WO2013172322A1 - Multicore optical connector, optical connector connection structure - Google Patents

Multicore optical connector, optical connector connection structure Download PDF

Info

Publication number
WO2013172322A1
WO2013172322A1 PCT/JP2013/063360 JP2013063360W WO2013172322A1 WO 2013172322 A1 WO2013172322 A1 WO 2013172322A1 JP 2013063360 W JP2013063360 W JP 2013063360W WO 2013172322 A1 WO2013172322 A1 WO 2013172322A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
hole
ferrule
capillary
Prior art date
Application number
PCT/JP2013/063360
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 恒聡
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014515625A priority Critical patent/JP6157457B2/en
Publication of WO2013172322A1 publication Critical patent/WO2013172322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • G02B6/3861Adhesive bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type

Definitions

  • the present invention relates to a multi-core optical connector having a plurality of cores, and an optical connector connection structure in which a multi-core fiber and a multi-core optical connector are connected.
  • a multi-core fiber for example, there is a fiber in which a plurality of core portions are provided inside a cladding portion, and a flat portion perpendicular to the longitudinal direction is formed on a part of the outer periphery of the cladding portion (Patent Document 1). ).
  • a multi-core fiber connector When multi-core fiber is used as a transmission line, a multi-core fiber connector is required for easy connection. Moreover, each core part of this multi-core fiber needs to be connected to a corresponding core part of another multi-core fiber, another optical fiber, an optical element, or the like to transmit and receive transmission signals.
  • a multi-core fiber As a method of connecting such a multi-core fiber and a single-core fiber, a multi-core fiber is connected to a bundle fiber in which single-core optical fibers are arranged at positions corresponding to the core portion of the multi-core fiber, and a transmission signal is transmitted.
  • Patent Document 2 A method of transmitting and receiving has been proposed (Patent Document 2).
  • Patent Document 3 a method of bundling a plurality of single core fibers by bundling at a predetermined interval.
  • each core part of a multi-core fiber is connected to, for example, another optical fiber core wire
  • the core parts are optically connected to each other between the end face of the multi-core fiber and each optical fiber core wire. Need to be connected precisely.
  • the core interval of the multi-core fiber is usually narrow (for example, 40 to 50 ⁇ m)
  • the optical fiber core wire that can be connected thereto is extremely thin. For this reason, such an optical fiber core wire has poor handleability.
  • the positional deviation of the connecting portion needs to be 1 to 2 ⁇ m or less, so that a very high positional accuracy is required. Therefore, a multi-core fiber connector that can be easily connected and a multi-core optical connector that can be easily connected to a multi-core fiber, such as connection between conventional optical fiber cores, are desired.
  • the present invention has been made in view of such problems, and a multi-core fiber connector that can be connected to other multi-core fibers, or a multi-core optical connector that can arrange an optical fiber core wire with high accuracy, and the same.
  • An object of the present invention is to provide an optical connector connection structure.
  • the multi-fiber optical connector is an optical connector having a plurality of cores in one connector, and the plurality of cores may be multi-core fibers (in this case, particularly called multi-core fiber connectors). In some cases, each may be a separate optical fiber.
  • the first invention is a multi-fiber optical connector comprising a first ferrule that holds a multi-core fiber having a plurality of cores or a bundle structure of a plurality of optical fiber core wires,
  • the first ferrule is formed with a hole corresponding to the multi-core fiber or the bundle structure, and guide mechanisms formed on both sides of the hole, and the multi-core fiber or the bundle structure is inside the hole.
  • It is a multi-fiber optical connector characterized by being fixed to.
  • the hole is a circular hole, and a multi-core fiber may be fixed to the hole.
  • L ⁇ 10d when the core pitch of the multi-core fiber is d ⁇ m and the distance between the center of the hole and the guide mechanism is L ⁇ m.
  • the multi-core fiber may be fixed to the first ferrule while being inserted into a capillary.
  • the end face of the capillary may protrude from the end face of the first ferrule.
  • the end surface of the multi-core fiber may be spherically polished in advance.
  • the multi-core fiber protrudes from the end face of the capillary, the end of the capillary is located inside the first ferrule, the capillary is not exposed at the end face of the first ferrule, and the multi-core fiber is It may be exposed.
  • the multi-core fiber protrudes from the end face of the capillary, one end of the capillary is located inside the first ferrule, and the capillary is not exposed on the front end face of the first ferrule, The multi-core fiber is exposed, the other end of the capillary is exposed to the rear end face side of the first ferrule, and a plurality of optical fiber cores are bonded to a fiber bundle fixed to another capillary, The optical fiber cores of the fiber bundles and the cores of the multi-core fibers may be optically connected.
  • the outer periphery of the multi-core fiber may be covered with a covering portion or a capillary, and the radius of the covering portion or the capillary may be twice or more the core pitch of the multi-core fiber.
  • the hole may have a substantially regular hexagonal shape, and a bundle structure in which a plurality of optical fiber core wires corresponding to the shape of the hole are bundled into a substantially regular hexagonal shape in a close-packed arrangement may be fixed to the hole.
  • the hexagonal size of the hole is larger than the size of the circumscribed hexagon of the bundle structure, and a gap is formed between the inner surface of the hole and the circumscribed hexagon,
  • the bundle structure is preferably fixed inside the hole while being pressed in the direction of an arbitrary corner of the hexagon of the hole.
  • the hole is formed such that a corner portion is in a vertical direction of the first ferrule and is perpendicular to the direction in which the guide mechanism is provided, and the bundle structure is either up or down with respect to the hole. You may fix to the said hole in the state pressed on the direction.
  • the hole has a tapered portion in which the size of the hole is changed inside the first ferrule, from the insertion side of the bundle structure of the hole toward the exposed side of the end surface of the bundle structure of the hole. It is desirable that the hole has a reduced diameter.
  • the diameter of the hole is reduced from the insertion side of the bundle structure of the hole toward the exposed side of the end surface of the bundle structure of the hole.
  • a plurality of the holes may be formed in the first ferrule, and a plurality of the bundle structures may be disposed in the respective holes.
  • the first invention it can be used as a so-called MT connector (Mechanically Transferable Connector) having a guide mechanism, and can be handled in the same manner as a conventional connector. Therefore, it is excellent in handleability.
  • the structure similar to the MT connector is formed by a shift in the rotation direction of the guide mechanism because a pair of guide mechanisms are formed at positions apart from both sides with respect to, for example, a multi-core fiber or bundle structure disposed in the center. The effect is reduced at the center. Therefore, such a structure is particularly advantageous for multi-core fibers that require precise placement.
  • the core pitch of the multi-core fiber is d ⁇ m and the distance between the center of the hole and the guide mechanism is L ⁇ m, if the dimensional accuracy with the connection target of the guide mechanism is 1 ⁇ m or less, L ⁇ 10 d is obtained. Even when the maximum core pitch of the fiber is 60 ⁇ m and the rotational deviation in the guide mechanism is 1 ⁇ m, the core positional deviation of the multi-core fiber can be 0.1 ⁇ m or less.
  • the transmission loss can be suppressed to 0.002 dB or less.
  • the transmission loss is about 0.04 dB, which is large. There is no effect.
  • the outer diameter becomes large and the handling is excellent.
  • the rotational movement distance of the core of the multi-core fiber can be made smaller than the rotational movement distance of the outer peripheral surface of the capillary. Therefore, fine adjustment of the rotation of the multi-core fiber is easy. Therefore, highly accurate alignment work is possible.
  • the capillary can be rotated in the vicinity of the end face by protruding the tip of the capillary from the first ferrule. Therefore, the length of the ferrule can be shortened.
  • the ferrule is formed with a substantially hexagonal hole, which is a close-packed arrangement of optical fiber core wires, a multi-fiber connector having a bundle structure that can be connected to a multi-core fiber can be obtained.
  • the bundle structure in which the optical fiber core wires are bundled in the closest arrangement is inserted into the hole and fixed. Therefore, the positional accuracy of the optical fiber core wire is high.
  • a gap is formed between the circumscribed regular hexagon of the bundle structure and the inner surface of the hole of the ferrule, so that the bundle structure (optical fiber core wire) can be easily inserted into the hole. Further, by pressing the bundle structure against the corner of the hole, the bundle structure can be arranged at an accurate position with respect to the ferrule while maintaining the close-packed arrangement of the bundle structure.
  • the bundle structure can be easily pressed against the corners.
  • the bundle structure is guided to a normal position on the exposed surface side by the internal tapered shape, and the bundle structure can be arranged on the ferrule with high positional accuracy.
  • 2nd invention is the joining structure of the multi-core optical connector concerning 1st invention, and a multi-core fiber connector, Comprising:
  • the said multi-core fiber connector is the 2nd which hold
  • the second ferrule has the other multi-core fiber fixed thereto, a guide mechanism formed on both sides of the other multi-core fiber, and a guide mechanism of the multi-fiber optical connector; Are connected to each other, and each core of the other multi-core fiber is optically connected to each core of the multi-core fiber or each core of the optical fiber core wire constituting the bundle structure. It is a connector connection structure.
  • the second invention it is possible to easily connect multi-core fibers and multi-core fibers or a bundle structure in which multi-core fibers and a plurality of optical fiber cores are bundled.
  • the present invention it is possible to provide a multi-core optical connector that can be connected to a multi-core fiber and can arrange optical fiber core wires with high accuracy, and an optical connector connection structure using the same.
  • FIG. 5A and 5B are diagrams showing the multi-fiber optical connector 1, in which FIG. 5A is a perspective view and FIG. 5B is a cross-sectional view taken along line AA in FIG. 6A is a front view of the multi-fiber optical connector 1, and FIG. 6B is an enlarged view of a portion B in FIG. 6A.
  • FIG.7 (a) is a front view
  • FIG.7 (b) is sectional drawing.
  • 8A is a front view of the multi-fiber optical connector 1a
  • FIG. 8B is an enlarged view of a portion E in FIG. 8A.
  • FIG. 10A is a front view of the multi-fiber optical connector 1c
  • FIG. 10B is a front view of the multi-fiber optical connector 1d
  • FIG. 11A is a front view of the multi-fiber optical connector 1e
  • FIG. 11B is a front view of the multi-fiber optical connector 1f.
  • FIG. 12A shows a multi-fiber optical connector 20b
  • FIG. 12B shows a multi-fiber optical connector 20c.
  • FIG. 1 is a perspective view showing a multi-fiber optical connector 20
  • FIG. 2 is a front view.
  • the multi-fiber optical connector 20 includes a ferrule 23, a multi-core fiber 25, a capillary 29, and the like.
  • a hole 21 is formed in the ferrule 23 which is the first ferrule.
  • the multi-core fiber 25 is fixed to the capillary 29.
  • the shape of the hole 21 corresponds to the outer shape of the capillary 29, and the multi-core fiber 25 fixed to the capillary 29 is fixed to the hole 21.
  • guide holes 27 that are guide mechanisms are formed on both sides of the multi-core fiber 25. Therefore, positioning can be performed at the time of connection with the guide pin formed on the connector to be connected.
  • a guide pin (not shown) can be inserted into the guide hole 27.
  • a hole 24 communicating with the hole 21 is formed on the upper surface (side surface) of the ferrule 23.
  • an adhesive may be applied to the inner surface of the hole 21 in advance, and the capillary 29 may be inserted into the hole 21.
  • the hole 21 may be filled with an adhesive from the gap between the capillary 29 and the hole 21.
  • the multi-core fiber 25 is a fiber in which a plurality of cores are arranged at predetermined intervals and the periphery is covered with a clad.
  • the multi-core fiber 25 has, for example, a total of seven cores as shown in the figure, and is arranged at the center of the multi-core fiber 25 and at each vertex position of a regular hexagon around the center. That is, the central core and the surrounding six cores are all at a constant interval. Further, in the six surrounding cores, the intervals between adjacent cores are also the same.
  • the end surface of the multi-core fiber 25 (and the capillary 29 holding the same) is exposed at the tip surface of the ferrule 23.
  • the end face of the multi-core fiber 25 (capillary 29) may be polished flat so as to coincide with the end face of the ferrule 23, or may be polished spherically.
  • a spherically polished multi-core fiber 25 (capillary 29) may be exposed on the end face of the ferrule 23.
  • the end face of the multi-core fiber 25 (capillary 29) and the end face position of the ferrule 23 substantially coincide.
  • the tip of the multi-core fiber 25 may be protruded from the tip of the ferrule 23.
  • the capillary 29 can function as a ferrule and the ferrule 23 can function as a flange portion.
  • description will be made assuming that the capillary 29 protrudes from the end face of the ferrule 23.
  • Each core of the multi-core fiber 25 is arranged at a predetermined position with respect to the ferrule 23. That is, the position of the multi-core fiber 25 in the rotational direction is determined with reference to the guide hole 27 of the ferrule 23.
  • the multi-core optical connector 20 in order to position the multi-core fiber 25 in the rotational direction, the arrangement of the core is confirmed with a magnifying camera from the front of the multi-core optical connector 20, or other multi-core fibers and the like are used. Alignment may be performed so that the detection light becomes maximum in the connected state. Specifically, as shown in FIG. 4A, the multi-core fiber 25 is rotationally aligned by rotating the capillary 29 with the capillary 29 inserted through the hole 21 (direction F in the figure). Can do.
  • a groove 31 may be provided in a part of the ferrule 23 as in the multi-fiber optical connector 20a shown in FIG.
  • the groove 31 is formed on the upper surface of the ferrule 23 in the width direction of the ferrule 23.
  • the depth of the groove 31 from the upper surface of the ferrule 23 is deeper than the distance from the upper surface of the ferrule 23 to the hole 21. Therefore, a part of the capillary 29 is exposed so as to cross the groove 31.
  • the rotation alignment of the multi-core fiber 25 can be performed with the capillary 29 exposed in the groove 31. That is, the rotation alignment of the multi-core fiber 25 can be performed by rotating a part of the capillary 29 exposed in the groove 31 (direction F in the figure).
  • the radius of the capillary 29 is preferably at least twice the core pitch of the multi-core fiber 25.
  • the outer diameter of the capillary 29 is 200 ⁇ m (radius 100 ⁇ m) with respect to the multi-core fiber 25 having a core pitch of 50 ⁇ m
  • the moving distance of the core is 0.5 ⁇ m with respect to the moving distance 1 ⁇ m of the outer peripheral surface of the capillary 29. Accordingly, the rotational position can be adjusted with double accuracy.
  • the multi-core fiber 25 is inserted into the capillary 29 and fixed, but the capillary 29 is not necessarily required.
  • the coating portion may be fixed to the ferrule 23. Even in this case, it is desirable that the radius of the covering portion is twice or more the core pitch. It is also possible to fix the multi-core fiber 25 from which the coating has been removed at the end face of the ferrule 23, and in this case, more precise positioning is possible.
  • the MT connector type multi-fiber optical connector 20 can be obtained. Therefore, if it has a structure that can be connected to the connector, it can be easily connected to a multi-core connector such as a multi-core fiber.
  • FIG. 5 is a view showing the multi-fiber optical connector 1
  • FIG. 5 (a) is a perspective view of the multi-fiber optical connector 1
  • FIG. 5 (b) is a cross-sectional view taken along line AA of FIG.
  • the ferrule 5 is provided with a hole 7.
  • the hole 7 has a substantially regular hexagonal shape and penetrates the ferrule 5 in the front-rear direction.
  • a bundle structure 9 is inserted into the hole 7, and the bundle structure 9 is fixed to the inner surface of the hole 7. That is, the bundle structure 9 is fixed to the ferrule 5.
  • a hole 6 communicating with the hole 7 is formed on the upper surface (side surface) of the ferrule 5.
  • an adhesive may be applied to the inner surface of the hole 7 in advance, and the bundle structure 9 may be inserted into the hole 7.
  • the hole that is a filling hole for the adhesive The hole 7 may be filled with an adhesive.
  • the bundle structure 9 is composed of a plurality of optical fiber cores 3. As shown in FIG. 5B, the optical fiber core wire 3 is inserted into the hole 7 of the ferrule 5 from the rear. In addition, although the optical fiber core wire 3 has a coating
  • a tapered portion that gradually decreases in diameter from the rear to the front of the ferrule 5 is formed inside the hole 7. That is, on the insertion side of the optical fiber core wire 3, the diameter of the hole 7 is large, and the diameter of the hole 7 becomes smaller toward the distal end side.
  • the inner diameter at the rear end of the hole 7 is sufficiently larger than the bundle structure 9. Accordingly, the insertability of the bundle structure 9 (or the optical fiber core wire 3) is excellent.
  • the inner diameter of the hole 7 on the side where the bundle structure 9 is inserted can insert all the number of optical fiber core wires 3 (including the covering portion) constituting the bundle structure 9. Therefore, the end portion of the covering portion (boundary with the covering removing portion) can be disposed inside the ferrule 5.
  • the bundle structure 9 including seven optical fiber cores 3 is shown, but the present invention is not limited to this.
  • the optical fiber cores 3 can be arranged close-packed in a substantially hexagonal shape, the number of the optical fiber cores 3 such as all 19 is not limited.
  • the diameter of the optical fiber disposed at the center and the diameter of the optical fiber disposed at the outer periphery for example, ten optical fibers arranged in close contact with one optical fiber are arranged. It is also possible to obtain a bundle structure.
  • the end surface of the bundle structure 9 (that is, all the optical fiber core wires 3 constituting this) is exposed. At this time, the end surface of the bundle structure 9 is formed on the same plane as the front end surface of the ferrule 5.
  • Guide holes 11 that are guide mechanisms are formed on both sides of the hole 7 on the tip surface of the ferrule 5. Therefore, positioning can be performed at the time of connection with the guide pin formed on the connector to be connected. A guide pin (not shown) can be inserted into the guide hole 11.
  • FIG. 6A is a front view of the multi-fiber optical connector 1.
  • the hole 7 is formed so that a pair of opposing corner
  • FIG. 6B is an enlarged view of a portion B in FIG.
  • the bundle structure 9 is fixed to the hole 7 with an adhesive 13.
  • the optical fiber core wires 3 are arranged in a hexagonal shape in a close-packed arrangement. That is, the bundle structure 9 is assumed to be a circumscribed regular hexagon 15 that is in contact with the outer surfaces of all the optical fiber cores 3 arranged on the outer periphery of the bundle structure 9.
  • the size of the substantially regular hexagonal shape of the hole 7 on the tip surface of the ferrule 5 is slightly larger than the circumscribed regular hexagon 15. Therefore, a gap is formed between the inner surface of the hole 7 and the circumscribed regular hexagon 15.
  • the bundle structure 9 is fixed to the hole 7 in a state in which the bundle structure 9 is pressed in the direction of a predetermined corner of the hexagon forming the hole 7 in a front view.
  • the bundle structure 9 is fixed to the hole 7 in a state where the bundle structure 9 is pressed to the corner portion in the lower right direction (the direction of arrow C in the figure). Therefore, the gap between the inner surface of the hole 7 and the circumscribed regular hexagon 15 is the largest at the corner opposite to the direction in which the hole 7 is pressed.
  • the arrangement of the end face of the bundle structure 9 with respect to the ferrule 5 Can be made constant. That is, the hole 7 is arranged at a position slightly shifted from the center of the ferrule 5 in the direction opposite to the pressing direction of the bundle structure 9. Therefore, the bundle structure 9 can be arranged at the center of the ferrule 5 by fixing the bundle structure 9 in the hole 7 while being pressed in a predetermined direction. Therefore, the position of the core of each optical fiber core wire 3 constituting the bundle structure 9 can be accurately arranged with respect to the ferrule 5.
  • the bundle structure 9 in order to press the bundle structure 9 to the corner
  • the corner portion to press the bundle structure 9 exposed from the front end surface of the ferrule 5. Can be pressed against.
  • the bundle structure 9 may be fixed to the hole 7 with the bundle structure 9 pressed against a predetermined corner.
  • the bundle structure 9 may be formed by any method as long as it can ensure a state where the end portions of the optical fiber core wires 3 are arranged so as to be in close contact with each other.
  • the coating of a predetermined number of optical fiber cores 3 is removed and inserted into a ferrule 5 (or other capillary or the like).
  • the optical fiber core wire 3 is inserted into the ferrule 5 so that the end of the optical fiber core wire 3 protrudes from the end of the ferrule 5 by the same length (for example, about 10 mm).
  • the optical fiber core wire 3 is temporarily fixed to the ferrule 5.
  • the tip of the optical fiber core 3 that protrudes from the end of the ferrule 5 is immersed in an adhesive 17 that is stored in advance in a container.
  • an adhesive 17 that is stored in advance in a container.
  • the adhesive force of the adhesive agent 17 may be weak, the thing of the very low viscosity of 100 cps or less is desirable, for example.
  • water glass (sol-gel glass) or the like can be used as the adhesive.
  • FIG. 7 is a conceptual diagram showing the bonding state of the optical fiber cores 3 due to the surface tension of the adhesive 17,
  • FIG. 7 (a) is a front view (for simplicity, only two optical fiber cores 3 are shown),
  • FIG. 7 (b) is a cross-sectional view.
  • a gap may be formed between the optical fiber cores 3.
  • the adhesive 17 is sucked into the gap between the optical fibers 3 by surface tension (capillary phenomenon).
  • the optical fiber core wires 3 are brought into close contact with each other by the surface tension (in the direction of arrow D in the figure).
  • the bundled optical fiber core wire 3 is bonded to the hole 7 with an adhesive 13 (FIG. 6B).
  • the gap between the hole 7 and the bundle structure 9 and the gap between the fiber core wires are filled with the adhesive 13, and the bundle structure 9 and the hole 7 are bonded.
  • the optical fiber core wire 3 protruding from the ferrule 5 and a part of the ferrule 5 tip surface are polished.
  • the multi-fiber optical connector 1 is formed.
  • a plurality of optical fiber cores 3 may be closely attached and fixed by the same method as in this embodiment, and then inserted into the ferrule 5 and fixed with an adhesive.
  • an adhesive for immersing the optical fiber core wires 3 in the adhesive 17 in a state where the optical fiber core wires 3 are inserted into the cylindrical temporary array member, it is possible to securely fix the optical fiber core wires 3 to the fine structure.
  • the MT connector type multi-fiber optical connector 1 can be obtained. Therefore, if it has a structure that can be connected to the connector, it can be easily connected to the multi-core fiber.
  • the insertion property of the optical fiber core wire is excellent.
  • the hole 7 has a tapered portion so that the diameter thereof decreases from the insertion side toward the end face side, the insertion workability of the optical fiber core wire and the like is excellent, and the bundle structure 9 on the end face after the insertion is provided. Position accuracy is also high. Further, since the bundle structure 9 is pressed against a predetermined corner portion of the hole 7 in a close-packed state, the bundle structure 9 can be placed with high accuracy with respect to the ferrule 5.
  • FIGS. 5 to 6 are diagrams showing the multi-fiber optical connector 1a, in which FIG. 8A is a front view, and FIG. 8B is an enlarged view of a portion E in FIG. 8A.
  • components having the same functions as those of the multi-fiber optical connector 1 are denoted by the same reference numerals as those in FIGS. 5 to 6, and redundant descriptions are omitted.
  • the multi-fiber optical connector 1a has substantially the same configuration as the multi-fiber optical connector 1, but the direction of the hole 7 with respect to the ferrule 5a is different.
  • the holes 7 are arranged so that the corners facing the vertical direction of the ferrule 5a (the direction perpendicular to the direction in which the guide holes 11 are provided) face each other. That is, the direction of the hole 7 in the multi-fiber optical connector 1a is rotated by 30 ° with respect to the direction of the hole 7 in the multi-fiber optical connector 1.
  • the substantially regular hexagon of the hole 7 is slightly larger than the circumscribed regular hexagon of the bundle structure 9. Therefore, a gap is formed between the circumscribed regular hexagon of the bundle structure 9 and the inner surface of the hole 7.
  • the bundle structure 9 is pressed in the vertical direction of the hole 7 (downward in the figure and in the direction of arrow E). That is, the bundle structure 9 is pressed against the corners in the vertical direction. In this state, the bundle structure 9 may be fixed to the hole 7.
  • the same effect as the multi-fiber optical connector 1 can be obtained. Further, by pressing the bundle structure 9 in the vertical direction of the ferrule 5a in a predetermined direction, the bundle structure 9 can be accurately arranged with respect to the ferrule 5a. Further, since the bundle structure 9 is pressed in the vertical direction of the ferrule 5a, the direction is easily understood and the workability is excellent.
  • a bundle structure 9 corresponding to the multi-core fiber 25 to be connected is formed. That is, the bundle structure 9 is composed of the optical fiber cores 3 having the number of cores of the multi-core fiber 25 to be connected. In the bundle structure 9, the optical fiber core wires 3 are arranged corresponding to the core pitch of the multi-core fiber 25 to be connected.
  • the multi-fiber optical connector 20 and the multi-fiber optical connectors 1 and 1a have forms corresponding to each other. That is, the ferrule 23 corresponds to the ferrule 5, and the pair of guide holes 27 corresponds to the guide hole 11 in the ferrule 5. Accordingly, the guide hole 11 and the guide hole 27 can accurately align the positions of the ferrules 5 and 23 when connected by a guide mechanism such as a guide pin.
  • the arrangement of the multi-core fiber 25 with respect to the ferrule 23 and the bundle structure 9 are aligned in advance.
  • the position of the central core is aligned, and the two surrounding cores are arranged in the vertical direction (direction perpendicular to the direction in which the guide hole 27 is provided) as the arrangement of the surrounding cores (six in the figure) relative to the central core It is arranged to face.
  • the multi-core optical connector 1, 1 a having the bundle structure 9 and the multi-core optical connector 20 having the multi-core fiber 25 can be easily connected. be able to.
  • the multi-fiber optical connectors 1 and 1a and the multi-fiber optical connector 20 can be used in the same manner as conventionally used MT connectors. Therefore, it is excellent in handleability.
  • the bundle structure 9 can be accurately arranged with respect to the ferrule 5, if the multi-core fiber 25 is aligned with the ferrule 23, the multi-core fiber 25 and the bundle structure 9 can be accurately connected. it can. That is, an optical connector connection structure that is excellent in connection workability and can be connected with high accuracy can be obtained.
  • multi-fiber optical connectors 1 which have the bundle structure 9 and the multi-fiber optical connectors 20 which have the multi-core fiber 25 can be connected.
  • FIG. 9 is a diagram showing the multi-fiber optical connector 1b.
  • a plurality of holes 7 are arranged with respect to the ferrule 5b.
  • a bundle structure 9 is fixed to each of the holes 7.
  • the number of holes 7 is not limited to the illustrated example.
  • the holes 7 may be arranged in a line in the direction in which the guide holes 11 are provided, or may be arranged in a plurality of lines.
  • the multi-fiber optical connector 1b According to the multi-fiber optical connector 1b, more optical fiber core wires 3 can be fixed. For this reason, the optical fiber core wire 3 can be held with high density.
  • a plurality of multi-core fibers may be similarly arranged in a multi-core optical connector having multi-core fibers to be connected.
  • the guide mechanism in the multi-fiber optical connector of the present invention is not limited to the one using a guide hole or the like.
  • the side surface or the upper and lower surfaces
  • the guide mechanism 19a functions as the guide mechanism 19a. That is, when connecting with another connector or the like, the position of the inner bundle structure 9 in the rotational direction can be determined by matching the directions of the side surfaces or the upper and lower surfaces of the ferrules 5c.
  • a part of the substantially circular ferrule 5d may be cut off to form a flat portion. In this case, this notch becomes the guide mechanism 19b.
  • the position of the multi-fiber optical connector 1d in the rotational direction can also be determined by the guide mechanism 19b.
  • a part of the substantially circular ferrule 5e may be cut out to form a keyway.
  • this keyway becomes the guide mechanism 19c.
  • the position of the multi-fiber optical connector 1e in the rotational direction can also be determined by the guide mechanism 19c.
  • a protrusion may be formed on a part of the substantially circular ferrule 5f. In this case, this protrusion becomes the guide mechanism 19d. The position of the multi-fiber optical connector 1f in the rotational direction can also be determined by the guide mechanism 19d.
  • a multi-core fiber 25 (capillary 29) may be arranged in place of the bundle structure 9 for each multi-fiber optical connector using the bundle structure 9 shown in the above example.
  • the capillary 29 may not be provided up to the tip of the ferrule 23.
  • the covering portion at the tip of the multi-core fiber 25 (with a covering portion) is removed, and the exposed multi-core fiber 25 is inserted into a capillary 29 and fixed. At this time, the multi-core fiber 25 protrudes from the tip of the capillary 29.
  • the removal length of the covering portion of the multi-core fiber 25 is made longer than the length of the capillary 29. Therefore, the end of the capillary 29 is located inside the ferrule 23, and the end of the capillary 29 is not exposed on the end face of the ferrule 23. Note that the end face of the multi-core fiber 25 is cut into a flat surface by a cleaver.
  • a stepped hole corresponding to the outer diameter of the capillary 29 and the outer diameter of the multi-core fiber 25 is provided. That is, the hole is formed on the front end face side of the ferrule 23 on the optical connection side (left side in the figure) with the first portion corresponding to the outer diameter of the multi-core fiber 25 and on the rear end face side of the ferrule 23 (right side in the figure) with the capillary 29. And a second portion corresponding to the outer diameter. In addition, it may replace with the capillary 29 and may be the coating
  • the capillary 29 protrudes from the rear end side of the ferrule 23.
  • a part of the capillary 29 is exposed from the upper and lower surfaces or side surfaces of the ferrule 23 and can be rotated.
  • the capillary 29 does not necessarily have to protrude to the rear end side of the ferrule 23.
  • a groove may be formed on the outer peripheral surface of the ferrule 23 so as to reach the hole (second portion), and the internal capillary 29 and the like may be exposed from the groove.
  • the multi-core fiber 25 may be fixed to the ferrule 23 with an ultraviolet curable resin or the like.
  • the position of the multi-core fiber 25 can be more precisely positioned with respect to the guide mechanism.
  • the end face of the multi-core fiber 25 may coincide with the end face of the ferrule 23, and the capillary 29 may be rotationally aligned.
  • the end face of the multi-core fiber 25 may protrude from the end face of the ferrule 23. Rotational alignment may be performed.
  • the end of the protruded multicore fiber 25 may be cut or polished after the multicore fiber 25 is fixed.
  • the multi-core fibers can be connected to each other by PC.
  • the coated multi-core fiber may be exposed at the rear end of the ferrule without using the capillary 29, and the coated portion may be used in the same role as the capillary.
  • the coated multi-core fiber is disposed on the end face of the ferrule, the coated multi-core fiber is exposed at the rear end of the ferrule, and the coated section is rotated to perform rotational alignment.
  • the coating radius is at least twice the core pitch of the multi-core fiber, it is possible to obtain the same effect as when a capillary is used.
  • a groove (not shown) may be provided in the ferrule 23 to rotate the capillary or the covering portion exposed from the groove portion.
  • the groove provided in the ferrule 23 is provided on the rear end side of the stepped hole.
  • a bundle structure 9 may be used.
  • the multi-core fiber 25 is inserted into the capillary 29 and fixed, and the capillary 29 is fixed to the ferrule 23 after rotational alignment.
  • the plurality of optical fiber core wires 3 are inserted into the capillary 33 and fixed, for example, in a close-packed state to form a fiber bundle 35.
  • the capillary 33 and the capillary 29 whose end surfaces are polished are made to face each other, and the fiber bundle 35 and the multi-core fiber 25 are rotationally aligned. At this time, it is easy to monitor the optical power at the time of rotational alignment by joining the other MT type connector and the ferrule 23.
  • Multi-fiber optical connector 3 Optical fiber core wires 5, 5 a, 5 b, 5 c, 5 d, 5 f,. 9 ......... Bundled structure 11 ......... Guide hole 13 ......... Adhesive 15 ......... Surrounding regular hexagon 17 & Adhesives 19a, 19b, 19c, 19d ......... Guide mechanisms 20, 20a ......... Many Optical fiber connector 21 ......... hole 23 ......... ferrule 25 ......... multi-core fiber 27 ......... guide hole 29 ......... capillary 31 ......... groove 33 ......... capillary 35 ......... fiber bundle

Abstract

A hole (7) is provided in a ferrule (5). The hole (7) is of a substantially regular hexagonal shape, and passes through the ferrule (5) from front to back. A bundle structure (9) is inserted inside the hole (7), and the bundle structure (9) is affixed to an inner surface of the hole (7). The bundle structure (9) is configured from multiple fiber optic core wires (3). In the bundle structure (9), the fiber optic core wires (3) are placed in a substantially hexagonal shape in closest placement. An end surface of the bundle structure (9) is exposed at the leading edge surface of the ferrule (5). On the leading edge surface of the ferrule (5), guide holes (11) that are a guide mechanism are formed at both sides of the hole (7).

Description

多心光コネクタ、光コネクタ接続構造Multi-fiber optical connector, optical connector connection structure
 本発明は、複数のコアを有する多心光コネクタ、および、マルチコアファイバと多心光コネクタとが接続される光コネクタ接続構造に関するものである。 The present invention relates to a multi-core optical connector having a plurality of cores, and an optical connector connection structure in which a multi-core fiber and a multi-core optical connector are connected.
 近年の光通信におけるトラフィックの急増により、現状で用いられているシングルコアの光ファイバにおいて伝送容量の限界が近づいている。そこで、さらに通信容量を拡大する手段として、一つのファイバに複数のコアが形成されたマルチコアファイバが提案されている。 Due to the rapid increase in traffic in recent optical communications, the limit of transmission capacity is approaching in the single core optical fiber currently used. Therefore, as a means for further expanding the communication capacity, a multi-core fiber in which a plurality of cores are formed in one fiber has been proposed.
 このようなマルチコアファイバとしては、例えば、複数のコア部がクラッド部の内部に設けられ、クラッド部の外周の一部に、長手方向に垂直な平坦部が形成されたものがある(特許文献1)。 As such a multi-core fiber, for example, there is a fiber in which a plurality of core portions are provided inside a cladding portion, and a flat portion perpendicular to the longitudinal direction is formed on a part of the outer periphery of the cladding portion (Patent Document 1). ).
 マルチコアファイバが伝送路として用いられた場合、簡便な接続のためにマルチコアファイバコネクタが必要となる。また、このマルチコアファイバの各コア部は、他のマルチコアファイバの対応するコア部や、それぞれ別の光ファイバや光素子等と接続されて伝送信号を送受信する必要がある。このようなマルチコアファイバとシングルコアファイバとを接続する方法として、マルチコアファイバと、そのマルチコアファイバのコア部に対応する位置にシングルコアの光ファイバが配列されたバンドルファイバとを接続し、伝送信号を送受信する方法が提案されている(特許文献2)。 When multi-core fiber is used as a transmission line, a multi-core fiber connector is required for easy connection. Moreover, each core part of this multi-core fiber needs to be connected to a corresponding core part of another multi-core fiber, another optical fiber, an optical element, or the like to transmit and receive transmission signals. As a method of connecting such a multi-core fiber and a single-core fiber, a multi-core fiber is connected to a bundle fiber in which single-core optical fibers are arranged at positions corresponding to the core portion of the multi-core fiber, and a transmission signal is transmitted. A method of transmitting and receiving has been proposed (Patent Document 2).
 また、このようなバンドル光ファイバの作製方法として、複数のシングルコアのファイバを所定間隔で結束等によってバンドル化する方法が提案されている(特許文献3)。 Further, as a method for producing such a bundle optical fiber, a method of bundling a plurality of single core fibers by bundling at a predetermined interval has been proposed (Patent Document 3).
特開2010-152163号公報JP 2010-152163 A 特開昭62-47604号公報JP 62-47604 A 特開平03-12607号公報Japanese Patent Laid-Open No. 03-12607
 上述のように、マルチコアファイバの各コア部を、例えば、他の光ファイバ心線等に接続する場合には、マルチコアファイバの端面と個々の光ファイバ心線とで、互いにコア部同士を光学的に精密に接続する必要がある。しかしながら、通常、マルチコアファイバのコア部間隔は狭いため(例えば40~50μm)、これと接続可能な光ファイバ心線は極めて細い。このため、このような光ファイバ心線は、取り扱い性が悪い。 As described above, when each core part of a multi-core fiber is connected to, for example, another optical fiber core wire, the core parts are optically connected to each other between the end face of the multi-core fiber and each optical fiber core wire. Need to be connected precisely. However, since the core interval of the multi-core fiber is usually narrow (for example, 40 to 50 μm), the optical fiber core wire that can be connected thereto is extremely thin. For this reason, such an optical fiber core wire has poor handleability.
 また、特にシングルモードファイバの場合には、接続部の位置ずれは1~2μm以下とする必要があるため、非常に高い位置精度が必要となる。したがって、従来の光ファイバ心線同士の接続のように、容易に接続が可能なマルチコアファイバコネクタ及び、マルチコアファイバと容易に接続が可能な多心光コネクタが望まれている。 In particular, in the case of a single mode fiber, the positional deviation of the connecting portion needs to be 1 to 2 μm or less, so that a very high positional accuracy is required. Therefore, a multi-core fiber connector that can be easily connected and a multi-core optical connector that can be easily connected to a multi-core fiber, such as connection between conventional optical fiber cores, are desired.
 本発明は、このような問題に鑑みてなされたもので、他のマルチコアファイバとの接続が可能なマルチコアファイバコネクタ、あるいは、精度良く光ファイバ心線を配置可能な多心光コネクタおよびこれを用いた光コネクタ接続構造を提供することを目的とする。なお、本発明において、多心光コネクタとは、一つのコネクタ中に複数のコアを有する光コネクタの事であり、複数のコアは、マルチコアファイバによるものでも良く(この場合特にマルチコアファイバコネクタと呼ぶ場合がある)、それぞれ別の光ファイバによるものでも良い。 The present invention has been made in view of such problems, and a multi-core fiber connector that can be connected to other multi-core fibers, or a multi-core optical connector that can arrange an optical fiber core wire with high accuracy, and the same. An object of the present invention is to provide an optical connector connection structure. In the present invention, the multi-fiber optical connector is an optical connector having a plurality of cores in one connector, and the plurality of cores may be multi-core fibers (in this case, particularly called multi-core fiber connectors). In some cases, each may be a separate optical fiber.
 前述した目的を達成するため、第1の発明は、多心光コネクタであって、複数のコアを有するマルチコアファイバまたは複数の光ファイバ心線のバンドル構造を保持する第1のフェルールを具備し、前記第1のフェルールには、前記マルチコアファイバまたは前記バンドル構造に対応する孔と、前記孔の両側部に形成されるガイド機構と、が形成され、前記マルチコアファイバまたは前記バンドル構造が前記孔の内部に固定されることを特徴とする多心光コネクタである。 In order to achieve the above-described object, the first invention is a multi-fiber optical connector comprising a first ferrule that holds a multi-core fiber having a plurality of cores or a bundle structure of a plurality of optical fiber core wires, The first ferrule is formed with a hole corresponding to the multi-core fiber or the bundle structure, and guide mechanisms formed on both sides of the hole, and the multi-core fiber or the bundle structure is inside the hole. It is a multi-fiber optical connector characterized by being fixed to.
 前記孔は円形の穴であり、前記孔には、マルチコアファイバが固定されてもよい。この場合、前記マルチコアファイバのコアピッチをdμm、前記孔の中心と、前記ガイド機構までの距離をLμm、とした場合において、L≧10dであることが望ましい。 The hole is a circular hole, and a multi-core fiber may be fixed to the hole. In this case, it is desirable that L ≧ 10d when the core pitch of the multi-core fiber is d μm and the distance between the center of the hole and the guide mechanism is L μm.
 前記マルチコアファイバは、キャピラリに挿入された状態で、前記第1のフェルールに固定されてもよい。この場合、前記キャピラリの端面が、前記第1のフェルールの端面から突出してもよい。また、前記マルチコアファイバの端面が、予め球面研磨されていてもよい。 The multi-core fiber may be fixed to the first ferrule while being inserted into a capillary. In this case, the end face of the capillary may protrude from the end face of the first ferrule. The end surface of the multi-core fiber may be spherically polished in advance.
 前記キャピラリの端面から、前記マルチコアファイバが突出し、前記第1のフェルールの内部に前記キャピラリの端部が位置し、前記第1のフェルールの端面には、前記キャピラリが露出せず、前記マルチコアファイバが露出してもよい。 The multi-core fiber protrudes from the end face of the capillary, the end of the capillary is located inside the first ferrule, the capillary is not exposed at the end face of the first ferrule, and the multi-core fiber is It may be exposed.
 前記キャピラリの端面から、前記マルチコアファイバが突出し、前記第1のフェルールの内部に前記キャピラリの一方の端部が位置し、前記第1のフェルールの先端面には、前記キャピラリが露出せず、前記マルチコアファイバが露出し、前記キャピラリの他方の端部は、前記第1のフェルールの後端面側に露出するとともに、複数の光ファイバ心線が他のキャピラリに固定されたファイババンドルと接合され、前記ファイババンドルのそれぞれの前記光ファイバ心線と前記マルチコアファイバのそれぞれのコアとが光接続されてもよい。 The multi-core fiber protrudes from the end face of the capillary, one end of the capillary is located inside the first ferrule, and the capillary is not exposed on the front end face of the first ferrule, The multi-core fiber is exposed, the other end of the capillary is exposed to the rear end face side of the first ferrule, and a plurality of optical fiber cores are bonded to a fiber bundle fixed to another capillary, The optical fiber cores of the fiber bundles and the cores of the multi-core fibers may be optically connected.
 前記マルチコアファイバの外周は、被覆部またはキャピラリで覆われており、前記被覆部または前記キャピラリの半径は、前記マルチコアファイバのコアピッチの2倍以上であってもよい。 The outer periphery of the multi-core fiber may be covered with a covering portion or a capillary, and the radius of the covering portion or the capillary may be twice or more the core pitch of the multi-core fiber.
 前記孔は、略正六角形であり、前記孔には、前記孔の形状に対応する複数の光ファイバ心線が最密配置で略正六角形にバンドル化されたバンドル構造が固定されてもよい。 The hole may have a substantially regular hexagonal shape, and a bundle structure in which a plurality of optical fiber core wires corresponding to the shape of the hole are bundled into a substantially regular hexagonal shape in a close-packed arrangement may be fixed to the hole.
 前記第1のフェルールの端面において、前記孔の六角形のサイズは、前記バンドル構造の外接六角形のサイズよりも大きく、前記孔の内面と前記外接六角形との間には隙間が形成され、前記バンドル構造は、前記孔の六角形の任意の角部の方向に押しつけられた状態で、前記孔の内部に固定されることが望ましい。 At the end face of the first ferrule, the hexagonal size of the hole is larger than the size of the circumscribed hexagon of the bundle structure, and a gap is formed between the inner surface of the hole and the circumscribed hexagon, The bundle structure is preferably fixed inside the hole while being pressed in the direction of an arbitrary corner of the hexagon of the hole.
 前記孔は、前記第1のフェルールの上下方向であって、前記ガイド機構の併設方向と垂直な方向に角部が来るように形成され、前記バンドル構造が、前記孔に対して上下いずれかの方向に押しつけられた状態で前記孔に固定されてもよい。 The hole is formed such that a corner portion is in a vertical direction of the first ferrule and is perpendicular to the direction in which the guide mechanism is provided, and the bundle structure is either up or down with respect to the hole. You may fix to the said hole in the state pressed on the direction.
 前記孔は、前記第1のフェルールの内部において前記孔のサイズが変化するテーパ部を有し、前記孔の前記バンドル構造の挿入側から、前記孔の前記バンドル構造の端面の露出側に向かって、前記孔が縮径されることが望ましい。 The hole has a tapered portion in which the size of the hole is changed inside the first ferrule, from the insertion side of the bundle structure of the hole toward the exposed side of the end surface of the bundle structure of the hole. It is desirable that the hole has a reduced diameter.
 前記孔の前記バンドル構造の挿入側から、前記孔の前記バンドル構造の端面の露出側に向かって、前記孔が縮径されることが望ましい。 It is desirable that the diameter of the hole is reduced from the insertion side of the bundle structure of the hole toward the exposed side of the end surface of the bundle structure of the hole.
 前記孔は、前記第1のフェルールに複数形成され、それぞれの孔に複数の前記バンドル構造がそれぞれ配置されてもよい。 A plurality of the holes may be formed in the first ferrule, and a plurality of the bundle structures may be disposed in the respective holes.
 第1の発明によれば、ガイド機構を有するいわゆるMTコネクタ(Mechanically Transferable Splicing Connector)として使用可能であり、従来のコネクタと同様に取り扱うことが可能である。したがって、取り扱い性に優れる。特に、MTコネクタと同様の構成は、例えば中心に配置されるマルチコアファイバやバンドル構造に対して、両側部の離れた位置に一対のガイド機構が形成されるため、ガイド機構における回転方向のずれによる影響が、中心部では小さくなる。したがって、このような構造は、精密な配置が要求されるマルチコアファイバに特に有利である。 According to the first invention, it can be used as a so-called MT connector (Mechanically Transferable Connector) having a guide mechanism, and can be handled in the same manner as a conventional connector. Therefore, it is excellent in handleability. In particular, the structure similar to the MT connector is formed by a shift in the rotation direction of the guide mechanism because a pair of guide mechanisms are formed at positions apart from both sides with respect to, for example, a multi-core fiber or bundle structure disposed in the center. The effect is reduced at the center. Therefore, such a structure is particularly advantageous for multi-core fibers that require precise placement.
 また、マルチコアファイバのコアピッチをdμm、孔の中心とガイド機構までの距離をLμmとした場合において、ガイド機構の接続対象との寸法精度が1μm以下とすれば、L≧10dとすることで、マルチコアファイバの最大コアピッチが60μmであり、ガイド機構における回転ずれが1μm生じた場合でも、マルチコアファイバのコアの位置ずれが、0.1μm以下とすることができる。 Further, when the core pitch of the multi-core fiber is d μm and the distance between the center of the hole and the guide mechanism is L μm, if the dimensional accuracy with the connection target of the guide mechanism is 1 μm or less, L ≧ 10 d is obtained. Even when the maximum core pitch of the fiber is 60 μm and the rotational deviation in the guide mechanism is 1 μm, the core positional deviation of the multi-core fiber can be 0.1 μm or less.
 ここで、コアの位置ずれが0.1μm以下であれば、伝送損失を0.002dB以下に抑えることができる。なお、回転方向のみではなく、X軸方向およびY軸方向へのずれの可能性はあるが、その場合でも、0.1μm程度のずれであれば、伝送損失は0.04dB程度であり、大きな影響はない。 Here, if the core misalignment is 0.1 μm or less, the transmission loss can be suppressed to 0.002 dB or less. Although there is a possibility of deviation not only in the rotation direction but also in the X axis direction and the Y axis direction, even in this case, if the deviation is about 0.1 μm, the transmission loss is about 0.04 dB, which is large. There is no effect.
 また、マルチコアファイバがキャピラリに挿入された場合には、外径が大きくなるため取り扱い性に優れる。また、回転調芯を行う際に、キャピラリの外径が大きいため、キャピラリ外周面の回転移動距離に対して、マルチコアファイバのコアの回転移動距離を小さくすることができる。したがって、マルチコアファイバの回転の微調整が容易である。したがって、高精度な調芯作業が可能である。 In addition, when a multi-core fiber is inserted into a capillary, the outer diameter becomes large and the handling is excellent. In addition, since the outer diameter of the capillary is large when rotational alignment is performed, the rotational movement distance of the core of the multi-core fiber can be made smaller than the rotational movement distance of the outer peripheral surface of the capillary. Therefore, fine adjustment of the rotation of the multi-core fiber is easy. Therefore, highly accurate alignment work is possible.
 また、マルチコアファイバをキャピラリに固定した状態で、予め端面球面研磨を行うことで、例えば、接続対象の他のマルチコアファイバと、PC(Physical Contact)接続することが可能となる。 In addition, by performing end surface spherical polishing in a state where the multi-core fiber is fixed to the capillary, for example, it is possible to connect another multi-core fiber to be connected to a PC (Physical Contact).
 また、キャピラリの先端を第1のフェルールから突出させることで、端面近傍でキャピラリを回転させることができる。したがって、フェルールの長さを短くすることができる。 Also, the capillary can be rotated in the vicinity of the end face by protruding the tip of the capillary from the first ferrule. Therefore, the length of the ferrule can be shortened.
 また、フェルールには、光ファイバ心線の最密配置形状である略六角形の孔が形成されれば、マルチコアファイバと接続可能なバンドル構造による多心コネクタを得ることができる。この際、最密配置で光ファイバ心線がバンドルされたバンドル構造は、当該孔に挿入されて固定される。したがって、光ファイバ心線の位置精度が高い。 In addition, if the ferrule is formed with a substantially hexagonal hole, which is a close-packed arrangement of optical fiber core wires, a multi-fiber connector having a bundle structure that can be connected to a multi-core fiber can be obtained. At this time, the bundle structure in which the optical fiber core wires are bundled in the closest arrangement is inserted into the hole and fixed. Therefore, the positional accuracy of the optical fiber core wire is high.
 また、バンドル構造の外接正六角形とフェルールの孔の内面との間には、隙間が形成されることで、バンドル構造(光ファイバ心線)を孔に挿入することが容易である。また、バンドル構造を孔の角部に押し付けることで、バンドル構造の最密配置が維持されたまま、フェルールに対する正確な位置にバンドル構造を配置することができる。 Also, a gap is formed between the circumscribed regular hexagon of the bundle structure and the inner surface of the hole of the ferrule, so that the bundle structure (optical fiber core wire) can be easily inserted into the hole. Further, by pressing the bundle structure against the corner of the hole, the bundle structure can be arranged at an accurate position with respect to the ferrule while maintaining the close-packed arrangement of the bundle structure.
 また、孔の六角形の向きを、フェルールの上下方向に角部が来るように形成することで、バンドル構造を角部に押し付けることが容易となる。 Moreover, by forming the hexagonal direction of the holes so that the corners come in the vertical direction of the ferrule, the bundle structure can be easily pressed against the corners.
 また、フェルールの内部において、孔のサイズが変化するテーパ部を形成し、バンドル構造の挿入側の孔のサイズを大きくすることで、バンドル構造(光ファイバ心線)の孔への挿入性が向上する。また、バンドル構造は、内部のテーパ形状によって露出面側において正規の位置に誘導され、高い位置精度でバンドル構造をフェルールに配置することができる。 In addition, by forming a tapered part that changes the size of the hole inside the ferrule and increasing the size of the hole on the insertion side of the bundle structure, insertion into the hole of the bundle structure (optical fiber core wire) is improved. To do. Further, the bundle structure is guided to a normal position on the exposed surface side by the internal tapered shape, and the bundle structure can be arranged on the ferrule with high positional accuracy.
 また、一つのフェルールに、複数の孔を形成し、それぞれの孔にバンドル構造を配置することで、高い密度で光ファイバ心線を配置し、他のマルチコアファイバ等と接続することができる。 Also, by forming a plurality of holes in one ferrule and arranging a bundle structure in each hole, it is possible to arrange the optical fiber core wires with high density and connect to other multi-core fibers or the like.
 第2の発明は、第1の発明にかかる多心光コネクタと、マルチコアファイバコネクタとの接合構造であって、前記マルチコアファイバコネクタは、他のマルチコアファイバと、他のマルチコアファイバを保持する第2のフェルールと、を具備し、前記第2のフェルールには、前記他のマルチコアファイバが固定され、前記他のマルチコアファイバの両側部に形成されるガイド機構と、前記多心光コネクタのガイド機構とが嵌合して接続され、前記他のマルチコアファイバの各コアが、前記マルチコアファイバの各コアまたは前記バンドル構造を構成する前記光ファイバ心線の各コアと光接続されることを特徴とする光コネクタ接続構造である。 2nd invention is the joining structure of the multi-core optical connector concerning 1st invention, and a multi-core fiber connector, Comprising: The said multi-core fiber connector is the 2nd which hold | maintains another multi-core fiber and another multi-core fiber. And the second ferrule has the other multi-core fiber fixed thereto, a guide mechanism formed on both sides of the other multi-core fiber, and a guide mechanism of the multi-fiber optical connector; Are connected to each other, and each core of the other multi-core fiber is optically connected to each core of the multi-core fiber or each core of the optical fiber core wire constituting the bundle structure. It is a connector connection structure.
 第2の発明によれば、マルチコアファイバとマルチコアファイバ同士または、マルチコアファイバと複数の光ファイバ心線がバンドルされたバンドル構造とを容易に接続することができる。 According to the second invention, it is possible to easily connect multi-core fibers and multi-core fibers or a bundle structure in which multi-core fibers and a plurality of optical fiber cores are bundled.
 本発明によれば、マルチコアファイバとの接続が可能であり、精度良く光ファイバ心線を配置可能な多心光コネクタおよびこれを用いた光コネクタ接続構造を提供することができる。 According to the present invention, it is possible to provide a multi-core optical connector that can be connected to a multi-core fiber and can arrange optical fiber core wires with high accuracy, and an optical connector connection structure using the same.
多心光コネクタ20を示す図。The figure which shows the multi-core optical connector 20. FIG. 多心光コネクタ20の正面図。The front view of the multi-fiber optical connector 20. FIG. 図3(a)、図3(b)はそれぞれ多心光コネクタ20におけるキャピラリ33先端の状態を示す図。3A and 3B are views showing the state of the tip of the capillary 33 in the multi-fiber optical connector 20, respectively. 図4(a)は、多心光コネクタ20の調心方法を示す図、図4(b)は、多心光コネクタ20aの調心方法を示す図。4A is a diagram showing a method for aligning the multi-fiber optical connector 20, and FIG. 4B is a diagram showing a method for aligning the multi-fiber optical connector 20a. 多心光コネクタ1を示す図であり、図5(a)は斜視図、図5(b)は図5(a)のA-A線断面図。5A and 5B are diagrams showing the multi-fiber optical connector 1, in which FIG. 5A is a perspective view and FIG. 5B is a cross-sectional view taken along line AA in FIG. 図6(a)は多心光コネクタ1の正面図、図6(b)は図6(a)のB部拡大図。6A is a front view of the multi-fiber optical connector 1, and FIG. 6B is an enlarged view of a portion B in FIG. 6A. バンドル構造9の構築方法を示す図であって、図7(a)は正面図、図7(b)は断面図。It is a figure which shows the construction method of the bundle structure 9, Comprising: Fig.7 (a) is a front view, FIG.7 (b) is sectional drawing. 図8(a)は多心光コネクタ1aの正面図、図8(b)は図8(a)のE部拡大図。8A is a front view of the multi-fiber optical connector 1a, and FIG. 8B is an enlarged view of a portion E in FIG. 8A. 多心光コネクタ1bの正面図。The front view of the multi-fiber optical connector 1b. 図10(a)は多心光コネクタ1cの正面図、図10(b)は多心光コネクタ1dの正面図。FIG. 10A is a front view of the multi-fiber optical connector 1c, and FIG. 10B is a front view of the multi-fiber optical connector 1d. 図11(a)は多心光コネクタ1eの正面図、図11(b)は多心光コネクタ1fの正面図。FIG. 11A is a front view of the multi-fiber optical connector 1e, and FIG. 11B is a front view of the multi-fiber optical connector 1f. 図12(a)は多心光コネクタ20bを示す図、図12(b)は多心光コネクタ20cを示す図。FIG. 12A shows a multi-fiber optical connector 20b, and FIG. 12B shows a multi-fiber optical connector 20c.
 以下、本発明の実施の形態にかかる多心光コネクタ20について説明する。図1は多心光コネクタ20を示す斜視図、図2は正面図である。多心光コネクタ20は、フェルール23、マルチコアファイバ25、キャピラリ29等から構成される。 Hereinafter, the multi-fiber optical connector 20 according to the embodiment of the present invention will be described. FIG. 1 is a perspective view showing a multi-fiber optical connector 20, and FIG. 2 is a front view. The multi-fiber optical connector 20 includes a ferrule 23, a multi-core fiber 25, a capillary 29, and the like.
 第1のフェルールであるフェルール23には孔21が形成される。また、マルチコアファイバ25は、キャピラリ29に固定される。孔21の形状は、キャピラリ29の外形に対応し、孔21にはキャピラリ29に固定されたマルチコアファイバ25が固定される。また、フェルール23の端面において、マルチコアファイバ25の両側部にはガイド機構であるガイド穴27が形成される。したがって、接続対象のコネクタ等に形成されるガイドピンと接続時に位置決めをすることができる。また、ガイド穴27には、図示を省略したガイドピンを挿入することもできる。また、フェルール23の上面(側面)には、孔21と連通する孔24が形成される。 A hole 21 is formed in the ferrule 23 which is the first ferrule. The multi-core fiber 25 is fixed to the capillary 29. The shape of the hole 21 corresponds to the outer shape of the capillary 29, and the multi-core fiber 25 fixed to the capillary 29 is fixed to the hole 21. In addition, on the end face of the ferrule 23, guide holes 27 that are guide mechanisms are formed on both sides of the multi-core fiber 25. Therefore, positioning can be performed at the time of connection with the guide pin formed on the connector to be connected. A guide pin (not shown) can be inserted into the guide hole 27. In addition, a hole 24 communicating with the hole 21 is formed on the upper surface (side surface) of the ferrule 23.
 なお、キャピラリ29と孔21の固定は、例えば接着剤によって接着すればよい。この場合、孔21の内面に予め接着剤を塗布しておき、キャピラリ29を孔21に挿入してもよいが、キャピラリ29を孔21に挿入した後、接着剤の充填孔である孔24あるいはキャピラリ29と孔21の隙間から、孔21内に接着剤を充填してもよい。 In addition, what is necessary is just to adhere | attach the capillary 29 and the hole 21 with an adhesive agent, for example. In this case, an adhesive may be applied to the inner surface of the hole 21 in advance, and the capillary 29 may be inserted into the hole 21. However, after the capillary 29 is inserted into the hole 21, The hole 21 may be filled with an adhesive from the gap between the capillary 29 and the hole 21.
 マルチコアファイバ25は、複数のコアが所定の間隔で配置され、周囲をクラッドで覆われたファイバである。なお、マルチコアファイバ25は、例えば図示したように全部で7つのコアを有し、マルチコアファイバ25の中心と、その周囲に正六角形の各頂点位置に配置される。すなわち、中心のコアと周囲の6つのコアとは全て一定の間隔となる。また、周囲の6つのコアにおいて、隣り合う互いのコア同士の間隔も同一となる。 The multi-core fiber 25 is a fiber in which a plurality of cores are arranged at predetermined intervals and the periphery is covered with a clad. Note that the multi-core fiber 25 has, for example, a total of seven cores as shown in the figure, and is arranged at the center of the multi-core fiber 25 and at each vertex position of a regular hexagon around the center. That is, the central core and the surrounding six cores are all at a constant interval. Further, in the six surrounding cores, the intervals between adjacent cores are also the same.
 フェルール23の先端面には、マルチコアファイバ25(および、これを保持するキャピラリ29)の端面が露出する。なお、マルチコアファイバ25(キャピラリ29)の端面は、フェルール23の端面と一致するようにフラットに研磨されてもよく、または球面研磨されてもよい。例えば図3(a)に示すように、フェルール23の端面に球面研磨されたマルチコアファイバ25(キャピラリ29)が、露出するようにしても良い。この場合には、マルチコアファイバ25(キャピラリ29)の端面とフェルール23の端面位置は、略一致する。 The end surface of the multi-core fiber 25 (and the capillary 29 holding the same) is exposed at the tip surface of the ferrule 23. Note that the end face of the multi-core fiber 25 (capillary 29) may be polished flat so as to coincide with the end face of the ferrule 23, or may be polished spherically. For example, as shown in FIG. 3A, a spherically polished multi-core fiber 25 (capillary 29) may be exposed on the end face of the ferrule 23. In this case, the end face of the multi-core fiber 25 (capillary 29) and the end face position of the ferrule 23 substantially coincide.
 また、図3(b)に示すように、マルチコアファイバ25(キャピラリ29)の先端を、フェルール23の先端に突出させても良い。なお、この場合には、キャピラリ29をフェルールとして機能させ、フェルール23をフランジ部として機能させることができるが、本発明では、キャピラリ29がフェルール23の端面に突出するものとして説明する。 Further, as shown in FIG. 3B, the tip of the multi-core fiber 25 (capillary 29) may be protruded from the tip of the ferrule 23. In this case, the capillary 29 can function as a ferrule and the ferrule 23 can function as a flange portion. However, in the present invention, description will be made assuming that the capillary 29 protrudes from the end face of the ferrule 23.
 マルチコアファイバ25の各コアは、フェルール23に対して、所定の位置に配置される。すなわち、フェルール23のガイド穴27を基準として、マルチコアファイバ25の回転方向の位置が決められる。 Each core of the multi-core fiber 25 is arranged at a predetermined position with respect to the ferrule 23. That is, the position of the multi-core fiber 25 in the rotational direction is determined with reference to the guide hole 27 of the ferrule 23.
 多心光コネクタ20において、マルチコアファイバ25の回転方向の位置決めを行うためには、多心光コネクタ20の正面から、拡大カメラでコアの配置を確認するか、または、他のマルチコアファイバ等と光接続させた状態で検出光が最大となるように調心すればよい。具体的には、図4(a)に示すように、キャピラリ29を孔21に挿通した状態で、キャピラリ29を回転させることで(図中F方向)、マルチコアファイバ25の回転調心を行うことができる。 In the multi-core optical connector 20, in order to position the multi-core fiber 25 in the rotational direction, the arrangement of the core is confirmed with a magnifying camera from the front of the multi-core optical connector 20, or other multi-core fibers and the like are used. Alignment may be performed so that the detection light becomes maximum in the connected state. Specifically, as shown in FIG. 4A, the multi-core fiber 25 is rotationally aligned by rotating the capillary 29 with the capillary 29 inserted through the hole 21 (direction F in the figure). Can do.
 また、図4(b)に示す多心光コネクタ20aのように、フェルール23の一部に、溝31を設けても良い。溝31は、フェルール23の上面であって、フェルール23の幅方向に渡って形成される。フェルール23の上面からの溝31の深さは、フェルール23の上面から孔21までの距離よりも深い。したがって、溝31を横切るように、キャピラリ29の一部が露出する。 Further, a groove 31 may be provided in a part of the ferrule 23 as in the multi-fiber optical connector 20a shown in FIG. The groove 31 is formed on the upper surface of the ferrule 23 in the width direction of the ferrule 23. The depth of the groove 31 from the upper surface of the ferrule 23 is deeper than the distance from the upper surface of the ferrule 23 to the hole 21. Therefore, a part of the capillary 29 is exposed so as to cross the groove 31.
 多心光コネクタ20aにおいては、マルチコアファイバ25の回転調心を、溝31に露出したキャピラリ29で行うことができる。すなわち、溝31に露出したキャピラリ29の一部を回転させることで(図中F方向)、マルチコアファイバ25の回転調心を行うことができる。 In the multi-fiber optical connector 20a, the rotation alignment of the multi-core fiber 25 can be performed with the capillary 29 exposed in the groove 31. That is, the rotation alignment of the multi-core fiber 25 can be performed by rotating a part of the capillary 29 exposed in the groove 31 (direction F in the figure).
 なお、キャピラリ29の半径は、マルチコアファイバ25のコアピッチの2倍以上であることが望ましい。例えば、コアピッチが50μmのマルチコアファイバ25に対して、キャピラリ29の外径が200μm(半径100μm)とすると、キャピラリ29の外周面の移動距離1μmに対し、コアの移動距離が0.5μmとなる。したがって、倍の精度で回転位置の調整が可能である。 It should be noted that the radius of the capillary 29 is preferably at least twice the core pitch of the multi-core fiber 25. For example, if the outer diameter of the capillary 29 is 200 μm (radius 100 μm) with respect to the multi-core fiber 25 having a core pitch of 50 μm, the moving distance of the core is 0.5 μm with respect to the moving distance 1 μm of the outer peripheral surface of the capillary 29. Accordingly, the rotational position can be adjusted with double accuracy.
 また、上述した例では、マルチコアファイバ25をキャピラリ29に挿入して固定した例を示したが、キャピラリ29は必ずしも必要ない。例えば、マルチコアファイバ25の外周に被覆部が形成されていれば、当該被覆部をフェルール23に固定してもよい。この場合であっても、被覆部の半径はコアピッチの2倍以上であることが望ましい。また、フェルール23の端面において被覆が除去されたマルチコアファイバ25を固定する事も可能であり、この場合、より精密な位置決めが可能となる。 In the above example, the multi-core fiber 25 is inserted into the capillary 29 and fixed, but the capillary 29 is not necessarily required. For example, if a coating portion is formed on the outer periphery of the multicore fiber 25, the coating portion may be fixed to the ferrule 23. Even in this case, it is desirable that the radius of the covering portion is twice or more the core pitch. It is also possible to fix the multi-core fiber 25 from which the coating has been removed at the end face of the ferrule 23, and in this case, more precise positioning is possible.
 以上、本実施の形態によれば、フェルール23にはガイド穴27が形成されるため、MTコネクタタイプの多心光コネクタ20を得ることができる。したがって、当該コネクタと接続可能な構造を有すれば、マルチコアファイバなどの多心コネクタと接続が容易である。 As described above, according to the present embodiment, since the guide hole 27 is formed in the ferrule 23, the MT connector type multi-fiber optical connector 20 can be obtained. Therefore, if it has a structure that can be connected to the connector, it can be easily connected to a multi-core connector such as a multi-core fiber.
 次に、多心光コネクタ20と接続が可能な多心光コネクタ1について説明する。図5は多心光コネクタ1を示す図であり、図5(a)は多心光コネクタ1の斜視図、図5(b)は図5(a)のA-A線断面図である。 Next, the multi-fiber optical connector 1 that can be connected to the multi-fiber optical connector 20 will be described. FIG. 5 is a view showing the multi-fiber optical connector 1, FIG. 5 (a) is a perspective view of the multi-fiber optical connector 1, and FIG. 5 (b) is a cross-sectional view taken along line AA of FIG.
 フェルール5には、孔7が設けられる。孔7は、略正六角形の形状であり、フェルール5を前後方向に貫通する。孔7の内部にはバンドル構造9が挿入され、バンドル構造9は孔7の内面に固定される。すなわち、バンドル構造9がフェルール5に固定される。また、フェルール5の上面(側面)には、孔7と連通する孔6が形成される。 The ferrule 5 is provided with a hole 7. The hole 7 has a substantially regular hexagonal shape and penetrates the ferrule 5 in the front-rear direction. A bundle structure 9 is inserted into the hole 7, and the bundle structure 9 is fixed to the inner surface of the hole 7. That is, the bundle structure 9 is fixed to the ferrule 5. A hole 6 communicating with the hole 7 is formed on the upper surface (side surface) of the ferrule 5.
 なお、バンドル構造9と孔7の固定は、例えば接着剤によって接着すればよい。この場合、孔7の内面に予め接着剤を塗布しておき、バンドル構造9を孔7に挿入してもよいが、バンドル構造9を孔7に挿入した後、接着剤の充填孔である孔6から、孔7内に接着剤を充填してもよい。 In addition, what is necessary is just to adhere | attach the bundle structure 9 and the hole 7 with an adhesive agent, for example. In this case, an adhesive may be applied to the inner surface of the hole 7 in advance, and the bundle structure 9 may be inserted into the hole 7. However, after the bundle structure 9 is inserted into the hole 7, the hole that is a filling hole for the adhesive The hole 7 may be filled with an adhesive.
 バンドル構造9は、複数の光ファイバ心線3によって構成される。図5(b)に示すように、フェルール5の孔7には、後方から光ファイバ心線3が挿入される。なお、光ファイバ心線3は被覆部を有するが、光ファイバ心線3の端部においては、当該被覆部が除去される。したがって、バンドル構造9は、被覆部が除去された領域で形成される。 The bundle structure 9 is composed of a plurality of optical fiber cores 3. As shown in FIG. 5B, the optical fiber core wire 3 is inserted into the hole 7 of the ferrule 5 from the rear. In addition, although the optical fiber core wire 3 has a coating | coated part, the said coating | coated part is removed in the edge part of the optical fiber core wire 3. FIG. Therefore, the bundle structure 9 is formed in a region where the covering portion is removed.
 孔7の内部には、フェルール5の後方から前方に向かって徐々に縮径するテーパ部が形成される。すなわち、光ファイバ心線3の挿入側は、孔7の径が大きく、先端側に行くにつれて、孔7の径が小さくなる。孔7の後端部における内径は、バンドル構造9に対して十分に大きい。したがって、バンドル構造9(または光ファイバ心線3)の挿入性に優れる。なお、バンドル構造9を挿入する側の孔7の内径は、バンドル構造9を構成する全ての本数の光ファイバ心線3(被覆部を含む)が挿入可能である。したがって、フェルール5の内部において、被覆部の端部(被覆除去部との境界)を配置することができる。 Inside the hole 7, a tapered portion that gradually decreases in diameter from the rear to the front of the ferrule 5 is formed. That is, on the insertion side of the optical fiber core wire 3, the diameter of the hole 7 is large, and the diameter of the hole 7 becomes smaller toward the distal end side. The inner diameter at the rear end of the hole 7 is sufficiently larger than the bundle structure 9. Accordingly, the insertability of the bundle structure 9 (or the optical fiber core wire 3) is excellent. In addition, the inner diameter of the hole 7 on the side where the bundle structure 9 is inserted can insert all the number of optical fiber core wires 3 (including the covering portion) constituting the bundle structure 9. Therefore, the end portion of the covering portion (boundary with the covering removing portion) can be disposed inside the ferrule 5.
 なお、図示した例では、7本の光ファイバ心線3で構成されたバンドル構造9を示すが、本発明はこれに限られない。光ファイバ心線3を略六角形に最密配置することが可能であれば、全19本など光ファイバ心線3の本数は問わない。また、中心に配置する光ファイバの径と外周に配置する光ファイバの径を適宜調整する事で、例えば、1本の光ファイバの周囲に9本の光ファイバを密着して配置した10本のバンドル構造を得ることも可能である。 In the illustrated example, the bundle structure 9 including seven optical fiber cores 3 is shown, but the present invention is not limited to this. As long as the optical fiber cores 3 can be arranged close-packed in a substantially hexagonal shape, the number of the optical fiber cores 3 such as all 19 is not limited. Further, by appropriately adjusting the diameter of the optical fiber disposed at the center and the diameter of the optical fiber disposed at the outer periphery, for example, ten optical fibers arranged in close contact with one optical fiber are arranged. It is also possible to obtain a bundle structure.
 フェルール5の先端面には、バンドル構造9(すなわち、これを構成する全ての光ファイバ心線3)の端面が露出する。この際、バンドル構造9の端面は、フェルール5の先端面と同一面上に形成される。 At the front end surface of the ferrule 5, the end surface of the bundle structure 9 (that is, all the optical fiber core wires 3 constituting this) is exposed. At this time, the end surface of the bundle structure 9 is formed on the same plane as the front end surface of the ferrule 5.
 フェルール5の先端面において、孔7の両側部には、ガイド機構であるガイド穴11が形成される。したがって、接続対象のコネクタ等に形成されるガイドピンと接続時に位置決めをすることができる。また、ガイド穴11には、図示を省略したガイドピンを挿入することもできる。 Guide holes 11 that are guide mechanisms are formed on both sides of the hole 7 on the tip surface of the ferrule 5. Therefore, positioning can be performed at the time of connection with the guide pin formed on the connector to be connected. A guide pin (not shown) can be inserted into the guide hole 11.
 図6(a)は、多心光コネクタ1の正面図である。図6(a)に示すように、本実施形態においては、孔7は、六角形状の対向する一対の角部が、左右方向(ガイド穴11の併設方向)に向くように形成される。 FIG. 6A is a front view of the multi-fiber optical connector 1. As shown to Fig.6 (a), in this embodiment, the hole 7 is formed so that a pair of opposing corner | angular part of hexagon shape may face the left-right direction (coexisting direction of the guide hole 11).
 図6(b)は、図6(a)のB部拡大図である。図6(b)に示すように、バンドル構造9は、接着剤13によって孔7に固定される。ここで、前述のように、光ファイバ心線3は、最密配置で略六角形に配置される。すなわち、バンドル構造9には、バンドル構造9の外周に配置された全ての光ファイバ心線3の外面と接するような外接正六角形15が想定される。 FIG. 6B is an enlarged view of a portion B in FIG. As shown in FIG. 6B, the bundle structure 9 is fixed to the hole 7 with an adhesive 13. Here, as described above, the optical fiber core wires 3 are arranged in a hexagonal shape in a close-packed arrangement. That is, the bundle structure 9 is assumed to be a circumscribed regular hexagon 15 that is in contact with the outer surfaces of all the optical fiber cores 3 arranged on the outer periphery of the bundle structure 9.
 フェルール5の先端面における孔7の略正六角形状の大きさは、外接正六角形15よりもわずかに大きい。したがって、孔7の内面と外接正六角形15との間には隙間が形成される。バンドル構造9は、正面視において、孔7を構成する六角形の所定の角部の方向に押しつけられた状態で孔7に固定される。例えば、図6(b)に示す例では、右下方向(図中矢印C方向)の角部にバンドル構造9が押しつけられた状態で孔7に固定される。したがって、孔7に対する押し付け方向とは逆側の角部において、孔7の内面と外接正六角形15との間の隙間が最も大きくなる。 The size of the substantially regular hexagonal shape of the hole 7 on the tip surface of the ferrule 5 is slightly larger than the circumscribed regular hexagon 15. Therefore, a gap is formed between the inner surface of the hole 7 and the circumscribed regular hexagon 15. The bundle structure 9 is fixed to the hole 7 in a state in which the bundle structure 9 is pressed in the direction of a predetermined corner of the hexagon forming the hole 7 in a front view. For example, in the example shown in FIG. 6B, the bundle structure 9 is fixed to the hole 7 in a state where the bundle structure 9 is pressed to the corner portion in the lower right direction (the direction of arrow C in the figure). Therefore, the gap between the inner surface of the hole 7 and the circumscribed regular hexagon 15 is the largest at the corner opposite to the direction in which the hole 7 is pressed.
 ここで、バンドル構造9の孔7に対する押し付け方向を一定の方向に決めて、これに応じて、フェルール5における孔7の配置をあらかじめ設定しておけば、フェルール5に対するバンドル構造9の端面の配置を一定にすることができる。すなわち、孔7は、フェルール5の中心からバンドル構造9の押し付け方向とは逆方向に僅かにずれた位置に配置される。したがって、バンドル構造9を所定の方向に押し付けた状態で孔7に固定することで、フェルール5の中心にバンドル構造9を配置することができる。したがって、フェルール5に対して、バンドル構造9を構成する各光ファイバ心線3のコアの位置を精度よく配置することができる。 Here, if the pressing direction of the bundle structure 9 against the hole 7 is determined to be a fixed direction, and the arrangement of the hole 7 in the ferrule 5 is set in advance accordingly, the arrangement of the end face of the bundle structure 9 with respect to the ferrule 5 Can be made constant. That is, the hole 7 is arranged at a position slightly shifted from the center of the ferrule 5 in the direction opposite to the pressing direction of the bundle structure 9. Therefore, the bundle structure 9 can be arranged at the center of the ferrule 5 by fixing the bundle structure 9 in the hole 7 while being pressed in a predetermined direction. Therefore, the position of the core of each optical fiber core wire 3 constituting the bundle structure 9 can be accurately arranged with respect to the ferrule 5.
 なお、バンドル構造9を所定の方向の角部に押し付けるには、例えば、以下のようにして行うことができる。まず、フェルール5の先端面からバンドル構造9が突出した状態において、フェルール5の先端面から露出するバンドル構造9とフェルール5の後端から露出する光ファイバ心線3とを、孔7の形成方向に対して平行に維持する。この状態で、押しつけるべき角部の方向にバンドル構造9および光ファイバ心線3の全体を移動させればよい。 In addition, in order to press the bundle structure 9 to the corner | angular part of a predetermined direction, it can carry out as follows, for example. First, in the state where the bundle structure 9 protrudes from the front end surface of the ferrule 5, the bundle structure 9 exposed from the front end surface of the ferrule 5 and the optical fiber core wire 3 exposed from the rear end of the ferrule 5 are formed in the direction in which the holes 7 are formed. Keep parallel to. In this state, the entire bundle structure 9 and the optical fiber core wire 3 may be moved in the direction of the corner to be pressed.
 また、フェルール5の後端から露出する光ファイバ心線3を、押しつけるべき角部とは反対側の角部方向に曲げることで、フェルール5の先端面から露出するバンドル構造9を押しつけるべき角部に対して押しつけることもできる。いずれにしても、バンドル構造9を所定の角部に押し付けた状態で、バンドル構造9を孔7に固定すればよい。 Further, by bending the optical fiber core wire 3 exposed from the rear end of the ferrule 5 in the direction of the corner opposite to the corner to be pressed, the corner portion to press the bundle structure 9 exposed from the front end surface of the ferrule 5. Can be pressed against. In any case, the bundle structure 9 may be fixed to the hole 7 with the bundle structure 9 pressed against a predetermined corner.
 次に、バンドル構造9の構築方法の一例を示す。なお、バンドル構造9は、光ファイバ心線3の端部が互いに接触するように最密に配置した状態を確保できれば、いずれの方法で形成してもよい。 Next, an example of a method for constructing the bundle structure 9 is shown. Note that the bundle structure 9 may be formed by any method as long as it can ensure a state where the end portions of the optical fiber core wires 3 are arranged so as to be in close contact with each other.
 まず、所定本数の光ファイバ心線3の被覆を除去し、フェルール5(または他のキャピラリ等)に挿入する。この際、フェルール5の端部からは、光ファイバ心線3の先端がそれぞれ同一長さだけ出るように(例えば10mm程度)、光ファイバ心線3をフェルール5に挿入する。なお、フェルール5には光ファイバ心線3を仮固定する。 First, the coating of a predetermined number of optical fiber cores 3 is removed and inserted into a ferrule 5 (or other capillary or the like). At this time, the optical fiber core wire 3 is inserted into the ferrule 5 so that the end of the optical fiber core wire 3 protrudes from the end of the ferrule 5 by the same length (for example, about 10 mm). The optical fiber core wire 3 is temporarily fixed to the ferrule 5.
 フェルール5の端部から突出する光ファイバ心線3の先端は、あらかじめ容器に溜められた接着剤17に浸けられる。なお、接着剤17の接着力は弱くてもよいが、例えば100cps以下のごく低粘度のものが望ましい。また、接着剤としては、水ガラス(ゾルゲルガラス)等を用いる事も可能である。 The tip of the optical fiber core 3 that protrudes from the end of the ferrule 5 is immersed in an adhesive 17 that is stored in advance in a container. In addition, although the adhesive force of the adhesive agent 17 may be weak, the thing of the very low viscosity of 100 cps or less is desirable, for example. As the adhesive, water glass (sol-gel glass) or the like can be used.
 図7は接着剤17の表面張力による光ファイバ心線3同士の接着状態を示す概念図で、図7(a)は正面図(簡単のため光ファイバ心線3は2本のみ示す)、図7(b)は断面図である。 FIG. 7 is a conceptual diagram showing the bonding state of the optical fiber cores 3 due to the surface tension of the adhesive 17, FIG. 7 (a) is a front view (for simplicity, only two optical fiber cores 3 are shown), FIG. 7 (b) is a cross-sectional view.
 複数の光ファイバ心線3は、単に束ねられたのみでは、光ファイバ心線3同士の間に隙間が形成される場合がある。しかし、光ファイバ心線3の端部を接着剤17に接触させることで、表面張力(毛細管現象)によって接着剤17が光ファイバ心線3同士の隙間に吸い上げられる。この際、互いの表面張力によって光ファイバ心線3同士が密着される(図中矢印D方向)。 When the plurality of optical fiber cores 3 are simply bundled, a gap may be formed between the optical fiber cores 3. However, by bringing the end of the optical fiber core 3 into contact with the adhesive 17, the adhesive 17 is sucked into the gap between the optical fibers 3 by surface tension (capillary phenomenon). At this time, the optical fiber core wires 3 are brought into close contact with each other by the surface tension (in the direction of arrow D in the figure).
 すなわち、図7(b)に示すように、光ファイバ心線3同士の間に多少不均一な隙間が形成されていても、その隙間には接着剤17が吸い上げられて、光ファイバ心線3同士が密着される。この際、光ファイバ心線3同士が確実に最密配置となる。このような効果は、本発明のように極めて微細な光ファイバ心線3(例えばΦ50μm以下)に対して特に有効である。 That is, as shown in FIG. 7B, even if a slightly non-uniform gap is formed between the optical fiber cores 3, the adhesive 17 is sucked into the gap, and the optical fiber core 3 Adhere to each other. At this time, the optical fiber cores 3 are surely arranged in a close-packed manner. Such an effect is particularly effective for an extremely fine optical fiber core wire 3 (for example, Φ50 μm or less) as in the present invention.
 次に、バンドル化された光ファイバ心線3を孔7に接着剤13(図6(b))で接着する。接着剤13によって、孔7とバンドル構造9との隙間およびファイバ心線同士の隙間が埋められ、バンドル構造9と孔7とが接着される。次いで、フェルール5より突出する光ファイバ心線3およびフェルール5先端面の一部を研磨する。以上により多心光コネクタ1が形成される。 Next, the bundled optical fiber core wire 3 is bonded to the hole 7 with an adhesive 13 (FIG. 6B). The gap between the hole 7 and the bundle structure 9 and the gap between the fiber core wires are filled with the adhesive 13, and the bundle structure 9 and the hole 7 are bonded. Next, the optical fiber core wire 3 protruding from the ferrule 5 and a part of the ferrule 5 tip surface are polished. Thus, the multi-fiber optical connector 1 is formed.
 なお、本実施例では先に複数の光ファイバ心線3をフェルール5に挿通する手順としたが、本発明はこれに限られない。例えば、本実施例と同様の方法により複数の光ファイバ心線3を密着して固定し、しかる後にフェルール5に挿入し接着剤で固定しても良い。この場合、複数の光ファイバ心線3を筒状の仮配列部材に挿入した状態で接着剤17に浸す事で、確実に細密構造に固定する事が可能となる。 In this embodiment, the procedure for inserting the plurality of optical fiber core wires 3 through the ferrule 5 is described above, but the present invention is not limited to this. For example, a plurality of optical fiber cores 3 may be closely attached and fixed by the same method as in this embodiment, and then inserted into the ferrule 5 and fixed with an adhesive. In this case, by immersing the optical fiber core wires 3 in the adhesive 17 in a state where the optical fiber core wires 3 are inserted into the cylindrical temporary array member, it is possible to securely fix the optical fiber core wires 3 to the fine structure.
 以上、本実施の形態によれば、フェルール5にはガイド穴11が形成されるため、MTコネクタタイプの多心光コネクタ1を得ることができる。したがって、当該コネクタと接続可能な構造を有すれば、マルチコアファイバとも接続が容易である。 As described above, according to the present embodiment, since the guide hole 11 is formed in the ferrule 5, the MT connector type multi-fiber optical connector 1 can be obtained. Therefore, if it has a structure that can be connected to the connector, it can be easily connected to the multi-core fiber.
 また、バンドル構造9に対し、孔7のサイズが大きいため、光ファイバ心線等の挿入性に優れる。特に、孔7が、挿入側から端面側に向かって縮径するように、内部にテーパ部を有するため、光ファイバ心線等の挿入作業性に優れるとともに、挿入後の端面におけるバンドル構造9の位置精度も高い。また、バンドル構造9は、最密配置された状態で、孔7の所定の角部に押しつけられるため、フェルール5に対して精度良く配置することができる。 Moreover, since the size of the hole 7 is larger than that of the bundle structure 9, the insertion property of the optical fiber core wire is excellent. In particular, since the hole 7 has a tapered portion so that the diameter thereof decreases from the insertion side toward the end face side, the insertion workability of the optical fiber core wire and the like is excellent, and the bundle structure 9 on the end face after the insertion is provided. Position accuracy is also high. Further, since the bundle structure 9 is pressed against a predetermined corner portion of the hole 7 in a close-packed state, the bundle structure 9 can be placed with high accuracy with respect to the ferrule 5.
 次に、バンドル構造を用いた他の実施の形態について説明する。図8は、多心光コネクタ1aを示す図であり、図8(a)は正面図、図8(b)は、図8(a)のE部拡大図である。なお、以下の説明において、多心光コネクタ1と同様の機能を奏する構成については、図5~図6と同様の符号を付し、重複する説明を省略する。 Next, another embodiment using a bundle structure will be described. 8A and 8B are diagrams showing the multi-fiber optical connector 1a, in which FIG. 8A is a front view, and FIG. 8B is an enlarged view of a portion E in FIG. 8A. In the following description, components having the same functions as those of the multi-fiber optical connector 1 are denoted by the same reference numerals as those in FIGS. 5 to 6, and redundant descriptions are omitted.
 多心光コネクタ1aは、多心光コネクタ1と略同様の構成であるが、フェルール5aに対する孔7の向きが異なる。多心光コネクタ1aでは、孔7は、フェルール5aの上下方向(ガイド穴11の併設方向とは垂直な方向)に対向する角部がそれぞれ向くように配置される。すなわち、多心光コネクタ1における孔7の向きに対し、多心光コネクタ1aにおける孔7の向きは30°回転した向きとなる。 The multi-fiber optical connector 1a has substantially the same configuration as the multi-fiber optical connector 1, but the direction of the hole 7 with respect to the ferrule 5a is different. In the multi-fiber optical connector 1a, the holes 7 are arranged so that the corners facing the vertical direction of the ferrule 5a (the direction perpendicular to the direction in which the guide holes 11 are provided) face each other. That is, the direction of the hole 7 in the multi-fiber optical connector 1a is rotated by 30 ° with respect to the direction of the hole 7 in the multi-fiber optical connector 1.
 前述の通り、バンドル構造9の外接正六角形に対し、孔7の略正六角形はわずかに大きい。したがって、バンドル構造9の外接正六角形と、孔7の内面には隙間が形成される。 As described above, the substantially regular hexagon of the hole 7 is slightly larger than the circumscribed regular hexagon of the bundle structure 9. Therefore, a gap is formed between the circumscribed regular hexagon of the bundle structure 9 and the inner surface of the hole 7.
 本実施形態では、バンドル構造9は、孔7の上下方向(図では下方向であって、矢印E方向)に押しつけられる。すなわち、バンドル構造9は、上下方向の角部に押しつけられる。この状態で、バンドル構造9を孔7に固定すればよい。 In the present embodiment, the bundle structure 9 is pressed in the vertical direction of the hole 7 (downward in the figure and in the direction of arrow E). That is, the bundle structure 9 is pressed against the corners in the vertical direction. In this state, the bundle structure 9 may be fixed to the hole 7.
 多心光コネクタ1aによれば、多心光コネクタ1と同様の効果を得ることができる。また、フェルール5aの上下方向であって、所定の方向にバンドル構造9を押し付けることで、フェルール5aに対してバンドル構造9を精度良く配置することができる。また、フェルール5aの上下方向にバンドル構造9を押し付けるため、方向が分かりやすく作業性に優れる。 According to the multi-fiber optical connector 1a, the same effect as the multi-fiber optical connector 1 can be obtained. Further, by pressing the bundle structure 9 in the vertical direction of the ferrule 5a in a predetermined direction, the bundle structure 9 can be accurately arranged with respect to the ferrule 5a. Further, since the bundle structure 9 is pressed in the vertical direction of the ferrule 5a, the direction is easily understood and the workability is excellent.
 なお、多心光コネクタ1、1aでは、接続対象となる前述したマルチコアファイバ25に対応するバンドル構造9が形成される。すなわち、バンドル構造9は、接続対象となるマルチコアファイバ25のコア数の光ファイバ心線3からなる。また、バンドル構造9は、接続対象となるマルチコアファイバ25のコアピッチに対応して光ファイバ心線3が配置される。 In the multi-fiber optical connectors 1 and 1a, a bundle structure 9 corresponding to the multi-core fiber 25 to be connected is formed. That is, the bundle structure 9 is composed of the optical fiber cores 3 having the number of cores of the multi-core fiber 25 to be connected. In the bundle structure 9, the optical fiber core wires 3 are arranged corresponding to the core pitch of the multi-core fiber 25 to be connected.
 多心光コネクタ20と多心光コネクタ1、1aとは互いに対応する形態を有する。すなわち、フェルール23は、フェルール5に対応し、一対のガイド穴27は、フェルール5におけるガイド穴11と対応する。したがって、ガイド穴11とガイド穴27とは、例えばガイドピン等によるガイド機構によって、接続時に、互いのフェルール5、23の位置を正確に合わせることができる。 The multi-fiber optical connector 20 and the multi-fiber optical connectors 1 and 1a have forms corresponding to each other. That is, the ferrule 23 corresponds to the ferrule 5, and the pair of guide holes 27 corresponds to the guide hole 11 in the ferrule 5. Accordingly, the guide hole 11 and the guide hole 27 can accurately align the positions of the ferrules 5 and 23 when connected by a guide mechanism such as a guide pin.
 また、フェルール23に対するマルチコアファイバ25の配置とバンドル構造9とは予め調心される。例えば、中心コアの位置が調心されるとともに、中心コアに対する周囲のコア(図では6個)の配置として、対向する2つのコアが上下方向(ガイド穴27の併設方向と垂直な方向)に向くように配置される。 Also, the arrangement of the multi-core fiber 25 with respect to the ferrule 23 and the bundle structure 9 are aligned in advance. For example, the position of the central core is aligned, and the two surrounding cores are arranged in the vertical direction (direction perpendicular to the direction in which the guide hole 27 is provided) as the arrangement of the surrounding cores (six in the figure) relative to the central core It is arranged to face.
 以上のように、バンドル構造9を有する多心光コネクタ1、1aと、マルチコアファイバ25を有する多心光コネクタ20を接続することで、容易にマルチコアファイバ25と光ファイバ心線3とを接続することができる。この際、多心光コネクタ1、1aおよび多心光コネクタ20は、従来から使用されるMTコネクタと同様にして用いることができる。したがって、取り扱い性に優れる。 As described above, by connecting the multi-core optical connector 1, 1 a having the bundle structure 9 and the multi-core optical connector 20 having the multi-core fiber 25, the multi-core fiber 25 and the optical fiber core wire 3 can be easily connected. be able to. At this time, the multi-fiber optical connectors 1 and 1a and the multi-fiber optical connector 20 can be used in the same manner as conventionally used MT connectors. Therefore, it is excellent in handleability.
 また、バンドル構造9は、フェルール5に対して精度良く配置することができるため、マルチコアファイバ25をフェルール23に対して調心すれば、マルチコアファイバ25とバンドル構造9とを精度よく接続することができる。すなわち、接続作業性に優れ、精度良く接続可能な光コネクタ接続構造を得ることができる。 Further, since the bundle structure 9 can be accurately arranged with respect to the ferrule 5, if the multi-core fiber 25 is aligned with the ferrule 23, the multi-core fiber 25 and the bundle structure 9 can be accurately connected. it can. That is, an optical connector connection structure that is excellent in connection workability and can be connected with high accuracy can be obtained.
 なお、バンドル構造9を有する多心光コネクタ1同士や、マルチコアファイバ25を有する多心光コネクタ20同士を接続することができることは言うまでもない。 In addition, it cannot be overemphasized that the multi-fiber optical connectors 1 which have the bundle structure 9, and the multi-fiber optical connectors 20 which have the multi-core fiber 25 can be connected.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The embodiment of the present invention has been described above with reference to the accompanying drawings, but the technical scope of the present invention is not affected by the above-described embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
 例えば、多心光コネクタ1、1aでは、フェルール5に対して一つの孔7が形成されたが、本発明はこれに限られない。図9は多心光コネクタ1bを示す図である。 For example, in the multi-fiber optical connector 1, 1a, one hole 7 is formed in the ferrule 5, but the present invention is not limited to this. FIG. 9 is a diagram showing the multi-fiber optical connector 1b.
 図9に示した多心光コネクタ1bでは、フェルール5bに対して孔7が複数配置される。孔7には、それぞれバンドル構造9が固定される。なお、孔7の個数は、図示した例に限られない。また、孔7の配置は、ガイド穴11の併設方向に一列に配置してもよく、複数列に配置してもよい。 In the multi-fiber optical connector 1b shown in FIG. 9, a plurality of holes 7 are arranged with respect to the ferrule 5b. A bundle structure 9 is fixed to each of the holes 7. The number of holes 7 is not limited to the illustrated example. The holes 7 may be arranged in a line in the direction in which the guide holes 11 are provided, or may be arranged in a plurality of lines.
 多心光コネクタ1bによれば、より多くの光ファイバ心線3を固定することができる。このため、高密度に光ファイバ心線3を保持することができる。なお、この場合には、接続対象となるマルチコアファイバを有する多心光コネクタにおいても、同様に複数のマルチコアファイバを配置すればよい。 According to the multi-fiber optical connector 1b, more optical fiber core wires 3 can be fixed. For this reason, the optical fiber core wire 3 can be held with high density. In this case, a plurality of multi-core fibers may be similarly arranged in a multi-core optical connector having multi-core fibers to be connected.
 また、本発明の多心光コネクタにおけるガイド機構は、ガイド孔等によるものに限られない。例えば、図10(a)に示す多心光コネクタ1cのように、略矩形のフェルール5cを用いれば、その側面(またはこの上下面)が、ガイド機構19aとして機能する。すなわち、他のコネクタ等との接続の際、互いのフェルール5cにおける側面または上下面の向きを一致させることで、内部のバンドル構造9の回転方向の位置を決めることができる。 Further, the guide mechanism in the multi-fiber optical connector of the present invention is not limited to the one using a guide hole or the like. For example, when a substantially rectangular ferrule 5c is used as in the multi-fiber optical connector 1c shown in FIG. 10A, the side surface (or the upper and lower surfaces) functions as the guide mechanism 19a. That is, when connecting with another connector or the like, the position of the inner bundle structure 9 in the rotational direction can be determined by matching the directions of the side surfaces or the upper and lower surfaces of the ferrules 5c.
 同様に、図10(b)に示す多心光コネクタ1dのように、略円形のフェルール5dの一部が切欠かれて、平坦部が形成されてもよい。この場合には、この切欠き部がガイド機構19bとなる。ガイド機構19bによっても、多心光コネクタ1dの回転方向の位置を決めることができる。 Similarly, as in the multi-fiber optical connector 1d shown in FIG. 10B, a part of the substantially circular ferrule 5d may be cut off to form a flat portion. In this case, this notch becomes the guide mechanism 19b. The position of the multi-fiber optical connector 1d in the rotational direction can also be determined by the guide mechanism 19b.
 また、図11(a)に示す多心光コネクタ1eのように、略円形のフェルール5eの一部が切欠かれて、キー溝が形成されてもよい。この場合には、このキー溝がガイド機構19cとなる。ガイド機構19cによっても、多心光コネクタ1eの回転方向の位置を決めることができる。 Further, like the multi-fiber optical connector 1e shown in FIG. 11A, a part of the substantially circular ferrule 5e may be cut out to form a keyway. In this case, this keyway becomes the guide mechanism 19c. The position of the multi-fiber optical connector 1e in the rotational direction can also be determined by the guide mechanism 19c.
 また、図11(b)に示す多心光コネクタ1fのように、略円形のフェルール5fの一部に突起が形成されてもよい。この場合には、この突起がガイド機構19dとなる。ガイド機構19dによっても、多心光コネクタ1fの回転方向の位置を決めることができる。 Further, as in the multi-fiber optical connector 1f shown in FIG. 11B, a protrusion may be formed on a part of the substantially circular ferrule 5f. In this case, this protrusion becomes the guide mechanism 19d. The position of the multi-fiber optical connector 1f in the rotational direction can also be determined by the guide mechanism 19d.
 なお、前述の例で示したバンドル構造9を用いた各多心光コネクタに対し、バンドル構造9に代えて、マルチコアファイバ25(キャピラリ29)を配置してもよい。 Note that a multi-core fiber 25 (capillary 29) may be arranged in place of the bundle structure 9 for each multi-fiber optical connector using the bundle structure 9 shown in the above example.
 また、多心光コネクタ20等において、キャピラリ29をフェルール23の先端まで設けなくてもよい。例えば、図12(a)に示すように、マルチコアファイバ25(被覆部付)の先端部の被覆部を除去し、露出したマルチコアファイバ25をキャピラリ29に挿通して固定する。この際、マルチコアファイバ25は、キャピラリ29の先端から突出する。 Further, in the multi-fiber optical connector 20 or the like, the capillary 29 may not be provided up to the tip of the ferrule 23. For example, as shown in FIG. 12A, the covering portion at the tip of the multi-core fiber 25 (with a covering portion) is removed, and the exposed multi-core fiber 25 is inserted into a capillary 29 and fixed. At this time, the multi-core fiber 25 protrudes from the tip of the capillary 29.
 すなわち、マルチコアファイバ25の被覆部の除去長さが、キャピラリ29の長さよりも長くなるようにする。したがって、キャピラリ29の端部は、フェルール23内部に位置し、キャピラリ29の端部は、フェルール23の端面に露出しない。なお、マルチコアファイバ25の端面は、クリーバによって平面にカットされる。 That is, the removal length of the covering portion of the multi-core fiber 25 is made longer than the length of the capillary 29. Therefore, the end of the capillary 29 is located inside the ferrule 23, and the end of the capillary 29 is not exposed on the end face of the ferrule 23. Note that the end face of the multi-core fiber 25 is cut into a flat surface by a cleaver.
 フェルール23の内部には、キャピラリ29の外径とマルチコアファイバ25の外径に対応した段差付の孔が設けられる。すなわち、孔は、フェルール23の光接続側(図中左側)の前端面側にマルチコアファイバ25の外径に対応した第1部分と、フェルール23の後端面側(図中右側)にキャピラリ29の外径に対応した第2部分とを有する。なお、キャピラリ29に代えてマルチコアファイバ25の被覆部であってもよく、また、マルチコアファイバ25に代えてバンドル構造としてもよい。 In the ferrule 23, a stepped hole corresponding to the outer diameter of the capillary 29 and the outer diameter of the multi-core fiber 25 is provided. That is, the hole is formed on the front end face side of the ferrule 23 on the optical connection side (left side in the figure) with the first portion corresponding to the outer diameter of the multi-core fiber 25 and on the rear end face side of the ferrule 23 (right side in the figure) with the capillary 29. And a second portion corresponding to the outer diameter. In addition, it may replace with the capillary 29 and may be the coating | coated part of the multi-core fiber 25, It is good also as a bundle structure instead of the multi-core fiber 25.
 なお、図12(a)に示す例では、フェルール23の後端側にキャピラリ29が突出しているが、キャピラリ29の一部が、フェルール23の上下面または側面から露出し、回転が可能であれば、必ずしもキャピラリ29は、フェルール23の後端側に突出させなくてもよい。例えば、孔(第2部分)に達するように、フェルール23の外周面に溝を形成して、溝から内部のキャピラリ29等を露出させてもよい。マルチコアファイバ25の回転調芯後、紫外線硬化樹脂等によってマルチコアファイバ25をフェルール23に固定すればよい。 In the example shown in FIG. 12A, the capillary 29 protrudes from the rear end side of the ferrule 23. However, a part of the capillary 29 is exposed from the upper and lower surfaces or side surfaces of the ferrule 23 and can be rotated. For example, the capillary 29 does not necessarily have to protrude to the rear end side of the ferrule 23. For example, a groove may be formed on the outer peripheral surface of the ferrule 23 so as to reach the hole (second portion), and the internal capillary 29 and the like may be exposed from the groove. After the multi-core fiber 25 is rotationally aligned, the multi-core fiber 25 may be fixed to the ferrule 23 with an ultraviolet curable resin or the like.
 このような形態にする事で、マルチコアファイバ25の位置をガイド機構に対してより精密に位置決めする事が可能となる。 By adopting such a configuration, the position of the multi-core fiber 25 can be more precisely positioned with respect to the guide mechanism.
 また、マルチコアファイバ25の端面は、フェルール23の端面と一致させてキャピラリ29の回転調芯を行ってもよく、または、マルチコアファイバ25の端面をフェルール23の端面から突出させた状態で、キャピラリ29の回転調芯を行ってもよい。マルチコアファイバ25の端面を突出させた場合には、マルチコアファイバ25の固定後に、突出したマルチコアファイバ25の端部を、切断または研磨すればよい。 Further, the end face of the multi-core fiber 25 may coincide with the end face of the ferrule 23, and the capillary 29 may be rotationally aligned. Alternatively, the end face of the multi-core fiber 25 may protrude from the end face of the ferrule 23. Rotational alignment may be performed. When the end face of the multicore fiber 25 is protruded, the end of the protruded multicore fiber 25 may be cut or polished after the multicore fiber 25 is fixed.
 また、マルチコアファイバ25の端面を、フェルール23の端面からわずか(2μm~10μm)突出させた状態とすることで、マルチコアファイバ同士をPC接続することが可能となる。 In addition, by making the end face of the multi-core fiber 25 slightly protrude (2 μm to 10 μm) from the end face of the ferrule 23, the multi-core fibers can be connected to each other by PC.
 本実施例において、キャピラリ29を用いずに、被覆付きのマルチコアファイバをフェルール後端部に露出させ、被覆部をキャピラリと同様の役割で使用しても良い。この場合、フェルールの端面においては被覆が除去されたマルチコアファイバを配置させ、フェルールの後端部においては被覆付きのマルチコアファイバを露出させ、この被覆部を回転して回転調心を行う。このとき、被覆の半径がマルチコアファイバのコアピッチの2倍以上であれば、キャピラリを用いた場合と同様の効果を得る事が可能である。 In this embodiment, the coated multi-core fiber may be exposed at the rear end of the ferrule without using the capillary 29, and the coated portion may be used in the same role as the capillary. In this case, the coated multi-core fiber is disposed on the end face of the ferrule, the coated multi-core fiber is exposed at the rear end of the ferrule, and the coated section is rotated to perform rotational alignment. At this time, if the coating radius is at least twice the core pitch of the multi-core fiber, it is possible to obtain the same effect as when a capillary is used.
 さらに、図4(b)で図示したものと同様に、フェルール23に溝(図示しない)を設けて溝部から露出するキャピラリまたは被覆部を回転しても良い。この場合、フェルール23に設けられる溝は段差付孔の後端部側に設けられることは言うまでもない。 Further, similarly to the one illustrated in FIG. 4B, a groove (not shown) may be provided in the ferrule 23 to rotate the capillary or the covering portion exposed from the groove portion. In this case, it goes without saying that the groove provided in the ferrule 23 is provided on the rear end side of the stepped hole.
 また、図12(b)に示すように、バンドル構造9を用いてもよい。例えば、マルチコアファイバ25をキャピラリ29に挿通して固定し、キャピラリ29をフェルール23に対して回転調芯後固定する。また、キャピラリ33に複数の光ファイバ心線3を挿通し、例えば最密配置した状態で固定し、ファイババンドル35を形成する。その後、端面を研磨したキャピラリ33とキャピラリ29とを対向させて、ファイババンドル35とマルチコアファイバ25とを回転調芯する。この際、他のMTタイプコネクタとフェルール23と接合することで、回転調心時の光パワーのモニターが容易となる。 Also, as shown in FIG. 12B, a bundle structure 9 may be used. For example, the multi-core fiber 25 is inserted into the capillary 29 and fixed, and the capillary 29 is fixed to the ferrule 23 after rotational alignment. Further, the plurality of optical fiber core wires 3 are inserted into the capillary 33 and fixed, for example, in a close-packed state to form a fiber bundle 35. Then, the capillary 33 and the capillary 29 whose end surfaces are polished are made to face each other, and the fiber bundle 35 and the multi-core fiber 25 are rotationally aligned. At this time, it is easy to monitor the optical power at the time of rotational alignment by joining the other MT type connector and the ferrule 23.
1、1a、1b、1c、1d、1e、1f………多心光コネクタ
3………光ファイバ心線
5、5a、5b、5c、5d、5e、5f………フェルール
7………コア
9………バンドル構造
11………ガイド穴
13………接着剤
15………外接正六角形
17………接着剤
19a、19b、19c、19d………ガイド機構
20、20a………多心光コネクタ
21………孔
23………フェルール
25………マルチコアファイバ
27………ガイド穴
29………キャピラリ
31………溝
33………キャピラリ
35………ファイババンドル
 
1, 1 a, 1 b, 1 c, 1 d, 1 e, 1 f... Multi-fiber optical connector 3... Optical fiber core wires 5, 5 a, 5 b, 5 c, 5 d, 5 f,. 9 ......... Bundled structure 11 ......... Guide hole 13 ......... Adhesive 15 ......... Surrounding regular hexagon 17 ...... Adhesives 19a, 19b, 19c, 19d ......... Guide mechanisms 20, 20a ......... Many Optical fiber connector 21 ......... hole 23 ......... ferrule 25 ......... multi-core fiber 27 ......... guide hole 29 ......... capillary 31 ......... groove 33 ......... capillary 35 ......... fiber bundle

Claims (16)

  1.  多心光コネクタであって、
     複数のコアを有するマルチコアファイバまたは複数の光ファイバ心線のバンドル構造を保持する第1のフェルールを具備し、
     前記第1のフェルールには、前記マルチコアファイバまたは前記バンドル構造に対応する孔と、前記孔の両側部に形成されるガイド機構と、が形成され、
     前記マルチコアファイバまたは前記バンドル構造が前記孔の内部に固定されることを特徴とする多心光コネクタ。
    A multi-fiber optical connector,
    A first ferrule holding a multi-core fiber having a plurality of cores or a bundle structure of a plurality of optical fiber cores;
    In the first ferrule, a hole corresponding to the multi-core fiber or the bundle structure, and guide mechanisms formed on both sides of the hole are formed,
    The multi-core optical connector, wherein the multi-core fiber or the bundle structure is fixed inside the hole.
  2.  前記孔は円形の穴であり、
     前記孔には、前記マルチコアファイバが固定されることを特徴とする請求項1記載の多心光コネクタ。
    The hole is a circular hole;
    The multi-fiber optical connector according to claim 1, wherein the multi-core fiber is fixed in the hole.
  3.  前記マルチコアファイバのコアピッチをdμm、前記孔の中心と、前記ガイド機構までの距離をLμm、とした場合において、L≧10dであることを特徴とする請求項2記載の多心光コネクタ。 3. The multi-fiber optical connector according to claim 2, wherein L ≧ 10d when the core pitch of the multi-core fiber is d μm and the distance between the center of the hole and the guide mechanism is L μm.
  4.  前記マルチコアファイバは、キャピラリに挿入された状態で、前記第1のフェルールに固定されることを特徴とする請求項2に記載の多心光コネクタ。 The multi-core optical connector according to claim 2, wherein the multi-core fiber is fixed to the first ferrule while being inserted into a capillary.
  5.  前記キャピラリの端面が、前記第1のフェルールの端面から突出することを特徴とする請求項4記載の多心光コネクタ。 The multi-fiber optical connector according to claim 4, wherein an end face of the capillary protrudes from an end face of the first ferrule.
  6.  前記キャピラリの端面が、予め球面研磨されていることを特徴とする請求項4記載の多心光コネクタ。 The multi-fiber optical connector according to claim 4, wherein the end face of the capillary is polished in advance to a spherical surface.
  7.  前記キャピラリの端面から、前記マルチコアファイバが突出し、前記第1のフェルールの内部に前記キャピラリの端部が位置し、前記第1のフェルールの端面には、前記キャピラリが露出せず、前記マルチコアファイバが露出することを特徴とする請求項4記載の多心光コネクタ。 The multi-core fiber protrudes from the end face of the capillary, the end of the capillary is located inside the first ferrule, the capillary is not exposed at the end face of the first ferrule, and the multi-core fiber is The multi-fiber optical connector according to claim 4, wherein the multi-fiber optical connector is exposed.
  8.  前記キャピラリの端面から、前記マルチコアファイバが突出し、前記第1のフェルールの内部に前記キャピラリの一方の端部が位置し、前記第1のフェルールの先端面には、前記キャピラリが露出せず、前記マルチコアファイバが露出し、
     前記キャピラリの他方の端部は、前記第1のフェルールの後端面側に露出するとともに、複数の光ファイバ心線が他のキャピラリに固定されたファイババンドルと接合され、
     前記ファイババンドルのそれぞれの前記光ファイバ心線と前記マルチコアファイバのそれぞれのコアとが光接続されることを特徴とする請求項4記載の多心光コネクタ。
    The multi-core fiber protrudes from the end face of the capillary, the one end of the capillary is located inside the first ferrule, and the capillary is not exposed on the front end face of the first ferrule, The multi-core fiber is exposed,
    The other end of the capillary is exposed to the rear end face side of the first ferrule, and a plurality of optical fiber core wires are bonded to a fiber bundle fixed to another capillary,
    5. The multi-fiber optical connector according to claim 4, wherein the optical fiber core wire of each of the fiber bundles and each core of the multi-core fiber are optically connected.
  9.  前記マルチコアファイバの外周は、被覆部またはキャピラリで覆われており、前記被覆部または前記キャピラリの半径は、前記マルチコアファイバのコアピッチの2倍以上であることを特徴とする請求項2記載の多心光コネクタ。 3. The multi-core according to claim 2, wherein an outer periphery of the multi-core fiber is covered with a covering portion or a capillary, and a radius of the covering portion or the capillary is at least twice a core pitch of the multi-core fiber. Optical connector.
  10.  前記マルチコアファイバまたは前記バンドル構造は、その先端が一部露出するように被覆部またはキャピラリで覆われており、
     前記孔は、前記フェルールの光接続側の前端面側に前記マルチコアファイバまたは前記バンドル構造の外径に対応した第1部分と、前記フェルールの後端面側に前記被覆部またはキャピラリの外径に対応した第2部分とを有し、
     前記フェルールの接続側の前端面には、前記被覆部またはキャピラリが露出せず、かつ、前記マルチコアファイバまたは前記バンドル構造が露出し、
     前記フェルールの後端面には、前記被覆部またはキャピラリで覆われた前記マルチコアファイバまたは前記バンドル構造が露出し、または、前記孔の前記第2部分に達する溝が設けられ、前記溝から前記被覆部またはキャピラリが露出し、
     前記被覆部またはキャピラリの半径は、前記マルチコアファイバのコアピッチの2倍以上である事を特徴とする請求項2記載の多心光コネクタ。
    The multi-core fiber or the bundle structure is covered with a covering portion or a capillary so that the tip thereof is partially exposed,
    The hole corresponds to a first portion corresponding to the outer diameter of the multi-core fiber or the bundle structure on the front end surface side of the optical connection side of the ferrule, and corresponds to an outer diameter of the covering portion or the capillary on the rear end surface side of the ferrule. The second part,
    The front end face on the connection side of the ferrule does not expose the covering portion or capillary, and the multi-core fiber or the bundle structure is exposed,
    On the rear end face of the ferrule, the multi-core fiber or the bundle structure covered with the covering portion or the capillary is exposed, or a groove reaching the second portion of the hole is provided, and the covering portion extends from the groove. Or the capillary is exposed,
    The multi-fiber optical connector according to claim 2, wherein a radius of the covering portion or the capillary is at least twice a core pitch of the multi-core fiber.
  11.  前記孔は、略正六角形であり、
     前記孔には、前記孔の形状に対応する複数の光ファイバ心線が最密配置で略正六角形にバンドル化された前記バンドル構造が固定されることを特徴とする請求項1記載の多心光コネクタ。
    The hole is substantially a regular hexagon;
    2. The multi-core according to claim 1, wherein the bundle structure in which a plurality of optical fiber core wires corresponding to the shape of the hole are bundled into a substantially regular hexagon in a close-packed manner is fixed to the hole. Optical connector.
  12.  前記第1のフェルールの端面において、前記孔の六角形のサイズは、前記バンドル構造の外接六角形のサイズよりも大きく、前記孔の内面と前記外接六角形との間には隙間が形成され、
     前記バンドル構造は、前記孔の六角形の任意の角部の方向に押しつけられた状態で、前記孔の内部に固定されることを特徴とする請求項11記載の多心光コネクタ。
    In the end face of the first ferrule, the hexagonal size of the hole is larger than the size of the circumscribed hexagon of the bundle structure, and a gap is formed between the inner surface of the hole and the circumscribed hexagon,
    12. The multi-fiber optical connector according to claim 11, wherein the bundle structure is fixed in the hole while being pressed in the direction of an arbitrary corner of the hexagon of the hole.
  13.  前記孔は、前記第1のフェルールの上下方向であって、前記ガイド機構の併設方向と垂直な方向に角部が来るように形成され、前記バンドル構造が、前記孔に対して上下いずれかの方向に押しつけられた状態で前記孔に固定されることを特徴とする請求項12記載の多心光コネクタ。 The hole is formed such that a corner portion is in a vertical direction of the first ferrule and is perpendicular to the direction in which the guide mechanism is provided, and the bundle structure is either up or down with respect to the hole. The multi-fiber optical connector according to claim 12, wherein the multi-fiber optical connector is fixed to the hole while being pressed in a direction.
  14.  前記孔は、前記第1のフェルールの内部において前記孔のサイズが変化するテーパ部を有し、
     前記孔の前記バンドル構造の挿入側から、前記孔の前記バンドル構造の端面の露出側に向かって、前記孔が縮径されることを特徴とする請求項11記載の多心光コネクタ。
    The hole has a tapered portion in which the size of the hole changes inside the first ferrule,
    The multi-fiber optical connector according to claim 11, wherein the diameter of the hole is reduced from an insertion side of the bundle structure of the hole toward an exposed side of an end surface of the bundle structure of the hole.
  15.  前記孔は、前記第1のフェルールに複数形成され、それぞれの前記孔に複数の前記バンドル構造がそれぞれ配置されることを特徴とする請求項11記載の多心光コネクタ。 12. The multi-fiber optical connector according to claim 11, wherein a plurality of the holes are formed in the first ferrule, and a plurality of the bundle structures are respectively disposed in the holes.
  16.  請求項1記載の多心光コネクタと、マルチコアファイバコネクタとの接合構造であって、
     前記マルチコアファイバコネクタは、
     他のマルチコアファイバと、
     他のマルチコアファイバを保持する第2のフェルールと、
     を具備し、
     前記第2のフェルールには、前記他のマルチコアファイバが固定され、前記他のマルチコアファイバの両側部に形成されるガイド機構と、前記多心光コネクタのガイド機構とが嵌合して接続され、
     前記他のマルチコアファイバの各コアが、前記マルチコアファイバの各コアまたは前記バンドル構造を構成する前記光ファイバ心線の各コアと光接続されることを特徴とする光コネクタ接続構造。
     
    A multi-core optical connector according to claim 1 and a multi-core fiber connector.
    The multi-core fiber connector is
    With other multi-core fibers,
    A second ferrule holding another multi-core fiber;
    Comprising
    The other multi-core fiber is fixed to the second ferrule, and a guide mechanism formed on both sides of the other multi-core fiber and a guide mechanism of the multi-fiber optical connector are fitted and connected,
    Each core of the other multi-core fiber is optically connected to each core of the multi-core fiber or each core of the optical fiber core wire constituting the bundle structure.
PCT/JP2013/063360 2012-05-14 2013-05-14 Multicore optical connector, optical connector connection structure WO2013172322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515625A JP6157457B2 (en) 2012-05-14 2013-05-14 Multi-fiber optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110645 2012-05-14
JP2012110645 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172322A1 true WO2013172322A1 (en) 2013-11-21

Family

ID=49583727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063360 WO2013172322A1 (en) 2012-05-14 2013-05-14 Multicore optical connector, optical connector connection structure

Country Status (2)

Country Link
JP (2) JP6157457B2 (en)
WO (1) WO2013172322A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111123A1 (en) * 2015-01-07 2016-07-14 ソニー株式会社 Optical connector
WO2016181778A1 (en) * 2015-05-11 2016-11-17 株式会社中原光電子研究所 Optical fiber array and optical switch
JP2019113596A (en) * 2017-12-21 2019-07-11 日本電信電話株式会社 Optical connection structure
JP2020052133A (en) * 2018-09-25 2020-04-02 日本電信電話株式会社 Ferrule for light connector, sleeve, and manufacturing method of ferrule member
JPWO2020145010A1 (en) * 2019-01-08 2021-11-25 住友電気工業株式会社 Manufacturing method of optical connector
CN113866903A (en) * 2021-10-15 2021-12-31 深圳太辰光通信股份有限公司 Optical fiber array connecting device and manufacturing method thereof
CN113960724A (en) * 2021-11-05 2022-01-21 深圳太辰光通信股份有限公司 Optical fiber array connecting device and manufacturing method thereof
WO2023188976A1 (en) * 2022-03-28 2023-10-05 住友電気工業株式会社 Optical connector ferrule and optical connector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042781A1 (en) * 2022-08-24 2024-02-29 株式会社フジクラ Optical connector

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438607U (en) * 1987-09-03 1989-03-08
JPH06148465A (en) * 1992-11-04 1994-05-27 Totoku Electric Co Ltd Optical connector for bundle light guide
JPH1073742A (en) * 1996-07-26 1998-03-17 Lucent Technol Inc Dual fiber ferrule and its formation
JPH1152188A (en) * 1997-07-31 1999-02-26 Kyocera Corp Multi-fiber connector
JPH11133271A (en) * 1997-10-31 1999-05-21 Kyocera Corp Multi-fiber connector
JP2001091785A (en) * 1999-09-27 2001-04-06 Tohoku Electric Power Co Inc Optical coupling and branching element using optical fiber
JP2002517771A (en) * 1998-06-05 2002-06-18 レイアー,ハーゼル 1 × N optical switch
JP2007226119A (en) * 2006-02-27 2007-09-06 Kyocera Corp Mode field converter
JP2008083155A (en) * 2006-09-26 2008-04-10 Yazaki Corp Method of processing terminal of multicore optical fibre and terminal structure
JP2009093054A (en) * 2007-10-11 2009-04-30 Nikon Corp Optical fiber bundle, optical fiber bundle assembly, luminaire, exposure device, and method of manufacturing device
JP2010054703A (en) * 2008-08-27 2010-03-11 Nippon Electric Glass Co Ltd Capillary tube for fixing optical fiber
JP2010286548A (en) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd Multiple core fiber and optical connector including the same
JP2011033719A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Optical fiber connecting component and optical module using the same
JP2011033718A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Optical fiber, tape-like optical fiber, and optical module using the same
US20110229086A1 (en) * 2010-03-16 2011-09-22 Ofs Fitel, Llc Multifiber connectors for multicore optical fiber cables
US20110229085A1 (en) * 2010-03-16 2011-09-22 Ofs Fitel, Llc Simplex connectors for multicore optical fiber cables
JP2012022176A (en) * 2010-07-15 2012-02-02 Hitachi Cable Ltd Multi-core interface
WO2012172869A1 (en) * 2011-06-17 2012-12-20 住友電気工業株式会社 Optical fiber connection method and optical fiber connection structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8510263D0 (en) * 1985-04-23 1985-05-30 British Telecomm Optical fibre arrays
JP2003021749A (en) * 2001-07-10 2003-01-24 Nippon Telegr & Teleph Corp <Ntt> High-speed curing adhesive for assembling optical connector and high-speed assembling method for optical connector using the same
US6654528B2 (en) * 2002-02-19 2003-11-25 Rifocs Corporation Aligning sleeve for a bundle of fiberoptic cylindrical fibers

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438607U (en) * 1987-09-03 1989-03-08
JPH06148465A (en) * 1992-11-04 1994-05-27 Totoku Electric Co Ltd Optical connector for bundle light guide
JPH1073742A (en) * 1996-07-26 1998-03-17 Lucent Technol Inc Dual fiber ferrule and its formation
JPH1152188A (en) * 1997-07-31 1999-02-26 Kyocera Corp Multi-fiber connector
JPH11133271A (en) * 1997-10-31 1999-05-21 Kyocera Corp Multi-fiber connector
JP2002517771A (en) * 1998-06-05 2002-06-18 レイアー,ハーゼル 1 × N optical switch
JP2001091785A (en) * 1999-09-27 2001-04-06 Tohoku Electric Power Co Inc Optical coupling and branching element using optical fiber
JP2007226119A (en) * 2006-02-27 2007-09-06 Kyocera Corp Mode field converter
JP2008083155A (en) * 2006-09-26 2008-04-10 Yazaki Corp Method of processing terminal of multicore optical fibre and terminal structure
JP2009093054A (en) * 2007-10-11 2009-04-30 Nikon Corp Optical fiber bundle, optical fiber bundle assembly, luminaire, exposure device, and method of manufacturing device
JP2010054703A (en) * 2008-08-27 2010-03-11 Nippon Electric Glass Co Ltd Capillary tube for fixing optical fiber
JP2010286548A (en) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd Multiple core fiber and optical connector including the same
JP2011033719A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Optical fiber connecting component and optical module using the same
JP2011033718A (en) * 2009-07-30 2011-02-17 Hitachi Cable Ltd Optical fiber, tape-like optical fiber, and optical module using the same
US20110229086A1 (en) * 2010-03-16 2011-09-22 Ofs Fitel, Llc Multifiber connectors for multicore optical fiber cables
US20110229085A1 (en) * 2010-03-16 2011-09-22 Ofs Fitel, Llc Simplex connectors for multicore optical fiber cables
JP2012022176A (en) * 2010-07-15 2012-02-02 Hitachi Cable Ltd Multi-core interface
WO2012172869A1 (en) * 2011-06-17 2012-12-20 住友電気工業株式会社 Optical fiber connection method and optical fiber connection structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690866B2 (en) 2015-01-07 2020-06-23 Sony Corporation Optical connector
WO2016111123A1 (en) * 2015-01-07 2016-07-14 ソニー株式会社 Optical connector
TWI702806B (en) * 2015-01-07 2020-08-21 日商新力股份有限公司 Optical connector
WO2016181778A1 (en) * 2015-05-11 2016-11-17 株式会社中原光電子研究所 Optical fiber array and optical switch
JPWO2016181778A1 (en) * 2015-05-11 2018-03-08 株式会社中原光電子研究所 Optical fiber array and optical switch
JP2019113596A (en) * 2017-12-21 2019-07-11 日本電信電話株式会社 Optical connection structure
JP2020052133A (en) * 2018-09-25 2020-04-02 日本電信電話株式会社 Ferrule for light connector, sleeve, and manufacturing method of ferrule member
JP7115182B2 (en) 2018-09-25 2022-08-09 日本電信電話株式会社 Ferrule for optical connector, sleeve, and method for manufacturing ferrule member
US11474303B2 (en) 2018-09-25 2022-10-18 Nippon Telegraph And Telephone Corporation Optical connector ferrule, sleeve, and method for manufacturing ferrule member
JPWO2020145010A1 (en) * 2019-01-08 2021-11-25 住友電気工業株式会社 Manufacturing method of optical connector
JP7444076B2 (en) 2019-01-08 2024-03-06 住友電気工業株式会社 How to manufacture optical connectors
CN113866903A (en) * 2021-10-15 2021-12-31 深圳太辰光通信股份有限公司 Optical fiber array connecting device and manufacturing method thereof
CN113960724A (en) * 2021-11-05 2022-01-21 深圳太辰光通信股份有限公司 Optical fiber array connecting device and manufacturing method thereof
WO2023188976A1 (en) * 2022-03-28 2023-10-05 住友電気工業株式会社 Optical connector ferrule and optical connector

Also Published As

Publication number Publication date
JP2017187789A (en) 2017-10-12
JP6157457B2 (en) 2017-07-05
JPWO2013172322A1 (en) 2016-01-12
JP6407360B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6407360B2 (en) Multi-fiber optical connector
US9658410B2 (en) Optical connector, method for aligning multi-core fiber with bundle structure, and fiber arrangement conversion member
JP6034284B2 (en) Bundle structure manufacturing method, fiber connection structure manufacturing method, fiber connection method, fiber connection structure
EP3734338B1 (en) Connection device, optical connector manufacturing device, connection method, and method for manufacturing optical connector
JP5798177B2 (en) Single core connector for multi-core fiber optic cable
JP5491440B2 (en) Fan-out parts for multi-core fiber
WO2013084677A1 (en) Junction structure for multicore optical fiber and method for manufacturing junction structure for multicore optical fiber
US20060245695A1 (en) Multifiber optical connector
CN112255740B (en) Multi-core optical fiber connector and manufacturing method thereof
WO2008023544A1 (en) Light path converting member and connector for light path converted light
WO2012172869A1 (en) Optical fiber connection method and optical fiber connection structure
CN104412143A (en) Optical fiber connector ferrule having curved external alignment surface
JP2016529549A (en) Optical coupler for multi-core fiber
JP2012068535A (en) Multi-core optical connector
CN110178063B (en) Optical fiber holding member, optical connector, and optical coupling structure
JP2016184106A (en) Ferrule with optical fiber, optical connector system, and method for manufacturing the ferrule with optical fiber
JP3908999B2 (en) Optical fiber connection method
CN113050223A (en) Polymer waveguide connector, manufacturing method thereof and connector set
US11934005B2 (en) Method of manufacturing optical connector
JP5547686B2 (en) Fan-out parts for multi-core fiber
WO2019215959A1 (en) Optical fiber array, fiber fixing substrate, and method for manufacturing optical fiber array
US20230176286A1 (en) Optical components and optical connectors having a splice-on connection and method of fabricating the same
US10989882B2 (en) Optical connector
JP6949367B2 (en) Fiber optic connection structure and fiber optic module for connection
CN117388987A (en) Optical fiber bundle structure, optical connection structure, and method for manufacturing optical fiber bundle structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791349

Country of ref document: EP

Kind code of ref document: A1