro- Stereolithographie kostspielig und teuer und schränken die Einsatzmöglichkeiten der Stereolithographie ein. Außerdem müssen durch die auftretenden Verluste bei der Strahlaufbereitung leistungsstarke Laser eingesetzt werden, die wiederum auch sehr kostspielig sind. slidable deflection mirrors, systems for offset compensation of the beam, such as F-theta lenses or devices for beam guidance, such as glass fibers, on. Thus, the stereolithography equipment, in particular the micro stereolithography equipment costly and expensive and limit the applications of stereolithography. In addition, high-performance lasers must be used, which in turn are also very expensive due to the losses occurring in the jet preparation.
Auch alle aus dem Stand der Technik bekannten Lösungen zur senkrecht über dem Baugefäß angeordneten Aufhängungen von Laserscanner benötigen eine hohen Aufwand, da die Aufhängung entweder in Form eines in z-Achse verfahrbaren Linearantriebes an einer Trägerbrücke oder direkt an dieser Trägerbrücke, die wiederum auf zwei parallel zueinander angeordneten Trägern läuft, ausgebildet ist. Außerdem werden diese Lösungen zur Vergrößerung des Baufeldes eingesetzt, da die Scanner nur eine begrenzte Fläche des Baufeldes bestrahlen können. Aus diesem Grund ist das Baufeld bei diesen Lösungen in Quadrate eingeteilt, wobei der Scanner nach Bestrahlen eines Quadrates mittels des Kreuzschlittens zum nächsten Quadrat bewegt wird und dieses Quadrat des Baufeldes bestrahlt. Hier bleiben die oben beschriebenen Probleme trotz über dem Baufeld senkrechter Anordnung des Scanners erhalten. All known from the prior art solutions for vertically above the building vessel arranged suspensions of laser scanner require a lot of effort because the suspension either in the form of a movable in the z-axis linear drive on a support bridge or directly to this support bridge, which in turn to two parallel is running trained, trained. In addition, these solutions are used to increase the construction field, since the scanner can only irradiate a limited area of the construction field. For this reason, the construction field in these solutions is divided into squares, the scanner after irradiating a square by means of the cross slide to the next Square is moved and this square of the construction field is irradiated. Here, the problems described above remain despite over the construction field vertical arrangement of the scanner.
Außerdem können bei diesen Lösungen erhebliche Problem bei der Synchronisation der Motoren der Linearachsen, insbesondere bei längeren Laufzeiten, entstehen, die dann zum Ausfall der Stereolithographie- Anlagen führt.  In addition, these solutions can cause significant problems in the synchronization of the motors of the linear axes, especially at longer maturities, which then leads to the failure of stereolithography equipment.
Aufgabe der Erfindung ist es, für Stereolithographie- Anlagen eine neue Aufhängung der Strahlungsquelle sowie eine wesentlich vereinfachte Strahlformung und -lenkung zu schaffen, wobei wesentliche Kosteneinsparungen durch die Reduzierung von Bauteilen und sensibler Komponenten bei gleichzeitiger Erhöhung der The object of the invention is to create a new suspension of the radiation source and a much simplified beam shaping and steering for stereolithography equipment, with significant cost savings through the reduction of components and sensitive components while increasing the
Bearbeitungsmöglichkeiten und der -qualität sowie der Zuverlässigkeit, auch bei längeren Laufzeiten, der Stereolithographie- Systeme, insbesondere der Mikro- Stereolithographie- Systeme erzielt werden sollen. Processing options and the quality and reliability, even with longer maturities, the stereolithography systems, especially the micro stereolithography systems are to be achieved.
Erfindungsgemäß wird die Aufgabe durch ein Stereolithographie- System gelöst, dass aus einem Aufnahmeblock (12 ) für in y- und x- Achse verfahrbare  According to the invention the object is achieved by a stereolithography system that from a receiving block (12) for movable in y- and x-axis
Linearantriebe (3,4) als gekreuzte Anordnung und für ein Baugefäß (1 ) mit integrierter, in z- Achse verfahrbarer Bauplattform (2) besteht, wobei die gekreuzte Anordnung der Linearantriebe für die y- Achse (3) und für die x- Achse (4) in vertikaler Richtung senkrecht über dem Baugefäß (2) angeordnet sind. Eine Linear drives (3,4) as a crossed arrangement and for a construction vessel (1) with integrated, in z-axis movable construction platform (2), wherein the crossed arrangement of the linear drives for the y-axis (3) and for the x-axis (4) are arranged vertically above the construction vessel (2) in a vertical direction. A
Laserquelle (6) ist, mit dem Strahlaustritt senkrecht nach unten in Richtung des mit Harz gefüllten Baugefäßes (1 ) gerichtet, über ein Befestigungsmittel (5) am Laser source (6), with the beam exit directed vertically downwards in the direction of the resin-filled building vessel (1), via a fastening means (5) on
Linearantrieb für die x- Achse (4), befestigt. Direkt an der Laserquelle (6) ist die Halterung mit den integrierten Fokussieroptiken (7) angeordnet, die das austretende Laserlicht (8) direkt in die benötigte Ebene fokussiert. So erfolgt der schichtweise Aufbau des Bauteils (9) entweder durch zeilenweises oder vektorielles Verfahren des Laserkopfs. Während des Verfahrens härtet der Laser das flüssige Photopolymer aus. Durch eine praktikable Anordnung der elektrischen Anschlüsse (1 1 ) der Linear drive for the x-axis (4), fixed. Directly at the laser source (6), the holder with the integrated focusing optics (7) is arranged, which focuses the exiting laser light (8) directly into the required plane. Thus, the layered structure of the component (9) is carried out either by line-by-line or vectorial method of the laser head. During the process, the laser hardens the liquid photopolymer. By a practical arrangement of the electrical connections (1 1) of
Laserquelle (6) kann die Versorgung leicht über Schleppkabel sichergestellt werden. In einer weiteren Ausgestaltung der Erfindung kann die Fokussieroptik (7) als auswechselbare Fokussieroptik (7) ausgebildet sein. Damit ist es möglich, unterschiedliche Strichbreiten bei der Photopolymerisation zu erzeugen und die Auflösung und die Bearbeitungsgeschwindigkeit zu optimieren. Im Falle einer statischen Optik ist pro Baujob nur eine Auflösung fest vorgegeben. Es besteht aber auch die Möglichkeit, diese statische Optik durch ein motorgesteuertes Teleskop oder durch einen angetriebenen Objektivrevolver zu ersetzen und damit dynamisch während des Bauprozesses die Strichbreite des Laserstrahls bei gleichzeitiger Modulierung der Laserleistung anzupassen. Dadurch wird die Bearbeitungsgeschwindigkeit stark erhöht. Laser source (6), the supply can be easily ensured by trailing cable. In a further embodiment of the invention, the focusing optics (7) can be designed as exchangeable focusing optics (7). This makes it possible to produce different line widths in the photopolymerization and to optimize the resolution and the processing speed. In the case of a static optics, only one resolution is fixed per job. It exists however also the possibility to replace this static optics by a motor-driven telescope or by a powered nosepiece and thus dynamically adjust the stroke width of the laser beam while modulating the laser power during the construction process. As a result, the processing speed is greatly increased.
Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert, wobei die Fig. 1 eine schematische Darstellung des Stereolithographie- Systems darstellt, mit The invention will now be explained in more detail with reference to an embodiment, wherein FIG. 1 is a schematic representation of the stereolithography system, with
1 Baugefäß 1 construction vessel
2 Bau plattform  2 construction platform
3 Linearantrieb für die y- Achse  3 Linear drive for the y-axis
4 Linearantrieb für die x- Achse  4 Linear drive for the x-axis
5 Befestigungselement für den Laserkopf  5 fastening element for the laser head
6 Laserquelle  6 laser source
7 Fokussieroptiken  7 focusing optics
8 Laserstrahl  8 laser beam
9 Bauteil  9 component
10 Harz  10 resin
11 elektrische Anschlüsse  11 electrical connections
12 Aufnahmeblock  12 recording block
Die Fig.1 zeigt eine schematische Darstellung mit den essentiellen Komponenten für die erfindungsgemäße Stereolithographie. Direkt über dem Baugefäß (1 ), mit der integrierten, absenkbaren Bauplattform (2), ist ein lineares Achsensystem an einem Aufnahmeblock (12) aus Granit montiert. An der gekreuzten Anordnung aus der y- Achse (3) und der x- Achse (4) wird über ein geeignetes Befestigungselement (5) die Laserquelle (6) so montiert, das der Strahlaustritt des Laserstrahls senkrecht nach unten auf das mit Harz (10) gefüllte Baugefäß (1 ) zeigt. Als Laserquelle (6) wird ein Dioden-Laser eingesetzt. Direkt an der Laserquelle (6) ist die Halterung mit den integrierten Fokussieroptiken (7) befestigt, die das austretende Laserlicht (8) direkt in die benötigte Ebene fokussiert. So kann der schichtweise Aufbau des Bauteils (9) entweder durch zeilenweises oder vektorielles Verfahren der Laserquelle (6) erfolgen. Während des Verfahrens härtet der Laserstrahl das flüssige Photopolymer aus. Durch eine praktikable Anordnung der elektrischen Anschlüsse (1 1 ) der FIG. 1 shows a schematic representation with the essential components for the stereolithography according to the invention. Directly above the construction vessel (1), with the integrated, lowerable construction platform (2), a linear axis system is mounted on a granite receiving block (12). On the crossed arrangement of the y-axis (3) and the x-axis (4), the laser source (6) is mounted via a suitable fastening element (5) so that the beam exit of the laser beam perpendicular to the resin (10 ) filled construction vessel (1) shows. As the laser source (6), a diode laser is used. Directly at the laser source (6), the holder with the integrated focusing optics (7) is fixed, which focuses the exiting laser light (8) directly in the required plane. Thus, the layered structure of the component (9) either by line-wise or vectorial method of the laser source (6) respectively. During the process, the laser beam hardens the liquid photopolymer. By a practical arrangement of the electrical connections (1 1) of
Laserquelle kann die Versorgung leicht über Schleppkabel sichergestellt werden. Flüssiges Photopolymer wird von einem Laserstrahl in dünnen Schichten mit einer Standardschichtstärke im Bereich 0,05-0,25 mm, bei Mikrostereolithografie auch bis zu 1 [im ausgehärtet. Das Verfahren geschieht im Baugefäß (1 ), welches mit dem Photopolymer, in diesem Beispiel mit Epoxidharz, gefüllt ist. Im Baugefäß (1 ) wird die in z- Achse verfahrbaren Bauplattform (2) in das Epoxidharz durch Verfahren der Bauplattform (2) in der z- Achse getaucht, danach um den Betrag der Laser source, the supply can be easily ensured by trailing cable. Liquid photopolymer is cured by a laser beam in thin layers with a standard layer thickness in the range of 0.05-0.25 mm, in micro-stereolithography also up to 1 μm. The process takes place in the construction vessel (1) which is filled with the photopolymer, in this example with epoxy resin. In the construction vessel (1) the movable in z-axis construction platform (2) in the epoxy resin by dipping the construction platform (2) in the z-axis, then by the amount of
Schichtstärke in der z- Achse nach oben gefahren und mit einem Wischer das Epoxidharz aufgetragen. Nach dem Auftragen des Epoxidharzes wird die Laserquelle (6) mittels der x- und y- Achsen (4,3) über die Bauplattform (2) geführt und das Epoxidharz durch den Laserstrahl ausgehärtet. Die Laserquelle (6) wird dabei zeilenweise über das Baufeld bewegt und positionsabhängig über seinen digitalen Eingang moduliert. Layer thickness in the z-axis moved up and applied with a wiper, the epoxy resin. After application of the epoxy resin, the laser source (6) is guided over the build platform (2) by means of the x and y axes (4, 3) and the epoxy resin is cured by the laser beam. The laser source (6) is moved line by line over the construction field and modulated position-dependent via its digital input.
Nach jedem Schritt wird das Werkstück einige Millimeter in die Flüssigkeit abgesenkt und auf eine Position zurückgefahren, die um den Betrag einer Schichtstärke unter der vorherigen liegt. Das Epoxidharz über dem Bauteil wird dann durch einen Wischer gleichmäßig verteilt. Dann fährt die Laserquelle (6) mittels der gekreuzten Anordnung der x- und y- Achse (4,3), von einem Computer gesteuert, auf der neuen Schicht über die Flächen, die ausgehärtet werden sollen. Nach dem Aushärten erfolgt der nächste Schritt, so dass nach und nach ein dreidimensionales Teil entsteht.  After each step, the workpiece is lowered a few millimeters into the liquid and returned to a position which is lower than the previous one by the amount of a layer thickness. The epoxy over the component is then evenly distributed by a wiper. Then the laser source (6) travels on the new layer over the surfaces to be cured by means of the crossed arrangement of the x and y axes (4,3), controlled by a computer. After curing, the next step takes place so that gradually a three-dimensional part is created.
Beim Stereolithographie-Verfahren werden bei der Herstellung typischerweise auch Stützstrukturen mit gebaut, da das vom Laser gehärtete Harz noch relativ weich ist und auch bestimmte Formelemente (z. B. Überhänge) während des Bauprozesses sicher zu fixieren sind. Nach dem Bauprozess wird die Bauplattform (2) mit dem/den Teil(en) aus dem Baugefäß (1 ) herausgefahren. Nach dem Abtropfen des nicht gehärteten Harzes wird das Modell von der Bauplattform entfernt, von den  In the stereolithography process, support structures are typically also included in the fabrication because the laser-cured resin is still relatively soft and certain features (eg, overhangs) are to be securely fixed during the build process. After the construction process, the building platform (2) with the / the part (s) from the construction vessel (1) is moved out. After draining the uncured resin, the model is removed from the build platform, from the
Stützstrukturen befreit, mit Lösungsmitteln gewaschen und in einem Schrank unter UV-Licht vollständig ausgehärtet. Support structures freed, washed with solvents and completely cured in a cabinet under UV light.
Bei der erfindungsgemäßen Stereolithographie-Anlage werden die Laserquelle (6) und die fokussierende Optik (7) direkt über den Baugefäß (1 ) und so über das gesamte Baufeld mittels linearer Achsen verfahren, wobei der Strahlaustritt und damit der Laserstrahl immer senkrecht über dem Baugefäß verbleibt. Im Vergleich zu im Stand der Technik beschriebenen Laser basierten Stereolithographie-Anlagen kommt die erfindungsgemäße Anlage ganz ohne Umlenkspiegel, Glasfasern oder ähnliche strahlbeeinflussende Bauteile aus. Die erfindungsgemäße In the stereolithography system according to the invention, the laser source (6) and the focusing optics (7) are moved directly over the building vessel (1) and so over the entire construction field by means of linear axes, wherein the beam exit and so that the laser beam always remains vertically above the construction vessel. Compared to laser-based stereolithography systems described in the prior art, the system according to the invention does not require deflecting mirrors, glass fibers or similar beam-influencing components. The inventive
Stereolithographie- Anlage ist bei ansonsten gleicher Leistungsfähigkeit somit deutliche einfacher und benötigt Laserquellen mit deutlich geringer Leistungsfähigkeit (Dioden- Laser). Dadurch entsteht ein erheblicher Kostenvorteil gegenüber allen bisherigen Laser-basierten Stereolithographie-Systemen. Weiterhin bestehen durch die Verwendung von nur zwei Linearantrieben, die auch noch unabhängig Stereolithography system is thus significantly simpler with otherwise identical performance and requires laser sources with significantly lower performance (diode laser). This creates a significant cost advantage over all previous laser-based stereolithography systems. Furthermore, through the use of only two linear drives, which also still independent
voneinander verfahren werden, keine Probleme bei der Synchronisation der Motoren für die Linearantriebe und die Störanfälligkeit des Stereolithographie- Systems wird erheblich gesenkt. from each other, no problems in synchronizing the motors for the linear drives and the susceptibility of the stereolithography system is significantly reduced.
Weitere Vorteile des erfindungsgemäßen Stereolithographie- Systems sind in den geringeren Verlusten der Laserleistung im optischen System durch  Further advantages of the stereolithography system according to the invention are the lower losses of the laser power in the optical system
Komponentenreduzierung und der immer senkrechten Anordnung der Laserquelle und des senkrechten Austritts des Laserstrahles gegenüber des Baugefäßes zu sehen. Der senkrechte Einfallwinkel der Laserstrahlung vermeidet die bei Laser- Scanner-Verfahren übliche Belichtung mit einem nicht senkrechten Einfallwinkel im Randbereich des Baufelds und gewährleistet somit über das gesamte Baufeld eine gleichbleibend hohe Fertigungspräzision. Weiterhin treten keine Alterungserscheinung bei Funktionskomponenten (z.B. Lichtleiter) auf und das System weist eine hohe Wartungsfreundlichkeit auf, da ein ausgetauschter Laser nicht ins optische System justiert werden muss. Component reduction and the always vertical arrangement of the laser source and the vertical exit of the laser beam with respect to the construction vessel to see. The vertical angle of incidence of the laser radiation avoids the usual laser scanner procedure exposure with a non-perpendicular angle of incidence in the edge region of the construction field and thus ensures a consistently high manufacturing precision over the entire construction field. Furthermore, there is no aging effect on functional components (e.g., fiber optics), and the system is easy to maintain because a replaced laser does not need to be adjusted to the optical system.
Das Stereolithographie- System zeichnet sich weiterhin durch geringe  The stereolithography system continues to be characterized by low
Energieaufnahme und damit verbunden durch geringere Betriebskosten aus. Energy consumption and associated with lower operating costs.
Das erfindungsgemäße System kann ebenso auch beim Lasersintern und beim Laserschneiden und Beschriften mittels Laserquellen angewendet werden. Zitierte Nichtpatentliteratur The system according to the invention can likewise be used in laser sintering and in laser cutting and labeling by means of laser sources. Quoted non-patent literature
[1] P. S. Gandhi and S Deshmukh, "A 2D optomechanical focused laser spot scan: analysis and experimental results for mikrostereolithography", J. Michromech. Microeng., no. 20, pp. 1 -1 1 , 2010. [1] P. S. Gandhi and S Deshmukh, "A 2D optomechanical focused laser spot scan: analysis and experimental results for microstructure lithography", J. Michromech. Microeng., No. 20, pp. 1 -1 1, 2010.
[2] Shoji Maruo and Koji Ikuta, "Submicron stereolithography for the production of freely movable mechanism by using single-photon polymerisation", Sensors and Actuators, vol. A 100, pp. 70-76, 2002. [2] Shoji Maruo and Koji Ikuta, "Submicron stereolithography for the production of a free-floating mechanism by using single photon polymerization", Sensors and Actuators, vol. A 100, pp. 70-76, 2002.
[3] Koji Ikuta, Shoji Maruo, and Syunsuke Kojima, "New Mikro Stereo Lithography for freely movable 3D Mikro Structure", IEEE, pp. 290-295, 1998. [3] Koji Ikuta, Shoji Maruo, and Syunsuke Kojima, "New Micro Stereo Lithography for flexible 3D micro structure", IEEE, pp. 290-295, 1998.
[4] Monika Schuster et al., "Gelatin-Based Photopolymers for Bone Replacement Materials", Journal of Polymer Science: Part A: Polymer Chemistry, vol. 47, pp. 7078-7089, 2009. [4] Monika Schuster et al., "Gelatin-Based Photopolymers for Bone Replacement Materials," Journal of Polymer Science: Part A: Polymer Chemistry, vol. 47, pp. 7078-7089, 2009.
[5] Christine Maier, "Herstellung biomimetischer Materialien mit Rapid Prototyping Verfahren", Universität Wien, Diplomarbeit 2005. [5] Christine Maier, "Production of Biomimetic Materials with Rapid Prototyping Process", University of Vienna, diploma thesis 2005.
[6] www. klartext-pr.de/.... /artikel/Die Kultur der Prototypenherstellung.pdf [6] www. klartext-pr.de / .... / article / The culture of prototyping.pdf

Claims

Patentansprüche claims
1 . Stereolithographie- System bestehend aus einem Aufnahmeblock (12) für die Aufnahme der in y- und x- Achse verfahrbare Linearantriebe (3,4) als gekreuzte Anordnung und für Aufnahme eines Baugefässes (1 ) mit integrierter, in z- Achse verfahrbarer Bauplattform (2), wobei die gekreuzte Anordnung der Linearantriebe für die y- Achse (3) und für die x- Achse (4) in vertikaler 1 . Stereolithographie- system consisting of a receiving block (12) for receiving the y-and x-axis movable linear drives (3,4) as a crossed arrangement and for receiving a building vessel (1) with integrated, movable in z-axis construction platform (2 ), wherein the crossed arrangement of the linear drives for the y-axis (3) and for the x-axis (4) in vertical
Richtung senkrecht über dem Baugefäß (2) angeordnet ist, dadurch  Direction is arranged vertically above the construction vessel (2), characterized
gekennzeichnet, dass eine Laserquelle (6), mit dem Strahlaustritt senkrecht nach unten in Richtung des mit Harz gefüllten Baugefässes (1 ) gerichtet und über ein Befestigungsmittel (5) am Linearantrieb für die x- Achse (4), befestigt ist.  in that a laser source (6), with the jet exit directed vertically downwards in the direction of the resin-filled building vessel (1), is fastened to the linear drive for the x-axis (4) via a fastening means (5).
2. Stereolithographie- System nach Anspruch 1 , dadurch gekennzeichnet, dass an der Laserquelle (6) eine Fokussieroptik (7) integriert ist. 2. Stereolithographie- system according to claim 1, characterized in that at the laser source (6) has a focusing optics (7) is integrated.
3. Stereolithographie- System nach Anspruch 2, dadurch gekennzeichnet, dass die Fokussieroptik (7) austauschbar gestaltet ist. 3. Stereolithographie- system according to claim 2, characterized in that the focusing optics (7) is designed to be interchangeable.
4. Stereolithographie- System nach Anspruch 2 und 3, dadurch gekennzeichnet, dass die Fokussieroptik (7) als statische Optik ausgestaltet ist. 4. Stereolithographie- system according to claim 2 and 3, characterized in that the focusing optics (7) is designed as a static optics.
5. Stereolithographie- System nach Anspruch 2 bis 4, dadurch gekennzeichnet, dass die Fokussieroptik (7) als angetriebener Objektivrevolver ausgestaltet ist. 5. Stereolithographie- system according to claim 2 to 4, characterized in that the focusing optics (7) is designed as a driven objective turret.
6. Stereolithographie- System nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Laserquelle (6) über Schleppkabel elektrisch versorgt wird. 6. Stereolithographie- system according to claim 1 to 5, characterized in that the laser source (6) is electrically supplied via trailing cable.
7. Stereolithographie- System nach Anspruch 1 , dadurch gekennzeichnet, dass als Laserquelle (6) ein Dioden- Laser verwendet wird. 7. Stereolithographie- system according to claim 1, characterized in that a diode laser is used as the laser source (6).
PCT/IB2013/001873 2012-06-08 2013-06-11 Stereolithography system WO2013182913A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012011418A DE102012011418A1 (en) 2012-06-08 2012-06-08 Stereolithography system
DE102012011418.4 2012-06-08

Publications (2)

Publication Number Publication Date
WO2013182913A2 true WO2013182913A2 (en) 2013-12-12
WO2013182913A3 WO2013182913A3 (en) 2014-02-20

Family

ID=49305024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/001873 WO2013182913A2 (en) 2012-06-08 2013-06-11 Stereolithography system

Country Status (2)

Country Link
DE (1) DE102012011418A1 (en)
WO (1) WO2013182913A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018107585B3 (en) 2018-03-29 2019-03-28 Universität Rostock Device for producing 3D printed drug delivery systems with drug depots, and methods for manufacturing 3D printed drug delivery systems
CN112188941A (en) * 2018-05-25 2021-01-05 通用电气公司 Method for controlling additive manufacturing component by using laser incidence angle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013021961A1 (en) 2013-12-20 2015-07-09 Universität Rostock Stereolithography system
DE102015202347A1 (en) * 2015-02-10 2016-08-11 Trumpf Laser- Und Systemtechnik Gmbh Irradiation device, processing machine and method for producing a layer of a three-dimensional component
EP3059074A1 (en) 2015-02-18 2016-08-24 Technische Universität München Method and device for generating a three-dimensional object

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US5595703A (en) 1994-03-10 1997-01-21 Materialise, Naamloze Vennootschap Method for supporting an object made by means of stereolithography or another rapid prototype production method
DE10053741C1 (en) 2000-10-30 2002-02-21 Concept Laser Gmbh Machine for sintering, removing material from or marking surface with laser beam uses trolleys which include container for workpieces and have working platform whose height can be adjusted
US20020171178A1 (en) 2001-04-19 2002-11-21 David Dean Fabrication of a polymeric prosthetic implant
US20020185782A1 (en) 2001-06-08 2002-12-12 Koch Robert M. Method and system for production of fibrous composite prototypes using acoustic manipulation in stereolithography
US20030001313A1 (en) 2001-06-15 2003-01-02 Tobias Krause Process and a device for producing ceramic molds
US20040094728A1 (en) 2000-10-30 2004-05-20 Frank Herzog Device for sintering, removing material and/or labeling by means of electromagnetically bundled radiation and method for operating the device
DE102004057527B4 (en) 2004-11-29 2007-06-21 Carl Johannes Fruth Method for electrochemical machining of a workpiece and electrode for such a method
DE102009009503B3 (en) 2009-02-18 2010-08-26 Siemens Medical Instruments Pte. Ltd. Rapid prototyping apparatus and method with indirect laser staining

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120712A (en) * 1984-11-16 1986-06-07 Katanori Arai Forming process of three dimensional figure
JP2001145956A (en) * 1999-11-19 2001-05-29 Meiko:Kk Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
DE10157647C5 (en) * 2001-11-26 2012-03-08 Cl Schutzrechtsverwaltungs Gmbh Method for producing three-dimensional workpieces in a laser material processing system or a stereolithography system
DE102007007508A1 (en) * 2007-02-15 2008-08-21 Robert Bosch Gmbh Method and device for machining workpieces with high-energy radiation
EP2221132B2 (en) * 2007-10-26 2019-10-23 Panasonic Intellectual Property Management Co., Ltd. Production device and production method of metal powder sintered component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4575330B1 (en) 1984-08-08 1989-12-19
US5595703A (en) 1994-03-10 1997-01-21 Materialise, Naamloze Vennootschap Method for supporting an object made by means of stereolithography or another rapid prototype production method
DE10053741C1 (en) 2000-10-30 2002-02-21 Concept Laser Gmbh Machine for sintering, removing material from or marking surface with laser beam uses trolleys which include container for workpieces and have working platform whose height can be adjusted
US20040094728A1 (en) 2000-10-30 2004-05-20 Frank Herzog Device for sintering, removing material and/or labeling by means of electromagnetically bundled radiation and method for operating the device
US20020171178A1 (en) 2001-04-19 2002-11-21 David Dean Fabrication of a polymeric prosthetic implant
US20020185782A1 (en) 2001-06-08 2002-12-12 Koch Robert M. Method and system for production of fibrous composite prototypes using acoustic manipulation in stereolithography
US20030001313A1 (en) 2001-06-15 2003-01-02 Tobias Krause Process and a device for producing ceramic molds
DE102004057527B4 (en) 2004-11-29 2007-06-21 Carl Johannes Fruth Method for electrochemical machining of a workpiece and electrode for such a method
DE102009009503B3 (en) 2009-02-18 2010-08-26 Siemens Medical Instruments Pte. Ltd. Rapid prototyping apparatus and method with indirect laser staining

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CHRISTINE MAIER: "Herstellung biomimetischer Materialien mit Rapid Prototyping Verfahren", DIPLOMARBEIT, 2005
GANDHI, P.S., MICROMECH. MICROENG., 2010, pages 1 - 11
K.LKUTA, NEW MIKRO STEREO LITHOGRAPHY FOR FREELY MOVABLE 3 D MIKRO STRUCTURE, 1998, pages 290 - 295
KOJI LKUTA; SHOJI MARUO; SYUNSUKE KOJIMA, NEW MIKRO STEREO LITHOGRAPHY FOR FREELY MOVABLE 3D MIKRO STRUCTURE, 1998, pages 290 - 295
MAIER, CH.: "Herstellung biometrischer Materialien mit Rapid- Protoyping- Verfahren", DIPLOMARBEIT, 2005
MARUO, S., SENSORS AND ACTUATORS, vol. A 100, 2002, pages 70 - 76
MONIKA SCHUSTER ET AL.: "Gelatin-Based Photopolymers for Bone Replacement Materials", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 47, 2009, pages 7078 - 7089
P. S. GANDHI; S DESHMUKH: "A 2D optomechanical focused laser spot scan: analysis and experimental results for mikrostereolithography", J. MICHROMECH. MICROENG., 2010, pages 1 - 11
SCHUSTER, M., JOURNAL OF POLYMER SIENCE: PART A: POLYMER CHEMISTRY, vol. 47, 2009, pages 7070 - 7089
SHOJI MARUO; KOJI LKUTA: "Submicron stereolithography for the production of freely movable mechanism by using single-photon polymerisation", SENSORS AND ACTUATORS, vol. A 100, 2002, pages 70 - 76

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018107585B3 (en) 2018-03-29 2019-03-28 Universität Rostock Device for producing 3D printed drug delivery systems with drug depots, and methods for manufacturing 3D printed drug delivery systems
WO2019185725A1 (en) 2018-03-29 2019-10-03 Universität Rostock Device for producing 3d-printed active substance-releasing systems with active substance depots, and method for producing 3d-printed active substance-releasing systems
CN112188941A (en) * 2018-05-25 2021-01-05 通用电气公司 Method for controlling additive manufacturing component by using laser incidence angle
CN112188941B (en) * 2018-05-25 2023-05-26 通用电气公司 Method for additive manufacturing of a component using laser incidence angle control

Also Published As

Publication number Publication date
WO2013182913A3 (en) 2014-02-20
DE102012011418A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
DE10053742C2 (en) Device for sintering, removing and / or labeling by means of electromagnetic radiation and method for operating the device
EP2569140B1 (en) Device and method for producing three-dimensional structures
DE10157647C5 (en) Method for producing three-dimensional workpieces in a laser material processing system or a stereolithography system
EP1517779B1 (en) Device and method for the production of three-dimensional objects by means of a generative production method
EP3287262A1 (en) Device and method for laser assisted processing of bodies or surfaces
DE60012667T2 (en) Apparatus for producing a three-dimensional laminated article of a light-curing liquid
DE102013215040B4 (en) Compact apparatus for producing a three-dimensional object by solidifying a photo-hardening material
WO2013182913A2 (en) Stereolithography system
DE112009001701B4 (en) Laser-scribing system for structuring substrates, method for structuring substrates and use of a laser-scribing system
WO2018172092A1 (en) Device and method for producing three-dimensional workpieces
DE10111422A1 (en) Photosensitive molding production by irradiating a liquid material in a bath, to solidify the material, using a multi-photon absorption process
EP3287263A1 (en) Device and method for laser assisted processing of bodies or surfaces
DE102013021961A1 (en) Stereolithography system
DE102010046467A1 (en) Device, useful for manufacturing, repairing and/or replacing component, preferably aircraft component by powder solidifiable by radiation energy of radiation energy source, comprises fixed construction platform with frame
WO2019002325A1 (en) Measurement system for a device for generatively producing a three-dimensional object
DE102014010412B4 (en) Process and arrangement for additive manufacturing of components
DE102014202646A1 (en) Method for producing an object from a material and / or for processing an object
DE102015225300A1 (en) Methods and arrangements for reducing interfacial adhesion in photopolymerization
EP3983199A1 (en) Device for treating or inspecting a material, use of the device
EP3758884B1 (en) Device and method for machining a workpiece by means of a laser beam
WO2022171850A1 (en) Device and method for simultaneous additive manufacturing of components composed of different materials
DE102018204707A1 (en) Lighting device, selective laser melting system and method
WO2021255022A1 (en) Method and device for the different surface-matting of radiation-cured polymer layers in regions
DE102005003218A1 (en) Three-dimensional component is formed using a stereolithography unit, which comprises a container for material to be solidified and an irradiation unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773838

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13773838

Country of ref document: EP

Kind code of ref document: A2