WO2013177466A1 - A fermentation and simulated moving bed process - Google Patents
A fermentation and simulated moving bed process Download PDFInfo
- Publication number
- WO2013177466A1 WO2013177466A1 PCT/US2013/042528 US2013042528W WO2013177466A1 WO 2013177466 A1 WO2013177466 A1 WO 2013177466A1 US 2013042528 W US2013042528 W US 2013042528W WO 2013177466 A1 WO2013177466 A1 WO 2013177466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fermentation
- broth
- stream
- ethanol
- adsorbent
- Prior art date
Links
- 238000000855 fermentation Methods 0.000 title claims abstract description 221
- 230000004151 fermentation Effects 0.000 title claims abstract description 221
- 238000000034 method Methods 0.000 title claims abstract description 109
- 230000008569 process Effects 0.000 title description 33
- 238000004519 manufacturing process Methods 0.000 claims abstract description 46
- 238000000926 separation method Methods 0.000 claims abstract description 31
- 238000011084 recovery Methods 0.000 claims abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 241
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 146
- 239000003463 adsorbent Substances 0.000 claims description 92
- 239000000758 substrate Substances 0.000 claims description 72
- 239000002028 Biomass Substances 0.000 claims description 46
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 claims description 42
- 239000002253 acid Substances 0.000 claims description 41
- 244000005700 microbiome Species 0.000 claims description 37
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- 239000002904 solvent Substances 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 238000001914 filtration Methods 0.000 claims description 23
- 150000007513 acids Chemical class 0.000 claims description 21
- 235000015097 nutrients Nutrition 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 20
- 108090000623 proteins and genes Proteins 0.000 claims description 20
- 102000004169 proteins and genes Human genes 0.000 claims description 19
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 150000003839 salts Chemical class 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 8
- 241000178985 Moorella Species 0.000 claims description 7
- 238000004064 recycling Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000005764 inhibitory process Effects 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 6
- 235000014655 lactic acid Nutrition 0.000 claims description 6
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 5
- 241001468161 Acetobacterium Species 0.000 claims description 4
- 241001112696 Clostridia Species 0.000 claims description 4
- 241000186394 Eubacterium Species 0.000 claims description 4
- 241000205276 Methanosarcina Species 0.000 claims description 4
- 241000178986 Oxobacter Species 0.000 claims description 4
- 229960004592 isopropanol Drugs 0.000 claims description 4
- 241000186541 Desulfotomaculum Species 0.000 claims description 3
- 241000192031 Ruminococcus Species 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 claims description 2
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000000741 silica gel Substances 0.000 claims 2
- 229910002027 silica gel Inorganic materials 0.000 claims 2
- 235000013619 trace mineral Nutrition 0.000 claims 1
- 239000011573 trace mineral Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 235000010633 broth Nutrition 0.000 description 139
- 239000000047 product Substances 0.000 description 124
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 82
- 229910002091 carbon monoxide Inorganic materials 0.000 description 82
- 239000007789 gas Substances 0.000 description 37
- 239000000243 solution Substances 0.000 description 33
- 238000001179 sorption measurement Methods 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 17
- 241000894006 Bacteria Species 0.000 description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 description 17
- 230000012010 growth Effects 0.000 description 16
- MEUAVGJWGDPTLF-UHFFFAOYSA-N 4-(5-benzenesulfonylamino-1-methyl-1h-benzoimidazol-2-ylmethyl)-benzamidine Chemical compound N=1C2=CC(NS(=O)(=O)C=3C=CC=CC=3)=CC=C2N(C)C=1CC1=CC=C(C(N)=N)C=C1 MEUAVGJWGDPTLF-UHFFFAOYSA-N 0.000 description 15
- 241001656809 Clostridium autoethanogenum Species 0.000 description 15
- 239000000446 fuel Substances 0.000 description 15
- 150000001298 alcohols Chemical class 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- 238000004821 distillation Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000000605 extraction Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 229910052721 tungsten Inorganic materials 0.000 description 9
- 229940088594 vitamin Drugs 0.000 description 9
- 229930003231 vitamin Natural products 0.000 description 9
- 235000013343 vitamin Nutrition 0.000 description 9
- 239000011782 vitamin Substances 0.000 description 9
- 241001112695 Clostridiales Species 0.000 description 8
- 241000186566 Clostridium ljungdahlii Species 0.000 description 8
- 230000000789 acetogenic effect Effects 0.000 description 8
- 241000193403 Clostridium Species 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000002207 metabolite Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000002551 biofuel Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000003795 desorption Methods 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical group C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 150000003722 vitamin derivatives Chemical class 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000002309 gasification Methods 0.000 description 5
- 239000003502 gasoline Substances 0.000 description 5
- 239000005431 greenhouse gas Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000009631 Broth culture Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 241001171821 Clostridium coskatii Species 0.000 description 4
- 241001611023 Clostridium ragsdalei Species 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 3
- 241001468163 Acetobacterium woodii Species 0.000 description 3
- 241000186398 Eubacterium limosum Species 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000011177 media preparation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000001728 nano-filtration Methods 0.000 description 3
- 229960003512 nicotinic acid Drugs 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000002912 waste gas Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- 241001464894 Blautia producta Species 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 241000193459 Moorella thermoacetica Species 0.000 description 2
- 241001509483 Oxobacter pfennigii Species 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 230000008238 biochemical pathway Effects 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- RMRCNWBMXRMIRW-BYFNXCQMSA-M cyanocobalamin Chemical compound N#C[Co+]N([C@]1([H])[C@H](CC(N)=O)[C@]\2(CCC(=O)NC[C@H](C)OP(O)(=O)OC3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)C)C/2=C(C)\C([C@H](C/2(C)C)CCC(N)=O)=N\C\2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O RMRCNWBMXRMIRW-BYFNXCQMSA-M 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 2
- 235000019136 lipoic acid Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007483 microbial process Effects 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 230000001706 oxygenating effect Effects 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011027 product recovery Methods 0.000 description 2
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- 229960002663 thioctic acid Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000019156 vitamin B Nutrition 0.000 description 2
- 239000011720 vitamin B Substances 0.000 description 2
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 description 1
- 229940083957 1,2-butanediol Drugs 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- YBJHBAHKTGYVGT-OOZYFLPDSA-N 5-[(3as,4r,6ar)-2-oxohexahydro-1h-thieno[3,4-d]imidazol-4-yl]pentanoic acid Chemical compound N1C(=O)N[C@@H]2[C@@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-OOZYFLPDSA-N 0.000 description 1
- QTXZASLUYMRUAN-QLQASOTGSA-N Acetyl coenzyme A (Acetyl-CoA) Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QTXZASLUYMRUAN-QLQASOTGSA-N 0.000 description 1
- 241000037909 Alkalibaculum Species 0.000 description 1
- 229940122930 Alkalising agent Drugs 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000620141 Carboxydothermus Species 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241001611022 Clostridium carboxidivorans Species 0.000 description 1
- 241000328950 Clostridium drakei Species 0.000 description 1
- 241000186587 Clostridium scatologenes Species 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 241000592830 Desulfotomaculum kuznetsovii Species 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- 241000205284 Methanosarcina acetivorans Species 0.000 description 1
- 241000205275 Methanosarcina barkeri Species 0.000 description 1
- 241000186544 Moorella thermoautotrophica Species 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 241000191992 Peptostreptococcus Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000186339 Thermoanaerobacter Species 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 229930003471 Vitamin B2 Natural products 0.000 description 1
- 229930003537 Vitamin B3 Natural products 0.000 description 1
- LXNHXLLTXMVWPM-UHFFFAOYSA-N Vitamin B6 Natural products CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 1
- 229930003761 Vitamin B9 Natural products 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000010564 aerobic fermentation Methods 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical class CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229960002104 cyanocobalamin Drugs 0.000 description 1
- 235000000639 cyanocobalamin Nutrition 0.000 description 1
- 239000011666 cyanocobalamin Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 ethanol or butanol Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N nicotinic acid amide Natural products NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 1
- 235000019171 pyridoxine hydrochloride Nutrition 0.000 description 1
- 239000011764 pyridoxine hydrochloride Substances 0.000 description 1
- 229960004172 pyridoxine hydrochloride Drugs 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960000344 thiamine hydrochloride Drugs 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 235000019164 vitamin B2 Nutrition 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 235000019160 vitamin B3 Nutrition 0.000 description 1
- 239000011708 vitamin B3 Substances 0.000 description 1
- 235000019158 vitamin B6 Nutrition 0.000 description 1
- 239000011726 vitamin B6 Substances 0.000 description 1
- 235000019159 vitamin B9 Nutrition 0.000 description 1
- 239000011727 vitamin B9 Substances 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/065—Ethanol, i.e. non-beverage with microorganisms other than yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/12—Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/10—Separation or concentration of fermentation products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/16—Butanols
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
- C12P7/28—Acetone-containing products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/54—Acetic acid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- This invention relates generally to a system and a method for producing products, particularly alcohols, by microbial fermentation.
- the invention relates to a fermentation system which incorporates a simulated moving bed for separation of fermentation products from a fermentation broth, and a corresponding method.
- Biofuels for transportation are attractive replacements for gasoline and are rapidly penetrating fuel markets as low concentration blends.
- Biofuels derived from natural sources, are more environmentally sustainable than those derived from fossil resources (such as gasoline), their use allowing a reduction in the levels of so-called fossil carbon dioxide (C0 2 ) gas that is released into the atmosphere as a result of fuel combustion.
- C0 2 fossil carbon dioxide
- biofuels can be produced locally in many geographical areas, and can act to reduce dependence on imported fossil energy resources.
- Ethanol is rapidly becoming a major hydrogen-rich liquid transport fuel around the world.
- Worldwide consumption of ethanol was expected to reach 27.2 billion gallons by 2012 and the global market for the fuel ethanol industry has also been predicted to grow sharply in future. This growth is mainly due to an increased interest in ethanol in Europe, Japan, the USA and several developing nations.
- ethanol is used to produce E10, a 10% mixture of ethanol in gasoline.
- the ethanol component acts as an oxygenating agent, improving the efficiency of combustion and reducing the production of air pollutants.
- ethanol satisfies approximately 30% of the transport fuel demand, as both an oxygenating agent blended in gasoline, and as a pure fuel in its own right.
- GOG Green House Gas
- EU European Union
- Butanediols including 1 ,2-butanediol, 1,3-butanediol, 1 ,4-butanediol and 2,3- butanediol may be used as an automotive fuel additive. They may also be relatively easily transformed into a number of other potentially higher value and/or higher energy products. For example, 2,3-butanediol may be readily converted in a two step process into an eight- carbon dimer which can be used as aviation fuel.
- 2,3-Butanediol derives its versatility from its di-functional backbone, i.e., 2 hydroxyl groups are located at vicinal C-atoms allowing the molecule to be transformed quite easily into substances such as butadiene, butadione, acetoin, methylethyl ketone etc. These chemical compounds are used as base molecules to manufacture a vast range of industrially produced chemicals.
- 2,3-butanediol may be used as a fuel in an internal combustion engine. It is in several ways more similar to gasoline than it is to ethanol. As the interest in the production and application of environmentally sustainable fuels has strengthened, interest in biological processes to produce 2,3-butanediol (often referred to as bio-butanol) has increased.
- Carbon monoxide (CO) is a major free energy-rich by-product of the incomplete combustion of organic materials such as coal or oil and oil derived products.
- organic materials such as coal or oil and oil derived products.
- CO Carbon monoxide
- the steel industry in Australia is reported to produce and release into the atmosphere over 500,000 tonnes of CO annually.
- catalytic processes may be used to convert gases consisting primarily of CO and/or CO and hydrogen (H 2 ) into a variety of fuels and chemicals.
- micro-organisms may also be used to convert these gases into fuels and chemicals.
- Anaerobic bacteria such as those from the genus Clostridium, have been demonstrated to produce ethanol from CO, C0 2 and H 2 via the acetyl CoA biochemical pathway.
- various strains of Clostridium ljungdahlii that produce ethanol from gases are described in WO 00/68407, EP 117309, US patent nos. 5,173,429, 5,593,886, and 6,368,819, WO 98/00558 and WO 02/08438.
- the bacterium Clostridium autoethanogenum sp is also known to produce ethanol from gases (Abrini et al, Archives of Microbiology 161, pp 345-351 (1994)).
- 2,3-butanediol is typically carried out in a bioreactor containing a liquid fermentation broth.
- the broth contains microorganisms and nutrients for their growth.
- the nutrients including the gaseous substrate itself
- the nutrients are converted to desirable products but undesirable by- products and cell debris are also produced that may be toxic to the microorganism. Both desirable and undesirable products may inhibit fermentation efficiency, particularly when present in high concentrations.
- the broth is removed from the bioreactor in a continuous or batch process and replaced with fresh nutrient medium.
- the desirable products are typically extracted from the broth by way of standard extraction methods such as fractional distillation and extractive fermentation.
- standard extraction methods such as fractional distillation and extractive fermentation.
- Solvent extraction systems often exhibit poor partition ratios when applied to weak organic broths thus making separation difficult. Salt saturation can improve the partition ratios but complicates the extraction process by requiring the removal of the salts from the waste aqueous and dramatically increases consumable costs if the salts cannot be recovered for reuse.
- Liquid pressure membranes (such as Reverse Osmosis and nanofiltration membranes) do not show sufficiently high rejection for short chained alcohols, diols, and organic acids.
- hydrophobic nor hydrophilic membranes can be manufactured with tight enough molecular weight cut-offs to exhibit clear separation and both membrane types show severe particulate fouling in fermentation broths, requiring rigorous pre-filtration.
- Distillation is currently the primary method for continuous, high purity organic recovery.
- distillation is limited to being used with organic products with lower boiling points than water and without unfavorable azeotropes. Separation of 2,3- butanediol from an aqueous solution by distillation is costly and difficult due to the high boiling point of 2,3-butanediol (180-184°C) and high affinity of water.
- Distillation of ethanol from a fermentation broth yields an azeotropic mixture of ethanol and water (i.e. 95% ethanol and 5% water) that cannot be resolved by distillation and requires further steps and technology to separate effectively.
- Acetic acid is typically removed by filtration of the broth to remove suspended organic matter followed by passing the broth through an activated charcoal column to adsorb the acetate. This process requires that the pH of the fermentation broth is reduced to less than about 3 before it is passed through the activated charcoal column, to convert the majority of the acetate to the acetic acid form. This method of removal is undesirable as it requires further steps and the addition of pH modifying chemicals to the broth.
- the invention relates to methods for improving the efficiency of separation of one or more fermentation products from a fermentation broth.
- the invention provides a method for the separation of one or more fermentation products from a fermentation broth, wherein the energy requirement for the separation is substantially reduced compared to known methods.
- the invention further provides an improved method of separation of one or more fermentation products from a fermentation broth by providing an improved system for the removal of water from the fermentation stream comprising the one or more fermentation products.
- the invention provides a method of separation of one or more fermentation products from a fermentation broth, the method comprising: a) fermenting a gaseous substrate in a bioreactor containing a culture of one or more microorganisms to produce a fermentation broth comprising the one or more fermentation products;
- c) providing at least a portion of the treated broth stream to a simulated moving bed (SMB) module comprising an adsorbent;
- SMB simulated moving bed
- the treatment zone comprises at least a heat treatment zone. In one embodiment of the first aspect, the treatment zone comprises a heat treatment zone and a filtration zone. In one embodiment, the treatment zone removes at least a portion of suspended and/or soluble biomass from the fermentation broth. In one embodiment, the treatment zone removes substantially all of the suspended and or soluble biomass form the fermentation broth. In certain aspects of the invention the treated broth stream is substantially free of biomass. In certain embodiments, the treated broth stream may contain trace amounts of biomass.
- the method comprises the step of recycling the raffinate to the bioreactor.
- the products are desorbed in step
- the product-solvent solution is substantially free of salts carried over from the fermentation broth.
- concentration of water in the product-solvent solution is less than 5%/vol, or less than 3%/vol, or less than 1%/vol. In one embodiment there is substantially no water in the product-solvent solution.
- the products include acids and/or alcohols.
- the solvent is an alcohol.
- the products are selected from the group comprising ethanol, acetic acid, 2,3-butanediol, butanol, iso-propanol and acetone.
- the solvent is selected from the group comprising ethanol, methanol, propanol and methyl tertiary butyl ether.
- the one or more products is selected from the group comprising ethanol, 2,3-butanediol and acetic acid, and the solvent is ethanol.
- the solvent used in the desorbtion step is a product of the fermentation process that has been previously extracted. It will be appreciated that desorbing with a product of the fermentation process means that a further required separation stage is not added to yield the products although further separation may be required to separate the different products of the fermentation from one another where more than one product is produced.
- the gaseous substrate is fermented in the bioreactor in step (a) to produce a fermentation broth comprising ethanol and 2,3-butanediol.
- the fermentation broth is passed to a treatment zone, wherein at least a portion of biomass and/or soluble proteins is removed from the fermentation broth to provide a treated stream.
- the treated stream is flowed to the SMB, wherein at least a portion of the ethanol and 2,3-butanediol is absorbed from the treated stream to yield a raffinate stream.
- a solvent is passed through the adsorber to desorb the ethanol and 2,3-butanediol and provide an extract stream.
- the extract stream is passed to a recovery zone operated under conditions to provide an ethanol stream and a 2,3-butanediol stream.
- at least a portion of the raffinate stream is passed back to the bioreactor.
- the invention provides a method for the production and recovery of one or more fermentation products from a fermentation broth, the method comprising;
- c) providing at least a portion of the treated broth stream to a simulated moving bed (SMB) module comprising an adsorbent;
- SMB simulated moving bed
- the treatment zone of step (b) removes at least a portion of biomass and/or soluble proteins from the fermentation broth to provide a treated broth stream substantially free of biomass. In one embodiment, at least a portion of the biomass and/or soluble proteins is returned to the bioreactor.
- At least a portion of the fermentation broth is passed through a filtration step as it exits the bioreactor, producing a permeate stream.
- the permeate stream and treated broth streams are combined prior to being passed to the SMB module.
- the raffinate is returned to the bioreactor to make up a portion of a liquid nutrient medium.
- the raffinate passes through a media preparation step prior to being returned to the bioreactor.
- the media preparation step comprises the addition of one or more nutrients to the raffinate stream.
- the raffinate is substantially free of products.
- the raffinate comprises at least 80% H20, or at least 85% H20, or at least 90% H20, or at least 95% H20.
- the raffinate comprises trace amounts of the solvent used to desorb the one or more products from the adsorber.
- a method for the production and recovery of one or more acids comprising; a) flowing a gaseous substrate to a bioreactor containing a culture or one or more microorganisms in a liquid nutrient broth;
- the acid adsorbed is lactic acid and/or acetic acid and the removal of the acid prevents inhibition and/or collapse of the broth culture.
- the adsorbed lactic acid and/or acetic acid is desorbed from the absorbent and exits the SMB through the extract stream. Accordingly, the pH of the broth is controlled through removal of the lactic acid and/or acetic acid through the extract stream.
- the removal of the acid from the bioreactor prevents inhibition of the culture of one or more microorganisms.
- the one or more acid(s) are desorbed in step (f) by a solvent.
- the solvent used for desorbing is ethanol, methanol, propanol and methyl tertiary butyl ether.
- the solvent used for desorbing is a solvent produced by the fermentation process that has been previously extracted.
- At least a portion of acid in the treated broth stream is converted to its corresponding salt prior to being provided to the SMB module.
- the acid of the treated broth stream is acetic acid which is converted to sodium acetate using sodium hydroxide.
- the converted sodium acetate is provided with the treated broth stream to the SMB module, wherein the sodium acetate exits the SMB module with the raffmate and is recycled back to the bioreactor.
- the biomass and/or soluble proteins removed from the fermentation broth at step (c) are recycled to the bioreactor.
- one or more acids are removed by the process such that the pH of the bioreactor is maintained within a desirable range. It has been recognised that microbial growth and metabolite production can be optimised by maintaining the pH in the bioreactor within a desirable range.
- the desirable range is ⁇ 0.5 units of the optimum operating pH.
- the pH is maintained between 6-8, or between 6.5-7.5, or between 6.7-7.4, or between 6.8- 7.3, or between 6.9-7.1, or substantially 7.0.
- the pH is maintained between4.5-6; or between4.61-5.9; or within 4.7-5.8; or between 4.8-5.5.
- the pH is maintained at substantially pH4.8, or at pH 5.0, or at pH5.5
- the main fermentation product is acetic acid.
- the gaseous substrate provided to the reactor is selected from the group consisting of CO, CO and H2, C02 and H2, C02, CO and H2, or mixtures thereof.
- the one or more microorganisms is selected from the group consisitng of Acetobacterium woodii, Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium coskatii or mixtures thereof.
- Step (a) of the third aspect may produce other products also, such as alcohols.
- one or more additional fermentation products are adsorbed in step (e).
- the additional products are selected from the group comprising ethanol, 2,3-butanediol, butanol, and iso-propanol.
- the treatment stage comprises at least a filtration step wherein at least a portion of suspended and/or soluble biomass is removed from the fermentation broth prior to passing it to the SMB module.
- Filtration results in the removal of suspended and/or soluble biomass from the fermentation broth.
- filtration results in a substantially biomass free treated broth stream. Filtration may be by way of passing the broth through a membrane.
- flocculation can be induced by the addition of a flocculent prior to filtration.
- the treatment stage further comprises a least a heat treatment stage. It would be appreciated by a skilled person that other methods for removal of biomass from a broth stream can also be used in the treatment stage.
- the invention provides a fermentation system comprising at least:
- a simulated moving bed (SMB) module adapted to be provided with a portion of the fermentation broth
- an adsorbent in the SMB module adapted to adsorb the one or more fermentation products from the portion of the fermentation broth.
- the system further comprises a treatment module adapted to remove suspended and/or soluble biomass from the portion of the fermentation broth prior to the broth being received by the SMB module.
- the treatment module comprises at least a filtration module.
- the treatment module comprises a heat treatment module and a filtration module.
- the SMB module may be provided in or as part of the bioreactor or separate therefrom but in fluid communication therewith so as to receive the portion of the broth.
- the system further comprises a means for passing the removed biomass/soluble proteins back to the bioreactor.
- the system comprises a means for passing a raffinate stream exiting the SMB module back to the bioreactor.
- the bioreactor is configured for fermentation of a gaseous substrate to produce products including acid(s) and /or alcohol(s).
- the gaseous substrate comprises CO and optionally H2.
- the gaseous substrate comprises C02 and H2.
- the system includes control means and processing means such that parameters including media supply rates, liquid retention times and substrate supply rates can be controlled in accordance with the instant disclosure and methods known in the art, such as methods described in WO2010/093262, which are fully incorporated herein by reference.
- the method further comprises the treatment of the fermentation broth removed from the bioreactor or the raffinate respectively prior to or after product removal in the SMB module.
- the treatment may consist of additional components or nutrients (such as B vitamins) being added to the raffinate to replenish the nutrient medium before it is returned to the bioreactor.
- the pH of the raffinate may be adjusted before being returned to the bioreactor to control the pH of the broth in the bioreactor.
- the adsorbent is a fluorinated carbon adsorbent.
- the adsorbent is an activated carbon adsorbent.
- the adsorbent is a CI 8 surface modified silica gel.
- adsorbents are examples of suitable adsorbents and are not intended as an exhaustive list. A skilled person would understand that any adsorbent material having suitable selectivity and hydrophobicity for use in the SMB process defined herein may be used.
- the SMB is separate from but in fluid communication with the bioreactor
- the SMB may be provided within the bioreactor.
- the SMB is kept separate from suspended and/or soluble biomass in the broth.
- a portion of the broth may be separated from the rest by a membrane such that the SMB is in communication with products of the fermentation but not suspended or soluble biomass which can affect the performance of the SMB.
- a feed of the SMB may be provided with a filter there over to the same end. This applies to all aspects of the invention.
- the SMB process is advantageous in separating desired products from a fermentation broth and/or treated broth stream comprising dilute concentrations of organic products.
- the concentration of ethanol and/or 2,3-butanediol in the fermentation broth and treated broth stream is less than or equal to 30 weight % in water, or less than 15 weight % in water.
- the fermentation broth or treated stream contains between 2-10 weight % of ethanol/2,3- butanediol in water, wherein the ethanol to 2,3-butanediol is present at a ratio between 5: 1 to 1 : 1.
- the fermentation broth or treated stream contains 6 weight % of ethanol/2,3-butantediol in water, wherein the ethanol to 2,3-butanediol is present at a ratio of 1 : 1.
- a 2,3-butanediol concentration of less than 2 weight % may be separated using the SMB process.
- the adsorbent adsorbs at least approximately 50%, approximately 60%, approximately 70%>, approximately 80%, approximately 90%, approximately 95%, approximately 99% or substantially 100% of the fermentation products from the broth.
- the adsorbent adsorbs between 50 -100%, or between 60-95%>, or between 70-90%>, or between 70-100% of the fermentation products from the broth.
- the adsorbent would preferably have an ethanol adsorption ratio of at least 6.0 W/W, or at least 7.0 W/W, or at least 8.0 W/W, or at least 9.0 W/W, or at least 10.0 W/W. In certain embodiments, the adsorbent has an ethanol adsorption ratio of between 6.0-10.0 W/W, or between 7.0-10.0 W/W, or between 6.0-9.0 W/W, or between 7.0-9.0W/W.
- the adsorbent would preferably have a 2,3- butanediol adsorption ratio of at least 9.0 W/W, or at least 10.0 W/W, or at least 12.0 W/W, or at least 16.0 W/W, or at least 18.0 W/W, or at least 20.0 W/W.
- the adsorbent has a 2,3-butanediol adsorption ratio of between 9.0 -20.0 W/W, or between 12.0- 20.0 W/W, or between 10.0 -18.0 W/W, or between 12.0-18.0 W/W, or between 16.0-20.0 W/W.
- the temperature at which the organic products are adsorbed to the adsorbent is between 20°C to 75°C, or between 25°C to 40°C, or between 25°C- to 35°C. In a preferred embodiment the temperature at which the organic products are adsorbed to the adsorbent is about 25°C. As will be appreciated, this is significantly less than that required to separate the products by distillation.
- the temperature at which the products are desorbed from the adsorbent is less between 20°C to 120°C, or between 20°C to 110°C, or between 25°C to 100°C, or between 40°C to 100°C, or between 40°C to 90°C. In certain embodiments the temperature at which the products are desorbed from the adsorbent is about 90°C.
- the pressure at which the products are adsorbed to the adsorbent is less than 200 psig (l,379kPag), or less than 150 psig (1,034 kPag) or about 100 psig (689 kPag), or less than about 50 psig (345 kPag). In certain embodiments the pressure at which products are adsorbed to adsorbent is between 14.7 to 200psig (101 to 1,379 kPag).
- Embodiments of the invention find particular application in the separation of organic products of gas fermentation such as acids, alcohols and diols from a generally aqueous fermentation broth.
- acetic acid, ethanol and 2,3-butanediol are produced by fermentation of a gaseous substrate comprising CO and may be separated from an aqueous organic stream using the invention.
- an alcohol product such as ethanol is extracted from a portion of broth removed from the bioreactor (or another portion of broth) prior to the broth passing to the SMB module and optionally the filtration module.
- the ethanol is extracted from the broth by distillation.
- the extracted ethanol is used as a desorbent in the SMB module.
- the SMB module is regenerated following absorption of the products and/or acids.
- the adsorbent is cleared of substantially all desorbent.
- the adsorbent is clear of desorbent by steam stripping. Steam stripping may occur either prior to adsorption to yield a condensed stripping solution that is removed from the system or in conjunction with the adsorption step where the condensed stripping solution is carried out of the system with the raffinate. The condensed stripping solution or desorbent-containing raffmate are distilled to recover extracted desorbent, which is returned to the process.
- the gaseous substrate may comprise a gas obtained as a by-product of an industrial process.
- the industrial process is selected from the group consisting of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of biomass, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
- the gaseous substrate is syngas.
- the gaseous substrate comprises a gas obtained from a steel mill.
- the gaseous substrate is a CO-containing gaseous substrate.
- the substrate contains at least about 15% CO to 100% CO by volume, such as from 20% CO to 100% CO by volume, such as from 43% CO to 95% CO by volume, such as from 75% CO to 95% CO by volume, or such as from 80%> to 90%> CO by volume.
- the gaseous substrate comprises approximately 95% CO. Lower CO levels, such as 6%, may be envisaged where the substrate also contains C0 2 and H 2 .
- the substrate stream comprises concentrations of H 2 from 2% to 13%.
- the fermentation is carried out using a microorganism culture comprising one or more strains of carboxydotrophic bacteria.
- the carboxydotrophic bacterium is selected from Clostridium, Moorella, Oxobacter, Peptostreptococcus, Acetobacterium, Eubacterium, or Butyribacterium.
- the carboxydotrophic bacterium is Clostridium autoethanogenum.
- the bacterium has the identifying characteristics of accession number DSMZ 10061 or DSMZ23693.
- the invention also includes the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
- Figure 1 is a schematic representation of a fermentation system according to an embodiment of the present invention.
- FIG. 2 is a schematic representation of a fermentation system according to an embodiment of the present invention whereby an SMB module is connected to a gas fermentation to extract fermentation products such as ethanol and 2,3-butanediol.
- Broth culture the microorganism culture present in the fermentation broth.
- Broth culture density the density of microorganism cells in the fermentation broth.
- Gaseous substrate comprising carbon monoxide - and like terms includes any gas which contains carbon monoxide.
- the gaseous substrate will typically contain a significant proportion of CO, preferably at least about 5% to about 100% CO by volume.
- Acid - as used herein this term includes the carboxylic acid form.
- Acetic acid in its acetate form is not suitable for use with the adsorbent process of the present invention.
- Acetate present in the fermentation broth can be converted to the acid form by pH adjustment. The ratio of molecular acetic acid to acetate in the fermentation broth is dependent upon the pH of the system.
- Bioreactor or fermenter - includes a fermentation device consisting of one or more vessels and/or towers or piping arrangements, which includes the Continuous Stirred Tank Reactor (CSTR), Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Moving Bed Biofilm Reactor (MBBR), Bubble Column, Gas Lift Fermenter, Membrane Reactor such as Hollow Fibre Membrane Bioreactor (HFMBR), Static Mixer, or other vessel or other device suitable for gas-liquid contact.
- CSTR Continuous Stirred Tank Reactor
- ICR Immobilized Cell Reactor
- TBR Trickle Bed Reactor
- MBBR Moving Bed Biofilm Reactor
- Bubble Column Gas Lift Fermenter
- Membrane Reactor such as Hollow Fibre Membrane Bioreactor (HFMBR), Static Mixer, or other vessel or other device suitable for gas-liquid contact.
- Second or secondary bioreactor - as used herein, these terms are intended to encompass any number of further bioreactors that may be connected in series or parallel with the first and/or second bioreactors.
- Fermenting, fermentation process or fermentation reaction - and like terms as used herein, are intended to encompass both the growth phase and product biosynthesis phase of the process.
- the bioreactor may comprise a first growth reactor and a second fermentation reactor.
- the treatment ofi or addition of components to, a fermentation reaction should be understood to relate to either or both of these reactors.
- Partition ratio -as used herein is intended to define the ratio of the concentration of a substance in a single definite form, A, in the extract to its concentration in the same form in the other phase at equilibrium as shown in the following equation:
- Component of a nutrient medium- as used herein is intended to define any substance provided in a liquid nutrient medium that supports the growth of a microorganism, including but not limited to vitamins, trace metals and minerals.
- Aqueous organic stream- as used herein is intended to define an aqueous stream comprising one or more organic products of a fermentation process. Examples of organic products include but are not limited to ethanol; 2,3-butanediol; acetic acid; propanol; Butanol; isopropanol and acetone, a compound that has a high affinity for water i.e., is highly soluble in water.
- SMB may have beneficial application to extracting organic compounds such as alcohols, diols, and organic acids that have a high affinity to water, from a generally aqueous solution and have developed processes therefor.
- organic compounds such as alcohols, diols, and organic acids that have a high affinity to water
- SMB has only been used to separate organic compounds from organic solvents, or to extract organic compounds from aqueous solutions, where the organic component has a low affinity to water.
- Alcohols, diols, and organic acids have low carbon chain lengths and high polarity; therefore, such chemicals tend to have a high affinity for water i.e., are substantially completely soluble in water.
- these compounds are typically produced in low concentration solutions (i.e. below 10% w/w) containing impurities.
- Fermentation solutions often contain a variety of inorganic compounds as well as suspended and soluble biomass contaminants which limit adsorption by physically blocking or competing for the adsorbent surface.
- At least some preferred embodiments of the invention aim to overcome at least one of these limitations by providing a process and system with at least one of optimised adsorbent selectivity, capacity, mass transfer rate, and long-term stability.
- the invention also preferably provides an SMB module that has been optimised for continuous operation to reduce SMB capital expenditure and operating costs.
- Regenerative, continuous adsorption reduces adsorbent and solvent/desorbent quantities and energy consumption. Operating costs are significantly lower than conventional unit operations such as distillation, solvent extraction and crystallization.
- SMB Relative to fixed beds, SMB has a much greater effective volume of functioning adsorbent.
- liquid composition at a given bed level changes cyclically with time and large portions of the bed are not active at a given time.
- the composition at a given level is fixed and the entire bed performs a useful function.
- the fermentation products may be desorbed from the adsorbent by passing a desorbent/solvent over the adsorbent to yield a product-solvent solution.
- the invention has a further advantage over conventional separation techniques in that it separates organic products at high yield and purity, with minimal to no carry-over of solvent (for example water from the broth) and/or undesired solutes from the fermentation broth.
- a further advantage of SMB is its ability to simultaneously extract more than one product from solution. Optimisation of the adsorbent bed allows SMB to cleanly extract multiple organic products under the same operating conditions, which cannot be done using conventional extraction methods. [00091]
- the invention provides a method of separation of one or more fermentation products from a fermentation broth using a simulated moving bed (SMB) module comprising an adsorbent.
- SMB simulated moving bed
- Embodiments of the invention find particular application in the separation of aqueous organic products of gas fermentation such as acids, alcohols and diols from a fermentation broth.
- aqueous organic products of gas fermentation such as acids, alcohols and diols from a fermentation broth.
- acetic acid, ethanol and 2,3-butanediol are produced by fermentation of a gaseous substrate comprising CO and may be separated from the aqueous organic stream using the invention.
- the methods comprise the step of filtration of the fermentation broth prior to passing it to the SMB module.
- Filtration results in the removal of suspended and/or soluble biomass from the fermentation broth.
- Filtration may be by way of passing the broth through a membrane including but not limited to nanofiltration and ultrafiltration membranes, by denaturation of the fermentation broth, or by other methods of filtration known in the art.
- Flocculation can be induced by addition of a flocculent prior to filtration. Filtration may be carried out in a discrete module or be incorporated as part of the SMB module.
- a suitable adsorbent is a fluorinated carbon adsorbent.
- the adsorbent is an activated carbon adsorbent or a fluorinated carbon adsorbent.
- the adsorbent is a CI 8 surface modified silica gel.
- the adsorbent can be any adsorbent material capable of separating water from a denatured fermentation broth. Suitable adsorbents include fluorinated carbon adsorbents.
- fluorinated carbon adsorbents examples include surface fluorinated carbon adsorbents such as ORSCNCB4FL5GR and ORSNCB4FLGR (available from Orochem Technologies, Inc.,) and hereinafter referred to as FC-5 and FC-1 respectively.
- Other suitable adsorbents include activated carbon adsorbents.
- An example of an activated carbon adsorbent is ORSNCB4GR (available from Orochem Technologies, Inc, Lombard, II) and hereinafter referred to as E-325.
- C18 surface modified silica gels also have suitable properties for use in the SMB process described herein.
- An exemplary CI 8 surface modified silica gel is RELIASIL 5 micron CI 8 (available from Infochroma, Switzerland).
- the adsorbent adsorbs at least approximately 50%, approximately 60%, approximately 70%, approximately 80%, approximately 90%, approximately 95%, approximately 99% or substantially 100% of the fermentation products from the broth.
- Products may be separated from the desorbed product mixture by standard methods known to one of skill in the art such as distillation.
- distillation For example, the boiling point of ethanol is 78.8 °C and that of acetic acid is 107 °C.
- ethanol and acetic acid can readily be separated from each other using a volatility-based method such as distillation.
- Acetate may be recovered by adsorption on activated charcoal.
- organo-solvent nanofiltration membranes Another example of separation. These enable the size separation of two (2) solvent components from each other through pressure filtration.
- SMB requires a solvent desorbent to remove the organic product from the adsorbent.
- an appropriate desorbent ensures a clean separation from the adsorbent and subsequently from the desorbed product with only minor changes to process conditions, enabling near complete desorbent regeneration.
- the desorbent is selected from the group comprising methanol, ethanol, propanol, and methyl tertiary butyl ether.
- the desorbent is methanol or ethanol.
- the solvent used for desorption is a solvent produced by the fermentation process and that has been previously extracted. This reduces consumables costs and possible waste treatment requirements. Using an extracted product as a solvent reduces the chance that undesirable solvent/desorbent or solvent/desorbent contaminants are recycled to the broth which can inhibit fermentation efficiency.
- the solvent is ethanol that has been produced by the fermentation or a linked fermentation process. Such a solvent may be extracted from the removed portion of the broth prior to the broth passing to the SMB module or may be obtained from another portion of the both.
- SMB relies on molecular interactions between the target product and the adsorbent surface, its separation performance does not require high temperatures, unlike distillation. SMB enables the continuous recovery of organic compounds from both hydrocarbon and aqueous solutions with no significant heat or pressure demand. This can reduce energy consumption and should also result in decreased greenhouse gas emissions. The lower temperature and pressure requirements may also avoid degeneration of broth nutrients enabling recycle of the raffinate with minimal treatment.
- the temperature at which the products are adsorbed to the adsorbent is between 25°C to 75°C . In a preferred embodiment the temperature at which the organic products are adsorbed to the adsorbent is about 25°C. In a further particular embodiment of the invention, the temperature at which the products are desorbed from the adsorbent is between 25°C to 120°C. In certain embodiments the temperature at which the products are desorbed from the adsorbent is about 90°C.
- the pressure at which the products are adsorbed to the adsorbent is less than 200 psig (l,379kPag) or less than 150 psig (l,034kPag) or about 100 psig (689kPag).
- the raffinate is recycled to the bioreactor.
- the raffinate may be treated and the treatment may consist of additional components or nutrients (such as B vitamins) being added to the raffinate to replenish the nutrient medium.
- the pH of the raffinate may be adjusted before being returned to the bioreactor to control the pH of the broth in the bioreactor.
- the control of pH in a fermentation reaction is a critical factor that can affect a number of variables such as the reaction rate and product formed.
- the microorganisms involved in the fermentation will often produce products across a range of pH, maintaining an optimum pH for particular reaction conditions can maximise growth and/or production efficiency.
- the build-up of acids such as acetic acid and lactic acid can inhibit the fermentation and, if unchecked, can lead to collapse of the microorganism culture.
- the invention also provides a method of controlling the pH of a fermentation broth in a bioreactor using a simulated moving bed (SMB) module comprising an adsorbent to remove a portion of the both, preferably said portion comprising an acid.
- SMB simulated moving bed
- This method enables the pH of the fermentation broth to be continuously controlled without requiring the addition of acidifying or alkalising agents, or at least reducing the need therefor. This reduces consumable costs as well as reducing waste treatment that may be required to remove the agents.
- the invention provides a method of controlling pH whereby the degree of adjustment of the pH of the broth is determined by the amount of one or more acids extracted from a removed portion of the broth.
- an SMB module can be used as an extended cell recycle system, allowing the return of essential biomass and soluble proteins, whilst stripping excess acids from the culture.
- substantially all acetic acid produced in the fermentation broth is removed through this process.
- acetic acid can be returned to the reactor in the form of acetate.
- the pH in the reactor drops below a desired level, more acid is stripped from the fermentation broth, to return the pH to a desire range.
- the pH of the bioreactor is dependent on the type of fermentation. In acetic acid fermentations, where acetic acid is the main fermentation product, the pH range should be maintained between around pH 6 to around pH 7.5. In alcohol fermentation, where one or more alcohols is the main fermentation product (aspects 1 and 2 of the present invention), the pH is maintained between around pH 4.5 to around pH 5.5. In certain embodiments the process is a continuous process.
- the invention also provides a fermentation system an example embodiment of which is shown schematically in Figure 1.
- the system comprises a bioreactor 1 containing a fermentation broth 2 containing microorganisms able to produce one or more fermentation products from a gaseous substrate 3 which may be fed to the bioreactor 1 via an appropriate inlet.
- a portion of the broth 2 is fed from the bioreactor 1 to broth 2 via a filtration module 4 adapted to remove suspended and/or soluble biomass from the fermentation broth.
- the concentrated biomass removed may be recycled 5 to the bioreactor.
- the biomass depleted broth is passed to a simulated moving bed module 6 comprising an adsorbent adapted to adsorb the one or more fermentation products from the biomass depleted broth, resulting in a raffinate stream (filtered biomass depleted broth that is not adsorbed to the adsorbent).
- the raffinate is recycled 7 to the bioreactor 1.
- a desorbent 8 is passed over the adsorbent to desorb the fermentation products which are removed in a concentrated metabolite stream 9 which may be subjected to further separation steps.
- the adsorbent 6 is cleared of all remaining desorbent (or "regenerated"), either by steam stripping 10 prior to subsequent adsorption, or in conjunction with the adsorption step where it is carried out of the system with the raffinate.
- the system described above and shown in figure 1 may be used to control pH by removal of fermentation product (e.g. acids) from the broth.
- the system comprises a bioreactor 1 containing a fermentation broth 2 containing microorganisms able to produce one or more fermentation products from a gaseous substrate 3.
- a portion of the broth may be passed either a) directly to a filtration module 4 adapted to remove at least a portion of suspended and/or soluble biomass from the fermentation broth.
- volatile products such as ethanol are distilled 15 prior to being passed to the filtration module 4.
- the solid biomass is removed 15 from the filtration module 4 and may be disposed of or recycled to the fermentation broth.
- the distilled product may be passed 17 to the SMB module 6 to be used as a desorbent.
- the biomass depleted broth is passed to the SMB module 6 comprising an adsorbent adapted to adsorb one or more fermentation products of the broth.
- the raffinate is recycled 7 to the bioreactor via a media preparation module 20 where treatment to optimise the media feed may occur. It will be appreciated that this module 20 may be added to the figure 1 embodiment.
- a desorbent 8 is introduced to the SMB module 6 and passed over the adsorbent to desorb the fermentation products.
- the desorbent may be a fermentation product 17 or 22 such as ethanol or a consumable 23 such as methanol or water.
- fermentation products are removed in a concentrated metabolite stream 9 for further separation in a separation module 25 to yield purified products 26 and 27 such as ethanol and 2,3-butanediol respectively provided by way of example only.
- the desorbent is removed 28 along with waste vent gas 29 and the desorbent is collected 30 and may be recycled.
- Steam 10 and heated vent gas 32 are used to regenerate the adsorbent.
- the heated vent gas is obtained by passing vent gas 33 from the bioreactor through a heat exchanger 34. Condensed steam and desorbent may be passed 35 to the biomass stripped broth for further processing.
- the gaseous substrate contains at least about 15% CO to 100% CO by volume, such as from 20% CO to 100% CO by volume, such as from 43% CO to 95% CO by volume, such as from 75% CO to 95% CO by volume, or such as from 80%) to 90%> CO by volume.
- the gaseous substrate comprises approximately 95% CO.
- Lower CO levels, such as 6%, may be envisaged where the substrate also contains C0 2 and H 2 .
- the substrate stream comprises concentrations of H 2 from 2% to 13%.
- these products may be produced by fermentation using microbes from the genus Moorella, Clostridia, Ruminococcus, Acetobacterium, Eubacterium, Butyribacterium, Oxobacter, Methanosarcina, Methanosarcina, and Desulfotomaculum.
- SMB Simulated moving bed
- UOP for separation of organic components with similar boiling points and/or azeotropic properties (SorbexTM and MXTM methods, for example). It has been found that optimisation of the adsorbent properties enables SMB to be used to extract organic fermentation products from aqueous fermentation broth solutions, where the organic component has a high affinity to water.
- SMB operates continuously by fixing two or more columns containing adsorbent beds, while cycling and recycling a continuous stream of broth through the beds by use of multi-port valves or a rotary valve fluid control. If elution across the total number of columns in series is not sufficient to extract the desired product(s) at the desired purity, the stream can be directed to pass through the columns additional times until adequate extraction is achieved. Thus the carefully timed switching of valves to re-direct the broth stream simulates the moving of the adsorbent beds. The remaining portion of the broth (comprising mainly water and salts) is termed the raffinate and may be removed for disposal or recycled.
- the SMB process consists of three main stages:
- Adsorption Stage - Feed solution passes over adsorbent and the organic product adsorbs onto the surface. Resulting raffinate is removed from the system.
- Desorption Stage- Desorbent solvent is passed over adsorbent, extracting the organic product from the surface, and the resulting solution removed for separation, typically via distillation.
- Regeneration Stage - Adsorbent is cleared of all remaining desorbent, either via steam stripping prior to adsorption, or in conjunction with the adsorption step where it is carried out of the system with the raffinate. Condensed stripping solution or the desorbent-containing raffinate are distilled to recover extracted desorbent, which is returned to the process.
- a rectification stage can be provided between the Adsoprtion stage, and the Desorption stage. During the rectification stage, at least a portion of the products on the adsorbent will travel down the surface of the adsorption column and collect at the bottom of the column. This allows less desorbent to be used in the desorption stage.
- the simulated moving bed module referred to herein may comprise a number of different SMB designs. Exemplary SMB module designs that would be suitable for integration into the methods and systems of the present invention are described for example in US 3268605, US3706812, US5705061 and US6004518, the entirety of which are incorporated herein by reference. Further apparatus that would be known to one of skill in the art may also be integrated into the SMB module to aid flow distribution (for example the apparatus described in US6979402) or provide other benefits. [000124] While simulated moving bed systems are referred to herein, the invention is also intended to encompass the use of a fermentation coupled with actual moving bed systems such as that described in US6979402 Bl which rely on the same moving bed concept.
- Certain embodiments of the invention are adapted to use gas streams produced by one or more industrial processes.
- Such processes include steel making processes, particularly processes which produce a gas stream having a high CO content or a CO content above a predetermined level (e.g. 5%).
- acetogenic bacteria are preferably used to produce acids and/or alcohols, particularly ethanol or butanol, within one or more bioreactors.
- the invention may be applied to various industries or waste gas streams, including those of vehicles with an internal combustion engine.
- the invention may be applied to other fermentation reactions including those using the same or different microorganisms.
- the scope of the invention is not limited to the particular embodiments and/or applications described but is instead to be understood in a broader sense; for example, the source of the gas stream is not limiting, other than that at least a component thereof is usable to feed a fermentation reaction.
- the invention has particular application in improving the overall carbon capture and/or production of ethanol and other alcohols from gaseous substrates comprising CO. Processes for the production of ethanol and other alcohols from gaseous substrates are known.
- Exemplary processes include those described for example in WO2007/117157, WO2008/115080, WO2009/022925, WO2009/064200, US 6,340,581, US 6,136,577, US 5,593,886, US 5,807,722 and US 5,821,111, each of which is incorporated herein by reference.
- a number of anaerobic bacteria are known to be capable of carrying out the fermentation of CO to alcohols, diols and acids, and are suitable for use in present invention.
- bacteria that are suitable for use in the invention include those of the genus Clostridium, such as strains of Clostridium ljungdahlii, including those described in WO 00/68407, EP 117309, US patent No's 5,173,429, 5,593,886, and 6,368,819, WO 98/00558 and WO 02/08438, Clostridium carboxydivorans (Liou et al, International Journal of Systematic and Evolutionary Microbiology 33: pp 2085-2091), Clostridium ragsdalei (WO/2008/028055) and Clostridium autoethanogenum (Abrini et al, Archives of Microbiology 161 : pp 345-351).
- Suitable bacteria include those of the genus Moorella, including Moorella sp HUC22-1, (Sakai et al, Biotechnology Letters 29: pp 1607-1612), and those of the genus Carboxydothermus (Svetlichny, V.A., Sokolova, T.G. et al (1991), Systematic and Applied Microbiology 14: 254-260).
- Clostridium autoethanogenum is a Clostridium autoethanogenum having the identifying characteristics of the strain deposited at the German Resource Centre for Biological Material (DSMZ) under the identifying deposit number 19630.
- the Clostridium autoethanogenum has the identifying characteristics of DSMZ deposit number DSMZ 10061 or DSMZ23693.
- the laboratory strain of this bacterium is known as LZ1561.
- the microorganism is selected from the group of carboxydotrophic acetogenic bacteria.
- the microorganism is selected from the group comprising Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Clostridium coskatii, Butyribacterium limosum, Butyribacterium methylotrophicum, Acetobacterium woodii, Alkalibaculum bacchii, Blautia producta, Eubacterium limosum, Moorella thermoacetica, Moorella thermautotrophica, Oxobacter pfennigii, and Thermoanaerobacter kiuvi.
- the microorganism is selected from the cluster of ethanologenic, acetogenic Clostridia comprising the species C autoethanogenum, C. ljungdahlii, and C. ragsdalei and related isolates. These include but are not limited to strains:
- rhamnose, arabinose e.g. gluconate, citrate
- amino acids e.g. arginine, histidine
- substrates e.g. betaine, butanol.
- auxotroph to certain vitamins (e.g. thiamine, biotin) while others were not.
- Culturing of the bacteria used in the methods of the invention may be conducted using any number of processes known in the art for culturing and fermenting substrates using anaerobic bacteria.
- those processes generally described in the following articles using gaseous substrates for fermentation may be utilised: (i) K. T. Klasson, et al. (1991). Bioreactors for synthesis gas fermentations resources. Conservation and Recycling, 5; 145-165; (ii) K. T. Klasson, et al. (1991). Bioreactor design for synthesis gas fermentations. Fuel. 70. 605-614; (iii) K. T. Klasson, et al. (1992).
- the fermentation may be carried out in any suitable bioreactors, such as one or more continuous stirred tank reactor (CSTR), immobilised cell reactor(s), a gas-lift reactor(s), bubble column reactor(s) (BCR), membrane reactor(s), such as a Hollow Fibre Membrane Bioreactor (HFMBR) or trickle bed reactor(s) (TBR).
- the bioreactor(s) may comprise a first, growth reactor in which the microorganisms are cultured, and a second, fermentation reactor, to which fermentation broth from the growth reactor is fed and in which most of the fermentation product is produced.
- the second bioreactor is different to the first bioreactor.
- the carbon source for the fermentation reaction is a gaseous substrate containing CO.
- the substrate may be a CO- containing waste gas obtained as a by-product of an industrial process, or from another source such as from automobile exhaust fumes.
- the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing.
- the CO- containing substrate may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method.
- the gaseous substrate may be filtered or scrubbed using known methods.
- the CO-containing substrate may be sourced from the gasification of biomass.
- the process of gasification involves partial combustion of biomass in a restricted supply of air or oxygen.
- the resultant gas typically comprises mainly CO and H 2 , with minimal volumes of C0 2 , methane, ethylene and ethane.
- biomass byproducts obtained during the extraction and processing of foodstuffs such as sugar from sugarcane, or starch from maize or grains, or non-food biomass waste generated by the forestry industry may be gasified to produce a CO-containing gas suitable for use in the present invention.
- the CO-containing substrate will typically contain a major proportion of CO, such as at least about 15% CO to 100% CO by volume, such as from 20% CO to 100% CO by volume, such as from 43% CO to 95% CO by volume, such as from 75% CO to 95% CO by volume, or such as from 80%> to 90%> CO by volume.
- the gaseous substrate comprises approximately 95% CO.
- Lower CO levels, such as 6%, may be envisaged where the substrate also contains C0 2 and H 2 .
- the substrate stream comprises concentrations of H 2 from 2% to 13%.
- the substrate may comprise an approx 2: 1, or 1 : 1, or 1 :2 ratio of H 2 :CO.
- the substrate stream comprises concentrations of H 2 from 2% to 13%.
- the substrate stream comprises low concentrations of H 2 , for example, less than 5%, or less than 4%), or less than 3%, or less than 2%, or less than 1%, or is substantially hydrogen free.
- the substrate may also contain some C0 2 for example, such as about 1% to about 80% C0 2 by volume, or 1% to about 30% C0 2 by volume.
- the substrate stream comprises C02 and no or minimal CO.
- the carbon monoxide will be added to the fermentation reaction in a gaseous state.
- the methods of the invention are not limited to addition of the substrate in this state.
- the carbon monoxide can be provided in a liquid.
- a liquid may be saturated with a carbon monoxide containing gas and that liquid added to the bioreactor. This may be achieved using standard methodology.
- a microbubble dispersion generator Heensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101, Number 3 / October, 2002) could be used for this purpose.
- a suitable liquid nutrient medium will need to be fed to the bioreactor.
- a nutrient medium will contain vitamins and minerals sufficient to permit growth of the micro-organism used.
- Anaerobic media suitable for the fermentation of ethanol using CO as the sole carbon source are known in the art.
- suitable media are described in US patent No's 5,173,429 and 5,593,886 and WO 02/08438, WO2007/117157, WO2008/115080, WO2009/022925, WO2009/058028, WO2009/064200, WO2009/064201 and WO2009/113878, referred to above.
- the fermentation should desirably be carried out under appropriate conditions for the desired fermentation to occur (for example microbial growth and/or ethanol production).
- Reaction conditions that should be considered include pressure, temperature, gas flow rate, liquid flow rate, media pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum gas substrate concentrations to ensure that CO in the liquid phase does not become limiting, and maximum product concentrations to avoid product inhibition. Suitable conditions are described in WO02/08438, WO07/117157, WO08/115080 and WO2009/022925.
- the invention may comprise a system or method with additional control means and processing means such that parameters including media supply rates, liquid retention times and substrate supply rates can be controlled in accordance with the instant disclosure and methods known in the art, such as methods described in WO2010/093262, which are fully incorporated herein by reference.
- the optimum reaction conditions will depend partly on the particular microorganism used. However, in general, it is preferred that the fermentation be performed at pressure higher than ambient pressure. Operating at increased pressures allows a significant increase in the rate of CO transfer from the gas phase to the liquid phase where it can be taken up by the micro-organism as a carbon source for the production of ethanol. This in turn means that the retention time (defined as the liquid volume in the bioreactor divided by the input gas flow rate) can be reduced when bioreactors are maintained at elevated pressure rather than atmospheric pressure.
- reactor volume can be reduced in linear proportion to increases in reactor operating pressure, i.e. bioreactors operated at 10 atmospheres of pressure need only be one tenth the volume of those operated at 1 atmosphere of pressure.
- WO 02/08438 describes gas-to-ethanol fermentations performed under pressures of 30 psig and 75 psig, giving ethanol productivities of 150 g/l/day and 369 g/l/day respectively.
- example fermentations performed using similar media and input gas compositions at atmospheric pressure were found to produce between 10 and 20 times less ethanol per litre per day.
- the rate of introduction of the CO-containing gaseous substrate is such that the concentration of CO in the liquid phase does not become limiting. This is because a consequence of CO-limited conditions may be that acetic acid production increases and ethanol production decreases.
- Nicotinic acid (Niacin or 50
- Pantothenic acid (Vitamin 50
- EXAMPLE 1 Fermentation for the recovery of fermentation products
- Media was prepared according to the composition described in Tables 1 -3 to a volume of 1.5 L and 1.5 ml of resazurin added. The solution was heated and agitated whilst degassed with N 2 . ANa 2 S drip was started at a rate of 0.1 ml/hr and temperature of the bioreactor set to 37 °C. The pH was adjusted to 5.0 with NH 4 OH and chromium was added to adjust the ORP to -200 mV. The bioreactor was then supplied with RMG (43 % CO, 20 % C02, 2.5 % H2 and 33 % N2) at a flow rate of 50 ml/min.
- RMG 43 % CO, 20 % C02, 2.5 % H2 and 33 % N2
- the solution was inoculated with 150ml of an actively growing Clostridium autoethanogenum culture. Once the reactor turned continuous, cell recycle was also initiated to give a bacterial dilution rate of 1.38 day “1 and a media flow rate of 2.3 day “1 . During operation agitation (rpm) and gas flow (ml/min) were increased to maximise product concentrations. The fermentation was operated for a period of 8 days. Table 4 shows the metabolite concentrations in the liquid outflow of the bioreactor.
- a 0.1 ⁇ ceramic membrane cross flow filter (GE Healthcare Life Sciences Xampler Microfiltration Cartridge type) was used to remove the solid biomass / bacteria from the solution. After filtration, soluble biomass remains in the solution and must be minimised in order for the SMB to function correctly.
- a 19ml guard column containing activated carbon was tested for its capability to remove the remaining biomass and soluble proteins from the feed prior to testing in the SMB unit.
- the protein concentration of the solution was measured before the column and after the column using BCA analysis and the size distribution of the proteins before and after the guard column were assessed using SDS-PAGE analysis. Prior to passing through the guard column the protein concentration was approximately 100( ⁇ g/ml and protein sizes were found to be 200kDa, 70kDa, 40kDa, 30kDa, and less than 2kDa.
- the guard column was observed to remove 80% of the soluble proteins from the solution and the remaining proteins were found to be less than 2kDa in size.
- the guard bed was estimated to have adsorbed 4g of proteins and other soluble biomass, such as DNA and enzymes.
- Five column volumes of methanol were used to desorb the proteins from the adsorbent bed and around 3.7g of proteins were removed from the bed.
- a water backwash was used to desorb the DNA from the bed until DNA was no longer observed in the eluate.
- the flow rate of the feed solution was l lml/min and the flow rate of the desorbent was l lml/min.
- the step time was 12 minutes and the system was operated at a temperature of 75°C.
- the flow rate of the extract stream was optimised to give the best quality extract, i.e. minimal water content.
- 41.7% of the acetic acid / acetate exited through the extract as acetic acid and 0.3% of the water from the feed was part of the extract.
- Three raffmate streams (Primary Raffmate, Secondary Raffmate I and Secondary Raffmate II) were produced in order to achieve streams suitable for recycle with minimal treatment.
- the flow rates of these raffmate streams were optimised to produce streams containing minimal metabolites; the optimised flow rates of the primary raffmate, secondary raffmate I and secondary raffmate II streams were 5.8ml/min, 7.5ml/min and 3.3ml/min respectively.
- the primary raffmate stream contained 4.3% of the feed ethanol, 5.3%) of the feed 2,3-butanediol and 57.9% of the feed water. 33.3% of the feed acetic acid / acetate was found in the primary raffmate stream in its acetate form.
- Secondary raffmate I contained 40.7% of the feed water and the remaining 25% of the acetic acid / acetate from the feed in its acetate form.
- Secondary raffinate II contained 0.1% of the feed water. 41.7% of the desorbent methanol was found in the extract stream, 30.7% in Secondary raffinate I and 28.5% in Secondary raffinate II. pH control
- acetic acid/acetate can exit the SMB either through the extract or the raffinate streams depending on its form it is possible to influence its direction through pH adjustment of the solution prior to feeding the solution into the SMB.
- a pH of about 5 there will be slightly more acetate present than acetic acid (the pKa for acetic acid is 4.74).
- neutralisation of the solution is required; an increase in the solution's pH to pH7 or pH8 will significantly reduce the amount of acetic acid in the solution.
- Neutralisation was achieved through addition of sodium hydroxide to produce sodium acetate.
- acidification to a pH close to pH2 is required and may be achieved through the addition of an acid.
- implementation of embodiments of the invention may include one or more additional elements. Only those elements necessary to understand the invention in its various aspects may have been shown in a particular example or in the description. However, the scope of the invention is not limited to the embodiments described and includes systems and/or methods including one or more additional steps and/or one or more substituted steps and/or systems and/or methods omitting one or more steps.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2873791A CA2873791C (en) | 2012-05-23 | 2013-05-23 | A fermentation and simulated moving bed process |
EA201492057A EA029944B1 (en) | 2012-05-23 | 2013-05-23 | Fermentation and simulated moving bed process |
AU2013266194A AU2013266194B2 (en) | 2012-05-23 | 2013-05-23 | A fermentation and simulated moving bed process |
CN201380037817.XA CN104540954A (en) | 2012-05-23 | 2013-05-23 | A fermentation and simulated moving bed process |
JP2015514208A JP6411334B2 (en) | 2012-05-23 | 2013-05-23 | Fermentation and simulated moving bed processes |
KR1020147035995A KR102098843B1 (en) | 2012-05-23 | 2013-05-23 | A fermentation and simulated moving bed process |
EP13793361.0A EP2852676B1 (en) | 2012-05-23 | 2013-05-23 | A fermentation and simulated moving bed process |
IN9575DEN2014 IN2014DN09575A (en) | 2012-05-23 | 2013-05-23 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261650655P | 2012-05-23 | 2012-05-23 | |
US61/650,655 | 2012-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013177466A1 true WO2013177466A1 (en) | 2013-11-28 |
Family
ID=49621895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/042528 WO2013177466A1 (en) | 2012-05-23 | 2013-05-23 | A fermentation and simulated moving bed process |
Country Status (10)
Country | Link |
---|---|
US (2) | US8980596B2 (en) |
EP (1) | EP2852676B1 (en) |
JP (1) | JP6411334B2 (en) |
KR (1) | KR102098843B1 (en) |
CN (2) | CN110452934A (en) |
AU (1) | AU2013266194B2 (en) |
CA (1) | CA2873791C (en) |
EA (1) | EA029944B1 (en) |
IN (1) | IN2014DN09575A (en) |
WO (1) | WO2013177466A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017502666A (en) * | 2013-12-30 | 2017-01-26 | ジーイー・ヘルスケア・バイオサイエンス・コーポレイション | Equipment for cell culture |
WO2023064695A1 (en) * | 2021-10-13 | 2023-04-20 | Lanzatech, Inc. | Flexible product separation and recovery |
US11807592B2 (en) | 2019-02-08 | 2023-11-07 | Lanzatech, Inc. | Process for recovering close boiling products |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9950282B2 (en) | 2012-03-15 | 2018-04-24 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
CN110452934A (en) * | 2012-05-23 | 2019-11-15 | 朗泽科技新西兰有限公司 | Fermentation and Simulated Moving-Bed Parex Process |
US10053711B2 (en) * | 2013-08-02 | 2018-08-21 | The Board Of Regents For Oklahoma State University | Method improving producer gas fermentation |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
US10856560B2 (en) * | 2015-05-21 | 2020-12-08 | Lanzatech New Zealand Limited | Gas fermentation for the production of protein or feed |
JP6861202B2 (en) * | 2015-08-07 | 2021-04-21 | ローディア オペレーションズ | Improved production of vanillin by fermentation |
KR102065155B1 (en) | 2016-12-08 | 2020-02-11 | 주식회사 삼양사 | Production of psciose |
JP7070416B2 (en) * | 2017-06-30 | 2022-05-18 | 東レ株式会社 | Manufacturing method and equipment for chemical products by continuous fermentation |
CN111328342B (en) * | 2017-07-31 | 2024-04-12 | 赛纳塔生物有限公司 | System and method for concentrating suspended solids prior to removal |
WO2019118921A1 (en) | 2017-12-14 | 2019-06-20 | Flodesign Sonics, Inc. | Acoustic transducer drive and controller |
WO2020158748A1 (en) * | 2019-01-28 | 2020-08-06 | 積水化学工業株式会社 | Ethanol |
JP7149864B2 (en) * | 2019-01-28 | 2022-10-07 | 積水化学工業株式会社 | Method for reusing zeolite adsorbent and regenerated adsorbent |
US20210115389A1 (en) * | 2019-10-22 | 2021-04-22 | Lanzatech, Inc. | Separation of acetate from fermentation broth |
AU2021234241B2 (en) * | 2020-03-11 | 2023-02-02 | Lanzatech, Inc. | Process for purification of products |
US11731926B2 (en) | 2020-03-11 | 2023-08-22 | Lanzatech, Inc. | Process for purification of products |
CN117500777A (en) * | 2021-06-16 | 2024-02-02 | Gs加德士公司 | Method for obtaining target compound from fermentation liquor |
CN118459010B (en) * | 2024-05-30 | 2024-10-01 | 湖南化工设计院有限公司 | Production method of waste water anaerobic fermentation byproducts from white spirit brewing |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268605A (en) | 1961-11-06 | 1966-08-23 | Universal Oil Prod Co | Supervisory control system for a simulated moving bed separation process |
US3706812A (en) | 1970-12-07 | 1972-12-19 | Universal Oil Prod Co | Fluid-solid contacting apparatus |
EP0117309A1 (en) | 1983-01-31 | 1984-09-05 | International Business Machines Corporation | Frequency multiplexed optical spatial filter |
US5173429A (en) | 1990-11-09 | 1992-12-22 | The Board Of Trustees Of The University Of Arkansas | Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism |
US5593886A (en) | 1992-10-30 | 1997-01-14 | Gaddy; James L. | Clostridium stain which produces acetic acid from waste gases |
US5705061A (en) | 1995-01-31 | 1998-01-06 | Uop | Simulated moving bed adsorptive separation apparatus |
WO1998000558A1 (en) | 1994-11-30 | 1998-01-08 | Bioengineering Resources, Inc. | Biological production of acetic acid from waste gases |
US5821111A (en) | 1994-03-31 | 1998-10-13 | Bioengineering Resources, Inc. | Bioconversion of waste biomass to useful products |
US6004518A (en) | 1997-12-12 | 1999-12-21 | Uop Llc | High-purity simulated moving bed adsorptive separation apparatus |
US6136577A (en) | 1992-10-30 | 2000-10-24 | Bioengineering Resources, Inc. | Biological production of ethanol from waste gases with Clostridium ljungdahlii |
WO2000068407A1 (en) | 1999-05-07 | 2000-11-16 | Bioengineering Resources, Inc. | Clostridium strains which produce ethanol from substrate-containing gases |
US6340581B1 (en) | 1992-10-30 | 2002-01-22 | Bioengineering Resources, Inc. | Biological production of products from waste gases |
WO2002008438A2 (en) | 2000-07-25 | 2002-01-31 | Bioengineering Resources, Inc. | Methods for increasing the production of ethanol from microbial fermentation |
US6368819B1 (en) | 1998-09-08 | 2002-04-09 | Bioengineering Resources, Inc. | Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth |
US6476239B1 (en) * | 2002-02-12 | 2002-11-05 | Eastman Chemical Company | Process for the preparation of ascorbic acid |
US20050222482A1 (en) * | 2004-04-06 | 2005-10-06 | Samsung Total Petrochemicals Co., Ltd. | Simulated moving bed adsorptive separation process for preventing increase in pressure drop and system thereof |
US6979402B1 (en) | 2003-12-19 | 2005-12-27 | Uop Llc | Miniature actual moving bed assembly |
US20060251762A1 (en) * | 2005-05-03 | 2006-11-09 | Robert Jansen | Grain wet milling process for producing ethanol |
US7229558B2 (en) * | 2001-05-09 | 2007-06-12 | Danisco Sweeteners Oy | Chromatographic separation method |
WO2007117157A1 (en) | 2006-04-07 | 2007-10-18 | Lanzatech New Zealand Limited | Microbial fermentation of gaseous substrates to produce alcohols |
WO2008028055A2 (en) | 2006-08-31 | 2008-03-06 | The Board Of Regents For Oklahoma State University | Isolation and characterization of novel clostridial species |
WO2008115080A1 (en) | 2007-03-19 | 2008-09-25 | Lanzatech New Zealand Limited | Alcohol production process |
WO2009022925A1 (en) | 2007-08-15 | 2009-02-19 | Lanzatech New Zealand Limited | Processes of producing alcohols |
WO2009058028A1 (en) | 2007-10-28 | 2009-05-07 | Lanzatech New Zealand Limited | Improved carbon capture in fermentation |
WO2009064200A2 (en) | 2007-11-13 | 2009-05-22 | Lanzatech New Zealand Limited | Novel bacteria and methods of use thereof |
WO2009064201A2 (en) | 2007-11-13 | 2009-05-22 | Lanzatech New Zealand Limited | Use of carriers in microbial fermentation |
WO2009113878A1 (en) | 2008-03-12 | 2009-09-17 | Lanzatech New Zealand Limited | Microbial alcohol production process |
WO2010093262A1 (en) | 2009-01-29 | 2010-08-19 | Lanzatech New Zealand Limited | Alcohol production process |
US20110160483A1 (en) * | 2009-12-29 | 2011-06-30 | Areski Rezkallah | Process for the separation of organic acids and amino acids from fermentation broths |
US20110229947A1 (en) | 2010-03-19 | 2011-09-22 | Coskata, Inc. | Novel Ethanologenic Clostridium species, Clostridium coskatii |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319058A (en) * | 1980-10-10 | 1982-03-09 | Uop Inc. | Process for the separation of ethanol from water |
US4333740A (en) | 1980-12-23 | 1982-06-08 | Uop Inc. | Process for the separation of water from ethanol |
JPH09173792A (en) * | 1995-10-23 | 1997-07-08 | Ajinomoto Co Inc | Treatment of fermented liquid |
EP0770676A3 (en) * | 1995-10-23 | 1999-05-19 | Ajinomoto Co., Ltd. | Method for treating fermentation broth |
WO2001073097A2 (en) * | 2000-03-29 | 2001-10-04 | Archer-Daniels-Midland Company | Method of recovering 1,3-propanediol from fermentation broth |
WO2002051826A1 (en) * | 2000-12-22 | 2002-07-04 | Eastman Chemical Company | Continuous process for producing l-ascorbic acid |
US6872314B2 (en) * | 2003-08-29 | 2005-03-29 | Eastman Chemical Company | Dewatering process |
GB2416776A (en) * | 2004-07-28 | 2006-02-08 | British Sugar Plc | Enhancement of the fermentability of carbohydrate substrates by chromatographic purification |
ITMI20042098A1 (en) * | 2004-11-03 | 2005-02-03 | Antibioticos Spa | PROCESS FOR TACROLIMUS PURIFICATION |
WO2009151342A1 (en) | 2008-06-09 | 2009-12-17 | Lanzatech New Zealand Limited | Production of butanediol by anaerobic microbial fermentation |
WO2012024522A2 (en) | 2010-08-19 | 2012-02-23 | Lanzatech New Zealand Limited | A process for producing chemicals using microbial fermentation of substrates comprising carbon monoxide |
TWI537389B (en) | 2011-03-31 | 2016-06-11 | 藍瑟科技紐西蘭有限公司 | A fermentation process for controlling butanediol production |
CN110452934A (en) * | 2012-05-23 | 2019-11-15 | 朗泽科技新西兰有限公司 | Fermentation and Simulated Moving-Bed Parex Process |
US8658845B2 (en) * | 2012-05-23 | 2014-02-25 | Orochem Technologies, Inc. | Process and adsorbent for separating ethanol and associated oxygenates from a biofermentation system |
-
2013
- 2013-05-23 CN CN201910762658.9A patent/CN110452934A/en active Pending
- 2013-05-23 WO PCT/US2013/042528 patent/WO2013177466A1/en active Application Filing
- 2013-05-23 CA CA2873791A patent/CA2873791C/en active Active
- 2013-05-23 CN CN201380037817.XA patent/CN104540954A/en active Pending
- 2013-05-23 EP EP13793361.0A patent/EP2852676B1/en active Active
- 2013-05-23 JP JP2015514208A patent/JP6411334B2/en active Active
- 2013-05-23 US US13/901,455 patent/US8980596B2/en active Active
- 2013-05-23 AU AU2013266194A patent/AU2013266194B2/en active Active
- 2013-05-23 IN IN9575DEN2014 patent/IN2014DN09575A/en unknown
- 2013-05-23 KR KR1020147035995A patent/KR102098843B1/en active IP Right Grant
- 2013-05-23 EA EA201492057A patent/EA029944B1/en not_active IP Right Cessation
-
2015
- 2015-02-24 US US14/630,617 patent/US20150167025A1/en not_active Abandoned
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268605A (en) | 1961-11-06 | 1966-08-23 | Universal Oil Prod Co | Supervisory control system for a simulated moving bed separation process |
US3706812A (en) | 1970-12-07 | 1972-12-19 | Universal Oil Prod Co | Fluid-solid contacting apparatus |
EP0117309A1 (en) | 1983-01-31 | 1984-09-05 | International Business Machines Corporation | Frequency multiplexed optical spatial filter |
US5173429A (en) | 1990-11-09 | 1992-12-22 | The Board Of Trustees Of The University Of Arkansas | Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism |
US6340581B1 (en) | 1992-10-30 | 2002-01-22 | Bioengineering Resources, Inc. | Biological production of products from waste gases |
US5807722A (en) | 1992-10-30 | 1998-09-15 | Bioengineering Resources, Inc. | Biological production of acetic acid from waste gases with Clostridium ljungdahlii |
US6136577A (en) | 1992-10-30 | 2000-10-24 | Bioengineering Resources, Inc. | Biological production of ethanol from waste gases with Clostridium ljungdahlii |
US5593886A (en) | 1992-10-30 | 1997-01-14 | Gaddy; James L. | Clostridium stain which produces acetic acid from waste gases |
US5821111A (en) | 1994-03-31 | 1998-10-13 | Bioengineering Resources, Inc. | Bioconversion of waste biomass to useful products |
WO1998000558A1 (en) | 1994-11-30 | 1998-01-08 | Bioengineering Resources, Inc. | Biological production of acetic acid from waste gases |
US5705061A (en) | 1995-01-31 | 1998-01-06 | Uop | Simulated moving bed adsorptive separation apparatus |
US6004518A (en) | 1997-12-12 | 1999-12-21 | Uop Llc | High-purity simulated moving bed adsorptive separation apparatus |
US6368819B1 (en) | 1998-09-08 | 2002-04-09 | Bioengineering Resources, Inc. | Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth |
WO2000068407A1 (en) | 1999-05-07 | 2000-11-16 | Bioengineering Resources, Inc. | Clostridium strains which produce ethanol from substrate-containing gases |
WO2002008438A2 (en) | 2000-07-25 | 2002-01-31 | Bioengineering Resources, Inc. | Methods for increasing the production of ethanol from microbial fermentation |
US7229558B2 (en) * | 2001-05-09 | 2007-06-12 | Danisco Sweeteners Oy | Chromatographic separation method |
US6476239B1 (en) * | 2002-02-12 | 2002-11-05 | Eastman Chemical Company | Process for the preparation of ascorbic acid |
US6979402B1 (en) | 2003-12-19 | 2005-12-27 | Uop Llc | Miniature actual moving bed assembly |
US20050222482A1 (en) * | 2004-04-06 | 2005-10-06 | Samsung Total Petrochemicals Co., Ltd. | Simulated moving bed adsorptive separation process for preventing increase in pressure drop and system thereof |
US20060251762A1 (en) * | 2005-05-03 | 2006-11-09 | Robert Jansen | Grain wet milling process for producing ethanol |
WO2007117157A1 (en) | 2006-04-07 | 2007-10-18 | Lanzatech New Zealand Limited | Microbial fermentation of gaseous substrates to produce alcohols |
WO2008028055A2 (en) | 2006-08-31 | 2008-03-06 | The Board Of Regents For Oklahoma State University | Isolation and characterization of novel clostridial species |
WO2008115080A1 (en) | 2007-03-19 | 2008-09-25 | Lanzatech New Zealand Limited | Alcohol production process |
WO2009022925A1 (en) | 2007-08-15 | 2009-02-19 | Lanzatech New Zealand Limited | Processes of producing alcohols |
WO2009058028A1 (en) | 2007-10-28 | 2009-05-07 | Lanzatech New Zealand Limited | Improved carbon capture in fermentation |
WO2009064200A2 (en) | 2007-11-13 | 2009-05-22 | Lanzatech New Zealand Limited | Novel bacteria and methods of use thereof |
WO2009064201A2 (en) | 2007-11-13 | 2009-05-22 | Lanzatech New Zealand Limited | Use of carriers in microbial fermentation |
WO2009113878A1 (en) | 2008-03-12 | 2009-09-17 | Lanzatech New Zealand Limited | Microbial alcohol production process |
US20110059499A1 (en) | 2008-03-12 | 2011-03-10 | Lanza Tech New Zealand Limited | Microbial alcohol production process |
WO2010093262A1 (en) | 2009-01-29 | 2010-08-19 | Lanzatech New Zealand Limited | Alcohol production process |
US20110160483A1 (en) * | 2009-12-29 | 2011-06-30 | Areski Rezkallah | Process for the separation of organic acids and amino acids from fermentation broths |
US20110229947A1 (en) | 2010-03-19 | 2011-09-22 | Coskata, Inc. | Novel Ethanologenic Clostridium species, Clostridium coskatii |
Non-Patent Citations (20)
Title |
---|
A.D. MCNAUGHTA, WILKINSON: "IUPAC. Compendium of Chemical Terminology", 1997, SCIENTIFIC PUBLICATIONS |
ABRINI ET AL., ARCHIVES OF MICROBIOLOGY, vol. 161, 1994, pages 345 - 351 |
ABRINI ET AL., ARCHIVES OF MICROBIOLOGY, vol. 161, pages 345 - 351 |
ABRINI JNAVEAU HNYNS E-J: "Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide", ARCH MICROBIOL, vol. 4, 1994, pages 345 - 351, XP008024869 |
HENSIRISAK: "Scale-up of microbubble dispersion generator for aerobic fermentation", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 101, no. 3, October 2002 (2002-10-01) |
J. L. VEGA ET AL.: "Design of Bioreactors for Coal Synthesis Gas Fermentations", RESOURCES, CONSERVATION AND RECYCLING, vol. 3, 1990, pages 149 - 160, XP001160930, DOI: 10.1016/0921-3449(90)90052-6 |
J. L. VEGA ET AL.: "Study of Gaseous Substrate Fermentation: Carbon Monoxide Conversion to Acetate. 2. Continuous Culture", BIOTECH. BIOENG, vol. 34, no. 6, 1989, pages 785 - 793 |
J. L. VEGA ET AL.: "Study of gaseous substrate fermentations: Carbon monoxide conversion to acetate. 1. Batch culture", BIOTECHNOLOGY AND BIOENGINEERING, vol. 34, no. 6, 1989, pages 774 - 784 |
K. T. KLASSON ET AL.: "Bioconversion of synthesis gas into liquid or gaseous fuels", ENZYME AND MICROBIAL TECHNOLOGY, vol. 14, 1992, pages 602 - 608, XP023679463, DOI: 10.1016/0141-0229(92)90033-K |
K. T. KLASSON ET AL.: "Bioreactor design for synthesis gas fermentations", FUEL, vol. 70, 1991, pages 605 - 614, XP025454620, DOI: 10.1016/0016-2361(91)90174-9 |
K. T. KLASSON ET AL.: "Bioreactors for synthesis gas fermentations resources", CONSERVATION AND RECYCLING, vol. 5, 1991, pages 145 - 165 |
LIOU ET AL., INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 33, pages 2085 - 2091 |
QIN ET AL., CHINESE J CHEM ENG, vol. 14, no. 1, 2006, pages 132 - 136 |
SAKAI ET AL., BIOTECHNOLOGY LETTERS, vol. 29, pages 1607 - 1612 |
SIMPA, CRITICAL REVIEWS IN BIOTECHNOLOGY, vol. 26, 2006, pages 41 - 65 |
SVETLICHNY, V.A.SOKOLOVA, T.G. ET AL., SYSTEMATIC AND APPLIED MICROBIOLOGY, vol. 14, 1991, pages 254 - 260 |
SYU MJ, APPL MICROBIOL BIOTECHNOL, vol. 55, 2001, pages 10 - 18 |
TANNER RSMILLER LMYANG D: "Clostridium Ijungdahlii sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I", INT J SYST BACTERIOL, vol. 43, 1993, pages 232 - 236 |
TANNER RSMILLER LMYANG D: "Clostridium ljungdahlžž sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I", INT J SYST BACTERIOL, vol. 43, 1993, pages 232 - 236 |
TIRADO-ACEVEDO O: "PhD thesis", 2010, NORTH CAROLINA STATE UNIVERSITY, article "Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii" |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017502666A (en) * | 2013-12-30 | 2017-01-26 | ジーイー・ヘルスケア・バイオサイエンス・コーポレイション | Equipment for cell culture |
US11807592B2 (en) | 2019-02-08 | 2023-11-07 | Lanzatech, Inc. | Process for recovering close boiling products |
WO2023064695A1 (en) * | 2021-10-13 | 2023-04-20 | Lanzatech, Inc. | Flexible product separation and recovery |
Also Published As
Publication number | Publication date |
---|---|
JP6411334B2 (en) | 2018-10-24 |
CA2873791C (en) | 2016-12-13 |
EP2852676A1 (en) | 2015-04-01 |
EP2852676A4 (en) | 2016-01-06 |
IN2014DN09575A (en) | 2015-07-17 |
AU2013266194A1 (en) | 2014-02-13 |
US20130316412A1 (en) | 2013-11-28 |
KR20150021065A (en) | 2015-02-27 |
US20150167025A1 (en) | 2015-06-18 |
CN110452934A (en) | 2019-11-15 |
EA029944B1 (en) | 2018-06-29 |
EA201492057A1 (en) | 2015-04-30 |
CN104540954A (en) | 2015-04-22 |
AU2013266194B2 (en) | 2015-03-19 |
CA2873791A1 (en) | 2013-11-28 |
EP2852676B1 (en) | 2020-04-22 |
KR102098843B1 (en) | 2020-04-09 |
US8980596B2 (en) | 2015-03-17 |
JP2015517323A (en) | 2015-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2852676B1 (en) | A fermentation and simulated moving bed process | |
US20230059296A1 (en) | Carbon capture in fermentation | |
JP6347788B2 (en) | Fermentation process | |
EP2361312B1 (en) | Optimised fermentation media | |
WO2012131627A1 (en) | A fermentation process for controlling butanediol production | |
EP3146058B1 (en) | Fermentation process for the production and control of pyruvate-derived products | |
CA2781876C (en) | Alcohol production process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13793361 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013266194 Country of ref document: AU Date of ref document: 20130523 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2873791 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2015514208 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013793361 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201492057 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 20147035995 Country of ref document: KR Kind code of ref document: A |