WO2013174759A1 - Catalyst components for the polymerization of olefins - Google Patents
Catalyst components for the polymerization of olefins Download PDFInfo
- Publication number
- WO2013174759A1 WO2013174759A1 PCT/EP2013/060289 EP2013060289W WO2013174759A1 WO 2013174759 A1 WO2013174759 A1 WO 2013174759A1 EP 2013060289 W EP2013060289 W EP 2013060289W WO 2013174759 A1 WO2013174759 A1 WO 2013174759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethoxy
- groups
- methyl
- tert
- catalyst component
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
Definitions
- the present invention relates to catalyst components for the polymerization of olefins, in particular propylene, comprising a Mg dihalide based support on which are supported Ti atoms and at least an electron donor selected from a specific class of compounds.
- the present invention further relates to the catalysts obtained from said components and to their use in processes for the polymerization of olefins in particular propylene.
- Catalyst components of the Ziegler-Natta type for the stereospecific polymerization of olefins are widely known in the art.
- the latest developed catalysts for propylene polymerization comprise a solid catalyst component, constituted by a magnesium dihalide on which are supported a titanium compound and an internal electron donor compound, used in combination with an Al-alkyl compound and often with an external donor which is needed in order to obtain higher isotacticity.
- One of the preferred classes of internal donors is constituted by the esters of phthalic acid, diisobutylphthalate being the most used.
- the phthalates are used as internal donors in combination with alkylalkoxysilanes as external donor.
- This catalyst system is capable of giving good performances in terms of activity, and propylene polymers with high isotacticity and xylene insolubility endowed with an intermediate molecular weight distribution.
- esters belonging to the formula R'-CO-O-A-CO-ORi in which R' and Ri which may be identical or different, can be substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms and A is a single bond or bivalent linking group with chain length between two free radicals being 1-10 atoms, wherein said bivalent linking group is selected from the group consisting of aliphatic, alicyclic and aromatic bivalent radicals, and can carry C 1 -C 20 linear or branched substituents; one or more of carbon atoms and/or hydrogen atoms on above-mentioned bivalent linking group and substituents can be replaced by a hetero-atom selected from the group consisting of nitrogen, oxygen, sulfur, silicon, phosphorus, and halogen atom, and two or more said substituents on the linking group can be linked to form saturated or unsaturated monocyclic or polycyclic ring.
- Preferred structures are said to be those in which the bivalent linking group A is a Ci-C 6 saturated hydrocarbyl group optionally substituted with C1-C4 alkyls.
- the only tested structures are ⁇ -benzoyloxy esters in which the bivalent linking group A is made of 2 carbon atoms.
- the level of performances reported in the patent reference is scattered however, it can be understood that, as an average, the level of stereospecificity/activity balance is to be improved particularly in terms of activity level.
- an object of the present invention is a catalyst component for the polymerization of olefins comprising Mg, Ti and an electron donor compound of the following formula (I)
- R 2 -Rs groups are selected from hydrogen, halogen and C1-C15 hydrocarbon groups which can be linked together to form one or more saturated or unsaturated cycles and can optionally contain an heteroatom selected from halogen, O, P, S, N, and Si and R 9 groups are selected from Ci-Cu hydrocarbon groups optionally containing an heteroatom selected from halogen, O, P, S, N, and Si.
- preferred R 9 groups are selected from Ci-Cio hydrocarbon groups, more preferably from Ci-Cio alkyl groups and especially from C1-C4 linear alkyl groups. Ethyl is a an especially preferred R9 group.
- R 2 is different from hydrogen and preferably selected from C1-C15 hydrocarbon groups or halogen.
- R2 groups is different from hydrogen.
- hydrocarbon groups preferred substituents are C1-C10 alkyl groups, C 6 -Ci 4 aryl groups, C3-C15 cycloalkyl groups, and C7-C15 arylalkyl or alkylaryl groups. More preferably, they can be C1-C10 alkyl groups and even more preferably linear C1-C5 alkyl groups.
- the hydrocarbon substituents are preferably located in 4-position.
- Halogens are also preferred substituents as R 2 groups, and among them, CI, Br and F are the preferred halogens. CI being the most preferred. Preferred positions are meta and/or para with respect to the carbon atom of the phenyl ring linked to the carboxylic group of formula (I). Also other positions in addition to meta and/or para could be substituted with halogens and/or hydrocarbon groups.
- At least one of the R 3 -R6 groups is different from hydrogen. More preferably, at least one of said R 3 -R6 groups is selected from C1-C5 alkyl groups, such as methyl, ethyl, isopropyl, isobutyl and tert-butyl, tert-amyl and 2-methyl-2- pentenyl. In a particularly preferred embodiment at least two of R 3 -R6 groups are selected from C1-C5 alkyl groups, such as methyl, ethyl, isopropyl, isobutyl and tert-butyl.
- R 3 and R 5 groups are different from hydrogen and selected from C1-C5 alkyl groups. Still more preferably, R 3 is a linear C1-C5 alkyl group, such as methyl, and R 5 is a branched alkyl group such as tert-butyl.
- R 7 and R 8 are preferably and independently selected from hydrogen, and C1-C15 hydrocarbon groups. Preferably they are selected from hydrogen and C1-C10 hydrocarbon groups and more preferably from hydrogen and Ci-C 8 linear or branched alkyl groups. Among them particularly preferred are methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl, sec-butyl, t-butyl.
- R7 and Rg are different form hydrogen.
- structures according formulae I are the following:
- the catalyst components of the invention comprise, in addition to the above electron donors, Ti, Mg and halogen.
- the catalyst components comprise a titanium compound, having at least a Ti-halogen bond and the above mentioned electron donor compounds supported on a Mg halide.
- the magnesium halide is preferably MgCh. in active form which is widely known from the patent literature as a support for Ziegler-Natta catalysts.
- Patents USP 4,298,718 and USP 4,495,338 were the first to describe the use of these compounds in Ziegler-Natta catalysis.
- magnesium dihalides in active form used as support or co-support in components of catalysts for the polymerization of olefins are characterized by X-ray spectra in which the most intense diffraction line that appears in the spectrum of the non-active halide is diminished in intensity and is replaced by a halo whose maximum intensity is displaced towards lower angles relative to that of the more intense line.
- the preferred titanium compounds used in the catalyst component of the present invention are TiCk and TiCk; furthermore, also Ti-haloalcoholates of formula Ti(OR) q - y X y can be used, where q is the valence of titanium, y is a number between 1 and q-1, X is halogen and R is a hydrocarbon radical having from 1 to 10 carbon atoms.
- the preparation of the solid catalyst component can be carried out according to several methods.
- the magnesium dichloride in an anhydrous state, the titanium compound and the electron donor compounds are milled together under conditions in which activation of the magnesium dichloride occurs.
- the so obtained product can be treated one or more times with an excess of TiCl 4 at a temperature between 80 and 135°C. This treatment is followed by washings with hydrocarbon solvents until chloride ions disappeared.
- the product obtained by co-milling the magnesium chloride in an anhydrous state, the titanium compound and the electron donor compounds are treated with halogenated hydrocarbons such as 1 ,2-dichloroethane, chlorobenzene, dichloromethane etc.
- the treatment is carried out for a time between 1 and 4 hours and at temperature of from 40°C to the boiling point of the halogenated hydrocarbon.
- Another method comprises the reaction between magnesium alcoholates or chloroalcoholates (in particular chloroalcoholates prepared according to USP 4,220,554) and an excess of TiCLt in the presence of the electron donor compounds at a temperature of about 80 to 120°C.
- the solid catalyst component can be prepared by reacting a titanium compound of formula Ti(OR) q - y X y , where q is the valence of titanium and y is a number between 1 and q, preferably TiCU, with a magnesium chloride deriving from an adduct of formula MgCU'pROH, where p is a number between 0.1 and 6, preferably from 2 to 3.5, and R is a hydrocarbon radical having 1-18 carbon atoms.
- the adduct can be suitably prepared in spherical form by mixing alcohol and magnesium chloride in the presence of an inert hydrocarbon immiscible with the adduct, operating under stirring conditions at the melting temperature of the adduct (100-130°C). Then, the emulsion is quickly quenched, thereby causing the solidification of the adduct in form of spherical particles. Examples of spherical adducts prepared according to this procedure are described in USP 4,399,054 and USP 4,469,648.
- the so obtained adduct can be directly reacted with Ti compound or it can be previously subjected to controlled thermal dealcoholation (80-130°C) so as to obtain an adduct in which the number of moles of alcohol is generally lower than 3, preferably between 0.1 and 2.5.
- the reaction with the Ti compound can be carried out by suspending the adduct (dealcoholated or as such) in cold TiCU (generally 0°C); the mixture is heated up to 80- 130°C and kept at this temperature for 0.5-2 hours.
- the treatment with TiCU can be carried out one or more times.
- the electron donor compounds can be added in the desired ratios during the treatment with TiCU-
- the preparation of catalyst components in spherical form are described for example in European Patent Applications EP-A-395083, EP-A-553805, EP-A-553806, EPA601525 and WO98/44001.
- the solid catalyst components obtained according to the above method show a surface area (by B.E.T. method) generally between 20 and 500 m 2 /g and preferably between 50 and 400 m 2 /g, and a total porosity (by B.E.T. method) higher than 0.2 cm 3 /g preferably between 0.2 and 0.6 cm 3 /g.
- the porosity (Hg method) due to pores with radius up to lO.OOOA generally ranges from 0.3 to 1.5 cffiVg, preferably from 0.45 to 1 cffiVg.
- the solid catalyst component has an average particle size ranging from 5 to 120 ⁇ and more preferably from 10 to 100 ⁇ .
- the desired electron donor compounds can be added as such or, in an alternative way, can be obtained in situ by using an appropriate precursor capable of being transformed in the desired electron donor compound by means, for example, of known chemical reactions such as etherification, alkylation, esterification, transesterification etc.
- the final amount of the electron donor compound of formula (I) is such that its molar ratio with respect to the TiCk is from 0.01 to 2, preferably from 0.05 to 1.5 and more preferably from 0.1 to 1.
- the solid catalyst components according to the present invention are converted into catalysts for the polymerization of olefins by reacting them with organo aluminum compounds according to known methods.
- the alkyl-Al compound (ii) is preferably chosen among the trialkyl aluminum compounds such as for example triethylaluminum, triisobutylaluminum, tri-n-butylaluminum, tri-n- hexylaluminum, tri-n-octylaluminum. It is also possible to use alkylaluminum halides, alkylaluminum hydrides or alkylaluminum sesquichlorides, such as AlEt 2 Cl and Al 2 Et 3 Cl 3 , possibly in mixture with the above cited trialkylaluminum compounds.
- Suitable external electron-donor compounds include silicon compounds, ethers, esters, amines, heterocyclic compounds and particularly 2,2,6,6-tetramethylpiperidine and ketones.
- Another class of preferred external donor compounds is that of silicon compounds of formula (R6) a (R 7 )bSi(ORs) c , where a and b are integers from 0 to 2, c is an integer from 1 to 4 and the sum (a+b+c) is 4; R6, R 7 , and Rg, are alkyl, cycloalkyl or aryl radicals with 1-18 carbon atoms optionally containing heteroatoms.
- Examples of such preferred silicon compounds are methylcyclohexyldimethoxysilane (C donor), diphenyldimethoxysilane, methyl-t- butyldimethoxysilane, dicyclopentyldimethoxysilane (D donor), (2-ethylpiperidinyl)t- butyldimethoxysilane, (2-ethylpiperidinyl)thexyldimethoxysilane, (3,3,3-trifluoro-n-propyl)(2- ethylpiperidinyl)dimethoxysilane, methyl(3,3,3-trifluoro-n-propyl)dimethoxysilane.
- C donor methylcyclohexyldimethoxysilane
- D donor dicyclopentyldimethoxysilane
- D donor dicyclopentyldimethoxysilane
- the silicon compounds in which a is 0, c is 3, R 7 is a branched alkyl or cycloalkyl group, optionally containing heteroatoms, and Rg is methyl are also preferred.
- Examples of such preferred silicon compounds are cyclohexyltrimethoxysilane, t-butyltrimethoxysilane and thexyltrimethoxysilane.
- the electron donor compound (iii) is used in such an amount to give a molar ratio between the organoaluminum compound and said electron donor compound (iii) of from 0.1 to 500, preferably from 1 to 300 and more preferably from 3 to 100.
- the polymerization process can be carried out according to known techniques for example slurry polymerization using as diluent an inert hydrocarbon solvent, or bulk polymerization using the liquid monomer (for example propylene) as a reaction medium. Moreover, it is possible to carry out the polymerization process in gas-phase operating in one or more fluidized or mechanically agitated bed reactors.
- the polymerization is generally carried out at temperature of from 20 to 120°C, preferably of from 40 to 80°C.
- the operating pressure is generally between 0.5 and 5 MPa, preferably between 1 and 4 MPa.
- the operating pressure is generally between 1 and 8 MPa, preferably between 1.5 and 5 MPa.
- the determination of Ti content in the solid catalyst component has been carried out via inductively coupled plasma emission spectroscopy on "I. CP Spectrometer ARL Accuris".
- the sample was prepared by analytically weighting, in a "fluxy” platinum crucible", 0.1 ⁇ 0.3 grams of catalyst and 3 grams of lithium metaborate/tetraborate 1/1 mixture.
- the crucible is placed on a weak Bunsen flame for the burning step and then after addition of some drops of KI solution inserted in a special apparatus "Claisse Fluxy" for the complete burning.
- the residue is collected with a 5% v/v HNO3 solution and then the titanium was analyzed via ICP at a wavelength of 368.52 nm.
- Determination of internal donor content The determination of the content of internal donor in the solid catalytic compound was done through gas chromatography. The solid component was dissolved in water. The solution was extracted with ethyl acetate, an internal standard was added, and a sample of the organic phase was analyzed in a gas chromatograph, to determine the amount of donor present at the starting catalyst compound.
- the melt flow rate MIL of the polymer was determined according to ISO 1133 (230°C, 2.16 Kg).
- microspheroidal MgCl 2 -2.8C 2 H 5 OH was prepared according to the method described in Example 2 of WO98/44009, but operating on larger scale.
- the support adduct had a P50 of about 25 micron, and an ethanol content of about 56%wt. This adduct is called adduct A.
- adduct B The above mentioned spherical adduct A was exposed to a thermal dealcoholation at temperatures between 40 and 130°C. After this treatment, the adduct contained 50%wt of ethanol. This adduct is called adduct B.
- the mixture was then heated at 120°C and kept at this temperature for 1 hour. Stirring was stopped again, the solid was allowed to settle and the supernatant liquid was siphoned off. The solid was washed with anhydrous hexane six times (6 x 100 ml) in temperature gradient down to 60°C and one time (100 ml) at room temperature. The obtained solid was then dried under vacuum and analyzed.
- D donor dicyclopentyldimethoxysilane
- the non- reacted propylene was removed; the polymer was recovered and dried at 70°C under vacuum for three hours. Then the polymer was weighed and fractionated with o -xylene to determine the amount of the xylene insoluble (X.I.) fraction.
- Example 3 The preparation of the solid catalytic component of Example 3 was repeated, with different conditions in the first titanation step.
- the donor was charged during the thermal ramp at 40°C, instead of 0°C as in Example 3.
- the first titanation was done at 120°C instead of 100°C of Example 3.
- the thus obtained solid catalyst component was analyzed for its composition, and was tested in polymerization of propylene, using the method described above.
- the titanium and internal donor content of the solid catalyst component, and its performance in polymerization are also shown in Table 1.
- the thus obtained solid catalyst component was analyzed for its composition, and was tested in polymerization of propylene, using the method described above.
- the titanium and internal donor content of the solid catalyst component, and its performance in polymerization are also shown in Table 1.
- Example 3 The solid catalyst component of Example 3 was used in the polymerization of propylene without external donor. The rest of the polymerization procedure was the same as in the procedure described above. The results of the polymerization are given in Table 1.
- Example 4 The solid catalyst component of Example 4 was used in the polymerization of propylene without external donor. The rest of the polymerization procedure was the same as in the procedure described above. The results of the polymerization are given in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13723169.2A EP2852623B1 (en) | 2012-05-23 | 2013-05-17 | Catalyst components for the polymerization of olefins |
US14/402,941 US9416203B2 (en) | 2012-05-23 | 2013-05-17 | Catalyst components for the polymerization of olefins |
BR112014028658A BR112014028658A2 (en) | 2012-05-23 | 2013-05-17 | catalyst components for olefin polymerization |
ES13723169.2T ES2649055T3 (en) | 2012-05-23 | 2013-05-17 | Catalyst components for olefin polymerization |
CN201380025607.9A CN104350073B (en) | 2012-05-23 | 2013-05-17 | Catalyst component for olefin polymerization |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261650827P | 2012-05-23 | 2012-05-23 | |
EP12169055.6 | 2012-05-23 | ||
EP12169055.6A EP2666792A1 (en) | 2012-05-23 | 2012-05-23 | Catalyst component for the polymerization of olefins |
US61/650,827 | 2012-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013174759A1 true WO2013174759A1 (en) | 2013-11-28 |
Family
ID=46125295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/060289 WO2013174759A1 (en) | 2012-05-23 | 2013-05-17 | Catalyst components for the polymerization of olefins |
Country Status (6)
Country | Link |
---|---|
US (1) | US9416203B2 (en) |
EP (2) | EP2666792A1 (en) |
CN (1) | CN104350073B (en) |
BR (1) | BR112014028658A2 (en) |
ES (1) | ES2649055T3 (en) |
WO (1) | WO2013174759A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114716587B (en) * | 2021-01-05 | 2023-06-13 | 中国科学院化学研究所 | Solid catalyst component containing phenylacetate compound for olefin polymerization, and preparation method and application thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4220554A (en) | 1977-05-25 | 1980-09-02 | Montedison S.P.A. | Components of catalysts for polymerizing alpha-olefins and the catalysts formed from the components |
US4298718A (en) | 1968-11-25 | 1981-11-03 | Montecatini Edison S.P.A. | Catalysts for the polymerization of olefins |
US4399054A (en) | 1978-08-22 | 1983-08-16 | Montedison S.P.A. | Catalyst components and catalysts for the polymerization of alpha-olefins |
US4469648A (en) | 1978-06-13 | 1984-09-04 | Montedison S.P.A. | Process for preparing spheroidally shaped products, solid at room temperature |
US4495338A (en) | 1968-11-21 | 1985-01-22 | Montecatini Edison S.P.A. | Components of catalysts for the polymerization of olefins |
EP0395083A2 (en) | 1989-04-28 | 1990-10-31 | Montell North America Inc. | Components and catalysts for the polymerization of olefins |
EP0553806A1 (en) | 1992-01-31 | 1993-08-04 | Montell Technology Company bv | Components and catalysts for the polymerization of olefins |
EP0553805A1 (en) | 1992-01-31 | 1993-08-04 | Montell Technology Company bv | Components and catalysts for the polymerization of olefins |
EP0601525A1 (en) | 1992-12-11 | 1994-06-15 | Montell Technology Company bv | Components and catalysts for the polymerization of olefins |
WO1998044001A1 (en) | 1997-03-27 | 1998-10-08 | Commonwealth Scientific And Industrial Research Organisation | High avidity polyvalent and polyspecific reagents |
WO1998044009A1 (en) | 1997-03-29 | 1998-10-08 | Montell Technology Company B.V. | Magnesium dichloride-alcohol adducts, process for their preparation and catalyst components obtained therefrom |
CN1611515A (en) * | 2003-10-29 | 2005-05-04 | 中国石油化工股份有限公司 | Catalyst component for olefinic polymerization and its catalyst |
US7351778B2 (en) | 2004-04-30 | 2008-04-01 | China Petroleum & Chemical Corporation | Catalyst component for olefin polymerization and catalyst comprising the same |
CN101333166A (en) * | 2008-08-05 | 2008-12-31 | 南京大学 | New depside compounds, preparation method thereof and use |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102040679A (en) * | 2009-10-16 | 2011-05-04 | 中国石油化工股份有限公司 | Catalyst component and catalyst for olefinic polymerization reaction |
WO2011107371A1 (en) * | 2010-03-04 | 2011-09-09 | Basell Poliolefine Italia Srl | Catalyst components for the polymerization of olefins |
-
2012
- 2012-05-23 EP EP12169055.6A patent/EP2666792A1/en not_active Withdrawn
-
2013
- 2013-05-17 BR BR112014028658A patent/BR112014028658A2/en not_active Application Discontinuation
- 2013-05-17 EP EP13723169.2A patent/EP2852623B1/en active Active
- 2013-05-17 WO PCT/EP2013/060289 patent/WO2013174759A1/en active Application Filing
- 2013-05-17 US US14/402,941 patent/US9416203B2/en active Active
- 2013-05-17 CN CN201380025607.9A patent/CN104350073B/en active Active
- 2013-05-17 ES ES13723169.2T patent/ES2649055T3/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4495338A (en) | 1968-11-21 | 1985-01-22 | Montecatini Edison S.P.A. | Components of catalysts for the polymerization of olefins |
US4298718A (en) | 1968-11-25 | 1981-11-03 | Montecatini Edison S.P.A. | Catalysts for the polymerization of olefins |
US4220554A (en) | 1977-05-25 | 1980-09-02 | Montedison S.P.A. | Components of catalysts for polymerizing alpha-olefins and the catalysts formed from the components |
US4469648A (en) | 1978-06-13 | 1984-09-04 | Montedison S.P.A. | Process for preparing spheroidally shaped products, solid at room temperature |
US4399054A (en) | 1978-08-22 | 1983-08-16 | Montedison S.P.A. | Catalyst components and catalysts for the polymerization of alpha-olefins |
EP0395083A2 (en) | 1989-04-28 | 1990-10-31 | Montell North America Inc. | Components and catalysts for the polymerization of olefins |
EP0553806A1 (en) | 1992-01-31 | 1993-08-04 | Montell Technology Company bv | Components and catalysts for the polymerization of olefins |
EP0553805A1 (en) | 1992-01-31 | 1993-08-04 | Montell Technology Company bv | Components and catalysts for the polymerization of olefins |
EP0601525A1 (en) | 1992-12-11 | 1994-06-15 | Montell Technology Company bv | Components and catalysts for the polymerization of olefins |
WO1998044001A1 (en) | 1997-03-27 | 1998-10-08 | Commonwealth Scientific And Industrial Research Organisation | High avidity polyvalent and polyspecific reagents |
WO1998044009A1 (en) | 1997-03-29 | 1998-10-08 | Montell Technology Company B.V. | Magnesium dichloride-alcohol adducts, process for their preparation and catalyst components obtained therefrom |
CN1611515A (en) * | 2003-10-29 | 2005-05-04 | 中国石油化工股份有限公司 | Catalyst component for olefinic polymerization and its catalyst |
US7351778B2 (en) | 2004-04-30 | 2008-04-01 | China Petroleum & Chemical Corporation | Catalyst component for olefin polymerization and catalyst comprising the same |
CN101333166A (en) * | 2008-08-05 | 2008-12-31 | 南京大学 | New depside compounds, preparation method thereof and use |
Non-Patent Citations (4)
Title |
---|
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2006, ZHAO, SIYUAN ET AL: "Catalyst for olefin polymerization", XP002685891, retrieved from STN Database accession no. 2006:130173 * |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2009, ZHU, HAILIANG ET AL: "Preparation of depside compounds for treatment of inflammation", XP002685892, retrieved from STN Database accession no. 2009:9786 * |
LV P C ET AL: "Synthesis, characterization and structure-activity relationship analysis of novel depsides as potential antibacterials", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, EDITIONS SCIENTIFIQUE ELSEVIER, PARIS, FR, vol. 44, no. 4, 1 April 2009 (2009-04-01), pages 1779 - 1787, XP026003116, ISSN: 0223-5234, [retrieved on 20080504], DOI: 10.1016/J.EJMECH.2008.04.019 * |
LV PENG-CHENG ET AL: "Novel depsides as potential anti-inflammatory agents with potent inhibitory activity against Escherichia coli-induced interleukin-8 production", JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, TAYLOR, READING, GB, vol. 25, no. 4, 1 August 2010 (2010-08-01), pages 590 - 595, XP008156970, ISSN: 1475-6366, DOI: 10.3109/14756360903357551 * |
Also Published As
Publication number | Publication date |
---|---|
EP2666792A1 (en) | 2013-11-27 |
EP2852623B1 (en) | 2017-10-18 |
EP2852623A1 (en) | 2015-04-01 |
CN104350073B (en) | 2016-10-12 |
ES2649055T3 (en) | 2018-01-09 |
US20150158957A1 (en) | 2015-06-11 |
BR112014028658A2 (en) | 2017-06-27 |
CN104350073A (en) | 2015-02-11 |
US9416203B2 (en) | 2016-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9487599B2 (en) | Catalyst components for the polymerization of olefins | |
EP2859024B1 (en) | Catalyst components for the polymerization of olefins | |
US8829126B2 (en) | Catalyst components for the polymerization of olefins | |
US8921253B2 (en) | Catalyst components for the polymerization of olefins | |
US9034783B2 (en) | Catalyst components for the polymerization of olefins | |
EP2601224A1 (en) | Catalyst components for the polymerization of olefins | |
US9416203B2 (en) | Catalyst components for the polymerization of olefins | |
EP3268398A1 (en) | Catalyst components for the polymerization of olefins | |
EP3994184A1 (en) | Catalyst components for the polymerization of olefins | |
US20130131293A1 (en) | Catalyst components for the polymerization of olefins | |
US20130203948A1 (en) | Process for the preparation of high purity propylene polymers | |
WO2014111381A1 (en) | Catalyst components for the polymerization of olefins | |
EP2771371B1 (en) | Catalyst components for the polymerization of olefins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13723169 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013723169 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14402941 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014028658 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014028658 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141117 |