WO2013168812A1 - アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法 - Google Patents

アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法 Download PDF

Info

Publication number
WO2013168812A1
WO2013168812A1 PCT/JP2013/063220 JP2013063220W WO2013168812A1 WO 2013168812 A1 WO2013168812 A1 WO 2013168812A1 JP 2013063220 W JP2013063220 W JP 2013063220W WO 2013168812 A1 WO2013168812 A1 WO 2013168812A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
tin oxide
doped tin
oxide
cooling
Prior art date
Application number
PCT/JP2013/063220
Other languages
English (en)
French (fr)
Inventor
文人 小林
渉 吉住
博昭 島根
正太 川▲崎▼
山田 厚
Original Assignee
共同印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共同印刷株式会社 filed Critical 共同印刷株式会社
Priority to KR1020147032980A priority Critical patent/KR20150010763A/ko
Priority to US14/400,084 priority patent/US20150118458A1/en
Priority to CN201380024774.1A priority patent/CN104684848A/zh
Priority to EP13787508.4A priority patent/EP2848588A4/en
Priority to AU2013260538A priority patent/AU2013260538A1/en
Priority to JP2014514767A priority patent/JP5646114B2/ja
Publication of WO2013168812A1 publication Critical patent/WO2013168812A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • Y10T428/24901Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material including coloring matter

Definitions

  • the present invention relates to an antimony-doped tin oxide that absorbs infrared rays, an infrared-absorbing pigment, an infrared-absorbing ink, a printed matter, and a method for producing antimony-doped tin oxide.
  • Antimony-doped tin oxide is a tin oxide containing a small amount of antimony
  • the conventional general production method is a coprecipitation firing method using a hydrolyzable tin compound and an antimony compound as raw materials. there were.
  • tin and antimony hydrated oxides are co-precipitated by simultaneously hydrolyzing (eg, neutralizing) tin and antimony compounds in the same solution.
  • the coprecipitate is recovered, washed to remove the adhering salt, and then dehydrated to an oxide by baking at 400 ° C. or higher to obtain ATO.
  • firing is performed in a closed system in order to reduce energy consumption.
  • antimony-doped tin oxide (ATO) has been used as a transparent conductive material.
  • the content of antimony oxide needs to be about 10% by weight.
  • antimony oxide is added in an amount of 3 to 30% by weight, preferably 5 to 20% by weight, based on tin oxide.
  • the fine powder obtained by the method contains 5% by weight or 10% by weight of antimony oxide.
  • antimony-doped tin oxide also has an infrared absorption effect and can be used as a security material (see, for example, Patent Document 3).
  • Patent Document 3 an infrared-absorbing ink having high transparency can be produced by adding antimony-doped tin oxide to the ink.
  • Patent Document 3 it is considered that an infrared absorbing ink exhibiting a variety of colors can be manufactured in combination with pigments of various colors. Moreover, since antimony dope tin oxide is an inorganic pigment, it is thought that the infrared rays absorption ink excellent in light resistance can be provided.
  • Antimony-doped tin oxide is produced by adding antimony oxide to tin oxide, which is the main component.
  • the principle that antimony-doped tin oxide exhibits an infrared absorption effect is that a crystal structure that absorbs infrared rays is formed when antimony oxide is dissolved (enters) into the crystal lattice of tin oxide, which is the main component. It is possible.
  • antimony oxide is listed as a target substance in the chemical substance release and transfer notification system (PRTR) or toy safety standards. Therefore, it is desirable that the amount of antimony oxide used be as small as possible.
  • antimony oxide is considered to exhibit the role of absorbing infrared rays by entering into the crystal lattice of tin oxide, so if the amount used is simply reduced, the infrared absorption effect is reduced accordingly. There is a problem of end up.
  • an object of the present invention is to provide a technique that can sufficiently exhibit the infrared absorption effect while reducing the amount of antimony oxide used.
  • the antimony-doped tin oxide is dissolved in a varnish containing an acrylic polymer and silicone, applied to a substrate, dried, and a solid content weight of the antimony-doped tin oxide having a thickness of 70 ⁇ m and 11.6% by weight.
  • the coating film having a ratio is formed and the solar reflectance of the coating film is measured in accordance with JIS K5602, the average reflectance in the wavelength range of 780 to 1100 nm is subtracted from the average reflectance in the wavelength range of 380 to 780 nm.
  • the antimony-doped tin oxide according to [1], wherein the value obtained by the step is 3.00% or more.
  • a printed matter comprising a printing part printed with the infrared absorbing ink according to [8].
  • the peak value of the reflectance in the infrared wavelength region of 780 to 1100 nm is 28.776% or less.
  • a method for producing antimony-doped tin oxide comprising a ventilation firing step of firing an antimony-doped tin oxide raw material under ventilation.
  • the method according to [11] including a cooling step of cooling the antimony-doped tin oxide at a cooling rate of 200 [° C./hour] or more.
  • [13] Before the ventilation firing step, [11] or [12], comprising a mixing step of mixing a tin compound and an antimony compound to obtain a mixture, and a closed firing step of firing the mixture in a closed system to obtain the antimony-doped tin oxide raw material. the method of.
  • the method according to [13] including a closed cooling step of cooling the antimony-doped tin oxide raw material in a closed system.
  • the infrared absorption effect can be improved by improving the crystallinity of antimony-doped tin oxide, the infrared absorption effect can be sufficiently exerted even if the amount of antimony oxide used is reduced. Can do.
  • FIG. 1 is a process diagram showing one embodiment of the method of the present invention for producing antimony-doped tin oxide.
  • FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling), and
  • FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with aerated firing / cooling).
  • FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling)
  • FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with
  • FIG. 3 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 3 (antimony oxide content: 5.3% by weight, with aerated firing / cooling), and FIG. FIG. 6 is a graph showing the results of X-ray diffraction by antimony-doped tin oxide of Example 4 (antimony oxide content: 9.3 wt%, with aerated firing / cooling).
  • FIG. 4 (A) shows the X-ray diffraction pattern of antimony-doped tin oxide of Example 5 (ventilated and cooled by commercial cooling, cooling rate of 200 [° C./hour] or more, antimony oxide content 2.7% by weight).
  • FIG. 4 (B) shows the results, and FIG.
  • FIG. 4 shows antimony-doped tin oxide of Example 6 (commercially manufactured product by air firing and cooling, cooling rate of less than 200 [° C./hour], antimony oxide content 2.7 wt. %) Shows the result of X-ray diffraction.
  • FIG. 5 is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 7 (aerated firing / cooling of a mixture of metastannic acid and antimony trioxide, antimony oxide content 4.2% by weight).
  • 6A is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Comparative Example 1 (antimony oxide content: 9.9% by weight, commercially available product), and FIG.
  • FIG. 6B is a comparative example. It is a figure which shows the result of the X-ray diffraction of antimony dope tin oxide 2 (antimony oxide content rate 2.8 weight%, aeration baking and no cooling).
  • FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
  • FIG. 8 is a graph showing the influence of the antimony oxide content rate on the reflectance at a wavelength of 200 nm to 2500 nm.
  • FIG. 9 is a graph showing the influence of the ventilation firing process on the reflectance at a wavelength of 200 nm to 2500 nm and an antimony oxide content of 2.7 to 2.8% by weight.
  • FIG. 10 is a graph showing the influence of the air-fired process on the reflectance and antimony content of a commercially available antimony-doped tin oxide material at a wavelength of 200 nm to 2500 nm.
  • FIG. 11 is a graph showing the influence of the aeration firing process on the reflectance of a mixture of metastannic acid and antimony trioxide at a wavelength of 200 nm to 2500 nm.
  • the content of antimony oxide is about 2.5 to about 9.3 wt%, about 2.8 to about 9.3 wt%, and about 2.8 to about 5 based on the weight of antimony-doped tin oxide. More preferably, it is 0.5 wt%, or about 2.8 to about 3.5 wt%.
  • Conventional antimony-doped tin oxide needs to contain more than 10% by weight of antimony oxide in order to obtain a transparent conductive material having sufficient conductivity.
  • the antimony dope tin oxide of this invention can reduce the usage-amount of an antimony oxide compared with the conventional antimony dope tin oxide as above-mentioned.
  • antimony oxide is considered to play a role of absorbing infrared rays by entering into the crystal lattice of tin oxide, so if the amount used is simply reduced, the infrared absorption effect is reduced accordingly. Will do.
  • the infrared absorption effect is an effect that occurs when antimony oxide is dissolved (enters) into the crystal lattice of tin oxide, which is the main component. That is, when manufacturing antimony-doped tin oxide, antimony oxide is contained in tin oxide as the main component.
  • antimony oxide not dissolved in the tin oxide crystal lattice is present as an impurity as in conventional antimony-doped tin oxide, it is considered that the impurity did not contribute to the infrared absorption effect.
  • the portion of antimony oxide that does not contribute to the infrared absorption effect remains as a waste material (impurity).
  • the usage-amount of antimony oxide has increased more than necessary. Therefore, the inventors of the present invention have conducted research on this impurity, and as a result, the half-value width ( ⁇ 2 ⁇ ) of antimony-doped tin oxide is wide and / or the crystallinity (the crystallization of the whole material when the material is crystallized).
  • the ratio of the portion is low, antimony oxide as an impurity increases.
  • the half width ( ⁇ 2 ⁇ ) is narrow and / or the degree of crystallinity is high, antimony oxide as an impurity decreases. I found it.
  • examples of means for improving the crystallinity of antimony-doped tin oxide while removing antimony oxide as an impurity include aeration firing described later and vaporization purification described later.
  • the present invention provides an antimony-doped tin oxide having a narrowed half width ( ⁇ 2 ⁇ ) and / or an increased crystallinity in order to minimize the amount of antimony oxide used.
  • the half width ( ⁇ 2 ⁇ ) is narrowed or the crystallinity is increased, impurities are reduced, and antimony oxide can be effectively dissolved and the infrared absorption effect can be improved.
  • a commercially available X-ray diffractometer may be used to select an arbitrary scan speed, but the number of integrations is set to one.
  • the crystallinity of antimony-doped tin oxide is 58427 or more, particularly 78020 or more, impurities can be further reduced, and antimony oxide can be effectively solid-solved to further improve the infrared absorption effect. Therefore, according to the present invention, the infrared absorption effect can be sufficiently exhibited while reducing the amount of antimony oxide used.
  • the antimony-doped tin oxide is dissolved in a varnish containing an acrylic polymer and silicone, applied to a substrate, dried, and a solid content weight ratio of antimony-doped tin oxide having a thickness of 70 ⁇ m and about 11.6% by weight.
  • the solar reflectance of this coating film is measured according to JIS K5602 when a coating film having a thickness of 380 is formed, the average reflectance in the wavelength range of 780 to 1100 nm is subtracted from the average reflectance in the wavelength range of 380 to 780 nm.
  • the obtained value is preferably about 3.00% or more.
  • the antimony-doped tin oxide Visible light absorption is relatively low, that is, the visible light transparency of antimony-doped tin oxide is relatively high. Therefore, antimony-doped tin oxide can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide.
  • the value obtained by subtracting the average reflectance in the wavelength range of 780 to 1100 nm from the average reflectance in the wavelength range of 380 to 780 nm is about 4.80% or more, or about 4.85% or more. And more preferably about 99% or less, about 90% or less, or about 80% or less.
  • the infrared absorbing pigment of the present invention is an infrared absorbing pigment made of the above antimony-doped tin oxide.
  • the action and effect of the antimony-doped tin oxide described above can be realized by the infrared absorbing pigment. For this reason, while reducing the usage-amount of antimony oxide, the infrared absorption effect can fully be exhibited, and the high quality infrared absorption pigment which followed the predetermined safety standard etc. can be provided.
  • the infrared absorbing ink of the present invention is an infrared absorbing ink containing the above infrared absorbing pigment.
  • the action and effect of the infrared absorbing pigment can be realized by the infrared absorbing ink. For this reason, while reducing the usage-amount of antimony oxide, while being able to fully exhibit the infrared absorption effect, the high quality infrared absorption ink which followed the predetermined safety standard etc. can be provided.
  • the printed matter of the present invention is a printed matter having a printing part printed with the above infrared absorbing ink.
  • the printed matter of the present invention since the above-described infrared absorbing ink is provided with a printing portion on which characters, figures, and the like are printed, the printed matter has a sufficient effect of absorbing infrared rays while reducing the amount of antimony oxide used. be able to. In addition to providing high-quality printed materials, it is possible to provide printed materials that are environmentally friendly.
  • the printed matter of the present invention has a peak reflectance value of 28.776% or less in the infrared wavelength region of 780 to 1100 nm when the solid content weight ratio of the antimony-doped tin oxide contained in the printed part is 11.6% by weight. It is preferable that
  • the antimony-doped tin oxide of the present invention can be produced, for example, by the following method.
  • the method for producing antimony-doped tin oxide of the present invention includes an aeration firing step of firing the antimony-doped tin oxide raw material under aeration.
  • aeration firing or cooling is performed not only by firing or cooling while circulating a firing or cooling atmosphere, but also by firing or cooling in an open space (hereinafter also referred to as “open system”) that does not block outside air. Including.
  • the method for producing antimony-doped tin oxide of the present invention can narrow the half-value width of antimony-doped tin oxide from that of the conventional product and / or increase the crystallinity of antimony-doped tin oxide than that of the conventional product.
  • the method for producing antimony-doped tin oxide of the present invention comprises producing an antimony-doped tin oxide capable of sufficiently exhibiting the infrared absorption effect while reducing the amount of antimony oxide used by including an aeration firing step. Can do.
  • the antimony-doped tin oxide obtained by the production method of the present invention has a narrow half-value width and / or a high crystallinity, which is considered to be caused by a small amount of impurity antimony oxide. .
  • extra antimony oxide is present in the antimony-doped tin oxide, it is considered that X-rays are scattered during measurement by X-ray diffraction and the peak is lowered.
  • a method for producing antimony-doped tin oxide including at least an aeration firing step and a subsequent aeration cooling step is referred to as a “vaporization purification method”.
  • the production method of the present invention can appropriately maintain the crystal structure while removing a part thereof by the aeration firing step, so that a high infrared ray Absorption effect can be maintained. For this reason, a high infrared absorption effect can be obtained while reducing the amount of antimony oxide used by passing through the aeration firing step.
  • tin compound examples include metastannic acid, sodium stannate trihydrate, niobium tritin, fenbutane oxide, tin oxide, and tin hydride.
  • antimony compound examples include antimony oxide, indium antimonide, and stibine.
  • the method for producing antimony-doped tin oxide of the present invention may include the following steps after the aeration firing step: A ventilation cooling step of cooling the obtained antimony-doped tin oxide under ventilation; and / or a cooling step of cooling the obtained antimony-doped tin oxide at a cooling rate of 200 [° C./hour] or more.
  • the aeration cooling process can be performed, for example, by sending air into the furnace (specifically, it is possible to set the number of hours and how many times it is cooled by setting the cooling device).
  • the air cooling process may be performed in an earlier time (for example, about 5 hours). For this reason, the ventilation cooling process is more actively cooling than natural cooling.
  • the cooling rate is preferably 200 [° C./hour] or more, 215 [° C./hour] or more, or 216 [° C./hour] or more.
  • the manufacturing method of the antimony dope tin oxide of this invention includes the following mixing processes and a closed baking process before a ventilation baking process: A mixing step of mixing a tin compound and an antimony compound to obtain a mixture; and a closed baking step of firing the mixture in a closed system to obtain an antimony-doped tin oxide raw material.
  • the method for producing antimony-doped tin oxide of the present invention preferably includes a closed cooling step of cooling the antimony-doped tin oxide raw material in a closed system between the closed baking step and the aeration baking step.
  • the antimony-doped tin oxide raw material satisfying the above (i) to (iii) can be obtained by the mixing step, the closed firing step, and the closed cooling step, respectively.
  • the content of antimony trioxide is preferably 10% by weight, but may be about 5 to 20% by weight.
  • Step S102 In this step, the material mixed in the previous raw material mixing step (step S100) is dried at 320 ° C. Thereby, the water used when mixing materials in the previous raw material mixing step (step S100) can be removed.
  • Step S104 the material dried in the first drying step (step S102) is pulverized. Specifically, the dried material is pulverized into powder by a high-speed pulverizer.
  • Step S106 the material pulverized in the first pulverization step (step S104) is baked. Specifically, the material pulverized in the first pulverization step (step S104) is fired at 1000 to 1300 ° C. for 1 hour or longer in a closed system. In the closed baking process, since baking is performed in a closed system, the content of antimony oxide (solid solution ratio) is maintained at about 10% by weight.
  • Step S107 the material fired in the previous closed firing step (step S106) is cooled. Specifically, cooling is started simultaneously with the end of the closed firing step, and the fired material is cooled in a closed system. Thereby, an antimony-doped tin oxide raw material in which tin (Sn) and antimony (Sb) are combined is generated. The antimony-doped tin oxide raw material is generated through a closed firing process (step S106) and a closed cooling process (step S107). In addition, although natural cooling may be sufficient as cooling, you may cool the baked material under ventilation similarly to the ventilation cooling process mentioned later.
  • this step may be performed to pulverize the material cooled in the previous closed cooling step (step S107).
  • the fired material can be pulverized using a bead mill while using water as a medium until the particle diameter (median diameter in the laser diffraction scattering method) reaches about 100 nm.
  • the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • Step S110 the material pulverized in the first pulverization step (step S108) may be dried by heating to 320 ° C. Thereby, the water used when the material is pulverized in the first fine pulverization step (step S108) can be removed.
  • the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • this step may be performed to pulverize the material dried in the second drying step (step S110). Specifically, the dried material can be pulverized with a high-speed pulverizer. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • Step S114 the material pulverized in the second pulverization step (step S112) is baked. Specifically, the material pulverized in the second pulverization step (step S112) is baked at 1000 to 1300 ° C. for 1 to 12 hours under ventilation (a state in which ventilation is maintained inside the furnace).
  • the antimony-doped tin oxide raw material produced by the closed firing process is fired again under ventilation.
  • excess antimony oxide (Sb) in the tin oxide (SnO 2 ) can be vaporized and eliminated.
  • the final antimony oxide content (solid solution ratio) is about 0.5 to 9.3 wt%.
  • Step S116 In this step, the antimony-doped tin oxide fired in the previous aeration firing step (step S114) is cooled under ventilation.
  • cooling is started simultaneously with the end of the aeration firing process, and the temperature in the firing furnace is set to room temperature (for example, about 20 to 25 ° C.) within 300 minutes. Cooling.
  • the aeration cooling step is performed under aeration.
  • an aeration cooling process (step S116) can be performed after an aeration baking process (step S114).
  • Step S118 the purified material cooled in the previous air cooling process (step S116) is pulverized. Specifically, using water as a medium, the purified material is pulverized using a bead mill until the particle size (median diameter in the laser diffraction scattering method) becomes about 100 nm.
  • Step S120 the impurities of the material whose particle size has been adjusted in the second fine pulverization step (step S118) are removed by washing with water.
  • Impurities are minute amounts of electrolyte (for example, sodium (Na), potassium (K), etc.) contained in the raw material, and whether or not the impurities are sufficiently removed can be confirmed by conductivity.
  • Step S122 the material cleaned in the previous cleaning step (step S120) is dried by heating to 145 ° C. Thereby, while being able to remove the water used when wash
  • Step S124 the material dried in the third drying step (step S122) is pulverized. Specifically, the dried material is finished and pulverized with a high-speed pulverizer so that the particle diameter (median diameter by the laser diffraction scattering method) is about several tens of nm to 100 ⁇ m.
  • antimony dope tin oxide of this invention is manufactured by passing through each said process.
  • the used firing furnace is a shuttle-type firing furnace with a cooling device (manufactured by Tsuji Electric Furnace).
  • Steps 100-124 were performed as described in FIG. 1 using 118.8 g of metastannic acid and 1 g of antimony trioxide.
  • the aerated firing step (S114) was performed for about 8 hours with the temperature in the aerated furnace set to about 1100 ° C.
  • the aeration cooling step (S116) was performed at a cooling rate of about 200 [° C./hour] or more.
  • Examples 2 to 7 and Comparative Examples 1 and 2 were performed as described in Table 1 below.
  • the content of antimony oxide in the obtained antimony-doped tin oxide was changed by changing the weight of metastannic acid and antimony trioxide and / or the time of the aeration firing step (S114). I let you.
  • Comparative Example 1 a commercially available antimony-doped tin oxide raw material was prepared.
  • Example 5 and 6 the commercial item of the comparative example 1 was used for the ventilation baking process (S114) and the ventilation cooling process (S116).
  • the cooling rate in the ventilation cooling step (S116) was 200 [° C./h] or more in Example 5, and less than 200 [° C./h] in Example 6.
  • Example 7 a simple mixture of metastannic acid and antimony trioxide was subjected to an aeration firing step (S114) and an aeration cooling step (S116).
  • the content of antimony oxide in the product is measured by an order analysis method using a fluorescent X-ray analyzer RIX-1000 (manufactured by Rigaku Corporation). Moreover, as measurement conditions, the measurement is performed using antimony-doped tin oxide as a powder. The powder is measured under the condition that the particle diameter (median diameter by laser diffraction scattering method) is 120 nm.
  • FIGS. 2 to 5 are diagrams showing the results of X-ray diffraction by the antimony-doped tin oxide of the example
  • FIG. 6 is a diagram showing the results of X-ray diffraction of the comparative example.
  • the vertical axis indicates “intensity (CPS)” of reflected light when X-rays are irradiated
  • the horizontal axis indicates “2 ⁇ (deg)”.
  • CPS Counterbalance Per Second
  • “2 ⁇ ” indicates an irradiation angle when the measurement object is irradiated with X-rays.
  • the reason for “2 ⁇ ” is that if the angle (incident angle) for irradiating X-rays is ⁇ , the reflection angle is also ⁇ , and the sum of the incident angle and the reflection angle is 2 ⁇ . It is.
  • the graph of FIG. 2 (B) is a graph showing the result of X-ray diffraction by antimony-doped tin oxide of Example 2.
  • points where the intensity of reflected light greatly increases are generated at a plurality of locations.
  • the crystallinity is calculated using the measured values of 2 ⁇ (deg) and intensity (CPS) at the point where the intensity of the reflected light is the highest among the points where the intensity of the reflected light increases.
  • FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
  • the crystallinity can be calculated from the measurement result of X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • CPS Since CPS is the intensity (level) of reflected light, it has a waveform height in the illustrated example.
  • ⁇ 2 ⁇ is the width of the half width corresponding to a half value of the maximum value (peak value) of CPS obtained by the X-ray diffraction measurement (in FIG. 7, the length A1 is the same as the length A2. Length).
  • Example 2A is a graph showing the result of X-ray diffraction by the antimony-doped tin oxide of Example 1.
  • the maximum value of CPS is about 15000, and the waveform appearing at the point where the intensity of the reflected light is the highest is sharp and the width of the skirt portion is narrow. It has a sharp waveform.
  • the graph of FIG. 6 (A) is a graph showing the result of X-ray diffraction by the commercially available product of Comparative Example 1.
  • ⁇ 2 ⁇ the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide produced without using a vaporization purification method.
  • the graph of FIG. 6 (B) is a graph showing the result of X-ray diffraction by the product of Comparative Example 2.
  • the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide manufactured without using the above-described vaporization purification method.
  • This can also be seen from the fact that the crystallinity of Comparative Example 2 is lower than that of Example 2 even though Comparative Example 2 has the same antimony oxide content as Example 2.
  • the infrared absorption effect was measured by measuring the light reflectance using a spectrophotometer.
  • the equipment used, the measurement conditions, and the measurement method are as follows.
  • the infrared absorption pigment of an Example and a comparative example all are measuring by making a particle size (median diameter in a laser diffraction scattering method) into 120 nm. Further, the reflectance of the standard white plate was set as a standard value of about 100%. In addition, the said measuring method is based on "How to obtain
  • the acrylic / silicone varnish described in the above (2) includes a solid content such as a resin and a solvent that volatilizes and disappears when dried.
  • the acrylic / silicone varnish solids weight ratio is 40% by weight, the acrylic / silicone varnish solids content is 38 parts, the infrared absorbing pigment is 5 parts, and the infrared absorbing pigment solids weight ratio is 11.6. % By weight. The remaining 88.4% by weight is resin and / or other additives.
  • FIG. 8 shows that antimony-doped tin oxide in which antimony oxide is dissolved in the crystal lattice of tin oxide has an infrared absorption effect.
  • the infrared absorption effect is high, and the solid content of the antimony-doped tin oxide pigment, which is a particularly general printing condition, is desirable.
  • the weight ratio is 11.6% by weight and the reflectance is 30% or less, when a printed matter is observed with an authenticity determination device such as an infrared camera, a printed part containing antimony-doped tin oxide and other parts The difference is large and 10 out of 10 people can be distinguished, so it is easy to use for authenticity determination and is preferred.
  • Examples 2 to 4 having an antimony oxide content of 2.8% by weight or more maintain a reflectance of 30% or less in that region.
  • the comparative example 2 that has not undergone the aeration firing process is compared with the examples 2, 5 and 6 that have undergone the aeration firing process. It is clear that the infrared absorption effect is low. That is, the aeration firing process can improve the crystallinity of the antimony-doped tin oxide, thereby improving the infrared absorption effect. This is supported by comparing the crystallinity of Examples 2, 5, and 6 and Comparative Example 2 in Table 1 below.
  • Example 5 performed at a cooling rate of 200 [° C./hour] or higher was more than Example 6 performed at a cooling rate of less than 200 [° C./hour].
  • the half width ( ⁇ 2 ⁇ ) is narrow and the degree of crystallinity is high.
  • adjusting the cooling rate to 200 [° C./hour] or more in the aeration cooling step contributes to improvement of crystallinity of the antimony-doped tin oxide.
  • Examples 1 to 6 have an average reflectance in the visible light wavelength range (380 nm to 780 nm) and an infrared wavelength range (780 to 1100 nm) than Example 7. )
  • the average reflectance difference is large. Therefore, it can be seen that the antimony-doped tin oxides of Examples 1 to 6 can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide as compared with the antimony-doped tin oxide of Example 7. .
  • the crystallinity can be improved with the minimum content of antimony oxide, and antimony-doped tin oxide having a sufficient infrared absorption effect is produced. can do.
  • the obtained antimony-doped tin oxide has an antimony oxide content of 9.3 wt% or less and an antimony oxide tin oxide having a content of 9.9 wt% is substantially equal to or higher than that. Infrared absorption effect is obtained.

Abstract

 酸化錫と酸化アンチモンを含有するアンチモンドープ酸化錫であって、下記(a)及び/又は(b)を満たすアンチモンドープ酸化錫: (a)X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35以下である;及び/又は (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092以上である。

Description

アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法
 本発明は、赤外線を吸収するアンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法に関する。
 アンチモンドープ酸化錫(ATO)は、少量の酸化アンチモンを含有する酸化錫であって、従来の一般的な製造方法は、加水分解性の錫化合物とアンチモン化合物とを原料とする共沈焼成法であった。この方法では、錫及びアンチモンの化合物を同じ溶液中で同時に加水分解させることにより(例えば、中和させることにより)、錫とアンチモンの各水和酸化物を共沈させる。この共沈物を回収し、洗浄して付着する塩を除去した後、400℃以上で焼成することにより脱水して酸化物にすると、ATOが得られる。一般に、焼成は、エネルギー消費量を抑制するために、閉鎖系で行われる。
 従来、アンチモンドープ酸化錫(ATO)は、透明導電材料として利用されることがあった。この場合、十分な導電性を有する透明導電材料を得るためには、酸化アンチモンの含有量が約10重量%である必要があった。
 例えば、特許文献1に記載されている導電性微粉末では、酸化錫に対して酸化アンチモンを3~30重量%、好ましくは5~20重量%加えており、特許文献2に記載されている製造方法によって得られた微粉末には、5重量%又は10重量%の酸化アンチモンが含有されている。ただし、これらの文献に赤外線吸収効果についての記載はなく、考慮もされていない。
 また、アンチモンドープ酸化錫は、赤外線吸収効果も有しているため、セキュリティ材料として用いることもできる(例えば、特許文献3参照)。特許文献3の技術では、アンチモンドープ酸化錫をインキに加えることにより、透明度が高い赤外線吸収インキを製造することができる。
 このため、特許文献3の技術によれば、様々な色の顔料と組み合わせてバリエーションに富んだ色彩を呈する赤外線吸収インキを製造することができると考えられる。また、アンチモンドープ酸化錫は、無機顔料であるため、耐光性に優れた赤外線吸収インキを提供することができると考えられる。
特許第2844012号公報 特開昭56-156606号公報 特開2010-6999号公報
 アンチモンドープ酸化錫は、主成分である酸化錫に、酸化アンチモンを含有させることにより製造される。アンチモンドープ酸化錫が赤外線吸収効果を発揮する原理としては、主成分である酸化錫の結晶格子中に、酸化アンチモンが固溶される(入り込む)ことで、赤外線を吸収する結晶構造が形成されることが考えられる。
 このため、赤外線吸収効果を十分に発揮させるためには、主成分である酸化錫に対して、それ相応の酸化アンチモンを含有させる必要がある。
 ここで、酸化アンチモンは、化学物質排出移動量届出制度(PRTR)又は玩具安全基準書等の対象物質に挙げられている。したがって、酸化アンチモンの使用量は、なるべく少ない方が望ましい。
 しかし、酸化アンチモンは、酸化錫の結晶格子中に入り込むことにより、赤外線を吸収する役割を発揮すると考えられているため、その使用量を単純に低減させるだけだと、その分赤外線吸収効果が低下してしまうという問題がある。
 したがって、本発明は、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができる技術の提供を課題とするものである。
 上記課題を解決するため、本発明は以下の解決手段を採用する:
[1] 酸化錫と酸化アンチモンを含有するアンチモンドープ酸化錫であって、下記(a)及び/又は(b)を満たすアンチモンドープ酸化錫:
 (a)X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35以下である;及び/又は
 (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092以上である。
[2] 前記(a)において、前記半値幅(Δ2θ)は、0.21以下である、[1]に記載のアンチモンドープ酸化錫。
[3] 前記(b)において、前記酸化アンチモンの含有量は、前記アンチモンドープ酸化錫の重量を基準として、2.8~9.3重量%である、[1]に記載のアンチモンドープ酸化錫。
[4] 前記結晶化度が58427以上である、[1]に記載のアンチモンドープ酸化錫。
[5] 前記結晶化度が78020以上である、[1]に記載のアンチモンドープ酸化錫。
[6] 前記アンチモンドープ酸化錫を、アクリルポリマー及びシリコーンを含むワニスに溶解させ、基材に塗布し、乾燥し、70μmの厚さ及び11.6重量%の前記アンチモンドープ酸化錫の固形分重量比を有する塗膜を形成して、JIS K5602に従って前記塗膜の日射反射率を測定したときに、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が、3.00%以上である、[1]に記載のアンチモンドープ酸化錫。
[7] [1]~[6]のいずれか1項に記載のアンチモンドープ酸化錫からなる赤外線吸収顔料。
[8] [7]に記載の赤外線吸収顔料を含む赤外線吸収インキ。
[9] [8]に記載の赤外線吸収インキにより印刷された印刷部を備える印刷物。
[10] 前記印刷部に含有されるアンチモンドープ酸化錫の固形分重量比が11.6重量%である場合、780~1100nmの赤外線波長域における反射率のピーク値が28.776%以下である、[9]に記載の印刷物。
[11] アンチモンドープ酸化錫原料を通気下で焼成する通気焼成工程を含む、アンチモンドープ酸化錫の製造方法。
[12] 前記通気焼成工程の後に、
 200[℃/時間]以上の冷却速度で前記アンチモンドープ酸化錫を冷却する冷却工程
を含む、[11]に記載の方法。
[13] 前記通気焼成工程の前に、
 錫化合物とアンチモン化合物を混合して、混合物を得る混合工程、及び
 前記混合物を閉鎖系で焼成して、前記アンチモンドープ酸化錫原料を得る閉鎖焼成工程
を含む、[11]又は[12]に記載の方法。
[14] 前記閉鎖焼成工程と前記通気焼成工程の間に、
 前記アンチモンドープ酸化錫原料を閉鎖系で冷却する閉鎖冷却工程
を含む、[13]に記載の方法。
 本発明によれば、アンチモンドープ酸化錫の結晶性を向上させることにより赤外線吸収効果を向上させることができるため、酸化アンチモンの使用量を低減させたとしても、赤外線吸収効果を十分に発揮させることができる。
図1は、アンチモンドープ酸化錫を製造する本発明の方法の一態様を示す工程図である。 図2(A)は、実施例1のアンチモンドープ酸化錫(酸化アンチモン含有率0.7重量%、通気焼成・冷却あり)のX線回折の結果を示す図であり、図2(B)は、実施例2のアンチモンドープ酸化錫(酸化アンチモン含有率2.8重量%、通気焼成・冷却あり)のX線回折の結果を示す図である。 図3(A)は、実施例3のアンチモンドープ酸化錫(酸化アンチモン含有率5.3重量%、通気焼成・冷却あり)のX線回折の結果を示す図であり、図3(B)は、実施例4のアンチモンドープ酸化錫(酸化アンチモン含有率9.3重量%、通気焼成・冷却あり)によるX線回折の結果を示す図である。 図4(A)は、実施例5のアンチモンドープ酸化錫(市販品の通気焼成・冷却、200[℃/時間]以上の冷却速度、酸化アンチモン含有率2.7重量%)のX線回折の結果を示す図であり、図4(B)は、実施例6のアンチモンドープ酸化錫(市販品の通気焼成・冷却、200[℃/時間]未満の冷却速度、酸化アンチモン含有率2.7重量%)によるX線回折の結果を示す図である。 図5は、実施例7のアンチモンドープ酸化錫(メタ錫酸と三酸化アンチモンの混合物の通気焼成・冷却、酸化アンチモン含有率4.2重量%)のX線回折の結果を示す図である。 図6(A)は、比較例1のアンチモンドープ酸化錫(酸化アンチモン含有率9.9重量%、市販品)のX線回折の結果を示す図であり、図6(B)は、比較例2のアンチモンドープ酸化錫(酸化アンチモン含有率2.8重量%、通気焼成・冷却なし)のX線回折の結果を示す図である。 図7は、結晶化度の算出方法を概略的に示す概念図である。 図8は、200nm~2500nmの波長において酸化アンチモン含有率が反射率に与える影響を示すグラフである。 図9は、200nm~2500nmの波長及び2.7~2.8重量%の酸化アンチモン含有率において、通気焼成工程が反射率に与える影響を示すグラフである。 図10は、200nm~2500nmの波長において、通気焼成工程が、市販のアンチモンドープ酸化錫原料の反射率及びアンチモン含有率に与える影響を示すグラフである。 図11は、200nm~2500nmの波長において、通気焼成工程が、メタ錫酸と三酸化アンチモンの混合物の反射率に与える影響を示すグラフである。
 以下、本発明のアンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法の実施形態について説明する。
 本発明のアンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含む。酸化アンチモンの含有量は、アンチモンドープ酸化錫の重量を基準として、約0.5重量%以上、約1.0重量%以上、約1.5重量%以上、約2.0重量%以上、約2.5重量%以上、又は約2.8重量%以上であることが好ましく、また、この含有量は、約10.0重量%以下、約9.5重量%以下、約9.3重量%以下、約8.0重量%以下、約7.0重量%以下、約6.0重量%以下、約5.5重量%以下、約5.0重量%以下、約4.0重量%以下、約3.5重量%以下、又は約3.0重量%以下であることが好ましい。また、酸化アンチモンの含有量は、アンチモンドープ酸化錫の重量を基準として、約2.5~約9.3重量%、約2.8~約9.3重量%、約2.8~約5.5重量%、又は約2.8~約3.5重量%であることがより好ましい。
 従来のアンチモンドープ酸化錫は、十分な導電性を有する透明導電材料を得るために、10重量%を超える酸化アンチモンを含む必要があった。一方で、本発明のアンチモンドープ酸化錫は、上記の通り、従来のアンチモンドープ酸化錫と比較して、酸化アンチモンの使用量を低減させることができる。
 ただし、酸化アンチモンは、酸化錫の結晶格子中に入り込むことにより、赤外線を吸収する役割を発揮すると考えられているため、その使用量を単純に低減させるだけだと、その分赤外線吸収効果が低下することになる。
 そこで、本発明のアンチモンドープ酸化錫は、赤外線吸収効果の低下を抑制するために、X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35以下であり、かつ/又はX線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092以上である。
 赤外線吸収効果は、主成分である酸化錫の結晶格子中に、酸化アンチモンが固溶される(入り込む)ことで、発生する効果である。つまり、アンチモンドープ酸化錫を製造する際には、主成分である酸化錫に酸化アンチモンを含有させることになる。
 したがって、酸化錫の結晶格子中に酸化アンチモンが適切に固溶されている場合、本発明のアンチモンドープ酸化錫は、結晶構造を適切に維持することによって、アンチモンドープ酸化錫中の酸化アンチモン含有量が微量(例えば、少なくとも0.5重量%)であったとしても、赤外線吸収効果を発揮することができる。このとき、例えば、X線回折測定において、2θ=27°付近に鋭いピークが見られる。
 一方で、例えば従来のアンチモンドープ酸化錫のように、酸化錫の結晶格子中に固溶されない酸化アンチモンが不純物として存在していると、不純物は、赤外線吸収効果に寄与していなかったと考えられる。
 その場合、赤外線吸収効果に寄与していない部分の酸化アンチモンは、無駄な原料(不純物)としてそのまま残存することになる。このため、アンチモンドープ酸化錫を製造する際には、必要以上に酸化アンチモンの使用量が増加してしまっていた。そこで本発明の発明者等は、この不純物について研究を重ねた結果、アンチモンドープ酸化錫の半値幅(Δ2θ)が広く、かつ/又は結晶化度(物質が結晶化した際の物質全体に対する結晶化部分の割合)が低い場合には不純物としての酸化アンチモンが多くなり、一方で、半値幅(Δ2θ)が狭く、かつ/又は結晶化度が高い場合には不純物としての酸化アンチモンが少なくなることを突き止めた。
 なお、不純物としての酸化アンチモンを除去しながらアンチモンドープ酸化錫の結晶性を向上させる手段としては、例えば、後述する通気焼成、後述する気化精製などが挙げられる。
 そのため、本発明では、酸化アンチモンの使用量を必要最低限に抑えるために、半値幅(Δ2θ)を狭めたか、かつ/又は結晶化度を高めたアンチモンドープ酸化錫が提供される。この点、半値幅(Δ2θ)を狭めるか、又は結晶化度を高めると、不純物が少なくなり、効果的に酸化アンチモンを固溶した状態にすることができ、赤外線吸収効果を向上させることができる。
 したがって、X線回折測定において、2θ=27°付近の半値幅(Δ2θ)を0.35以下に調整し、かつ/又は2θ=27°付近の結晶化度を18092以上に調整することにより、酸化アンチモンの使用量を抑えても、十分な赤外線吸収効果を発揮することができる。
 なお、本明細書では、X線回折を測定するときに、市販のX線回折装置を用いて、任意のスキャン速度を選択してよいが、積算回数を1回に設定するものとする。
 本発明のアンチモンドープ酸化錫では、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させるために、2θ=27°付近の半値幅(Δ2θ)は、0.30以下、0.25以下、0.21以下、0.20以下、又は0.19以下であることが好ましい。
 また、本発明のアンチモンドープ酸化錫は、2θ=27°付近の結晶化度が58427以上、特に78020以上であることが好ましい。
 アンチモンドープ酸化錫の結晶化度を58427以上、特に78020以上とすると、不純物をより減らし、効果的に酸化アンチモンを固溶した状態にして、赤外線吸収効果をより向上させることができる。それ故に、本発明によれば、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができる。
 また、上記アンチモンドープ酸化錫を、アクリルポリマー及びシリコーンを含むワニスに溶解させ、基材に塗布し、乾燥し、70μmの厚さ及び約11.6重量%のアンチモンドープ酸化錫の固形分重量比を有する塗膜を形成したときに、この塗膜の日射反射率をJIS K5602に従って測定すると、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が、約3.00%以上であることが好ましい。
 これに関連して、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が3.00%以上であれば、アンチモンドープ酸化錫の可視光吸収性が相対的に低く、すなわち、アンチモンドープ酸化錫の可視光透明性が相対的に高くなる。したがって、アンチモンドープ酸化錫の呈する色に束縛されることなく、アンチモンドープ酸化錫を幅広い用途で使用することができる。
 また、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値は、約4.80%以上、又は約4.85%以上であることがより好ましく、また約99%以下、約90%以下、又は約80%以下であることがより好ましい。
 本発明の赤外線吸収顔料は、上記のアンチモンドープ酸化錫からなる赤外線吸収顔料である。
 本発明の赤外線吸収顔料によれば、上述したアンチモンドープ酸化錫の作用・効果を赤外線吸収顔料にて実現することができる。このため、酸化アンチモンの使用量を低下させつつ、赤外線吸収効果も十分に発揮することができるとともに、所定の安全基準等を遵守した高品質の赤外線吸収顔料を提供することができる。
 本発明の赤外線吸収インキは、上記の赤外線吸収顔料を含む赤外線吸収インキである。
 本発明の赤外線吸収インキによれば、赤外線吸収顔料の作用・効果を赤外線吸収インキにて実現することができる。このため、酸化アンチモンの使用量を低下させつつ、赤外線吸収効果も十分に発揮することができるとともに、所定の安全基準等を遵守した高品質の赤外線吸収インキを提供することができる。
 本発明の印刷物は、上記の赤外線吸収インキにより印刷された印刷部を備える印刷物である。
 本発明の印刷物によれば、上記の赤外線吸収インキにより、文字、図形等を印刷した印刷部を備えるため、酸化アンチモンの使用量を低下させつつ、赤外線吸収効果も十分に発揮させた印刷物とすることができる。また、高品質の印刷物を提供するのみならず、環境にも配慮した印刷物を提供することができる。
 本発明の印刷物は、印刷部に含有されるアンチモンドープ酸化錫の固形分重量比が11.6重量%である場合、780~1100nmの赤外線波長域における反射率のピーク値が28.776%以下であることが好ましい。
 このように、赤外線の反射率が低い印刷物とすることにより、印刷部に含有される酸化アンチモンを低減することができると共に、赤外線吸収効果を十分に発揮させることができる。
 本発明のアンチモンドープ酸化錫は、例えば、以下の方法により製造されることができる。
〔アンチモンドープ酸化錫の製造方法〕
 本発明のアンチモンドープ酸化錫の製造方法は、アンチモンドープ酸化錫原料を通気下で焼成する通気焼成工程を含む。
 本発明において、通気焼成又は冷却は、焼成又は冷却雰囲気を流通させながら焼成又は冷却を行うことだけでなく、外気を遮断しない開放空間(以下、「開放系」とも呼ぶ)で焼成又は冷却を行うことも含む。
 本発明のアンチモンドープ酸化錫の製造方法は、アンチモンドープ酸化錫の半値幅を従来品よりも狭め、かつ/又はアンチモンドープ酸化錫の結晶化度を従来品よりも高めることができる。
 本発明のアンチモンドープ酸化錫の製造方法は、通気焼成工程を含むことにより、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができるアンチモンドープ酸化錫を製造することができる。
 本明細書では、「アンチモンドープ酸化錫原料」は、通気焼成により本発明のアンチモンドープ酸化錫になる原料であり、例えば、下記(i)~(v)の少なくとも1つを満たす原料である:
(i)錫化合物とアンチモン化合物の混合物;
(ii)上記(i)の混合物を閉鎖系(外気を遮断する密閉空間)で焼成することにより得られる生成物;
(iii)上記(ii)の生成物を閉鎖系で冷却することにより得られる生成物;
(iv)錫化合物及びアンチモン化合物を原料として用いる共沈焼成法により得られる粗アンチモンドープ酸化錫;及び
(v)X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35を超えており、かつ/又は、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092未満である粗アンチモンドープ酸化錫。
 上記(ii)及び(iii)からも明らかな通り、従来は閉鎖系で焼成工程及び冷却工程を行っていたため、従来のアンチモンドープ酸化錫では、酸化錫の結晶格子中に固溶されない酸化アンチモンが不純物として存在しており、赤外線吸収効果に寄与していないにもかかわらず、酸化アンチモンの多いアンチモンドープ酸化錫となっていた。
 そこで、本件発明者等は、通気焼成工程、及びその後の冷却工程を行うことにより、余分な酸化アンチモンの除去を達成できることを見出した。そして、本発明の製造方法により得られるアンチモンドープ酸化錫は、半値幅が狭く、かつ/又は結晶化度が高くなるが、これは不純物の酸化アンチモンが少ないことに起因しているものと考えられる。一方、アンチモンドープ酸化錫の中に、余分な酸化アンチモンが存在していると、X線回折での測定時にX線が散乱され、ピークが低くなるものと考えられる。
 なお、本明細書では、通気焼成工程、及びその後の通気冷却工程を少なくとも含むアンチモンドープ酸化錫の製造方法を「気化精製法」と呼ぶ。
 また、結晶格子中に固溶されている酸化アンチモンについては、本発明の製造方法では、通気焼成工程により、その一部を除去しつつ、結晶構造を適切に維持することができるため、高い赤外線吸収効果を維持することができる。このため、通気焼成工程を経ることにより、酸化アンチモンの使用量を低減させながら、高い赤外線吸収効果を得ることができる。
 「錫化合物」としては、例えば、メタ錫酸、錫酸ナトリウム三水和物、ニオブ三錫、酸化フェンブタ錫、酸化錫、水素化錫を挙げることができる。
 「アンチモン化合物」としては、例えば、酸化アンチモン、アンチモン化インジウム、スチビンを挙げることができる。
 所望により、本発明のアンチモンドープ酸化錫の製造方法は、通気焼成工程の後に、以下の工程を含んでよい:
 得られたアンチモンドープ酸化錫を、通気下で冷却する通気冷却工程;及び/又は
 得られたアンチモンドープ酸化錫を200[℃/時間]以上の冷却速度で冷却する冷却工程。
 通気冷却工程は、例えば、炉の中に空気を送り込むことにより行なわれることができる(具体的には、冷却装置の設定により何時間後に何度まで冷却するという設定が可能である)。
 仮に密閉冷却工程(いわゆる自然冷却)に要する時間が10時間であるとすれば、通気冷却工程では、それよりも早い時間(例えば5時間程度)で冷却させてよい。このため、通気冷却工程は、自然冷却よりも積極的に冷却していることになる。
 通気冷却工程又は単なる冷却工程において、冷却速度は、200[℃/時間]以上、215[℃/時間]以上、又は216[℃/時間]以上であることが好ましい。
 また、本発明のアンチモンドープ酸化錫の製造方法は、通気焼成工程の前に、以下の混合工程及び閉鎖焼成工程を含むことが好ましい:
 錫化合物とアンチモン化合物を混合して、混合物を得る混合工程;及び
 混合物を閉鎖系で焼成して、アンチモンドープ酸化錫原料を得る閉鎖焼成工程。
 さらに、本発明のアンチモンドープ酸化錫の製造方法は、閉鎖焼成工程と通気焼成工程の間に、アンチモンドープ酸化錫原料を閉鎖系で冷却する閉鎖冷却工程を含むことが好ましい。
 混合工程、閉鎖焼成工程、及び閉鎖冷却工程によって、それぞれ上記(i)~(iii)を満たすアンチモンドープ酸化錫原料を得ることができる。
 本発明の一実施形態に係るアンチモンドープ酸化錫の製造方法の各工程について、図1を参照して、以下に説明する。
〔原料混合工程:ステップS100〕
 この工程では、アンチモンドープ酸化錫の原料となる錫化合物とアンチモン化合物と混合する。具体的には、粉末状のメタ錫酸(HSnO)と粉末状の三酸化アンチモン(Sb)とを混合する。配合の割合は、「メタ錫酸(HSnO)=90重量%、三酸化アンチモン(Sb)=10重量%」の割合とし、水を媒体としてボールミルで砕混合を行う。なお、三酸化アンチモンの含有量は、10重量%が好ましいが、5~20重量%程度であってもよい。
〔第1乾燥工程:ステップS102〕
 この工程では、先の原料混合工程(ステップS100)で混合された材料を320℃にて乾燥させる。これにより、先の原料混合工程(ステップS100)にて材料を混合する際に使用した水を除去することができる。
〔第1粉砕工程:ステップS104〕
 この工程では、先の第1乾燥工程(ステップS102)にて乾燥された材料を粉砕する。具体的には、乾燥された材料を高遠粉砕機で粉末状に粉砕する。
〔閉鎖焼成工程:ステップS106〕
 この工程では、先の第1粉砕工程(ステップS104)にて粉砕された材料を焼成する。具体的には、先の第1粉砕工程(ステップS104)にて粉砕された材料を閉鎖系にて1000~1300℃で1時間以上焼成する。閉鎖焼成工程では、閉鎖系にて焼成しているため、酸化アンチモンの含有率(固溶比率)は、10重量%程度に維持される。
〔閉鎖冷却工程:ステップS107〕
 この工程では、先の閉鎖焼成工程(ステップS106)で焼成された材料を冷却する。具体的には、閉鎖焼成工程の終了と同時に冷却を開始して、焼成された材料を閉鎖系で冷却する。これにより、錫(Sn)とアンチモン(Sb)とを複合させたアンチモンドープ酸化錫原料が生成される。アンチモンドープ酸化錫原料は、閉鎖焼成工程(ステップS106)及び閉鎖冷却工程(ステップS107)を経て生成される。なお、冷却は自然冷却でもよいが、後述する通気冷却工程と同様に、焼成された材料を通気下で冷却してもよい。
〔第1微粉砕工程:ステップS108〕
 所望により、この工程を行なって、先の閉鎖冷却工程(ステップS107)にて冷却された材料を粉砕してよい。具体的には、水を媒体としつつ、ビーズミルを用いて、焼成後の材料を粒径(レーザー回折散乱法でのメディアン径)が100nm程度になるまで粉砕することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
〔第2乾燥工程:ステップS110〕
 所望により、この工程を行なって、先の第1微粉砕工程(ステップS108)で粉砕された材料を、320℃に加熱することにより乾燥させてよい。これにより、先の第1微粉砕工程(ステップS108)にて材料を粉砕する際に使用した水を除去することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
〔第2粉砕工程:ステップS112〕
 所望により、この工程を行なって、先の第2乾燥工程(ステップS110)にて乾燥された材料を粉砕してよい。具体的には、乾燥された材料を高遠粉砕機で粉末状に粉砕することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
〔通気焼成工程:ステップS114〕
 この工程では、先の第2粉砕工程(ステップS112)にて粉砕された材料を焼成する。具体的には、先の第2粉砕工程(ステップS112)にて粉砕された材料を通気下(炉内部に通気を保った状態)にて1000~1300℃で1~12時間焼成する。この通気焼成工程により、閉鎖焼成工程により生成されたアンチモンドープ酸化錫原料を通気下で再び焼成することになる。また、通気焼成工程では、通気下にて焼成しているため、酸化錫(SnO)中の余分な酸化アンチモン(Sb)を気化させて消失させることができる。そして、最終的な酸化アンチモンの含有量(固溶比率)は、0.5~9.3重量%程度になる。
〔通気冷却工程:ステップS116〕
 この工程では、先の通気焼成工程(ステップS114)で焼成されたアンチモンドープ酸化錫を、通気下にて冷却する。
 具体的には、通気焼成工程の終了と同時に冷却を開始し、300分以内に焼成炉内の温度を室温(例えば20~25℃程度)にすることにより、再び焼成されたアンチモンドープ酸化錫を冷却する。なお、通気冷却工程は通気下で行われる。
 なお、実施形態において気化精製法を行う場合には、通気焼成工程(ステップS114)の後に、通気冷却工程(ステップS116)を行うことができる。
〔第2微粉砕工程:ステップS118〕
 この工程では、先の通気冷却工程(ステップS116)にて冷却された精製後の材料を粉砕する。具体的には、水を媒体としつつ、ビーズミルを用いて、精製後の材料を粒径(レーザー回折散乱法でのメディアン径)が100nm程度になるまで粉砕する。
〔洗浄工程:ステップS120〕
 この工程では、先の第2微粉砕工程(ステップS118)にて粒度調整された材料の不純物を水洗により除去する。不純物は、原材料に含まれる微量の電解質(例えば、ナトリウム(Na)、カリウム(K)など)であり、不純物が十分に除去されたか否かは、導電率で確認することができる。
〔第3乾燥工程:ステップS122〕
 この工程では、先の洗浄工程(ステップS120)で洗浄された材料を145℃に加熱することにより乾燥させる。これにより、先の洗浄工程(ステップS120)にて材料を洗浄する際に使用した水を除去することができるとともに、洗浄後の材料を乾燥させることができる。
〔仕上粉砕工程:ステップS124〕
 この工程では、先の第3乾燥工程(ステップS122)にて乾燥された材料を粉砕する。具体的には、乾燥された材料を高遠粉砕機で、粒径(レーザー回折散乱法でのメディアン径)が数10nm~100μm程度になるように仕上粉砕する。
 そして、上記の各工程を経ることにより、本発明のアンチモンドープ酸化錫が製造される。
<アンチモンドープ酸化錫の作製>
 使用した材料は、以下の通りである:
 メタ錫酸:日本化学産業株式会社製のメタ錫酸
 三酸化アンチモン:PATOX-CF(登録商標;日本精鉱株式会社製)
 アンチモンドープ酸化錫原料(市販品):日揮触媒化成株式会社製のELCOM(登録商標) P-特殊品(酸化アンチモンの含有量:9.9重量%、通気焼成なし、通気冷却なし)
 使用した焼成炉は、冷却装置付きシャトル式焼成炉(司電気炉製作所製)である。
[実施例1]
 118.8gのメタ錫酸及び1gの三酸化アンチモンを用いて、図1に記載の通りに、ステップ100~ステップ124を行なった。
 具体的には、下記表1に記載の通りに、混合工程(S100)、閉鎖焼成工程(S106)、閉鎖冷却工程(S107)、通気焼成工程(S114)及び通気冷却工程(S116)を含む方法により、酸化アンチモン含有量が0.7重量%であるアンチモンドープ酸化錫を得た。
 なお、通気焼成工程(S114)は、通気された炉内の温度を約1100℃に設定して、約8時間に亘って行われた。また、通気冷却工程(S116)は、約200[℃/時間]以上の冷却速度で行われた。
[実施例2~7並びに比較例1及び2]
 下記表1に記載の通りに、実施例2~7並びに比較例1及び2を行なった。実施例2~4については、メタ錫酸及び三酸化アンチモンの重量、及び/又は通気焼成工程(S114)の時間を変化させることによって、得られたアンチモンドープ酸化錫中の酸化アンチモン含有量を変化させた。
 一方で、比較例2では、混合工程(S100)、閉鎖焼成工程(S106)及び閉鎖冷却工程(S107)を実施例1と同様に行なったが、通気焼成工程(S114)及び通気冷却工程(S116)を行わずに、実施例2と同じ酸化アンチモン含有量を有する生成物を得た。
 比較例1では、市販品のアンチモンドープ酸化錫原料を用意した。一方で、実施例5及び6では、比較例1の市販品を通気焼成工程(S114)及び通気冷却工程(S116)に供した。通気冷却工程(S116)の冷却速度は、実施例5では200[℃/h]以上であり、実施例6では200[℃/h]未満であった。
 実施例7では、メタ錫酸と三酸化アンチモンの単なる混合物を通気焼成工程(S114)及び通気冷却工程(S116)に供した。
〔生成物中の酸化アンチモン含有量の測定方法〕
 生成物中の酸化アンチモン含有量の測定は、蛍光X線分析装置RIX-1000(株式会社リガク製)のオーダー分析法にて行っている。また、測定条件としては、アンチモンドープ酸化錫を粉末にして測定を行っている。粉末は、粒径(レーザー回折散乱法でのメディアン径)が120nmの条件で測定を行っている。
〔生成物のX線回折測定〕
 そして、実施例及び比較例の各生成物についてX線回折を行い、その測定結果から結晶化度の値を算出した。
 表1に示す通り、図2~5は、実施例のアンチモンドープ酸化錫によるX線回折の結果を示す図であり、図6は、比較例のX線回折の結果を示す図である。なお、各図において、縦軸はX線を照射した際の反射光の「強度(CPS)」を示しており、横軸は「2θ(deg)」を示している。
〔CPS〕
 ここで、「CPS(Count Per Second)」とは、測定対象物にX線を照射した際の1秒あたりの光子の反射量を示しており、反射光の強度(レベル)として捉えることもできる。
〔2θ〕
 また、「2θ」は、測定対象物にX線を照射する際の照射角度を示している。なお、「2θ」としている理由は、X線を照射する角度(入射角)がθであれば、反射角もθとなるため、この入射角と反射角とを合計した角度は2θとなるからである。
〔結晶化度の算出方法〕
 結晶化度は、X線回折(XRD)の測定結果に基づいて算出している。使用機器及び測定条件は、以下の通りである。
(1)使用機器:株式会社リガク製 MultiFlex(X線回折装置)
(2)測定条件:
    スキャン速度:4.0°/min.
    線源:40kV、30mA
    積算回数:1回
 例えば、図2(B)のグラフは、実施例2のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例2のアンチモンドープ酸化錫では、反射光の強度が大きく上昇する地点(波形が立ち上がる地点)が複数箇所にわたって発生している。
 具体的には、「2θ=27°」付近の地点、「2θ=34°」付近の地点、「2θ=38°」付近の地点、「2θ=52°」付近の地点、「2θ=55°」付近の地点、「2θ=58°」付近の地点である。
 そして、反射光の強度が上昇する地点のうち、反射光の強度が最も高い地点での2θ(deg)と強度(CPS)の測定値を用いて結晶化度を算出する。アンチモンドープ酸化錫で反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。
 図7は、結晶化度の算出方法を概略的に示す概念図である。
 結晶化度は、物質が結晶化した際の物質全体に対する結晶化部分の割合を示しており、ここでは、結晶化度=CPS/Δ2θ(半値幅)と定義している。すなわち、結晶化度は、2θ=27°付近の地点における数値で定義している。これにより、X線回折(XRD)の測定結果から結晶化度を算出することができる。また、図示のグラフにおいて、規則正しい結晶構造を持ち、不純物がない程、波形のピークは大きく、波形の先端がシャープになる。
〔CPS〕
 CPSは、反射光の強度(レベル)であるため、図示の例では波形の高さとなる。
〔Δ2θ〕
 また、Δ2θは、X線回折測定により得られたCPSの最大値(ピーク値)の半分の値に対応する半値幅の広さとなる(図7において、長さA1と、長さA2とは同じ長さである)。
 このため、CPSの値が大きいほど(波形のピークが高いほど)、結晶化度の値は大きくなる。また、Δ2θの値が小さいほど(半値幅が狭いほど)、結晶化度の値は大きくなる。
 ここで、検査対象となる材料にX線を照射する場合、X線を照射する角度によって、反射光が発生する角度と反射光が発生しない角度とがある。反射光が発生する角度は、物質によって一定したものとなっており、同じ物質であれば、波形の立ち上がり又は立ち下がりの傾向はおおむね一致する。本実施形態では、各実施例及び各比較例において、同じ物質であるアンチモンドープ酸化錫を用いているため、CPSの値が最大となる2θの位置は「2θ=27°」で統一されている。
 実施例1~7並びに比較例1及び2について、2θ=27°付近の半値幅(Δ2θ)、2θ=27°付近の強度(CPS)、結晶化度(CPS/Δ2θ)及びX線回折グラフの図面番号を下記表1に示す。
 図2(A)のグラフは、実施例1のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例1のアンチモンドープ酸化錫は、「2θ=27°」付近の地点で反射光の強度が最も高く、CPSの最大値が12000程度である。Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例2~4のものと比較してほとんど変わらない。したがって、実施例1は、アンチモンドープ酸化錫として十分な結晶度であると考えられる。ただし、酸化アンチモンの含有量が0.7重量%であり、酸化錫の結晶格子中に固溶されている酸化アンチモンの量が少ないため、実施例2~4よりも赤外線吸収効果が低いと考えられる。
 図3(A)及び(B)のグラフは、それぞれ実施例3及び4のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例3及び4のアンチモンドープ酸化錫でも、反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。
 また、図4(A)及び(B)のグラフは、それぞれ実施例5及び6のアンチモンドープ酸化錫によるX線回折の結果を示すグラフであり、そして図5のグラフは、実施例7のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例5~7のアンチモンドープ酸化錫でも、反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。
 実施例2~4のアンチモンドープ酸化錫は、いずれもCPSの最大値が15000程度であり、反射光の強度が最も高い地点に出現する波形に関しても、先が尖っており裾部分の幅が狭いシャープな波形となっている。
 図6(A)のグラフは、比較例1の市販品によるX線回折の結果を示すグラフである。比較例1の市販品は、反射光の強度が最も高いのは「2θ=27°」付近の地点であるが、CPSの値が上記実施例1~7のものと比較して極端に小さい(2000程度)。また、Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例1~7のものと比較して広くなっている。これは、気化精製法を用いずに製造したアンチモンドープ酸化錫であるため、不純物が多いことが原因であると考えられる。
 図6(B)のグラフは、比較例2の生成物によるX線回折の結果を示すグラフである。比較例2の生成物は、反射光の強度が最も高いのは「2θ=27°」付近の地点であるが、CPSの値が上記実施例1~7のものと比較して小さい(CPS=6860.0)。また、Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例1~7のものと比較して広くなっている。これは、上述した気化精製法を用いずに製造したアンチモンドープ酸化錫であるため、不純物が多いことが原因であると考えられる。これは、比較例2が実施例2と同じ酸化アンチモン含有量であるにもかかわらず、実施例2に比べて比較例2の結晶化度が低いことからもわかる。
〔赤外線吸収効果の測定〕
 赤外線吸収効果の測定は、分光光度計を用いて光反射率を測定することによって行った。使用機器、測定条件、及び測定方法は、以下の通りである。
(1)使用機器:日本分光株式会社製 分光光度計V570
(2)試料作成条件:アクリル/シリコーン系ワニス(ウレタン技研工業株式会社製 水性セフコート #800 クリアー)95部に、実施例及び比較例の赤外線吸収顔料5部を添加し、遊星式分散ミルを用いて分散させて赤外線吸収インキを作成し、厚さ200μmのPETフィルム上にフィルムアプリケーターで塗工して、乾燥させ、乾燥状態で膜厚70μmの印刷部を形成し、塗工フィルム(試料印刷物)を作成した。
(3)測定方法:塗工フィルムの背面に標準白色板を装着し、200~2500nmの波長範囲での反射率を測定した。なお、実施例及び比較例の赤外線吸収顔料については、いずれも粒径(レーザー回折散乱法でのメディアン径)を120nmにして測定している。
 また、標準白色板の反射率を、約100%の標準値として設定した。
 なお、上記測定方法は「JISK5602 塗膜の日射反射率の求め方」に準拠している。また、印刷部に含有される赤外線吸収顔料の固形分重量比(顔料比)については、次のように計算する。上記(2)記載のアクリル/シリコーン系ワニスには樹脂等の固形分のほか、乾燥時に揮発して消失する溶剤等が含まれる。アクリル/シリコーン系ワニスの固形分重量比が40重量%であるため、アクリル/シリコーン系ワニスの固形分が38部、赤外線吸収顔料が5部となり、赤外線吸収顔料の固形分重量比は11.6重量%である。なお、残りの88.4重量%は、樹脂及び/又はその他の添加剤である。
 実施例1~7並びに比較例1及び2について、200nm~2500nmの波長と反射率の関係を図8~11に示し、かつ380nm~780nm及び/又は780~1100nmの波長域において、平均反射率、最大反射率、及び最大反射率を示す波長を下記表1に示す。
 図8から、酸化アンチモンが酸化錫の結晶格子中に固溶しているアンチモンドープ酸化錫は、赤外線吸収効果を奏することが分かる。
 また、一般的な真贋判定に用いられる近赤外領域(波長が780~1100nmの領域)では、赤外線吸収効果が高いことが望ましく、特に一般的な印刷条件であるアンチモンドープ酸化錫顔料の固形分重量比が11.6重量%のときに、反射率が30%以下であると、赤外線カメラ等の真贋判定装置で印刷物を観察した場合、アンチモンドープ酸化錫を含有する印刷部と他の部分との差が大きく、10人中10人が区別できるため、真贋判定に用い易く、好まれる。これに関連して、図8に示されるように、2.8重量%以上の酸化アンチモン含有率を有する実施例2~4は、その領域で反射率30%以下を保っている。
 図9から、2.7~2.8重量%の酸化アンチモン含有率を有するとしても、通気焼成工程を経ていない比較例2は、通気焼成工程を経た実施例2、5及び6に比べて、赤外線吸収効果が低いことが明らかである。つまり、通気焼成工程は、アンチモンドープ酸化錫の結晶性を高め、それによって、赤外線吸収効果を向上させることができる。これは、下記表1において、実施例2、5及び6と比較例2の結晶性を対比することにより裏付けられる。
 また、実施例5及び6は、通気冷却工程(S116)の冷却速度を除いて、ほぼ同じ条件下で行われた。しかしながら、下記表1に示されるように、200[℃/時間]以上の冷却速度で行われた実施例5は、200[℃/時間]未満の冷却速度で行われた実施例6よりも、半値幅(Δ2θ)が狭く、かつ結晶化度が高い。これに関連して、通気焼成によって、酸化錫の結晶格子中に固溶されていない余分な酸化アンチモンとともに、その結晶格子中に固溶されている酸化アンチモンも微量ながら除去されるとしても、通気焼成後に積極的に冷却することによって、その結晶格子は維持されることが予想される。したがって、通気冷却工程において冷却速度を200[℃/時間]以上に調整することは、アンチモンドープ酸化錫の結晶性の向上に寄与するものと考えられる。
 図10から、酸化アンチモンの含有率が9.9重量%である市販品のアンチモンドープ酸化錫顔料(比較例1)であったとしても、通気焼成工程を経ることによって、十分な赤外線吸収効果を有し、かつ酸化アンチモンの含有率が2.7重量%であるアンチモンドープ酸化錫(実施例5)になることが分かる。つまり、通気焼成工程によって、結晶格子中に固溶されていない余分な酸化アンチモン(すなわち、赤外線吸収効果に寄与していない不純物)を除去することができる。
 図11から、閉鎖焼成工程及び閉鎖冷却工程を省略しても、つまり、混合工程、通気焼成工程及び通気冷却工程しか行わなくても、十分な赤外線吸収効果を有するアンチモンドープ酸化錫が得られることが分かる。
 ここで、下記表1について実施例1~7を対比すると、実施例1~6は、実施例7よりも、可視光波長域(380nm~780nm)の平均反射率と赤外線波長域(780~1100nm)の平均反射率の差が大きい。したがって、実施例1~6のアンチモンドープ酸化錫は、実施例7のアンチモンドープ酸化錫と比べて、アンチモンドープ酸化錫の呈する色に束縛されることなく、幅広い用途で使用可能であることが分かる。
 したがって、通気焼成工程を用いてアンチモンドープ酸化錫を製造することにより、必要最低限の酸化アンチモンの含有量で結晶性を向上させることができ、十分な赤外線吸収効果を有するアンチモンドープ酸化錫を製造することができる。
 しかも、得られたアンチモンドープ酸化錫は、酸化アンチモンの含有量が9.3重量%以下でありながら、酸化アンチモンの含有量が9.9重量%であるアンチモンドープ酸化錫と略同等又はそれ以上の赤外線吸収効果が得られている。
Figure JPOXMLDOC01-appb-T000001
 本発明は、上述した実施形態及び実施例に制約されることなく、各種の変形又は置換を伴って実施することができる。また、上述した実施形態及び実施例で挙げた構成又は材料はいずれも好ましい例示であり、これらを適宜変形して実施可能であることを理解されたい。

Claims (14)

  1.  酸化錫と酸化アンチモンを含有するアンチモンドープ酸化錫であって、下記(a)及び/又は(b)を満たすアンチモンドープ酸化錫:
     (a)X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35以下である;及び/又は
     (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092以上である。
  2.  前記(a)において、前記半値幅(Δ2θ)は、0.21以下である、請求項1に記載のアンチモンドープ酸化錫。
  3.  前記(b)において、前記酸化アンチモンの含有量は、前記アンチモンドープ酸化錫の重量を基準として、2.8~9.3重量%である、請求項1に記載のアンチモンドープ酸化錫。
  4.  前記結晶化度が58427以上である、請求項1に記載のアンチモンドープ酸化錫。
  5.  前記結晶化度が78020以上である、請求項1に記載のアンチモンドープ酸化錫。
  6.  前記アンチモンドープ酸化錫を、アクリルポリマー及びシリコーンを含むワニスに溶解させ、基材に塗布し、乾燥し、70μmの厚さ及び11.6重量%の前記アンチモンドープ酸化錫の固形分重量比を有する塗膜を形成して、JIS K5602に従って前記塗膜の日射反射率を測定したときに、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が、3.00%以上である、請求項1に記載のアンチモンドープ酸化錫。
  7.  請求項1~6のいずれか1項に記載のアンチモンドープ酸化錫からなる赤外線吸収顔料。
  8.  請求項7に記載の赤外線吸収顔料を含む赤外線吸収インキ。
  9.  請求項8に記載の赤外線吸収インキにより印刷された印刷部を備える印刷物。
  10.  前記印刷部に含有されるアンチモンドープ酸化錫の固形分重量比が11.6重量%である場合、780~1100nmの赤外線波長域における反射率のピーク値が28.776%以下である、請求項9に記載の印刷物。
  11.  アンチモンドープ酸化錫原料を通気下で焼成する通気焼成工程を含む、アンチモンドープ酸化錫の製造方法。
  12.  前記通気焼成工程の後に、
     200[℃/時間]以上の冷却速度で前記アンチモンドープ酸化錫を冷却する冷却工程
    を含む、請求項11に記載の方法。
  13.  前記通気焼成工程の前に、
     錫化合物とアンチモン化合物を混合して、混合物を得る混合工程、及び
     前記混合物を閉鎖系で焼成して、前記アンチモンドープ酸化錫原料を得る閉鎖焼成工程
    を含む、請求項11又は12に記載の方法。
  14.  前記閉鎖焼成工程と前記通気焼成工程の間に、
     前記アンチモンドープ酸化錫原料を閉鎖系で冷却する閉鎖冷却工程
    を含む、請求項13に記載の方法。
PCT/JP2013/063220 2012-05-11 2013-05-10 アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法 WO2013168812A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147032980A KR20150010763A (ko) 2012-05-11 2013-05-10 안티몬 도핑 산화주석, 적외선 흡수 안료, 적외선 흡수 잉크, 인쇄물 및 안티몬 도핑 산화주석의 제조 방법
US14/400,084 US20150118458A1 (en) 2012-05-11 2013-05-10 Antimony-doped tin oxide, infrared-ray-absorbable pigment, infrared-ray-absorbable ink, printed matter, and method for producing antimony-doped tin oxide
CN201380024774.1A CN104684848A (zh) 2012-05-11 2013-05-10 锑掺杂氧化锡、红外线吸收颜料、红外线吸收油墨、印刷物及锑掺杂氧化锡的制造方法
EP13787508.4A EP2848588A4 (en) 2012-05-11 2013-05-10 ANTIMONY-DOTTED ZINN OXIDE, INFRARED RADIATION ABSORBABLE PIGMENT, INFRARED RADIATION ABSORBENT INK, PRINTED PRODUCT, AND METHOD FOR PRODUCING ANTIMONY-DOTED ZINOXIDE
AU2013260538A AU2013260538A1 (en) 2012-05-11 2013-05-10 Antimony-doped tin oxide, infrared-ray-absorbable pigment, infrared-ray-absorbable ink, printed matter, and method for producing antimony-doped tin oxide
JP2014514767A JP5646114B2 (ja) 2012-05-11 2013-05-10 アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109444 2012-05-11
JP2012109444 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168812A1 true WO2013168812A1 (ja) 2013-11-14

Family

ID=49550843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063220 WO2013168812A1 (ja) 2012-05-11 2013-05-10 アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法

Country Status (8)

Country Link
US (1) US20150118458A1 (ja)
EP (1) EP2848588A4 (ja)
JP (1) JP5646114B2 (ja)
KR (1) KR20150010763A (ja)
CN (1) CN104684848A (ja)
AU (1) AU2013260538A1 (ja)
TW (1) TW201406664A (ja)
WO (1) WO2013168812A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068290A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性凹版印刷インキ
WO2015068283A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性オフセット印刷インキ
WO2015068276A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性フレキソ印刷インキ
WO2015068282A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性インクジェット印刷インク
WO2015068291A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 印刷物
WO2015068292A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 印刷物
WO2015068289A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性活版印刷インキ
WO2015068280A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性グラビア印刷インキ
WO2015068281A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性スクリーン印刷インキ
WO2016135452A1 (en) * 2015-02-25 2016-09-01 Inovink Limited Improvements in relation to security printing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172389B2 (ja) 2015-03-31 2017-08-02 東洋紡株式会社 透明導電性フィルム
RS60780B1 (sr) * 2017-03-20 2020-10-30 Sicpa Holding Sa Fotoluminescentni barijum stanatni materijal napunjen gvožđem, kompozicija sigurnosnog mastila i njihova sigurnosna karakteristika
US20220348034A1 (en) * 2019-09-13 2022-11-03 Kyodo Printing Co., Ltd. Printed object
FR3105663B1 (fr) 2019-12-23 2022-09-09 St Microelectronics Rousset Configuration d'une transaction dans un dispositif électronique sans contact
FR3105662B1 (fr) * 2019-12-23 2021-11-26 St Microelectronics Rousset Configuration d'une transaction dans un dispositif électronique sans contact

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156606A (en) 1980-05-06 1981-12-03 Mitsubishi Metal Corp Method of producing conductive fine powder
JPH08337500A (ja) * 1995-04-10 1996-12-24 Sumitomo Chem Co Ltd 酸化スズウィスカおよびその製造方法
JPH10316425A (ja) * 1997-05-12 1998-12-02 Tokuyama Corp 球状複合酸化錫粉末の製造方法
JP2844012B2 (ja) 1990-07-19 1999-01-06 石原産業株式会社 導電性微粉末およびその製造方法
JP2010006999A (ja) 2008-06-29 2010-01-14 Kyodo Printing Co Ltd 偽造防止用赤外線吸収インキ
JP2012028052A (ja) * 2010-07-21 2012-02-09 National Institute Of Advanced Industrial & Technology 紫外線領域透過型透明導電膜及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI307647B (en) * 2006-12-20 2009-03-21 Univ Chang Gung The method for obtaining the nano-level acicular oxidation composition powder
US20080199394A1 (en) * 2007-02-15 2008-08-21 Chang Gung University Method for obtaining the nano-scale acicular oxidation compound powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156606A (en) 1980-05-06 1981-12-03 Mitsubishi Metal Corp Method of producing conductive fine powder
JP2844012B2 (ja) 1990-07-19 1999-01-06 石原産業株式会社 導電性微粉末およびその製造方法
JPH08337500A (ja) * 1995-04-10 1996-12-24 Sumitomo Chem Co Ltd 酸化スズウィスカおよびその製造方法
JPH10316425A (ja) * 1997-05-12 1998-12-02 Tokuyama Corp 球状複合酸化錫粉末の製造方法
JP2010006999A (ja) 2008-06-29 2010-01-14 Kyodo Printing Co Ltd 偽造防止用赤外線吸収インキ
JP2012028052A (ja) * 2010-07-21 2012-02-09 National Institute Of Advanced Industrial & Technology 紫外線領域透過型透明導電膜及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848588A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068290A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性凹版印刷インキ
WO2015068283A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性オフセット印刷インキ
WO2015068276A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性フレキソ印刷インキ
WO2015068282A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性インクジェット印刷インク
WO2015068291A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 印刷物
WO2015068292A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 印刷物
WO2015068289A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性活版印刷インキ
WO2015068280A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性グラビア印刷インキ
WO2015068281A1 (ja) * 2013-11-08 2015-05-14 共同印刷株式会社 赤外線吸収性スクリーン印刷インキ
WO2016135452A1 (en) * 2015-02-25 2016-09-01 Inovink Limited Improvements in relation to security printing

Also Published As

Publication number Publication date
US20150118458A1 (en) 2015-04-30
CN104684848A (zh) 2015-06-03
JPWO2013168812A1 (ja) 2016-01-07
EP2848588A4 (en) 2015-12-09
JP5646114B2 (ja) 2014-12-24
KR20150010763A (ko) 2015-01-28
AU2013260538A1 (en) 2014-11-20
TW201406664A (zh) 2014-02-16
EP2848588A1 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5646114B2 (ja) アンチモンドープ酸化錫、赤外線吸収顔料、赤外線吸収インキ、印刷物及びアンチモンドープ酸化錫の製造方法
JP6825577B2 (ja) 複合タングステン酸化物超微粒子およびその分散液
TWI726959B (zh) 複合鎢氧化物超微粒子分散體、中間膜、夾層構造體及複合鎢氧化物超微粒子分散體之製造方法
JP5585812B2 (ja) 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子
JP2009269946A (ja) 紫外線遮蔽透明樹脂成形体およびその製造方法
US8642174B2 (en) Near-infrared-absorbing particles, process for their production, dispersion, and article thereof
KR102042751B1 (ko) 근적외선 흡수 필터 및 촬상소자
EP4098620A1 (en) Electromagnetic wave absorbing particle dispersion, electromagnetic wave absorbing laminate, and electromagnetic wave absorbing transparent substrate
WO2012091021A1 (ja) 白色導電性粉末、導電性混合粉末、分散液、塗料、及び膜組成物
WO2018230472A1 (ja) 六角板状酸化亜鉛の製造方法
JP2011063493A (ja) 近赤外線遮蔽材料微粒子分散体および近赤外線遮蔽体および近赤外線遮蔽材料分散体の製造方法
TWI703090B (zh) 硼化物粒子、硼化物粒子分散液、紅外線遮蔽透明基材、紅外線遮蔽光學構件、紅外線遮蔽粒子分散體、紅外線遮蔽夾層透明基材、紅外線遮蔽粒子分散粉末、以及母料
JP2011063484A (ja) 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011012233A (ja) 赤外線遮蔽材料、赤外線遮蔽用塗料、赤外線遮蔽膜、並びに、赤外線遮蔽基材
JP6952051B2 (ja) 赤外線遮蔽材、及び酸化スズ粒子の製造方法
KR102569070B1 (ko) 3 가 금속 도프 육각 판상 산화아연 및 그 제조 방법
US20210063621A1 (en) Infrared absorber
WO2023013657A1 (ja) 構造色粒子及び構造色粒子を含む構造色顔料
TWI832929B (zh) 經表面處理之紅外線吸收微粒子分散液及其製造方法
JP2014214299A (ja) 近赤外線吸収粒子、その製造方法、分散液およびその物品
JPWO2018235840A1 (ja) 農園芸用覆土フィルムとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787508

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014514767

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013260538

Country of ref document: AU

Date of ref document: 20130510

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147032980

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013787508

Country of ref document: EP