WO2013172307A1 - Method for producing plate glass - Google Patents

Method for producing plate glass Download PDF

Info

Publication number
WO2013172307A1
WO2013172307A1 PCT/JP2013/063309 JP2013063309W WO2013172307A1 WO 2013172307 A1 WO2013172307 A1 WO 2013172307A1 JP 2013063309 W JP2013063309 W JP 2013063309W WO 2013172307 A1 WO2013172307 A1 WO 2013172307A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mgo
cao
sro
less
Prior art date
Application number
PCT/JP2013/063309
Other languages
French (fr)
Japanese (ja)
Inventor
史朗 谷井
博文 徳永
知之 ▲辻▼村
学 西沢
小池 章夫
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201380024855.1A priority Critical patent/CN104302590B/en
Priority to KR1020147022619A priority patent/KR101974681B1/en
Priority to JP2014515617A priority patent/JPWO2013172307A1/en
Publication of WO2013172307A1 publication Critical patent/WO2013172307A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products
    • C03B25/08Annealing glass products in a continuous way with horizontal displacement of the glass products of glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a plate glass made of non-alkali glass, which is suitable as a substrate glass for various displays and a substrate glass for a photomask.
  • non alkali means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) is 2000 mol ppm or less.
  • the following characteristics have been required for various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface.
  • alkali metal oxide When an alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. Therefore, the content of the alkali metal oxide is extremely low. The oxide content is 2000 mol ppm or less.
  • the strain point When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • a glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
  • BHF buffered hydrofluoric acid, mixed liquid of hydrofluoric acid and ammonium fluoride
  • Patent Document 1 discloses SiO 2 —Al 2 O 3 —SrO glass that does not contain B 2 O 3 , but the temperature required for melting is high, which makes manufacturing difficult.
  • Patent Document 2 discloses a SiO 2 —Al 2 O 3 —SrO crystallized glass that does not contain B 2 O 3 , but the temperature required for melting is high, resulting in difficulty in production.
  • Patent Document 3 discloses a glass containing 0 to 3% by weight of B 2 O 3 , but the strain point of the examples is 690 ° C. or lower.
  • Patent Document 4 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but the average coefficient of thermal expansion at 50 to 300 ° C. exceeds 50 ⁇ 10 ⁇ 7 / ° C.
  • Patent Document 5 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but has a large thermal expansion and a high density.
  • an alkali-free glass described in Patent Document 6 has been proposed.
  • the alkali-free glass described in Patent Document 6 has a high strain point, can be molded by a float process, and is suitable for applications such as a display substrate and a photomask substrate.
  • Japanese Laid-Open Patent Publication No. 62-1113735 Japanese Unexamined Patent Publication No. Sho 62-100450 Japanese Laid-Open Patent Publication No. 4-325435 Japanese Patent Laid-Open No. 5-232458 US Pat. No. 5,326,730 Japanese Patent Laid-Open No. 10-45422 Japanese republished patent 2009-148141
  • the object of the present invention is to solve the above-mentioned drawbacks, to have a high strain point and to have a low viscosity, in particular, a low temperature T 4 at which the glass viscosity is 10 4 dPa ⁇ s, and further a protective layer for preventing wrinkles comprising a sulfate. It is providing the manufacturing method of the plate glass which consists of a non-alkali glass which can be efficiently formed in the glass ribbon after shape
  • the present invention is a plate glass manufacturing method in which a glass raw material is melted to form molten glass, the molten glass is formed into a plate-like glass ribbon with a molding device, and then the glass ribbon is gradually cooled with a slow cooling device,
  • the plate glass is made of the following alkali-free glass,
  • T st the strain point of the alkali-free glass
  • the time during which the atmosphere concentration immediately below the lower surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st ⁇ 50 ° C.
  • a plate glass manufacturing method for supplying SO 2 gas so as to be 30 seconds or longer is provided.
  • the average coefficient of thermal expansion at 50 to 300 ° C. is 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C.
  • the glass viscosity is 10 2 dPa ⁇ s.
  • T 2 is 1710 ° C. or lower
  • the temperature T 4 at which the glass viscosity is 10 4 dPa ⁇ s is 1320 ° C.
  • MgO + CaO + SrO + BaO is 17-21,
  • the present invention also relates to a method for producing plate glass, in which a glass raw material is melted to form molten glass, the molten glass is formed into a plate-like glass ribbon with a forming apparatus, and then the glass ribbon is gradually cooled with a slow cooling apparatus.
  • the plate glass is made of the following alkali-free glass, When the strain point of the alkali-free glass is T st (° C.), the time during which the atmosphere concentration immediately below the lower surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st ⁇ 50 ° C.
  • a plate glass manufacturing method for supplying SO 2 gas so as to be 30 seconds or longer is provided.
  • the average coefficient of thermal expansion at 50 to 300 ° C. is 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C.
  • the glass viscosity is 10 2 dPa ⁇ s.
  • T 2 is 1710 ° C. or lower
  • the temperature T 4 at which the glass viscosity is 10 4 dPa ⁇ s is 1320 ° C.
  • MgO + CaO + SrO + BaO is more than 18.2 and 21 or less
  • MgO / (MgO + CaO + SrO + BaO) is 0.25 or more
  • MgO / (MgO + CaO) is 0.3 or more
  • MgO / (MgO + SrO) is 0.60 or more
  • Al 2 O 3 ⁇ (MgO / (MgO + CaO + SrO + BaO) ) Is alkali-free glass of 5.5 or more.
  • this invention provides the plate glass manufactured with the plate glass manufacturing method of this invention.
  • the protective layer for preventing wrinkles of sulfate can be efficiently and uniformly formed on the glass ribbon, and the supply amount of sulfurous acid gas can be saved. As a result, a high-quality plate glass with less wrinkles can be obtained.
  • the plate glass of the present invention is particularly suitable for a display substrate, a photomask substrate and the like for high strain point applications.
  • the glass raw material prepared so that it might become the following glass composition 1 is used.
  • the glass raw material prepared so that it might become the following glass composition 2 is used.
  • MgO + CaO + SrO + BaO is more than 18.2 and 21 or less
  • MgO / (MgO + CaO + SrO + BaO) is 0.25 or more
  • MgO / (MgO + CaO) is 0.3 or more
  • MgO / (MgO + SrO) is 0.60 or more
  • Al 2 O 3 ⁇ (MgO / (MgO + CaO + SrO + BaO) ) Is alkali-free glass of 5.5 or more.
  • the composition range of each component will be described. If the SiO 2 content is less than 66% (mol%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. Preferably it is 66.5% or more, more preferably 67% or more. If it exceeds 70%, the solubility decreases and the devitrification temperature increases. Preferably it is 69% or less.
  • Al 2 O 3 suppresses the phase separation of the glass, lowers the thermal expansion coefficient and raises the strain point, but if it is less than 12%, this effect does not appear, and other components that increase the expansion increase. As a result, thermal expansion increases. Preferably it is 12.2% or more. If it exceeds 15%, the solubility of the glass may be deteriorated, or the devitrification temperature may be increased. Preferably it is 14.5% or less, More preferably, it is 14% or less, More preferably, it is 13.8% or less.
  • B 2 O 3 can be added up to 1.5% in order to improve the melting reactivity of the glass and lower the devitrification temperature. However, if it is too much, the strain point is lowered. Also, the efficiency in forming a flaw preventing protection layer of sulfate when B 2 O 3 is too large in the glass ribbon is reduced. Therefore, it is preferably 1.3% or less, and more preferably 1% or less. Moreover, it is preferable not to contain substantially considering environmental load.
  • MgO has the characteristics that it does not increase the expansion in alkaline earth and does not excessively lower the strain point, and also improves the solubility.
  • the MgO content is more than 9.5% and not more than 13%. If it is 9.5% or less, the above-mentioned effect due to the addition of MgO is not sufficiently exhibited. However, if it exceeds 13%, the devitrification temperature may increase. 12.5% or less is preferable, 12% or less is more preferable, and 11.5% or less is more preferable.
  • the MgO content is 5 to 9.5%. If it is less than 5%, the above-mentioned effect due to the addition of MgO is not sufficiently exhibited. 6% or more is preferable, and 7% or more is more preferable. However, if it exceeds 9.5%, the devitrification temperature may increase. 9.3% or less is preferable, and 9% or less is more preferable.
  • CaO has the characteristics that it does not increase the expansion in alkaline earth after MgO, and does not excessively lower the strain point, and also improves the solubility.
  • the CaO content is 4 to 9%. If it is less than 4%, the above-described effect due to the addition of CaO is not sufficiently exhibited. However, if it exceeds 9%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ) that is a CaO raw material, may be mixed. It is preferably 7% or less, more preferably 6% or less, and further preferably 5% or less.
  • the CaO content is 4 to 11%.
  • the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ) that is a CaO raw material, may be mixed. It is preferably 10% or less, more preferably 9% or less, further preferably 7% or less, and particularly preferably 6% or less.
  • SrO improves the solubility without increasing the devitrification temperature of the glass, but if less than 0.5%, this effect does not appear sufficiently.
  • Preferably it is 1.0% or more, More preferably, it is 2.0% or more. However, if it exceeds 4.5%, the expansion coefficient may increase. 4.0% or less is more preferable, and 3.5% or less is more preferable.
  • BaO is not essential, but can be contained to improve solubility. However, if it is too much, the expansion and density of the glass are excessively increased, so the content is made 1% or less. Less than 1% is preferable, 0.5% or less is more preferable, and it is preferable not to contain substantially.
  • ZrO 2 may be contained up to 2% in order to lower the glass melting temperature or to promote crystal precipitation during firing. If it exceeds 2%, the glass becomes unstable or the relative dielectric constant ⁇ of the glass increases. Preferably it is 1.5% or less, More preferably, it is 1.0% or less, More preferably, it is 0.5% or less, and it is especially preferable not to contain substantially.
  • the solubility is poor, and the efficiency in forming a sulfate anti-fogging protective layer on the glass ribbon decreases. .
  • it is 18% or more, More preferably, it is 18.5% or more.
  • it exceeds 21% there is a risk that the thermal expansion coefficient cannot be reduced.
  • the solubility is poor, and the efficiency when forming a protective layer for preventing sulfate wrinkles on the glass ribbon is reduced. To do. If it exceeds 21%, there is a risk that the thermal expansion coefficient cannot be reduced. Preferably it is 20% or less.
  • MgO / (MgO + CaO + SrO + BaO) is 0.4 or more, preferably 0.45 or more.
  • MgO / (MgO + CaO) is 0.4 or more, preferably 0.52 or more, more preferably 0.55 or more.
  • MgO / (MgO + SrO) is 0.6 or more, preferably 0.7 or more.
  • the total amount of MgO, CaO, SrO and BaO satisfies the above and satisfies the following three conditions, thereby increasing the strain point without increasing the devitrification temperature.
  • the temperature T 4 at which the viscosity, particularly the glass viscosity, becomes 10 4 dPa ⁇ s can be lowered.
  • MgO / (MgO + CaO + SrO + BaO) is 0.25 or more, preferably 0.3 or more, more preferably 0.4 or more, and further preferably 0.45 or more.
  • MgO / (MgO + CaO) is 0.3 or more, preferably 0.4 or more, more preferably 0.52 or more, and further preferably 0.55 or more.
  • MgO / (MgO + SrO) is 0.6 or more, preferably 0.7 or more.
  • Al 2 O 3 ⁇ (MgO / (MgO + CaO + SrO + BaO) is preferably 5.5 or more because the Young's modulus can be increased. Preferably it is 5.75 or more, More preferably, it is 6.0 or more, More preferably, it is 6.25 or more, Most preferably, it is 6.5 or more.
  • the efficiency at the time of forming the protective layer for wrinkle prevention in a glass ribbon improves by making a glass raw material contain 600 molppm or more of alkali metal oxides.
  • the reason is as follows. Since alkali-free glass does not contain an alkali metal oxide, even if a high-temperature glass ribbon is exposed to the SO 2 gas atmosphere, a protective layer for preventing wrinkles due to precipitation of alkali metal sulfate cannot be formed.
  • alkaline earth metal sulfates are precipitated instead of alkali metal sulfates.
  • the present inventors added a small amount of alkali metal oxide to the glass raw material, thereby increasing the precipitation effect of alkaline earth metal sulfate and improving the efficiency when forming the protective layer for preventing wrinkles on the glass ribbon. I found out.
  • the content of the alkali metal oxide when used as a substrate glass for various displays.
  • the content of the metal oxide is 2000 mol ppm or less, such a problem will not occur. More preferably, it is 1500 mol ppm or less, More preferably, it is 1300 mol ppm or less, Most preferably, it is 1000 mol ppm or less.
  • the glass raw material used in the present invention preferably contains an alkali metal oxide of 1500 mol ppm or less, more preferably 1300 mol ppm or less, more preferably 1000 mol ppm or less, and more preferably 700 to 900 mol ppm.
  • Na 2 O and K 2 O are preferable from the viewpoint of the balance between the effect of improving the efficiency when forming the protective layer for preventing wrinkles on the glass ribbon and the raw material cost, and Na 2 O is more preferable.
  • the glass raw material does not substantially contain P 2 O 5 . Furthermore, in order to facilitate recycling of the glass, it is preferable that the glass raw material does not substantially contain PbO, As 2 O 3 , or Sb 2 O 3 .
  • ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2 can be added to the glass raw material in a total amount of 5% or less.
  • the glass compositions 1 and 2 have relatively low solubility, it is preferable to use the following as raw materials for each component.
  • Silica sand can be used as the silicon source of SiO 2 , but the proportion of particles having a median particle size D 50 of 20 ⁇ m to 27 ⁇ m, a particle size of 2 ⁇ m or less is 0.3% by volume or less, and the particle size is 100 ⁇ m or more.
  • Using 2.5% by volume or less of silica sand can suppress the agglomeration of the silica sand and dissolve it, so that the silica sand can be easily dissolved, and there is less foam, and a plate glass with high homogeneity and flatness can be obtained. This is preferable.
  • particle size in this specification is the equivalent sphere diameter of silica sand (meaning the primary particle size in the present invention), and specifically, in the particle size distribution of the powder measured by the laser diffraction / scattering method.
  • particle size D 50 means that the volume frequency of particles larger than a certain particle size is 50% of the total powder in the particle size distribution of the powder measured by the laser diffraction method.
  • the particle diameter occupied In other words, it refers to the particle diameter when the cumulative frequency is 50% in the particle size distribution of the powder measured by the laser diffraction method.
  • ratio of particles having a particle diameter of 2 ⁇ m or less and “ratio of particles having a particle diameter of 100 ⁇ m or more” in this specification are measured by measuring the particle size distribution by a laser diffraction / scattering method, for example.
  • the median particle diameter D 50 of silica sand is 25 ⁇ m or less, it is more preferable because dissolution of silica sand becomes easier. Further, the ratio of the particles having a particle diameter of 100 ⁇ m or more in the silica sand is particularly preferably 0% because the silica sand is more easily dissolved.
  • Alkaline earth metal source An alkaline earth metal compound can be used as the alkaline earth metal source.
  • Specific examples of the alkaline earth metal compound include carbonates such as MgCO 3 , CaCO 3 , BaCO 3 , SrCO 3 , (Mg, Ca) CO 3 (dolomite), MgO, CaO, BaO, SrO and the like.
  • Oxides and hydroxides such as Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , and Sr (OH) 2 can be exemplified. It is preferable to contain a hydroxide of a similar metal since the undissolved amount of the SiO 2 component at the time of melting the glass raw material is reduced.
  • the undissolved amount of the SiO 2 component contained in the silica sand increases, the undissolved SiO 2 is taken into the bubbles when the bubbles are generated in the molten glass and gathers near the surface layer of the molten glass. As a result, a difference in the composition ratio of SiO 2 occurs between the surface layer of the molten glass and the portion other than the surface layer, so that the homogeneity of the glass is lowered and the flatness is also lowered.
  • the content of the alkaline earth metal hydroxide is preferably 15 to 100 mol% (MO conversion in terms of MO, where M is an alkaline earth metal element). Conversion), more preferably 30 to 100 mol% (MO conversion), and even more preferably 60 to 100 mol% (MO conversion), the undissolved amount of the SiO 2 component at the time of melting the glass raw material is reduced. Therefore, it is more preferable. As the molar ratio of the hydroxide in the alkaline earth metal source increases, the undissolved amount of the SiO 2 component at the time of melting the glass raw material decreases, so the higher the molar ratio of the hydroxide, the better.
  • the alkaline earth metal source a mixture of an alkaline earth metal hydroxide and a carbonate, an alkaline earth metal hydroxide alone, or the like can be used.
  • the carbonate it is preferable to use at least one of MgCO 3 , CaCO 3 and (Mg, Ca) (CO 3 ) 2 (dolomite).
  • the alkaline earth metal hydroxide it is preferable to use at least one of Mg (OH) 2 and Ca (OH) 2 , and it is particularly preferable to use Mg (OH) 2 .
  • the glass composition 1 contains B 2 O 3, as the boron source B 2 O 3, can be used boron compound.
  • specific examples of the boron compound include orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), and anhydrous boric acid (B 2 O 3 ). It is done. In the production of ordinary alkali-free glass, orthoboric acid is used because it is inexpensive and easily available.
  • boric anhydride containing 10 to 100% by mass (in terms of B 2 O 3 ) out of 100% by mass of boron source (in terms of B 2 O 3 ).
  • the boric anhydride is more preferably 20 to 100% by mass, and further preferably 40 to 100% by mass.
  • orthoboric acid is preferable because it is inexpensive and easily available.
  • Manufacture of plate glass is performed in the following procedure, for example.
  • the raw materials of each component are prepared so as to become target components, which are continuously charged into a melting furnace, heated to 1500-1800 ° C. and melted.
  • a plate glass can be obtained by forming this molten glass into a plate-like glass ribbon having a predetermined plate thickness using a molding apparatus, and then cooling the glass ribbon after slow cooling.
  • sulfur dioxide (SO 2 ) gas is supplied to the glass ribbon so as to satisfy the following conditions in the slow cooling furnace.
  • T st strain point of the alkali-free glass
  • the SO 2 gas is supplied so as to achieve the above. If the atmospheric concentration is less than 500 ppm, the precipitation amount of alkaline earth metal sulfate may be reduced. More preferably, it is 1000 ppm or more. If the atmospheric concentration exceeds 20000 ppm, corrosion of the equipment may become a problem.
  • the precipitation amount of an alkaline-earth metal sulfate may decrease. More preferably, it is 1 minute or more.
  • the glass ribbon is preferably brought into contact with the SO 2 gas in an atmosphere having a water vapor dew point of 30 ° C. or higher. If the water vapor dew point is low, the precipitation effect of alkaline earth metal sulfate may not be improved. More preferably, it is 40 degreeC or more, More preferably, it is 50 degreeC or more.
  • the glass of the present invention has a strain point of 710 ° C. or higher, and can suppress thermal shrinkage during panel production. Further, a solid phase crystallization method can be applied as a method for manufacturing a p-Si TFT. In the production method of the present invention, it is possible to supply the SO 2 gas at a higher temperature, it is formed efficiency flaw preventing protection layer consisting of alkaline earth metal sulfates.
  • the strain point is more preferably 715 ° C or higher, and further preferably 720 ° C or higher. Especially preferably, it is 735 degreeC or more. When the strain point is 735 ° C.
  • the strain point of the plate glass of the present invention is 750 ° C. or less.
  • the glass of the present invention has a glass transition point of preferably 760 ° C. or higher, more preferably 770 ° C. or higher, and further preferably 780 ° C. or higher for the same reason as the strain point.
  • the glass of the present invention has an average coefficient of thermal expansion at 50 to 300 ° C. of 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C., has high thermal shock resistance, and can increase productivity during panel manufacture.
  • the average thermal expansion coefficient at 50 to 300 ° C. is preferably 35 ⁇ 10 ⁇ 7 to 40 ⁇ 10 ⁇ 7 / ° C.
  • the specific gravity of the glass of the present invention is preferably 2.65 or less, more preferably 2.64 or less, and further preferably 2.62 or less.
  • the temperature T 2 at which the viscosity ⁇ becomes 10 2 poise is 1710 ° C. or less, preferably less than 1710 ° C., more preferably 1700 ° C. or less, and further preferably 1690 ° C. or less. Therefore, dissolution is relatively easy.
  • the glass of the present invention has a temperature T 4 at which the viscosity ⁇ becomes 10 4 poise is 1320 ° C. or less, preferably 1315 ° C. or less, more preferably 1310 ° C. or less, and further preferably 1305 ° C. or less, which is suitable for float molding. Yes.
  • the glass of the present invention preferably has a devitrification temperature of 1350 ° C. or lower because molding by the float method is easy. Preferably it is 1340 degrees C or less, More preferably, it is 1330 degrees C or less.
  • the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
  • the glass of the present invention preferably has a Young's modulus of 84 GPa or more, more preferably 86 GPa or more, further 88 GPa or more, and further 90 GPa or more.
  • the glass of the present invention preferably has a photoelastic constant of 31 nm / MPa / cm or less. Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 31 nm / MPa / cm or less, this phenomenon can be suppressed small.
  • the glass of the present invention preferably has a photoelastic constant of 25 nm / MPa / cm or less, considering the ease of securing other physical properties.
  • the photoelastic constant can be measured by a disk compression method.
  • the glass of the present invention preferably has a relative dielectric constant of 5.6 or more.
  • the sensing sensitivity of the touch sensor is improved, the driving voltage is reduced, From the viewpoint of power saving, it is better that the glass substrate has a higher relative dielectric constant.
  • the relative dielectric constant is 5.8 or more, More preferably, it is 6.0 or more, More preferably, it is 6.2 or more, Most preferably, it is 6.4 or more.
  • the relative dielectric constant can be measured by the method described in JIS C-2141.
  • Example 1 Comparative Examples 1 and 2
  • the raw material of each component was prepared so that it might become the target composition shown in Table 1, it melt
  • the content of the alkali metal oxide in the raw material used at this time the content of Na 2 O, the particle size of the silica sand in the used raw material, the median particle size D 50 , the proportion of particles having a particle size of 2 ⁇ m or less, and Table 1 shows the ratio of particles having a diameter of 100 ⁇ m or more.
  • Table 1 also shows the molar ratio (in terms of MO) of the hydroxide raw material in the alkaline earth metal.
  • the obtained glass was mirror-polished and then heat-treated in an SO 2 gas atmosphere at the heat treatment temperature, heat treatment time, SO 2 gas concentration and water vapor dew point shown in Table 2.
  • the sulfate precipitation state on the surface of the obtained glass was measured as the surface S concentration (mass%) by fluorescent X-rays.
  • Table 2 also shows the strain point and surface S concentration (% by mass) of the glass.
  • the number of counts of S-k ⁇ rays is measured using a ⁇ 10 mm mask under the conditions shown in Table 3. After mirror-polishing glass with a known S concentration, the count number of S-k ⁇ rays was measured with a ⁇ 10 mm mask under the conditions shown in Table 3, and the S-k ⁇ ray count number and S concentration (mass%) Get correlation. By using the obtained correlation, the Sk ⁇ ray count number of the glass sample on which the sulfate salt is deposited is converted into the S concentration (mass%).
  • the surface S concentration is preferably 0.15% by mass or more, and more preferably 0.2% by mass or more.
  • Example 2 to 4 The raw materials of each component were prepared so as to have the target composition shown in Table 4, and were melted at a temperature of 1550 ° C. for 1 hour using a platinum crucible. After dissolution, it was poured out into a carbon plate, held at glass transition point + 30 ° C. for 1 hour, cooled at 1 ° C./min, and gradually cooled.
  • the content of the alkali metal oxide in the raw material used at this time the content of Na 2 O, the particle size of the silica sand in the used raw material, the median particle size D 50 , the proportion of particles having a particle size of 2 ⁇ m or less, and Table 4 shows the ratio of particles having a diameter of 100 ⁇ m or more.
  • Table 4 also shows the molar ratio (MO conversion) of the hydroxide raw material in the alkaline earth metal.
  • the obtained glass was cut, and after mirror polishing, heat treatment was performed in an SO 2 gas atmosphere at the heat treatment temperature, heat treatment time, SO 2 gas concentration, and water vapor dew point shown in Table 5.
  • the sulfate precipitation state on the surface of the obtained glass was measured as the surface S concentration (mass%) by fluorescent X-rays.
  • Table 5 also shows the strain point and surface S concentration (mass%) of the glass.
  • the plate glass obtained by the present invention has a high strain point and is suitable for uses such as a display substrate and a photomask substrate. Moreover, it is suitable also for uses, such as a board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention relates to a method for producing plate glass by melting glass starting materials to form a molten glass, then molding the molten glass into plate-like glass ribbons using a molding device, and gradually cooling the glass ribbons with a gradual cooling device, wherein by means of the method for producing plate glass, the plate glass is formed from the following alkali-free glass and SO2 gas is fed such that when the strain point of the alkali-free glass is Tst (ºC), the time when the ambient air concentration directly underneath the bottom surface of the glass ribbons becomes 500 to 20,000 ppm is 30 seconds or greater at a temperature within a range of Tst + 70ºC to Tst — 50ºC. By mol% in terms of oxide, the alkali-free glass comprises 66 to 70 of SiO2, 12 to 15 of Al­2O3, 0 to 1.5 of B2O3, greater than 9.5 but no greater than 13 of MgO, 4 to 9 of CaO, 0.5 to 4.5 of SrO, 0 to 1 of BaO, and 0 to 2 of ZrO2 such that MgO + CaO + SrO + BaO is 17 to 21, MgO/(MgO + CaO + SrO + BaO) is 0.40 or greater, MgO/(MgO + CaO) is 0.40 or greater, and MgO/(MgO + SrO) is 0.60 or greater, and has a stress point of 710 to 750ºC, an average thermal expansion coefficient at 50 to 300ºC of 30 × 10-7 to 43 × 10-7/ºC, a temperature T2 at which glass viscosity becomes 102dPa·s of 1,710ºC, and a temperature T4 at which glass viscosity becomes 104dPa·s of 1,320ºC.

Description

板ガラスの製造方法Sheet glass manufacturing method
 本発明は、各種ディスプレイ用基板ガラスやフォトマスク用基板ガラスとして好適な、無アルカリガラスからなる板ガラスの製造方法に関する。
 以下、本明細書において、「無アルカリ」と言った場合、アルカリ金属酸化物(LiO、NaO、KO)の含有量が2000モルppm以下であることを意味する。
The present invention relates to a method for producing a plate glass made of non-alkali glass, which is suitable as a substrate glass for various displays and a substrate glass for a photomask.
Hereinafter, in the present specification, the phrase “no alkali” means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) is 2000 mol ppm or less.
 従来、各種ディスプレイ用基板ガラス、特に表面に金属ないし酸化物薄膜等を形成するものでは、以下に示す特性が要求されてきた。
(1)アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、アルカリ金属酸化物の含有量がきわめて低いこと、具体的には、アルカリ金属酸化物の含有量が2000モルppm以下であること。
(2)薄膜形成工程で高温にさらされる際に、ガラスの変形およびガラスの構造安定化に伴う収縮(熱収縮)を最小限に抑えうるように、歪点が高いこと。
Conventionally, the following characteristics have been required for various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface.
(1) When an alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. Therefore, the content of the alkali metal oxide is extremely low. The oxide content is 2000 mol ppm or less.
(2) When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
(3)半導体形成に用いる各種薬品に対して充分な化学耐久性を有すること。特にITOのエッチングに用いる塩酸を含有する薬液、金属電極のエッチングに用いる各種の酸(硝酸、硫酸等)、レジスト剥離液のアルカリ等に対して耐久性のあること。
(4)内部および表面に欠点(泡、脈理、インクルージョン、ピット、キズ等)がないこと。
(3) Sufficient chemical durability against various chemicals used for semiconductor formation. In particular, it should be resistant to chemicals containing hydrochloric acid used for etching ITO, various acids (nitric acid, sulfuric acid, etc.) used for etching metal electrodes, and alkalis for resist stripping solutions.
(4) There are no defects (bubbles, striae, inclusions, pits, scratches, etc.) inside and on the surface.
 上記の要求に加えて、近年では、以下のような状況にある。
(5)ディスプレイの軽量化が要求され、ガラス自身も密度の小さいガラスが望まれる。
(6)ディスプレイの軽量化が要求され、基板ガラスの薄板化が望まれる。
In addition to the above requirements, in recent years, there are the following situations.
(5) The weight reduction of the display is required, and the glass itself is desired to have a low density glass.
(6) A reduction in weight of the display is required, and a reduction in the thickness of the substrate glass is desired.
(7)これまでのアモルファスシリコン(a-Si)タイプの液晶ディスプレイに加え、若干熱処理温度の高い多結晶シリコン(p-Si)タイプの液晶ディスプレイが作製されるようになってきた(a-Si:約350℃→p-Si:350~550℃)。
(8)液晶ディスプレイ作製熱処理の昇降温速度を速くして、生産性を上げたり耐熱衝撃性を上げるために、ガラスの平均熱膨張係数の小さいガラスが求められる。
(7) In addition to the conventional amorphous silicon (a-Si) type liquid crystal display, a polycrystalline silicon (p-Si) type liquid crystal display having a slightly higher heat treatment temperature has been produced (a-Si). : About 350 ° C. → p-Si: 350 to 550 ° C.).
(8) A glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
 一方、エッチングのドライ化が進み、耐BHF性に対する要求が弱くなってきている(BHF:バッファードフッ酸、フッ酸とフッ化アンモニウムの混合液)。これまでのガラスは、耐BHF性を良くするために、Bを6~10モル%含有するガラスが多く用いられてきた。しかし、Bは歪点を下げる傾向がある。Bを含有しないまたは含有量の少ない無アルカリガラスの例としては以下のようなものがある。 On the other hand, the dryness of etching has progressed, and the demand for BHF resistance has been weakened (BHF: buffered hydrofluoric acid, mixed liquid of hydrofluoric acid and ammonium fluoride). Conventionally, glass containing 6 to 10 mol% of B 2 O 3 has been often used in order to improve BHF resistance. However, B 2 O 3 tends to lower the strain point. Examples of non-alkali glass that does not contain B 2 O 3 or have a low content are as follows.
 特許文献1にはBを含有しない、SiO-Al-SrOガラスが開示されているが、溶解に必要な温度が高く製造に困難を生ずる。 Patent Document 1 discloses SiO 2 —Al 2 O 3 —SrO glass that does not contain B 2 O 3 , but the temperature required for melting is high, which makes manufacturing difficult.
 特許文献2にはBを含有しない、SiO-Al-SrO結晶化ガラスが開示されているが、溶解に必要な温度が高く製造に困難を生ずる。 Patent Document 2 discloses a SiO 2 —Al 2 O 3 —SrO crystallized glass that does not contain B 2 O 3 , but the temperature required for melting is high, resulting in difficulty in production.
 特許文献3にはBを0~3重量%含有するガラスが開示されているが、実施例の歪点が690℃以下である。 Patent Document 3 discloses a glass containing 0 to 3% by weight of B 2 O 3 , but the strain point of the examples is 690 ° C. or lower.
 特許文献4にはBを0~5モル%含有するガラスが開示されているが、50~300℃での平均熱膨張係数が50×10-7/℃を超える。 Patent Document 4 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but the average coefficient of thermal expansion at 50 to 300 ° C. exceeds 50 × 10 −7 / ° C.
 特許文献5にはBを0~5モル%含有するガラスが開示されているが、熱膨張が大きく、密度も大きい。 Patent Document 5 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but has a large thermal expansion and a high density.
 特許文献1~5に記載のガラスにおける問題点を解決するため、特許文献6に記載の無アルカリガラスが提案されている。特許文献6に記載の無アルカリガラスは、歪点が高く、フロート法による成形ができ、ディスプレイ用基板、フォトマスク用基板等の用途に好適であるとされている。 In order to solve the problems in the glasses described in Patent Documents 1 to 5, an alkali-free glass described in Patent Document 6 has been proposed. The alkali-free glass described in Patent Document 6 has a high strain point, can be molded by a float process, and is suitable for applications such as a display substrate and a photomask substrate.
 しかしながら、高品質のp-Si TFTの製造方法として固相結晶化法があるが、これを実施するためには、歪点をさらに高くすることが求められる。
 一方、ガラス製造プロセス、特に溶解、成形における要請から、ガラスの粘性、特にガラス粘度が10dPa・sとなる温度Tを低くすることが求められている。
However, there is a solid-phase crystallization method as a method for producing a high-quality p-Si TFT. In order to implement this, it is required to further increase the strain point.
On the other hand, due to demands in the glass production process, particularly melting and molding, it is required to lower the temperature T 4 at which the viscosity of the glass, particularly the glass viscosity, becomes 10 4 dPa · s.
 また、板状に成形した後のガラスリボンのキズ付き防止の目的で、成形後のガラスリボンに対し、徐冷炉内で亜硫酸(SO)ガスを吹き付けて、ガラスリボンの下面に硫酸塩からなる疵防止用保護層を形成することが知られている(特許文献7参照)。
 しかしながら、無アルカリガラスの場合は、疵防止用保護層をガラスリボンに効率よく形成することが困難であり、設備面での検討がなされていたが、設備構成上の制約等がある場合がある。
In addition, for the purpose of preventing scratches on the glass ribbon after being formed into a plate shape, a sulfurous acid (SO 2 ) gas is sprayed on the glass ribbon after being formed in a slow cooling furnace, so that the bottom surface of the glass ribbon is made of sulfate. It is known to form a protective layer for prevention (see Patent Document 7).
However, in the case of non-alkali glass, it is difficult to efficiently form a protective layer for preventing wrinkles on a glass ribbon, and studies have been made in terms of equipment, but there may be restrictions on the equipment configuration, etc. .
日本国特開昭62-113735号公報Japanese Laid-Open Patent Publication No. 62-1113735 日本国特開昭62-100450号公報Japanese Unexamined Patent Publication No. Sho 62-100450 日本国特開平4-325435号公報Japanese Laid-Open Patent Publication No. 4-325435 日本国特開平5-232458号公報Japanese Patent Laid-Open No. 5-232458 米国特許第5326730号明細書US Pat. No. 5,326,730 日本国特開平10-45422号公報Japanese Patent Laid-Open No. 10-45422 日本国再公表特許2009-148141号公報Japanese republished patent 2009-148141
 本発明の目的は、上記欠点を解決し、歪点が高く、かつ、低粘性、特にガラス粘度が10dPa・sとなる温度Tが低く、さらに、硫酸塩からなる疵防止用保護層を、板状に成形した後のガラスリボンに効率よく形成することができる、無アルカリガラスからなる板ガラスの製造方法を提供することにある。 The object of the present invention is to solve the above-mentioned drawbacks, to have a high strain point and to have a low viscosity, in particular, a low temperature T 4 at which the glass viscosity is 10 4 dPa · s, and further a protective layer for preventing wrinkles comprising a sulfate. It is providing the manufacturing method of the plate glass which consists of a non-alkali glass which can be efficiently formed in the glass ribbon after shape | molding this in plate shape.
 本発明は、ガラス原料を溶解し溶融ガラスとし、該溶融ガラスを成形装置にて板状のガラスリボンに成形した後、該ガラスリボンを徐冷装置にて徐冷する板ガラス製造方法であって、
 前記板ガラスが下記の無アルカリガラスからなり、
 前記無アルカリガラスの歪点をTst(℃)とするとき、Tst+70℃~Tst-50℃の温度域で、前記ガラスリボンの下面の直下の雰囲気濃度が500~20000ppmとなる時間が30秒以上となるように、SOガスを供給する板ガラス製造方法を提供する。
 歪点が710~750℃であって、50~300℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1320℃以下であって、
酸化物基準のモル%表示で
SiO        66~70、
Al      12~15、
        0~1.5、
MgO         9.5超13以下、
CaO         4~9、
SrO        0.5~4.5、
BaO         0~1、
ZrO        0~2、を含有し、
MgO+CaO+SrO+BaO が17~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.40以上であり、MgO/(MgO+CaO)が0.40以上であり、MgO/(MgO+SrO)が0.60以上である無アルカリガラス。
The present invention is a plate glass manufacturing method in which a glass raw material is melted to form molten glass, the molten glass is formed into a plate-like glass ribbon with a molding device, and then the glass ribbon is gradually cooled with a slow cooling device,
The plate glass is made of the following alkali-free glass,
When the strain point of the alkali-free glass is T st (° C.), the time during which the atmosphere concentration immediately below the lower surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st −50 ° C. A plate glass manufacturing method for supplying SO 2 gas so as to be 30 seconds or longer is provided.
Temperature at which the strain point is 710 to 750 ° C., the average coefficient of thermal expansion at 50 to 300 ° C. is 30 × 10 −7 to 43 × 10 −7 / ° C., and the glass viscosity is 10 2 dPa · s. T 2 is 1710 ° C. or lower, and the temperature T 4 at which the glass viscosity is 10 4 dPa · s is 1320 ° C. or lower,
SiO 2 66 to 70 in terms of mol% based on oxide,
Al 2 O 3 12-15,
B 2 O 3 0-1.5,
MgO more than 9.5 and 13 or less,
CaO 4-9,
SrO 0.5-4.5,
BaO 0 ~ 1,
ZrO 2 0-2,
MgO + CaO + SrO + BaO is 17-21,
An alkali-free glass in which MgO / (MgO + CaO + SrO + BaO) is 0.40 or more, MgO / (MgO + CaO) is 0.40 or more, and MgO / (MgO + SrO) is 0.60 or more.
 また、本発明は、ガラス原料を溶解し溶融ガラスとし、該溶融ガラスを成形装置にて板状のガラスリボンに成形した後、該ガラスリボンを徐冷装置にて徐冷する板ガラス製造方法であって、
 前記板ガラスが下記の無アルカリガラスからなり、
 前記無アルカリガラスの歪点をTst(℃)とするとき、Tst+70℃~Tst-50℃の温度域で、前記ガラスリボンの下面の直下の雰囲気濃度が500~20000ppmとなる時間が30秒以上となるように、SOガスを供給する板ガラス製造方法を提供する。
 歪点が710~750℃であって、50~300℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1320℃以下であって、
酸化物基準のモル%表示で
SiO        66~70、
Al      12~15、
        0~1.5、
MgO         5~9.5、
CaO         4~11、
SrO        0.5~4.5、
BaO         0~1、
ZrO        0~2、を含有し、
MgO+CaO+SrO+BaO が18.2超21以下であり、
MgO/(MgO+CaO+SrO+BaO)が0.25以上であり、MgO/(MgO+CaO)が0.3以上であり、MgO/(MgO+SrO)が0.60以上であり、Al×(MgO/(MgO+CaO+SrO+BaO))が5.5以上である無アルカリガラス。
The present invention also relates to a method for producing plate glass, in which a glass raw material is melted to form molten glass, the molten glass is formed into a plate-like glass ribbon with a forming apparatus, and then the glass ribbon is gradually cooled with a slow cooling apparatus. And
The plate glass is made of the following alkali-free glass,
When the strain point of the alkali-free glass is T st (° C.), the time during which the atmosphere concentration immediately below the lower surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st −50 ° C. A plate glass manufacturing method for supplying SO 2 gas so as to be 30 seconds or longer is provided.
Temperature at which the strain point is 710 to 750 ° C., the average coefficient of thermal expansion at 50 to 300 ° C. is 30 × 10 −7 to 43 × 10 −7 / ° C., and the glass viscosity is 10 2 dPa · s. T 2 is 1710 ° C. or lower, and the temperature T 4 at which the glass viscosity is 10 4 dPa · s is 1320 ° C. or lower,
SiO 2 66 to 70 in terms of mol% based on oxide,
Al 2 O 3 12-15,
B 2 O 3 0-1.5,
MgO 5 to 9.5,
CaO 4-11,
SrO 0.5-4.5,
BaO 0 ~ 1,
ZrO 2 0-2,
MgO + CaO + SrO + BaO is more than 18.2 and 21 or less,
MgO / (MgO + CaO + SrO + BaO) is 0.25 or more, MgO / (MgO + CaO) is 0.3 or more, MgO / (MgO + SrO) is 0.60 or more, and Al 2 O 3 × (MgO / (MgO + CaO + SrO + BaO) ) Is alkali-free glass of 5.5 or more.
 また、本発明は、本発明の板ガラス製造方法で製造された板ガラスを提供する。 Moreover, this invention provides the plate glass manufactured with the plate glass manufacturing method of this invention.
 本発明の板ガラス製造方法では、硫酸塩の疵防止用保護層をガラスリボンに効率よく均一に形成することができるとともに、亜硫酸ガスの供給量も節約することができる。その結果、疵の少ない高品質な板ガラスを得ることができる。
 本発明の板ガラスは、特に高歪点用途のディスプレイ用基板、フォトマスク用基板等に好適である。
In the method for producing sheet glass of the present invention, the protective layer for preventing wrinkles of sulfate can be efficiently and uniformly formed on the glass ribbon, and the supply amount of sulfurous acid gas can be saved. As a result, a high-quality plate glass with less wrinkles can be obtained.
The plate glass of the present invention is particularly suitable for a display substrate, a photomask substrate and the like for high strain point applications.
 以下、本発明の板ガラス製造方法を説明する。 Hereinafter, the plate glass manufacturing method of the present invention will be described.
 本発明の板ガラスの製造方法では、下記ガラス組成1となるように調合したガラス原料を用いる。
 酸化物基準のモル%表示で
SiO        66~70、
Al      12~15、
        0~1.5、
MgO         9.5超13以下、
CaO         4~9、
SrO        0.5~4.5、
BaO         0~1、
ZrO        0~2、を含有し、
MgO+CaO+SrO+BaO が17~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.40以上であり、MgO/(MgO+CaO)が0.40以上であり、MgO/(MgO+SrO)が0.60以上である無アルカリガラス。
In the manufacturing method of the plate glass of this invention, the glass raw material prepared so that it might become the following glass composition 1 is used.
SiO 2 66 to 70 in terms of mol% based on oxide,
Al 2 O 3 12-15,
B 2 O 3 0-1.5,
MgO more than 9.5 and 13 or less,
CaO 4-9,
SrO 0.5-4.5,
BaO 0 ~ 1,
ZrO 2 0-2,
MgO + CaO + SrO + BaO is 17-21,
An alkali-free glass in which MgO / (MgO + CaO + SrO + BaO) is 0.40 or more, MgO / (MgO + CaO) is 0.40 or more, and MgO / (MgO + SrO) is 0.60 or more.
 また、本発明の板ガラス製造方法では、下記ガラス組成2となるように調合したガラス原料を用いる。
 酸化物基準のモル%表示で
SiO        66~70、
Al      12~15、
        0~1.5、
MgO         5~9.5、
CaO         4~11、
SrO        0.5~4.5、
BaO         0~1、
ZrO        0~2、を含有し、
MgO+CaO+SrO+BaO が18.2超21以下であり、
MgO/(MgO+CaO+SrO+BaO)が0.25以上であり、MgO/(MgO+CaO)が0.3以上であり、MgO/(MgO+SrO)が0.60以上であり、Al×(MgO/(MgO+CaO+SrO+BaO))が5.5以上である無アルカリガラス。
Moreover, in the plate glass manufacturing method of this invention, the glass raw material prepared so that it might become the following glass composition 2 is used.
SiO 2 66 to 70 in terms of mol% based on oxide,
Al 2 O 3 12-15,
B 2 O 3 0-1.5,
MgO 5 to 9.5,
CaO 4-11,
SrO 0.5-4.5,
BaO 0 ~ 1,
ZrO 2 0-2,
MgO + CaO + SrO + BaO is more than 18.2 and 21 or less,
MgO / (MgO + CaO + SrO + BaO) is 0.25 or more, MgO / (MgO + CaO) is 0.3 or more, MgO / (MgO + SrO) is 0.60 or more, and Al 2 O 3 × (MgO / (MgO + CaO + SrO + BaO) ) Is alkali-free glass of 5.5 or more.
 次に各成分の組成範囲について説明する。SiOは66%(モル%、以下特記しないかぎり同じ)未満では、歪点が充分に上がらず、かつ、熱膨張係数が増大し、密度が上昇する。好ましくは66.5%以上、より好ましくは67%以上である。70%超では、溶解性が低下し、失透温度が上昇する。好ましくは69%以下である。 Next, the composition range of each component will be described. If the SiO 2 content is less than 66% (mol%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. Preferably it is 66.5% or more, more preferably 67% or more. If it exceeds 70%, the solubility decreases and the devitrification temperature increases. Preferably it is 69% or less.
 Alはガラスの分相性を抑制し、熱膨脹係数を下げ、歪点を上げるが、12%未満ではこの効果があらわれず、また、ほかの膨張を上げる成分を増加させることになるため、結果的に熱膨張が大きくなる。好ましくは12.2%以上である。15%超ではガラスの溶解性が悪くなったり、失透温度を上昇させるおそれがある。好ましくは14.5%以下、より好ましくは14%以下、さらに好ましくは13.8%以下である。 Al 2 O 3 suppresses the phase separation of the glass, lowers the thermal expansion coefficient and raises the strain point, but if it is less than 12%, this effect does not appear, and other components that increase the expansion increase. As a result, thermal expansion increases. Preferably it is 12.2% or more. If it exceeds 15%, the solubility of the glass may be deteriorated, or the devitrification temperature may be increased. Preferably it is 14.5% or less, More preferably, it is 14% or less, More preferably, it is 13.8% or less.
 Bは、ガラスの溶解反応性をよくし、また、失透温度を低下させるため1.5%まで添加できる。しかし、多すぎると歪点が低くなる。また、Bが多すぎるとガラスリボンに硫酸塩の疵防止用保護層を形成する際の効率が低下する。
 したがって1.3%以下が好ましく、1%以下がより好ましい。また、環境負荷を考慮すると実質的に含有しないことが好ましい。
B 2 O 3 can be added up to 1.5% in order to improve the melting reactivity of the glass and lower the devitrification temperature. However, if it is too much, the strain point is lowered. Also, the efficiency in forming a flaw preventing protection layer of sulfate when B 2 O 3 is too large in the glass ribbon is reduced.
Therefore, it is preferably 1.3% or less, and more preferably 1% or less. Moreover, it is preferable not to contain substantially considering environmental load.
 MgOは、アルカリ土類の中では膨張を高くせず、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させる。
 ここで、ガラス組成1では、MgO含有量が9.5%超13%以下である。9.5%以下では上述したMgO添加による効果が十分あらわれない。しかし、13%を超えると、失透温度が上昇するおそれがある。12.5%以下が好ましく、12%以下がより好ましく、11.5%以下がさらに好ましい。
 一方、ガラス組成2では、MgO含有量が5~9.5%である。5%未満では上述したMgO添加による効果が十分あらわれない。6%以上が好ましく、7%以上がより好ましい。しかし、9.5%を超えると、失透温度が上昇するおそれがある。9.3%以下が好ましく、9%以下がより好ましい。
MgO has the characteristics that it does not increase the expansion in alkaline earth and does not excessively lower the strain point, and also improves the solubility.
Here, in the glass composition 1, the MgO content is more than 9.5% and not more than 13%. If it is 9.5% or less, the above-mentioned effect due to the addition of MgO is not sufficiently exhibited. However, if it exceeds 13%, the devitrification temperature may increase. 12.5% or less is preferable, 12% or less is more preferable, and 11.5% or less is more preferable.
On the other hand, in the glass composition 2, the MgO content is 5 to 9.5%. If it is less than 5%, the above-mentioned effect due to the addition of MgO is not sufficiently exhibited. 6% or more is preferable, and 7% or more is more preferable. However, if it exceeds 9.5%, the devitrification temperature may increase. 9.3% or less is preferable, and 9% or less is more preferable.
 CaOは、MgOに次いでアルカリ土類中では膨張を高くせず、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させる。
 ここで、ガラス組成1では、CaO含有量が4~9%である。4%未満では上述したCaO添加による効果が十分あらわれない。しかし、9%を超えると、失透温度が上昇したりCaO原料である石灰石(CaCO)中の不純物であるリンが、多く混入するおそれがある。7%以下が好ましく、6%以下がより好ましく、5%以下がさらに好ましい。
 一方、ガラス組成2では、CaO含有量が4~11%である。4%未満では上述したCaO添加による効果が十分あらわれない。5%以上が好ましい。しかし、11%を超えると、失透温度が上昇したりCaO原料である石灰石(CaCO)中の不純物であるリンが、多く混入するおそれがある。10%以下が好ましく、9%以下がより好ましく、7%以下がさらに好ましく、6%以下が特に好ましい。
CaO has the characteristics that it does not increase the expansion in alkaline earth after MgO, and does not excessively lower the strain point, and also improves the solubility.
Here, in the glass composition 1, the CaO content is 4 to 9%. If it is less than 4%, the above-described effect due to the addition of CaO is not sufficiently exhibited. However, if it exceeds 9%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ) that is a CaO raw material, may be mixed. It is preferably 7% or less, more preferably 6% or less, and further preferably 5% or less.
On the other hand, in the glass composition 2, the CaO content is 4 to 11%. If it is less than 4%, the above-described effect due to the addition of CaO is not sufficiently exhibited. 5% or more is preferable. However, if it exceeds 11%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ) that is a CaO raw material, may be mixed. It is preferably 10% or less, more preferably 9% or less, further preferably 7% or less, and particularly preferably 6% or less.
 SrOは、ガラスの失透温度を上昇させず溶解性を向上させるが、0.5%未満ではこの効果が十分あらわれない。好ましくは1.0%以上、さらに好ましくは2.0%以上である。しかし、4.5%を超えると膨脹係数が増大するおそれがある。4.0%以下がより好ましく、3.5%以下がさらに好ましい。 SrO improves the solubility without increasing the devitrification temperature of the glass, but if less than 0.5%, this effect does not appear sufficiently. Preferably it is 1.0% or more, More preferably, it is 2.0% or more. However, if it exceeds 4.5%, the expansion coefficient may increase. 4.0% or less is more preferable, and 3.5% or less is more preferable.
 BaOは必須ではないが溶解性向上のために含有できる。しかし、多すぎるとガラスの膨張と密度を過大に増加させるので1%以下とする。1%未満が好ましく、0.5%以下がより好ましく、さらに実質的に含有しないことが好ましい。 BaO is not essential, but can be contained to improve solubility. However, if it is too much, the expansion and density of the glass are excessively increased, so the content is made 1% or less. Less than 1% is preferable, 0.5% or less is more preferable, and it is preferable not to contain substantially.
 ZrOは、ガラス溶融温度を低下させるために、または焼成時の結晶析出を促進するために、2%まで含有してもよい。2%超ではガラスが不安定になる、またはガラスの比誘電率εが大きくなる。好ましくは1.5%以下、より好ましくは1.0%以下、さらに好ましくは0.5%以下であり、実質的に含有しないことが特に好ましい。 ZrO 2 may be contained up to 2% in order to lower the glass melting temperature or to promote crystal precipitation during firing. If it exceeds 2%, the glass becomes unstable or the relative dielectric constant ε of the glass increases. Preferably it is 1.5% or less, More preferably, it is 1.0% or less, More preferably, it is 0.5% or less, and it is especially preferable not to contain substantially.
 ガラス組成1において、MgO、CaO、SrO、BaOは合量で17%よりも少ないと、溶解性に乏しく、また、ガラスリボンに硫酸塩の疵防止用保護層を形成する際の効率が低下する。好ましくは18%以上、さらに好ましくは18.5%以上である。21%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがある。好ましくは20%以下である。
 ガラス組成2において、MgO、CaO、SrO、BaOは合量で18.2%以下だと、溶解性に乏しく、また、ガラスリボンに硫酸塩の疵防止用保護層を形成する際の効率が低下する。21%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがある。好ましくは20%以下である。
In the glass composition 1, if the total amount of MgO, CaO, SrO, and BaO is less than 17%, the solubility is poor, and the efficiency in forming a sulfate anti-fogging protective layer on the glass ribbon decreases. . Preferably it is 18% or more, More preferably, it is 18.5% or more. If it exceeds 21%, there is a risk that the thermal expansion coefficient cannot be reduced. Preferably it is 20% or less.
When the total amount of MgO, CaO, SrO, and BaO in the glass composition 2 is 18.2% or less, the solubility is poor, and the efficiency when forming a protective layer for preventing sulfate wrinkles on the glass ribbon is reduced. To do. If it exceeds 21%, there is a risk that the thermal expansion coefficient cannot be reduced. Preferably it is 20% or less.
 ガラス組成1においては、MgO、CaO、SrOおよびBaOの合量が上記を満たし、かつ、下記3条件を満たすことにより、失透温度を上昇させることなしに、歪点を上昇させ、さらにガラスの粘性、特にガラス粘度が10dPa・sとなる温度Tを下げることができる。
 MgO/(MgO+CaO+SrO+BaO)が0.4以上であり、好ましくは0.45以上である。
 MgO/(MgO+CaO)が0.4以上であり、好ましくは0.52以上、さらに好ましくは0.55以上である。
 MgO/(MgO+SrO)が0.6以上であり、好ましくは0.7以上である。
In the glass composition 1, when the total amount of MgO, CaO, SrO and BaO satisfies the above and satisfies the following three conditions, the strain point is increased without increasing the devitrification temperature. The temperature T 4 at which the viscosity, particularly the glass viscosity, becomes 10 4 dPa · s can be lowered.
MgO / (MgO + CaO + SrO + BaO) is 0.4 or more, preferably 0.45 or more.
MgO / (MgO + CaO) is 0.4 or more, preferably 0.52 or more, more preferably 0.55 or more.
MgO / (MgO + SrO) is 0.6 or more, preferably 0.7 or more.
 ガラス組成2においては、MgO、CaO、SrOおよびBaOの合量が上記を満たし、かつ、下記3条件を満たすことにより、失透温度を上昇させることなしに、歪点を上昇させ、さらにガラスの粘性、特にガラス粘度が10dPa・sとなる温度Tを下げることができる。
 MgO/(MgO+CaO+SrO+BaO)が0.25以上であり、好ましくは0.3以上、より好ましく0.4以上であり、さらに好ましくは0.45以上である。
 MgO/(MgO+CaO)が0.3以上であり、好ましくは0.4以上であり、より好ましくは0.52以上、さらに好ましくは0.55以上である。
 MgO/(MgO+SrO)が0.6以上であり、好ましくは0.7以上である。
In the glass composition 2, the total amount of MgO, CaO, SrO and BaO satisfies the above and satisfies the following three conditions, thereby increasing the strain point without increasing the devitrification temperature. The temperature T 4 at which the viscosity, particularly the glass viscosity, becomes 10 4 dPa · s can be lowered.
MgO / (MgO + CaO + SrO + BaO) is 0.25 or more, preferably 0.3 or more, more preferably 0.4 or more, and further preferably 0.45 or more.
MgO / (MgO + CaO) is 0.3 or more, preferably 0.4 or more, more preferably 0.52 or more, and further preferably 0.55 or more.
MgO / (MgO + SrO) is 0.6 or more, preferably 0.7 or more.
 ガラス組成2において、Al×(MgO/(MgO+CaO+SrO+BaO))が5.5以上であることがヤング率を高められるので好ましい。好ましくは5.75以上、より好ましくは6.0以上、さらに好ましくは6.25以上、特に好ましくは6.5以上である。 In the glass composition 2, Al 2 O 3 × (MgO / (MgO + CaO + SrO + BaO)) is preferably 5.5 or more because the Young's modulus can be increased. Preferably it is 5.75 or more, More preferably, it is 6.0 or more, More preferably, it is 6.25 or more, Most preferably, it is 6.5 or more.
 本発明の板ガラス製造方法では、ガラスリボンに硫酸塩の疵防止用保護層を形成する際の効率を向上させるために、ガラス原料にアルカリ金属酸化物を600~2000モルppm含有させることが好ましい。
 本発明では、ガラス原料にアルカリ金属酸化物を600モルppm以上含有させることにより、疵防止用保護層をガラスリボンに形成する際の効率が向上する。その理由は以下の通り。
 無アルカリガラスはアルカリ金属酸化物を含有していないため、高温のガラスリボンをSOガス雰囲気中に晒しても、アルカリ金属硫酸塩の析出による疵防止用保護層を形成することができない。アルカリ土類金属酸化物を多く含む組成の無アルカリガラスでは、高温でSOガス雰囲気に晒した場合、アルカリ金属硫酸塩のかわりにアルカリ土類金属の硫酸塩が析出するが、その析出量は少なく、疵防止用保護層を形成するには、より高温、あるいはより長時間、あるいはより高濃度のSOガスに晒す必要がある。しかしながら、本発明者らは、ガラス原料にアルカリ金属酸化物を微量添加することにより、アルカリ土類金属硫酸塩の析出効果が増し、疵防止用保護層をガラスリボンに形成する際の効率が向上することを見出した。
 ここで、アルカリ金属酸化物を含有量が高くなると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、各種ディスプレイ用基板ガラスとしての使用時に問題となるが、ガラス組成中のアルカリ金属酸化物を含有量が2000モルppm以下であれば、このような問題を生じることがない。より好ましくは1500モルppm以下、さらに好ましくは1300モルppm以下、特に好ましくは1000モルppm以下である。
 本発明に用いるガラス原料は、アルカリ金属酸化物を好ましくは1500モルppm以下、より好ましくは1300モルppm以下、さらに好ましくは1000モルppm以下含有し、さらには700~900モルppm含有することが好ましく、700~800モルppm含有することがより好ましい。
 また、アルカリ金属酸化物としては、NaO、KOが、疵防止用保護層をガラスリボンに形成する際の効率を向上させる効果と、原料コストと、のバランスの観点から好ましく、NaOがより好ましい。
In the method for producing sheet glass of the present invention, it is preferable to contain 600 to 2000 mol ppm of an alkali metal oxide in the glass raw material in order to improve the efficiency when forming a protective layer for preventing sulfate wrinkles on the glass ribbon.
In this invention, the efficiency at the time of forming the protective layer for wrinkle prevention in a glass ribbon improves by making a glass raw material contain 600 molppm or more of alkali metal oxides. The reason is as follows.
Since alkali-free glass does not contain an alkali metal oxide, even if a high-temperature glass ribbon is exposed to the SO 2 gas atmosphere, a protective layer for preventing wrinkles due to precipitation of alkali metal sulfate cannot be formed. In an alkali-free glass having a composition containing a large amount of alkaline earth metal oxides, when exposed to an SO 2 gas atmosphere at a high temperature, alkaline earth metal sulfates are precipitated instead of alkali metal sulfates. In order to form a protective layer for preventing wrinkles, it is necessary to expose the SO 2 gas to a higher temperature, a longer time, or a higher concentration. However, the present inventors added a small amount of alkali metal oxide to the glass raw material, thereby increasing the precipitation effect of alkaline earth metal sulfate and improving the efficiency when forming the protective layer for preventing wrinkles on the glass ribbon. I found out.
Here, when the content of the alkali metal oxide is increased, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. This causes a problem when used as a substrate glass for various displays. If the content of the metal oxide is 2000 mol ppm or less, such a problem will not occur. More preferably, it is 1500 mol ppm or less, More preferably, it is 1300 mol ppm or less, Most preferably, it is 1000 mol ppm or less.
The glass raw material used in the present invention preferably contains an alkali metal oxide of 1500 mol ppm or less, more preferably 1300 mol ppm or less, more preferably 1000 mol ppm or less, and more preferably 700 to 900 mol ppm. More preferably 700 to 800 mol ppm.
Further, as the alkali metal oxide, Na 2 O and K 2 O are preferable from the viewpoint of the balance between the effect of improving the efficiency when forming the protective layer for preventing wrinkles on the glass ribbon and the raw material cost, and Na 2 O is more preferable.
 なお、パネル製造時にガラス表面に設ける金属ないし酸化物薄膜の特性劣化を生じさせないために、ガラス原料はPを実質的に含有しないことが好ましい。さらに、ガラスのリサイクルを容易にするため、ガラス原料はPbO、As、Sbは実質的に含有しないことが好ましい。 In order to prevent the deterioration of the properties of the metal or oxide thin film provided on the glass surface during panel manufacture, it is preferable that the glass raw material does not substantially contain P 2 O 5 . Furthermore, in order to facilitate recycling of the glass, it is preferable that the glass raw material does not substantially contain PbO, As 2 O 3 , or Sb 2 O 3 .
 ガラスの溶解性、清澄性、成形性を改善するため、ガラス原料にはZnO、Fe、SO、F、Cl、SnOを総量で5%以下添加できる。 In order to improve the solubility, clarity, and moldability of the glass, ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2 can be added to the glass raw material in a total amount of 5% or less.
 上記ガラス組成1,2は、比較的溶解性が低いため、各成分の原料として下記を用いることが好ましい。 Since the glass compositions 1 and 2 have relatively low solubility, it is preferable to use the following as raw materials for each component.
(珪素源)
 SiOの珪素源としては珪砂を用いることができるが、メディアン粒径D50が20μm~27μm、粒径2μm以下の粒子の割合が0.3体積%以下、かつ粒径100μm以上の粒子の割合が2.5体積%以下の珪砂を用いることが、珪砂の凝集を抑えて溶解させることができるので、珪砂の溶解が容易になり、泡が少なく、均質性、平坦度が高い板ガラスが得られることから好ましい。
(Silicon source)
Silica sand can be used as the silicon source of SiO 2 , but the proportion of particles having a median particle size D 50 of 20 μm to 27 μm, a particle size of 2 μm or less is 0.3% by volume or less, and the particle size is 100 μm or more. Using 2.5% by volume or less of silica sand can suppress the agglomeration of the silica sand and dissolve it, so that the silica sand can be easily dissolved, and there is less foam, and a plate glass with high homogeneity and flatness can be obtained. This is preferable.
 なお、本明細書における「粒径」とは珪砂の球相当径(本発明では一次粒径の意)であって、具体的にはレーザー回折/散乱法によって計測された粉体の粒度分布における粒径をいう。
 また、本明細書における「メディアン粒径D50」とは、レーザー回折法によって計測された粉体の粒度分布において、ある粒径より大きい粒子の体積頻度が、全粉体のそれの50%を占める粒子径をいう。言い換えると、レーザー回折法によって計測された粉体の粒度分布において、累積頻度が50%のときの粒子径をいう。
 また、本明細書における「粒径2μm以下の粒子の割合」及び「粒径100μm以上の粒子の割合」は、例えば、レーザー回折/散乱法によって粒度分布を計測することにより測定される。
The “particle size” in this specification is the equivalent sphere diameter of silica sand (meaning the primary particle size in the present invention), and specifically, in the particle size distribution of the powder measured by the laser diffraction / scattering method. Refers to particle size.
Further, in this specification, “median particle size D 50 ” means that the volume frequency of particles larger than a certain particle size is 50% of the total powder in the particle size distribution of the powder measured by the laser diffraction method. The particle diameter occupied. In other words, it refers to the particle diameter when the cumulative frequency is 50% in the particle size distribution of the powder measured by the laser diffraction method.
Further, the “ratio of particles having a particle diameter of 2 μm or less” and “ratio of particles having a particle diameter of 100 μm or more” in this specification are measured by measuring the particle size distribution by a laser diffraction / scattering method, for example.
 珪砂のメディアン粒径D50が25μm以下であれば、珪砂の溶解がより容易になるので、より好ましい。
 また、珪砂における粒径100μm以上の粒子の割合は、0%であることが珪砂の溶解がより容易になるので特に好ましい。
If the median particle diameter D 50 of silica sand is 25 μm or less, it is more preferable because dissolution of silica sand becomes easier.
Further, the ratio of the particles having a particle diameter of 100 μm or more in the silica sand is particularly preferably 0% because the silica sand is more easily dissolved.
(アルカリ土類金属源)
 アルカリ土類金属源としては、アルカリ土類金属化合物を用いることができる。ここでアルカリ土類金属化合物の具体例としては、MgCO、CaCO、BaCO、SrCO、(Mg,Ca)CO(ドロマイト)等の炭酸塩や、MgO、CaO、BaO、SrO等の酸化物や、Mg(OH)、Ca(OH)、Ba(OH)、Sr(OH)等の水酸化物を例示できるが、アルカリ土類金属源の一部または全部にアルカリ土類金属の水酸化物を含有させることが、ガラス原料の溶解時のSiO成分の未溶解量が低下するので好ましい。珪砂中に含まれるSiO成分の未溶解量が増大すると、この未溶解のSiOが、溶融ガラス中に泡が発生した際にこの泡に取り込まれて溶融ガラスの表層近くに集まる。これにより、溶融ガラスの表層と表層以外の部分との間においてSiOの組成比に差が生じて、ガラスの均質性が低下するとともに平坦性も低下する。
(Alkaline earth metal source)
An alkaline earth metal compound can be used as the alkaline earth metal source. Specific examples of the alkaline earth metal compound include carbonates such as MgCO 3 , CaCO 3 , BaCO 3 , SrCO 3 , (Mg, Ca) CO 3 (dolomite), MgO, CaO, BaO, SrO and the like. Oxides and hydroxides such as Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 , and Sr (OH) 2 can be exemplified. It is preferable to contain a hydroxide of a similar metal since the undissolved amount of the SiO 2 component at the time of melting the glass raw material is reduced. When the undissolved amount of the SiO 2 component contained in the silica sand increases, the undissolved SiO 2 is taken into the bubbles when the bubbles are generated in the molten glass and gathers near the surface layer of the molten glass. As a result, a difference in the composition ratio of SiO 2 occurs between the surface layer of the molten glass and the portion other than the surface layer, so that the homogeneity of the glass is lowered and the flatness is also lowered.
 アルカリ土類金属の水酸化物の含有量は、アルカリ土類金属源100質量モル%(MO換算。但しMはアルカリ土類金属元素である。)のうち、好ましくは15~100モル%(MO換算)、より好ましくは30~100モル%(MO換算)であり、さらに好ましくは60~100モル%(MO換算)であることが、ガラス原料の溶解時のSiO成分の未溶解量が低下するのでより好ましい。
 アルカリ土類金属源中の水酸化物のモル比が増加するにつれて、ガラス原料の溶解時のSiO成分の未溶解量が低下するので、上記水酸化物のモル比は高ければ高いほどよい。
The content of the alkaline earth metal hydroxide is preferably 15 to 100 mol% (MO conversion in terms of MO, where M is an alkaline earth metal element). Conversion), more preferably 30 to 100 mol% (MO conversion), and even more preferably 60 to 100 mol% (MO conversion), the undissolved amount of the SiO 2 component at the time of melting the glass raw material is reduced. Therefore, it is more preferable.
As the molar ratio of the hydroxide in the alkaline earth metal source increases, the undissolved amount of the SiO 2 component at the time of melting the glass raw material decreases, so the higher the molar ratio of the hydroxide, the better.
 アルカリ土類金属源として、具体的には、アルカリ土類金属の水酸化物と炭酸塩との混合物、アルカリ土類金属の水酸化物単独、などを用いることができる。炭酸塩としては、MgCO、CaCO及び(Mg,Ca)(CO(ドロマイト)のいずれか1種以上を用いることが好ましい。またアルカリ土類金属の水酸化物としては、Mg(OH)またはCa(OH)の少なくとも一方を用いることが好ましく、特にMg(OH)を用いることが好ましい。 Specifically, as the alkaline earth metal source, a mixture of an alkaline earth metal hydroxide and a carbonate, an alkaline earth metal hydroxide alone, or the like can be used. As the carbonate, it is preferable to use at least one of MgCO 3 , CaCO 3 and (Mg, Ca) (CO 3 ) 2 (dolomite). As the alkaline earth metal hydroxide, it is preferable to use at least one of Mg (OH) 2 and Ca (OH) 2 , and it is particularly preferable to use Mg (OH) 2 .
(ホウ素源)
 上記ガラス組成1,2がBを含有する場合、Bのホウ素源としては、ホウ素化合物を用いることができる。ここでホウ素化合物の具体例としては、オルトホウ酸(HBO)、メタホウ酸(HBO)、四ホウ酸(H)、無水ホウ酸(B)等が挙げられる。通常の無アルカリガラスの製造においては、安価で、入手しやすい点から、オルトホウ酸が用いられる。
(Boron source)
If the glass composition 1 contains B 2 O 3, as the boron source B 2 O 3, can be used boron compound. Here, specific examples of the boron compound include orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), and anhydrous boric acid (B 2 O 3 ). It is done. In the production of ordinary alkali-free glass, orthoboric acid is used because it is inexpensive and easily available.
 本発明においては、ホウ素源として、無水ホウ酸を、ホウ素源100質量%(B換算)のうち、10~100質量%(B換算)含有するものを用いることが好ましい。無水ホウ酸を10質量%以上とすることにより、ガラス原料の凝集が抑えられ、泡の低減効果、均質性、平坦度の向上効果が得られる。無水ホウ酸は、20~100質量%がより好ましく、40~100質量%がさらに好ましい。
 無水ホウ酸以外のホウ素化合物としては、安価で、入手しやすい点から、オルトホウ酸が好ましい。
In the present invention, it is preferable to use, as the boron source, boric anhydride containing 10 to 100% by mass (in terms of B 2 O 3 ) out of 100% by mass of boron source (in terms of B 2 O 3 ). By setting the boric anhydride to 10% by mass or more, aggregation of the glass raw material is suppressed, and an effect of reducing bubbles, homogeneity, and improving flatness can be obtained. The boric anhydride is more preferably 20 to 100% by mass, and further preferably 40 to 100% by mass.
As the boron compound other than boric anhydride, orthoboric acid is preferable because it is inexpensive and easily available.
 板ガラスの製造は、たとえば、以下の手順で実施する。
 各成分の原料を目標成分になるように調合し、これを溶解炉に連続的に投入し、1500~1800℃に加熱して溶融する。この溶融ガラスを成形装置にて、所定の板厚の板状のガラスリボンに成形し、このガラスリボンを徐冷後切断することによって板ガラスを得ることができる。
 本発明では、フロート法にて板状のガラスリボンに成形することが好ましい。
Manufacture of plate glass is performed in the following procedure, for example.
The raw materials of each component are prepared so as to become target components, which are continuously charged into a melting furnace, heated to 1500-1800 ° C. and melted. A plate glass can be obtained by forming this molten glass into a plate-like glass ribbon having a predetermined plate thickness using a molding apparatus, and then cooling the glass ribbon after slow cooling.
In this invention, it is preferable to shape | mold into a plate-shaped glass ribbon by the float glass process.
 本発明では、徐冷炉内において、ガラスリボンに対して、以下に示す条件を満たすように亜硫酸(SO)ガスを供給する。
 無アルカリガラスの歪点をTst(℃)とするとき、Tst+70℃~Tst-50℃の温度域で、ガラスリボンの下面の直下の雰囲気濃度が500~20000ppmとなる時間が30秒以上となるように、SOガスを供給する。雰囲気濃度が500ppm未満だと、アルカリ土類金属の硫酸塩の析出量が少なくなるおそれがある。より好ましくは1000ppm以上である。雰囲気濃度が20000ppm超だと、設備の腐食が問題となるおそれがある。より好ましくは10000ppm以下、さらに好ましくは5000ppm以下である。また、30秒未満だとアルカリ土類金属の硫酸塩の析出量が少なくなるおそれがある。より好ましくは1分以上である。
 本発明では、ガラスリボンの下面からSOガスを供給することが好ましい。下面からSOガスを供給することにより、比重の重いSOガスは下面のみにアルカリ土類金属の硫酸塩を析出させ、ガスの拡散を防ぎ、アルカリ土類金属の硫酸塩の析出効果を上げることができる。
 本発明では、水蒸気露点が30℃以上の雰囲気にてガラスリボンをSOガスと接触するようにすることが好ましい。水蒸気露点が低いと、アルカリ土類金属の硫酸塩の析出効果を上げらないおそれがある。より好ましくは40℃以上、さらに好ましくは50℃以上である。
In the present invention, sulfur dioxide (SO 2 ) gas is supplied to the glass ribbon so as to satisfy the following conditions in the slow cooling furnace.
When the strain point of the alkali-free glass is T st (° C.), the time during which the atmospheric concentration immediately below the bottom surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st −50 ° C. is 30 seconds. The SO 2 gas is supplied so as to achieve the above. If the atmospheric concentration is less than 500 ppm, the precipitation amount of alkaline earth metal sulfate may be reduced. More preferably, it is 1000 ppm or more. If the atmospheric concentration exceeds 20000 ppm, corrosion of the equipment may become a problem. More preferably, it is 10,000 ppm or less, More preferably, it is 5000 ppm or less. Moreover, when it is less than 30 seconds, there exists a possibility that the precipitation amount of an alkaline-earth metal sulfate may decrease. More preferably, it is 1 minute or more.
In the present invention, it is preferable to supply the SO 2 gas from the lower surface of the glass ribbon. By supplying SO 2 gas from the lower surface, the heavy specific gravity SO 2 gas precipitates alkaline earth metal sulfate only on the lower surface, prevents gas diffusion and increases the alkaline earth metal sulfate precipitation effect. be able to.
In the present invention, the glass ribbon is preferably brought into contact with the SO 2 gas in an atmosphere having a water vapor dew point of 30 ° C. or higher. If the water vapor dew point is low, the precipitation effect of alkaline earth metal sulfate may not be improved. More preferably, it is 40 degreeC or more, More preferably, it is 50 degreeC or more.
 本発明のガラスは、歪点が710℃以上であり、パネル製造時の熱収縮を抑えられる。また、p-Si TFTの製造方法として固相結晶化法を適用することができる。また本発明の製造方法では、より高い温度でSOガスを供給することができるので、アルカリ土類金属の硫酸塩からなる疵防止用保護層の形成効率がよい。歪点は、より好ましくは715℃以上、さらに好ましくは720℃以上である。特に好ましくは735℃以上である。歪点が735℃以上であると、高歪点用途(例えば、有機EL用のディスプレイ用基板または照明用基板、あるいは板厚100μm以下の薄板のディスプレイ用基板または照明用基板)に適している。
 板厚100μm以下の板ガラスの成形では、成形時の引き出し速度が速くなる傾向があるため、ガラスの仮想温度が上昇し、ガラスのコンパクションが増大しやすい。この場合、高歪点ガラスであると、コンパクションを抑制することができる。
The glass of the present invention has a strain point of 710 ° C. or higher, and can suppress thermal shrinkage during panel production. Further, a solid phase crystallization method can be applied as a method for manufacturing a p-Si TFT. In the production method of the present invention, it is possible to supply the SO 2 gas at a higher temperature, it is formed efficiency flaw preventing protection layer consisting of alkaline earth metal sulfates. The strain point is more preferably 715 ° C or higher, and further preferably 720 ° C or higher. Especially preferably, it is 735 degreeC or more. When the strain point is 735 ° C. or higher, it is suitable for high strain point applications (for example, an organic EL display substrate or illumination substrate, or a thin display substrate or illumination substrate having a thickness of 100 μm or less).
In the formation of a plate glass having a plate thickness of 100 μm or less, since the drawing speed at the time of forming tends to increase, the fictive temperature of the glass rises and the glass compaction tends to increase. In this case, compaction can be suppressed when the glass is a high strain point glass.
 但し、ガラスの歪点が高過ぎると、それに応じて成形装置の温度を高くする必要があり、成形装置の寿命が低下する。このため、本発明の板ガラスは歪点が750℃以下である。 However, if the strain point of the glass is too high, it is necessary to increase the temperature of the molding apparatus accordingly, and the life of the molding apparatus is reduced. For this reason, the strain point of the plate glass of the present invention is 750 ° C. or less.
 また本発明のガラスは、歪点と同様の理由で、ガラス転移点が好ましくは760℃以上であり、より好ましくは770℃以上であり、さらに好ましくは780℃以上である。 The glass of the present invention has a glass transition point of preferably 760 ° C. or higher, more preferably 770 ° C. or higher, and further preferably 780 ° C. or higher for the same reason as the strain point.
 また本発明のガラスは、50~300℃での平均熱膨張係数が30×10-7~43×10-7/℃であり、耐熱衝撃性が大きく、パネル製造時の生産性を高くできる。本発明のガラスにおいて、50~300℃での平均熱膨張係数が35×10-7~40×10-7/℃であることが好ましい。 In addition, the glass of the present invention has an average coefficient of thermal expansion at 50 to 300 ° C. of 30 × 10 −7 to 43 × 10 −7 / ° C., has high thermal shock resistance, and can increase productivity during panel manufacture. In the glass of the present invention, the average thermal expansion coefficient at 50 to 300 ° C. is preferably 35 × 10 −7 to 40 × 10 −7 / ° C.
 さらに、本発明のガラスは、比重が好ましくは2.65以下であり、より好ましくは2.64以下であり、さらに好ましくは2.62以下である。 Furthermore, the specific gravity of the glass of the present invention is preferably 2.65 or less, more preferably 2.64 or less, and further preferably 2.62 or less.
 また、本発明のガラスは、粘度ηが10ポイズ(dPa・s)となる温度Tが1710℃以下であり、好ましくは1710℃未満、より好ましくは1700℃以下、さらに好ましくは1690℃以下になっているため、溶解が比較的容易である。 In the glass of the present invention, the temperature T 2 at which the viscosity η becomes 10 2 poise (dPa · s) is 1710 ° C. or less, preferably less than 1710 ° C., more preferably 1700 ° C. or less, and further preferably 1690 ° C. or less. Therefore, dissolution is relatively easy.
 さらに、本発明のガラスは粘度ηが10ポイズとなる温度Tが1320℃以下、好ましくは1315℃以下、より好ましくは1310℃以下、さらに好ましくは1305℃以下であり、フロート成形に適している。
 また、本発明のガラスは失透温度が、1350℃以下であることがフロート法による成形が容易となることから好ましい。好ましくは1340℃以下、より好ましくは1330℃以下である。
 本明細書における失透温度は、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面及び内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
Further, the glass of the present invention has a temperature T 4 at which the viscosity η becomes 10 4 poise is 1320 ° C. or less, preferably 1315 ° C. or less, more preferably 1310 ° C. or less, and further preferably 1305 ° C. or less, which is suitable for float molding. Yes.
In addition, the glass of the present invention preferably has a devitrification temperature of 1350 ° C. or lower because molding by the float method is easy. Preferably it is 1340 degrees C or less, More preferably, it is 1330 degrees C or less.
In this specification, the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
 また、本発明のガラスは、ヤング率が84GPa以上、さらには86GPa以上、さらには88GPa以上、さらには90GPa以上が好ましい。 Further, the glass of the present invention preferably has a Young's modulus of 84 GPa or more, more preferably 86 GPa or more, further 88 GPa or more, and further 90 GPa or more.
 また、本発明のガラスは、光弾性定数が31nm/MPa/cm以下であることが好ましい。
 液晶ディスプレイパネル製造工程や液晶ディスプレイ装置使用時に発生した応力によってガラス基板が複屈折性を有することにより、黒の表示がグレーになり、液晶ディスプレイのコントラストが低下する現象が認められることがある。光弾性定数を31nm/MPa/cm以下とすることにより、この現象を小さく抑えることができる。好ましくは30nm/MPa/cm以下、より好ましくは29nm/MPa/cm以下、さらに好ましくは28.5nm/MPa/cm以下、特に好ましくは28nm/MPa/cm以下である。
 また、本発明のガラスは、他の物性確保の容易性を考慮すると、光弾性定数が25nm/MPa/cm以下であることが好ましい。
 なお、光弾性定数は円盤圧縮法により測定できる。
The glass of the present invention preferably has a photoelastic constant of 31 nm / MPa / cm or less.
Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 31 nm / MPa / cm or less, this phenomenon can be suppressed small. Preferably it is 30 nm / MPa / cm or less, More preferably, it is 29 nm / MPa / cm or less, More preferably, it is 28.5 nm / MPa / cm or less, Most preferably, it is 28 nm / MPa / cm or less.
In addition, the glass of the present invention preferably has a photoelastic constant of 25 nm / MPa / cm or less, considering the ease of securing other physical properties.
The photoelastic constant can be measured by a disk compression method.
 また、本発明のガラスは、比誘電率が5.6以上であることが好ましい。
 日本国特開2011-70092号公報に記載されているような、インセル型のタッチパネル(液晶ディスプレイパネル内にタッチセンサを内蔵したもの)の場合、タッチセンサのセンシング感度の向上、駆動電圧の低下、省電力化の観点から、ガラス基板の比誘電率が高いほうがよい。比誘電率を5.6以上とすることにより、タッチセンサのセンシング感度が向上する。好ましくは5.8以上、より好ましくは6.0以上、さらに好ましくは6.2以上、特に好ましくは6.4以上である。
 なお、比誘電率はJIS C-2141に記載の方法で測定できる。
The glass of the present invention preferably has a relative dielectric constant of 5.6 or more.
In the case of an in-cell type touch panel (in which a touch sensor is built in a liquid crystal display panel) as described in Japanese Unexamined Patent Publication No. 2011-70092, the sensing sensitivity of the touch sensor is improved, the driving voltage is reduced, From the viewpoint of power saving, it is better that the glass substrate has a higher relative dielectric constant. By setting the relative dielectric constant to 5.6 or more, the sensing sensitivity of the touch sensor is improved. Preferably it is 5.8 or more, More preferably, it is 6.0 or more, More preferably, it is 6.2 or more, Most preferably, it is 6.4 or more.
The relative dielectric constant can be measured by the method described in JIS C-2141.
(実施例1、比較例1,2)
 各成分の原料を、表1に示す目標組成になるように調合し、連続溶融窯にて溶解を行い、フロート法にて板成形を行った。このとき用いた原料中のアルカリ金属酸化物の含有量としてNaOの含有量、使用した原料中の珪砂の粒度として、メディアン粒径D50、粒径2μm以下の粒子の割合、および、粒径100μm以上の粒子の割合をあわせて表1に示す。また、アルカリ土類金属における水酸化物原料のモル比率(MO換算)もあわせて表1に示す。
 得られたガラスを鏡面研磨後、表2に示す熱処理温度、熱処理時間、SOガス濃度、水蒸気露点にてSOガス雰囲気中で熱処理を行った。得られたガラスの表面の硫酸塩析出状況は、蛍光X線による表面S濃度(質量%)として測定した。ガラスの歪点、表面S濃度(質量%)もあわせて表2に示す。
(Example 1, Comparative Examples 1 and 2)
The raw material of each component was prepared so that it might become the target composition shown in Table 1, it melt | dissolved in the continuous melting kiln, and plate forming was performed by the float process. As the content of the alkali metal oxide in the raw material used at this time, the content of Na 2 O, the particle size of the silica sand in the used raw material, the median particle size D 50 , the proportion of particles having a particle size of 2 μm or less, and Table 1 shows the ratio of particles having a diameter of 100 μm or more. Table 1 also shows the molar ratio (in terms of MO) of the hydroxide raw material in the alkaline earth metal.
The obtained glass was mirror-polished and then heat-treated in an SO 2 gas atmosphere at the heat treatment temperature, heat treatment time, SO 2 gas concentration and water vapor dew point shown in Table 2. The sulfate precipitation state on the surface of the obtained glass was measured as the surface S concentration (mass%) by fluorescent X-rays. Table 2 also shows the strain point and surface S concentration (% by mass) of the glass.
[蛍光X線による表面S濃度の測定方法]
 硫酸塩が析出されたガラス試料について、表3に示す条件にて、φ10mmのマスクにてS-kα線のカウント数を測定する。S濃度が既知のガラスを鏡面研磨した後、表3に示す条件にてφ10mmのマスクにてS-kα線のカウント数を測定し、S-kα線のカウント数とS濃度(質量%)の相関関係を得る。得られた相関関係を用いることで、硫酸塩が析出されたガラス試料のS-kα線カウント数をS濃度(質量%)へ換算する。表面S濃度は、0.15質量%以上が好ましく、0.2質量%以上がより好ましい。
[Measurement method of surface S concentration by fluorescent X-ray]
With respect to the glass sample on which the sulfate is deposited, the number of counts of S-kα rays is measured using a φ10 mm mask under the conditions shown in Table 3. After mirror-polishing glass with a known S concentration, the count number of S-kα rays was measured with a φ10 mm mask under the conditions shown in Table 3, and the S-kα ray count number and S concentration (mass%) Get correlation. By using the obtained correlation, the Skα ray count number of the glass sample on which the sulfate salt is deposited is converted into the S concentration (mass%). The surface S concentration is preferably 0.15% by mass or more, and more preferably 0.2% by mass or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例2~4)
 各成分の原料を、表4に示す目標組成になるように調合し、白金坩堝を用いて1550℃の温度で1時間溶解した。溶解後、カーボン板状に流し出し、ガラス転移点+30℃にて1時間保持後、1℃/分で冷却を行い、徐冷を行った。このとき用いた原料中のアルカリ金属酸化物の含有量としてNaOの含有量、使用した原料中の珪砂の粒度として、メディアン粒径D50、粒径2μm以下の粒子の割合、および、粒径100μm以上の粒子の割合をあわせて表4に示す。また、アルカリ土類金属における水酸化物原料のモル比率(MO換算)もあわせて表4に示す。
 得られたガラスを切断し、鏡面研磨後、表5に示す熱処理温度、熱処理時間、SOガス濃度、水蒸気露点にてSOガス雰囲気中で熱処理を行った。得られたガラスの表面の硫酸塩析出状況は、蛍光X線による表面S濃度(質量%)として測定した。ガラスの歪点、表面S濃度(質量%)もあわせて表5に示す。
(Examples 2 to 4)
The raw materials of each component were prepared so as to have the target composition shown in Table 4, and were melted at a temperature of 1550 ° C. for 1 hour using a platinum crucible. After dissolution, it was poured out into a carbon plate, held at glass transition point + 30 ° C. for 1 hour, cooled at 1 ° C./min, and gradually cooled. As the content of the alkali metal oxide in the raw material used at this time, the content of Na 2 O, the particle size of the silica sand in the used raw material, the median particle size D 50 , the proportion of particles having a particle size of 2 μm or less, and Table 4 shows the ratio of particles having a diameter of 100 μm or more. Table 4 also shows the molar ratio (MO conversion) of the hydroxide raw material in the alkaline earth metal.
The obtained glass was cut, and after mirror polishing, heat treatment was performed in an SO 2 gas atmosphere at the heat treatment temperature, heat treatment time, SO 2 gas concentration, and water vapor dew point shown in Table 5. The sulfate precipitation state on the surface of the obtained glass was measured as the surface S concentration (mass%) by fluorescent X-rays. Table 5 also shows the strain point and surface S concentration (mass%) of the glass.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2012年5月16日出願の日本特許出願2012-112226に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-112226 filed on May 16, 2012, the contents of which are incorporated herein by reference.
 本発明によって得られる板ガラスは、歪点が高く、ディスプレイ用基板、フォトマスク用基板等の用途に好適である。また、太陽電池用基板等の用途にも好適である。 The plate glass obtained by the present invention has a high strain point and is suitable for uses such as a display substrate and a photomask substrate. Moreover, it is suitable also for uses, such as a board | substrate for solar cells.

Claims (7)

  1.  ガラス原料を溶解し溶融ガラスとし、該溶融ガラスを成形装置にて板状のガラスリボンに成形した後、該ガラスリボンを徐冷装置にて徐冷する板ガラス製造方法であって、
     前記板ガラスが下記の無アルカリガラスからなり、
     前記無アルカリガラスの歪点をTst(℃)とするとき、Tst+70℃~Tst-50℃の温度域で、前記ガラスリボンの下面の直下の雰囲気濃度が500~20000ppmとなる時間が30秒以上となるように、SOガスを供給する板ガラス製造方法。
     歪点が710~750℃であって、50~300℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1320℃以下であって、
    酸化物基準のモル%表示で
    SiO        66~70、
    Al      12~15、
            0~1.5、
    MgO         9.5超13以下、
    CaO         4~9、
    SrO        0.5~4.5、
    BaO         0~1、
    ZrO        0~2、を含有し、
    MgO+CaO+SrO+BaO が17~21であり、
    MgO/(MgO+CaO+SrO+BaO)が0.40以上であり、MgO/(MgO+CaO)が0.40以上であり、MgO/(MgO+SrO)が0.60以上である無アルカリガラス。
    A glass glass manufacturing method in which a glass raw material is melted to form molten glass, the molten glass is formed into a plate-like glass ribbon with a molding device, and then the glass ribbon is gradually cooled with a slow cooling device,
    The plate glass is made of the following alkali-free glass,
    When the strain point of the alkali-free glass is T st (° C.), the time during which the atmosphere concentration immediately below the lower surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st −50 ° C. A plate glass manufacturing method for supplying SO 2 gas so as to be 30 seconds or longer.
    Temperature at which the strain point is 710 to 750 ° C., the average coefficient of thermal expansion at 50 to 300 ° C. is 30 × 10 −7 to 43 × 10 −7 / ° C., and the glass viscosity is 10 2 dPa · s. T 2 is 1710 ° C. or lower, and the temperature T 4 at which the glass viscosity is 10 4 dPa · s is 1320 ° C. or lower,
    SiO 2 66 to 70 in terms of mol% based on oxide,
    Al 2 O 3 12-15,
    B 2 O 3 0-1.5,
    MgO more than 9.5 and 13 or less,
    CaO 4-9,
    SrO 0.5-4.5,
    BaO 0 ~ 1,
    ZrO 2 0-2,
    MgO + CaO + SrO + BaO is 17-21,
    An alkali-free glass in which MgO / (MgO + CaO + SrO + BaO) is 0.40 or more, MgO / (MgO + CaO) is 0.40 or more, and MgO / (MgO + SrO) is 0.60 or more.
  2.  ガラス原料を溶解し溶融ガラスとし、該溶融ガラスを成形装置にて板状のガラスリボンに成形した後、該ガラスリボンを徐冷装置にて徐冷する板ガラス製造方法であって、
     前記板ガラスが下記の無アルカリガラスからなり、
     前記無アルカリガラスの歪点をTst(℃)とするとき、Tst+70℃~Tst-50℃の温度域で、前記ガラスリボンの下面の直下の雰囲気濃度が500~20000ppmとなる時間が30秒以上となるように、SOガスを供給する板ガラス製造方法。
     歪点が710~750℃であって、50~300℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1320℃以下であって、
    酸化物基準のモル%表示で
    SiO        66~70、
    Al      12~15、
            0~1.5、
    MgO         5~9.5、
    CaO         4~11、
    SrO        0.5~4.5、
    BaO         0~1、
    ZrO        0~2、を含有し、
    MgO+CaO+SrO+BaO が18.2超21以下であり、
    MgO/(MgO+CaO+SrO+BaO)が0.25以上であり、MgO/(MgO+CaO)が0.3以上であり、MgO/(MgO+SrO)が0.60以上であり、Al×(MgO/(MgO+CaO+SrO+BaO))が5.5以上である無アルカリガラス。
    A glass glass manufacturing method in which a glass raw material is melted to form molten glass, the molten glass is formed into a plate-like glass ribbon with a molding device, and then the glass ribbon is gradually cooled with a slow cooling device,
    The plate glass is made of the following alkali-free glass,
    When the strain point of the alkali-free glass is T st (° C.), the time during which the atmosphere concentration immediately below the lower surface of the glass ribbon is 500 to 20000 ppm in the temperature range of T st + 70 ° C. to T st −50 ° C. A plate glass manufacturing method for supplying SO 2 gas so as to be 30 seconds or longer.
    Temperature at which the strain point is 710 to 750 ° C., the average coefficient of thermal expansion at 50 to 300 ° C. is 30 × 10 −7 to 43 × 10 −7 / ° C., and the glass viscosity is 10 2 dPa · s. T 2 is 1710 ° C. or lower, and the temperature T 4 at which the glass viscosity is 10 4 dPa · s is 1320 ° C. or lower,
    SiO 2 66 to 70 in terms of mol% based on oxide,
    Al 2 O 3 12-15,
    B 2 O 3 0-1.5,
    MgO 5 to 9.5,
    CaO 4-11,
    SrO 0.5-4.5,
    BaO 0 ~ 1,
    ZrO 2 0-2,
    MgO + CaO + SrO + BaO is more than 18.2 and 21 or less,
    MgO / (MgO + CaO + SrO + BaO) is 0.25 or more, MgO / (MgO + CaO) is 0.3 or more, MgO / (MgO + SrO) is 0.60 or more, and Al 2 O 3 × (MgO / (MgO + CaO + SrO + BaO) ) Is alkali-free glass of 5.5 or more.
  3.  前記無アルカリガラスがアルカリ金属酸化物を600~2000モルppm含有する、請求項1または2に記載の板ガラス製造方法。 The plate glass manufacturing method according to claim 1 or 2, wherein the alkali-free glass contains 600 to 2000 mol ppm of an alkali metal oxide.
  4.  前記成形装置が、フロート成形装置である、請求項1~3のいずれか一項に記載の板ガラス製造方法。 The plate glass manufacturing method according to any one of claims 1 to 3, wherein the forming device is a float forming device.
  5.  SiO原料の珪素源として、メディアン粒径D50が20μm~27μm、粒径2μm以下の粒子の割合が0.3体積%以下、かつ粒径100μm以上の粒子の割合が2.5体積%以下の珪砂を用いる、請求項1~4のいずれか一項に記載の板ガラスの製造方法。 As a silicon source of the SiO 2 raw material, the ratio of particles having a median particle diameter D 50 of 20 μm to 27 μm, a particle diameter of 2 μm or less is 0.3% by volume or less, and the ratio of particles having a particle diameter of 100 μm or more is 2.5% by volume or less. The method for producing a plate glass according to any one of claims 1 to 4, wherein the silica sand is used.
  6.  MgO、CaO、SrOおよびBaOのアルカリ土類金属源として、アルカリ土類金属の水酸化物を、アルカリ土類金属源100モル%(MO換算。但しMはアルカリ土類金属元素である。以下同じ。)のうち、15~100モル%(MO換算)含有するものを用いる、請求項1~4のいずれか一項に記載の板ガラス製造方法。 As an alkaline earth metal source of MgO, CaO, SrO and BaO, an alkaline earth metal hydroxide is used in an amount of 100 mol% of alkaline earth metal source (in terms of MO, where M is an alkaline earth metal element. The same applies hereinafter. 5. The method for producing plate glass according to any one of claims 1 to 4, wherein a material containing 15 to 100 mol% (in terms of MO) is used.
  7.  SiO原料の珪素源として、メディアン粒径D50が20μm~27μm、粒径2μm以下の粒子の割合が0.3体積%以下、かつ粒径100μm以上の粒子の割合が2.5体積%以下の珪砂を用い、MgO、CaO、SrOおよびBaOのアルカリ土類金属源として、アルカリ土類金属の水酸化物を、アルカリ土類金属源100モル%(MO換算。但しMはアルカリ土類金属元素である。以下同じ。)のうち、15~100モル%(MO換算)含有するものを用いる、請求項1~4のいずれか一項に記載の板ガラス製造方法。 As a silicon source of the SiO 2 raw material, the ratio of particles having a median particle diameter D 50 of 20 μm to 27 μm, a particle diameter of 2 μm or less is 0.3% by volume or less, and the ratio of particles having a particle diameter of 100 μm or more is 2.5% by volume or less. As an alkaline earth metal source of MgO, CaO, SrO and BaO, an alkaline earth metal hydroxide is used as an alkaline earth metal source at 100 mol% (in terms of MO. M is an alkaline earth metal element) The method for producing a glass sheet according to any one of claims 1 to 4, wherein one containing 15 to 100 mol% (in terms of MO) is used.
PCT/JP2013/063309 2012-05-16 2013-05-13 Method for producing plate glass WO2013172307A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380024855.1A CN104302590B (en) 2012-05-16 2013-05-13 The manufacture method of plate glass
KR1020147022619A KR101974681B1 (en) 2012-05-16 2013-05-13 Method for producing plate glass
JP2014515617A JPWO2013172307A1 (en) 2012-05-16 2013-05-13 Sheet glass manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-112226 2012-05-16
JP2012112226 2012-05-16

Publications (1)

Publication Number Publication Date
WO2013172307A1 true WO2013172307A1 (en) 2013-11-21

Family

ID=49583712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063309 WO2013172307A1 (en) 2012-05-16 2013-05-13 Method for producing plate glass

Country Status (5)

Country Link
JP (1) JPWO2013172307A1 (en)
KR (1) KR101974681B1 (en)
CN (1) CN104302590B (en)
TW (1) TW201404754A (en)
WO (1) WO2013172307A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072429A1 (en) * 2013-11-13 2015-05-21 旭硝子株式会社 Method for manufacturing sheet glass
US20160068427A1 (en) * 2012-04-27 2016-03-10 Asahi Glass Company, Limited Non-alkali glass and method for producing same
JPWO2016063981A1 (en) * 2014-10-23 2017-08-03 旭硝子株式会社 Alkali-free glass
JP2019055895A (en) * 2017-09-21 2019-04-11 Agc株式会社 Borosilicate glass, and production method thereof
JPWO2018038059A1 (en) * 2016-08-23 2019-06-20 Agc株式会社 Alkali free glass
WO2020162606A1 (en) * 2019-02-07 2020-08-13 Agc株式会社 Alkali-free glass
WO2020162605A1 (en) * 2019-02-07 2020-08-13 Agc株式会社 Alkali-free glass
CN113135654A (en) * 2014-07-18 2021-07-20 Agc株式会社 Alkali-free glass
US11718553B2 (en) 2019-03-19 2023-08-08 AGC Inc. Alkali-free glass substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018225627A1 (en) * 2017-06-05 2020-04-23 Agc株式会社 Tempered glass
CN107793019B (en) * 2017-11-27 2020-03-20 先进数字显示(深圳)有限公司 Process method for microstructure hot pressing of flat glass substrate for high-precision display
KR20240112946A (en) * 2018-03-14 2024-07-19 에이지씨 가부시키가이샤 Glass
JP6973237B2 (en) * 2018-03-29 2021-11-24 日本電気硝子株式会社 How to manufacture flat glass
US20240270629A1 (en) * 2022-05-31 2024-08-15 Nippon Sheet Glass Company, Limited Glass fiber and composition for glass fibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236631A (en) * 1985-04-10 1986-10-21 Ohara Inc Refractory and heat resistant glass
JPH02120256A (en) * 1988-10-27 1990-05-08 Central Glass Co Ltd Method for forming protection film on glass surface
JPH1045422A (en) * 1996-07-29 1998-02-17 Asahi Glass Co Ltd Alkali-free glass and flat display panel
WO2002051767A1 (en) * 2000-12-26 2002-07-04 Nippon Sheet Glass Co.,Ltd. Plate glass with protective film and method of manufacturing the plate glass
WO2008004481A1 (en) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Process for producing glass substrate for flat panel glass
WO2009148141A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634684A (en) 1985-10-23 1987-01-06 Corning Glass Works Strontium aluminosilicate glass substrates for flat panel display devices
US4634683A (en) 1985-10-23 1987-01-06 Corning Glass Works Barium and/or strontium aluminosilicate crystal-containing glasses for flat panel display devices
JP3083586B2 (en) 1991-04-26 2000-09-04 旭硝子株式会社 Alkali-free glass
US5116789A (en) 1991-08-12 1992-05-26 Corning Incorporated Strontium aluminosilicate glasses for flat panel displays
US5326730A (en) 1993-01-22 1994-07-05 Corning Incorporated Barium aluminosilicate glasses
JP2001064028A (en) * 1999-06-22 2001-03-13 Asahi Glass Co Ltd Tempered glass base plate for flat panel display
JP2002308643A (en) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd Alkali-free glass and glass substrate for display
JP5246676B2 (en) * 2006-12-27 2013-07-24 本田技研工業株式会社 Shift map switching control device
JP2009148141A (en) 2007-12-18 2009-07-02 Sumitomo Electric Ind Ltd Magnetic material component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236631A (en) * 1985-04-10 1986-10-21 Ohara Inc Refractory and heat resistant glass
JPH02120256A (en) * 1988-10-27 1990-05-08 Central Glass Co Ltd Method for forming protection film on glass surface
JPH1045422A (en) * 1996-07-29 1998-02-17 Asahi Glass Co Ltd Alkali-free glass and flat display panel
WO2002051767A1 (en) * 2000-12-26 2002-07-04 Nippon Sheet Glass Co.,Ltd. Plate glass with protective film and method of manufacturing the plate glass
WO2008004481A1 (en) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Process for producing glass substrate for flat panel glass
WO2009148141A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068427A1 (en) * 2012-04-27 2016-03-10 Asahi Glass Company, Limited Non-alkali glass and method for producing same
US9540273B2 (en) * 2012-04-27 2017-01-10 Asahi Glass Company, Limited Non-alkali glass and method for producing same
WO2015072429A1 (en) * 2013-11-13 2015-05-21 旭硝子株式会社 Method for manufacturing sheet glass
CN113135654A (en) * 2014-07-18 2021-07-20 Agc株式会社 Alkali-free glass
JP2019194156A (en) * 2014-10-23 2019-11-07 Agc株式会社 Non-alkali glass
JP2019194157A (en) * 2014-10-23 2019-11-07 Agc株式会社 Non-alkali glass
JP2020040878A (en) * 2014-10-23 2020-03-19 Agc株式会社 Non-alkali glass
JP2020079201A (en) * 2014-10-23 2020-05-28 Agc株式会社 Alkali-free glass
JPWO2016063981A1 (en) * 2014-10-23 2017-08-03 旭硝子株式会社 Alkali-free glass
JPWO2018038059A1 (en) * 2016-08-23 2019-06-20 Agc株式会社 Alkali free glass
JP2019055895A (en) * 2017-09-21 2019-04-11 Agc株式会社 Borosilicate glass, and production method thereof
WO2020162606A1 (en) * 2019-02-07 2020-08-13 Agc株式会社 Alkali-free glass
WO2020162605A1 (en) * 2019-02-07 2020-08-13 Agc株式会社 Alkali-free glass
US11718553B2 (en) 2019-03-19 2023-08-08 AGC Inc. Alkali-free glass substrate

Also Published As

Publication number Publication date
CN104302590B (en) 2016-08-31
JPWO2013172307A1 (en) 2016-01-12
TW201404754A (en) 2014-02-01
KR101974681B1 (en) 2019-05-02
KR20150013116A (en) 2015-02-04
CN104302590A (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5849965B2 (en) Alkali-free glass and method for producing alkali-free glass
JP6107823B2 (en) Alkali-free glass and method for producing the same
KR101974681B1 (en) Method for producing plate glass
JP5712922B2 (en) Alkali-free glass and production method
TWI492913B (en) E-glass and its manufacturing method
JP5817737B2 (en) Alkali-free glass and method for producing alkali-free glass
WO2015072429A1 (en) Method for manufacturing sheet glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515617

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147022619

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791084

Country of ref document: EP

Kind code of ref document: A1