WO2013181924A1 - 一种具有低热膨胀系数的平板玻璃及其制造工艺 - Google Patents

一种具有低热膨胀系数的平板玻璃及其制造工艺 Download PDF

Info

Publication number
WO2013181924A1
WO2013181924A1 PCT/CN2013/000509 CN2013000509W WO2013181924A1 WO 2013181924 A1 WO2013181924 A1 WO 2013181924A1 CN 2013000509 W CN2013000509 W CN 2013000509W WO 2013181924 A1 WO2013181924 A1 WO 2013181924A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
oxide
temperature
substrate
Prior art date
Application number
PCT/CN2013/000509
Other languages
English (en)
French (fr)
Inventor
杨德宁
Original Assignee
Yang Dening
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dening filed Critical Yang Dening
Publication of WO2013181924A1 publication Critical patent/WO2013181924A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron

Definitions

  • the present invention relates to a flat glass, and more particularly to a flat glass having a low coefficient of thermal expansion and a process for producing the same.
  • the scope of the field is: (1) building doors, windows, curtain wall flat glass, (2) flat glass for automobiles and ships, (3) flat glass for high-speed rail, (4) flat panel glass for LCD display, (5) PDP display Screen flat glass, (6) TFT display flat glass and high-strength panel flat glass for smartphones and iPads, (7) process flat glass and other products and reworked flat glass tempered products, (8) liquid crystal display flat glass, (9) Photovoltaic solar device flat glass.
  • the silica is 40-70%, and in the actual boron glass and the examples in all of these products, the proportion of silicon is as high as 60-70%.
  • the boron oxide content is 8-20%, and in practical use, the content of boron oxide in the product is 10-15%. It also replaces the sodium oxide component with boron oxide to achieve the purpose of fluxing.
  • boron component For example, if more than 10% of the boron component is added, it must be added 2 to 3 times on the raw material. For example, 10% boron content of the glass must be added to 30- A raw material with a content of 38% boron oxide (because most of the boron component will become a toxic gas at high temperatures). Its technical flaws are:
  • the proportion of silicon is 60-70%, and in order to achieve the technical purpose of reducing the thermal expansion coefficient, the boron oxide content is 10 -20%, in actual use, boron oxide in the product content of 10-15%. It also replaces the sodium oxide component with boron oxide to achieve the purpose of fluxing, and if more than 10% of the boron component, it must be added 2-3 times on the raw material. For example, 10% boron content of the glass must be added to the content of 30-38% boron oxide (because most of the boron components will become toxic gases at high temperatures).
  • the melting temperature of the borosilicate glass is too high, the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s) is 1760 ⁇ ; the homogenization bubble density temperature is 10 2 fl (Pa ⁇ s) is 1620 ° C It is very difficult to control the quality of the process and reduce the cost of energy consumption.
  • Boron glass equipment has high maintenance cost and low efficiency: its technical defect is that when the boron content reaches 10-20%, the molten pool will be seriously corroded in the actual production (so all the TFT non-alkaline borosilicate glass and German nitrate The building fire-resistant alkali-free borosilicate glass and PDP plasma borax glass pool represented by the company are only cold-repaired in one year, which causes serious production cost and efficiency problems.
  • the inventor's prior art invention is entitled "Application of a glass to a flat glass containing a high annealing point, high flatness, low viscosity and environmental protection characteristics, a flat glass, a preparation method and a display screen, a photovoltaic solar device and a preparation thereof
  • the method and the display screen of the patent application technology of 201110060944. 4 the high crystallization temperature is the main defect, and it is not necessary to disclose any crystallization temperature data in the patent document, but the crystallization temperature of the technical solution can be determined.
  • Comparative document Comparative prior art JP11-240734 A, Example 3 thereof. :
  • the content of the silicon oxide is 4.22 times that of the calcium oxide content
  • the content of the calcium oxide is 1.39 times that of the magnesium oxide
  • the cosolvent sodium ten potassium
  • the most auxiliary solvent 8-11, 5%
  • the invention is an omission of the cosolvent (sodium ten potassium), breaking the existing flat glass technology in the aluminum content
  • it is more than 8%, it must be made of boron, sodium and potassium cosolvents.
  • the technical solution of the present invention breaks the existing flat glass technology, when the aluminum content exceeds 15%, the viscosity temperature is too high, and the large-scale production of the flat glass technology cannot be realized, in particular, the flat glass technology cannot be overcome. Difficulties in the process; when the aluminum content exceeds 15%, the addition of boron, sodium, potassium cosolvent components can not achieve the technical bias of large-scale production of flat glass technology;
  • the technical scheme of the present invention finds that the high aluminum content is 8, 6-30% or 17%-30 when the boron, sodium and potassium cosolvent components are not contained (the invention of the boron oxide and potassium oxide and sodium oxide cosolvent components is omitted).
  • the high aluminum eutectic properties of aluminum, silicon, calcium and magnesium especially from the six examples of the present invention, when boron, sodium and potassium cosolvent components are not contained (for boron oxide and potassium oxide and oxidation)
  • the omission of the sodium cosolvent component when the alumina content is 17-28% or 20% or 24% or 28% of the large span change, the prior art considers the viscosity temperature, especially the melting and the bubble viscosity temperature Will increase dramatically, but when the alumina content of the present invention is 17 - 28% or 20% or 24% or 28%, the change in melting temperature and bubble viscosity temperature is only 30 ° C - 60 ° C; and the melting and defoaming viscosity temperature at 22%
  • viscosity temperature is also prior art: (Comparative Example 1, TFT glass and fireproof glass examples)
  • the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s) and the temperature is 1750 ° C viscosity temperature; actual homogenization When the bubble viscosity temperature is 10 2 (Pa ⁇ s), it is 1630 °C ;
  • Embodiment 1 of the present invention The actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s), the temperature is 1590 ° C viscosity temperature, and the actual homogenization bubble viscosity temperature is 10 2 (Pascals per second) is 1425 ° C ;
  • the technical scheme of the invention is smaller than the boron-containing cosolvent component in the absence of boron, sodium and potassium cosolvent components.
  • Glass and fire-retardant glass have a prior art actual melting viscosity temperature and an actual homogenization bubble viscosity temperature, which is low
  • the bending strength of the glass in the present specification and the embodiment of the present invention is determined by cutting a sample into a strip of 50 mm X 50 ⁇ X 5 , using a bending strength meter according to the standard GB/T3810, 4-2006.
  • the sulphate content is 1.33 times; the content of the calcium oxide is 1.33 times;
  • a completely different technique for producing glass fibers in the field of flat glass technology according to the contents of the new invention of known products according to the Chinese Patent Examination Guide, Part 2, Chapter 4, 5, a method for producing fibers disclosed in the present invention and the comparative document The difference is very large;
  • the technical solution of the present invention, in the new use for flat glass finds an inherently new low coefficient of thermal expansion property, resulting in the eradication of TFT glass and unexpected in new applications for flat glass
  • the technical effect of toxic gas emission and environmental protection in fireproof glass production the technical effect of large energy saving; the technical effect of greatly reducing the cost of the production system and prolonging the life of the production system; and the reduction of the calculus rate due to the low melting temperature;
  • a flat glass having a low coefficient of thermal expansion characterized in that: by weight, the glass 8 ⁇ -1. 99.
  • the content of the content of the magnesium oxide is 0.8 times - 1. 99
  • the difference between the values of the thermal expansion coefficient of the glass at each end of the lCXTC of 400 ⁇ -630 ° C is within 1-3 parts per million;
  • the thickness difference of the glass is less than 0. 3mm;
  • the water absorption rate is in the range of 0-0. 3%;
  • the flat glass is characterized in that it contains alumina, silica, calcium oxide, magnesium oxide, and a total of 0, 1- -0, 5 containing sodium oxide and potassium oxide and boron oxide.
  • the content of the content of the content of the calcium oxide is 0.81. ⁇ -1. 99 times; the difference in the coefficient of thermal expansion of the glass between 400 ° C and 630 ° C per 100 ° C, within 1-3 parts per million;
  • the thickness difference of the glass is less than 0. 3mm;
  • the water absorption rate is in the range of 0-0. 3%;
  • the total content of sodium oxide and potassium oxide and boron oxide is 0, 1-0, 5%, which is the total content of sodium oxide and potassium oxide and boron oxide which cannot be overcome in the glass raw material. Can not produce a cosolvent effect, which is an omission of the glass cosolvent sodium oxide and potassium oxide and boron oxide.
  • the plate glass is characterized in that: by weight, the silicon oxide is 4.11 times - 4, 56 times or 4, 57 times - - 5. 48 times;
  • the flat glass is characterized in that: by weight percentage, the alumina content is 15. 5-35%, the boron oxide content is 0, 001-0, 2% of the impurity component, and the content of the silica is the calcium oxide content. 4. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ . ⁇ .
  • the natural content range of the boron oxide component does not produce a cosolvent effect, and this is an omission of the glass cosolvent boron oxide.
  • the flat glass is characterized in that it contains alumina, silica, or
  • the content of the content of the silicon oxide is 4. 6-35%, and the content of the silicon oxide is 4. 11% of the calcium oxide content.
  • the content of the content of the silicon oxide is 4. ⁇ 5.
  • the ratio of the content of the magnesium oxide is 0.8 times - 1. 99 times; the coefficient of thermal expansion of the glass is between 400 ° C and 630 ° C per 100 ° C of the value of The difference between them is 1-3 parts per million;
  • the thickness difference of the glass is less than 0. 3mm;
  • the water absorption rate is in the range of 0-0. 3%;
  • the total content of sodium oxide and potassium oxide is 0, 1-0, 5% of the impurity component, which is the total content of the natural content of sodium oxide and potassium oxide which cannot be overcome in the glass raw material, and cannot produce a cosolvent effect. Omission of the glass cosolvent sodium oxide and potassium oxide
  • the flat glass is characterized in that: the boron oxide containing 0, 001--0, and 5% of the impurity component is an insurmountable natural content range of the glass raw material, and cannot produce a cosolvent function, which is to help the glass.
  • the solvent boron oxide omits the invention.
  • the flat glass is characterized in that: the sodium oxide content is 0, 01- 0, 9% by weight, and the thickness is 0, 1 MM - 5 Torr. Suitable for TFT LCD flat glass.
  • the flat glass is characterized in that: the sodium oxide content is 0, 9-13% by weight, and the thickness is 0, 1 ⁇ -1, 5MM. Suitable for electronic touch screen flat glass.
  • the flat glass is characterized in that: the sodium oxide content is 0, 01- 0, 9% by weight, and the thickness is 1, 5 MM-25 ⁇ . Suitable for fireproof and explosion-proof flat glass for construction.
  • the flat glass is characterized in that the sodium oxide content is 0, 9-13% by weight, and the thickness is 1, 5 ⁇ -25 MM. Suitable for high strength flat glass for construction.
  • the plate glass is characterized in that: by weight percentage, the silicon oxide is 4.11 times - 4, 56 times or 4, 57 times - 5. 48 times;
  • the flat glass is characterized in that: the glass has a coefficient of thermal expansion of from 400 ° C to 700 ° C per 100 ° C, ranging from 1 part per million to 3 parts per million, the viscosity of the glass is The temperature at 10 1 ⁇ 5 Pa ⁇ s is 1480 ° C - 160 ° C; the temperature at 10 2 Pa ⁇ s is 1370 ° C_1490 ° C;
  • a liquid crystal display comprising: An array substrate comprising a substrate and a pixel structure on the substrate, the substrate being a glass plate made of the flat glass according to any one of claims 1-5;
  • the color filter substrate comprising a substrate and a color filter layer on the substrate, the substrate being a glass plate manufactured by the flat glass according to any one of claims 1-5;
  • a PDP plasma screen display comprising:
  • the front plate process comprising: the substrate glass, the transparent electrode, the bus electrode, the transparent electric conductor layer, the mgo mold manufactured by the flat glass according to any one of the preceding claims 1-5;
  • a back sheet process comprising: a phosphor layer, a partition wall, a lower plate transparent electric conductor layer, an address electrode, a substrate glass made of the flat glass according to any one of the preceding claims 1-5;
  • a smart touch display screen comprising:
  • the display includes:
  • An array substrate comprising a substrate and a pixel structure on the substrate, the substrate being a glass plate; a color filter substrate, the color filter substrate comprising a substrate and a color filter layer on the substrate, the substrate being a glass Board
  • a glazed flat glass whose substrate glass is a glaze layer having 1-10 colors on the surface thereof according to the flat glass.
  • a method for manufacturing flat glass having a low coefficient of thermal expansion characterized in that: Step 1.
  • Various predetermined essential alumina, silica, calcium oxide, magnesium oxide components, and predetermined silicon oxide, required for the glass formulation configuration according to any one of claims 1-5 The raw materials of calcium oxide and magnesium oxide are melted at a melting temperature corresponding to each glass formulation after being mixed and stirred to form a molten glass of a predetermined viscosity, which is homogenized, clarified, and discharged to form a flowable melt;
  • Step 2 selecting a float process, a flat pull process, a lattice process, a calendering process, an overflow process, or any one of the processes to form the glass.
  • Fig. 2 is a schematic view showing the structure of the flat glass of the present invention
  • Fig. 3 is a schematic view of the melting apparatus of the invention
  • Fig. 4 is a flow chart of Fig. 2; DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Fig. 4 is a flow chart of Fig. 2; DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • the contents of various components in the glass are percentages by weight unless otherwise specified.
  • the oxidized magnesium content is 9.1%, alumina.
  • the oxidized magnesium content is 9.1%, the alumina content is 9.1%, the alumina content is 9.1%, the alumina content is 9. 1%, alumina 5 ⁇
  • the content of the content of the calcium oxide is 1.5 times.
  • the difference between the values of the coefficient of thermal expansion of the glass at a temperature of from 400 ° C to 700 ° C per 100 ° C is 1.0 parts per million to 3.0 parts per million.
  • the actual melting temperature at a temperature of 10 1 ⁇ 5 (Pascals per second) is a viscosity temperature of 1590 ° C, and the actual homogenization bubble viscosity temperature is 10 2 ° Pa (seconds) is 1425 ° C ; the molding viscosity temperature is 10 3 (Pa ⁇ s) is 1235 ° C; the crystallization temperature is 1200 ° C.
  • the thickness difference of the glass is less than 0.2 mm;
  • the flat glass having a low expansion coefficient of the present invention has a silica content of 52.2% by weight, a calcium oxide content of 12.2%, a magnesium oxide content of 7.6%, and an alumina content of 28%.
  • the content of silicon oxide is 4.3 times that of calcium oxide, and the content of calcium oxide is 1.6 times that of magnesium oxide.
  • the difference in thermal expansion coefficient of the glass between 400 ° C and 700 ° C per 100 ° C is in the range of 1.0 to 10,000 parts per million.
  • the actual melting viscosity temperature is 10 1 ' 5 (Pa ⁇ s), the temperature is 1680 ° C viscosity temperature, and the actual homogenization bubble viscosity temperature is 10 2 (Pa ⁇ s), which is 1475 ° C; the molding viscosity temperature is 10 3 (Pa ⁇ s) is 1265 ° C; the crystallization temperature is 1240 ° C.
  • the thickness difference of the glass is less than 0.2 mm ;
  • the flat glass having a low expansion coefficient of the present invention has a silica content of 58% by weight, a calcium oxide content of 11.8%, a magnesium oxide content of 9.2%, and an alumina content of 21% by weight.
  • the content of silicon oxide is 4.9 times that of calcium oxide, and the content of calcium oxide is 1.3 times that of magnesium oxide.
  • the difference in the coefficient of thermal expansion of the glass between 400 ° C and 650 ° C per 100 ° C is in the range of 1.0 to 10,000 parts per million.
  • the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s), the temperature is 1630 ° C viscosity temperature, and the actual homogenization bubble viscosity temperature is 10 2 (Pascals per second) is 1460 ° C; the molding viscosity temperature is 10 3 (Pa ⁇ s) is 1250 ° C; The crystallization temperature was on the line at 1205 °C.
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • the content of the silicon oxide in the glass is 51. 4%, the content of calcium oxide is 10.7%, the content of calcium oxide is 8%, and the content of alumina is 8%. ⁇
  • the content of magnesium oxide is 1.3 times the content of magnesium oxide.
  • the difference in the coefficient of thermal expansion of the glass between 400 ° C and 650 ° C per 100 ° C is in the range of 1.0 to 10,000 parts per million.
  • the actual melting viscosity temperature is 10 1 ⁇ 5 (kPa, sec) at a temperature of 1650 ⁇ viscosity temperature, and the actual homogenization bubble viscosity temperature is 10 2 (Pa ⁇ s) at 1470 ° C; the molding viscosity temperature is 10 3 (Pa The second is 1250 ° C; the crystallization temperature is 1225 ° C.
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • the 3% of the content of the silicon oxide in the glass is 59.5%
  • the content of the calcium oxide is 11.3%
  • the content of the calcium oxide is 8%
  • the content of the aluminum oxide is 8%. 4 ⁇
  • the content of the content of the magnesium oxide is 1.4 times the content of the magnesium oxide.
  • the difference in the coefficient of thermal expansion of the glass between 400 ° C and 650 ° C per 100 ⁇ is in the range of 1.0 to 10,000 parts per million.
  • the actual melting temperature at a temperature of 10 1 ⁇ 5 is a viscosity temperature of 1660 ° C, and the actual homogenization of the bubble viscosity temperature is 1490 ⁇ at a bubble viscosity temperature of 10 2 (Pa ⁇ s); the molding viscosity temperature is 10 3 ( Pa ⁇ second) is 1250 ° C ; the crystallization temperature is 1200 ° C.
  • the thickness difference of the glass is less than 0. 2mm;
  • the alumina content is 16.6%
  • the content of the content of the oxidized magnesium is 6%
  • the content of the oxidized calcium is 6%. 4 ⁇
  • the content of the content of the magnesium oxide is 1.4 times the content of the magnesium oxide.
  • the difference in the coefficient of thermal expansion of the glass between 400 ° C and 650 ° C per 100 ° C is in the range of 1.0 to 10,000 parts per million.
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • the content of silicon oxide in the glass is 4.5%
  • the content of calcium oxide is 4.5%
  • the content of magnesium oxide is 0.5%
  • the content of alumina is 12%
  • the content of boron oxide is 14%
  • the content of cerium oxide At 10%, the content of silicon oxide is 13 times that of calcium oxide, and the content of calcium oxide is 9 times that of magnesium oxide.
  • the glass has a coefficient of thermal expansion between 400 ° C and 70 (the difference between the values of the TC per 100 ° C) is within a range of 1.0 to 10,000 parts per million.
  • the actual melting temperature at a temperature of 10 1 ⁇ 5 is a viscosity temperature of 1750 ° C; the actual homogenization bubble viscosity temperature is 10 2 (Pa ⁇ s) is 1630 ° C; the molding viscosity temperature is 10 3 (Pa ⁇ s) is 1420 ⁇ ; the crystallization temperature is 1260 ° C.
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • the difference in the coefficient of thermal expansion of the glass between 400 ° C and 700 ° C per 100 ° C is in the range of 1.0 to 10,000 parts per million.
  • the actual melting viscosity temperature is 10 1 , 5 (Pa ⁇ s) and the temperature is 175 CTC viscosity temperature; the actual homogenization bubble viscosity temperature is 10 2 (Pa ⁇ s) is 1630 ° C; the molding viscosity temperature is 10 3 (Pa ⁇ Second) is 1420 ° C ; crystallization temperature is 1260 ° (.
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • the percentage by weight of silica in the glass is 76%, the content of calcium oxide is 6%, the content of magnesium oxide is 2%, the content of alumina is 1%, the content of sodium oxide is 14%, and the content of potassium oxide is 1%.
  • the content of silicon oxide is 12 times that of calcium oxide, and the content of calcium oxide is 3 times that of magnesium oxide.
  • the difference in the coefficient of thermal expansion of the glass between 550 ° C and 623 ° C is 20 parts per million.
  • the actual melting viscosity temperature is 10 1 ' 5 (Pa ⁇ s) at a temperature of 1590 ° C ;
  • the actual homogenization bubble viscosity temperature is 10 2 (Pa ⁇ s) is 143 CTC;
  • the molding viscosity temperature is 10 3 (Pa ⁇ s) ) is 1140 ° C;
  • the crystallization temperature is 950 ° C.
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • Comparative Example 4 prior art of the present inventor:
  • the invention name is "a glass plate in a flat glass containing high annealing point, high flatness, low viscosity and environmental protection characteristics, flat glass, preparation method and display screen, photovoltaic solar device And its preparation method and display screen” application number of 201110060944.
  • the difference in the coefficient of thermal expansion of the glass between 400 ° C and 650 ° C per 100 ° C is in the range of 1.0 to 10,000 parts per million;
  • the actual melting viscosity temperature is 10 1 ' 5 (Pa ⁇ s) at a temperature of 153 CTC; the actual homogenized bubble viscosity temperature is 10 2 (Pa ⁇ s) at 1380 ° C; the molding viscosity temperature is 10 3 (Pa ⁇ s) ) is 1140 ° C; the crystal temperature is 1220 ° C
  • the thickness difference of the glass is less than 0. 2mm;
  • the water absorption rate is in the range of 0.01%
  • the flexural strength of the glass in the present specification and the embodiment of the present invention is determined according to the standard GB/T3810, 4-2006; the sample is cut into 5-8 strips of 50 mm ⁇ 50 mm ⁇ 5 mm, and the average value is determined by using a bending strength meter. .
  • the coefficient of thermal expansion in the examples of the present invention is determined in accordance with the QB/T1321-1991 detection standard.
  • Figure 1 is a schematic illustration of a float glass 12 produced by a float production apparatus in accordance with the present invention.
  • the production apparatus of the float glass of the present invention comprises: a silo 2, a mixing device 3, a melting device 4, a working portion 5, a tin kiln 7, a transition roller table 8, an annealing kiln 9, a cutting and dispensing station 10. These portions are all mounted on the float line substrate 11.
  • the raw material 1 of the glass is mixed and poured into the silo 2 in proportion, and enters the mixing device 3.
  • the mixing device 3 may have a stirrer which can increase the degree of mixing of the raw material 1.
  • the melting device 4 melts the mixed raw materials.
  • the middle and lower layers of the melting device 4 are installed with 3 to 200 electric heating devices 41 and 3 to 200 temperature measuring devices 42 having a distance of 0.2 m to 2 m.
  • the molten glass liquid enters the working portion 5, and processes such as evacuation, homogenization, and clarification are performed in the working portion 5.
  • the measuring device of the working portion 5 is installed with 3 to 200 electric heating devices having a distance of 0.2 m to 2 m and 3 to 200 measuring temperature devices having a distance of 0.2 m to 2 m.
  • the liquid flowing out of the working portion 5 enters the tin kiln 7, which has a flow guiding groove 6, the lateral direction of the sandwiching groove of the guiding groove 6.
  • the longitudinal direction of the exit is 0.5.
  • the transition roll table 8 is connected to the tin kiln 7 and the annealing kiln 9, and the annealed glass plate enters the cutting and dispensing station 10 for slitting and packaging.
  • Fig. 3 shows a more specific structure of the melting device.
  • a plurality of electric heating devices and temperature measuring devices are disposed in the lower middle layer of the melting device 4.
  • the middle portion and the lower portion of the working portion and the guiding groove are also provided with a similar structure.
  • the lower middle layer refers to an area that is measured from the bottom of the melting device 4 cavity by 0 to 80%.
  • the manufacturing process of the flat glass having the low thermal expansion coefficient of the present invention is further described by the float forming process, and the manufacturing process comprises the following steps:
  • the mixture prepared in the step (1) is transported from the feed port of the silo of Fig. 3 into the raw material storage tank by means of the raw material conveying belt. Then, the mixture prepared in the step (1) is fed into the molten pool of the predetermined high temperature resistant melting device through the mouth of the melting device, and gradually forms a fluidity in a temperature zone corresponding to the melting temperature of each glass formulation. A good liquid melt gradually discharges the bubbles in the liquid raw material through the high temperature zone, thereby forming a melt of the mixed raw material which can enter the molding process and has good fluidity.
  • the melt of the mixed raw material with better flowability in the step (3) is flowed from the melting device through the nip of the guide trough to the float method.
  • the tin bath of the production line also known as tin kiln
  • the tin bath of the production line is flattened, pulled by the edger and pulled by the tractor, polished and flattened on the tin surface, forming a semi-finished strip through the transition roll
  • the annealing kiln entering the cooling system of the roller conveyor is cooled, and then enters the cutting and dispensing station, and after cutting and dispensing, the flat glass shown in Fig. 1 can be obtained.
  • a flat pull process for the molding process of the glass according to the embodiment of the present invention, in addition to the above-mentioned float process, a flat pull process, a lattice process, a calendering process, an overflow process, a re-draw process, and a press molding may be employed. Any process in process molding.
  • the flowable glass melt formed in the melting step is drawn from the bath to form a glass ribbon, and the flattening process is characterized by thinning, forming, annealing, cooling, and slitting, that is, The above glass can be obtained.
  • the flowable glass melt formed in the melting step is pulled upward from the bath to form a glass ribbon, which is formed, annealed, cooled, and slit by a lattice process to obtain the glass.
  • the flowable glass melt formed in the melting step is drawn upward from the bath to form a glass ribbon, which is calendered, shaped, annealed, cooled, and slit to obtain the glass.
  • the flowable glass melt formed in the melting step is subjected to an overflow process, followed by down-forming, forming, annealing, cooling, and slitting to obtain the above glass.
  • the silicon oxide is 40-70%.
  • the proportion of silicon is 60-70%, and the technology for lowering the thermal expansion coefficient is achieved.
  • the purpose is to have a boron oxide content of 8-20%. In practical applications, boron oxide is present in the product in an amount of 10-15%. It also replaces the sodium oxide component with boron oxide to achieve the purpose of fluxing.
  • the boron component For example, if more than 10% of the boron component is added to the raw material, it must be added 2-3 times. For example, the glass of 10% boron content must be added to 30- A raw material with a content of 38% boron oxide (because most of the boron component will become a toxic gas at high temperatures).
  • the ratio of silicon is as high as 60-70%, and in order to achieve the technical purpose of lowering the coefficient of thermal expansion, the boron oxide content is 10-20. %, In actual use, boron oxide is 10-15% in the product. It also replaces the sodium oxide component with boron oxide to achieve the purpose of fluxing. For example, if more than 10% of the boron component is added to the raw material, it must be added 2-3 times. For example, the glass of 10% boron content must be added to 30- A raw material with a content of 38% boron oxide (because most of the boron component will become a toxic gas at high temperatures).
  • the melting and venting viscosity temperature is too high, and the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s) is 1760 ⁇ ;
  • the homogenization bubble viscosity temperature 10 2 '° (Pa ⁇ s) is 1620 ° C, which is very difficult to control the process quality and reduce energy consumption;
  • the equipment maintenance cost is high and the efficiency is low:
  • the technical defect is that when the boron content reaches 10-20%, the molten pool will be seriously corroded in the actual production (so all the TFT non-alkaline borosilicate glass and the building are made by the German company
  • the representative fireproof alkali-free borosilicate glass and PDP plasma borosilicate glass pool are only cold repaired in one year, which causes serious production cost and efficiency problems.
  • the present invention is an omission of the boron oxide component (see the first to sixth embodiments; the TFT glass and fireproof glass embodiment of Comparative Example 1; and the PDP glass embodiment of Comparative Example 2);
  • the glass has a high level of thermal expansion coefficient: the difference in the coefficient of thermal expansion of the glass between 400 ° C and 620 ° C per 100 ° C, is 1 part per million. 0 - 3 parts per million. 0 ⁇ 3 ⁇ Within 0, or the difference between the value of the coefficient of thermal expansion of the glass at 400 ° C -700 ° C per 100 ° C, is 1 million parts per million.
  • the technical solution of the present invention is very advantageous for upgrading and replacing the fireproof boron-containing glass and the PDP plasma boron-containing glass and the TFT alkali-free boron-containing glass represented by the German company.
  • the technical solution of the present invention finds a high aluminum content of 8, 6 - 30% or 17% - 30% or 21% or 24 when the boron-free cosolvent component is not contained (the invention is omitted for boron oxide and potassium oxide and sodium oxide)
  • At % or 28% there are high aluminum eutectic properties of aluminum, silicon, calcium, and magnesium; especially from the six examples of the present invention, when boron, sodium, and potassium cosolvent components are not contained (for boron oxide and oxidation) Potassium and sodium oxide are omitted.
  • the alumina content is 17-28% or 20% or 24% or 28%
  • the prior art considers the viscosity temperature, especially the melting and The bubble temperature will increase the viscosity temperature greatly, but the melting temperature and the melting temperature of the present invention when the alumina content is 8, 6-30%, 17-28% or 20% or 24% or 28% or so
  • the bubble viscosity temperature changes only 30 ° C -60 ° C (see 6 examples of the invention);
  • the alumina content is only 12%
  • the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s)
  • the temperature is 1750 ° C viscosity temperature
  • the actual homogenization row When the bubble viscosity temperature is 10 2 (Pa ⁇ s), it is 1630 ° C;
  • the alumina content is 22%
  • the actual melting viscosity temperature is 10 1 ' 5 (Pa ⁇ s)
  • the temperature is 1590 ° C viscosity temperature
  • the actual homogenization bubble viscosity temperature is 10 2 (Pa ⁇ s) is 1425 °C;
  • the present invention does not contain a boron oxide component (see the first to sixth embodiments; the TFT glass and fireproof glass embodiment of Comparative Example 1; and the PDP glass embodiment of Comparative Example 2), the boron glass can be overcome.
  • the environmental problem of toxic gas volatilization. (For example: 10% boron content of glass for building fireproof alkali-free borosilicate glass and PDP plasma borosilicate glass and TFT alkali-free borosilicate glass represented by German Nitrotech Co., Ltd.) must be added with 30-38% boron oxide content. Raw materials, because most of the boron components will become volatile in the high temperature, causing industrial environmental problems.
  • the invention does not have a boron component of 10-20%, the molten pool will be seriously corroded in production; therefore, all the TFT non-alkaline boron glass and the building represented by the German company, can be overcome.
  • the fire-resistant alkali-free borosilicate glass and PDP plasma borosilicate glass pool are only cold repaired in one year, which causes serious production cost and efficiency problems; technology that can achieve unexpectedly lower equipment cost and equipment use efficiency effect.
  • the temperature at which the actual melting viscosity of the glass of the present invention is 10 1 ' ⁇ Pa ⁇ sec) is 1480 ° C to 1690 ° C
  • the building fire-resistant alkali-free borosilicate glass and PDP plasma glass and TFT represented by the German company Alkali-free borosilicate glass the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa, sec) is 1760 ° C, it can be seen that the melt viscosity temperature of the present invention is 90 ° C - 280 ° C lower than;
  • the actual homogenization bubble density temperature of the glass of the invention is 1370 ° C -1490 ° C when the temperature is 10 2 (Pa ⁇ s), and the building fireproof alkali-free borosilicate glass and PDP plasma borosilicate glass represented by the German company TFT alkali-free borosilicate glass, the actual homogenization bubble viscosity temperature 10 2 ⁇ ° (Pa ⁇ s) is 1620 ° C, the actual homogenization bubble viscosity temperature of the present invention, 130 ° C -250 ° C lower than .
  • the low-viscosity glass of the present invention can replace the high-viscosity of the prior art, and the building fire-proof alkali-free borosilicate glass and PDP plasma borosilicate glass and TFT alkali-free borosilicate glass can be greatly reduced.
  • Energy consumption, energy saving costs especially in the face of high-speed development: building doors, windows, curtain wall fireproof glass, B furniture glass, C car and ship fireproof glass, D high-speed fireproof glass, E rework tempering Fireproof glass and hollow fireproof glass and coated fireproof glass, energy saving involves a large area;
  • the low-viscosity glass of the present invention can replace the high-viscosity building fire-resistant alkali-free borosilicate glass and PDP plasma borosilicate glass and TFT alkali-free borosilicate glass represented by German nitrite.
  • the invention is suitable for glass having a high degree of flatness, especially for products having a thickness of 1.1 awake - 0. 7 legs or 0.5 ⁇ ; If you want to be high, you can't have stones that are not melted, so you need high melting viscosity. Otherwise, the defects are obvious and the product is unqualified. Then, the product is homogenized and the foaming viscosity is high.
  • the bubble row is not clean.
  • the higher the light transmittance of the flat glass products the higher the molding temperature and viscosity requirements, because there is a flaw in the float molding.
  • Flat, leveling process if the viscosity is high, it will be too thick and smooth, affecting the output, and also due to the thickness and unevenness of the leveling and leveling process
  • the thickness and the unevenness of the surface of the product forming the polishing and thinning process are also large, and the surface of the product has wavy defects; therefore, the present invention solves the PDP plasma borosilicate glass and the TFT alkali-free borosilicate electronic grade flat glass.
  • the quality problems of the products and the improvement of the product quality are obvious and significant.
  • the invention name is "a kind of Application of flat glass in flat glass with high annealing point, high flatness, low viscosity and environmental protection characteristics, display method, photovoltaic solar device and preparation method thereof and display screen", application number is
  • the content of silicon oxide is 2.11 times - 4, 56 times or 4, 57 times - 5, 48 times of the calcium oxide content, and the selection is For the calcium oxide content which is easy to lead to crystallization, the innovative selection of this technical element range of inventions (rather than the prior art 1.9 times -4.1 times) is also an alternative invention outside its scope;
  • the upper limit of the alumina content is selected to be 35%, that is, 13.6% - 35% (instead of the prior art alumina content of 0. 01-39%), which is within a narrow range of its range.
  • the technical solutions of the above new technologies have found new comprehensive material properties in the use of flat-panel glass: A.
  • the crystallization temperature of the crystallization temperature of the prior art of the present inventors is relatively low;
  • the boron component is omitted, it has excellent thermal expansion coefficient properties, so it can replace various boron glass.
  • the building fireproof alkali-free borosilicate glass represented by German Nitute Company and the PDP plasma borosilicate glass of Japan Asahi Glass and the non-alkali of the United States Corning TFT.
  • the technical solution of the new technology shows that the crystallization temperature is lower than the molding temperature.
  • the prior art solution of the present inventors shows that the crystallization temperature is higher than the molding temperature.
  • the inventor's prior art solution many products have higher crystallization temperature than the molding temperature, which is a major defect; this has a certain influence on the molding, so that the granulation, flat drawing and calendering processes are especially in the process of calcium sodium flat glass.
  • the viscosity is 10 3 ⁇ 8 (Pa ⁇ s)
  • the temperature is 900 ° C
  • the crystallization temperature of the calcium soda glass is very low in the critical stage of pulling up from the cooling chamber of the bath.
  • the molding temperature is 10 3 ⁇ ° (pa*s), and is also lower than the actual molding temperature of 10 3 ⁇ 8 (Pa ⁇ s) 900 °C.
  • the viscosity thereof is lower than 10 3 ⁇ 8 (Pa ⁇ s); and the glass of the patented invention technology of the application No. 201110060944.
  • A or the molten glass is high in crystallization temperature, higher than 10 3 D (Pa ⁇ s) before forming to the real 10 3 ⁇ 8 (Pa ⁇ s) of the bubble-cooling work
  • the time of stay will be insurmountable for 4-6 hours, and it is certain that some of the glass will devitrify during this period
  • B or in order to prevent crystallization and devitrification, the actual cooling on the discharge part
  • the drawing temperature is higher than the crystallization temperature, which is much higher than the forming temperature of 10 3 ° (Pa ⁇ s), which will be due to the fluidity of the glass being too clean, too low, or too low.
  • the inventor's prior art invention is entitled "a glass plate in a flat glass containing a high annealing point, high flatness, low viscosity and environmental protection characteristics, a flat glass, a preparation method, a display screen, a photovoltaic solar device and a preparation method thereof
  • the patented invention with the application number of 201110060944. 4, because of the main defects of high crystallization temperature, in the lattice process, the flat drawing and the calendering process, the large-scale production with quality guarantee and quality guarantee cannot be realized normally. , the formation of the puzzle.
  • the crystallization temperature of the prior art solution of the present inventors is solved to be low, and the material property can be solved.
  • the prior art has a problem of high crystallization temperature.
  • the flat glass of the present invention does not contain a boron oxide component.
  • the prior art borosilicate has a new high level of thermal expansion coefficient: the coefficient of thermal expansion of the glass is between 400 ° C and 620 ° C per 100 ° C. The difference is 1. 0 - parts per million, or the difference between the values of the coefficient of thermal expansion of the glass at 400 ° C - 700 ° C per 100 ° C, for a hundred 1. 1 million parts per million. 0. It can overcome the technical problems of calcium-sodium flat glass. It can replace calcium-sodium flat glass as fire-proof glass, provide fire safety for buildings, and also have PDP plasma boron. The nature of the glass application has produced significant technical effects.
  • Comparative document Comparative prior art JP11-240734 A, Example 3 thereof. :
  • the present invention is an omission of the cosolvent (sodium ten potassium), breaking the existing flat Glass technology must use the technical bias of boron, sodium and potassium cosolvent components when the aluminum content is above 15%;
  • the technical solution of the present invention breaks the existing flat glass technology, and when the aluminum content exceeds 15%, the viscosity temperature is too high, and the large-scale production of the flat glass technology cannot be realized, especially the flat glass technology cannot be overcome. Difficulties in the process; when the aluminum content exceeds 15%, the addition of boron, sodium, potassium cosolvent components can not achieve the technical bias of large-scale production of flat glass technology;
  • the technical scheme of the invention finds that the high aluminum content is 8, 6-30% or 17%-30% or 21% when the boron, sodium and potassium cosolvent components are not contained (the invention is omitted for boron oxide and potassium oxide and sodium oxide). Or 24% or 28%, high aluminum eutectic properties of aluminum, silicon, calcium, magnesium; especially from the six examples of the present invention, in the absence of boron, sodium, potassium cosolvent components (for boron oxide) And potassium oxide and sodium oxide omitting the invention), when the alumina content is 17-28% or 20% or 24% or 28%, the long-span change, the prior art considers the viscosity temperature, especially the melting and the bubble viscosity The temperature will rise sharply, but when the alumina content of the present invention is 17-28% or 20% or 24% or 28%, the melting temperature and the bubble viscosity temperature change. Only 30 ° C -60 ° C (see 6 examples of the invention);
  • the alumina content is only 12%
  • the actual melting viscosity temperature is 10 1 S (Pa ⁇ s)
  • the temperature is 1750 ° C viscosity temperature
  • the actual homogenization exhaust When the foam viscosity temperature is 10 2 (Pa ⁇ s), it is 1630 ° C;
  • the alumina content is 22%
  • the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa*s)
  • the temperature is 159 CTC viscosity temperature
  • the actual homogenization bubble viscosity temperature is 10 2 (Pa *seconds) is 1425 ° C;
  • the invention in the absence of boron, sodium, potassium cosolvent components, the elements of silicon, calcium and magnesium at a high aluminum content of 8, 6 - 30% or 17% - 30%
  • the technical solution of the range of proportional relationship can produce a new eutectic property of aluminum, silicon, magnesium and calcium with high alumina content, which can overcome the difficulty of the largest melting and bubble discharging process in the flat glass technology.
  • unexpected technical effects of a low viscosity temperature of high aluminum content and unexpected unexpected effects of high quality and high strength are produced.
  • the invention can increase the alumina content by 17-28%, and the strength can reach about 120-160 MPa or 180 MPa, which is twice the strength of the prior art TFT flat glass and fireproof flat glass;
  • the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s) and the temperature is 1750 ° C viscosity temperature; actual homogenization When the bubble viscosity temperature is 10 2 (Pa ⁇ s), it is 1630 ° C; but in the first embodiment of the present invention: the actual melting viscosity temperature is 10 1 ' 5 (Pa ⁇ s), the temperature is 1590 ° C viscosity temperature, practical The homogenization bubble viscosity temperature is 1225 ° C when the temperature is 10 2 (Pa ⁇ s);
  • the technical solution of the present invention is lower than the actual melting viscosity temperature of the prior art and the actual homogenization bubble viscosity temperature of the TFT glass and the fireproof glass of the boron-containing cosolvent component in the absence of the boron, sodium and potassium cosolvent components.
  • ° C -200 ° C has a large energy-saving technical effect; and the technical effect of improving the quality of the flat glass due to the low melting temperature of the melting point; and the reduction of the bubble rate due to the low viscosity of the bubble discharge The technical effect of quality.
  • Comparison document Compared with the prior art TW201144249A, it is a completely different technology for making glass fiber from the field of flat glass technology.
  • the comparative document discloses a method for glass fiber, and the invention is a flat glass, which has industry standards in various countries in the world, and China also has national industry standard provisions; in international national standards and Chinese national standards, the thickness difference and light There are also standards for transmittance; there are also provisions for the determination of thickness difference and light transmittance; and in the international standards for flat electronic glass and Chinese national standards, there are also provisions for the waviness in the distance between every 20 dishes in the surface.
  • the present invention relates to a flat glass, and more particularly to a flat glass having a low coefficient of thermal expansion and a manufacturing process thereof.
  • the scope of the field is: (1) building doors, windows, curtain wall panels, (2) flat glass for automobiles and ships, (3) flat glass for high-speed rail, (4) flat panel glass for LCD display, (5) PDP display Screen flat glass, (6) TFT display flat glass and high-strength panel flat glass for smart phones and iPad, (7) process flat glass and other products and reworked flat glass tempered products, (8) LCD flat glass, (9) Photovoltaic solar device flat glass. 3 ⁇ The thickness of the glass is less than 0. 3mm.
  • sample samples of the new use of the flat glass according to the present invention are made into a sample having transparent characteristics and conforming to the transparent characteristics required in the field of flat glass, and the visible light transmittance of the glass is all 40%-95% (according to GB/ T268 Q specifies the determination).
  • Claim 1 of the present invention indicates that the coefficient of thermal expansion of the glass is from 400 ° C to 630 ° C or from 400 ° C to 700 ° C.
  • the difference between the values at both ends of 100 °C is within 1-3 parts per million; the nature of the new expansion coefficient found should be determined, and the unexpected technical effect produced -
  • the thermal expansion coefficient of the glass can reach 400 °C -630 °C. Or the difference between the values of the two ends per 100 ° C of 400 ° C - 700 O, within 1-3 parts per million
  • the invention can omit the invention of the boron component, and finds the technical solution of the invention without boron component, has low thermal expansion coefficient property, can produce TFT liquid crystal display glass and fireproof explosion-proof flat glass without boron component, PDP plasma Boron glass; therefore, it can completely solve the boron gas emission in the current production of boron glass (for example, when the boron content in the product is 10%, about 30% of boron is added to the raw material, and about 20% of boron is emitted during melting.
  • Volatile gas volatilization such as the prior art 10 ton / day overflow process
  • 2 tons of boron gas is discharged every day, such as 200 tons / day capacity
  • 200 tons of the technical solution of the present invention / Day of the float line can be without any boron gas emissions, can overcome the environmental problems caused by the above-mentioned flat boron glass, which involves a wide range of industries (large amount of boron gas volatilization in production);
  • the invention of the boron component of the present invention has found that the technical solution of the present invention has a boron-free composition, has a low thermal expansion coefficient property, and can replace not only the prior art PDP plasma borosilicate glass and TFT having low thermal expansion coefficient properties.
  • Alkaline boron glass electronic grade flat glass and fireproof borosilicate glass and it will also produce significant technical effects that greatly reduce the maintenance cost of the production line and greatly increase the efficiency of the production line and increase the production capacity.
  • boron glass is severely corroded at high temperature due to the refractory material of the production equipment, and the production equipment must be shut down for maintenance in 1 to 2 years; and the present invention has found the technical solution of the present invention without boron content due to the omission of the boron component.
  • the absence of boron component causes severe corrosion of the refractory material of the production equipment at high temperatures, and the production equipment can be normally shut down for maintenance of 8-10.
  • TW201144249A with outstanding substantive features and significant progress, is creative.
  • the alumina content is 8, 6-35 or 1-35% or 21-35%, exceeding 13 and 5% of the example 2.
  • the present invention also emphasizes the discovery of high aluminum content.
  • New properties of co-solvent of aluminum, silicon, calcium and magnesium and new properties of low viscosity temperature therefore, in new applications for flat glass, fire-resistant borosilicate glass, especially for low thermal expansion coefficient properties, provides fire safety for buildings, and It can be used as a new application of TFT liquid crystal glass with low thermal expansion coefficient properties, and can be used as a new application of PDP plasma borosilicate glass with low thermal expansion coefficient properties, resulting in remarkable technology. Effect:
  • the invention omits the boron component of the present invention.
  • the present invention has new properties of co-solvent of aluminum, silicon, calcium, magnesium and low viscosity temperature new properties under the condition of boron-free component and high aluminum content.
  • Prior art PDP plasma borosilicate glass and TFT alkali-free borosilicate glass electronic grade flat glass and fireproof borosilicate glass under high aluminum content conditions - the actual melting viscosity temperature of the glass of the invention is 10 5 (pa * sec) at a temperature of 1480 °C-1690°C, and building fireproof alkali-free borosilicate glass and PDP plasma glass and TFT alkali-free borosilicate glass represented by German Nate, the actual melting viscosity temperature is 10 1 ⁇ 5 (Pa ⁇ s) is 1760° C, it can be seen that the melt viscosity temperature of the present invention is lower than 90 ° C - 280 ° C; the actual homogenized bubble viscosity temperature
  • the second invention has a significant technical effect: the invention is very suitable for flatness, glass with high degree of glass lining, especially for the ultra-thin electronic glass of the thickness of 1. 1mm- 0. 7mm or 0.5.
  • Product first of all The product is melted to a high level, and there must be no stones formed by the infusibility.
  • the melt viscosity is required to be high, otherwise the defects are obvious and the product is unqualified; then, the product is homogenized and the foaming viscosity is high, otherwise the bubble row is not Clean, also in the glass will be obvious, resulting in product failure, and the less micro-bubbles, the flat glass product transmittance water quality will be higher; especially the molding temperature viscosity requirements are also high, because there is A flat, leveling process, if the viscosity is high, it will be too thick and slow, affecting the yield, and will also affect the formation of polishing and pulling due to the thickness difference and unevenness of the leveling and leveling process.
  • the thickness of the surface of the product in the thin process stage is also large, and the unevenness of the surface of the product is also large, and the surface of the product has a waviness defect; therefore, the present invention is particularly suitable for the glass product of the electronic display of the thickness of 1. 1 dish - 0. 7 or 0.5 mm.
  • the improvement of product quality has significant technical effects.
  • New properties found are unknown properties before the present application; Unexpected technical effects arising from newly discovered properties in the technical fields of different uses; then, according to the patent examination guide, Part 2, Chapter 4, 5, the content of the new use invention of the product, the present invention is also A transfer-use invention is not obvious, and has outstanding substantive features and significant progress. Creative.
  • the flat glass of the present invention and the manufacturing process thereof provide a new technical solution for the flat glass: a technical solution adopting a proportional relationship of the changed technical elements (including the thermal expansion coefficient property);
  • the use of a boron- or fluorine or phosphorus or antimony component that is used in flat glass applications has been omitted from the invention (including the properties of thermal expansion coefficient).
  • This technical solution has never been used in flat panels.
  • the technology discloses or reveals; in particular, flat glass products and processes reveal the most important properties of thermal expansion coefficient, viscosity and temperature properties of melting and degassing and clarification process stages, and new technical solutions.
  • the present invention is not an afterthought that can be derived by simple logical reasoning or simple experimentation; the invention of the invention for use in flat glass applications, especially fireproof borosilicate glass, and the use of TFT liquid crystal borosilicate glass and PDP plasma borosilicate glass.
  • the boron glass has a low thermal expansion coefficient and a higher flexural strength, resulting in: energy saving, improved production efficiency, reduced cost, and environmental protection effect of boron poison gas emission.
  • Improve the quality of electronic glass, and the glass that can be produced due to the increase in flexural strength can be light, thin, 5-3 times energy-saving, resource-saving, saving logistics, storage 2 - 3 times the unexpected technical effect;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种具有低热膨胀系数的平板玻璃及其制造工艺。按重量百分比计,该平板玻璃中氧化铝含量为8.6—35%,氧化硅含量是氧化钙含量的4.11—5.48倍,氧化钙含量是氧化镁含量的0.8—1.99倍,氧化钠、氧化钾与氧化硼的总含量为0.1—0.5%。该平板玻璃的热膨胀系数在400—630°C的每100°C的两端的数值之间的差值在百万分之一至百万分之三以内,厚薄差小于0.3mm,吸水率在0—0.3%范围内,抗折强度达50—190MPa,在粘度为101·5帕⋅秒时的温度为1480°C—1680°C,102帕⋅秒时的温度为1370°C—1490°C。

Description

一种具有低热膨胀系数的平板玻璃及其制造工艺
技术领域
本发明涉及一种平板玻璃, 尤其涉及具有低热膨胀系数的平板玻璃及其制造 工艺。 其领域范围是: (1 ) 建筑用门、 窗、 幕墙平板玻璃, (2 )汽车及船舶用平 板玻璃, (3 ) 高铁用平板玻璃, (4 ) LCD显示屏平板玻璃, (5 ) PDP显示屏平板 玻璃, (6 ) TFT显示屏平板玻璃及智能手机和 iPad的高强度面板平板玻璃, (7 ) 工艺平板玻璃等产品以及再加工的平板玻璃钢化产品,(8 )液晶显示屏平板玻璃, ( 9 ) 光伏太阳能装置平板玻璃。
背景技术
1、 现有的 TFT无碱硼玻璃及以德国硝特公司为代表的建筑防火无碱硼玻璃 和 PDP等离子硼玻璃技术, 尤其代表性的为 US2002/0011080A1的液晶显示屏的 无碱玻璃。在这些技术方案中, 氧化硅达 40-70%, 在实际这类一切产品中的硼玻 璃和实施例中,硅的比例都在 60- 70%之多。而为了达到降低热膨胀系数和降低粘 度温度的技术目的, 氧化硼含量为 8-20%, 在实际运用中, 氧化硼在产品中含量 达 10-15%。 其也把氧化硼来替代氧化钠成份达到助熔的目的, 而如 10%以上的硼 成份, 在原料上就必须加入 2- 3倍, 如 10%的硼含量的玻璃就必须要加入 30-38% 的氧化硼的含量的原料 (因为大部分硼成份会在高温中变为有毒气体挥发)。 其 技术缺陷之是:
2、 硼玻璃严重环保缺陷: 生产在这类的硼玻璃产品中和专利实施例中, 硅 的比例都在 60-70%之多,而为了达到降低热膨胀系数的技术目的,氧化硼含量为 10-20%, 在实际运用中, 氧化硼在产品中含量达 10-15%。其也把氧化硼来替代氧 化钠成份达到助熔的目的,而如 10%以上的硼成份,在原料上就必须加入 2-3倍, 如 10%的硼含量的玻璃就必须要加入 30- 38%的氧化硼的含量的原料(因为大部分 硼成份会在高温中变为有毒气体挥发)。
3、 硼玻璃其熔化和排气泡粘度温度太高, 实际溶化粘度温度 101·5 (帕 ·秒) 为 1760Ό ; 均化排气泡粘度温度 102 fl (帕 ·秒) 为 1620°C, 十分不易进行工艺 品质控制和降能耗成本。
4、硼玻璃设备维护成本高、 效率低: 其技术缺陷在于, 硼成份达 10-20%时, 现实的生产中会把熔池严重腐蚀(所以现在的一切 TFT无碱硼玻璃及以德国硝特 公司为代表的建筑防火无碱硼玻璃和 PDP 等离子硼玻璃熔池只一年时间就要冷 修, 这就造成了严重生产成本和效率问题。
5、现有的钙钠平板玻璃, 由于热膨胀系数大, 尤其在高温区在 550°C- 62CTC 的两端数值的差别为百万分之 20, 所以遇火会爆裂, 根本达不到防火玻璃和 PDP 等离子玻璃的热膨胀系数;所以其不能作防火玻璃对建筑物提供不了防火安全保 障, 也不具有 PDP等离子硼玻璃应用的性质。
6、 本发明人的现有技术发明名称为 "一种玻璃在含高退火点高平整度低粘 度及环保特征的平板玻璃中的应用平板玻璃及制备方法与显示屏、光伏太阳能装 置及其制备方法与显示屏"的申请号为 201110060944. 4的专利发明技术, 析晶 温度高是主要缺陷, 须然其专利文件中没有公幵任何析晶温度数据, 但可以判定 其技术方案的析晶温度很大部分高于成型温度(先对比例 4);这对成型有一定影 响, 使尤其是因为析晶温度高的主要缺陷, 会在格法、 平拉、 压延工艺中, 不能 正常实现有品质保障的有产量经济效益的大生产,形成了难题;而在浮法生产中, 由于存在析晶温度高的主要缺陷, 也会有为了高品质地实现大生产, 而进行设备 改造的难题要求。
7、 对比文件: 比较先有技术 JP11-240734 A其实施例 3。:
( 1 )虽然其氧化硅的含量是氧化钙含量的 4. 22倍, 氧化钙的含量是氧化镁 的含量的 1. 39倍, 但其含有助溶剂 (钠十钾) 为 2、 5%, 而且 12个实施例中绝 大部分助溶剂 (钠十钾) 8-11、 5%, 本发明是一种对助溶剂 (钠十钾) 的省略发 明, 打破了现有平板玻璃技术在铝含量 8%以上时, 必须使用硼、钠、钾助溶剂成 份的技术偏见;
(2 ) 本发明技术方案, 打破了现有平板玻璃技术在铝含量超过 15%以上时, 会出现太高的粘度温度, 不能实现平板玻璃技术大生产, 尤其是不能克服平板玻 璃技术排气泡工艺的难点; 在铝含量超过 15%以上时, 就是加入硼、 钠、 钾助溶 剂成份也不能实现平板玻璃技术大生产的技术偏见;
本发明技术方案在不含硼、 钠、 钾助溶剂成份时(对氧化硼和氧化钾和 氧化钠助溶剂成分的省略发明), 发现了高铝含量 8、 6-30%或 17%— 30%时, 有 铝、 硅、 钙、 镁的高铝共熔体性质; 尤其从 6个本发明实例都可见, 在不含硼、 钠、 钾助溶剂成份时 (对氧化硼和氧化钾和氧化钠助溶剂成分的省略发明), 氧 化铝含量为 17-28%或 20%或 24%或 28%左右时的大跨度变化时,现有技术认为 粘度温度, 尤其溶化和排气泡会粘度温度会大幅上升, 但本发明的氧化铝含量为 17 - 28%或 20%或 24%或 28% 左右时的大跨度变化时, 溶化和排气泡粘度温度的 变化仅 30° C --60° C ; 而且氧化铝含量为 22%时溶化和排气泡粘度温度比现 有技术(对比例一, TFT玻璃和防火玻璃实施例)要低 160° C -200° C; 这证明 了本发明的技术方案中, 在不含硼、钠、钾助溶剂成份时,在高铝含量 8、 6-30% 或 17%—30%时, 的硅、钙、镁的要素比例关系变化范围的发明技术方案, 能产生 一种新的高氧化铝含量的铝、 硅、 镁、 钙的共熔体性质, 能克服平板玻璃技术中 最大的溶化和排气泡工艺的难点,从而能产生高铝含量的低粘度温度的预料不到 的技术效果和进而产生的高品质高强度的预料不到的技术效果。 本发明尤其由 于可以加大氧化铝的含量达 17- 28%时, 强度可达约 120- 160Mpa或 180Mpa, 是 先有技术 TFT平板玻璃和防火平板玻璃强度的 2倍;
而且由于粘度温度还较先有技术: (对比例一, TFT玻璃和防火玻璃实施例) 实际溶化粘度温度为 101·5 (帕 ·秒)时的温度为 1750°C粘度温度; 实际均化 排气泡粘度温度 102 (帕 ·秒) 时为 1630 °C ;
本发明实施例一: 实际溶化粘度温度为 101·5 (帕 ·秒)时的温度为 1590°C粘 度温度, 实际均化排气泡粘度温度 102 (帕,秒) 时为 1425°C ;
本发明技术方案在不含硼、 钠、 钾助溶剂成份时, 比含硼助溶剂成份的 TFT 玻璃和防火玻璃先有技术的实际溶化粘度温度和实际均化排气泡粘度温度,要低
160 ° C - 200 ° C, 有很大的节能技术效果; 和因溶化粘度温度低而减少碴点结石 率提高平板玻璃品质的技术效果;及因排气泡粘度温度低而减少气泡率提高平板 玻璃品质的技术效果。
(本说明书及本发明实施例玻璃的抗折强度, 通过把样品切成 50mm X 50 誦 X 5匪的小条, 采用抗折强度仪, 按标准 GB/T3810、 4- 2006测定。 ; )。
8、 对比文件: 比较先有技术 TW201144249 A, 其中实施例 15其氧化硅的含 量是氧化钙含量的 4. 5倍, 氧化钙的含量是氧化镁的含量的 1. 33倍; 但其是与 平板玻璃技术领域完全不同的制作玻璃纤维的技术;根据中国专利审査指南二部 分四章 4, 5 已知产品的新用途发明的内容, 本发明与对比文件公开的一种用于 生产纤维的区别的很大; 本发明技术方案, 在用于平板玻璃的新用途中, 发现了 内在的新的低热膨胀系数性质,产生了在用于平板玻璃的新用途中预料不到的根 除 TFT玻璃和防火玻璃生产中毒气排放而环保的技术效果;大幅节能的技术效果; 大幅降低生产系统的成本和延长生产系统几倍寿命的技术效果; 和因溶化粘度温 度低而减少碴点结石率提高平板玻璃品质的技术效果;及因排气泡粘度温度低而 减少气泡率提高平板玻璃品质的技术效果。
9、对比文件:比较先有技术 US3929497A (30. 12. 1975),以下简称(97A),是 38 年前的采用铸铁模具来铸造析晶玻璃棒的制作玻璃纤维的技术;根据中国专利审 查指南二部分四章 4, 5已知产品的新用途发明的内容, 本发明与对比文件 (97A) 公开的一种用于生产纤维的结晶玻璃棒) 区别的很大; 本发明技术方案, 在用于 平板玻璃的新用途中, 发现了内在的新的性质, 产生了在用于平板玻璃的新用途 中预料不到的技术效果。 发明内容 本发明要解决的技术问题在于提供一种具有低膨胀系数的平板玻璃及其制 造工艺, 其目的在于解决上述现有技术的缺陷。
一种具有低热膨胀系数的平板玻璃, 其特征在于: 按重量百分率计, 该玻璃 中氧化铝的含量为 8. 6-35%, 氧化硅的含量是氧化钙含量的 4. 11倍 -5. 48倍, 氧 化钙的含量是氧化镁的含量的 0. 8 倍 -1. 99 倍; 该玻璃的热膨胀系数在 400Ό -630°C的每 lCXTC的两端数值之间的差别, 为百万分之 1-3以内;
该玻璃的厚薄差小于 0. 3mm;
其吸水率在 0-0. 3%的范围内;
其抗折强度达 50_190Mpa。
所述的平板玻璃, 其特征在于: 按重量百分率计, 其含有氧化铝、 氧化硅、 氧化钙、 氧化镁成份, 及含有氧化钠与氧化钾与氧化硼的共 0、 1- -0、 5%的杂质 成份,氧化铝含量为 8. 6-15. 5%,氧化硅的含量是氧化钙含量的 4. 11倍- 5. 48倍, 氧化钙的含量是氧化镁的含量的 0. 8倍 -1. 99倍; 该玻璃的热膨胀系数在 400°C -630°C的每 100°C的两端数值之间的差别, 为百万分之 1-3以内;
该玻璃的厚薄差小于 0. 3mm;
其吸水率在 0-0. 3%的范围内;
其抗折强度达 50- 190Mpa。
(氧化钠与氧化钾与氧化硼的共含量为 0、 1- -0、 5%的杂质成份, 是玻璃原 料中不可克服而存在的氧化钠与氧化钾与氧化硼的的自然含量总合范围,不能产 生助溶剂作用, 其是对玻璃助溶剂氧化钠与氧化钾与氧化硼的省略发明)
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化铝含量为 8. 6-15. 5% 或 15. 5- 35%或 17- 35%或 21- 35%或 8. 6-35%。
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化硅是氧化钙的 4. 11 倍- 4、 56倍或者 4、 57倍- -5. 48倍;。
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化铝含量为 15. 5-35%, 氧化硼含量为 0、 001-0、 2%的杂质成份, 氧化硅的含量是氧化钙含量的 4. 11 倍- 5. 48倍, 氧化钙的含量是氧化镁的含量的 0. 8倍- 1. 99倍, 是玻璃原料中不 可克服而存在的 0、 001-0、 2%的杂质氧化硼成份的自然含量范围, 不能产生助 溶剂作用, 本内容是对玻璃助溶剂氧化硼的省略发明。
所述的平板玻璃, 其特征在于: 按重量百分率计, 其含有氧化铝、 氧化硅、 氧化钙、 氧化镁成份, 及含有氧化钠与氧化钾共 0、 1-0, 5%的杂质成份, 氧化 铝含量为 8. 6-35%, 氧化硅的含量是氧化钙含量的 4. 11倍 -5. 48倍, 氧化钙的含 量是氧化镁的含量的 0. 8倍- 1. 99倍; 该玻璃的热膨胀系数在 400°C-630°C的每 100°C的两端数值之间的差别, 为百万分之 1-3以内;
该玻璃的厚薄差小于 0. 3mm;
其吸水率在 0-0. 3%的范围内;
其抗折强度达 50- 190Mpa。
(氧化钠与氧化钾共含量为 0、 1-0, 5%的杂质成份, 是玻璃原料中不可克 服而存在的氧化钠与氧化钾的自然含量总合范围, 不能产生助溶剂作用, 其是对 玻璃助溶剂氧化钠与氧化钾的省略发明)
所述的平板玻璃, 其特征在于: 含有氧化硼 0、 001- -0、 5%的杂质成份, 是 玻璃原料中不可克服而存在的自然含量范围, 不能产生助溶剂作用, 其是对玻璃 助溶剂氧化硼省略发明。
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化钠含量为 0、 01- 0、 9%, 厚度为 0、 1MM- 5匪。 适用于 TFT液晶平板玻璃。
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化钠含量为 0、 9-13%, 厚度为 0、 1匪- 1、 5MM。 适用于电子触摸屏平板玻璃。
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化钠含量为 0、 01- 0、 9%, 厚度为 1、 5MM-25丽。 适用于建筑用防火防爆平板玻璃。
所述的平板玻璃, 其特征在于: 按重量百分率计, 氧化钠含量为 0、 9-13%, 厚度 为 1、 5匪 -25MM。 适用于建筑用高强度平板玻璃。
所述的平板玻璃, 其特征在于: 按重量百分率计,, 氧化硅是氧化钙的 4. 11 倍- 4、 56倍或者 4、 57倍一5. 48倍;
所述的平板玻璃, 其特征在于: 该玻璃的热膨胀系数在 400 °C -700°C的每 100°C的差别, 为百万分之 1-百万分之 3以内, 该玻璃在粘度为 101·5帕 ·秒时的 温度为 1480°C-160°C ; 粘度为 102帕 ·秒时的温度为 1370°C_1490°C;
一种液晶显示屏, 包括: 阵列基板, 该阵列基板包括基底及在该基底上的像素结构, 该基底为根据权 利要求 1-5任一项所述的平板玻璃制造的玻璃板;
滤色器基板, 该滤色器基板包括基底以及在该基底上的滤色器层, 该基底为 根据权利要求 1-5任一项所述的平板玻璃制造的玻璃板;
液晶层, 夹设在该阵列基板和该滤色器基板之间; 以及
背光源系统。
一种 PDP等离子屏幕显示屏, 其包括:
前板制程, 其含有: 根据前述权利要求 1-5的任一项所述的平板玻璃制造的 基板玻璃、 透明电极、 bus电极、 透明诱电体层、 mgo模;
后板制程, 其含有: 萤光体层、 隔墙、 下板透明诱电体层、 寻址电极、 根据 前述权利要求 1-5的任一项所述的平板玻璃制造的基板玻璃; 以及
相搭配的高压驱动模块与控制电路。
一种智能触摸显示屏, 其包括:
根据前述权利要求 1-5的任一项所述的平板玻璃制造的基板玻璃,其上附有 一层导电膜;
液晶显示屏, 该显示屏包括:
阵列基板,该阵列基板包括基底及在该基底上的像素结构,该基底为玻璃板; 滤色器基板, 该滤色器基板包括基底以及在该基底上的滤色器层, 该基底为 玻璃板;
液晶层, 夹设在该阵列基板和该滤色器基板之间;
以及背光源系统。
一种彩釉平板玻璃, 其基板玻璃为根据所述的平板玻璃, 其表面有 1-10种 色彩的彩釉层。
一种中空玻璃, 其 2- 5层玻璃为根据所述的平板玻璃, 其 2- 5层玻璃互相之 间的中空距离为 3-50匪。
一种具有低热膨胀系数的平板玻璃的制造方法, 其特征在于: 步骤 1, 根据权利要求 1-5任一项所述的玻璃配方配置所需的各种有预定的 必不可少的氧化铝、 氧化硅、 氧化钙、 氧化镁的成份, 以及预定的氧化硅、 氧化 钙、 氧化镁的原料, 经混合搅拌之后在对应于各玻璃配方的熔化温度熔化, 形成 预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成可流动的熔融体;
步骤 2, 选择浮法工艺、 平拉工艺、 格法工艺、 压延工艺、 溢流法工艺、 中 任一种工艺对玻璃进行成型。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1是本发明这种浮法生产工艺制成的玻璃的示意图; 图 2为本发明的平板玻璃的结构示意图; 图 3为发明的溶化装置的示意图。 图 4是图 2的流程图; 具体实施方式 下面, 对本发明的实施例进行详细的说明, 另外, 在本说明书中, 除非特别 指明, 玻璃中各种成份的含量均为重量百分比。
实施例一
本发明的这种具有低膨胀系数的平板玻璃, 按重量百分率计, 该玻璃中氧化 硅的含量为 62. 1%, 氧化钙含量为 13. 8%氧化镁含量为 9. 1%,氧化铝含量为 15%, 其氧化硅的含量是氧化钙含量的 4. 5倍, 氧化钙的含量是氧化镁的含量的 1. 52 倍。
该玻璃的热膨胀系数在 400°C- 700°C的每 100°C的两端数值之间的差别, 为 百万分之 1. 0-百万分之 3. 0以内。 实际溶化粘度温度为 101·5 (帕,秒)时的温度为 1590°C粘度温度, 实际均化 排气泡粘度温度 102(帕 ·秒)时为 1425°C;成型粘度温度 103(帕 ·秒)为 1235°C; 析晶温度上线为 1200°C。
该玻璃的厚薄差小于 0.2mm;
其吸水率在 0.01%的范围内;
其抗折强度 112Mpa。
实施例二
本发明的这种具有低膨胀系数的平板玻璃, 按重量百分率计, 该玻璃中氧化 硅的含量为 52.2%, 氧化钙含量为 12.2%氧化镁含量为 7.6%, 氧化铝含量为 28 %, 其氧化硅的含量是氧化钙含量的 4.3倍, 氧化钙的含量是氧化镁的含量 的 1.6倍。
该玻璃的热膨胀系数在 400°C-700°C的每 100°C的两端数值之间的差别, 为 百万分之 1.0-百万分之 3.0以内。
实际溶化粘度温度为 101'5 (帕 ·秒)时的温度为 1680°C粘度温度, 实际均化 排气泡粘度温度 102(帕 ·秒)时为 1475°C;成型粘度温度 103(帕 ·秒)为 1265°C; 析晶温度上线为 1240°C。
该玻璃的厚薄差小于 0.2mm;
其吸水率在 0.01%的范围内;
其抗折强度 173Mpa。
实施例三
本发明的这种具有低膨胀系数的平板玻璃, 按重量百分率计, 该玻璃中氧化 硅的含量为 58%, 氧化钙含量为 11.8%氧化镁含量为 9.2%, 氧化铝含量为 21%, 其氧化硅的含量是氧化钙含量的 4.9倍,氧化钙的含量是氧化镁的含量的 1.3倍。
该玻璃的热膨胀系数在 400°C- 650°C的每 100°C的两端数值之间的差别, 为 百万分之 1.0-百万分之 3.0以内。
实际溶化粘度温度为 101·5 (帕 ·秒)时的温度为 1630°C粘度温度, 实际均化 排气泡粘度温度 102(帕 *秒)时为 1460°C;成型粘度温度 103(帕 ·秒)为 1250°C; 析晶温度上线为 1205°C。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 138Mpa。
实施例四
本发明的这种具有低膨胀系数的平板玻璃, 按重量百分率计, 该玻璃中氧化 硅的含量为 51. 4%, 氧化钙含量为 10. 7%氧化镁含量为 8%, 氧化铝含量为 24%, 其氧化硅的含量是氧化钙含量的 4. 8倍,氧化钙的含量是氧化镁的含量的 1. 3倍。
该玻璃的热膨胀系数在 400°C- 650°C的每 100°C的两端数值之间的差别, 为 百万分之 1. 0-百万分之 3. 0以内。
实际溶化粘度温度为 101·5 (帕,秒)时的温度为 1650Ό粘度温度, 实际均化 排气泡粘度温度 102 (帕 ·秒)时为 1470°C ;成型粘度温度 103 (帕 ·秒)为 1250°C ; 析晶温度上线为 1225°C。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 148MPa。
实施例五
本发明的这种具有低膨胀系数的平板玻璃, 按重量百分率计, 该玻璃中氧化 硅的含量为 59. 5%, 氧化钙含量为 11. 3%氧化镁含量为 8%,氧化铝含量为 22. 2%, 其氧化硅的含量是氧化钙含量的 5. 3倍,氧化钙的含量是氧化镁的含量的 1. 4倍。
该玻璃的热膨胀系数在 400°C-650°C的每 100Ό的两端数值之间的差别, 为 百万分之 1. 0 -百万分之 3. 0以内。
实际溶化粘度温度为 101·5 (帕 ·秒)时的温度为 1660°C粘度温度, 退火实际 均化排气泡粘度温度 102 (帕 ·秒) 时为 1490Ό ; 成型粘度温度 103 (帕 ·秒) 为 1250°C ; 析晶温度上线为 1200°C。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内; 其抗折强度 141Mpa。
实施例六
本发明的这种具有低膨胀系数的平板玻璃, 按重量百分率计, 氧化硅的含量为 63%, 氧化钙含量为 12%氧化镁含量为 8. 4%, 氧化铝含量为 16. 6 %, 其氧化硅的含量是氧化钙含量的 5. 3倍, 氧化钙的含量是氧化镁的含量 的 1. 4倍。
该玻璃的热膨胀系数在 400°C- 650°C的每 100°C的两端数值之间的差别, 为 百万分之 1. 0-百万分之 3. 0以内。
实际溶化粘度温度为 101'5 (帕,秒)时的温度为 1630°C粘度温度, 退火实际 均化排气泡粘度温度 102 (帕 ·秒) 时为 1460°C ; 成型粘度温度 103 (帕 ·秒)为 1240°C ; 析晶温度上线为 1190°C。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 118Mpa。
对比例一, TFT玻璃和防火玻璃实施例
按重量百分率计, 该玻璃中氧化硅的含量为 59%, 氧化钙含量为 4. 5%氧化 镁含量为 0. 5%, 氧化铝含量为 12%, 氧化硼含量为 14%, 氧化钡含量为 10%, 其 氧化硅的含量是氧化钙含量的 13倍, 氧化钙的含量是氧化镁的含量的 9倍。
该玻璃的热膨胀系数在 400°C-70(TC的每 100°C的两端数值之间的差别, 为 百万分之 1. 0-百万分之 3. 0以内。
实际溶化粘度温度为 101·5 (帕,秒)时的温度为 1750°C粘度温度; 实际均化 排气泡粘度温度 102 (帕 ·秒)时为 1630°C ;成型粘度温度 103 (帕 ·秒)为 1420Ό ; 析晶温度上线为 1260°C。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 92Mpa。
对比例二, PDP玻璃实施例 按重量百分率计, 该玻璃中氧化硅的含量为 60%, 氧化钙含量为 4%氧化镁 含量为 1%, 氧化铝含量为 8%, 氧化硼含量为 10. 5%, 氧化钡含量为 9%, 氧化钾 含量为 7. 5%其氧化硅的含量是氧化钙含量的 13倍, 氧化钙的含量是氧化镁的含 量的 9倍。
该玻璃的热膨胀系数在 400°C-700°C的每 100°C的两端数值之间的差别, 为 百万分之 1. 0-百万分之 3. 0以内。
实际溶化粘度温度为 1015 (帕 ·秒) 时的温度为 175CTC粘度温度; 实际均 化排气泡粘度温度 102 (帕 ·秒) 时为 1630°C ; 成型粘度温度 103 (帕 ·秒) 为 1420°C ; 析晶温度上线为 1260° ( 。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 73Mpa。
对比例三, 钙钠玻璃实施例
按重量百分率计, 该玻璃中氧化硅的含量为 76%, 氧化钙含量为 6%氧化镁 含量为 2%, 氧化铝含量为 1%, 氧化钠含量为 14%, 氧化钾含量为 1%, 其氧化硅 的含量是氧化钙含量的 12倍, 氧化钙的含量是氧化镁的含量的 3倍。
该玻璃的热膨胀系数在 550°C -623 °C的两端数值之间的差别,为百万分之 20。 实际溶化粘度温度为 101' 5 (帕 ·秒) 时的温度为 1590°C ; 实际均化排气泡 粘度温度 102 (帕 ·秒) 时为 143CTC ; 成型粘度温度 103 (帕 ·秒) 为 1140°C ; 析晶温度上线为 950°C。
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 50Mpa。
对比例 4, 本发明人的先有技术: 发明名称为 "一种玻璃在含高退火点高平 整度低粘度及环保特征的平板玻璃中的应用平板玻璃及制备方法与显示屏、光伏 太阳能装置及其制备方法与显示屏"的申请号为 201110060944. 4的专利发明实 例: 按重量百分率计, 该玻璃中氧化硅的含量为 48、 7%, 氧化钙含量为 16、 8% 氧化镁含量为 12%, 氧化铝含量为 20%, 氧化钠含量为 2%, 氧化钾含量为 0、 5%, 其氧化硅的含量是氧化钙含量的 2、 9倍, 氧化钙的含量是氧化镁的含量的 1、 4 倍;
该玻璃的热膨胀系数在 400°C- 650°C的每 100°C的两端数值之间的差别, 为 百万分之 1. 0-百万分之 3. 0以内;
实际溶化粘度温度为 101' 5 (帕 ·秒) 时的温度为 153CTC ; 实际均化排气泡 粘度温度 102 (帕 ·秒) 时为 1380°C ; 成型粘度温度 103 (帕 ·秒) 为 1140°C ; 折晶温度上线为 1220°C
该玻璃的厚薄差小于 0. 2mm;
其吸水率在 0. 01%的范围内;
其抗折强度 135Mpa。
本发明实施例中粘度的测定, 采用美国 THETA旋转高温粘度计。
本说明书及本发明实施例玻璃的抗折强度, 按标准 GB/T3810、 4-2006测定; 通过把样品切成 50mmX 50mmX 5mm的小条 5-8条, 采用抗折强度仪, 取测定平均 值。
本发明实施例中的热膨胀系数, 按 QB/T1321-1991检测标准测定。
图 1是根据本发明的浮法生产设备生产出的浮法玻璃 12的示意图。
图 2是本发明的浮法生产设备的示意图。 参照图 1, 本发明的这种浮法玻璃 的生产设备包括: 料仓 2、 混合装置 3、 熔化装置 4、 工作部 5、 锡窑 7、 过渡辊 台 8、 退火窑 9、切割分装台 10。这些部分均安装于浮法线基体 11上。 玻璃的原 料 1按比例混合倒入料仓 2, 进入混合装置 3。 混合装置 3中可以具有搅拌机, 该搅拌机可以提高原料 1的混合程度。熔化装置 4将混合后的原料熔化。熔化装 置 4的中下层安装有 3个至 200个距离为 0. 2m至 2m的电加温装置 41和 3个至 200个测定温度装置 42。 熔化后的玻璃液进入工作部 5, 在工作部 5中进行排气 泡、 均化、 澄清等工序。 工作部 5的中下层安装有 3个至 200个距离为 0. 2m至 2m的电加温装置和 3个至 200个距离为 0. 2m至 2πι的测定温度装置。从工作部 5 流出的液体进入锡窑 7, 所述锡窑 7具有一导流槽 6 , 该导流槽 6的夹口的横向 出口处纵向 0. 5讓距离内, 横向排列有 2— 10个电加热装置和测定温度装置。 过 渡辊台 8连接锡窑 7和退火窑 9, 退火后的玻璃板进入切割分装台 10, 进行分切 和包装。
图 3显示了熔化装置更为具体的结构,在熔化装置 4的中下层设置有多个电 加热装置和测定温度装置,类似的,工作部和导流槽的中下层也设有类似的结构。 中下层是指从熔化装置 4腔体的底部向上计量 0至 80%的区域。
如图 4, 现将本发明的具有低热膨胀系数的平板玻璃的制造工艺以浮法成型 工艺方法制作其制品做进一步说明,其制造过程包括以下一些步骤:
( 1 )、 首先, 配制原料, 根据上述第一实施例及其各种变型及示例的平板玻 璃组成来计算原料配比。
(2)、 准备好如图 3所示的浮法工艺的包括原料仓、 熔化装置、 含锡液的锡 窑、 以及拉边机、 牵引机、 过渡辊台、 退火窑冷却系统、 切割分装台等设施在内 的浮法生产线。
( 3)、 按图 3及图 4所示的浮法工艺的生产流程, 把第 (1 ) 步骤配制的混 合料, 从图 3的料仓进料口, 以原料输送带方式输送入原料仓中, 再经熔化装置 口, 将第 (1 ) 步骤配制好的混合料送入到预定耐高温的熔化装置的熔池中, 逐 步在对应于各玻璃配方的熔化温度的温度区时形成流动性好的液态融熔体,经过 高温区逐步排出液态原料中的气泡, 即形成了可以进入成型工序的流动性较好的 混合原料熔融体。
(4)、 按图 4所示的浮法工艺的生产流程, 使第 (3) 步骤的可流动性能较 好的混合原料熔融体,从熔化装置经导流槽的夹口,流入到浮法生产线的锡槽(也 可称为锡窑) 的锡面上, 再经淌平, 经拉边机拉边和牵引机的牵引, 在锡液面上 抛光抛平, 形成半成品带通过过渡辊台出锡窑后, 进入辊道的降温冷却系统的退 火窑冷却, 再进入到切割分装台, 经切割、 分装, 即可制得如图 1所示的平板玻 璃。
第二实施例的变型
对于根据本发明实施例的玻璃的成型工艺, 除了上述浮法工艺之外, 还可以 采用平拉工艺、 格法工艺、 压延工艺、 溢流法工艺、 重新引下法工艺、 压制成型 工艺成型中任一种工艺。
对于平拉工艺,对在熔制步骤中形成的可流动的玻璃熔融体从溶池中拉引向 上形成玻璃带, 进行有平拉工艺特征的拉薄、 成型、 退火、 冷却、 分切, 即可制 得上述玻璃。
对于格法工艺,对熔制步骤中形成的可流动的玻璃熔融体从溶池中拉引向上 形成玻璃带, 采用格法工艺进行成型、 退火、 冷却、 分切, 即可制得上述玻璃。
对于压延工艺,对熔制步骤中形成的可流动的玻璃熔融体从溶池中拉引向上 形成玻璃带, 采用压延工艺进行压延、 成型、 退火、 冷却、 分切, 即可制得上述 玻璃。
对于溢流法工艺,对熔制步骤中形成的可流动的玻璃熔融体采用溢流法工艺 进行引下、 成型、 退火、 冷却、 分切, 即可制得上述玻璃。
现有的 TFT 无碱硼玻璃及以德国硝特公司为代表的建筑防火无碱硼玻璃和 PDP等离子硼玻璃技术,尤其代表性的 US2002/0011080A1的液晶显示屏的无碱玻 璃。在该技术方案中, 其氧化硅达 40-70%, 在实际这类一切产品中的硼玻璃和实 施例中, 硅的比例都在 60- 70%之多, 而为了达到降低热膨胀系数的技术目的, 氧 化硼含量为 8-20%, 在实际运用中, 氧化硼在产品中含量达 10-15%。 其也把氧化 硼来替代氧化钠成份达到助熔的目的, 而如 10%以上的硼成份, 在原料上就必须 加入 2-3倍,如 10%的硼含量的玻璃就必须要加入 30- 38%的氧化硼的含量的原料 (因为大部分硼成份会在高温中变为有毒气体挥发)。
其技术缺陷之是- 生产在这类的硼玻璃产品中和专利实施例中,硅的比例都在 60- 70%之多,而 为了达到降低热膨胀系数的技术目的, 氧化硼含量为 10-20%, 在实际运用中, 氧 化硼在产品中含量达 10-15%。 其也把氧化硼来替代氧化钠成份达到助熔的目的, 而如 10%以上的硼成份, 在原料上就必须加入 2-3倍, 如 10%的硼含量的玻璃就 必须要加入 30-38%的氧化硼的含量的原料(因为大部分硼成份会在高温中变为有 毒气体挥发)。
其熔化和排气泡粘度温度太高,实际溶化粘度温度 101·5 (帕 ·秒)为 1760Ό ; 均化排气泡粘度温度 102'° (帕 ·秒)为 1620°C, 十分不易进行工艺品质控制和降 能耗成本;
设备维护成本高、效率低: 其技术缺陷在于, 硼成份达 10-20%时, 现实的生 产中会把熔池严重腐蚀(所以现在的一切 TFT无碱硼玻璃及建筑以德国硝特公司 为代表的建筑防火无碱硼玻璃和 PDP等离子硼玻璃熔池只一年时间就要冷修,这 就造成了严重生产成本和效率问题。
所以如何在以德国硝特公司为代表的建筑防火无碱硼玻璃及 TFT无碱硼玻璃 和 PDP等离子硼玻璃技术生产中解决: A、 具有合格的热膨胀系数; B、 又兼备降 低粘度温度, 降成本节能; C、 由于玻璃材料性质粘度大高, 产品品质不好控制 又加设备维护成本高、 效率低; D、 保障环保; 等综合性技术, 成了人们十分渴 望解决的产业性难题。
1、 本发明技术方案发现的在平板玻璃用途中的新性质, 因其技术方案发现 的在平板玻璃用途中的新性质, 所以能克服前述各种现有技术难题, 产生了显著 的技术效果,所以十分有利于升级和替代以德国硝特公司为代表的建筑防火无碱 硼玻璃和 PDP等离子硼玻璃和 TFT无碱硼玻璃:
本发明是一种对氧化硼成份的省略发明 (参见第一到六实施例; 对比例一的 TFT玻璃和防火玻璃实施例; 及对比例二的 PDP玻璃实施例;), 现有技术的硼玻 璃具有高水平热膨胀系数性质: 该玻璃的热膨胀系数在 400°C-620°C的每 100°C 的两端数值之间的差别,为百万分之 1. 0-百万分之 3. 0以内,或该玻璃的热膨胀 系数在 400°C-700°C的每 100°C的两端数值之间的差别, 为百万分之 1. 0-百万分 之 3. 0以内。本发明技术方案十分有利于升级和替代以德国硝特公司为代表的建 筑防火含硼玻璃和 PDP等离子含硼玻璃和 TFT无碱含硼玻璃。
本发明技术方案在不含硼助溶剂成份时(对氧化硼和氧化钾和氧化钠省略发 明), 发现了高铝含量 8、 6- -30%或 17%- -30%或 21%或 24%或 28%时, 有铝、 硅、 钙、 镁的高铝共熔体性质; 尤其从 6个本发明实例都可见, 在不含硼、 钠、 钾助 溶剂成份时 (对氧化硼和氧化钾和氧化钠省略发明), 氧化铝含量为 17-28%或 20%或 24%或 28%左右时的大跨度变化时, 现有技术认为粘度温度, 尤其溶化和 排气泡会粘度温度会大幅上升, 但本发明的氧化铝含量为 8、 6-30%, 17-28%或 20%或 24%或 28%左右时的大跨度变化时,溶化粘度温度和排气泡粘度温度的变 化仅 30 ° C -60 ° C (见 6个本发明实例) ;
而且本发明的技术方案氧化铝含量为 22%时,溶化粘度温度和排气泡粘度温 度, 比现有技术对比例一, 氧化铝含量仅为 12%的 TFT玻璃和防火玻璃实施例要 低 160。 C -200。 C:
A、 对比例一, TFT玻璃和防火玻璃实施例, 氧化铝含量仅为 12%, 实际溶 化粘度温度为 101·5 (帕 ·秒)时的温度为 1750°C粘度温度; 实际均化排气泡粘度 温度 102 (帕 ·秒) 时为 1630°C ;
B、 而本发明实施例一: 氧化铝含量为 22%, 实际溶化粘度温度为 101'5 (帕 ·秒)时的温度为 1590°C粘度温度, 实际均化排气泡粘度温度 102 (帕 ·秒) 时为 1425 °C;。
2、 由于本发明不含氧化硼成份的技术方案 (参见第一到六实施例; 对比例 一的 TFT玻璃和防火玻璃实施例; 及对比例二的 PDP玻璃实施例), 所以可克服 硼玻璃的毒气体挥发的环保难题。 (如: 以德国硝特公司为代表的建筑防火无碱 硼玻璃和 PDP等离子硼玻璃和 TFT无碱硼玻璃) 之 10%的硼含量的玻璃就必须要 加入 30-38%的氧化硼的含量的原料,因为大部分硼成份会在高温中变为有毒气体 挥发, 造成的产业性环保难题。
3、 由于本发明不会出现硼成份达 10-20%时, 生产中会把熔池严重腐蚀的难 题; 所以可克服现在的一切 TFT无碱硼玻璃及建筑以德国硝特公司为代表的建筑 防火无碱硼玻璃和 PDP等离子硼玻璃熔池只一年时间就要冷修,而造成的严重生 产成本和效率问题;可取得预料不到的设备使用成本大幅下降和设备使用效率大 幅上升的技术效果。
4、 又由于发现了技术方案在平板玻璃用途中的新的粘度温度性质, 能克服 现有技术粘度温度大高的缺陷, 能用于克服各种以德国硝特公司为代表的建筑防 火无碱硼玻璃和 TFT无碱硼玻璃及 PDP等离子硼玻璃生产中的高能耗、 高成本、 品质控制难点。 本发明玻璃的实际溶化粘度温度为 lO1'^帕 ·秒)时的温度为 1480°C-1690°C, 而以德国硝特公司为代表的建筑防火无碱硼玻璃和 PDP等离子玻璃和 TFT无碱硼 玻璃, 实际溶化粘度温度为 101·5 (帕,秒)为 1760°C, 可见本发明熔化粘度温度 比之低 90°C- 280°C ;
本发明玻璃的实际均化排气泡粘度温度 102 (帕 ·秒) 时为 1370°C-1490°C, 而以德国硝特公司为代表的建筑防火无碱硼玻璃和 PDP等离子硼玻璃和 TFT无碱 硼玻璃, 实际均化排气泡粘度温度 102·° (帕 ·秒)为 1620°C, 本发明实际均化排 气泡粘度温度, 比之要低 130°C-250°C 。
所以业内人土都了解,用本发明低粘度玻璃去替代现有技术的高粘度以德国 硝特公司为代表的建筑防火无碱硼玻璃和 PDP等离子硼玻璃和 TFT无碱硼玻璃, 可大大减少能耗, 节约能耗成本; 尤其是面对高速发展中的: 建筑用门、 窗、 幕 墙防火玻璃, B家俱玻璃, C汽车及船舶用防火玻璃, D高铁用防火玻璃, E再加 工的钢化防火玻璃和中空防火玻璃及镀膜防火玻璃, 节能涉及面很大 ;
所以业内人土都了解,用本发明低粘度玻璃去替代现有技术的高粘度以德国 硝特公司为代表的建筑防火无碱硼玻璃和 PDP等离子硼玻璃和 TFT无碱硼玻璃, 也有利于进行工艺品质更好的控制; 比如本发明适用于平面度要求很高的玻璃, 尤其用在显示屏的 1. 1醒- 0. 7腿或 0. 5匪的厚度的产品;首先这些产品熔化求高, 不能有不熔化形成的结石碴点, 所以对熔化粘度要求高, 不然就缺陷明显, 产品 不合格; 然后是, 对产品的均化、 排泡粘度要求高, 不然气泡排不干净, 也在玻 璃中会很明显, 造成产品不合格, 而且微气泡越少平板玻璃产品透光率水品质平 会越高; 尤其对成型温度粘度的要求也高, 因为在浮法成型时有一个淌平、 流平 的工艺过程, 如果粘度高了, 就会太浓而淌平慢, 影响产量, 也会因流平、 淌平 工艺阶段的厚薄差大和不平整, 影响到形成抛光、 拉薄工艺阶段的产品表面的厚 薄差和不平整度也大, 产品表面有波浪状缺陷; 所以本发明对解决 PDP等离子硼 玻璃和 TFT无碱硼玻璃电子级平板玻璃产品的品质难题,提升产品品质技术效果 明显, 意义重大。
5、 克服了本发明人的现有技术析晶温度高的主要缺陷, 发明名称为 "一种 玻璃在含高退火点高平整度低粘度及环保特征的平板玻璃中的应用平板玻璃及 制备方法与显示屏、 光伏太阳能装置及其制备方法与显示屏", 申请号为
201110060944. 4的专利发明技术;
首先是, 因为本发明人的现有新技术的技术方案与本发明人的现有技术的技 术方案, 有几处不同:
本发明人的现有技术的技术方案中,其氧化硅的含量是氧化钙含量是 1. 9倍 -4. 1倍, 氧化铝含量为 0. 01-39%, 也没有任何成型粘度温度 103 (帕 ·秒) 与析 晶温度的关系的揭示;
本发明人的现有新技术的技术方案中, 氧化硅的含量是氧化钙含量的 4. 11 倍 -4、 56倍或者 4、 57倍 -5、 48倍的 2种选择, 这种选择是对易导至析晶的氧 化钙含量,这个技术要素变化范围的创新选择发明 (而不是现有技术的 1. 9倍 -4. 1 倍), 也是其范围外的选择发明;
而对于可抑制析晶的氧化铝含量, 又作了大幅增加的起点含量的选择(氧化 铝含量为 13. 1%或 17%或 21%), 又因氧化铝含量太高, 也会导至析晶, 所以对氧 化铝含量上限选择为 35%, 即 13. 6%-35% (而不是现有技术的氧化铝含量为 0. 01-39%), 这是其范围内的窄范围内的选择发明;
以上新技术的技术方案, 在平扳玻璃用途中, 发现了新的综合性材料性质: A 比较本发明人的先有的技术方案的析晶温度要低的析晶温度性质; B并具在省 略硼成份时, 有优良的热膨胀系数性质, 从而可替代各种硼玻璃, 如: 德国硝特 公司为代表的建筑防火无碱硼玻璃和日本旭硝子的 PDP等离子硼玻璃和美国康宁 的 TFT无碱硼玻璃; C和兼有 (因发钆了新技术方案中: 铝、 硅、 钙、 镁的新共 溶性质)而产生的优良的粘度温度性质, 尤其比较德国硝特公司为代表的建筑防 火无碱硼玻璃和 PDP等离子硼玻璃和 TFT无碱硼玻璃的粘度温度性质,要好很多; 所以能产生多种预料不到的技术效果。
通过比较, 可见新技术的技术方案 (参见实施例第一到六实施例), 可见析 晶温度要比成型温度低。
本发明人的先有的技术方案可见析晶温度要比成型温度高。 本发明人的先有的技术方案, 许多产品析晶温度要比成型温度高, 是主要 缺陷; 这对成型有一定影响, 使尤其是以钙钠平板玻璃工艺中格法、 平拉、 压延 工艺的实际成型工艺中从溶池排泡冷却工作部中上拉的关健阶段,其粘度为 103·8 (帕 ·秒), 温度为 900°C, 并钙钠玻璃的析晶温度大大低于 103·° (帕 *秒)成型 温度, 也更低于 103·8 (帕 ·秒) 900°C的实际成型温度。 而且如果实际成型工艺 中, 玻璃从熔化装置排泡冷却工作部中上拉时其粘度低于 103·8 (帕 ·秒); 而申 请号为 201110060944. 4的专利发明技术的玻璃, 这时会出现 2种困难: A、 或者 玻璃液因析晶温度高, 在成型前的高于 103 D (帕 ·秒) 到真正的 103·8 (帕 ·秒) 的排泡冷却工作部中停留的时间将会不可克服地达 4-6个小时, 肯定部分玻璃液 在此期间会产生析晶失透; B、 或者为了不产生析晶失透, 使实际的在排泡冷却 工作部上拉成型温度高于其析晶温度, 即大大高于 103 ° (帕 ·秒)成型温度的状 态, 那又将会因玻璃液流动性太好太清、 即粘度太低, 或者出现格法、 平拉、 压 延工艺的玻璃液排泡冷却工作部中, 向上拉, 会拉不上来的状态, 或因玻璃液流 动性太好太清、即粘度太低,玻璃上拉后不成型,无法上拉成稳定厚度的玻璃带。 这是因为违背了实践中的成熟的成型工艺规律: [平板玻璃工艺中格法、 平拉、 压延工艺的实际成型工艺中从排泡冷却工作部中上拉的关健阶段,其粘度为 103·8 (帕 *秒) ]。
所以本发明人的现有技术发明名称为"一种玻璃在含高退火点高平整度低粘 度及环保特征的平板玻璃中的应用平板玻璃及制备方法与显示屏、光伏太阳能装 置及其制备方法与显示屏" 的申请号为 201110060944. 4的专利发明技术, 因为 析晶温度高的主要缺陷, 在格法、 平拉、 压延工艺中, 不能正常实现有品质保障 的有产量经济效益的大生产, 形成的难题。 由于本发明一种低热膨胀系数特征的 平板玻璃的新技术的技术方案, 在平扳玻璃用途中, 解决了比较本发明人的先有 的技术方案的析晶温度要低材料性质,可以解决这项现有技术存在析晶温度高的 难题。
6、现有的钙钠平板玻璃(参见对比例 3, 钙钠玻璃; 和实施例第一到六实施 例;), 由于热膨胀系数大, 尤其在高温区在 550°C-620°C的两端数值的差别为百 万分之 20,根本达不到防火玻璃和 PDP等离子玻璃的热膨胀系数的要求; 因为其 在 550°C-620°C的两端数值的差别为百万分之 20的热膨胀突变,而产生防火爆裂 或 PDP等离子热加工的变型, 产生了难题 。
但是, 本发明的平板玻璃不含氧化硼成份。 在平板玻璃用途中, 发现了现有 技术硼玻璃才具有的,新的高水平热膨胀系数性质:该玻璃的热膨胀系数在 400°C -620°C的每 100°C的两端数值之间的差别, 为百万分之 1. 0-百万分之 3. 0以内, 或该玻璃的热膨胀系数在 400°C-700°C的每 100°C的两端数值之间的差别, 为百 万分之 1. 0-百万分之 3. 0以内; 所以可以克服钙钠平板玻璃的技术难题, 能替 代钙钠平板玻璃作防火玻璃,对建筑物提供防火安全保障,也具有 PDP等离子硼 玻璃应用的性质, 产生了显著的技术效果。
7、 对比文件: 比较先有技术 JP11-240734 A其实施例 3。:
( 1 )虽然其氧化硅的含量是氧化钙含量的 4. 22倍, 氧化钙的含量是氧化镁 的含量的 1. 39倍, 铝含量 15%, 但其含有助溶剂 (钠十钾) 为 2、 5%, 而且 12 个实施例中绝大部分助溶剂(钠十钾) 8-11、 5%, 本发明是一种对助溶剂(钠十 钾) 的省略发明, 打破了现有平板玻璃技术在铝含量 15%以上时, 必须使用硼、 钠、 钾助溶剂成份的技术偏见;
( 2 ) 本发明技术方案, 打破了现有平板玻璃技术在铝含量超过 15%以上时, 会出现太高的粘度温度, 不能实现平板玻璃技术大生产, 尤其是不能克服平板玻 璃技术排气泡工艺的难点; 在铝含量超过 15%以上时, 就是加入硼、 钠、 钾助溶 剂成份也不能实现平板玻璃技术大生产的技术偏见;
本发明技术方案在不含硼、 钠、 钾助溶剂成份时(对氧化硼和氧化钾和氧化 钠省略发明), 发现了高铝含量 8、 6—30%或 17%—30%或 21%或 24%或 28%时, 有铝、硅、钙、镁的高铝共熔体性质; 尤其从 6个本发明实例都可见, 在不含硼、 钠、 钾助溶剂成份时 (对氧化硼和氧化钾和氧化钠省略发明), 氧化铝含量为 17-28%或 20%或 24%或 28%左右时的大跨度变化时, 现有技术认为粘度温度, 尤其溶化和排气泡会粘度温度会大幅上升, 但本发明的氧化铝含量为 17- 28%或 20%或 24%或 28%左右时的大跨度变化时,溶化粘度温度和排气泡粘度温度的变 化仅 30° C -60° C (见 6个本发明实例) ;
而且本发明的技术方案氧化铝含量为 22%时,溶化粘度温度和排气泡粘度温 度, 比现有技术对比例一, 氧化铝含量仅为 12%的 TFT玻璃和防火玻璃实施例要 低 160。 C -200。 C:
A、 对比例一, TFT玻璃和防火玻璃实施例, 氧化铝含量仅为 12%, 实际溶 化粘度温度为 101 S (帕 ·秒)时的温度为 1750°C粘度温度; 实际均化排气泡粘度 温度 102 (帕 ·秒) 时为 1630°C ;
B、 而本发明实施例一: 氧化铝含量为 22%, 实际溶化粘度温度为 101·5 (帕 *秒)时的温度为 159CTC粘度温度, 实际均化排气泡粘度温度 102 (帕 *秒) 时为 1425°C;。
这证明了本发明的技术方案中, 在不含硼、 钠、 钾助溶剂成份时, 在高铝含 量 8、 6- - 30%或 17%—30%时, 的硅、 钙、 镁的要素比例关系变化范围的发明技术 方案, 能产生一种新的高氧化铝含量的铝、 硅、 镁、 钙的共熔体性质, 能克服平 板玻璃技术中最大的溶化和排气泡工艺的难点,从而能产生高铝含量的低粘度温 度的预料不到的技术效果和进而产生的高品质高强度的预料不到的技术效果。 本发明尤其由于可以加大氧化铝的含量达 17- 28%时, 强度可达约 120- 160Mpa 或 180Mpa, 是先有技术 TFT平板玻璃和防火平板玻璃强度的 2倍;
而且由于粘度温度还较先有技术: (对比例一, TFT玻璃和防火玻璃实施例) 实际溶化粘度温度为 101·5 (帕 ·秒)时的温度为 1750°C粘度温度; 实际均化排气 泡粘度温度 102 (帕 ·秒)时为 1630°C ; 而本发明实施例一: 实际溶化粘度温度 为 101'5 (帕 ·秒) 时的温度为 1590°C粘度温度, 实际均化排气泡粘度温度 102 (帕 ·秒) 时为 1425°C ;
本发明技术方案在不含硼、 钠、 钾助溶剂成份时, 比含硼助溶剂成份的 TFT 玻璃和防火玻璃先有技术的实际溶化粘度温度和实际均化排气泡粘度温度,要低 160° C -200° C, 有很大的节能技术效果; 和因溶化粘度温度低而减少碴点结石 率提高平板玻璃品质的技术效果;及因排气泡粘度温度低而减少气泡率提高平板 玻璃品质的技术效果。 8、 对比文件: 比较先有技术 TW201144249A, 是与平板玻璃技术领域完全不 同的制作玻璃纤维的技术; 根据中国专利审査指南二部分四章 4, 5 已知产品的 新用途发明的内容, 本发明与对比文件公开的一种用于生产纤维的区别的很大; 本发明技术方案, 在用于平板玻璃的新用途中, 发现了内在的新的性质, 产生了 在用于平板玻璃的新用途中预料不到的技术效果。
有关以本发明说明书为依据, 根据专利审查指南二部分四章 4, 5 巳知产品 的新用途发明的内容, 表述本发明与对比文件区别的要点; 表述本发明有突出的 实质性特点和显著进步, 具有创造性的要点:
(A) 平板玻璃的新用途领域范围及新不同特征;
(B ) 在平板玻璃的新用途领域中发现的多种新的产品性质;
(C) 在平板玻璃的新用途领域中, 发现的多种新的产品性质与产生的予料 不到的多种技术效果;
(A)本发明平板玻璃用途领域, 根据专利审査指南二部分四章 4, 5巳知 产品的新用途发明的内容: 区别于对比文件公开的一种与平板玻璃是用途领域 相差很远的, 用于生产纤维的完全不同用途领域, 并相差很远的表述:
用途范围领域的表述:
对比文件公开了一种用于玻璃纤维, 而本发明为平板玻璃, 在国际上各国 都有行业标准, 中国也有国家行业标准条文规范; 在国际各国标准中及中国国 家标准中, 对厚薄差和光透射比也有标准; 对厚薄差和光透射比也有测定方法 的条文规范; 而且在平板电子玻璃的国际上标准中及中国国家标准中, 对表平 面每 20皿距离内波紋度, 也有条文规范。
在本发明技术领域部分明确指出: 本发明涉及一种平板玻璃,尤其涉及具有低热膨胀系数的平板玻璃及其制造 工艺。 其领域范围是: (1 ) 建筑用门、 窗、 幕墙平板玻璃, (2 ) 汽车及船舶用平 板玻璃, (3 ) 高铁用平板玻璃, (4 ) LCD显示屏平板玻璃, (5 ) PDP显示屏平板 玻璃, (6 ) TFT显示屏平板玻璃及智能手机和 iPad的高强度面板平板玻璃, (7 ) 工艺平板玻璃等产品以及再加工的平板玻璃钢化产品,( 8 )液晶显示屏平板玻璃, ( 9 ) 光伏太阳能装置平板玻璃。 平板玻璃新用途范围的, 区别于对比文件玻璃纤维有完全不同的特征: 权项 1提出该玻璃的厚薄差小于 0. 3mm。
另外, 根据本发明平板玻璃新用途所有实施例样品, 均制作成为具有透明特 性而符合平板玻璃领域所需透明特性实施例样品,其玻璃的可见光透射比全都是 40%-95% (按 GB/T268 Q规定测定)。
(B ) , 在平板玻璃的新用途领域中, 根据专利审查指南二部分四章 4, 5巳 知产品的新用途发明的内容,发现的对比文件没有揭示和发现的多种新的产品性 质;
在平板玻璃新用途中, 应判定发现的新的热膨胀系数性质: 本发明权利要求 1 和所有实例都指出, 玻璃的热膨胀系数在 400°C - 630°C或 400°C -700°C的每 100°C的两端数值之间的差别, 为百万分之 1-3 以内; 应判定发现的新膨胀系数 性质, 产生的予料不到的技术效果-
(C)在平板玻璃的新用途领域中, 发现的多种新的产品性质与产生的予料 不到的多种技术效果:
( 1 ) 由于现有防火防爆平板玻璃和 TFT 液晶显示屏电子级平板玻璃及 PDP 等离子硼玻璃,都是含 8— 15%的氧化硼,才能达到玻璃的热膨胀系数在 400 °C -630°C或 400°C-700O的每 100°C的两端数值之间的差别, 为百万分之 1-3以内 的性质;而本发明可的对硼成份省略发明, 发现了无硼成份的本发明技术方案, 具有低的热膨胀系数性质, 可以无硼成份生产 TFT液晶显示屏玻璃和防火防爆 平板玻璃, PDP 等离子硼玻璃;所以可以完全解决现在硼玻璃的生产中的硼毒气 排放 (如产品中硼含量为 10%时, 在原料中要加入约 30%的硼, 在熔化时会排放 出约 20%的硼毒气挥发, 如现有技术的 10吨 /天溢流法工艺, 每天要有 2吨的硼 毒气排出, 如 200吨 /天产能就有 20吨的硼毒气排放, 而本发明技术方案的 200 吨 /天的浮法线可没有任何硼毒气排放, 能克服上述平扳硼玻璃所造成的涉及产 业面很广的 (生产中大量硼毒气挥发) 环保难题;
(2)尤其本发明的对硼成份的省略发明, 发现了无硼成份的本发明技术方案, 具有低的热膨胀系数性质, 不仅能替代低热膨胀系数性质的现有技术 PDP等离子 硼玻璃和 TFT无碱硼玻璃电子级平板玻璃及防火硼玻璃;而且还会产生比较之下 的大幅节约生产线维修费用和大幅提升生产线使用效率,提高产能的显著的技术 效果。 (如硼玻璃由于对生产设备的耐火材料在高温下严重腐蚀, 生产设备必须 由 1一 2年停产维修;而本发明由于对硼成份的省略发明,发现了无硼成份的本发 明技术方案,不存在硼成分对生产设备的耐火材料在高温下严重腐蚀, 生产设备 可为 8-10正常停产维修)。
(3)这还为各种建筑平板玻璃等制品, 提供了一个很大的在急升温或急降温 的的使用环境下应用, 会有比现有各种玻璃有更好的变形小、 稳定而不突变、 极 不易爆裂, 在急升降温时玻璃粘弹性急变小的很大产品品质新优势。 也就是讲: 本发明之所有平板玻璃产品, 急剧加温或冷却时不会有过多的变 形或出现爆裂, 都具有优秀的防火防爆平板玻璃的功能。 所以, 由于本发明权利要求的技朮方案具有没有被揭示和公开的新的低热膨 胀系数性质性质, 而且这种性质是事先无法推测, 无法预测和推理出来的; 并克 服了传统的平板玻璃技术领域的技术偏见; 尤其多种予料不到的技朮效果产生了 "质"和 "量"二者的变化, 又解决了人们在平板玻璃枝术领域中渴望解决的又 没能解决的多项重大问题,所以本发明, 比较对比文件: 比较先有技术
TW201144249A, 具有突出的实质性特点和显著进步, 具有创造性。
9、例如对比文件:先有技术 US3929497A (30. 12. 1975),以下简称(97A),是 38 年前的采用铸铁模具来铸造析晶玻璃棒的制作玻璃纤维的技术;根据中国专利审 查指南二部分四章 4, 5巳知产品的新用途发明的内容, 本发明与对比文件 (97A) 公开的一种用于生产纤维的结晶玻璃棒区别的很大,又尤其发现了低热膨胀系数 性质; 本发明技术方案中, 氧化铝含量为 8、 6-35或 1 -35%或 21-35%, 超过了 其实例 2的 13、 5%, 本发明也强调发现了高铝含量条件下的铝、 硅、 钙、 镁的共 溶体新性质和低粘度温度新性质; 所以在用于平板玻璃新用途中, 尤其能作低热 膨胀系数性质的防火硼玻璃, 对建筑物提供防火安全保障, 和能作为低热膨胀系 数性质的 TFT液晶玻璃的新用途中应用中,和能作为低热膨胀系数性质的 PDP等 离子硼玻璃的新用途中应用, 产生了显著的技术效果:
尤其本发明的对硼成份的省略发明, 由于发现了无硼成份的条件下和高铝含 量条件下, 本发明具有铝、 硅、 钙、 镁的共溶体新性质和低粘度温度新性质, 比 较现有技术 PDP等离子硼玻璃和 TFT无碱硼玻璃电子级平板玻璃及防火硼玻璃, 在高铝含量条件下- 本发明玻璃的实际溶化粘度温度为 10 5(帕 *秒)时的温度为 1480°C-1690°C, 而以德国硝特公司为代表的建筑防火无碱硼玻璃和 PDP等离子玻璃和 TFT无碱硼 玻璃, 实际溶化粘度温度为 101·5 (帕 ·秒)为 1760°C, 可见本发明熔化粘度温度 比之低 90°C- 280°C ; 本发明玻璃的实际均化排气泡粘度温度 102 (帕 ·秒) 时为 1370°C-1490°C , 而以德国硝特公司为代表的建筑防火硼玻璃和 PDP等离子硼玻 璃和 TFT无碱硼玻璃, 实际均化排气泡粘度温度 102 ° (帕 *秒)为 1620Ό , 本发 明实际均化排气泡粘度温度, 比之要低 130°C-250°C ; 所以业内人土都了解: 其一有显著的技术效果: 可大大减少能耗, 节约能耗成本;
其二有显著的技术效果: 本发明很适用于平面度, 玻纹度要求很高的玻璃, 尤其用在显示屏的 1. 1mm- 0. 7mm或 0. 5顧的厚度的超薄电子玻璃产品; 首先这些 产品熔化求高, 不能有不熔化形成的结石碴点, 所以对熔化粘度要求高, 不然就 缺陷明显, 产品不合格; 然后是, 对产品的均化、 排泡粘度要求高, 不然气泡排 不干净, 也在玻璃中会很明显, 造成产品不合格, 而且微气泡越少平板玻璃产品 透光率水品质平会越高; 尤其对成型温度粘度的要求也高, 因为在浮法成型时有 一个淌平、 流平的工艺过程, 如果粘度高了, 就会太浓而淌平慢, 影响产量, 也 会因流平、 淌平工艺阶段的厚薄差大和不平整, 影响到形成抛光、 拉薄工艺阶段 的产品表面的厚薄差和不平整度也大, 产品表面有波纹度缺陷; 所以本发明尤其 对于 1. 1皿-0. 7皿或 0. 5mm的厚度的电子显示屏的玻璃产品产品品质的提升,有 显著的技术效果。
对上面所述的部分概括为, 如果发现有何其它领域的任何技术方案: 只要先 有技术与本发明所指出的要解决的技术问题的技术领域的用途不一样; 而且先有 技术又没有揭示、暗示本发明发现的产品新性质(尤其包含了热膨胀系数新性质, 或本发明具有铝、 硅、 钙、 镁的共溶体新性质和低粘度温度新性质), 能保持本 发明所述之产品发现的新性质(尤其包含了热膨胀系数新性质,或本发明具有铝、 硅、 钙、 镁的共溶体新性质和低粘度温度新性质) 在本申请之前属于未知性质; 也没有揭示本发明所述用途不一样的技术领域中, 由新发现的性质所产生的预料 不到的技术效果;那么, 根据专利审查指南二部分四章 4, 5巳知产品的新用途发 明的内容, 本发明也是一种转用途发明,就是就非显而易见的, 并有突出的实质 性特点和显著的进步, 具有创造性.
而且本发明的平板玻璃及其制造工艺, 提出了一种新的用于平板玻璃的技术 方案:采用了改变的技术要素比例关系的一种选择发明(包含了热膨胀系数性质) 的技术方案; 及采用了用途于平板玻璃应用中, 对一些强助溶剂作用的硼或氟或 磷或钡等成份的省略发明 (包含了热膨胀系数性质) 的方案, 这种技术方案从来 没有被先有用途于平板玻璃产品及工艺的用途应用中, 对技术公开或揭示; 尤其 是平板玻璃产品及工艺中揭示了最重要的热膨胀系数性质,溶化与排气泡及澄清 工艺阶段的粘度温度性质, 和新技术方案条件下的铝、 硅、 钙、 镁的共熔成份结 构性质; 从而产生了前述的多种预料不到的技术效果, 解决了平板玻璃领域中一 直没有解决的技术难题。
本发明不是一种事后认为的用简单的逻辑推理或者简单试验就可以得出的; 在用途于平板玻璃应用中的技术发明,尤其防火硼玻璃,和 TFT液晶硼玻璃和 PDP 等离子硼玻璃的用途中, 本发明在对硼成份的省略发明时, 也具有硼玻璃低热膨 胀系数特征並具有更高的抗折强度, 产生了: 节能、 提高生产效率、 降低成本、 根出硼毒气排放的环保作用、 提高电子玻璃的品质, 和由于抗折强度上升由此可 产生的玻璃可轻薄 1、 5-3倍的节能、 节约资源、 节约物流、 仓储 2- 3倍的预料 不到的技术效果;
所以本发明就是就非显而易见的, 并有突出的实质性特点和显著的进步, 具有创造性。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种具有低热膨胀系数的平板玻璃, 其特征在于: 按重量百分率计, 该 玻璃中氧化铝的含量为 8. 6-35%, 氧化硅的含量是氧化钙含量的 4. 11 倍 -5. 48 倍, 氧化钙的含量是氧化镁的含量的 0. 8 倍 -1. 99倍; 该玻璃的热膨胀系数在 400°C- 630°C的每 100°C的两端数值之间的差别, 为百万分之 1_3以内;
该玻璃的厚薄差小于 0. 3mm;
其吸水率在 0-0. 3%的范围内;
其抗折强度达 50_190Mpa。
2、 根据权利要求 1所述的平板玻璃, 其特征在于: 按重量百分率计, 其含 有氧化铝、 氧化硅、 氧化钙、 氧化镁, 及含有氧化钠与氧化钾与氧化硼的共 0、 1 - -0、 5%的杂质成份, 氧化铝含量为 8. 6- 15. 5%, 氧化硅的含量是氧化钙含量的 4. 11倍- 5. 48倍, 氧化钙的含量是氧化镁的含量的 0. 8倍 -1. 99倍; 该玻璃的热 膨胀系数在 400°C-630°C的每 100°C的两端数值之间的差别, 为百万分之 1-3以 内;
该玻璃的厚薄差小于 0. 3mm;
其吸水率在 0-0. 3%的范围内;
其抗折强度达 50-190Mpa。
3、 根据权利要求 1 所述的平板玻璃, 其特征在于: 按重量百分率计, 氧 化铝含量为 8. 6-15. 5%或 15. 5- 35%或 17-35%或 21-35%或 8. 6-35%。
4、按重量百分率计,氧化硅是氧化钙的 4. 11倍 -4、 56倍或者 4、 57倍-- 5. 48 倍;。
5、 根据权利要求 1所述的平板玻璃, 其特征在于: 该玻璃的热膨胀系数在 400°C- 700°C的每 100°C的差别, 为百万分之 1-百万分之 3以内, 该玻璃在粘度 为 101·5帕 ·秒时的温度为 1480°C-160°C ; 粘度为 102帕 ·秒时的温度为 1370°C _1490°C ;
6、 一种液晶显示屏, 包括:
阵列基板, 该阵列基板包括基底及在该基底上的像素结构, 该基底为根据 权利要求 1-5任一项所述的平板玻璃制造的玻璃板;
滤色器基板, 该滤色器基板包括基底以及在该基底上的滤色器层, 该基底 为根据权利要求 1-5任一项所述的平板玻璃制造的玻璃板;
液晶层, 夹设在该阵列基板和该滤色器基板之间; 以及
背光源系统。
7、 一种 PDP等离子屏幕显示屏, 其包括- 前板制程, 其含有: 根据前述权利要求 1-5的任一项所述的平板玻璃制造 的基板玻璃、 透明电极、 bus电极、 透明诱电体层、 mgo模;
后板制程, 其含有: 萤光体层、 隔墙、 下板透明诱电体层、 寻址电极、 根 据前述权利要求 1-5的任一项所述的平板玻璃制造的基板玻璃; 以及
相搭配的高压驱动模块与控制电路。
8、 一种智能触摸显示屏, 其包括:
根据前述权利要求 1-5的任一项所述的平板玻璃制造的基板玻璃, 其上附 有一层导电膜;
液晶显示屏, 该显示屏包括:
阵列基板, 该阵列基板包括基底及在该基底上的像素结构, 该基底为玻璃 板;
滤色器基板, 该滤色器基板包括基底以及在该基底上的滤色器层, 该基底 为玻璃板;
液晶层, 夹设在该阵列基板和该滤色器基板之间;
以及背光源系统。
9、 一种彩釉平板玻璃, 其基板玻璃为根据权利要求 1-5的平板玻璃, 其表 面有 1-10种色彩的彩釉层。
10、 一种具有低热膨胀系数的平板玻璃的制造方法, 其特征在于: 步骤 1,根据权利要求 1-5任一项所述的玻璃配方配置所需的各种有预定的 必不可少的氧化铝、 氧化硅、 氧化钙、 氧化镁的成份, 以及预定的氧化硅、 氧 化钙、 氧化镁的原料, 经混合搅拌之后在对应于各玻璃配方的熔化温度熔化, 形成预定的粘度的玻璃液, 再均化, 澄清, 排出气泡, 形成可流动的熔融体; 步骤 2, 选择浮法工艺、 平拉工艺、 格法工艺、 压延工艺、 溢流法工艺、 中 任一种工艺对玻璃进行成型。
PCT/CN2013/000509 2012-06-05 2013-05-06 一种具有低热膨胀系数的平板玻璃及其制造工艺 WO2013181924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210181037.X 2012-06-05
CN201210181037 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013181924A1 true WO2013181924A1 (zh) 2013-12-12

Family

ID=48880247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000509 WO2013181924A1 (zh) 2012-06-05 2013-05-06 一种具有低热膨胀系数的平板玻璃及其制造工艺

Country Status (2)

Country Link
CN (1) CN103232160B (zh)
WO (1) WO2013181924A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1209244A (en) * 1967-04-05 1970-10-21 Owens Corning Fiberglass Corp Glass composition
US3901716A (en) * 1973-02-02 1975-08-26 Nat Res Dev Micro-crystalline material and method of preparation
US6340647B1 (en) * 1998-04-17 2002-01-22 Nippon Sheet Glass Co., Ltd. Glass composition and substrate for information recording media comprising the same
JP2002220256A (ja) * 2001-01-22 2002-08-09 Asahi Glass Co Ltd 無鉛ガラス、電子回路基板用組成物および電子回路基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727399B1 (fr) * 1994-10-13 1997-01-31 Saint Gobain Vitrage Compositions de verre silico-sodo-calciques et leurs applications
US6949485B2 (en) * 2000-06-01 2005-09-27 Asabi Glass Company, Limited Glass for substrate and glass substrate
FR2870842B1 (fr) * 2004-05-27 2007-11-02 Saint Gobain Procede et dispositif de fabrication du verre et produits obtenus a l'aide de ce procede

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1209244A (en) * 1967-04-05 1970-10-21 Owens Corning Fiberglass Corp Glass composition
US3901716A (en) * 1973-02-02 1975-08-26 Nat Res Dev Micro-crystalline material and method of preparation
US6340647B1 (en) * 1998-04-17 2002-01-22 Nippon Sheet Glass Co., Ltd. Glass composition and substrate for information recording media comprising the same
JP2002220256A (ja) * 2001-01-22 2002-08-09 Asahi Glass Co Ltd 無鉛ガラス、電子回路基板用組成物および電子回路基板

Also Published As

Publication number Publication date
CN103232160B (zh) 2018-07-24
CN103232160A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
US8377834B2 (en) Glass composition for substrates and process for its production
CN102285759B (zh) 有高退火点及环保节能减排的高强度高平整度低粘度特征的平板玻璃的应用及相关部件
KR100575477B1 (ko) 실리카소다석회유리조성물과이의응용
KR101140193B1 (ko) 디스플레이 기판용 유리와 그 사용 방법 및 제조 방법
TWI403482B (zh) 中度熱膨漲係數玻璃
CN109133615B (zh) 显示器用玻璃基板及其制造方法
KR100750990B1 (ko) 기판용 고 변형점 유리 조성물
JP5387411B2 (ja) 基板用ガラス板
JPWO2009028570A1 (ja) ガラス板およびその製造方法ならびにtftパネルの製造方法
US20040050106A1 (en) Producing glass using outgassed frit
US8324124B2 (en) Glass substrate and its production process
KR20140017417A (ko) 유리판의 제조 방법 및 유리판의 제조 장치
TWI432391B (zh) Substrate glass plate
CN107365069A (zh) 一种液晶基板玻璃及其制备方法
JP2022121511A (ja) ガラス
JP2014508703A (ja) 板ガラス及び調合方法
CN102417300A (zh) 一种液晶显示器用玻璃及其制造方法
WO2013181924A1 (zh) 一种具有低热膨胀系数的平板玻璃及其制造工艺
CN103833221A (zh) 一种具有低热膨胀系数的高铝平板玻璃及其制造工艺
JP5092564B2 (ja) ディスプレイ装置用基板ガラス
CN103771707A (zh) 一种具有低热膨胀系数的平板玻璃及其制造工艺
CN108947237A (zh) 一种低膨胀系数高应变点的无碱硅酸盐玻璃
Shiou Some technical aspects of glass substrates forTFT LCD applications
CN117447074A (zh) 无碱高弹性模量硼硅酸盐玻璃组合物及其制备方法和应用
CN117326800A (zh) 一种玻璃用组合物、无碱玻璃及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800970

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 201210181037.X

Country of ref document: CN

Date of ref document: 20140819

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800970

Country of ref document: EP

Kind code of ref document: A1