WO2013168891A1 - Method and device for reconfiguring drx by considering packet inter arrival time - Google Patents

Method and device for reconfiguring drx by considering packet inter arrival time Download PDF

Info

Publication number
WO2013168891A1
WO2013168891A1 PCT/KR2013/002198 KR2013002198W WO2013168891A1 WO 2013168891 A1 WO2013168891 A1 WO 2013168891A1 KR 2013002198 W KR2013002198 W KR 2013002198W WO 2013168891 A1 WO2013168891 A1 WO 2013168891A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
packet
iat
terminal
base station
Prior art date
Application number
PCT/KR2013/002198
Other languages
French (fr)
Korean (ko)
Inventor
정명철
권기범
안재현
허강석
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013168891A1 publication Critical patent/WO2013168891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a DRX reconfiguration method and apparatus in consideration of an inter arrival time of a packet in a wireless communication system.
  • a wireless network such as LTE is designed without considering various kinds of traffic occurrence situations caused by application use in various mobile devices.
  • the terminal may use a DRX scheme for power saving.
  • the DRX method is a method in which the UE saves power by periodically changing the active time and the inactive time.
  • the activity time is a period in which the terminal wakes up to receive the PDCCH.
  • Inactivity time is a period in which the UE sleeps without receiving the PDCCH.
  • the DRX method may use two modes, a long DRX mode and a short DRX mode, but the existing DRX method is limited and unnecessary to operate without considering various traffic patterns. There is a problem that can consume power.
  • the traffic types mainly considered for power saving, etc. include IM (Instant Messanger) and BG (Background) traffic.
  • IM is traffic used in an application that provides an interactive service such as MSN messenger, KakaoTalk, and the like, and includes an instant message and IM background traffic.
  • BG traffic is traffic that may be generated to maintain a state in an OS (Operation System) even when the UE does not operate in an actual active phase. Such traffic can be generated and transmitted periodically with a relatively small packet size.
  • An object of the present invention is to provide a method and apparatus for performing DRX reconfiguration in a wireless communication system.
  • Another technical problem of the present invention is to provide a method and apparatus for performing DRX reconstruction based on an inter-arrival time (IAT).
  • IAT inter-arrival time
  • Another technical problem of the present invention is to provide a method and apparatus for providing information on a packet arrival interval.
  • Another technical problem of the present invention is to provide a method and apparatus for providing DRX reconfiguration information considering a packet arrival interval.
  • a terminal for performing a discontinuous reception (DRX) operation in consideration of an inter-arrival time of a packet in a wireless communication system includes an IAT processing unit for calculating a packet IAT, a transmitting unit for transmitting the packet IAT to a base station, a receiving unit for receiving modified DRX reconfiguration information based on the packet IAT from the base station, and the received DRX reconfiguration information. It includes a DRX processing unit for performing a DRX reconfiguration based on.
  • a base station for controlling a DRX operation of a terminal considering the arrival interval (IAT) of a packet in a wireless communication system.
  • the base station includes a receiver for receiving a packet IAT from the terminal, a DRX processor for modifying a DRX related parameter based on the received packet IAT, and DRX reconfiguration information including the changed DRX related parameter. It includes a transmission unit for transmitting to.
  • a DRX method considering a packet arrival interval by a terminal in a wireless communication system.
  • the method includes calculating a packet IAT, transmitting the packet IAT to a base station, receiving modified DRX reconfiguration information from the base station based on the packet IAT, and based on the received DRX reconfiguration information. Performing a DRX reconfiguration.
  • a method of controlling a DRX operation of a terminal in consideration of a packet arrival interval by a base station in a wireless communication system includes receiving a packet IAT from the terminal, performing a modification of a DRX related parameter based on the received packet IAT, and sending DRX reconfiguration information including the changed DRX related parameter to the terminal. Transmitting.
  • the present invention by reconfiguring the DRX based on the packet arrival interval, it is possible to perform more efficient DRX operation than the general DRX method.
  • an efficient DRX operation may be performed to save power of a terminal.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 shows a structure of a subframe to which the present invention is applied.
  • FIG. 3 is an explanatory diagram for explaining a DRX operation to which the present invention is applied.
  • EPS bearer Evolved Packet System Bearer
  • FIG. 5 shows a structure of a radio bearer (RB) connecting a terminal and a base station.
  • RB radio bearer
  • FIG. 6 shows an SDU and a PDU generation process in a protocol.
  • FIG. 7 is a flowchart illustrating a method of transmitting packet IAT information according to an embodiment of the present invention.
  • FIG 8 illustrates a case in which a packet is generated and transmitted with a periodicity according to an embodiment of the present invention.
  • FIG 9 illustrates a DRX operation of a terminal according to an embodiment of the present invention.
  • FIG. 10 illustrates a DRX operation of a terminal considering a packet IAT according to an embodiment of the present invention.
  • FIG. 11 illustrates a DRX operation of a terminal considering packet IAT according to another embodiment of the present invention.
  • FIG. 12 illustrates a DRX operation of a terminal considering a packet IAT according to another embodiment of the present invention.
  • FIG. 13 illustrates a DRX operation of a terminal in consideration of a packet IAT according to another embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating an operation of a terminal performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
  • 15 is a flowchart illustrating an operation of a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
  • 16 is a block diagram illustrating a terminal and a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the base station 11 may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto base station, a home nodeB, a relay, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • a cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
  • the UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • MS mobile station
  • MS mobile terminal
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • wireless modem wireless modem
  • handheld device handheld device
  • downlink refers to a transmission link from the base station 11 to the terminal 12
  • uplink refers to a transmission link from the terminal 12 to the base station 11. it means.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FIG. 2 shows a structure of a subframe to which the present invention is applied.
  • one radio frame includes 10 subframes, and one subframe includes two consecutive slots.
  • the preceding 1, 2, 3 or 4 OFDM symbols of the first slot in the subframe are the control channel region to which the PDCCH is mapped, and the remaining OFDM symbols are the physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • This is the data channel region to be mapped.
  • the control channel region may be called a control region, and the data channel region may be called a data region.
  • a control channel such as PCFICH and PHICH may be allocated to the control channel region.
  • the terminal uses the cell-radio network temporary identifier (C-RNTI), transmission power control (TPC) -PUCCH-RNTI, TPC-PUSCH-RNTI, and semi persistent scheduling (SPS) -RNTI, Monitoring can be performed.
  • Monitoring of the PDCCH can be controlled by the DRX (Discontinuous Reception) operation, the parameter about the DRX is transmitted by the base station to the terminal by the RRC message.
  • the UE should always receive system information (RN) -RNTI, p (paging) -RNTI, etc. regardless of the DRX operation configured by the RRC message.
  • the remaining PDCCHs except the PDCCH scrambled with C-RNTI are always received through a common search space of the main serving cell.
  • the terminal performs discontinuous monitoring on the PDCCH based on the DRX operation.
  • the UE monitors the continuous PDCCH.
  • Discontinuous PDCCH monitoring may mean that the UE monitors the PDCCH only in a specific subframe, and continuous PDCCH monitoring may mean that the UE monitors the PDCCH in all subframes.
  • PDCCH monitoring is required in a DRX independent operation such as a random access procedure, the UE monitors the PDCCH according to the requirements of the corresponding operation.
  • DRX allows a UE to stop monitoring a packet data control channel (PDCCH) for a period of time (ie, a sleep period or an inactive time).
  • the UE repeats a wake up or active and sleep or non-active or inactive period in the DRX mode.
  • Wake up means monitoring the packet data control channel (PDCCH).
  • the DRX may be configured by radio resource control / media access control (RRC / MAC).
  • Related DRX parameters may include a long DRX cycle, a DRX Inactivity Timer, and a DRX Retransmission Timer.
  • the DRX includes a short DRX cycle and a DRX Short Cycle Timer (drxShortCycleTimer).
  • the long term DRX cycle provides a longer sleep period for the terminal than the short term DRX cycle.
  • FIG. 3 is an explanatory diagram for explaining a DRX operation to which the present invention is applied.
  • the DRX operation is repeated in units of DRX cycles 300, and the DRX cycle 300 is a periodic repetition of a DRX opportunity (DRX opportunity 310) and a duration (On Duration 305). Is defined.
  • One cycle of DRX cycle 300 includes a duration 305 and a DRX opportunity (310).
  • the DRX cycle 300 includes, for example, a long DRX cycle applied in a range between 10 subframes and 2560 subframes, and in another example, a short DRX cycle applied in a range of 2 subframes to 640 subframes. DRX cycle).
  • the short term DRX cycle is applied only while the DRX short cycle timer (drxShortCycleTimer) is operating, and the long term DRX cycle is applied outside the range in which the DRX short cycle timer is operated.
  • the DRX short cycle timer one short DRX cycle becomes a basic unit.
  • the length of the short-term DRX cycle timer may be 1 to 16, for example.
  • the RRC layer manages several timers to control the DRX operation.
  • Timers controlling the DRX operation include a duration timer (onDurationTimer), a DRX inactivity timer (DRxInactivity Timer), a DRX retransmission timer (drxRetransmission Timer).
  • the duration timer is started by the start of the DRX cycle. In other words, the start of the duration timer coincides with the start of the DRX cycle.
  • the duration timer increases by 1 for every PDCCH subframe.
  • the duration timer expires when the duration timer value becomes equal to a preset expiration value.
  • the duration timer is valid until the duration timer value is equal to the expiration value.
  • the DRX inactivity timer may be defined as the number of consecutive PDCCH subframes from the time point of successfully decoding the PDCCH for uplink or downlink user data transmission. Since continuous data reception may occur, it is time for the UE to continuously monitor the PDCCH.
  • the DRX Inactivity Timer is started or restarted when the UE successfully decodes the PDCCH for HARQ initial transmission in the PDCCH subframe.
  • the DRX retransmission timer is a timer that operates based on the maximum number of consecutive numbers of PDCCH subframes for which downlink retransmission is expected by the terminal soon.
  • the DRX retransmission timer is a timer that is started when the retransmission data is not received even though the HARQ RTT timer has expired.
  • the terminal may monitor the reception of data retransmitted in the HARQ process while the DRX retransmission timer is in progress.
  • the setting of the DRX retransmission timer is defined by the MAC-MainConfig message of the RRC layer.
  • the time that the duration timer, the DRX inactivity timer, or the DRX retransmission timer is in progress is called an active time.
  • the activity time may mean all sections in which the terminal is awake.
  • Non-active time during the DRX cycle may be referred to as non-active time.
  • the active time may be called a wake up interval, and the inactive time may be called a sleep interval.
  • the UE monitors the PDCCH for the PDCCH subframe during the active time.
  • the PDCCH subframe means a subframe including the PDCCH.
  • DwPTS downlink pilot time slot
  • a timer unit of a DRX timer such as a duration timer, a DRX inactivity timer, or a DRX retransmission timer, is a PDCCH subframe (psf). That is, DRX timers are counted based on the number of PDCCH subframes.
  • DRX-Cycle long DRX cycle
  • drxStartOffset DRX start offset
  • the base station can optionally set DRX short cycle timer (drxShortCycleTimer) and short DRX-cycle (shortDRX-Cycle). Can be.
  • a HARQ round trip time (RTT) timer is defined for each downlink HARQ process.
  • the DRX start offset is a value that defines the subframe where the DRX cycle 300 begins.
  • the DRX short cycle timer is a timer that defines the number of consecutive subframes that the UE should follow the short DRX cycle.
  • the HARQ RTT timer is a timer that defines the minimum number of subframes before the interval in which downlink HARQ retransmission is expected by the UE.
  • the DRX configuration information may be received by being included in a MAC-MainConfig message, which is an RRC message used to specify a main configuration of a MAC layer for a signaling radio bearer (SRB) and a data radio bearer (DRB).
  • DRX configuration information may be configured, for example, as shown in the table below.
  • the DRX configuration information includes a longDRX-CycleStartOffset field indicating a length of a long DRX cycle and a starting subframe, and a shortDRX field regarding a short DRX that may be configured as optional.
  • the shortDRX field specifically includes a shortDRX-Cycle subfield indicating the length of a short DRX cycle and a drxShortCycleTimer subfield indicating a value of a short term DRX cycle timer in which the UE is continuous.
  • the longDRX-CycleStartOffset field may be set to any one of values of ⁇ sf10, sf20, sf32, sf40, ... sf2560 ⁇ as the length of a long DRX cycle, and the subframe where the long DRX cycle starts is the length of the long DRX cycle.
  • the value may be set to any one of ⁇ INTEGER (0..9), INTEGER (0..19), INTEGER (0..31), ... INTEGER (0..2559) ⁇ .
  • the longDRX-CycleStartOffset field sf20, INTEGER (0..19)
  • one long DRX cycle includes 20 subframes
  • the long DRX cycle includes any subframe of subframe indexes 0 to 19.
  • This long term DRX cycle start subframe may be selected.
  • the shortDRX-Cycle subfield constituting the shortDRX field may be set to any one of ⁇ sf2, sf5, sf8, ... sf640 ⁇ .
  • the traffic when the packet is transmitted in a form in which the generation interval of the packet is constant or gathered at a predetermined interval, the traffic may be periodic.
  • Inter-Arrival Time may be defined as an interval in which the terminal generates an uplink packet or an interval in which a downlink packet is received.
  • the arrival interval may be defined as an interval at which the base station receives an uplink packet or an interval for generating a downlink packet.
  • periodic traffic IM or BG traffic may be applied.
  • IM is traffic used in an application that provides an interactive service such as MSN messenger, KakaoTalk, and the like, and includes an instant message and IM background traffic.
  • BG traffic is traffic that may be generated to maintain a state in an OS (Operation System) even when the UE does not operate in an actual active phase.
  • DRX reconfiguration may be performed in consideration of the arrival interval IAT of the packet as described above.
  • the terminal may change the DRX mode to the short term DRX mode or the long term DRX mode in consideration of the IAT of the packet, or may change the DRX cycle. This can increase the efficiency of DRX operation.
  • the terminal or the base station needs to secure the IAT of the packet.
  • There may be various methods for obtaining an IAT of a packet. For example, the packet may be obtained based on the following criteria.
  • EPS bearer Evolved Packet System Bearer
  • an EPS bearer is generated from the terminal to the PDN-GW 460.
  • the EPS bearer is a transmission path generated between the UE 400 and the PDN-GW 460, and various types of traffic may pass through the EPS bearer.
  • the various kinds of traffic may be called an IP flow, and the IP flow may be a source IP, a destination IP, a protocol ID, a source port of a packet. It may be divided into a destination port.
  • EPS bearer is composed of a radio bearer (RB, 410), S1 bearer 430, S5 / S8 bearer 450, etc., it can be seen that the traffic flow (traffic flow) for each EPS bearer.
  • RB radio bearer
  • S1 bearer 430 S1 bearer 430
  • S5 / S8 bearer 450 etc.
  • the terminal 400 is connected to the base station 420 through the radio bearer 410.
  • the base station 420 is connected to a Serving Gateway (S-GW) through the S1 bearer 430.
  • S-GW is connected to the PDN-GW (Packet Data Network Gateway) 460 through the S5 / S8 bearer 450.
  • PDN-GW Packet Data Network Gateway
  • the terminal 400 determines which EPS bearer to send the packet through the UL TFT (Traffic Flow Template).
  • the UL TFT is received from the network while the terminal is connected to the network.
  • the terminal 400 transmits an RB-ID value to the packet to the base station 420 through the radio bearer 410.
  • the base station 420 determines the destination S-GW 440 and the S1 Tunnel Endpoing Identifier (TE1) value based on the RB-ID value, and loads the S1 TEID value in the received packet to load the S1 bearer 430. Transmit to S-GW (440).
  • the S-GW 440 determines the destination PDN-GW 460 and the S5 TEID (or S8 TEID) value based on the S1 TEID value, and loads the S5 TEID (or S8 TEID) on the received packet to S5 /. Transmit to the PDN-GW 460 through the S8 bearer (S440).
  • the PDN-GW 460 may know which UE sent a packet based on the S5 TEID (or S8 TEID).
  • the traffic flow in the downlink (DL) direction may be the inverse of the traffic flow in the uplink direction described above.
  • a packet flow exists on an EPS bearer, and one EPS bearer corresponds to one radio bearer 410, an S1 bearer 430, and an S5 / S8 bearer 450, respectively.
  • packet traffic transmitted and received on one EPS bearer may be viewed as being managed in units of radio bearers 410 on the radio side.
  • FIG. 5 shows a structure of a radio bearer (RB) connecting a terminal and a base station. There may be more than one radio bearer for one terminal. Although FIG. 5 illustrates three radio bearers, more or less radio bearers may be configured.
  • RB radio bearer
  • a radio bearer 500 exists between a terminal and a base station, and one radio bearer 500 has a one-to-one matching relationship with one S1 bearer 550.
  • One radio bearer 500 is implemented in a form that exists on the Protocol Data Convergence Protocol (PDCP), Radio Link Control (RLC), Medium Access Control (MAC), and Physical (PHY) of the base station and the terminal.
  • PDCP Protocol Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • one radio bearer 500 includes a pair of PDCP, RLC, MAC, and PHY entities.
  • 6 illustrates a process of generating an SDU and a PDU in a protocol. 6 assumes that there is no fragmentation or concentration.
  • the Packet Data Convergence Protocol (PDCP) 600 is responsible for delivering user data, header compression, and ciphering.
  • the PDCP 600 may be viewed as a boundary for sending and receiving packet traffic to the radio bearer and the S1 bearer. Therefore, the start of the radio section in which specific application packet traffic is transmitted and received can be regarded as PDCP (600).
  • the PDCP generates a received packet as a PDCP SDU (Sevice Data Unit), and attaches a PDCP header to the PDCP SDU to generate a PDCP PDU (Protocol Data Unit).
  • the PDCP PDU becomes an RLC SDU in the RLC 620 layer.
  • the RLC 620 receives a PDCP PDU (RLC SDU) delivered from the PDCP 600, performs fragmentation or concatenation, and prepares for radio link transmission. At this time, the RLC 620 may change the size by dividing or concatenating the RLC SDU according to the radio situation. For example, when a situation in which the size of an RLC SDU is larger than a size that can be sent at a time in a wireless situation occurs, the RLC SDU may be divided into appropriate sizes, and the cut portion may be connected to another RLC SDU.
  • the RLC 620 generates an RLC PDU by attaching an RLC header to the RLC SDU.
  • the MAC 640 is responsible for logical channel multiplexing, HARQ retransmission, and uplink / downlink scheduling.
  • the MAC 640 may multiplex or demultiplex the RLC PDUs (MAC SDUs) transmitted from the RLC 620 between logical channels and transport channels.
  • the MAC 640 generates a MAC PDU by attaching a MAC header to the MAC SDU.
  • the PHY 660 is responsible for coding, physical layer HARQ processing, modulation, multi-antenna processing, and mapping signals to appropriate physical time-frequency resources.
  • the PHY 660 also performs mapping of transport channels to physical channels.
  • the PHY 660 may transmit MAC PDUs (PHY SDUs or Transport Blocks (TBs)) according to the actual radio duration.
  • the packet entering the PDCP 600 is transmitted after completing the operation in the corresponding protocol via the RLC 620, MAC 640, PHY 660. Transmission data scheduling in subframe units is performed in the MAC, and the DRX operation is also performed in subframe units as described above. The transport block generated in the MAC is transmitted according to the HARQ operation in the radio section via the PHY 660.
  • processing delays may occur until packets entering PDCP 600 are delivered to RLC 620, MAC 640, and PHY 660 in actual operation, the processing delay is negligibly small. Or constant. Accordingly, it is determined that a time point at which a packet is input to the PDCP 600 and a time point at which data is scheduled and allocated to a subframe in the MAC 640 are the same. In this case, the time point at which the packet enters the PDCP and the time point at which the data for the packet is allocated to the subframe can be viewed in the same manner.
  • the time point at which the packet enters the PDCP 600 through the radio bearer and the time point at which the data for the packet is allocated to the subframe in the MAC 640 are the same.
  • a packet is not sent. It is considered that the packet is transmitted to the MAC 640 at the time when the packet arrives at the PDCP 600 to schedule data for the packet in a subframe.
  • the PDCP 600 can be identified as a location for data corresponding to the application, and the timing of packet traffic transmitted and received from the PDCP 600 is defined as the IAT (Inter-Arrival Time) of the packet of the actual application. can do.
  • the IAT of the packet may be defined by the following criteria.
  • the terminal when the terminal receives a downlink packet from the network, the terminal may calculate the IAT by tracing the reception timing.
  • the time point at which the terminal receives the packet may be measured based on the PDCP.
  • the terminal may check the time point when the PDCP SDU or the PDCP PDU number is increased, and may always check the reception time, and may measure the IAT of the packet based on this.
  • the mean IAT (Mean IAT) for the actually measured packet arrival time may be calculated and used as the IAT value.
  • radio bearers for each EPS bearer, and PDCP for each radio bearer may exist.
  • the IAT value may be calculated in the following manner.
  • individual packet IAT values can be secured by individually using each packet IAT based on the individual PDCP.
  • one IAT value may exist for each PDCP.
  • one representative packet IAT may be defined using the average of individual packet IATs for each bearer. In this case, the IAT value does not exist for each PDCP or radio bearer, and only one representative packet IAT value exists.
  • the PDCP SDU or PDCP PDU number is increased based on one PDCP representing each radio bearer, and may be defined as one packet IAT representing all radio bearers.
  • the method of selecting one PDCP may have various methods. For example, it may be selected based on the PDCP having the smallest IAT value. Alternatively, the selection may be made based on the PDCP having the largest IAT value.
  • the base station can also check the traffic transmitted from the base station to the terminal to calculate the packet IAT.
  • Uplink traffic is sent to the base station through an S1 bearer, which is in turn mapped to a radio bearer. Therefore, the time point at which the packet is received by the base station through the S1 bearer can be known as the IAT of the packet.
  • the packet IAT may be identified when the packet is mapped to the radio bearer. In this case, the IAT of the packet may be determined based on the PDCP of the base station.
  • the base station or the terminal may calculate the IAT of the packet on the uplink basis.
  • the terminal may check the information on the uplink traffic according to its application situation. In this case, the terminal may maintain the state without using the DRX for the purpose of transmitting a scheduling request (SR) for uplink traffic to be transmitted, and it may be difficult to accurately predict the interval. As a result, it can be difficult to keep track of activity time accurately.
  • SR scheduling request
  • the packet IAT may be different from the uplink packet IAT and the downlink packet IAT.
  • the packet IAT can be obtained based on the downlink.
  • the packet IAT may be obtained on an uplink basis.
  • the packet IAT may be determined as one of values related to downlink and uplink. For example, if the downlink packet IAT is 30 ms and the uplink packet IAT is 40 ms, the packet IAT may be set to 30 ms in consideration of the smaller packet IAT. Alternatively, the packet IAT may be set to 40 ms in consideration of the larger packet IAT.
  • FIG. 7 is a flowchart illustrating a method of transmitting packet IAT information according to an embodiment of the present invention.
  • the terminal calculates a packet IAT (S700).
  • the method for calculating the packet IAT may include both a method for calculating a packet IAT defined from a downlink (DL) point of view and a method for calculating a packet IAT defined from an uplink (UL) point of view.
  • the base station may also calculate the packet IAT as described above, in which case S700 and S710 may be omitted.
  • the terminal transmits the packet IAT information indicating the calculated packet IAT to the base station (S705).
  • the packet IAT information may be transmitted through dedicated signaling or a medium access control (MAC) control element (CE) for the terminal.
  • the packet IAT information may be transmitted as a RRC message through a measurement reporting message or an RRC UE assistance information message.
  • the measurement report is a message in which the terminal reports information about the measurement to the base station.
  • the terminal assistance information message is an auxiliary information message transmitted from the terminal to the base station, and may be information related to a multimedia broadcast multicast system (MBMS), a heterogeneous network (HetNet), and enhancements for diverse data applications (EDDA), and can be identified by the terminal.
  • the calculated value, detection value, or threshold value for all information may be included.
  • the base station Upon receiving the packet IAT information, the base station reconfigures the DRX related parameter such that the transmission time of the estimated downlink packet based on the packet IAT matches the on duration (S710).
  • the base station may reconfigure the DRX related parameters to change the short term DRX mode to the long term DRX mode previously.
  • the base station may reconfigure the DRX related parameters in a manner that previously lengthens or shortens the length of the long term DRX cycle.
  • the base station may reconfigure the DRX related parameters to maintain the long-term DRX mode so that the long-term DRX mode is not previously switched to the short-term DRX mode.
  • the base station transmits DRX reconfiguration information to the terminal (S715).
  • the DRX reconfiguration information may be transmitted using an RRC connection reconfiguration message.
  • DRX reconfiguration may include an operation to prohibit switching to short-term DRX mode.
  • DRX reconstruction may include changing the length of the long term DRX cycle upon switching to long term DRX.
  • the UE and the base station may reconfigure DRX related parameters based on the same packet IAT.
  • the base station may reconfigure the DRX related parameters
  • the terminal may reconfigure the DRX related parameters by itself without receiving the DRX reconfiguration information from the base station.
  • step S715 in which the base station transmits DRX reconfiguration information to the terminal may be omitted.
  • the terminal performs a DRX operation based on the reconfigured DRX related parameters and performs downlink reception or uplink transmission based on an active time (or duration) and packet IAT according to the reconfigured DRX related parameters.
  • a method of reconstructing a DRX parameter in consideration of a packet IAT and a method of performing a DRX operation by a terminal according to the reconstructed DRX are described below.
  • FIG. 8 illustrates a case in which a packet is generated and transmitted with a periodicity according to an embodiment of the present invention.
  • One square represents a subframe.
  • the index of the first subframe is regarded as 1 and the index of the next subframe is sequentially increased by 1, the subframes 100 through 100 are illustrated. 9 to 13 are also the same below.
  • FIG. 8 illustrates an example in which packet traffic is generated and transmitted with periodicity.
  • packets arrive based on a packet IAT value calculated based on PDCP.
  • the ideal case is assumed.
  • the subframe in which the packet arrives is the first subframe 800, the 31st subframe 810, the 61st subframe 820, and the 91st subframe 830, as shown.
  • the timing is constant at 30ms intervals.
  • the next packet is generated and transmitted from the base station to the terminal 30 ms after the first packet occurs, and the received packet is accurately scheduled at a corresponding timing and allocated to a subframe of the corresponding timing.
  • the first packet arriving at the protocol corresponding to the PDCP is allocated to the subframe at the corresponding timing and transmitted.
  • the packet is transmitted once every three radio frames, that is, 30 subframes.
  • FIG. 9 illustrates a DRX operation of a terminal according to an embodiment of the present invention.
  • One square represents a subframe
  • the colored subframe represents the packet arrival time
  • the hatched subframe represents the duration of the DRX cycle.
  • a DRX operation is shown when packet traffic is transmitted with periodicity.
  • the long-term DRX cycle is 20 ms
  • the on duration is 2 ms
  • the short-term DRX cycle is 10 ms
  • the DRX short cycle timer (drxShortCycleTimer) is 3.
  • An arrow indicates an operation of receiving a scheduled PDCCH by the terminal upon packet arrival.
  • a packet may be generated and transmitted in a first subframe, a 31st subframe, a 61st subframe, and a 91st subframe, but in the case of the first packet, a first packet is generated and transmitted.
  • the terminal receives the first packet in the eleventh subframe instead of the first subframe. Thereafter, the UE repeats the DRX operation by a parameter set in the DRX configuration.
  • the terminal may enter the short-term DRX mode in preparation for additional packet reception after a long-term DRX cycle including a section in which the packet was received upon packet reception. Since it is assumed here that the DRX short cycle timer is 3, the UE will repeat the short-term DRX cycle three times from the 31 st subframe to the 60 th subframe (the first interval, 930) and re-enter the long-term DRX mode again. . However, if a packet is received before entering the long-term DRX mode again, the terminal maintains the short-term DRX mode again. In this case, the UE maintains the short-term DRX mode again from the 61st subframe to the 90th subframe (second interval, 960). As a result, the UE may maintain the short-term DRX mode continuously according to packet transmission.
  • the UE when the UE is in DRX operation, even if a packet is transmitted during inactivity time, the UE does not receive it. In general, if the UE knows that the UE is inactive time at the corresponding location, it shifts to the next activity time. After scheduling, the terminal may receive a packet at the active time.
  • the terminal since the terminal has a short-term DRX, if there is a PDCCH for the terminal in a duration, the DRX inactivity timer ends or the DRX retransmission timer ends.
  • the MAC contention resolution timer or the end of the MAC contention resolution timer (MAC) changed from the long-term DRX mode to short-term DRX mode to operate.
  • the UE does not need to increase the battery consumption by checking the PDCCH because the UE wakes up frequently by changing to the short-term DRX mode according to the traffic type.
  • the traffic generation period is 30 ms, the UE repeats the duration (or activity time) in a shorter period and monitors the PDCCH in a subframe, which may be an unnecessary operation.
  • FIG. 10 illustrates a DRX operation of a terminal considering a packet IAT according to an embodiment of the present invention.
  • One square represents a subframe
  • the colored subframe represents the packet arrival time
  • the hatched subframe represents the duration of the DRX cycle.
  • the following DRX operation may be performed.
  • the terminal receives the packet by checking the PDCCH after the short-term DRX interval, unlike in FIG. 9, the terminal enters the long-term DRX mode without entering the short-term DRX mode in the second interval 1060 after the first interval 1030. Can be.
  • the UE allows entry of the short-term DRX mode in the first interval 1030 from the 31 st subframe to the 60 th subframe due to the reception of the first packet in the eleventh subframe. Thereafter, in the short-term DRX mode, the UE receives the second packet in the 31st subframe, and immediately enters the long-term DRX mode without entering the short-term DRX in the second section 1060 after the expiration of the DRX short-cycle timer in the first section 1030. You can do that.
  • the terminal does not enter the short-term DRX mode, and the process of entering the long-term DRX mode may follow the following method.
  • the terminal may implicitly determine.
  • the UE may know that the packet IAT is 30ms.
  • the first packet is received, after the long-term DRX cycle ends, enters the short-term DRX mode, the terminal in the short-term DRX mode in the second interval (1060) after the first interval (1030) covered by one DRX short-cycle timer. If the terminal tries to maintain (since the terminal receives the second packet), the terminal may determine and operate the terminal itself to enter the long-term DRX mode rather than the short-term DRX mode in consideration of the packet IAT value.
  • the UE may operate in the following two ways.
  • the UE knows the packet IAT value after entering the short DRX mode after the long term DRX. At this time, the UE knows the value for the packet IAT and can continue to maintain the long-term DRX mode without entering the short-term DRX mode.
  • the UE knows the packet IAT value after entering the short DRX mode after the long term DRX. At this time, the UE knows the value for the packet IAT, but can be converted to the long-term DRX mode after the short-term DRX mode interval proceeds while the short-term DRX mode is in progress.
  • the base station may directly transmit the RRC connection reconfiguration message including the DRX reconfiguration information as described in FIG.
  • the terminal may change the DRX related parameters or the DRX cycle mode through the DRX reconfiguration based on the DRX reconfiguration information.
  • the terminal when the terminal considers the packet IAT and enters the short-term DRX mode without entering the short-term DRX mode, the terminal may be unnecessarily changed to the short-term DRX mode or the like to prevent the battery waste.
  • the length of the DRX cycle is not changed, and there is still a waste of monitoring the PDCCH at the time when the UE is not required.
  • FIG. 11 illustrates a DRX operation of a terminal considering packet IAT according to another embodiment of the present invention.
  • One square represents a subframe
  • the colored subframe represents the packet arrival time
  • the hatched subframe represents the duration of the DRX cycle.
  • the UE changes and operates both the DRX cycle mode and the DRX cycle length through DRX reconfiguration in consideration of the packet IAT.
  • the UE enters the long-term DRX mode in consideration of the packet IAT in the second section 1160 after the first section 1130 and adjusts the length of the long-term DRX cycle.
  • the UE may increase the DRX efficiency by adjusting the length of the DRX cycle for PDCCH reception to an optimal value.
  • the terminal While the terminal operates in the short-term DRX mode during the first interval 1130, the terminal changes from the second interval 1160 to the long-term DRX mode, and adaptively takes the length of the long-term DRX cycle in consideration of the packet IAT. Changed to 30ms equal to the IAT value. In this case, the UE may increase the DRX efficiency by monitoring the PDCCH according to the time point at which the packet comes.
  • FIG. 12 illustrates a DRX operation of a terminal considering a packet IAT according to another embodiment of the present invention.
  • One square represents a subframe
  • the colored subframe represents the packet arrival time
  • the hatched subframe represents the duration of the DRX cycle.
  • the terminal does not enter the short-term DRX mode in the first section 1230 after the long-term DRX mode and immediately maintains the long-term DRX mode.
  • the terminal can know the packet IAT, and the base station can also know the packet IAT.
  • the UE changes to the short-term DRX mode if the packet IAT is actually 30ms, the PDCCH must be monitored by waking up every 10ms in the short-term DRX mode.However, even though the terminal knows the packet IAT, the UE wakes up every 10ms to monitor the PDCCH. It is an unnecessary action to do. Accordingly, the terminal may maintain the long-term DRX mode from the first interval 1230 without entering the short-term DRX mode in consideration of the packet IAT value.
  • the base station While the packet IAT of the terminal is maintained at 30 ms, the base station does not enter the short-term DRX mode in the first section 1230 after the long-term DRX mode based on the packet IAT information, and operates in the long-term DRX mode immediately. .
  • the long-term DRX mode if the duration of the duration (on duration) does not match the packet arrival time, even if the base station schedules the packet, the terminal cannot receive it.
  • the base station since the base station knows the DRX configuration of the terminal, the base station may perform scheduling at the duration of the duration of the long-term DRX mode. In this case, the terminal may not enter the short-term DRX mode unnecessarily and may reduce battery consumption.
  • FIG. 13 illustrates a DRX operation of a terminal in consideration of a packet IAT according to another embodiment of the present invention.
  • One square represents a subframe
  • the colored subframe represents the packet arrival time
  • the hatched subframe represents the duration of the DRX cycle.
  • the terminal does not enter the short-term DRX mode after the long-term DRX mode, immediately maintains the long-term DRX mode, and changes the length of the long-term DRX cycle.
  • the UE After receiving the packet in the eleventh subframe, which is the duration of the long-term DRX mode, the UE does not enter the short-term DRX mode from the thirty-first subframe, the next subframe of the thirtieth subframe, at which the long-term DRX cycle ends. In consideration, it may operate with a long DRX cycle (1330). In this case, the terminal may ignore the short-term DRX even if configured, and immediately maintain the long-term DRX mode.
  • the terminal may adjust the long-term DRX cycle length based on the packet IAT. Specifically, the terminal reconfigures the long DRX cycle length to 30 ms based on the packet IAT. In this case, the terminal may operate in a long-term DRX cycle of the same interval as the packet IAT, and improve the DRX efficiency.
  • the terminal may reconfigure the DRX-related parameters in consideration of the packet IAT, perform an efficient DRX operation based on this, and increase the power saving efficiency of the terminal by preventing unnecessary wakeup of the terminal.
  • the time point at which the UE performs DRX reconfiguration based on the packet IAT value may vary depending on the time point at which the DRX reconfiguration information is obtained.
  • DRX reconfiguration may be performed as shown in FIGS. 10 and 11.
  • DRX reconfiguration may be performed as shown in FIGS. 12 and 13.
  • the DRX reconfiguration may be performed after a certain period irrespective of the timing at which the UE acquires the DRX reconfiguration information.
  • the example of FIGS. 10 to 13 may be independent of the timing at which the UE receives the DRX reconfiguration information. have.
  • FIG. 14 is a flowchart illustrating an operation of a terminal performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
  • the terminal calculates a packet IAT (S1400).
  • the method for calculating the packet IAT may include both a method for calculating a packet IAT defined in terms of a downlink (DL) and a method for calculating a packet IAT defined in an uplink (UL).
  • the terminal transmits the packet IAT information indicating the calculated packet IAT to the base station (S1410).
  • the packet IAT information may be transmitted through dedicated signaling or MAC CE for the terminal.
  • the packet IAT information may be transmitted as a RRC message through a measurement report message or an RRC UE assistance information message.
  • the terminal receives the DRX reconfiguration information from the base station (S1420).
  • the DRX reconfiguration information may be transmitted from a base station using an RRC connection reconfiguration message.
  • the terminal reconfigures DRX related parameters based on the DRX reconfiguration information (S1430).
  • the DRX reconfiguration may include an operation of prohibiting switching to the short-term DRX mode.
  • DRX reconstruction may include changing the length of the long term DRX cycle or the length of the short term DRX cycle.
  • 15 is a flowchart illustrating an operation of a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
  • the base station receives the packet IAT information from the terminal (S1500).
  • the packet IAT information may be received through dedicated signaling or MAC CE for the terminal.
  • the packet IAT information may be received as a RRC message through a measurement report message or an RRC UE assistance information message.
  • the base station reconfigures the DRX based on the packet IAT information (S1510).
  • the base station reconfigures the DRX related parameters such that the transmission time of the estimated downlink packet based on the packet IAT information matches the on duration (or active time) of the DRX mode.
  • the base station may reconfigure the DRX related parameters to change the short term DRX mode to the long term DRX mode previously.
  • the base station may reconfigure the DRX related parameters in a manner that increases or decreases the length of the short term DRX cycle or the length of the long term DRX cycle.
  • the base station may reconfigure the DRX related parameters to maintain the long-term DRX mode so as not to switch from the long-term DRX mode to the short-term DRX mode.
  • the base station transmits DRX reconfiguration information to the terminal (S1520).
  • the DRX reconfiguration information may be transmitted using an RRC connection reconfiguration message.
  • 16 is a block diagram illustrating a terminal and a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
  • the terminal 1600 includes a receiver 1605, a terminal processor 1610, and a transmitter 1620.
  • the terminal processor 1610 further includes a DRX processor 1611 and an IAT processor 1612.
  • the IAT processing unit 1612 calculates a packet IAT.
  • the method for calculating the packet IAT may include both a method for calculating a packet IAT defined from a downlink (DL) point of view and a method for calculating a packet IAT defined from an uplink (UL) point of view.
  • the IAT processing unit 1612 transfers the calculated packet IAT to the transmitting unit 1620.
  • the transmitter 1620 transmits the packet IAT information generated by the IAT processor 1612 to the base station 1950.
  • the packet IAT information may be transmitted through dedicated signaling or medium access control (MAC) control element (CE) for the terminal.
  • MAC medium access control
  • CE control element
  • the packet IAT information may be transmitted as a RRC message through a measurement report message or an RRC UE assistance information message.
  • the receiver 1605 may receive DRX reconfiguration information from the base station.
  • the DRX reconfiguration information is generated by the DRX processing unit 1701 of the base station 1650 in consideration of the packet IAT calculated by the IAT processing unit 1612 of the terminal 1600 or the IAT processing unit 1672 of the base station 1650, and in the DRX mode. It includes parameter information that can change or change the length of the DRX cycle.
  • the DRX processor 1611 reconfigures the DRX of the terminal based on the DRX reconfiguration information.
  • DRX reconfiguration may include an operation to prohibit switching to short-term DRX mode.
  • DRX reconstruction may include changing the length of the long term DRX cycle upon switching to long term DRX.
  • An example in which the DRX processor 1611 reconfigures the DRX of the terminal 1600 may include the examples described with reference to FIGS. 10 to 13.
  • the DRX processor 1611 receives the packet IAT value from the IAT processor 1612 of the terminal 1600 without receiving the DRX reconfiguration information transmitted from the base station 1650, and based on this, the DRX processor 1611 reconfigures the DRX related parameters. It may be.
  • the base station 1650 includes a transmitter 1655, a receiver 1660, and a base station processor 1670.
  • the base station processor 1670 includes a DRX processor 1671 and an IAT processor 1672.
  • the receiver 1660 receives the packet IAT information from the terminal.
  • the receiver transmits the received packet IAT information to the DRX processor 1671.
  • the DRX processing unit 1701 performs DRX reconstruction based on the packet IAT information. That is, the DRX processor 1671 reconfigures the DRX related parameter such that the transmission time of the downlink packet estimated based on the packet IAT matches the duration (or active time). As an example, the DRX processor 1671 may reconfigure DRX related parameters to change the short-term DRX mode to the long-term DRX mode. As another example, the base station may reconfigure the DRX related parameters in a manner that increases or decreases the length of the long term DRX cycle. As another example, the DRX processing unit 1701 may reconfigure DRX related parameters to maintain the long-term DRX mode so that the long-term DRX mode is not switched to the short-term DRX mode previously.
  • the base station 1650 may further include an IAT processing unit 1672.
  • the IAT processing unit 1672 calculates a packet IAT.
  • the method for calculating the packet IAT may include both a method for calculating a packet IAT defined from a downlink (DL) point of view and a method for calculating a packet IAT defined from an uplink (UL) point of view.
  • the IT processor 1672 may transfer the calculated packet IAT to the DRX processor 1701.
  • the transmitter 1655 transmits the DRX reconfiguration information to the terminal 1600.
  • the DRX reconfiguration information may be transmitted using an RRC connection reconfiguration message.

Abstract

The present invention relates to a wireless communication system, and more specifically, to a method and a device for reconfiguring DRX by considering packet inter arrival time (IAT), and comprising the steps of: calculating a packet IAT; transmitting the packet IAT to a base station; receiving from the base station DRX reconfiguration information which is modified on the basis of the packet IAT; and reconfiguring the DRX on the basis of the DRX reconfiguration information that is received, thereby enabling a terminal to efficiently carry out a DRX action and saving power of the terminal.

Description

패킷 도착 간격을 고려한 DRX 재구성 방법 및 장치Reconstruction method and apparatus for drX considering packet arrival interval
본 발명은 무선통신 시스템에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 패킷의 도착 간격(inter arrival time)을 고려한 DRX 재구성 방법 및 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to a DRX reconfiguration method and apparatus in consideration of an inter arrival time of a packet in a wireless communication system.
스마트폰 혹은 테블릿(tablet) 등 다양한 모바일 기기의 대중화로 인하여 다양한 종류의 어플리케이션(application)이 사용되고 있다. 이로 인하여 다양한 어플리케이션 등이 유선이 아닌 무선 네트워크에 트래픽을 발생시키고 있다. 하지만, LTE 등의 무선네트워크의 경우 현재의 다양한 모바일 기기에서의 어플리케이션 사용으로 인한 다양한 종류의 트래픽 발생 상황에 대하여 고려하지 않고 설계되었다. Due to the popularization of various mobile devices such as smartphones or tablets, various kinds of applications are used. As a result, various applications generate traffic to a wireless network rather than to a wired one. However, a wireless network such as LTE is designed without considering various kinds of traffic occurrence situations caused by application use in various mobile devices.
단말의 배터리는 제한되어 있으므로 파워 세이빙(power saving)을 최대한 고려하여야 한다. 단말은 파워 세이빙을 위하여 DRX 방식을 사용할 수 있다. DRX 방식은 단말이 활동 시간(active time)과 비활동 시간(inactive time)으로 나누어 주기적으로 변경하여 파워를 세이빙하는 방식이다. 활동 시간은 단말이 PDCCH를 수신할 수 있도록 웨이크 업(wake up)하는 구간이다. 비활동 시간은 단말이 PDCCH를 수신하지 않고 슬립(sleep)하는 구간이다. DRX 방식은 장기(long) DRX 모드 및 단기(short) DRX 모드의 두 가지 모드를 사용할 수 있으나, 하지만 기존의 DRX 방식은 다양하게 존재하는 트래픽 패턴 등에 대하여 고려하지 않고 동작하기에 오히려 제한적이며 불필요하게 파워를 소모하게 될 수 있는 문제가 있다.Since the battery of the terminal is limited, power saving should be considered as much as possible. The terminal may use a DRX scheme for power saving. The DRX method is a method in which the UE saves power by periodically changing the active time and the inactive time. The activity time is a period in which the terminal wakes up to receive the PDCCH. Inactivity time is a period in which the UE sleeps without receiving the PDCCH. The DRX method may use two modes, a long DRX mode and a short DRX mode, but the existing DRX method is limited and unnecessary to operate without considering various traffic patterns. There is a problem that can consume power.
한편, 무선 네트워크에서 발생하고 있는 트래픽 중에서 주로 파워 세이빙 등을 위하여 고려되는 트래픽 종류는 IM(Instant Messanger), BG(Background) 트래픽 등이 있다. IM은 예를 들어 MSN 메신저, 카카오톡 등과 같은 대화형 서비스 등을 제공하는 어플리케이션에서 사용되는 트래픽이며, 인스턴트 메시지(instant message)와 IM 백그라운드 트래픽(IM background traffic) 등을 포함한다. BG 트래픽의 경우 단말이 실제 활동 단계(active phase)로 동작하지 않는 상태에서도 OS(Operation System) 등에서 상태 유지를 위하여 발생될 수 있는 트래픽이다. 이러한 트래픽들의 경우 상대적으로 작은 패킷 사이즈로 주기성을 가지고 생성 및 전송될 수 있다.On the other hand, among the traffic generated in the wireless network, the traffic types mainly considered for power saving, etc. include IM (Instant Messanger) and BG (Background) traffic. IM is traffic used in an application that provides an interactive service such as MSN messenger, KakaoTalk, and the like, and includes an instant message and IM background traffic. BG traffic is traffic that may be generated to maintain a state in an OS (Operation System) even when the UE does not operate in an actual active phase. Such traffic can be generated and transmitted periodically with a relatively small packet size.
본 발명의 기술적 과제는 무선 통신 시스템에서 DRX 재구성을 수행하는 방법 및 장치를 제공함에 있다.An object of the present invention is to provide a method and apparatus for performing DRX reconfiguration in a wireless communication system.
본 발명의 다른 기술적 과제는 패킷 도착 간격(IAT : Inter-Arrival Time)을 기반으로 DRX 재구성을 수행하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for performing DRX reconstruction based on an inter-arrival time (IAT).
본 발명의 또 다른 기술적 과제는 패킷 도착 간격에 대한 정보를 제공하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for providing information on a packet arrival interval.
본 발명의 또 다른 기술적 과제는 패킷 도착 간격을 고려한 DRX 재구성정보를 제공하는 방법 및 장치를 제공함에 있다.Another technical problem of the present invention is to provide a method and apparatus for providing DRX reconfiguration information considering a packet arrival interval.
본 발명의 일 양태에 따르면, 무선 통신 시스템에서 패킷(packet)의 도착 간격(Inter-Arrival Time)을 고려한 DRX(discontinuous reception) 동작을 수행하는 단말을 제공한다. 상기 단말은 패킷 IAT를 계산하는 IAT 처리부, 상기 패킷 IAT를 기지국으로 전송하는 전송부, 상기 패킷 IAT를 기반으로 변경된(modified) DRX 재구성 정보를 상기 기지국으로부터 수신하는 수신부, 및 상기 수신된 DRX 재구성 정보를 기반으로 DRX 재구성을 수행하는 DRX 처리부를 포함한다.According to an aspect of the present invention, a terminal for performing a discontinuous reception (DRX) operation in consideration of an inter-arrival time of a packet in a wireless communication system is provided. The terminal includes an IAT processing unit for calculating a packet IAT, a transmitting unit for transmitting the packet IAT to a base station, a receiving unit for receiving modified DRX reconfiguration information based on the packet IAT from the base station, and the received DRX reconfiguration information. It includes a DRX processing unit for performing a DRX reconfiguration based on.
본 발명의 다른 양태에 따르면, 무선 통신 시스템에서 패킷의 도착 간격(IAT)을 고려한 단말의 DRX 동작을 제어하는 기지국을 제공한다. 상기 기지국은 상기 단말로부터 패킷 IAT를 수신하는 수신부, 상기 수신된 패킷 IAT를 기반으로 DRX 관련 파라미터의 변경(modification)을 수행하는 DRX 처리부, 및 상기 변경된 DRX 관련 파라미터를 포함하는 DRX 재구성 정보를 상기 단말로 전송하는 전송부를 포함한다.According to another aspect of the present invention, there is provided a base station for controlling a DRX operation of a terminal considering the arrival interval (IAT) of a packet in a wireless communication system. The base station includes a receiver for receiving a packet IAT from the terminal, a DRX processor for modifying a DRX related parameter based on the received packet IAT, and DRX reconfiguration information including the changed DRX related parameter. It includes a transmission unit for transmitting to.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 단말에 의한 패킷 도착 간격을 고려한 DRX 방법을 제공한다. 상기 방법은 패킷 IAT를 계산하는 단계, 상기 패킷 IAT를 기지국으로 전송하는 단계, 상기 패킷 IAT를 기반으로 변경된(modified) DRX 재구성 정보를 상기 기지국으로부터 수신하는 단계, 및 상기 수신된 DRX 재구성 정보를 기반으로 DRX 재구성을 수행하는 단계를 포함한다.According to still another aspect of the present invention, there is provided a DRX method considering a packet arrival interval by a terminal in a wireless communication system. The method includes calculating a packet IAT, transmitting the packet IAT to a base station, receiving modified DRX reconfiguration information from the base station based on the packet IAT, and based on the received DRX reconfiguration information. Performing a DRX reconfiguration.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 기지국에 의한 패킷 도착 간격을 고려한 단말의 DRX 동작을 제어하는 방법을 제공한다. 상기 방법은 상기 단말로부터 패킷 IAT를 수신하는 단계, 상기 수신된 패킷 IAT를 기반으로 DRX 관련 파라미터의 변경(modification)을 수행하는 단계, 및 상기 변경된 DRX 관련 파라미터를 포함하는 DRX 재구성 정보를 상기 단말로 전송하는 단계를 포함한다.According to still another aspect of the present invention, there is provided a method of controlling a DRX operation of a terminal in consideration of a packet arrival interval by a base station in a wireless communication system. The method includes receiving a packet IAT from the terminal, performing a modification of a DRX related parameter based on the received packet IAT, and sending DRX reconfiguration information including the changed DRX related parameter to the terminal. Transmitting.
본 발명에 따르면, 패킷 도착 간격을 기반으로 DRX를 재구성함으로써, 일반 DRX 방법보다 더 효율적인 DRX 동작을 수행할 수 있다. According to the present invention, by reconfiguring the DRX based on the packet arrival interval, it is possible to perform more efficient DRX operation than the general DRX method.
본 발명에 따르면, 효율적인 DRX 동작을 수행하여 단말의 파워(power)를 세이빙(saving)할 수 있다.According to the present invention, an efficient DRX operation may be performed to save power of a terminal.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명이 적용되는 서브프레임의 구조를 나타낸다.2 shows a structure of a subframe to which the present invention is applied.
도 3은 본 발명이 적용되는 DRX 동작을 설명하는 설명도이다.3 is an explanatory diagram for explaining a DRX operation to which the present invention is applied.
도 4는 본 발명이 적용되는 EPS 베어러(Evolved Packet System Bearer)를 나타낸다.4 illustrates an EPS bearer (Evolved Packet System Bearer) to which the present invention is applied.
도 5는 단말과 기지국을 연결하는 무선 베어러(RB)를 구조를 나타낸다. 5 shows a structure of a radio bearer (RB) connecting a terminal and a base station.
도 6은 프로토콜에서 SDU와 PDU 생성 과정을 나타낸다.6 shows an SDU and a PDU generation process in a protocol.
도 7은 본 발명의 일 예에 따른 패킷 IAT 정보를 전송하는 방법을 나타내는 흐름도이다.7 is a flowchart illustrating a method of transmitting packet IAT information according to an embodiment of the present invention.
도 8은 본 발명의 일 예에 따른 패킷이 주기성을 가지고 생성되어 전송되는 경우를 나타낸다. 8 illustrates a case in which a packet is generated and transmitted with a periodicity according to an embodiment of the present invention.
도 9는 본 발명의 일 예에 따른 단말의 DRX 동작을 나타낸다. 9 illustrates a DRX operation of a terminal according to an embodiment of the present invention.
도 10은 본 발명의 일 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다.10 illustrates a DRX operation of a terminal considering a packet IAT according to an embodiment of the present invention.
도 11은 본 발명의 다른 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다.11 illustrates a DRX operation of a terminal considering packet IAT according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다.12 illustrates a DRX operation of a terminal considering a packet IAT according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다.13 illustrates a DRX operation of a terminal in consideration of a packet IAT according to another embodiment of the present invention.
도 14는 본 발명의 일 예에 따른 패킷 IAT를 고려하여 DRX 동작을 수행하는 단말의 동작 순서도를 나타낸다.14 is a flowchart illustrating an operation of a terminal performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
도 15는 본 발명의 일 예에 따른 패킷 IAT를 고려하여 DRX 동작을 수행하는 기지국의 동작 순서도를 나타낸다.15 is a flowchart illustrating an operation of a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
도 16은 본 발명의 일 예에 따른 패킷 IAT를 고려하여 DRX 동작을 수행하는 단말과 기지국을 도시한 블록도이다.16 is a block diagram illustrating a terminal and a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
이하, 본 명세서에서는 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서에서 본 발명의 실시 예들을 설명함에 있어, 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in the following description of the embodiments of the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the subject matter of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system to which the present invention is applied.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 셀(cell)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 기지국(11)은 eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토(femto) 기지국, 가내 기지국(Home nodeB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 셀은 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.Referring to FIG. 1, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c. The cell can in turn be divided into a number of regions (called sectors). The base station 11 may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an femto base station, a home nodeB, a relay, and the like. . A cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. The UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12) 방향의 전송링크(transmission link)를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11) 방향으로의 전송링크를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink refers to a transmission link from the base station 11 to the terminal 12, and uplink refers to a transmission link from the terminal 12 to the base station 11. it means. In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
도 2는 본 발명이 적용되는 서브프레임의 구조를 나타낸다.2 shows a structure of a subframe to which the present invention is applied.
도 2를 참조하면, 하나의 무선 프레임(radio frame)은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 연속적인(consecutive) 슬롯(slot)을 포함한다. 서브 프레임 내의 첫 번째 슬롯의 앞선 1, 2, 3 또는 4개의 OFDM 심벌들이 PDCCH가 맵핑되는 제어채널영역(control channel region)이고, 나머지 OFDM 심벌들은 물리하향링크 공용채널(physical downlink shared channel: PDSCH)이 맵핑되는 데이터채널영역(data channel region)이 된다. 제어채널영역은 제어영역으로 불릴 수 있고, 데이터채널영역은 데이터영역으로 불릴 수 있다. 제어채널영역에는 PDCCH 이외에도 PCFICH, PHICH 등의 제어채널이 할당될 수 있다.Referring to FIG. 2, one radio frame includes 10 subframes, and one subframe includes two consecutive slots. The preceding 1, 2, 3 or 4 OFDM symbols of the first slot in the subframe are the control channel region to which the PDCCH is mapped, and the remaining OFDM symbols are the physical downlink shared channel (PDSCH). This is the data channel region to be mapped. The control channel region may be called a control region, and the data channel region may be called a data region. In addition to the PDCCH, a control channel such as PCFICH and PHICH may be allocated to the control channel region.
단말은 단말의 고유한 식별자인 C-RNTI(cell-radio network temporary identifier), TPC(transmission power control)-PUCCH-RNTI, TPC-PUSCH-RNTI와 SPS(semi persistent scheduling)-RNTI를 기반으로 PDCCH의 모니터링(monitoring)을 수행할 수 있다. PDCCH의 모니터링은 DRX(Discontinuous Reception) 동작에 의해 제어될 수 있으며, DRX에 관한 파라미터는 기지국이 RRC 메시지에 의해 단말로 전송해준다. 단말은 상기 RNTI들 이외에 SI(system information)-RNTI, P(paging)-RNTI 등은 상기 RRC 메시지에 의해 구성된 DRX 동작과는 무관하게 항상 수신하여야 한다. 여기서 C-RNTI로 스크램블링된 PDCCH를 제외한 나머지 PDCCH들은 항상 주서빙셀의 공용검색공간(common search space)를 통해 수신된다.The terminal uses the cell-radio network temporary identifier (C-RNTI), transmission power control (TPC) -PUCCH-RNTI, TPC-PUSCH-RNTI, and semi persistent scheduling (SPS) -RNTI, Monitoring can be performed. Monitoring of the PDCCH can be controlled by the DRX (Discontinuous Reception) operation, the parameter about the DRX is transmitted by the base station to the terminal by the RRC message. In addition to the RNTIs, the UE should always receive system information (RN) -RNTI, p (paging) -RNTI, etc. regardless of the DRX operation configured by the RRC message. Here, the remaining PDCCHs except the PDCCH scrambled with C-RNTI are always received through a common search space of the main serving cell.
단말이 RRC 연결 상태(connected state)에서 DRX 파라미터가 구성되어 있다면, 단말은 DRX 동작에 기반하여 PDCCH에 대한 불연속적인(discontinuous) 모니터링을 수행한다. 반면, 만일 DRX 파라미터가 구성되어 있지 않다면 단말은 연속적인 PDCCH의 모니터링을 수행한다. 불연속적인 PDCCH 모니터링이란 단말이 정해진 특정한 서브프레임에서만 PDCCH를 모니터링함을 의미하고, 연속적인 PDCCH 모니터링이란 단말이 모든 서브프레임에서 PDCCH를 모니터링함을 의미할 수 있다. 한편, 랜덤 액세스(random access) 절차와 같은 DRX와 무관한 동작에서 PDCCH 모니터링이 필요한 경우, 단말은 해당 동작의 요구사항에 따라 PDCCH를 모니터한다. If the terminal has a DRX parameter configured in the RRC connected state, the terminal performs discontinuous monitoring on the PDCCH based on the DRX operation. On the other hand, if the DRX parameter is not configured, the UE monitors the continuous PDCCH. Discontinuous PDCCH monitoring may mean that the UE monitors the PDCCH only in a specific subframe, and continuous PDCCH monitoring may mean that the UE monitors the PDCCH in all subframes. On the other hand, if PDCCH monitoring is required in a DRX independent operation such as a random access procedure, the UE monitors the PDCCH according to the requirements of the corresponding operation.
다시 설명하여, DRX는 단말(UE)이 소정 기간(즉, 슬립(sleep) 기간 혹은 비활동(inactive) 시간) 동안 패킷 데이터 제어 채널(PDCCH; packet data control channel)을 모니터하는 것을 멈출 수 있게 해주는 기능을 말하며, 단말은 DRX 모드에서 일정 주기성을 가지고 웨이크 업(wake up 혹은 활동(active))과 슬립(sleep 혹은 비활동(Non-active 혹은 inactive)) 구간을 반복한다. 웨이크 업(또는 활동)은 패킷 데이터 제어 채널(PDCCH)을 모니터하는 것을 의미한다. 슬립(또는 비활동)은 패킷 데이터 제어 채널(PDCCH)을 모니터하는 것을 멈추는 것을 의미한다. In other words, DRX allows a UE to stop monitoring a packet data control channel (PDCCH) for a period of time (ie, a sleep period or an inactive time). The UE repeats a wake up or active and sleep or non-active or inactive period in the DRX mode. Wake up (or activity) means monitoring the packet data control channel (PDCCH). Sleep (or inactivity) means stopping monitoring the Packet Data Control Channel (PDCCH).
상기 DRX는 무선 자원 제어/매체 접근 제어(RRC/MAC; radio resource control/media access control)에 의해 구성될 수 있다. 관련된 DRX 파라미터로는 장기 DRX 사이클(long DRX cycle), DRX 비활동 타이머(drx-Inactivity Timer), 및 DRX 재전송 타이머(drx-Retransmission Timer)가 구성될 수 있다. 또한, 선택적으로, DRX는 단기 DRX 사이클(short DRX cycle) 및 DRX 단기 사이클 타이머(drxShortCycleTimer)를 포함한다. 상기 장기 DRX 사이클은 단기 DRX 사이클보다 단말에 대한 더 긴 슬립 기간을 제공한다. The DRX may be configured by radio resource control / media access control (RRC / MAC). Related DRX parameters may include a long DRX cycle, a DRX Inactivity Timer, and a DRX Retransmission Timer. Also optionally, the DRX includes a short DRX cycle and a DRX Short Cycle Timer (drxShortCycleTimer). The long term DRX cycle provides a longer sleep period for the terminal than the short term DRX cycle.
도 3은 본 발명이 적용되는 DRX 동작을 설명하는 설명도이다.3 is an explanatory diagram for explaining a DRX operation to which the present invention is applied.
도 3을 참조하면, DRX 동작은 DRX 사이클(cycle, 300) 단위로 반복되는데, DRX 사이클(300)은 DRX 기회( opportunity for DRX, 310)와 지속구간(On Duration, 305)의 주기적인 반복으로 정의된다. 한 주기의 DRX 사이클(300)은 지속구간(305)과 DRX 기회(opportunity for DRX, 310)를 포함한다. DRX 사이클(300)은 일 예로 10 서브프레임 내지 2560 서브프레임 사이의 범위에서 적용되는 장기 DRX 사이클(long DRX cycle)이 있으며, 다른 예로 2 서브프레임 내지 640 서브프레임 범위에서 적용되는 단기 DRX 사이클(short DRX cycle)이 있다. 이 때, DRX 단기 사이클 타이머(drxShortCycleTimer)가 동작하는 동안에만 단기 DRX 사이클이 적용되고, DRX 단기 사이클 타이머가 동작하는 범위 밖에서는 장기 DRX 사이클이 적용된다. 여기서, DRX 단기 사이클 타이머는 하나의 단기 DRX 사이클이 기본 단위가 된다. 이 때, 단기 DRX 사이클 타이머의 길이는 예를 들어 1 내지 16이 될 수 있다. 단말이 단기 DRX 사이클에서 동작하고 있는 경우 단기 DRX 모드, 장기 DRX 사이클에서 동작하고 있는 경우 장기 DRX 모드라고 불릴 수 있다.Referring to FIG. 3, the DRX operation is repeated in units of DRX cycles 300, and the DRX cycle 300 is a periodic repetition of a DRX opportunity (DRX opportunity 310) and a duration (On Duration 305). Is defined. One cycle of DRX cycle 300 includes a duration 305 and a DRX opportunity (310). The DRX cycle 300 includes, for example, a long DRX cycle applied in a range between 10 subframes and 2560 subframes, and in another example, a short DRX cycle applied in a range of 2 subframes to 640 subframes. DRX cycle). At this time, the short term DRX cycle is applied only while the DRX short cycle timer (drxShortCycleTimer) is operating, and the long term DRX cycle is applied outside the range in which the DRX short cycle timer is operated. Here, in the DRX short cycle timer, one short DRX cycle becomes a basic unit. At this time, the length of the short-term DRX cycle timer may be 1 to 16, for example. When the terminal is operating in the short-term DRX cycle may be referred to as a short-term DRX mode, when the terminal is operating in the long-term DRX cycle.
RRC 계층에서는 DRX 동작을 제어하기 위해 몇 개의 타이머(timer)들을 관리한다. DRX 동작을 제어하는 타이머에는 지속구간 타이머(onDurationTimer), DRX 비활동 타이머(drxInactivity Timer), DRX 재전송 타이머(drxRetransmission Timer) 등이 있다. The RRC layer manages several timers to control the DRX operation. Timers controlling the DRX operation include a duration timer (onDurationTimer), a DRX inactivity timer (DRxInactivity Timer), a DRX retransmission timer (drxRetransmission Timer).
지속구간 타이머는 DRX 사이클의 시작에 의해 시작된다. 즉, 지속구간 타이머의 시작시점은 DRX 사이클의 시작시점과 일치한다. 지속구간 타이머는 매 PDCCH 서브프레임마다 값이 1씩 증가한다. 그리고 지속구간 타이머는 지속구간 타이머 값이 미리 설정된 만료 값과 같아지는 때에 만료된다. 지속구간 타이머 값이 상기 만료 값과 같아지기 전까지는 지속구간 타이머는 유효하게 진행된다. The duration timer is started by the start of the DRX cycle. In other words, the start of the duration timer coincides with the start of the DRX cycle. The duration timer increases by 1 for every PDCCH subframe. The duration timer expires when the duration timer value becomes equal to a preset expiration value. The duration timer is valid until the duration timer value is equal to the expiration value.
DRX 비활동 타이머는 상향링크 또는 하향링크 사용자 데이터 전송을 위한 PDCCH를 성공적으로 복호한 시점부터 연속적인 PDCCH 서브프레임 개수로 정의될 수 있다. 지속적인 데이터 수신이 발생할 수 있기 때문에 단말이 지속적으로 PDCCH를 모니터해야 하는 시간이다. DRX 비활동 타이머는 단말이 PDCCH 서브프레임에서 HARQ 최초 전송에 대한 PDCCH를 성공적으로 복호한 때에 시작 또는 재시작된다.The DRX inactivity timer may be defined as the number of consecutive PDCCH subframes from the time point of successfully decoding the PDCCH for uplink or downlink user data transmission. Since continuous data reception may occur, it is time for the UE to continuously monitor the PDCCH. The DRX Inactivity Timer is started or restarted when the UE successfully decodes the PDCCH for HARQ initial transmission in the PDCCH subframe.
DRX 재전송 타이머는 단말에 의해 곧 하향링크 재전송이 기대되는 PDCCH 서브프레임의 연속적인 수의 최대값을 기반으로 동작하는 타이머이다. DRX 재전송 타이머는 HARQ RTT 타이머가 만료되었음에도 불구하고 재전송 데이터를 수신하지 못한 경우에 시작되는 타이머이다. 단말은 DRX 재전송 타이머가 진행 중인 동안에 HARQ 프로세스에서 재전송되는 데이터의 수신을 모니터할 수 있다. DRX 재전송 타이머의 설정은 RRC 계층의 MAC-MainConfig 메시지에 의해서 정의된다.The DRX retransmission timer is a timer that operates based on the maximum number of consecutive numbers of PDCCH subframes for which downlink retransmission is expected by the terminal soon. The DRX retransmission timer is a timer that is started when the retransmission data is not received even though the HARQ RTT timer has expired. The terminal may monitor the reception of data retransmitted in the HARQ process while the DRX retransmission timer is in progress. The setting of the DRX retransmission timer is defined by the MAC-MainConfig message of the RRC layer.
지속구간 타이머, DRX 비활동 타이머, 또는 DRX 재전송 타이머가 진행 중인 시간을 활동 시간(active time)이라 한다. 또는 활동 시간은 단말이 깨어있는 모든 구간을 의미할 수도 있다. DRX 사이클 중 활동 시간이 아닌 시간은 비활동 시간(Non-active time)이라고 할 수 있다. 활동 시간은 웨이크 업 구간이라고 불릴 수 있고, 비활동 시간은 슬립 구간이라고 불릴 수 있다. 단말은 활동 시간 동안, PDCCH 서브프레임(PDCCH subframe)에 대해 PDCCH를 모니터한다. 여기서 PDCCH 서브프레임이라 함은 PDCCH를 포함하는 서브프레임을 의미한다. 예를 들어, TDD 설정(configuration)에서는 하향링크 서브프레임들과 DwPTS(Downlink Pilot Time Slot) 서브프레임들이 PDCCH 서브프레임에 해당된다. 지속구간 타이머, DRX 비활동 타이머, 또는 DRX 재전송 타이머와 같은 DRX 타이머의 타이머 단위(Timer unit)는 PDCCH 서브프레임(PDCCH subframe : psf)이다. 즉, DRX 타이머들은 PDCCH 서브프레임 개수를 기준으로 카운트(count)된다.The time that the duration timer, the DRX inactivity timer, or the DRX retransmission timer is in progress is called an active time. Alternatively, the activity time may mean all sections in which the terminal is awake. Non-active time during the DRX cycle may be referred to as non-active time. The active time may be called a wake up interval, and the inactive time may be called a sleep interval. The UE monitors the PDCCH for the PDCCH subframe during the active time. Here, the PDCCH subframe means a subframe including the PDCCH. For example, in TDD configuration, downlink subframes and downlink pilot time slot (DwPTS) subframes correspond to PDCCH subframes. A timer unit of a DRX timer, such as a duration timer, a DRX inactivity timer, or a DRX retransmission timer, is a PDCCH subframe (psf). That is, DRX timers are counted based on the number of PDCCH subframes.
이 밖에 DRX 동작을 제어하는 파라미터로서 장기 DRX 사이클(longDRX-Cycle), DRX 개시 오프셋(drxStartOffset)이 있고, 기지국은 선택적으로 DRX 단기 사이클 타이머(drxShortCycleTimer)와 단기 DRX-사이클(shortDRX-Cycle)을 설정할 수 있다. 또한 각 하향링크 HARQ 프로세스(process)마다 HARQ 왕복시간(round trip time: RTT) 타이머(timer)가 정의된다.Other parameters to control DRX operation include long DRX cycle (longDRX-Cycle) and DRX start offset (drxStartOffset) .The base station can optionally set DRX short cycle timer (drxShortCycleTimer) and short DRX-cycle (shortDRX-Cycle). Can be. In addition, a HARQ round trip time (RTT) timer is defined for each downlink HARQ process.
DRX 개시 오프셋은 DRX 사이클(300)이 시작되는 서브프레임을 규정한 값이다. DRX 단기 사이클 타이머는 단말이 단기 DRX 사이클을 따라야하는 연속적인 서브프레임의 개수를 정의하는 타이머이다. HARQ RTT 타이머는 단말에 의해 하향링크 HARQ 재전송이 기대되는 구간 이전의 최소 서브프레임 개수를 정의하는 타이머이다. The DRX start offset is a value that defines the subframe where the DRX cycle 300 begins. The DRX short cycle timer is a timer that defines the number of consecutive subframes that the UE should follow the short DRX cycle. The HARQ RTT timer is a timer that defines the minimum number of subframes before the interval in which downlink HARQ retransmission is expected by the UE.
한편, DRX 구성정보는 시그널링 무선 베어러(signaling radio bearer: SRB)와 데이터 무선 베어러(DRB)를 위한 MAC 계층의 주요 구성을 명시하는데 사용되는 RRC 메시지인 MAC-MainConfig 메시지에 포함되어 수신될 수 있다. DRX 구성 정보는 예를 들어 아래의 표와 같이 구성될 수 있다.Meanwhile, the DRX configuration information may be received by being included in a MAC-MainConfig message, which is an RRC message used to specify a main configuration of a MAC layer for a signaling radio bearer (SRB) and a data radio bearer (DRB). DRX configuration information may be configured, for example, as shown in the table below.
표 1
Figure PCTKR2013002198-appb-T000001
Table 1
Figure PCTKR2013002198-appb-T000001
표 1을 참조하면, DRX 구성정보는 장기 DRX 사이클의 길이와 시작하는 서브프레임을 지시하는 longDRX-CycleStartOffset 필드와 선택적(optional)으로 구성될 수 있는 단기 DRX에 관한 shortDRX 필드를 포함한다. shortDRX 필드는 구체적으로 단기 DRX 사이클의 길이를 지시하는 shortDRX-Cycle 서브필드 및 단말이 연속되는 단기 DRX 사이클 타이머의 값을 지시하는 drxShortCycleTimer 서브필드를 포함한다.Referring to Table 1, the DRX configuration information includes a longDRX-CycleStartOffset field indicating a length of a long DRX cycle and a starting subframe, and a shortDRX field regarding a short DRX that may be configured as optional. The shortDRX field specifically includes a shortDRX-Cycle subfield indicating the length of a short DRX cycle and a drxShortCycleTimer subfield indicating a value of a short term DRX cycle timer in which the UE is continuous.
longDRX-CycleStartOffset 필드는 장기 DRX 사이클의 길이로 {sf10, sf20, sf32, sf40,...sf2560}의 값 중 어느 하나로 설정될 수 있고, 장기 DRX 사이클이 시작하는 서브프레임은 상기 장기 DRX 사이클의 길이 값에 대응하여 {INTEGER(0..9), INTEGER(0..19), INTEGER(0..31),...INTEGER(0..2559)}의 값 중 어느 하나로 설정될 수 있다. 예를 들어, longDRX-CycleStartOffset 필드=sf20, INTEGER(0..19)이면, 하나의 장기 DRX 사이클은 20개의 서브프레임을 포함하고, 상기 장기 DRX 사이클은 서브프레임 인덱스 0부터 19 중 임의의 서브프레임이 장기 DRX 사이클 시작 서브프레임으로 선택될 수 있다. shortDRX 필드를 구성하는 shortDRX-Cycle 서브필드는 {sf2, sf5, sf8,...sf640}의 값 중 어느 하나로 설정될 수 있다. 예를 들어, shortDRX-Cycle 서브필드=sf5이면, 하나의 단기 DRX 사이클은 5개의 서브프레임을 포함한다. 또한, shortDRX 필드를 구성하는 drxShortCycleTimer 서브필드는 정수 1 내지 16 중 어느 하나를 나타낼 수 있다. 예를 들어, drxShortCycleTimer 서브필드=3이면, 단기 DRX 사이클이 3번 진행된 후 만료된다. The longDRX-CycleStartOffset field may be set to any one of values of {sf10, sf20, sf32, sf40, ... sf2560} as the length of a long DRX cycle, and the subframe where the long DRX cycle starts is the length of the long DRX cycle. The value may be set to any one of {INTEGER (0..9), INTEGER (0..19), INTEGER (0..31), ... INTEGER (0..2559)}. For example, if the longDRX-CycleStartOffset field = sf20, INTEGER (0..19), one long DRX cycle includes 20 subframes, and the long DRX cycle includes any subframe of subframe indexes 0 to 19. This long term DRX cycle start subframe may be selected. The shortDRX-Cycle subfield constituting the shortDRX field may be set to any one of {sf2, sf5, sf8, ... sf640}. For example, if the shortDRX-Cycle subfield = sf5, one short DRX cycle includes 5 subframes. In addition, the drxShortCycleTimer subfield constituting the shortDRX field may indicate any one of integers 1 to 16. For example, if the drxShortCycleTimer subfield = 3, the short DRX cycle has gone through three times and then expires.
패킷은 경우에 따라 패킷의 생성 간격이 일정하거나 혹은 일정한 간격을 기준으로 모여 있는 형태로 전송되는 경우 트래픽이 주기성이 있다고 할 수 있다. 도착 간격(Inter-Arrival Time: IAT)은 단말이 상향링크 패킷을 생성하는 간격 또는 하향링크 패킷을 수신하는 간격으로 정의될 수 있다. 또는, 도착 간격(IAT)은 기지국이 상향링크 패킷을 수신하는 간격 또는 하향링크 패킷을 생성하는 간격으로 정의될 수 있다. 주기성이 있는 트래픽의 예로서 IM 또는 BG 트래픽이 적용될 수 있다. IM은 예를 들어 MSN 메신저, 카카오톡 등과 같은 대화형 서비스 등을 제공하는 어플리케이션에서 사용되는 트래픽이며, 인스턴트 메시지(instant message)와 IM 백그라운드 트래픽(IM background traffic) 등을 포함한다. BG 트래픽의 경우 단말이 실제 활동 단계(active phase)로 동작하지 않는 상태에서도 OS(Operation System) 등에서 상태 유지를 위하여 발생될 수 있는 트래픽이다.In some cases, when the packet is transmitted in a form in which the generation interval of the packet is constant or gathered at a predetermined interval, the traffic may be periodic. Inter-Arrival Time (IAT) may be defined as an interval in which the terminal generates an uplink packet or an interval in which a downlink packet is received. Alternatively, the arrival interval (IAT) may be defined as an interval at which the base station receives an uplink packet or an interval for generating a downlink packet. As an example of periodic traffic, IM or BG traffic may be applied. IM is traffic used in an application that provides an interactive service such as MSN messenger, KakaoTalk, and the like, and includes an instant message and IM background traffic. BG traffic is traffic that may be generated to maintain a state in an OS (Operation System) even when the UE does not operate in an actual active phase.
DRX 동작에 있어, DRX 구성 시에 상기와 같이 패킷(packet)의 도착 간격(IAT)을 고려하여 DRX 재구성을 수행할 수 있다. 예를 들어, 단말은 상기 패킷의 IAT를 고려하여 DRX 모드를 단기 DRX 모드 또는 장기 DRX 모드로 변경할 수 있고, 또는 DRX 사이클을 변경할 수도 있다. 이를 통해 DRX 동작의 효율을 높일 수 있다. 상기와 같은 동작을 수행하기 위해서 단말 또는 기지국은 패킷의 IAT를 확보할 필요가 있다. 패킷의 IAT를 구하는 방법은 여러 가지가 있을 수 있으며, 일 예로 다음과 같은 기준에 의하여 확보될 수 있다.In the DRX operation, DRX reconfiguration may be performed in consideration of the arrival interval IAT of the packet as described above. For example, the terminal may change the DRX mode to the short term DRX mode or the long term DRX mode in consideration of the IAT of the packet, or may change the DRX cycle. This can increase the efficiency of DRX operation. In order to perform the above operation, the terminal or the base station needs to secure the IAT of the packet. There may be various methods for obtaining an IAT of a packet. For example, the packet may be obtained based on the following criteria.
도 4는 본 발명이 적용되는 EPS 베어러(Evolved Packet System Bearer)를 나타낸다.4 illustrates an EPS bearer (Evolved Packet System Bearer) to which the present invention is applied.
도 4를 참조하면, 단말(400)이 무선 통신망(예를 들어 LTE망)에 접속을 하면 단말부터 PDN-GW(460)까지 EPS 베어러(Evolved Packet System Bearer)가 생성된다. 여기서 EPS 베어러는 단말(400)과 PDN-GW(460) 간에 생성되는 전송로(transmission path)로서 EPS 베어러를 통해 다양한 종류의 트래픽이 지나다닐 수 있다. 상기 다양한 종류의 트래픽은 IP 플로우(IP flow)라고 불릴 수 있으며, 상기 IP flow는 패킷의 소스 IP(source IP), 목적지 IP(destination IP), 프로토콜 ID(protocol ID), 소스 포트(source port), 목적지 포트(destination port)로 구분될 수 있다. Referring to FIG. 4, when a terminal 400 accesses a wireless communication network (eg, an LTE network), an EPS bearer is generated from the terminal to the PDN-GW 460. Here, the EPS bearer is a transmission path generated between the UE 400 and the PDN-GW 460, and various types of traffic may pass through the EPS bearer. The various kinds of traffic may be called an IP flow, and the IP flow may be a source IP, a destination IP, a protocol ID, a source port of a packet. It may be divided into a destination port.
EPS 베어러는 단말당 하나 이상 생성될 수 있다. EPS 베어러는 무선 베어러(RB, 410), S1 베어러(430), S5/S8 베어러(450) 등으로 구성되며, 하나의 EPS 베어러별로 트래픽 플로우(traffic flow)가 진행된다고 볼 수 있다.One or more EPS bearers may be generated per terminal. EPS bearer is composed of a radio bearer (RB, 410), S1 bearer 430, S5 / S8 bearer 450, etc., it can be seen that the traffic flow (traffic flow) for each EPS bearer.
구체적으로 단말(400)은 무선 베어러(410)를 통해 기지국(420)과 연결된다. 기지국(420)은 S1 베어러(430)을 통해 S-GW(Serving Gateway)와 연결된다. S-GW는 S5/S8 베어러(450)를 통해 PDN-GW(Packet Data Network Gateway, 460)와 연결된다.In more detail, the terminal 400 is connected to the base station 420 through the radio bearer 410. The base station 420 is connected to a Serving Gateway (S-GW) through the S1 bearer 430. The S-GW is connected to the PDN-GW (Packet Data Network Gateway) 460 through the S5 / S8 bearer 450.
상향링크(UL) 방향의 트래픽 플로우를 살펴보면, 단말(400)은 UL TFT(Traffic Flow Template)를 통해서 패킷을 어떤 EPS 베어러를 통해 보낼지 결정한다. 여기서 UL TFT는 단말이 네트워크에 접속하면서 상기 네트워크로부터 부여받는다. 어떤 EPS 베어러를 통해 보낼지 결정되면, 단말(400)은 상기 패킷에 RB-ID 값을 추가하여 무선 베어러(410)을 통해 기지국(420)으로 전송한다. 기지국(420)은 상기 RB-ID 값을 기반으로 목적 S-GW(440) 및 S1 TEID(Tunnel Endpoing Identifier) 값을 파악하고, 수신한 패킷에 상기 S1 TEID 값을 실어서 S1 베어러(430)를 통해 S-GW(440)으로 전송한다. S-GW(440)은 상기 S1 TEID 값을 기반으로 목적 PDN-GW(460) 및 S5 TEID(또는 S8 TEID) 값을 파악하고, 수신한 패킷에 S5 TEID(또는 S8 TEID)를 실어서 S5/S8 베어러(S440)를 통해서 PDN-GW(460)로 전송한다. PDN-GW(460)은 상기 S5 TEID(또는 S8 TEID)를 기반으로 어떤 단말이 보낸 패킷인지 알 수 있다.Looking at the traffic flow in the uplink (UL) direction, the terminal 400 determines which EPS bearer to send the packet through the UL TFT (Traffic Flow Template). The UL TFT is received from the network while the terminal is connected to the network. When determining which EPS bearer to send through, the terminal 400 transmits an RB-ID value to the packet to the base station 420 through the radio bearer 410. The base station 420 determines the destination S-GW 440 and the S1 Tunnel Endpoing Identifier (TE1) value based on the RB-ID value, and loads the S1 TEID value in the received packet to load the S1 bearer 430. Transmit to S-GW (440). The S-GW 440 determines the destination PDN-GW 460 and the S5 TEID (or S8 TEID) value based on the S1 TEID value, and loads the S5 TEID (or S8 TEID) on the received packet to S5 /. Transmit to the PDN-GW 460 through the S8 bearer (S440). The PDN-GW 460 may know which UE sent a packet based on the S5 TEID (or S8 TEID).
하향링크(DL)방향의 트래픽 플로우는 상술한 상향링크 방향의 트래픽 플로우의 역으로 이루어질 수 있다.The traffic flow in the downlink (DL) direction may be the inverse of the traffic flow in the uplink direction described above.
무선 통신 시스템, 예를 들어 LTE 시스템에서 패킷 플로우는 EPS 베어러 상에 존재하며, 하나의 EPS 베어러는 각각 하나의 무선 베어러(410), S1 베어러(430), S5/S8 베어러(450)에 대응된다. 따라서, 하나의 EPS 베어러 상에서 송수신되는 패킷 트래픽은 무선 측면에서는 무선 베어러(410) 단위로 관리되는 것으로 볼 수 있다. In a wireless communication system, for example, an LTE system, a packet flow exists on an EPS bearer, and one EPS bearer corresponds to one radio bearer 410, an S1 bearer 430, and an S5 / S8 bearer 450, respectively. . Accordingly, packet traffic transmitted and received on one EPS bearer may be viewed as being managed in units of radio bearers 410 on the radio side.
도 5는 단말과 기지국을 연결하는 무선 베어러(RB)를 구조를 나타낸다. 무선 베어러는 하나의 단말에 대하여 하나 이상 존재할 수 있으며, 비록 도 5에서는 3개의 무선 베어러를 도시하였으나, 그 이상 또는 그 이하의 무선 베어러가 구성될 수 있다.5 shows a structure of a radio bearer (RB) connecting a terminal and a base station. There may be more than one radio bearer for one terminal. Although FIG. 5 illustrates three radio bearers, more or less radio bearers may be configured.
도 5를 참조하면, 무선 베어러(500)는 단말과 기지국 사이에 존재하며 하나의 무선 베어러(500)는 하나의 S1 베어러(550)와 일대일 매칭 관계에 있다. 하나의 무선 베어러(500)는 기지국과 단말의 PDCP(Protocol Data Convergence Protocol), RLC(Radio Link Control), MAC(Medium Access Control), PHY(Physical) 상에 존재하는 형태로 구현된다. 다시 말해 하나의 무선 베어러(500)는 한 쌍의 PDCP, RLC, MAC, PHY 엔티티(entity)로 구성된다. 무선 베어러(500)는 하나의 단말에 복수 개가 존재할 수 있다. Referring to FIG. 5, a radio bearer 500 exists between a terminal and a base station, and one radio bearer 500 has a one-to-one matching relationship with one S1 bearer 550. One radio bearer 500 is implemented in a form that exists on the Protocol Data Convergence Protocol (PDCP), Radio Link Control (RLC), Medium Access Control (MAC), and Physical (PHY) of the base station and the terminal. In other words, one radio bearer 500 includes a pair of PDCP, RLC, MAC, and PHY entities. There may be a plurality of radio bearers 500 in one terminal.
도 6은 프로토콜에서 SDU와 PDU 생성 과정을 도시하였다. 도 6은 분할(fragmentation)이나 연접(concentration)이 없는 경우를 가정하였다. 6 illustrates a process of generating an SDU and a PDU in a protocol. 6 assumes that there is no fragmentation or concentration.
도 6을 참조하면, Packet Data Convergence Protocol(PDCP, 600)는 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 담당한다. PDCP(600)는 무선 베어러와 S1 베어러에게 패킷 트래픽을 주고 받는 경계로 볼 수 있다. 따라서 특정 어플리케이션 패킷 트래픽이 송수신 되는 무선 구간의 시작은 PDCP(600)라고 볼 수 있다. 이 때, PDCP는 수신된 패킷을 PDCP SDU(Sevice Data Unit)로 하고, 상기 PDCP SDU에 PDCP 헤더(header)를 붙여서 PDCP PDU(Protocol Data Unit)를 생성한다. 상기 PDCP PDU는 RLC(620) 계층에서는 RLC SDU가 된다. Referring to FIG. 6, the Packet Data Convergence Protocol (PDCP) 600 is responsible for delivering user data, header compression, and ciphering. The PDCP 600 may be viewed as a boundary for sending and receiving packet traffic to the radio bearer and the S1 bearer. Therefore, the start of the radio section in which specific application packet traffic is transmitted and received can be regarded as PDCP (600). At this time, the PDCP generates a received packet as a PDCP SDU (Sevice Data Unit), and attaches a PDCP header to the PDCP SDU to generate a PDCP PDU (Protocol Data Unit). The PDCP PDU becomes an RLC SDU in the RLC 620 layer.
RLC(620)은 PDCP(600)로부터 전달되는 PDCP PDU(RLC SDU)를 수신하여 분할(fragmentation)하거나 연접(concatenation)하며, 무선 연결(radio link) 전송을 위한 준비를 진행한다. 이 때, RLC(620)는 무선 상황에 따라 RLC SDU를 분할하거나 연접하여 크기를 변경할 수 있다. 예를 들어, RLC SDU의 크기가 무선 상황에서 한번에 보낼 수 있는 사이즈보다 큰 상황이 발생한 경우, 상기 RLC SDU를 적당한 크기로 분할하고, 잘려나간 부분은 다른 RLC SDU에 연접할 수 있다. RLC(620)는 RLC SDU에 RLC 헤더를 붙여서 RLC PDU를 생성한다.The RLC 620 receives a PDCP PDU (RLC SDU) delivered from the PDCP 600, performs fragmentation or concatenation, and prepares for radio link transmission. At this time, the RLC 620 may change the size by dividing or concatenating the RLC SDU according to the radio situation. For example, when a situation in which the size of an RLC SDU is larger than a size that can be sent at a time in a wireless situation occurs, the RLC SDU may be divided into appropriate sizes, and the cut portion may be connected to another RLC SDU. The RLC 620 generates an RLC PDU by attaching an RLC header to the RLC SDU.
MAC(640)은 논리채널 다중화, HARQ 재전송 및 상향링크/하향링크 스케줄링을 담당한다. MAC(640)은 RLC(620)으로부터 전달되는 RLC PDU(MAC SDU)를 논리채널과 전송채널 사이에서 다중화(multiplexing)하거나 역다중화(demultiplexing)할 수 있다. MAC(640)은 MAC SDU에 MAC 헤더를 붙여 MAC PDU를 생성한다.The MAC 640 is responsible for logical channel multiplexing, HARQ retransmission, and uplink / downlink scheduling. The MAC 640 may multiplex or demultiplex the RLC PDUs (MAC SDUs) transmitted from the RLC 620 between logical channels and transport channels. The MAC 640 generates a MAC PDU by attaching a MAC header to the MAC SDU.
PHY(660)에서는 코딩, 물리계층 HARQ 프로세싱, 변조, 다중안테나 프로세싱, 그리고 신호를 적절한 물리적 시간-주파수 자원에 맵핑하는 일 등을 담당한다. 또한, PHY(660)는 전송채널을 물리채널에 맵핑하는 일도 수행한다. PHY(660)는 MAC PDU(PHY SDU 또는 전송 블록(Transport Block : TB)를 실제 무선 구간의 상황에 맞추어 전송할 수 있다.The PHY 660 is responsible for coding, physical layer HARQ processing, modulation, multi-antenna processing, and mapping signals to appropriate physical time-frequency resources. The PHY 660 also performs mapping of transport channels to physical channels. The PHY 660 may transmit MAC PDUs (PHY SDUs or Transport Blocks (TBs)) according to the actual radio duration.
PDCP(600)로 들어온 패킷은 RLC(620), MAC(640), PHY(660)를 거쳐 해당 프로토콜에서의 작업을 완료한 후에 전송된다. 서브프레임 단위의 전송 데이터 스케줄링 등은 MAC에서 이루어지고, DRX 동작도 앞에서 본 바와 같이 서브프레임 단위로 이루어진다. MAC에서 만들어진 전송 블록은 PHY(660)을 거쳐 무선 구간에서 HARQ 동작에 따라 전송된다.The packet entering the PDCP 600 is transmitted after completing the operation in the corresponding protocol via the RLC 620, MAC 640, PHY 660. Transmission data scheduling in subframe units is performed in the MAC, and the DRX operation is also performed in subframe units as described above. The transport block generated in the MAC is transmitted according to the HARQ operation in the radio section via the PHY 660.
PDCP(600)로 들어온 패킷이 실제 동작에서 RLC(620), MAC(640), 및 PHY(660)로 전달되기까지 프로세싱 딜레이(processing delay)가 발생할 수 있지만, 상기 프로세싱 딜레이는 무시할 수 있을 만큼 작거나 일정한 것으로 고려한다. 따라서, PDCP(600)로 패킷이 입력되는 시점과 MAC(640)에서 서브프레임에 데이터가 스케줄링되어 할당되는 시점이 동일한 것으로 판단한다. 이 경우, PDCP에 패킷이 들어오는 시점과 서브프레임에 상기 패킷에 대한 데이터가 할당되어 전송되는 시점을 동일하게 볼 수 있다. 다시 말해, 무선 베어러를 통해 PDCP(600)에 패킷이 들어오는 시점과 MAC(640)에서 서브프레임에 상기 패킷에 대한 데이터를 할당하는 시점이 같은 것으로 가정한다. 특히, 패킷이 보내지지 않다 패킷이 다시 PDCP(600)에 도착하는 시점에 바로 MAC(640)으로 전송되어 서브프레임에 상기 패킷에 대한 데이터를 스케줄링하는 것으로 고려한다.Although processing delays may occur until packets entering PDCP 600 are delivered to RLC 620, MAC 640, and PHY 660 in actual operation, the processing delay is negligibly small. Or constant. Accordingly, it is determined that a time point at which a packet is input to the PDCP 600 and a time point at which data is scheduled and allocated to a subframe in the MAC 640 are the same. In this case, the time point at which the packet enters the PDCP and the time point at which the data for the packet is allocated to the subframe can be viewed in the same manner. In other words, it is assumed that the time point at which the packet enters the PDCP 600 through the radio bearer and the time point at which the data for the packet is allocated to the subframe in the MAC 640 are the same. In particular, a packet is not sent. It is considered that the packet is transmitted to the MAC 640 at the time when the packet arrives at the PDCP 600 to schedule data for the packet in a subframe.
따라서, 이 경우 PDCP(600)를 어플리케이션에 해당하는 데이터에 대한 위치로 파악할 수 있고, PDCP(600)에서 송수신되는 패킷 트래픽의 타이밍 등을 실제 어프리케이션의 패킷의 IAT(Inter-Arrival Time)으로 정의할 수 있다. 이 경우, 패킷의 IAT는 다음과 같은 기준에 의해 정의될 수 있다. Therefore, in this case, the PDCP 600 can be identified as a location for data corresponding to the application, and the timing of packet traffic transmitted and received from the PDCP 600 is defined as the IAT (Inter-Arrival Time) of the packet of the actual application. can do. In this case, the IAT of the packet may be defined by the following criteria.
1. 하향링크(DL) 관점에서 정의되는 패킷 IAT1. Packet IAT defined from downlink (DL) perspective
단말의 경우, 단말은 네트워크로부터 하향링크 패킷을 수신 시에, 상기 수신 타이밍(timing)을 추적(trace)하여 IAT를 계산할 수 있다. 이때, 단말이 패킷을 수신한 시점을 PDCP를 기준으로 측정할 수 있다. 예를 들어, 단말은 PDCP SDU 또는 PDCP PDU 번호가 증가되는 시점을 확인하여, 상시 수신 시점을 확인할 수 있고, 이를 기반으로 패킷의 IAT를 측정할 수 있다.In the case of a terminal, when the terminal receives a downlink packet from the network, the terminal may calculate the IAT by tracing the reception timing. In this case, the time point at which the terminal receives the packet may be measured based on the PDCP. For example, the terminal may check the time point when the PDCP SDU or the PDCP PDU number is increased, and may always check the reception time, and may measure the IAT of the packet based on this.
기지국(네트워크)의 경우 기지국(네트워크) S1 베어러를 통해 무선 베어러로 패킷 트래픽이 집입될 경우 PDCP에서 생성되는 PDCP SDU 또는 PDCP PDU 번호가 증가되는 시점을 확인하여 패킷 수신 시점을 확인할 수 있고, 이를 기반으로 패킷의 IAT를 측정할 수 있다. In the case of a base station (network), when packet traffic is introduced into a radio bearer through a base station (network) S1 bearer, it is possible to confirm when the packet is received by checking when the PDCP SDU or PDCP PDU number generated by the PDCP is increased. We can measure the packet's IAT.
또한, 실제로 측정된 패킷 도착 시점에 대한 평균 IAT(mean IAT)를 계산하여 IAT 값으로 사용할 수도 있다.In addition, the mean IAT (Mean IAT) for the actually measured packet arrival time may be calculated and used as the IAT value.
또한, EPS 베어러가 하나가 아닌 여러 개가 존재할 경우에는 각각의 EPS 베어러에 대하여 각각 무선 베어러가 존재하고, 상기 각각의 무선 베어러에 대한 PDCP가 각각 존재 할 수 있다.In addition, when there are several EPS bearers instead of one, there may be radio bearers for each EPS bearer, and PDCP for each radio bearer may exist.
구체적으로, IAT 값은 다음과 같은 방법으로 계산될 수 있다.Specifically, the IAT value may be calculated in the following manner.
첫째, 개별 PDCP를 기준으로 패킷 IAT 각각을 개별적으로 이용하여 개별 패킷 IAT 값을 확보할 수 있다. 이 때, IAT 값은 개별 PDCP별로 하나씩 존재할 수 있다.First, individual packet IAT values can be secured by individually using each packet IAT based on the individual PDCP. In this case, one IAT value may exist for each PDCP.
둘째, 각각의 베어러를 위한 개별 패킷 IAT의 평균을 이용하여 하나의 대표 패킷 IAT를 정의할 수 있다. 이때, IAT 값은 PDCP별 또는 무선 베어러별로 존재하지 않고, 대표 패킷 IAT 값 한개만 존재한다.Second, one representative packet IAT may be defined using the average of individual packet IATs for each bearer. In this case, the IAT value does not exist for each PDCP or radio bearer, and only one representative packet IAT value exists.
셋째, 각각의 무선 베어러를 대표하는 하나의 PDCP를 기준으로 PDCP SDU 또는 PDCP PDU 번호가 증가되는 시점을 확인하여, 이를 전체 무선 베어러들을 대표하는 하나의 패킷 IAT로 정의할 수도 있다. 여기서 하나의 PDCP를 선정하는 방법은 다양한 방법이 있을 수 있다. 예를 들어, IAT 값이 가장 작은 PDCP를 기준으로 선택할 수 있다. 또는 IAT 값이 가장 큰 PDCP를 기준으로 선택할 수도 있다.Third, the PDCP SDU or PDCP PDU number is increased based on one PDCP representing each radio bearer, and may be defined as one packet IAT representing all radio bearers. Here, the method of selecting one PDCP may have various methods. For example, it may be selected based on the PDCP having the smallest IAT value. Alternatively, the selection may be made based on the PDCP having the largest IAT value.
한편, 기지국(네트워크)에서도 상기 기지국에서 단말로 전송되는 트래픽을 확인하여 패킷 IAT를 계산할 수 있다. 상향링크 트래픽은 S1 베어러를 통하여 상기 기지국에 전송되고, 이는 다시 무선 베어러에 맵핑된다. 따라서, 기지국에 S1 베어러를 통하여 패킷이 수신되는 시점을 패킷의 IAT로 파악할 수 있다. 또는 패킷이 무선 베어러로 맵핑되는 시점을 패킷 IAT로 파악할 수도 있다. 이때는 기지국의 PDCP를 기준으로 패킷의 IAT를 파악할 수 있다.On the other hand, the base station (network) can also check the traffic transmitted from the base station to the terminal to calculate the packet IAT. Uplink traffic is sent to the base station through an S1 bearer, which is in turn mapped to a radio bearer. Therefore, the time point at which the packet is received by the base station through the S1 bearer can be known as the IAT of the packet. Alternatively, the packet IAT may be identified when the packet is mapped to the radio bearer. In this case, the IAT of the packet may be determined based on the PDCP of the base station.
2. 상향링크(UL) 관점에서 정의되는 패킷 IAT2. Packet IAT Defined from the UL View
상향링크 기준으로 기지국 또는 단말이 패킷의 IAT를 계산할 수 있다. 단말은 자신의 어플리케이션 상황에 따라서 상향링크 트래픽에 대한 정보를 확인할 수 있다. 이 때, 단말은 전송할 상향링크 트래픽을 위하여 스케줄링 요청(scheduling request: SR) 등을 전송할 목적으로 DRX를 사용하지 않는 상태로 유지할 수 있고, 이에 대한 정확한 구간의 예측은 어려울 수도 있다. 따라서 활동 시간을 정확하게 파악하기 어려울 수 있다.The base station or the terminal may calculate the IAT of the packet on the uplink basis. The terminal may check the information on the uplink traffic according to its application situation. In this case, the terminal may maintain the state without using the DRX for the purpose of transmitting a scheduling request (SR) for uplink traffic to be transmitted, and it may be difficult to accurately predict the interval. As a result, it can be difficult to keep track of activity time accurately.
한편, 패킷 IAT는 상향링크 패킷 IAT와 하향링크 패킷 IAT가 다를 수 있다. 이 경우, 패킷 IAT는 하향링크를 기준으로 구할 수 있다. 또는, 패킷 IAT는 상향링크 기준으로 구할 수도 있다. 또는, 패킷 IAT는 하향링크와 상향링크 관련하여 어느 한 쪽의 값으로 결정될 수 있다. 예를 들어, 하향링크 패킷 IAT가 30ms이고, 상향링크 패킷 IAT가 40ms이면, 보다 작은 패킷 IAT를 고려하여 30ms로 패킷 IAT를 설정할 수 있다. 또는 보다 큰 패킷 IAT를 고려하여 40ms로 패킷 IAT를 설정할 수도 있다.Meanwhile, the packet IAT may be different from the uplink packet IAT and the downlink packet IAT. In this case, the packet IAT can be obtained based on the downlink. Alternatively, the packet IAT may be obtained on an uplink basis. Alternatively, the packet IAT may be determined as one of values related to downlink and uplink. For example, if the downlink packet IAT is 30 ms and the uplink packet IAT is 40 ms, the packet IAT may be set to 30 ms in consideration of the smaller packet IAT. Alternatively, the packet IAT may be set to 40 ms in consideration of the larger packet IAT.
도 7은 본 발명의 일 예에 따른 패킷 IAT 정보를 전송하는 방법을 나타내는 흐름도이다.7 is a flowchart illustrating a method of transmitting packet IAT information according to an embodiment of the present invention.
도 7을 참조하면, 단말은 패킷 IAT를 계산한다(S700). 패킷 IAT를 계산하는 방법은 전술된 바와 같이 하향링크(DL) 관점에서 정의되는 패킷 IAT를 계산하는 방법 및 상향링크(UL) 관점에서 정의되는 패킷 IAT를 계산하는 방법을 모두 포함할 수 있다. Referring to FIG. 7, the terminal calculates a packet IAT (S700). As described above, the method for calculating the packet IAT may include both a method for calculating a packet IAT defined from a downlink (DL) point of view and a method for calculating a packet IAT defined from an uplink (UL) point of view.
기지국 또한 전술된 바와 같이 패킷 IAT를 계산할 수 있으며, 이 경우 S700 및 S710은 생략 가능하다.The base station may also calculate the packet IAT as described above, in which case S700 and S710 may be omitted.
단말은 상기 계산된 패킷 IAT를 지시하는 패킷 IAT 정보를 기지국으로 전송한다(S705). 일 예로서, 패킷 IAT 정보는 단말에 관한 전용 시그널링(dedicated signaling) 또는 매체접근제어(MAC) 제어요소(control element: CE)를 통해 전송될 수 있다. 다른 예로서, 패킷 IAT 정보는 RRC 메시지로서 측정 보고(measurement reporting) 메시지 또는 RRC UE 보조 정보(assistance information) 메시지 등을 통하여 전송될 수 있다. 측정 보고는 측정에 대한 정보를 단말이 기지국에 보고하는 메시지이다. 단말 보조 정보 메시지는 단말에서 기지국에 전송하는 보조 정보 메시지이며, MBMS(Multimedia Broadcast Multicast System), HetNet(Heterogeneous Network), EDDA(Enhancements for Diverse Data Applications) 등과 관련된 정보일 수 있으며, 단말이 파악할 수 있는 모든 정보에 대한 계산값, 검출(detection) 값, 혹은 문턱(threshold) 값 등이 포함될 수 있다.The terminal transmits the packet IAT information indicating the calculated packet IAT to the base station (S705). As an example, the packet IAT information may be transmitted through dedicated signaling or a medium access control (MAC) control element (CE) for the terminal. As another example, the packet IAT information may be transmitted as a RRC message through a measurement reporting message or an RRC UE assistance information message. The measurement report is a message in which the terminal reports information about the measurement to the base station. The terminal assistance information message is an auxiliary information message transmitted from the terminal to the base station, and may be information related to a multimedia broadcast multicast system (MBMS), a heterogeneous network (HetNet), and enhancements for diverse data applications (EDDA), and can be identified by the terminal. The calculated value, detection value, or threshold value for all information may be included.
패킷 IAT 정보를 수신하면, 기지국은 패킷 IAT를 기준으로 추정된 하향링크 패킷의 전송 시점이 지속구간(on duration)에 매칭되도록 DRX 관련 파라미터를 재구성한다(S710). 일 예로서, 기지국은 이전에 단기 DRX 모드를 장기 DRX 모드로 변경되도록 DRX 관련 파라미터를 재구성할 수 있다. 다른 예로서, 기지국은 이전에 장기 DRX 사이클의 길이를 늘리거나 줄이는 방식으로 DRX 관련 파라미터를 재구성할 수 있다. 또 다른 예로서, 기지국은 이전에 장기 DRX 모드가 단기 DRX 모드로 전환되지 않도록 장기 DRX 모드를 그대로 유지하도록 DRX 관련 파라미터를 재구성할 수 있다.Upon receiving the packet IAT information, the base station reconfigures the DRX related parameter such that the transmission time of the estimated downlink packet based on the packet IAT matches the on duration (S710). As one example, the base station may reconfigure the DRX related parameters to change the short term DRX mode to the long term DRX mode previously. As another example, the base station may reconfigure the DRX related parameters in a manner that previously lengthens or shortens the length of the long term DRX cycle. As another example, the base station may reconfigure the DRX related parameters to maintain the long-term DRX mode so that the long-term DRX mode is not previously switched to the short-term DRX mode.
기지국은 DRX 재구성 정보를 단말로 전송한다(S715). 상기 DRX 재구성 정보는 RRC 연결 재구성 메시지 등을 이용하여 전송될 수 있다. The base station transmits DRX reconfiguration information to the terminal (S715). The DRX reconfiguration information may be transmitted using an RRC connection reconfiguration message.
상기 DRX 재구성 정보를 수신한 단말은 DRX 관련 파라미터를 재구성한다(S720). DRX 재구성은 단기 DRX 모드로의 전환을 금지시키는 동작을 포함할 수 있다. 또는 DRX 재구성은 장기 DRX로의 전환 시에 상기 장기 DRX 사이클의 길이를 변경하는 동작을 포함할 수 있다. Upon receiving the DRX reconfiguration information, the UE reconfigures DRX related parameters (S720). DRX reconfiguration may include an operation to prohibit switching to short-term DRX mode. Or DRX reconstruction may include changing the length of the long term DRX cycle upon switching to long term DRX.
만약, 단말과 기지국간에 패킷 IAT에 기반하여 DRX 재구성하는 패턴 또는 방식을 서로 규약하여 알고 있는 상황이라면, 단말과 기지국은 각각 동일한 패킷 IAT에 기초하여 각자 DRX 관련 파라미터를 재구성할 수 있다. 예를 들어, 기지국은 DRX 관련 파라미터를 재구성하고, 단말도 기지국으로부터 DRX 재구성 정보를 수신함이 없이 스스로 DRX 관련 파라미터를 재구성할 수 있다. 이 경우, 기지국이 DRX 재구성 정보를 단말로 전송하는 단계 S715는 생략될 수 있다. If the UE and the base station know each other by knowing a pattern or a method for reconstructing DRX based on the packet IAT, the UE and the base station may reconfigure DRX related parameters based on the same packet IAT. For example, the base station may reconfigure the DRX related parameters, and the terminal may reconfigure the DRX related parameters by itself without receiving the DRX reconfiguration information from the base station. In this case, step S715 in which the base station transmits DRX reconfiguration information to the terminal may be omitted.
단말은 재구성된 DRX 관련 파라미터에 기초하여 DRX 동작을 수행하며, 재구성된 DRX 관련 파라미터에 따른 활동 시간(active time)(또는 지속구간) 및 패킷 IAT에 기반하여 하향링크 수신 또는 상향링크 전송을 수행한다. 패킷 IAT를 고려하여 DRX 파라미터가 재구성되는 방법 및 재구성된 DRX에 따라 단말이 DRX 동작을 수행하는 방법이 이하에서 설명된다.The terminal performs a DRX operation based on the reconfigured DRX related parameters and performs downlink reception or uplink transmission based on an active time (or duration) and packet IAT according to the reconfigured DRX related parameters. . A method of reconstructing a DRX parameter in consideration of a packet IAT and a method of performing a DRX operation by a terminal according to the reconstructed DRX are described below.
도 8은 본 발명의 일 예에 따른 패킷이 주기성을 가지고 생성되어 전송되는 경우를 나타낸다. 네모칸 하나는 서브프레임을 나타낸다. 첫번째 서브프레임의 인덱스를 1번으로 보고, 다음 서브프레임의 인덱스는 순차적으로 1씩 증가한다고 보면, 제1 서브프레임부터 제100 서브프레임이 도시되어 있다. 이하 9 내지 도 13도 동일하다. 8 illustrates a case in which a packet is generated and transmitted with a periodicity according to an embodiment of the present invention. One square represents a subframe. When the index of the first subframe is regarded as 1 and the index of the next subframe is sequentially increased by 1, the subframes 100 through 100 are illustrated. 9 to 13 are also the same below.
도 8을 참조하면, 도 8은 패킷 트래픽이 주기성을 가지고 생성되어 전송되는 경우의 일 예로, 도 4 내지 도 6에서 살펴본 바와 같이 PDCP를 기준으로 계산된 패킷 IAT 값에 따라 패킷이 도착(arrival)하는 이상적인 경우를 가정하였다. 상기 패킷이 도착하는 서브프레임은 도시된 바와 같이 제1 서브프레임(800), 제31 서브프레임(810), 제61 서브프레임(820) 및 제91 서브프레임(830)으로, 상기 패킷이 도착하는 타이밍은 30ms 간격으로 일정하다.Referring to FIG. 8, FIG. 8 illustrates an example in which packet traffic is generated and transmitted with periodicity. As shown in FIGS. 4 to 6, packets arrive based on a packet IAT value calculated based on PDCP. The ideal case is assumed. The subframe in which the packet arrives is the first subframe 800, the 31st subframe 810, the 61st subframe 820, and the 91st subframe 830, as shown. The timing is constant at 30ms intervals.
구체적으로, 첫 번째 패킷이 발생한 30ms 이후에 다음 패킷이 생성되어 기지국에서 단말로 전송되고, 이 때 수신된 패킷은 해당 타이밍에 정확하게 스케줄링되어 해당 타이밍의 서브프레임에 할당되어 전송되는 것으로 가정한다. 다시 말해 PDCP에 해당하는 프로토콜에 도착한 첫번째 패킷이 바로 해당 타이밍에 서브프레임에 할당되어 전송되는 것으로 가정하였다. 따라서, 상기에서 패킷은 세 개의 무선 프레임(radio frame), 즉 30개의 서브프레임 당 한번씩 전송된다.Specifically, it is assumed that the next packet is generated and transmitted from the base station to the terminal 30 ms after the first packet occurs, and the received packet is accurately scheduled at a corresponding timing and allocated to a subframe of the corresponding timing. In other words, it is assumed that the first packet arriving at the protocol corresponding to the PDCP is allocated to the subframe at the corresponding timing and transmitted. Thus, the packet is transmitted once every three radio frames, that is, 30 subframes.
도 9는 본 발명의 일 예에 따른 단말의 DRX 동작을 나타낸다. 네모칸 하나는 서브프레임을 나타내며, 색칠된 서브프레임은 패킷 도착 시점, 빗금친 서브프레임은 DRX 사이클의 지속구간을 나타낸다. 9 illustrates a DRX operation of a terminal according to an embodiment of the present invention. One square represents a subframe, the colored subframe represents the packet arrival time, and the hatched subframe represents the duration of the DRX cycle.
도 9를 참조하면, 패킷 트래픽이 주기성을 가지고 전송되는 경우에 DRX 동작을 나타낸다. 장기 DRX 사이클은 20ms, 지속구간(on duration)은 2ms, 단기 DRX 사이클은 10ms, DRX 단기 사이클 타이머(drxShortCycleTimer)는 3인 경우를 나타내었다.Referring to FIG. 9, a DRX operation is shown when packet traffic is transmitted with periodicity. The long-term DRX cycle is 20 ms, the on duration is 2 ms, the short-term DRX cycle is 10 ms, and the DRX short cycle timer (drxShortCycleTimer) is 3.
화살표은 패킷 도착시 단말이 스케줄링된 PDCCH를 수신하는 동작을 나타낸다. 도 8에서 설명된 바와 같이 제1 서브프레임, 제31 서브프레임, 제61 서브프레임, 및 제91 서브프레임에 패킷이 생성되어 전송될 수 있으나, 첫번째 패킷의 경우 첫번재 패킷이 생성되어 전송되는 제1 서브프레임에서, 단말은 비활동(Non-active time) 시간으로 동작하므로 패킷을 수신할 수 없다. 따라서, 단말에서는 첫번째 패킷을 제1 서브프레임이 아닌 제11 서브프레임에서 수신하였다. 이후 단말은 DRX 구성(configuration)에 설정된 파라미터(parameter)에 의해 DRX 동작을 반복한다. 단말은 패킷 수신 시 패킷을 수신한 구간을 포함하는 장기 DRX 사이클 이후에 추가적인 패킷 수신 등을 대비하여 단기 DRX 모드로 진입할 수 있다. 여기에서 DRX 단기 사이클 타이머가 3인 경우를 가정하였으므로, 단말은 제31 서브프레임부터 제 60 서브프레임까지(제1 구간, 930) 단기 DRX 사이클을 3회 반복하고, 다시 장기 DRX 모드로 집입할 것이다. 하지만, 다시 장기 DRX 모드로 진입하기 전 패킷을 수신하게 된다면, 단말은 다시 단기 DRX 모드를 유지한다. 여기서는 제61 서브프레임부터 제90 서브프레임까지(제2 구간, 960) 단말이 다시 단기 DRX 모드를 유지하였다. 결국 단말은 패킷 전송에 따라서 계속적으로 단기 DRX 모드를 유지할 수도 있다.An arrow indicates an operation of receiving a scheduled PDCCH by the terminal upon packet arrival. As described with reference to FIG. 8, a packet may be generated and transmitted in a first subframe, a 31st subframe, a 61st subframe, and a 91st subframe, but in the case of the first packet, a first packet is generated and transmitted. In one subframe, since the UE operates with a non-active time, it cannot receive a packet. Therefore, the terminal receives the first packet in the eleventh subframe instead of the first subframe. Thereafter, the UE repeats the DRX operation by a parameter set in the DRX configuration. The terminal may enter the short-term DRX mode in preparation for additional packet reception after a long-term DRX cycle including a section in which the packet was received upon packet reception. Since it is assumed here that the DRX short cycle timer is 3, the UE will repeat the short-term DRX cycle three times from the 31 st subframe to the 60 th subframe (the first interval, 930) and re-enter the long-term DRX mode again. . However, if a packet is received before entering the long-term DRX mode again, the terminal maintains the short-term DRX mode again. In this case, the UE maintains the short-term DRX mode again from the 61st subframe to the 90th subframe (second interval, 960). As a result, the UE may maintain the short-term DRX mode continuously according to packet transmission.
일반적으로 단말이 DRX 동작하는 경우 비활동 시간에서 패킷이 전송되더라도 단말은 이를 수신하지 못하고, 일반적으로 기지국은 해당 위치에서 단말이 비활동 시간인 것을 알 수 있다면, 다음 활동 시간으로 쉬프트(shift)하여 스케줄링하고, 단말은 활동 시간에 패킷을 받을 수 있다.In general, when the UE is in DRX operation, even if a packet is transmitted during inactivity time, the UE does not receive it. In general, if the UE knows that the UE is inactive time at the corresponding location, it shifts to the next activity time. After scheduling, the terminal may receive a packet at the active time.
다시 말해, 단말은 단기 DRX가 구성되어 있으므로, 지속구간(on duration)에서 상기 단말을 위한 PDCCH가 존재한다면, DRX 비활동 타이머(DRX inactivity timer)가 종료 후 혹은 DRX 재전송 타이머(DRX retransmission timer) 종료 후, 또는 MAC 경합 해결 타이머(MAC-contention resolution timer) 종료 후에 장기 DRX 모드에서 단기 DRX 모드로 변경되어 동작한다. 이 때, 실제로 트래픽 종류에 따라서는 단기 DRX 모드로 변경하여 단말이 자주 웨이크업(wake up)하여 PDCCH를 확인하여 배터리 소모량을 증가시킬 필요가 없다. 도 9의 경우 트래픽 발생 주기가 30ms이므로 단말이 더 짧은 주기로 지속구간(또는 활동시간)을 반복하며 서브프레임에서 PDCCH를 모니터하더라도 이는 불필요한 동작이 될 수 있다.In other words, since the terminal has a short-term DRX, if there is a PDCCH for the terminal in a duration, the DRX inactivity timer ends or the DRX retransmission timer ends. After the MAC contention resolution timer or the end of the MAC contention resolution timer (MAC) changed from the long-term DRX mode to short-term DRX mode to operate. In this case, the UE does not need to increase the battery consumption by checking the PDCCH because the UE wakes up frequently by changing to the short-term DRX mode according to the traffic type. In the case of FIG. 9, since the traffic generation period is 30 ms, the UE repeats the duration (or activity time) in a shorter period and monitors the PDCCH in a subframe, which may be an unnecessary operation.
따라서, 트래픽 패턴 혹은 패킷 IAT 등을 고려하여, DRX를 설정할 필요가 있다.Therefore, it is necessary to set the DRX in consideration of the traffic pattern or the packet IAT.
도 10은 본 발명의 일 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다. 네모칸 하나는 서브프레임을 나타내며, 색칠된 서브프레임은 패킷 도착 시점, 빗금친 서브프레임은 DRX 사이클의 지속구간을 나타낸다. 도 10을 참조하면, 단말이 패킷 IAT를 알고, 이를 기지국도 파악할 수 있는 상태인 경우, 다음과 같은 DRX 동작을 수행할 수 있다. 단말은 단기 DRX 구간 이후 PDCCH를 확인하여 패킷을 수신하게 되는 경우, 도 9와 달리, 제1 구간(1030) 이후 제2 구간(1060)에서 단기 DRX 모드로 진입하지 않고 장기 DRX 모드로 진입하도록 할 수 있다.10 illustrates a DRX operation of a terminal considering a packet IAT according to an embodiment of the present invention. One square represents a subframe, the colored subframe represents the packet arrival time, and the hatched subframe represents the duration of the DRX cycle. Referring to FIG. 10, when the UE knows the packet IAT and the base station can also grasp the packet IAT, the following DRX operation may be performed. When the UE receives the packet by checking the PDCCH after the short-term DRX interval, unlike in FIG. 9, the terminal enters the long-term DRX mode without entering the short-term DRX mode in the second interval 1060 after the first interval 1030. Can be.
단말은 제11 서브프레임에서 첫번째 패킷의 수신으로 인한 제 31 서브프레임부터 제 60 서브프레임까지의 제1 구간(1030)에서의 단기 DRX 모드 진입은 허용한다. 이후 단기 DRX 모드에서 단말은 제31 서브프레임에서 두번째 패킷을 수신하고, 제1 구간(1030)에서 DRX 단기 사이클 타이머 만료 후에 제2 구간(1060)에서 단기 DRX로 진입하지 않고 바로 장기 DRX 모드로 진입하도록 할 수 있다. The UE allows entry of the short-term DRX mode in the first interval 1030 from the 31 st subframe to the 60 th subframe due to the reception of the first packet in the eleventh subframe. Thereafter, in the short-term DRX mode, the UE receives the second packet in the 31st subframe, and immediately enters the long-term DRX mode without entering the short-term DRX in the second section 1060 after the expiration of the DRX short-cycle timer in the first section 1030. You can do that.
여기서 단말이 단기 DRX 모드로 진입하지 않고, 장기 DRX 모드로 진입하는 과정은 다음과 같은 방식을 따를 수 있다.In this case, the terminal does not enter the short-term DRX mode, and the process of entering the long-term DRX mode may follow the following method.
첫번째, 단말이 암묵적(implicit)하게 결정할 수 있다. 단말은 패킷 IAT가 30ms임을 알 수 있다. 이 때, 첫번째 패킷 수신하고, 장기 DRX 사이클이 끝난 후 단기 DRX 모드로 진입하고, 하나의 DRX 단기 사이클 타이머에 의하여 커버되는 제1 구간(1030) 이후 제2 구간(1060)에서 단말이 단기 DRX 모드를 다시 유지하려고 할 경우(단말이 두번째 패킷을 수신하였으므로), 단말은 패킷 IAT 값을 고려하여 단기 DRX 모드가 아닌 장기 DRX 모드로 진입하도록 단말 자체적으로 결정하여 동작할 수 있다.First, the terminal may implicitly determine. The UE may know that the packet IAT is 30ms. At this time, the first packet is received, after the long-term DRX cycle ends, enters the short-term DRX mode, the terminal in the short-term DRX mode in the second interval (1060) after the first interval (1030) covered by one DRX short-cycle timer. If the terminal tries to maintain (since the terminal receives the second packet), the terminal may determine and operate the terminal itself to enter the long-term DRX mode rather than the short-term DRX mode in consideration of the packet IAT value.
단말이 패킷 IAT 에 대한 값을 알 수 있는 시점에 따라서 다음과 같은 두 가지 방식으로 동작을 할 수도 있다. Depending on when the UE can know the value for the packet IAT, the UE may operate in the following two ways.
a. 단말이 장기 DRX 이후에 단기 DRX (short DRX) 모드로 진입하기 전에 패킷 IAT 값을 알 수 있을 경우이다. 이때, 단말은 패킷 IAT 에 대한 값을 알고 있음으로 단기 DRX 모드로 진입하지 않고 장기 DRX 모드를 계속 유지할 수 있다. a. This is the case where the UE knows the packet IAT value after entering the short DRX mode after the long term DRX. At this time, the UE knows the value for the packet IAT and can continue to maintain the long-term DRX mode without entering the short-term DRX mode.
b. 단말이 장기 DRX 이후에 단기 DRX (short DRX) 모드로 진입한 후에 패킷 IAT 값을 알 수 있을 경우이다. 이때, 단말은 패킷 IAT 에 대한 값을 알고 있지만 단기 DRX 모드가 진행 중인 상태로 단기 DRX 모드 구간 진행 후에 장기 DRX 모드로 변환할 수 있다.b. This is the case where the UE knows the packet IAT value after entering the short DRX mode after the long term DRX. At this time, the UE knows the value for the packet IAT, but can be converted to the long-term DRX mode after the short-term DRX mode interval proceeds while the short-term DRX mode is in progress.
두번째, 기지국은 도 7에서 설명된 바와 같이 DRX 재구성 정보를 포함한 RRC 연결 재구성 메시지를 직접 전송할 수 있다. 단말은 상기 DRX 재구성정보를 기반으로, DRX 재구성을 통하여 DRX 관련 파라미터 등을 변경하거나, 혹은 DRX 사이클 모드를 변경할 수 있다. Second, the base station may directly transmit the RRC connection reconfiguration message including the DRX reconfiguration information as described in FIG. The terminal may change the DRX related parameters or the DRX cycle mode through the DRX reconfiguration based on the DRX reconfiguration information.
상기와 같이 단말이 패킷 IAT를 고려하여, 단기 DRX 모드로 진입하고 않고 장기 DRX 모드를 유지하는 경우, 단말은 불필요하게 단기 DRX 모드 등으로 변경되어 배터리를 낭비하는 상황을 막을 수 있다. 하지만, 도 10의 예에서는 DRX 사이클의 길이는 변경되지 않아, 여전히 단말이 불필요한 시점에 PDCCH를 모니터하는 낭비가 존재한다. As described above, when the terminal considers the packet IAT and enters the short-term DRX mode without entering the short-term DRX mode, the terminal may be unnecessarily changed to the short-term DRX mode or the like to prevent the battery waste. However, in the example of FIG. 10, the length of the DRX cycle is not changed, and there is still a waste of monitoring the PDCCH at the time when the UE is not required.
도 11은 본 발명의 다른 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다. 네모칸 하나는 서브프레임을 나타내며, 색칠된 서브프레임은 패킷 도착 시점, 빗금친 서브프레임은 DRX 사이클의 지속구간을 나타낸다.11 illustrates a DRX operation of a terminal considering packet IAT according to another embodiment of the present invention. One square represents a subframe, the colored subframe represents the packet arrival time, and the hatched subframe represents the duration of the DRX cycle.
도 11을 참조하면, 단말이 제1 구간(1130) 이후에 패킷 IAT를 고려하여 DRX 재구성을 통해 DRX 사이클 모드와 DRX 사이클 길이를 모두 변경하여 동작하는 것을 나타낸다. 도 10과 달리, 단말은 제1 구간(1130) 이후에 제2 구간(1160)에서 패킷 IAT를 고려하여 장기 DRX 모드로 진입할 뿐 아니라, 장기 DRX 사이클의 길이를 조절한다. 이 경우 단말은 PDCCH 수신을 위한 DRX 사이클의 길이를 최적(optimal)으로 조절하여 DRX 효율을 높일 수 있다. 제1 구간(1130) 동안 단말은 단기 DRX 모드에서 동작하지만, 단말은 제2 구간(1160)부터 장기 DRX 모드로 변경하면서, 패킷 IAT를 고려하여 적응적(adaptive)으로 장기 DRX 사이클의 길이를 패킷 IAT 값과 같은 30ms로 변경하였다. 이 경우, 단말은 패킷이 오는 시점에 맞춰 PDCCH를 모니터하여 DRX 효율을 높일 수 있다.Referring to FIG. 11, after the first interval 1130, the UE changes and operates both the DRX cycle mode and the DRX cycle length through DRX reconfiguration in consideration of the packet IAT. Unlike FIG. 10, the UE enters the long-term DRX mode in consideration of the packet IAT in the second section 1160 after the first section 1130 and adjusts the length of the long-term DRX cycle. In this case, the UE may increase the DRX efficiency by adjusting the length of the DRX cycle for PDCCH reception to an optimal value. While the terminal operates in the short-term DRX mode during the first interval 1130, the terminal changes from the second interval 1160 to the long-term DRX mode, and adaptively takes the length of the long-term DRX cycle in consideration of the packet IAT. Changed to 30ms equal to the IAT value. In this case, the UE may increase the DRX efficiency by monitoring the PDCCH according to the time point at which the packet comes.
도 12는 본 발명의 또 다른 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다. 네모칸 하나는 서브프레임을 나타내며, 색칠된 서브프레임은 패킷 도착 시점, 빗금친 서브프레임은 DRX 사이클의 지속구간을 나타낸다.12 illustrates a DRX operation of a terminal considering a packet IAT according to another embodiment of the present invention. One square represents a subframe, the colored subframe represents the packet arrival time, and the hatched subframe represents the duration of the DRX cycle.
도 12를 참조하면, 단말이 장기 DRX 모드 이후에 제1 구간(1230)에서 단기 DRX 모드로 진입하지 않고, 바로 장기 DRX 모드를 유지하는 것을 나타낸다. 단말은 패킷 IAT를 알 수 있고, 기지국도 상기 패킷 IAT를 알 수 있다. 단말이 단기 DRX 모드로 변경을 할 경우 실제로 패킷 IAT가 30ms인 경우 단기 DRX 모드에서 주기 10ms마다 웨이크업 하여 PDCCH를 모니터링해야 하지만, 이 때 패킷 IAT를 알고 있음에도 단말이 10ms마다 웨이크업 하여 PDCCH를 모니터링하는 것을 불필요한 동작이다. 따라서, 단말은 상기 패킷 IAT 값을 고려하여 단기 DRX 모드로 진입하지 않고, 제1 구간(1230)부터 장기 DRX 모드를 유지할 수 있다.Referring to FIG. 12, the terminal does not enter the short-term DRX mode in the first section 1230 after the long-term DRX mode and immediately maintains the long-term DRX mode. The terminal can know the packet IAT, and the base station can also know the packet IAT. When the UE changes to the short-term DRX mode, if the packet IAT is actually 30ms, the PDCCH must be monitored by waking up every 10ms in the short-term DRX mode.However, even though the terminal knows the packet IAT, the UE wakes up every 10ms to monitor the PDCCH. It is an unnecessary action to do. Accordingly, the terminal may maintain the long-term DRX mode from the first interval 1230 without entering the short-term DRX mode in consideration of the packet IAT value.
구체적으로, 단말의 패킷 IAT는 30ms로 유지된 상태에서, 기지국은 패킷 IAT의 정보를 기반으로 장기 DRX 모드 이후 제1 구간(1230)에서 단기 DRX 모드로 진입하지 않고, 바로 장기 DRX 모드로 동작한다. 장기 DRX 모드에서 지속구간(on duration) 타이밍이 패킷 도착 시점과 매칭되지 않는다면, 기지국이 패킷을 스케줄링 하더라도 단말은 이를 수신할 수 없다. 일반적으로 기지국은 단말의 DRX 구성(configuration)을 알고 있으므로, 기지국은 상기 장기 DRX 모드의 지속구간 타이밍에 스케줄링을 수행할 수 있다. 이 경우, 단말은 불필요하게 단기 DRX 모드로 진입하지 않고, 배터리 소모를 줄일 수 있다.Specifically, while the packet IAT of the terminal is maintained at 30 ms, the base station does not enter the short-term DRX mode in the first section 1230 after the long-term DRX mode based on the packet IAT information, and operates in the long-term DRX mode immediately. . In the long-term DRX mode, if the duration of the duration (on duration) does not match the packet arrival time, even if the base station schedules the packet, the terminal cannot receive it. In general, since the base station knows the DRX configuration of the terminal, the base station may perform scheduling at the duration of the duration of the long-term DRX mode. In this case, the terminal may not enter the short-term DRX mode unnecessarily and may reduce battery consumption.
도 13은 본 발명의 또 다른 예에 따른 패킷 IAT를 고려한 단말의 DRX 동작을 나타낸다. 네모칸 하나는 서브프레임을 나타내며, 색칠된 서브프레임은 패킷 도착 시점, 빗금친 서브프레임은 DRX 사이클의 지속구간을 나타낸다.13 illustrates a DRX operation of a terminal in consideration of a packet IAT according to another embodiment of the present invention. One square represents a subframe, the colored subframe represents the packet arrival time, and the hatched subframe represents the duration of the DRX cycle.
도 13을 참조하면, 단말이 장기 DRX 모드 이후에 단기 DRX 모드로 진입하지 않고, 바로 장기 DRX 모드를 유지하며, 장기 DRX 사이클의 길이도 변경하는 것을 나타낸다. 단말은 장기 DRX 모드의 지속구간인 제11 서브프레임에서 패킷을 수신한 이후에 장기 DRX 사이클이 끝나는 제30 서브프레임의 다음 서브프레임인 제31 서브프레임부터 단기 DRX 모드로 진입하지 않고, 패킷 IAT를 고려하여 장기 DRX 사이클로 동작할 수 있다(1330). 이 때, 단말은 단기 DRX가 구성되어 있더라도 무시하고, 바로 장기 DRX 모드를 유지할 수 있다. 또한, 단말은 패킷 IAT를 기반으로 장기 DRX 사이클 길이를 조절할 수 있다. 구체적으로 단말은 패킷 IAT를 기반으로 장기 DRX 사이클 길이를 30ms로 재구성한다. 이 경우, 단말은 패킷 IAT와 동일한 간격의 장기 DRX 사이클로 동작할 수 있고, DRX 효율을 높일 수 있다.Referring to FIG. 13, the terminal does not enter the short-term DRX mode after the long-term DRX mode, immediately maintains the long-term DRX mode, and changes the length of the long-term DRX cycle. After receiving the packet in the eleventh subframe, which is the duration of the long-term DRX mode, the UE does not enter the short-term DRX mode from the thirty-first subframe, the next subframe of the thirtieth subframe, at which the long-term DRX cycle ends. In consideration, it may operate with a long DRX cycle (1330). In this case, the terminal may ignore the short-term DRX even if configured, and immediately maintain the long-term DRX mode. In addition, the terminal may adjust the long-term DRX cycle length based on the packet IAT. Specifically, the terminal reconfigures the long DRX cycle length to 30 ms based on the packet IAT. In this case, the terminal may operate in a long-term DRX cycle of the same interval as the packet IAT, and improve the DRX efficiency.
상기와 같이, 단말은 패킷 IAT를 고려하여 DRX 관련 파라미터를 재구성하고, 이를 기반으로 효율적인 DRX 동작을 수행할 수 있으며, 단말의 불필요한 웨이크업을 되도록 방지함으로써 단말의 파워 세이빙 효율을 높여준다.As described above, the terminal may reconfigure the DRX-related parameters in consideration of the packet IAT, perform an efficient DRX operation based on this, and increase the power saving efficiency of the terminal by preventing unnecessary wakeup of the terminal.
한편, 도 10 내지 도 13에서, 단말이 패킷 IAT 값에 기반한 DRX 재구성을 수행하는 시점은 DRX 재구성 정보를 획득하는 시점에 따라 달라질 수 있다. 예를 들어, 단말이 단기 DRX 모드에서 동작중 DRX 재구성 정보를 획득한 경우 도 10 및 도 11과 같이 DRX 재구성을 수행할 수 있다. 다른 예로, 단말이 단기 DRX 모드에서 동작하기 전에 DRX 재구성 정보를 획득한 경우 도 12 및 도 13과 같이 DRX 재구성을 수행할 수 있다. 물론, 단말이 DRX 재구성 정보를 획득하는 시점에 관계없이 일정 기간 이후 상기 DRX 재구성을 수행할 수도 있고, 이 경우, 도 10 내지 도 13의 예는 단말이 DRX 재구성 정보를 수신하는 시점과 무관할 수 있다.Meanwhile, in FIGS. 10 to 13, the time point at which the UE performs DRX reconfiguration based on the packet IAT value may vary depending on the time point at which the DRX reconfiguration information is obtained. For example, when the UE acquires DRX reconfiguration information while operating in the short-term DRX mode, DRX reconfiguration may be performed as shown in FIGS. 10 and 11. As another example, when the UE acquires DRX reconfiguration information before operating in the short-term DRX mode, DRX reconfiguration may be performed as shown in FIGS. 12 and 13. Of course, the DRX reconfiguration may be performed after a certain period irrespective of the timing at which the UE acquires the DRX reconfiguration information. In this case, the example of FIGS. 10 to 13 may be independent of the timing at which the UE receives the DRX reconfiguration information. have.
도 14는 본 발명의 일 예에 따른 패킷 IAT를 고려하여 DRX 동작을 수행하는 단말의 동작 순서도를 나타낸다.14 is a flowchart illustrating an operation of a terminal performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
도 14를 참조하면, 단말은 패킷 IAT를 계산한다(S1400). 패킷 IAT를 계산하는 방법은 전술된 바와 같이 하향링크(DL) 관점에서 정의되는 패킷 IAT를 계산하는 방법 및 상향링크(UL) 관점에서 정의되는 패킷 IAT를 계산하는 방법을 모두 포함할 수 있다.Referring to FIG. 14, the terminal calculates a packet IAT (S1400). As described above, the method for calculating the packet IAT may include both a method for calculating a packet IAT defined in terms of a downlink (DL) and a method for calculating a packet IAT defined in an uplink (UL).
단말은 상기 계산된 패킷 IAT를 지시하는 패킷 IAT 정보를 기지국으로 전송한다(S1410). 일 예로서, 패킷 IAT 정보는 단말에 관한 전용 시그널링 또는 MAC CE를 통해 전송될 수 있다. 다른 예로서, 패킷 IAT 정보는 RRC 메시지로서 측정 보고 메시지 또는 RRC UE 보조 정보 메시지 등을 통하여 전송될 수 잇다.The terminal transmits the packet IAT information indicating the calculated packet IAT to the base station (S1410). As an example, the packet IAT information may be transmitted through dedicated signaling or MAC CE for the terminal. As another example, the packet IAT information may be transmitted as a RRC message through a measurement report message or an RRC UE assistance information message.
단말은 DRX 재구성 정보를 기지국으로부터 수신한다(S1420). 상기 DRX 재구성 정보는 RRC 연결 재구성 메시지 등을 이용하여 기지국으로부터 전송될 수 있다.The terminal receives the DRX reconfiguration information from the base station (S1420). The DRX reconfiguration information may be transmitted from a base station using an RRC connection reconfiguration message.
단말은 상기 DRX 재구성 정보를 기반으로 DRX 관련 파라미터를 재구성한다(S1430). 여기서 DRX 재구성은 단기 DRX 모드로의 전환을 금지시키는 동작을 포함할 수 있다. 또는 DRX 재구성은 장기 DRX 사이클의 길이 또는 단기 DRX 사이클의 길이를 변경하는 동작을 포함할 수도 있다.The terminal reconfigures DRX related parameters based on the DRX reconfiguration information (S1430). Here, the DRX reconfiguration may include an operation of prohibiting switching to the short-term DRX mode. Or DRX reconstruction may include changing the length of the long term DRX cycle or the length of the short term DRX cycle.
도 15는 본 발명의 일 예에 따른 패킷 IAT를 고려하여 DRX 동작을 수행하는 기지국의 동작 순서도를 나타낸다.15 is a flowchart illustrating an operation of a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
도 15를 참조하면, 기지국은 단말로부터 패킷 IAT 정보를 수신한다(S1500). 일 예로서, 패킷 IAT 정보는 단말에 관한 전용 시그널링 또는 MAC CE를 통해 수신될 수 있다. 다른 예로서, 패킷 IAT 정보는 RRC 메시지로서 측정 보고 메시지 또는 RRC UE 보조 정보 메시지 등을 통하여 수신될 수 있다.Referring to Figure 15, the base station receives the packet IAT information from the terminal (S1500). As an example, the packet IAT information may be received through dedicated signaling or MAC CE for the terminal. As another example, the packet IAT information may be received as a RRC message through a measurement report message or an RRC UE assistance information message.
기지국은 상기 패킷 IAT 정보를 기반으로 DRX를 재구성한다(S1510). 기지국은 패킷 IAT 정보를 수신하면, 패킷 IAT 정보를 기준으로 추정된 하향링크 패킷의 전송 시점이 DRX 모드의 지속구간(on duration)(또는 활성시간)에 매칭되도록 DRX 관련 파라미터를 재구성한다. 일 예로서, 기지국은 이전에 단기 DRX 모드를 장기 DRX 모드로 변경되도록 DRX 관련 파라미터를 재구성할 수 있다. 다른 예로서, 기지국은 단기 DRX 사이클의 길이 또는 장기 DRX 사이클의 길이를 늘이거나 줄이는 방식으로 DRX 관련 파라미터를 재구성할 수 있다. 또 다른 예로서 기지국은 장기 DRX 모드에서 단기 DRX 모드로 전환되지 않도록 장기 DRX 모드를 그대로 유지하도록 DRX 관련 파라미터를 재구성할 수 있다.The base station reconfigures the DRX based on the packet IAT information (S1510). When the base station receives the packet IAT information, the base station reconfigures the DRX related parameters such that the transmission time of the estimated downlink packet based on the packet IAT information matches the on duration (or active time) of the DRX mode. As one example, the base station may reconfigure the DRX related parameters to change the short term DRX mode to the long term DRX mode previously. As another example, the base station may reconfigure the DRX related parameters in a manner that increases or decreases the length of the short term DRX cycle or the length of the long term DRX cycle. As another example, the base station may reconfigure the DRX related parameters to maintain the long-term DRX mode so as not to switch from the long-term DRX mode to the short-term DRX mode.
기지국은 DRX 재구성 정보를 단말로 전송한다(S1520). 상기 DRX 재구성 정보는 RRC 연결 재구성 메시지 등을 이용하여 전송될 수 있다.The base station transmits DRX reconfiguration information to the terminal (S1520). The DRX reconfiguration information may be transmitted using an RRC connection reconfiguration message.
도 16은 본 발명의 일 예에 따른 패킷 IAT를 고려하여 DRX 동작을 수행하는 단말과 기지국을 도시한 블록도이다.16 is a block diagram illustrating a terminal and a base station performing a DRX operation in consideration of a packet IAT according to an embodiment of the present invention.
도 16을 참조하면, 도 16을 참조하면, 단말(1600)은 수신부(1605), 단말 프로세서(1610) 및 전송부(1620)를 포함한다. 단말 프로세서(1610)는 다시 DRX 처리부(1611) 및 IAT 처리부(1612)를 포함한다. Referring to FIG. 16, referring to FIG. 16, the terminal 1600 includes a receiver 1605, a terminal processor 1610, and a transmitter 1620. The terminal processor 1610 further includes a DRX processor 1611 and an IAT processor 1612.
IAT 처리부(1612)는 패킷 IAT를 계산한다. 패킷 IAT를 계산하는 방법은 전술된 바와 같이 하향링크(DL) 관점에서 정의되는 패킷 IAT를 계산하는 방법, 및 상향링크(UL) 관점에서 정의되는 패킷 IAT를 계산하는 방법을 모두 포함할 수 있다.The IAT processing unit 1612 calculates a packet IAT. As described above, the method for calculating the packet IAT may include both a method for calculating a packet IAT defined from a downlink (DL) point of view and a method for calculating a packet IAT defined from an uplink (UL) point of view.
IAT 처리부(1612)는 상기 계산된 패킷 IAT를 정송부(1620)으로 전달한다.The IAT processing unit 1612 transfers the calculated packet IAT to the transmitting unit 1620.
전송부(1620)는 IAT 처리부(1612)에 의해 생성된 패킷 IAT 정보를 기지국(1950)으로 전송한다. 여기서, 패킷 IAT 정보는 단말에 관한 전용 시그널링(dedicated signaling) 또는 매체접근제어(MAC) 제어요소(CE)를 통해 전송될 수 있다. 또는, 패킷 IAT 정보는 RRC 메시지로서 측정 보고(measurement reporing) 메시지 또는 RRC UE 보조 정보(assistance information) 메시지 등을 통하여 전송될 수 있다.The transmitter 1620 transmits the packet IAT information generated by the IAT processor 1612 to the base station 1950. Here, the packet IAT information may be transmitted through dedicated signaling or medium access control (MAC) control element (CE) for the terminal. Alternatively, the packet IAT information may be transmitted as a RRC message through a measurement report message or an RRC UE assistance information message.
수신부(1605)는 DRX 재구성 정보를 기지국으로부터 수신할 수 있다. 여기서 DRX 재구성 정보는 단말(1600)의 IAT 처리부(1612) 또는 기지국(1650)의 IAT 처리부(1672)에서 계산된 패킷 IAT를 고려하여 기지국(1650)의 DRX 처리부(1671)에서 생성되고, DRX 모드를 변경하거나, DRX 사이클의 길이를 변경할 수 있는 파라미터 정보를 포함한다.The receiver 1605 may receive DRX reconfiguration information from the base station. Here, the DRX reconfiguration information is generated by the DRX processing unit 1701 of the base station 1650 in consideration of the packet IAT calculated by the IAT processing unit 1612 of the terminal 1600 or the IAT processing unit 1672 of the base station 1650, and in the DRX mode. It includes parameter information that can change or change the length of the DRX cycle.
DRX 처리부(1611)는 상기 DRX 재구성 정보를 기반으로 단말의 DRX를 재구성한다. DRX 재구성은 단기 DRX 모드로의 전환을 금지시키는 동작을 포함할 수 있다. 또는 DRX 재구성은 장기 DRX로의 전환 시에 상기 장기 DRX 사이클의 길이를 변경하는 동작을 포함할 수 있다.The DRX processor 1611 reconfigures the DRX of the terminal based on the DRX reconfiguration information. DRX reconfiguration may include an operation to prohibit switching to short-term DRX mode. Or DRX reconstruction may include changing the length of the long term DRX cycle upon switching to long term DRX.
DRX 처리부(1611)가 단말(1600)의 DRX를 재구성하는 예는 도 10 내지 13에서 설명된 예시를 포함할 수 있다.An example in which the DRX processor 1611 reconfigures the DRX of the terminal 1600 may include the examples described with reference to FIGS. 10 to 13.
한편, DRX 처리부(1611)는 기지국(1650)으로부터 전송된 DRX 재구성 정보를 수신함이 없이 단말(1600)의 IAT 처리부(1612)로부터 패킷 IAT 값을 수신하고, 이를 기반으로 스스로 DRX 관련 파라미터를 재구성할 수도 있다.Meanwhile, the DRX processor 1611 receives the packet IAT value from the IAT processor 1612 of the terminal 1600 without receiving the DRX reconfiguration information transmitted from the base station 1650, and based on this, the DRX processor 1611 reconfigures the DRX related parameters. It may be.
기지국(1650)은 전송부(1655), 수신부(1660) 및 기지국 프로세서(1670)를 포함한다. 기지국 프로세서(1670)는 DRX 처리부(1671) 및 IAT 처리부(1672)를 포함한다. The base station 1650 includes a transmitter 1655, a receiver 1660, and a base station processor 1670. The base station processor 1670 includes a DRX processor 1671 and an IAT processor 1672.
수신부(1660)는 패킷 IAT 정보를 단말로부터 수신한다. 수신부는 상기 수신한 패킷 IAT 정보를 DRX 처리부(1671)로 전달한다.The receiver 1660 receives the packet IAT information from the terminal. The receiver transmits the received packet IAT information to the DRX processor 1671.
DRX 처리부(1671)는 상기 패킷 IAT 정보를 기반으로 DRX 재구성을 수행한다. 즉, DRX 처리부(1671)는 상기 패킷 IAT를 기준으로 추정된 하향링크 패킷의 전송 시점이 지속구간(또는 활동 시간)에 매칭되도록 DRX 관련 파라미터를 재구성한다. 일 예로서, DRX 처리부(1671)는 단기 DRX 모드를 장기 DRX 모드로 변경되도록 DRX 관련 파라미터를 재구성할 수 있다. 다른 예로서, 기지국은 장기 DRX 사이클의 길이를 늘리거나 줄이는 방식으로 DRX 관련 파라미터를 재구성할 수 있다. 또 다른 예로서, DRX 처리부(1671)는 이전에 장기 DRX 모드가 단기 DRX 모드로 전환되지 않도록 장기 DRX 모드를 그대로 유지하도록 DRX 관련 파라미터를 재구성할 수도 있다.The DRX processing unit 1701 performs DRX reconstruction based on the packet IAT information. That is, the DRX processor 1671 reconfigures the DRX related parameter such that the transmission time of the downlink packet estimated based on the packet IAT matches the duration (or active time). As an example, the DRX processor 1671 may reconfigure DRX related parameters to change the short-term DRX mode to the long-term DRX mode. As another example, the base station may reconfigure the DRX related parameters in a manner that increases or decreases the length of the long term DRX cycle. As another example, the DRX processing unit 1701 may reconfigure DRX related parameters to maintain the long-term DRX mode so that the long-term DRX mode is not switched to the short-term DRX mode previously.
한편, 기지국(1650)은 IAT 처리부(1672)를 더 포함할 수 있다. IAT 처리부(1672)는 패킷 IAT를 계산한다. 패킷 IAT를 계산하는 방법은 전술된 바와 같이 하향링크(DL) 관점에서 정의되는 패킷 IAT를 계산하는 방법, 및 상향링크(UL) 관점에서 정의되는 패킷 IAT를 계산하는 방법을 모두 포함할 수 있다. IT 처리부(1672)는 상기 계산된 패킷 IAT를 DRX 처리부(1671)로 전달할 수 있다.On the other hand, the base station 1650 may further include an IAT processing unit 1672. The IAT processing unit 1672 calculates a packet IAT. As described above, the method for calculating the packet IAT may include both a method for calculating a packet IAT defined from a downlink (DL) point of view and a method for calculating a packet IAT defined from an uplink (UL) point of view. The IT processor 1672 may transfer the calculated packet IAT to the DRX processor 1701.
전송부(1655)는 상기 DRX 재구성 정보를 단말(1600)로 전송한다. 상기 DRX 재구성 정보는 RRC 연결 재구성 메시지 등을 이용하여 전송될 수 있다.The transmitter 1655 transmits the DRX reconfiguration information to the terminal 1600. The DRX reconfiguration information may be transmitted using an RRC connection reconfiguration message.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited thereto. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (16)

  1. 무선 통신 시스템에서 패킷(packet)의 도착 간격(Inter-Arrival Time)을 고려한 DRX(discontinuous reception) 동작을 수행하는 단말로서,A terminal for performing a discontinuous reception (DRX) operation in consideration of an inter-arrival time of a packet in a wireless communication system,
    패킷 IAT를 계산하는 IAT 처리부;An IAT processing unit for calculating a packet IAT;
    상기 패킷 IAT를 기지국으로 전송하는 전송부;A transmitter for transmitting the packet IAT to a base station;
    상기 패킷 IAT를 기반으로 변경된(modified) DRX 재구성 정보를 상기 기지국으로부터 수신하는 수신부; 및A receiver configured to receive modified DRX reconfiguration information from the base station based on the packet IAT; And
    상기 수신된 DRX 재구성 정보를 기반으로 DRX 재구성을 수행하는 DRX 처리부를 포함하는, 단말. And a DRX processor configured to perform DRX reconfiguration based on the received DRX reconfiguration information.
  2. 제 1항에 있어서,The method of claim 1,
    상기 IAT 처리부는 상기 단말의 패킷 데이터 융합 프로토콜(packet data convergence protocol: PDCP) 계층에 상기 패킷이 도착하는 시점을 기준으로 상기 패킷 IAT를 계산하는 것을 특징으로 하는, 단말.The IAT processing unit, characterized in that for calculating the packet IAT on the basis of when the packet arrives in the packet data convergence protocol (PDCP) layer of the terminal.
  3. 제 2항에 있어서,The method of claim 2,
    상기 단말에 복수의 무선 베어러(radio bearer: RB)가 구성된 경우, 상기 IAT 처리부는 상기 복수의 무선 베어러 각각에 대해 개별적인 패킷 IAT를 계산하는 것을 특징으로 하는, 단말.When the plurality of radio bearer (RB) is configured in the terminal, the IAT processing unit, characterized in that for calculating the respective packet IAT for each of the plurality of radio bearer, the terminal.
  4. 제 2항에 있어서,The method of claim 2,
    상기 단말에 복수의 무선 베어러가 구성된 경우, 상기 IAT 처리부는 상기 복수의 무선 베어러 각각에 대해 상기 개별적인 패킷 IAT의 평균값을 상기 패킷 IAT로 결정하거나, 또는 상기 개별적인 패킷 IAT중 임의의 하나를 상기 패킷 IAT로 결정하는 것을 특징으로 하는, 단말.When a plurality of radio bearers are configured in the terminal, the IAT processing unit determines the average value of the individual packet IATs as the packet IAT for each of the plurality of radio bearers, or any one of the individual packet IATs is the packet IAT. Characterized in that, the terminal.
  5. 제 1항에 있어서, The method of claim 1,
    상기 전송부는 상기 패킷 IAT를 상기 단말에 관한 전용 시그널링(dedicated signaling), 메체접근제어(MAC : Medium Access Control) 제어요소(CE : Control Element), 측정 보고(measurement report) 메시지, 및 RRC(Radio Resource Control) 단말 보조 정보(assistant information) 메시지 중 적어도 하나를 통해 상기 기지국으로 전송하는 것을 특징으로 하는, 단말. The transmitting unit transmits the packet IAT to dedicated signaling, medium access control (MAC) control element (CE), measurement report message, and RRC (Radio Resource) for the terminal. Control) The terminal, characterized in that for transmitting to the base station via at least one of the assistant information (assistant information) message.
  6. 무선 통신 시스템에서 패킷의 도착 간격(IAT)을 고려한 단말의 DRX 동작을 제어하는 기지국으로서,A base station for controlling a DRX operation of a terminal considering the arrival interval (IAT) of a packet in a wireless communication system,
    상기 단말로부터 패킷 IAT를 수신하는 수신부;Receiving unit for receiving a packet IAT from the terminal;
    상기 수신된 패킷 IAT를 기반으로 DRX 관련 파라미터의 변경(modification)을 수행하는 DRX 처리부; 및A DRX processor that modifies a DRX related parameter based on the received packet IAT; And
    상기 변경된 DRX 관련 파라미터를 포함하는 DRX 재구성 정보를 상기 단말로 전송하는 전송부를 포함하는, 기지국.And a transmitter for transmitting DRX reconfiguration information including the changed DRX related parameter to the terminal.
  7. 제 6항에 있어서, The method of claim 6,
    상기 DRX 처리부는 장기(long) DRX 모드 및 단기(short) DRX 모드 중 어느 하나를 지시하는 DRX 모드 및 DRX 사이클(cycle)의 길이를 포함하는 상기 DRX 관련 파라미터의 변경을 수행함을 특징으로 하는, 기지국.The DRX processor performs a change of the DRX related parameter including a DRX mode and a length of a DRX cycle indicating one of a long DRX mode and a short DRX mode. .
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 DRX 처리부는 상기 DRX 모드 또는 상기 DRX 사이클의 길이를 변경함으로써 상기 DRX 파라미터의 변경을 수행함을 특징으로 하는, 기지국.The DRX processor is characterized in that for changing the DRX parameter by changing the DRX mode or the length of the DRX cycle, the base station.
  9. 무선 통신 시스템에서 단말에 의한 패킷 도착 간격을 고려한 DRX 방법에 있어서,In the DRX method considering the packet arrival interval by the terminal in a wireless communication system,
    패킷 IAT를 계산하는 단계;Calculating a packet IAT;
    상기 패킷 IAT를 기지국으로 전송하는 단계;Transmitting the packet IAT to a base station;
    상기 패킷 IAT를 기반으로 변경된(modified) DRX 재구성 정보를 상기 기지국으로부터 수신하는 단계; 및Receiving modified DRX reconfiguration information from the base station based on the packet IAT; And
    상기 수신된 DRX 재구성 정보를 기반으로 DRX 재구성을 수행하는 단계를 포함하는, DRX 방법.Performing a DRX reconfiguration based on the received DRX reconfiguration information.
  10. 제 9항에 있어서,The method of claim 9,
    상기 단말의 PDCP 계층에 상기 패킷이 도착하는 시점를 기준으로 상기 패킷 IAT를 계산하는 것을 특징으로 하는, DRX 방법.DRX method, characterized in that for calculating the packet IAT on the basis of when the packet arrives in the PDCP layer of the terminal.
  11. 제 10항에 있어서,The method of claim 10,
    상기 패킷 IAT를 계산함에 있어, 상기 단말에 복수의 무선 베어러(RB)가 구성된 경우, 상기 복수의 무선 베어러 각각에 대해 개별적인 패킷 IAT를 계산하는 것을 특징으로 하는, DRX 방법.In calculating the packet IAT, when a plurality of radio bearers (RBs) are configured in the terminal, the individual packet IAT is calculated for each of the plurality of radio bearers.
  12. 제 10항에 있어서,The method of claim 10,
    상기 단말에 복수의 무선 베어러가 구성된 경우, 상기 IAT 처리부는 상기 복수의 무선 베어러 각각에 대해 상기 개별적인 패킷 IAT의 평균값을 상기 패킷 IAT로 결정하거나, 또는 상기 개별적인 패킷 IAT중 임의의 하나를 상기 패킷 IAT로 결정하는 것을 특징으로 하는, DRX 방법.When a plurality of radio bearers are configured in the terminal, the IAT processing unit determines the average value of the individual packet IATs as the packet IAT for each of the plurality of radio bearers, or any one of the individual packet IATs is the packet IAT. DRX method, characterized in that determined by.
  13. 제 9항에 있어서, The method of claim 9,
    상기 패킷 IAT는 단말에 관한 전용 시그널링, 메체접근제어 제어요소, 측정 보고 메시지, 및 RRC 단말 보조 정보 메시지 중 적어도 하나를 통해 상기 기지국으로 전송되는 것을 특징으로 하는, DRX 방법.The packet IAT is a DRX method, characterized in that transmitted to the base station through at least one of a dedicated signaling for the terminal, a media access control control element, a measurement report message, and an RRC terminal assistance information message.
  14. 무선 통신 시스템에서 기지국에 의한 패킷 도착 간격을 고려한 단말의 DRX 동작을 제어하는 방법으로,A method of controlling DRX operation of a terminal in consideration of a packet arrival interval by a base station in a wireless communication system,
    상기 단말로부터 패킷 IAT를 수신하는 단계;Receiving a packet IAT from the terminal;
    상기 수신된 패킷 IAT를 기반으로 DRX 관련 파라미터의 변경(modification)을 수행하는 단계; 및Performing modification of a DRX related parameter based on the received packet IAT; And
    상기 변경된 DRX 관련 파라미터를 포함하는 DRX 재구성 정보를 상기 단말로 전송하는 단계를 포함하는, 제어 방법.And transmitting DRX reconfiguration information including the changed DRX related parameter to the terminal.
  15. 제 14항에 있어서,The method of claim 14,
    장기(long) DRX 모드 및 단기(short) DRX 모드 중 어느 하나를 지시하는 DRX 모드 및 DRX 사이클(cycle)의 길이를 포함하는 상기 DRX 관련 파라미터의 변경을 수행함을 특징으로 하는, 제어 방법.And performing a change of said DRX related parameter including a DRX mode and a length of a DRX cycle, indicating either one of a long DRX mode and a short DRX mode.
  16. 제 14항에 있어서,The method of claim 14,
    상기 DRX 모드 또는 상기 DRX 사이클의 길이를 변경함으로써 상기 DRX 파라미터의 변경을 수행함을 특징으로 하는, 제어 방법.Changing the DRX parameter by changing the DRX mode or the length of the DRX cycle.
PCT/KR2013/002198 2012-05-11 2013-03-18 Method and device for reconfiguring drx by considering packet inter arrival time WO2013168891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120050526A KR20130126403A (en) 2012-05-11 2012-05-11 Method and apparatus of drx reconfiguration considering packet inter arrival time
KR10-2012-0050526 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168891A1 true WO2013168891A1 (en) 2013-11-14

Family

ID=49550890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002198 WO2013168891A1 (en) 2012-05-11 2013-03-18 Method and device for reconfiguring drx by considering packet inter arrival time

Country Status (2)

Country Link
KR (1) KR20130126403A (en)
WO (1) WO2013168891A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043767A1 (en) * 2015-09-11 2017-03-16 엘지전자 주식회사 Method for operating idle mode by applying extended drx mode in wireless communication system, and apparatus therefor
WO2018062886A1 (en) * 2016-09-30 2018-04-05 Lg Electronics Inc. Pdcch monitoring after drx configuration or reconfiguration
CN111034247A (en) * 2019-11-27 2020-04-17 北京小米移动软件有限公司 Information processing method and device, communication equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230102170A (en) * 2021-12-30 2023-07-07 삼성전자주식회사 Method and apparatus for system infomration modificationin next-generation mobile communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049399A (en) * 2008-11-03 2010-05-12 삼성전자주식회사 Method and apparatus for controlling discontinuous reception at mobile communication system
KR20100052064A (en) * 2008-11-10 2010-05-19 삼성전자주식회사 Method and apparatus for controlling discontinuous reception at mobile communication system
KR20110095092A (en) * 2010-02-16 2011-08-24 삼성전자주식회사 Controlling method and apparatus for discontinuous reception in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049399A (en) * 2008-11-03 2010-05-12 삼성전자주식회사 Method and apparatus for controlling discontinuous reception at mobile communication system
KR20100052064A (en) * 2008-11-10 2010-05-19 삼성전자주식회사 Method and apparatus for controlling discontinuous reception at mobile communication system
KR20110095092A (en) * 2010-02-16 2011-08-24 삼성전자주식회사 Controlling method and apparatus for discontinuous reception in a wireless communication system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043767A1 (en) * 2015-09-11 2017-03-16 엘지전자 주식회사 Method for operating idle mode by applying extended drx mode in wireless communication system, and apparatus therefor
TWI625952B (en) * 2015-09-11 2018-06-01 Lg電子股份有限公司 Method of operating in idle mode by applying extended drx mode and apparatus for same
US10616949B2 (en) 2015-09-11 2020-04-07 Lg Electronics Inc. Method for operating idle mode by applying extended DRX mode in wireless communication system, and apparatus therefor
WO2018062886A1 (en) * 2016-09-30 2018-04-05 Lg Electronics Inc. Pdcch monitoring after drx configuration or reconfiguration
JP2019534627A (en) * 2016-09-30 2019-11-28 エルジー エレクトロニクス インコーポレイティド PDCCH monitoring after DRX configuration or reconfiguration
US11553417B2 (en) 2016-09-30 2023-01-10 Lg Electronics Inc. PDCCH monitoring after DRX configuration or reconfiguration
CN111034247A (en) * 2019-11-27 2020-04-17 北京小米移动软件有限公司 Information processing method and device, communication equipment and storage medium
CN111034247B (en) * 2019-11-27 2023-08-29 北京小米移动软件有限公司 Information processing method and device, communication equipment and storage medium

Also Published As

Publication number Publication date
KR20130126403A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2011021814A2 (en) Method and system for transmitting/receiving data in a wireless communication system
WO2014035074A1 (en) Method and apparatus for configuring a discontinuous reception (drx) operation in a wireless communication system
WO2018084608A2 (en) Method for determining retransmission numbers of sidelink data in wireless communication system and a device therefor
WO2012138155A2 (en) Battery consumption control method of user equipment in mobile communication system
WO2012134219A2 (en) Method and apparatus for monitoring downlink control channel
WO2017078299A1 (en) Method for handling of drx timers for multiple repetition transmission in wireless communication system and a device therefor
WO2012141481A2 (en) Method and apparatus for user equipment in battery saving mode transmitting reverse direction control signal in mobile communication system
WO2014010903A1 (en) Method and apparatus for controlling uplink transmission on discontinuous reception operation in wireless communication system
WO2016167615A1 (en) Method and apparatus for performing extended drx operation based on uplink indication in wireless communication system
WO2010095814A2 (en) Method for distributed drx operation for ease of scheduling and effective power saving
WO2010053330A2 (en) Method and apparatus for controlling discontinuous reception in wireless communication system
WO2012067406A2 (en) Method and apparatus for optimizing power consumption of a terminal in a mobile communication system
WO2014058221A2 (en) Method and apparatus for performing device-to-device communication in wireless communication system
WO2014021612A2 (en) Method and apparatus for setting uplink transmission power in wireless communication system
WO2017204524A1 (en) Method and user equipment for receiving downlink control information
WO2013062388A2 (en) Method and apparatus for effectively reducing power consumption of terminal in mobile communication system
WO2011071341A2 (en) Apparatus and method for performing contention based access in mobile communication system
WO2017034175A1 (en) Method for transmitting information for lte-wlan aggregation system and a device therefor
WO2014014283A1 (en) Apparatus and method for reporting power headroom in wireless communication system
WO2014010993A1 (en) Method and apparatus for applying a discontinuous reception (drx) cycle in a wireless communication system
WO2016043377A1 (en) Method for multi-rat scheduling and apparatus therefor in system in which heterogeneous wireless communication technologies are utilized
KR20080084533A (en) A method of data communication in mobile communication system
EP2813008A1 (en) Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
WO2017061695A1 (en) Method for transmitting a queuing delay measurement report in a wireless communication system and a device therefor
WO2016056839A1 (en) Operating method of m2m terminal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788376

Country of ref document: EP

Kind code of ref document: A1