WO2013168430A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2013168430A1
WO2013168430A1 PCT/JP2013/002986 JP2013002986W WO2013168430A1 WO 2013168430 A1 WO2013168430 A1 WO 2013168430A1 JP 2013002986 W JP2013002986 W JP 2013002986W WO 2013168430 A1 WO2013168430 A1 WO 2013168430A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant gas
oil
cylindrical space
space
oil separation
Prior art date
Application number
PCT/JP2013/002986
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 今井
河野 博之
二上 義幸
達也 中本
淳 作田
森本 敬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380001845.6A priority Critical patent/CN103635695B/en
Priority to JP2013544610A priority patent/JP6108276B2/en
Publication of WO2013168430A1 publication Critical patent/WO2013168430A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)

Definitions

  • the present invention relates to a compressor provided with an oil separation mechanism for separating oil from refrigerant gas discharged from the compression mechanism.
  • a compressor used in an air conditioner, a cooling device, or the like generally includes a compression mechanism unit and an electric motor unit that drives the compression mechanism unit in a casing, and compresses the refrigerant gas returned from the refrigeration cycle. Compressed and fed into the refrigeration cycle.
  • the refrigerant gas compressed by the compression mechanism unit once flows around the motor to cool the motor unit, and then is sent to a refrigeration cycle from a discharge pipe provided in the casing (for example, Patent Documents). 1). That is, the refrigerant gas compressed by the compression mechanism is discharged from the discharge port to the discharge space.
  • the refrigerant gas passes through a passage provided on the outer periphery of the frame and is discharged to the upper portion of the motor space between the compression mechanism portion and the motor portion. A part of the refrigerant gas is discharged from the discharge pipe after cooling the electric motor unit. Further, the other refrigerant gas communicates with the upper and lower motor spaces of the motor unit by a passage formed between the motor unit and the inner wall of the casing, cools the motor unit, and then rotates the rotor of the motor unit. Through the gap between the stator and the stator, enters the motor space above the motor section, and is discharged from the discharge pipe.
  • the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism portion flows through the electric motor portion, so that the electric motor portion is heated by the refrigerant gas and causes a reduction in efficiency of the electric motor portion. It was.
  • the high-temperature discharge gas flows through the lower part of the compression mechanism unit, so the compression mechanism unit is heated, and in particular, the refrigerant gas in the low temperature state returned from the refrigeration cycle, Heat is received in the process of being sent to the compression chamber through the suction path. For this reason, the refrigerant gas has already expanded at the time of entering the compression chamber, and there has been a problem that the circulation rate is reduced due to the expansion of the refrigerant gas.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a compressor that realizes high efficiency of the motor unit, improvement of volumetric efficiency, and low oil circulation. .
  • the oil separation mechanism section has a cylindrical space for rotating the refrigerant gas, an inflow section for flowing the refrigerant gas discharged from the compression mechanism section into the cylindrical space, and one container from the cylindrical space.
  • An oil separation mechanism part comprising an outlet for sending refrigerant gas from which oil has been separated to the inner space, and a discharge port for discharging the separated oil and part of the refrigerant gas from the cylindrical space to the other container inner space
  • the present invention most of the high-temperature and high-pressure refrigerant gas that is compressed by the compression mechanism and delivered from the oil separation mechanism is led to the one container inner space and discharged from the discharge pipe. Therefore, since most of the high-temperature and high-pressure refrigerant gas does not pass through the electric motor part, the electric motor part is not heated by the refrigerant gas, and the efficiency of the electric motor part can be improved.
  • most of the high-temperature and high-pressure refrigerant gas can be guided to the one container inner space, so that the heating of the compression mechanism portion in contact with the other container inner space can be suppressed. Heating can be suppressed and high volumetric efficiency in the compression chamber can be obtained.
  • the oil separated by the oil separation mechanism is discharged together with the refrigerant gas into the other container space, so that the oil hardly stays in the cylindrical space. Therefore, the separated oil is blown up in the cylindrical space by the swirling refrigerant gas, and is not sent out together with the refrigerant gas from the outlet, so that stable oil separation can be performed. Furthermore, since the oil is not retained in the cylindrical space, the cylindrical space can be made small.
  • the pressure loss at the time of discharge is suppressed to a range in which the compressor power does not increase, the flow rate of refrigerant gas into the cylindrical space is increased, and the separation efficiency of refrigerant gas and oil by centrifugal force is increased. Can be improved.
  • FIG. 1 is an enlarged cross-sectional view of the main part of the compression mechanism portion
  • an airtight container includes a compression mechanism portion that compresses the refrigerant gas and an electric motor portion that drives the compression mechanism portion.
  • a compressor that is divided into a container inner space, provided with a discharge pipe that discharges refrigerant gas from one container inner space to the outside of the sealed container, and an electric motor part is disposed in the other container inner space, and is discharged from the compression mechanism part.
  • an oil separation mechanism that separates oil from the refrigerant gas
  • the oil separation mechanism that swirls the refrigerant gas
  • an inflow portion that flows the refrigerant gas discharged from the compression mechanism into the cylindrical space
  • a discharge port for sending refrigerant gas from which oil has been separated from the cylindrical space to one container internal space, and a discharge for discharging the separated oil and part of the refrigerant gas from the cylindrical space to the other container internal space.
  • the oil separated by the oil separation mechanism is discharged together with the refrigerant gas from the discharge port located at the position facing the delivery port, so that the oil is mostly retained in the cylindrical space. No. Therefore, the separated oil is blown up in the cylindrical space by the swirling refrigerant gas, and is not sent out together with the refrigerant gas from the outlet, so that stable oil separation can be performed. Furthermore, since the oil is not retained in the cylindrical space, the cylindrical space can be made small.
  • the compression mechanism section includes a fixed scroll, a turning scroll disposed to face the fixed scroll, and a main bearing member that supports a shaft that drives the turning scroll, and is a cylinder.
  • a shaped space is formed in the fixed scroll and the main bearing member, and the discharge port communicates with the other in-container space.
  • the path through which the refrigerant gas flows from the discharge port to the discharge pipe can be shortened, and the sealed container can be downsized.
  • the third invention is the first or second invention, wherein the inflow portion is arranged so as to unify all the flow directions of the refrigerant gas in the cylindrical space.
  • the refrigerant gas containing oil that could not be separated by the oil separation mechanism section is sent out from the delivery port, and then generates a swirling flow in one of the container inner spaces.
  • oil is separated by centrifugal force even in one container inner space, and the amount of oil circulation can be reduced.
  • the fourth invention uses carbon dioxide as the refrigerant gas in any one of the first to third inventions.
  • the main component of the oil is polyalkylene glycol.
  • FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1 of the present invention.
  • the compressor according to the present embodiment includes a compression mechanism unit 10 that compresses refrigerant gas and an electric motor unit 20 that drives the compression mechanism unit 10 in the sealed container 1.
  • the inside of the sealed container 1 is divided by the compression mechanism 10 into one container inner space 31 and the other container inner space 32.
  • the electric motor unit 20 is disposed in the other container space 32.
  • the other container space 32 is divided into a compression mechanism side space 33 and an oil storage side space 34 by the electric motor unit 20.
  • the oil storage section 2 is arranged in the oil storage space 34.
  • the suction tube 3 and the discharge tube 4 are fixed to the sealed container 1 by welding.
  • the suction pipe 3 and the discharge pipe 4 lead to the outside of the sealed container 1 and are connected to members constituting the refrigeration cycle.
  • the suction pipe 3 introduces a refrigerant gas from the outside of the sealed container 1, and the discharge pipe 4 guides the refrigerant gas from one container inner space 31 to the outside of the sealed container 1.
  • the main bearing member 11 is fixed in the sealed container 1 by welding or shrink fitting, and supports the shaft 5.
  • a fixed scroll 12 is bolted to the main bearing member 11.
  • the orbiting scroll 13 that meshes with the fixed scroll 12 is sandwiched between the main bearing member 11 and the fixed scroll 12.
  • the main bearing member 11, the fixed scroll 12, and the orbiting scroll 13 constitute a scroll-type compression mechanism unit 10.
  • a rotation restraint mechanism 14 such as an Oldham ring is provided between the orbiting scroll 13 and the main bearing member 11.
  • the rotation restraint mechanism 14 prevents the orbiting scroll 13 from rotating, and guides the orbiting scroll 13 to make a circular orbital motion.
  • the orbiting scroll 13 is eccentrically driven by an eccentric shaft portion 5 a provided at the upper end of the shaft 5. By this eccentric drive, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves from the outer periphery toward the center, and compresses with a reduced volume.
  • a suction path 16 is formed between the suction / contact pipe 3 and the compression chamber 15.
  • the suction path 16 is provided in the fixed scroll 12.
  • a discharge port 17 of the compression mechanism unit 10 is formed at the center of the fixed scroll 12.
  • a reed valve 18 is provided at the discharge port 17.
  • a muffler 19 that covers the discharge port 17 and the reed valve 18 is provided on one container inner space 31 side of the fixed scroll 12. The muffler 19 isolates the discharge port 17 from one container inner space 31.
  • the refrigerant gas is sucked into the compression chamber 15 from the suction pipe 3 through the suction path 16.
  • the refrigerant gas compressed in the compression chamber 15 is discharged into the muffler 19 from the discharge port 17.
  • the reed valve 18 is pushed open when the refrigerant gas is discharged from the discharge port 17.
  • a pump 6 is provided at the lower end of the shaft 5.
  • the suction port of the pump 6 is disposed in the oil storage part 2 provided at the bottom of the sealed container 1.
  • the pump 6 is driven by the shaft 5. Therefore, the oil in the oil storage section 2 can be reliably sucked up regardless of the pressure condition and the operating speed, and no oil runs out at the sliding section.
  • the oil sucked up by the pump 6 is supplied to the compression mechanism 10 through an oil supply hole 7 formed in the shaft 5. If foreign matter is removed from the oil using an oil filter before or after the oil is sucked up by the pump 6, foreign matter can be prevented from being mixed into the compression mechanism unit 10, and further reliability can be improved.
  • the pressure of the oil guided to the compression mechanism unit 10 is substantially the same as the discharge pressure of the refrigerant gas discharged from the discharge port 17 and also serves as a back pressure source for the orbiting scroll 13.
  • the orbiting scroll 13 operates stably without leaving the fixed scroll 12 or hitting it.
  • part of the oil enters the fitting portion between the eccentric shaft portion 5a and the orbiting scroll 13 and the bearing portion 8 between the shaft 5 and the main bearing member 11 so as to obtain a clearance by the supply pressure and the own weight. Then, it is lubricated, then falls and returns to the oil storage section 2.
  • a path 7 a is formed in the orbiting scroll 13, one end of the path 7 a opens to the high pressure region 35, and the other end of the path 7 a opens to the back pressure chamber 36.
  • the rotation restraint mechanism 14 is disposed in the back pressure chamber 36.
  • FIGS. 1 and 2. 2 is an enlarged cross-sectional view of the main part of the compression mechanism in FIG.
  • the compressor according to the present embodiment is provided with an oil separation mechanism 40 that separates oil from refrigerant gas discharged from the compression mechanism 10.
  • the oil separation mechanism section 40 communicates the cylindrical space 41 for turning the refrigerant gas, the inflow section 42 that communicates the inside of the muffler 19 and the cylindrical space 41, and the cylindrical space 41 and one container inner space 31. It has the delivery port 43 and the discharge port 44 which connects the cylindrical space 41 and the other container internal space 32.
  • the cylindrical space 41 includes a first cylindrical space 41 a formed in the fixed scroll 12 and a second cylindrical space 41 b formed in the main bearing member 11.
  • the inflow portion 42 communicates with the first cylindrical space 41a, and preferably the opening of the inflow portion 42 is formed on the inner peripheral surface of the upper end of the first cylindrical space 41a.
  • the inflow portion 42 causes the refrigerant gas discharged from the compression mechanism portion 10 to flow into the cylindrical space 41 from the muffler 19.
  • the inflow portion 42 opens in the tangential direction with respect to the cylindrical space 41.
  • the delivery port 43 is formed on the upper end side of the cylindrical space 41, and is formed on at least one container inner space 31 side than the inflow portion 42.
  • the delivery port 43 is preferably formed on the upper end surface of the first cylindrical space 41a. And the delivery port 43 sends out the refrigerant gas which isolate
  • the discharge port 44 is formed on the lower end side of the cylindrical space 41, and is formed at least on the other container internal space 32 side than the inflow portion 42.
  • the discharge port 44 is preferably formed on the lower end surface of the second cylindrical space 41b.
  • the discharge port 44 discharges the separated oil and a part of the refrigerant gas from the cylindrical space 41 to the compression mechanism side space 33.
  • the cross-sectional area A of the opening of the delivery port 43 is preferably smaller than the cross-sectional area C of the cylindrical space 41 and larger than the cross-sectional area B of the opening of the discharge port 44.
  • the cross-sectional area A of the opening of the delivery port 43 is the same as the cross-sectional area C of the cylindrical space 41, the swirling flow of the refrigerant gas is blown out from the delivery port 43 without being guided toward the discharge port 44.
  • the cross-sectional area B of the opening of the discharge port 44 is the same as the cross-sectional area C of the cylindrical space 41, the swirling flow of the refrigerant gas blows out from the discharge port 44.
  • a / B can be set to about 9.
  • the first cylindrical space 41 a is formed by drilling the outer peripheral portion of the fixed scroll 12, and the second cylindrical space is formed by drilling the outer peripheral portion of the main bearing member 11. 41b is formed.
  • a groove that opens in a tangential direction is formed on the end surface on the non-wrap side of the fixed scroll 12 with respect to the first cylindrical space 41 a, and a part of the groove on the first cylindrical space 41 a side is formed by the muffler 19.
  • the inflow part 42 is comprised by covering.
  • the delivery port 43 is comprised with the hole formed in the muffler 19, and this hole is arrange
  • the discharge port 44 is constituted by a hole formed in the bearing cover 45, and this hole is arranged in the opening of the second cylindrical space 41b.
  • the refrigerant gas discharged into the muffler 19 is guided to the cylindrical space 41 through the inflow portion 42 formed in the fixed scroll 12. Since the inflow portion 42 opens in a tangential direction with respect to the cylindrical space 41, the refrigerant gas delivered from the inflow portion 42 flows along the inner wall surface of the cylindrical space 41, and the inner periphery of the cylindrical space 41. A swirling flow is generated on the surface. This swirling flow is a flow toward the discharge port 44.
  • the refrigerant gas contains oil supplied to the compression mechanism unit 10, and while the refrigerant gas is swirling, the oil having a high specific gravity adheres to the inner wall of the cylindrical space 41 by centrifugal force, and the refrigerant gas and To separate.
  • the swirling flow generated on the inner peripheral surface of the cylindrical space 41 turns back after reaching the discharge port 44 or in the vicinity of the discharge port 44 and changes to an upward flow passing through the center of the cylindrical space 41.
  • the refrigerant gas from which the oil has been separated by the centrifugal force reaches the delivery port 43 by the upward flow and is sent to the one container inner space 31.
  • the refrigerant gas sent out to one container inner space 31 is sent out from the discharge pipe 4 provided in the one container inner space 31 to the outside of the sealed container 1 and supplied to the refrigeration cycle.
  • the oil separated in the cylindrical space 41 is sent out from the discharge port 44 to the compression mechanism side space 33 together with a small amount of refrigerant gas.
  • the oil sent out to the compression mechanism side space 33 reaches the oil storage part 2 through the wall surface of the sealed container 1 and the communication path of the electric motor part 20 due to its own weight.
  • the refrigerant gas sent out to the compression mechanism side space 33 passes through the gap of the compression mechanism unit 10 to reach one container inner space 31 and is sent out from the discharge pipe 4 to the outside of the sealed container 1.
  • the outlet 43 is formed on the one container inner space 31 side with respect to the inflow part 42, and the outlet 44 is formed on the other container inner space 32 side with respect to the inflow part 42.
  • a swirl flow is generated on the inner peripheral surface of the cylindrical space 41 between the inflow portion 42 and the discharge port 44, and swirl at the center of the cylindrical space 41 between the discharge port 44 and the delivery port 43.
  • a flow in the opposite direction to the flow is generated. Therefore, as the discharge port 44 moves away from the inflow portion 42, the number of revolutions of the refrigerant gas increases and the oil separation effect increases.
  • the delivery port 43 only needs to be on the side opposite to the discharge port from the inflow portion 42. That is, by increasing the distance between the inflow portion 42 and the discharge port 44 as much as possible, the effect of oil swirl separation can be enhanced.
  • the oil separation mechanism 40 discharges the oil together with the refrigerant gas from the discharge port 44 without storing the separated oil in the container inner space 32.
  • An action of guiding the generated swirling flow toward the discharge port 44 is provided.
  • the discharge port 44 is not formed in the cylindrical space 41 and the oil is stored in the cylindrical space 41, so the flow that pulls to the outside from the discharge port 44 does not occur, so the swirl flow disappears before reaching the oil surface. If it reaches the oil level, it will roll up the oil. Moreover, in order to exhibit the oil separation function without forming the discharge port 44 in the cylindrical space 41, it is necessary to form a space sufficient to store oil.
  • the swirl flow can be guided to the discharge port 44 and the oil is not wound up.
  • most of the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 10 and delivered from the oil separation mechanism unit 40 is guided to the one container inner space 31 and discharged from the discharge pipe 4. Is done. Therefore, most of the high-temperature and high-pressure refrigerant gas does not pass through the electric motor unit 20, so that the electric motor unit 20 is not heated by the refrigerant gas, and the electric motor unit 20 can be highly efficient.
  • most of the high-temperature and high-pressure refrigerant gas is guided to the one container inner space 31, so that the heating of the compression mechanism unit 10 in contact with the other container inner space 32 can be suppressed.
  • the heating of the suction refrigerant gas can be suppressed, and high volumetric efficiency in the compression chamber 15 can be obtained.
  • the oil separated by the oil separation mechanism 40 is discharged together with the refrigerant gas to the other container space 32, so that the oil is mostly retained in the cylindrical space 41. No. Therefore, the separated oil is blown up in the cylindrical space 41 by the swirling refrigerant gas and is not sent together with the refrigerant gas from the delivery port 43, so that stable oil separation can be performed. Further, since the oil is not retained in the cylindrical space 41, the cylindrical space 41 can be made small.
  • the sealed container 1 can be reduced in size.
  • the muffler 19 that isolates the discharge port 17 of the compression mechanism 10 from the one container inner space 31 is disposed, and the inside of the muffler 19 and the cylindrical space 41 are separated by the inflow portion 42.
  • the refrigerant gas compressed by the compression mechanism unit 10 can be reliably guided to the oil separation mechanism unit 40. That is, since all the refrigerant gas passes through the oil separation mechanism 40, the oil can be efficiently separated from the refrigerant gas.
  • the path through which the refrigerant gas flows from the discharge port 17 to the discharge pipe 4 can be configured to be short and sealed.
  • the container 1 can be reduced in size.
  • N N
  • G / (E ⁇ N) is configured to be 1 or more and 4 or less.
  • G / (E ⁇ N) is set to 1 or more and 4 or less in order to improve oil separation efficiency within a range in which the compressor power is not increased.
  • G / (E ⁇ N) is set to 1 or more in order to increase the flow rate of the oil separation mechanism 40 into the cylindrical space 41 and efficiently perform oil separation by centrifugal force.
  • FIG. 3 shows the relationship of the oil circulation amount reference ratio with respect to G / (E ⁇ N).
  • the oil circulation amount reference ratio is defined as 100% of the oil circulation amount that rapidly deteriorates the system performance.
  • G / (E ⁇ N) is 1 or more, the value of the oil circulation amount reference ratio is 100% or less.
  • G / (E ⁇ N) is set to 4 or less is to suppress the pressure loss at the time of discharge in a range where the compressor power is not increased.
  • FIG. 4 shows the relationship of the compressor power reference ratio with respect to G / (E ⁇ N).
  • the compressor power reference ratio is 100% of the conventional compressor power in which the oil separation mechanism 40 is not provided.
  • the compressor power reference ratio becomes smaller.
  • G / (E ⁇ N) 4 or less the compressor power reference ratio becomes 100% or less.
  • system rated condition in the present invention is the most typical operating condition when evaluating the cycle performance.
  • an evaluation standard of JIS C9222 is defined in Japanese Industrial Standard
  • the system rated condition is an intermediate standard heating condition.
  • FIG. 5 is an enlarged cross-sectional view of the main part of the compression mechanism portion in the compressor according to Embodiment 2 of the present invention.
  • the basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
  • the first cylindrical space 41c and the outlet 43a are formed by performing stepped hole processing on the outer peripheral portion of the fixed scroll 12.
  • the first cylindrical space 41 c is formed by processing a hole that does not penetrate from the fastening surface side end surface (lap side end surface) with the main bearing member 11.
  • the delivery port 43a extends from the fastening surface side end surface (wrap side end surface) with the main bearing member 11 or from the anti-fastening surface side end surface (anti-wrap side end surface) with the main bearing member 11 to the first cylindrical space 41c. It is formed by penetrating a hole smaller than the cross section.
  • the second cylindrical space 41d and the discharge port 44a are formed by performing stepped hole processing on the outer peripheral portion of the main bearing member 11.
  • the second cylindrical space 41d is formed by processing a hole that does not penetrate from the fastening surface (thrust receiving surface) with the fixed scroll 12.
  • the discharge port 44a penetrates a hole smaller than the cross section of the second cylindrical space 41d from the fastening surface (thrust surface) with the fixed scroll 12 or from the anti-fastening surface (anti-thrust surface) with the fixed scroll 12.
  • the inflow part 42a forms the through-hole opened in a tangential direction with respect to the 1st cylindrical space 41c from the anti-fastening surface side end surface (anti-wrap side end surface) with the main bearing member 11 of the fixed scroll 12. It consists of that.
  • the operation of the oil separation mechanism unit 40 is the same as that of the first embodiment, and the operation and effect in the first embodiment are also the same, so the description thereof is omitted.
  • FIG. 6 is an enlarged cross-sectional view of the main part of the compression mechanism in the compressor according to Embodiment 3 of the present invention.
  • the basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
  • a cylindrical delivery pipe 46 is provided in the cylindrical space 41.
  • One end 46 a of the delivery pipe 46 forms a delivery outlet 43, and the other end 46 b of the delivery pipe 46 is disposed in the cylindrical space 41.
  • the other end 46b of the delivery pipe 46 extends into the second cylindrical space 41b.
  • a ring-shaped space 46c is formed on the outer periphery of the delivery pipe 46, and the inflow portion 42 opens into the ring-shaped space 46c.
  • a flange 46d extending outward is formed at one end 46a of the delivery pipe 46.
  • the refrigerant gas flowing in from the inflow portion 42 becomes a swirling flow, passes through the ring-shaped space 46c, reaches the discharge port 44 along the inner peripheral surface of the cylindrical space 41, and then flows back in the center of the cylindrical space 41. To do. Then, it flows into the delivery pipe 46 from the other end 46 b of the delivery pipe 46 and flows out from one end 46 a of the delivery pipe 46.
  • the first cylindrical space 41e is formed by performing stepped hole processing on the outer peripheral portion of the fixed scroll 12. That is, a hole larger than the inner peripheral cross section of the first cylindrical space 41e is formed in the end surface on the side opposite to the wrap of the fixed scroll 12, and the flange 46d of the delivery pipe 46 is accommodated in this hole.
  • the second cylindrical space 41b is formed in the main bearing member 11 as in the first embodiment, but a stepped hole is formed in the outer peripheral portion of the main bearing member 11 as in the second embodiment. It may be formed by applying.
  • the delivery pipe 46 in the cylindrical space 41, for example, even when the compressor is operated at a high frequency, the oil separation effect can be reliably obtained.
  • the delivery pipe 46 it is important that the axis of the cylindrical space 41 and the axis of the delivery pipe 46 are aligned.
  • the delivery pipe 46 when the delivery pipe 46 is provided, the delivery pipe 46 is provided with a flange 46 d, the flange 46 d is disposed in a hole formed in the cylindrical space 41, and the delivery pipe 46 is fixed to the cylindrical space 41 by the muffler 19. It is important to.
  • the inner diameter cross-sectional area D of the delivery pipe 46 is made larger than the cross-sectional area B of the discharge port 44. As a result, the refrigerant gas is more likely to flow to the delivery port 43 than to the discharge port 44.
  • D / B can be set to about 9.
  • the oil separation effect in the cylindrical space 41 can be enhanced. Also in the present embodiment in which the delivery pipe 46 is provided, the basic operation of the oil separation mechanism unit 40 is the same as that of the first embodiment, and the operations and effects in the first embodiment are also the same, so the description is omitted. .
  • FIG. 7 is an enlarged cross-sectional view of a main part of a compression mechanism section in a compressor according to Embodiment 4 of the present invention.
  • the basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
  • a cylindrical delivery pipe 47 is provided in the cylindrical space 41.
  • the delivery pipe 47 in the present embodiment is formed integrally with the muffler 19.
  • One end 47 a of the delivery pipe 47 forms a delivery outlet 43, and the other end 47 b of the delivery pipe 47 is disposed in the cylindrical space 41.
  • the other end 47b of the delivery pipe 47 extends into the second cylindrical space 41b.
  • a ring-shaped space 47c is formed on the outer periphery of the delivery pipe 47, and the inflow portion 42 opens into the ring-shaped space 47c.
  • the refrigerant gas flowing in from the inflow portion 42 becomes a swirling flow, passes through the ring-shaped space 47c, reaches the discharge port 44 along the inner peripheral surface of the cylindrical space 41, and then flows back in the center of the cylindrical space 41. To do. Then, it flows into the delivery pipe 47 from the other end 47 b of the delivery pipe 47 and flows out from one end 47 a of the delivery pipe 47.
  • the delivery pipe 47 by providing the delivery pipe 47 in the cylindrical space 41, for example, even when the compressor is operated at a high frequency, the oil separation effect can be reliably obtained.
  • the delivery pipe 47 it is important that the axis of the cylindrical space 41 and the axis of the delivery pipe 47 are aligned.
  • the delivery pipe 47 can be fixed to the cylindrical space 41 by forming the delivery pipe 47 integrally with the muffler 19.
  • the inner diameter cross-sectional area D of the delivery pipe 47 is made larger than the cross-sectional area B of the discharge port 44.
  • the oil separation effect in the cylindrical space 41 can be enhanced.
  • the basic operation of the oil separation mechanism unit 40 is the same as that of the first embodiment, and the operations and effects in the first embodiment are also the same, so the description thereof is omitted. .
  • the cylindrical space 41 is configured by a first cylindrical space 41a formed in the fixed scroll 12 and a second cylindrical space 41b formed in the main bearing member 11 as in the first embodiment.
  • the second cylindrical space 41b may be formed by performing stepped hole processing on the outer peripheral portion of the main bearing member 11 as in the second embodiment.
  • FIG. 8 is a longitudinal sectional view of a compressor according to Embodiment 5 of the present invention.
  • the basic configuration of the present embodiment is the same as the configuration disclosed in FIG.
  • the refrigerant gas swirling member 48 constituting the cylindrical space 41 is disposed in one of the container inner spaces 31.
  • the refrigerant gas swirling member 48 is installed on the outer peripheral surface of the muffler 19.
  • the refrigerant gas swirling member 48 is formed with an inflow portion 42b, a delivery port 43b, and a discharge port 44b.
  • the inflow portion 42b communicates with the inside of the muffler 19 and the cylindrical space 41, the delivery port 43b communicates with the cylindrical space 41 and one of the container internal spaces 31, and the discharge port 44b communicates with the cylindrical space 41 with one side.
  • the container interior space 31 is communicated with.
  • the opening of the inflow portion 42 b is formed on the inner peripheral surface on one end side of the cylindrical space 41.
  • the inflow portion 42 b allows the refrigerant gas discharged from the compression mechanism portion 10 to flow into the cylindrical space 41 from the muffler 19.
  • the inflow portion 42 b opens in the tangential direction with respect to the cylindrical space 41.
  • the delivery port 43b is formed on one end side of the cylindrical space 41 and is formed on at least one end side of the inflow portion 42b.
  • the delivery port 43b is preferably formed on the end face on one end side of the cylindrical space 41.
  • the delivery port 43b sends out the refrigerant gas which isolate
  • the discharge port 44b is formed on the other end side of the cylindrical space 41 and at least on the other end side than the inflow portion 42b. Moreover, the discharge port 44b is arrange
  • the discharge port 44b is preferably formed below the end surface on the other end side of the cylindrical space 41.
  • the discharge port 44 b may be formed on the side surface on the other end side of the cylindrical space 41.
  • the term “opposing” includes not only the case where the discharge port 44 b is provided on the bottom surface of the cylindrical space 41, but also the case where it is provided on the side surface of the cylindrical space 41.
  • the discharge port 44b discharges the separated oil and a part of the refrigerant gas from the cylindrical space 41 to the one in-container space 31.
  • the cross-sectional area A of the opening of the delivery port 43b is smaller than the cross-sectional area C of the cylindrical space 41 and larger than the cross-sectional area B of the opening of the discharge port 44b.
  • the refrigerant gas discharged into the muffler 19 is guided to the cylindrical space 41 through an inflow portion 42 b formed on the upper surface of the muffler 19. Since the inflow portion 42 b opens in a tangential direction with respect to the cylindrical space 41, the refrigerant gas delivered from the inflow portion 42 b flows along the inner wall surface of the cylindrical space 41, and the inner periphery of the cylindrical space 41. A swirling flow is generated on the surface. This swirling flow is a flow toward the discharge port 44b.
  • the refrigerant gas contains oil supplied to the compression mechanism unit 10, and while the refrigerant gas is swirling, the oil having a high specific gravity adheres to the inner wall of the cylindrical space 41 by centrifugal force, and the refrigerant gas and To separate.
  • the swirling flow generated on the inner peripheral surface of the cylindrical space 41 turns back after reaching the discharge port 44b or in the vicinity of the discharge port 44b and changes to a reverse flow passing through the center of the cylindrical space 41.
  • the refrigerant gas from which the oil has been separated by the centrifugal force reaches the delivery port 43b by a flow passing through the center of the cylindrical space 41, and is delivered to the one in-container space 31.
  • the refrigerant gas sent out to one container inner space 31 is sent out from the discharge pipe 4 provided in the one container inner space 31 to the outside of the sealed container 1 and supplied to the refrigeration cycle.
  • the oil separated in the cylindrical space 41 accumulates in one direction due to its own weight, and the discharge port 44b is formed in the lower part of the end face on the other end side or the lower part of the cylindrical space 41, so that the oil is easily discharged. it can.
  • the separated oil is sent to the upper surface of the muffler 19 from the discharge port 44b together with a small amount of refrigerant gas.
  • the oil sent to the upper surface of the muffler 19 passes through the gap of the compression mechanism portion 10 due to its own weight, reaches the compression mechanism side space 33 from one container inner space 31, and further passes through the wall surface of the sealed container 1 and the communication path of the electric motor portion 20. Then, the oil storage unit 2 is reached.
  • the refrigerant gas sent out from the discharge port 44b is sent out from the discharge pipe 4 provided in one container inner space 31 to the outside of the sealed container 1 and supplied to the refrigeration cycle.
  • the outlet 43b is formed on one end side of the cylindrical space 41 with respect to the inflow portion 42b, and the discharge port 44b is on the other end side of the cylindrical space 41 with respect to the inflow portion 42b.
  • a swirl flow is generated on the inner peripheral surface of the cylindrical space 41 between the inflow portion 42b and the discharge port 44b, and swirl at the center of the cylindrical space 41 between the discharge port 44b and the delivery port 43b.
  • a flow in the opposite direction to the flow is generated. Therefore, as the discharge port 44b moves away from the inflow portion 42b, the number of times the refrigerant gas turns increases and the oil separation effect increases.
  • the delivery port 43b since the refrigerant gas after turning passes through the center of the swirling flow, the delivery port 43b only needs to be on the side opposite to the outlet than the inflow portion 42b. That is, the effect of oil swirl separation can be enhanced by increasing the distance between the inflow portion 42b and the discharge port 44b as much as possible.
  • the oil separation mechanism 40 discharges the oil together with the refrigerant gas from the discharge port 44b without storing the oil separated in the cylindrical space 41. An action of guiding the generated swirling flow toward the discharge port 44b is provided.
  • the oil separation mechanism 40 can be provided inside the sealed container 1 while maintaining the dimensions of the compressor itself, and the effect of oil swirl separation can be enhanced.
  • the refrigerant gas swirling member 48 constituting the cylindrical space 41 is arranged in the one container inner space 31, so that a path through which the refrigerant gas flows from the discharge port 17 to the discharge pipe 4 can be obtained. It can be configured to be short and the sealed container 1 can be miniaturized.
  • the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 10 and delivered from the oil separation mechanism unit 40 is guided to the one container inner space 31 and discharged from the discharge pipe 4. Therefore, since the high-temperature and high-pressure refrigerant gas does not pass through the electric motor unit 20, the electric motor unit 20 is not heated by the refrigerant gas, and the electric motor unit 20 can be highly efficient.
  • the high-temperature and high-pressure refrigerant gas is guided to the one container inner space 31, it is possible to suppress the heating of the compression mechanism unit 10 in contact with the other container inner space 32. Heating of the refrigerant gas can be suppressed, and high volumetric efficiency in the compression chamber 15 can be obtained.
  • the oil separated by the oil separation mechanism 40 is discharged together with the refrigerant gas into the one container inner space 31, so that the oil is mostly retained in the cylindrical space 41. No. Therefore, the separated oil is blown up in the cylindrical space 41 by the swirling refrigerant gas, and is not sent together with the refrigerant gas from the delivery port 43b, so that stable oil separation can be performed. Further, since the oil is not retained in the cylindrical space 41, the cylindrical space 41 can be made small. Moreover, according to this Embodiment, since the oil storage part 2 is arrange
  • the muffler 19 that isolates the discharge port 17 of the compression mechanism unit 10 from the one container inner space 31 is disposed, and the inside of the muffler 19 and the cylindrical space 41 are separated by the inflow portion 42b.
  • the refrigerant gas compressed by the compression mechanism unit 10 can be reliably guided to the oil separation mechanism unit 40. That is, since all the refrigerant gas passes through the oil separation mechanism 40, the oil can be efficiently separated from the refrigerant gas. Further, since the high-temperature refrigerant gas discharged from the discharge port 17 is discharged from the discharge pipe 4 to the outside of the sealed container 1 without passing through the other container inner space 32, the electric motor unit 20 and the compression mechanism unit 10. Can be suppressed.
  • two or more cylindrical spaces 41 may be provided.
  • carbon dioxide can be used as the refrigerant.
  • Carbon dioxide is a high-temperature refrigerant, and the present invention is more effective when such a high-temperature refrigerant is used.
  • oil mainly composed of polyalkylene glycol
  • PAG is a poorly compatible oil, does not dissolve in carbon dioxide refrigerant, and is mixed in a state separated from each other. Therefore, when the refrigerant gas and the PAG are introduced into the cylindrical space 41, a large centrifugal force acts on the PAG having a high specific gravity with respect to the refrigerant gas.
  • the PAG is blown away in the outer peripheral direction and adheres to the inner wall of the cylindrical space 41, so that it can be separated from the refrigerant gas. That is, the effect according to the present invention is remarkably exhibited with respect to incompatible oil (or incompatible oil).
  • FIG. 9 is an enlarged cross-sectional view of the main part of the compression mechanism in the sixth embodiment of the present invention.
  • two inflow portions 42 are arranged in a symmetrical positional relationship so that the turning direction of the refrigerant gas in the cylindrical space 41 is unified.
  • the flow direction of the gas in the one container inner space 31 coincides, the refrigerant gas flows along the inner wall surface of the one container inner space 31, and a swirling flow is generated on the inner peripheral surface of the one container inner space 31.
  • the flow direction of the swirling flow of the refrigerant gas generated in one of the container spaces 31 coincides with the flow direction of the swirling flow of the refrigerant gas generated in the cylindrical space 41.
  • the refrigerant gas sent from the oil separation mechanism unit 40 to the one container inner space 31 contains oil that could not be separated by the oil separation mechanism unit 40. High oil adheres to the inner wall of one container inner space 31 by centrifugal force and separates from the refrigerant gas. Thereafter, the refrigerant gas is sent out of the sealed container 1 from the discharge pipe 4 provided in the one container inner space 31 and supplied to the refrigeration cycle.
  • the oil separated in the one container inner space 31 reaches the oil storage section 2 by its own weight. As a result, the amount of oil circulation can be reduced.
  • the present invention can be applied to a compressor having a compression mechanism section and an electric motor section in a sealed container such as a scroll compressor and a rotary compressor, and is particularly suitable for a compressor using a high-temperature refrigerant.

Abstract

This compressor is provided with oil separation mechanism sections (40) which separate oil from a refrigerant gas discharged from a compression mechanism section (10), the oil separation mechanism sections (40) each having: a cylindrical space (41) for swirling the refrigerant gas; an inlet section (42) for allowing the refrigerant gas discharged from the compression mechanism section (10) to flow therefrom into the cylindrical space (41); a delivery opening (43) for delivering the refrigerant gas, from which oil has been separated, into one in-container space (31) from the cylindrical space (41); and a discharge opening (44) for discharging the separated oil and a part of the refrigerant gas from the cylindrical space (41) into the other in-container space (32). Also, if the amount of circulation under a rated system condition is G kg/h, the cross-sectional area of the opening of the inlet section (42) for forming the oil separation mechanism section (40) and leading to the cylindrical space (41) is E mm2, and the number of the oil separation mechanism sections is N, G/(E × N) is set in the range of 1 to 4, inclusive, and this makes an electric motor section (20) highly efficient, improves the volumetric efficiency, and reduces the amount of oil circulation.

Description

圧縮機Compressor
 本発明は圧縮機構部から吐出される冷媒ガスからオイルを分離するオイル分離機構部を設けた圧縮機に関する。 The present invention relates to a compressor provided with an oil separation mechanism for separating oil from refrigerant gas discharged from the compression mechanism.
 従来、空調装置や冷却装置などに用いられる圧縮機は、一般に、ケーシング内に圧縮機構部とその圧縮機構部を駆動する電動機部を備えており、冷凍サイクルから戻ってきた冷媒ガスを圧縮機構部で圧縮し、冷凍サイクルへと送り込む。一般的に、圧縮機構部で圧縮した冷媒ガスは、一旦電動機の周囲を流れることによって、電動機部を冷却し、その後、ケーシングに設けられた吐出配管から冷凍サイクルへと送り込まれる(例えば、特許文献1参照)。すなわち、圧縮機構部で圧縮した冷媒ガスは、吐出口から吐出空間へ吐出される。その後、冷媒ガスは、フレームの外周に設けられた通路を通り、圧縮機構部と電動機部との間の電動機空間の上部に吐出される。一部の冷媒ガスは、電動機部を冷却した後、吐出配管より吐出される。また、他の冷媒ガスは、電動機部とケーシングの内壁との間に形成されている通路によって、電動機部の上部と下部の電動機空間を連通し、電動機部を冷却した後、電動機部の回転子と固定子の隙間を通って、電動機部の上部の電動機空間に入り、吐出配管から吐出される。 2. Description of the Related Art Conventionally, a compressor used in an air conditioner, a cooling device, or the like generally includes a compression mechanism unit and an electric motor unit that drives the compression mechanism unit in a casing, and compresses the refrigerant gas returned from the refrigeration cycle. Compressed and fed into the refrigeration cycle. Generally, the refrigerant gas compressed by the compression mechanism unit once flows around the motor to cool the motor unit, and then is sent to a refrigeration cycle from a discharge pipe provided in the casing (for example, Patent Documents). 1). That is, the refrigerant gas compressed by the compression mechanism is discharged from the discharge port to the discharge space. Thereafter, the refrigerant gas passes through a passage provided on the outer periphery of the frame and is discharged to the upper portion of the motor space between the compression mechanism portion and the motor portion. A part of the refrigerant gas is discharged from the discharge pipe after cooling the electric motor unit. Further, the other refrigerant gas communicates with the upper and lower motor spaces of the motor unit by a passage formed between the motor unit and the inner wall of the casing, cools the motor unit, and then rotates the rotor of the motor unit. Through the gap between the stator and the stator, enters the motor space above the motor section, and is discharged from the discharge pipe.
特開平5-44667号公報Japanese Patent Laid-Open No. 5-44667
 しかしながら、従来の構成では、圧縮機構部で圧縮された高温高圧の冷媒ガスが、電動機部を流れるため、電動機部が冷媒ガスによって加熱され、電動機部の効率低下を引き起こしてしまうという課題を有していた。 However, in the conventional configuration, the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism portion flows through the electric motor portion, so that the electric motor portion is heated by the refrigerant gas and causes a reduction in efficiency of the electric motor portion. It was.
 また、フレームの外周に設けられた通路を通って、圧縮機構部の下部を高温の吐出ガスが流れるため圧縮機構部が加熱され、特に、冷凍サイクルから戻ってきた低温状態である冷媒ガスが、吸入経路を経て圧縮室へと送り込まれる過程で熱を受ける。そのため圧縮室にとじ込む時点では既に冷媒ガスが膨張しており、冷媒ガスの膨張によって循環量が低下してしまう課題を有していた。 Also, through the passage provided on the outer periphery of the frame, the high-temperature discharge gas flows through the lower part of the compression mechanism unit, so the compression mechanism unit is heated, and in particular, the refrigerant gas in the low temperature state returned from the refrigeration cycle, Heat is received in the process of being sent to the compression chamber through the suction path. For this reason, the refrigerant gas has already expanded at the time of entering the compression chamber, and there has been a problem that the circulation rate is reduced due to the expansion of the refrigerant gas.
 さらには、吐出管から吐出される冷媒にオイルが多く含まれると、サイクル性能を悪化させるという課題を有していた。 Furthermore, if the refrigerant discharged from the discharge pipe contains a lot of oil, there is a problem that the cycle performance is deteriorated.
 本発明は、上記従来の課題を解決するためになされたものであり、その目的は、電動機部の高効率化、体積効率の向上、および低オイル循環を実現する圧縮機を提供することにある。 The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a compressor that realizes high efficiency of the motor unit, improvement of volumetric efficiency, and low oil circulation. .
 本発明の圧縮機は、オイル分離機構部が、冷媒ガスを旋回させる円筒状空間と、圧縮機構部から吐出される冷媒ガスを円筒状空間に流入させる流入部と、円筒状空間から一方の容器内空間に、オイルを分離した冷媒ガスを送出する送出口と、分離したオイルと冷媒ガスの一部とを円筒状空間から他方の容器内空間に排出する排出口から構成されるオイル分離機構部を1つ以上有する圧縮機であって、流入部からオイル分離機構部に流入する冷媒ガスのシステム定格条件における循環量をGkg/hとし、オイル分離機構部を構成する流入部の円筒状空間への開口の断面積をEmmとし、オイル分離機構部の総数をNとすると、G/(E×N)が1以上4以下にしたものである。 In the compressor according to the present invention, the oil separation mechanism section has a cylindrical space for rotating the refrigerant gas, an inflow section for flowing the refrigerant gas discharged from the compression mechanism section into the cylindrical space, and one container from the cylindrical space. An oil separation mechanism part comprising an outlet for sending refrigerant gas from which oil has been separated to the inner space, and a discharge port for discharging the separated oil and part of the refrigerant gas from the cylindrical space to the other container inner space To the cylindrical space of the inflow part constituting the oil separation mechanism part, where the circulation rate of the refrigerant gas flowing from the inflow part into the oil separation mechanism part under the system rated conditions is Gkg / h. G / (E × N) is 1 or more and 4 or less, where Emm 2 is the cross-sectional area of the opening and N is the total number of oil separation mechanisms.
 これによって、電動機部の高効率化、体積効率の向上、および低オイル循環を実現する圧縮機を提供できる。 This makes it possible to provide a compressor that realizes high efficiency of the motor part, improvement of volumetric efficiency, and low oil circulation.
 本発明によれば、圧縮機構部で圧縮されてオイル分離機構部から送出される、ほとんどの高温高圧の冷媒ガスは、一方の容器内空間に導かれて吐出管から吐出される。従って、ほとんどの高温高圧の冷媒ガスは、電動機部を通過しないため、電動機部が冷媒ガスにより加熱されることがなく、電動機部の高効率化が図れる。 According to the present invention, most of the high-temperature and high-pressure refrigerant gas that is compressed by the compression mechanism and delivered from the oil separation mechanism is led to the one container inner space and discharged from the discharge pipe. Therefore, since most of the high-temperature and high-pressure refrigerant gas does not pass through the electric motor part, the electric motor part is not heated by the refrigerant gas, and the efficiency of the electric motor part can be improved.
 また、本発明によれば、ほとんどの高温高圧の冷媒ガスを、一方の容器内空間に導くことで、他方の容器内空間に接する圧縮機構部の加熱を抑えることができるため、吸入冷媒ガスの加熱を抑制し、圧縮室内での高い体積効率を得ることができる。 In addition, according to the present invention, most of the high-temperature and high-pressure refrigerant gas can be guided to the one container inner space, so that the heating of the compression mechanism portion in contact with the other container inner space can be suppressed. Heating can be suppressed and high volumetric efficiency in the compression chamber can be obtained.
 また、本発明によれば、オイル分離機構部で分離されたオイルを、冷媒ガスとともに他方の容器内空間に排出するため、円筒状空間内にはオイルが滞留することがほとんど無い。従って、分離したオイルが、旋回する冷媒ガスによって円筒状空間内で吹き上げられて、送出口から冷媒ガスとともに送出することがなく、安定したオイル分離を行える。更に、円筒状空間内にオイルを滞留させないため、円筒状空間を小さく構成できる。 Further, according to the present invention, the oil separated by the oil separation mechanism is discharged together with the refrigerant gas into the other container space, so that the oil hardly stays in the cylindrical space. Therefore, the separated oil is blown up in the cylindrical space by the swirling refrigerant gas, and is not sent out together with the refrigerant gas from the outlet, so that stable oil separation can be performed. Furthermore, since the oil is not retained in the cylindrical space, the cylindrical space can be made small.
 また、本発明によれば、吐出時の圧力損失を、圧縮機動力が増大しない範囲に抑えつつ、円筒状空間への冷媒ガスの流入速度を大きくし、遠心力による冷媒ガスとオイルの分離効率を向上させることができる。 In addition, according to the present invention, the pressure loss at the time of discharge is suppressed to a range in which the compressor power does not increase, the flow rate of refrigerant gas into the cylindrical space is increased, and the separation efficiency of refrigerant gas and oil by centrifugal force is increased. Can be improved.
本発明の実施の形態1による圧縮機の縦断面図The longitudinal cross-sectional view of the compressor by Embodiment 1 of this invention 図1における圧縮機構部の要部拡大断面図FIG. 1 is an enlarged cross-sectional view of the main part of the compression mechanism portion 本発明の実施の形態1における、G/(E×N)に対するオイル循環量基準比の関係を示すグラフThe graph which shows the relationship of the oil circulation amount reference | standard ratio with respect to G / (E * N) in Embodiment 1 of this invention. 本発明の実施の形態1における、G/(E×N)に対する圧縮機動力基準比の関係を示すグラフThe graph which shows the relationship of the compressor power reference ratio with respect to G / (E * N) in Embodiment 1 of this invention. 本発明の実施の形態2による圧縮機における圧縮機構部の要部拡大断面図The principal part expanded sectional view of the compression mechanism part in the compressor by Embodiment 2 of this invention 本発明の実施の形態3による圧縮機における圧縮機構部の要部拡大断面図The principal part expanded sectional view of the compression mechanism part in the compressor by Embodiment 3 of this invention 本発明の実施の形態4による圧縮機における圧縮機構部の要部拡大断面図The principal part expanded sectional view of the compression mechanism part in the compressor by Embodiment 4 of this invention 本発明の実施の形態5による圧縮機の縦断面図Vertical section of a compressor according to Embodiment 5 of the present invention 本発明の実施の形態6による圧縮機における圧縮機構部の要部拡大断面図The principal part expanded sectional view of the compression mechanism part in the compressor by Embodiment 6 of this invention
 1 密閉容器
 2 貯オイル部
 4 吐出管
 10 圧縮機構部
 11 主軸受部材
 12 固定スクロール
 17 吐出口
 19 マフラー
 20 電動機部
 31 容器内空間
 32 容器内空間
 33 圧縮機構側空間
 34 貯オイル側空間
 40 オイル分離機構部
 40c オイル分離機構部
 41 円筒状空間
 41a 第1の円筒状空間
 41b 第2の円筒状空間
 41c 第1の円筒状空間
 41d 第2の円筒状空間
 41e 第1の円筒状空間
 42 流入部
 42a 流入部
 42b 流入部
 43 送出口
 43a 送出口
 43b 送出口
 43c 送出口
 44 排出口
 44a 排出口
 44b 排出口
 46 送出パイプ
 47 送出パイプ
 48 冷媒ガス旋回部材
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Oil storage part 4 Discharge pipe 10 Compression mechanism part 11 Main bearing member 12 Fixed scroll 17 Discharge port 19 Muffler 20 Electric motor part 31 Container inner space 32 Container inner space 33 Compression mechanism side space 34 Oil storage side space 40 Oil separation Mechanism part 40c Oil separation mechanism part 41 Cylindrical space 41a 1st cylindrical space 41b 2nd cylindrical space 41c 1st cylindrical space 41d 2nd cylindrical space 41e 1st cylindrical space 42 Inflow part 42a Inflow part 42b Inflow part 43 Outlet 43a Outlet 43b Outlet 43c Outlet 44 Outlet 44a Outlet 44b Outlet 46 Outlet pipe 47 Outlet pipe 48 Refrigerant gas swivel member
 第1の発明は、冷媒ガスを圧縮する圧縮機構部と、圧縮機構部を駆動する電動機部とを密閉容器内に備え、圧縮機構部によって、密閉容器内を、一方の容器内空間と他方の容器内空間に分割し、一方の容器内空間から密閉容器の外部に冷媒ガスを吐出する吐出管を設け、他方の容器内空間に電動機部を配置した圧縮機であって、圧縮機構部から吐出される冷媒ガスからオイルを分離するオイル分離機構部を設け、オイル分離機構部が、冷媒ガスを旋回させる円筒状空間と、圧縮機構部から吐出される冷媒ガスを円筒状空間に流入させる流入部と、円筒状空間から一方の容器内空間に、オイルを分離した冷媒ガスを送出する送出口と、分離したオイルと冷媒ガスの一部とを円筒状空間から他方の容器内空間に排出する排出口とを有し、流入部からオイル分離機構部に流入する冷媒ガスのシステム定格条件における循環量をGkg/hとし、オイル分離機構部を構成する流入部の円筒状空間への開口の断面積をEmmとし、オイル分離機構部の総数をNとすると、G/(E×N)が1以上4以下になるように構成するものである。 According to a first aspect of the present invention, an airtight container includes a compression mechanism portion that compresses the refrigerant gas and an electric motor portion that drives the compression mechanism portion. A compressor that is divided into a container inner space, provided with a discharge pipe that discharges refrigerant gas from one container inner space to the outside of the sealed container, and an electric motor part is disposed in the other container inner space, and is discharged from the compression mechanism part. Provided with an oil separation mechanism that separates oil from the refrigerant gas, the oil separation mechanism that swirls the refrigerant gas, and an inflow portion that flows the refrigerant gas discharged from the compression mechanism into the cylindrical space And a discharge port for sending refrigerant gas from which oil has been separated from the cylindrical space to one container internal space, and a discharge for discharging the separated oil and part of the refrigerant gas from the cylindrical space to the other container internal space. And an outlet The circulation rate in the system rated conditions of the refrigerant gas flowing into the oil separating mechanism and Gkg / h, the cross-sectional area of the opening into the cylindrical space of the inlet portion constituting the oil separation mechanism and Emm 2, the oil separating mechanism G / (E × N) is 1 or more and 4 or less, where N is the total number of.
 この構成によれば、圧縮機構部で圧縮されてオイル分離機構部から送出される、ほとんどの高温高圧の冷媒ガスは、一方の容器内空間に導かれて吐出管から吐出される。従って、ほとんどの高温高圧の冷媒ガスは、電動機部を通過しないため、電動機部が冷媒ガスにより加熱されることがなく、電動機部の高効率化が図れる。 According to this configuration, most of the high-temperature and high-pressure refrigerant gas that is compressed by the compression mechanism unit and delivered from the oil separation mechanism unit is guided to the one container inner space and discharged from the discharge pipe. Therefore, since most of the high-temperature and high-pressure refrigerant gas does not pass through the electric motor part, the electric motor part is not heated by the refrigerant gas, and the efficiency of the electric motor part can be improved.
 また、この構成によれば、ほとんどの高温高圧の冷媒ガスを、一方の容器内空間に導くことで、他方の容器内空間に接する圧縮機構部の加熱を抑えることができるため、吸入冷媒ガスの加熱を抑制し、圧縮室内での高い体積効率を得ることができる。 Further, according to this configuration, most of the high-temperature and high-pressure refrigerant gas can be guided to the one container inner space, so that the heating of the compression mechanism portion in contact with the other container inner space can be suppressed. Heating can be suppressed and high volumetric efficiency in the compression chamber can be obtained.
 また、この構成によれば、オイル分離機構部で分離されたオイルを、冷媒ガスとともに送出口と対向した位置にある排出口から排出するため、円筒状空間内にはオイルが滞留することがほとんど無い。従って、分離したオイルが、旋回する冷媒ガスによって円筒状空間内で吹き上げられて、送出口から冷媒ガスとともに送出することがなく、安定したオイル分離を行える。更に、円筒状空間内にオイルを滞留させないため、円筒状空間を小さく構成できる。 Further, according to this configuration, the oil separated by the oil separation mechanism is discharged together with the refrigerant gas from the discharge port located at the position facing the delivery port, so that the oil is mostly retained in the cylindrical space. No. Therefore, the separated oil is blown up in the cylindrical space by the swirling refrigerant gas, and is not sent out together with the refrigerant gas from the outlet, so that stable oil separation can be performed. Furthermore, since the oil is not retained in the cylindrical space, the cylindrical space can be made small.
 この構成によれば、吐出時の圧力損失を、圧縮機動力が増大しない範囲に抑えつつ、円筒状空間への冷媒ガスの流入速度を大きくし、遠心力を増大させ、オイル分離を効率的に行うことができる。 According to this configuration, while suppressing the pressure loss at the time of discharge within a range where the compressor power does not increase, the flow rate of refrigerant gas into the cylindrical space is increased, the centrifugal force is increased, and oil separation is efficiently performed. It can be carried out.
 第2の発明は、第1の発明において、圧縮機構部が、固定スクロールと、固定スクロールと対向配置された旋回スクロールと、旋回スクロールを駆動するシャフトを軸支する主軸受部材とを備え、円筒状空間を、固定スクロールと主軸受部材とに形成し、排出口を他方の容器内空間に連通したものである。 According to a second invention, in the first invention, the compression mechanism section includes a fixed scroll, a turning scroll disposed to face the fixed scroll, and a main bearing member that supports a shaft that drives the turning scroll, and is a cylinder. A shaped space is formed in the fixed scroll and the main bearing member, and the discharge port communicates with the other in-container space.
 この構成によれば、オイル分離機構部を圧縮機構部に形成することで、吐出口から吐出管までの冷媒ガスが流れる経路を短く構成でき、密閉容器を小型化できる。 According to this configuration, by forming the oil separation mechanism portion in the compression mechanism portion, the path through which the refrigerant gas flows from the discharge port to the discharge pipe can be shortened, and the sealed container can be downsized.
 また、この構成によれば、オイル分離機構部で分離されたオイルを、冷媒ガスとともに他方の容器内空間に排出するため、円筒状空間内にはオイルが滞留することがほとんど無い。 Further, according to this configuration, since the oil separated by the oil separation mechanism is discharged together with the refrigerant gas to the other container space, the oil hardly stays in the cylindrical space.
 第3の発明は、第1または第2の発明において、円筒状空間での冷媒ガスの流れ方向を全て統一するように、流入部を配置するものである。 The third invention is the first or second invention, wherein the inflow portion is arranged so as to unify all the flow directions of the refrigerant gas in the cylindrical space.
 この構成によれば、オイル分離機構部で分離しきれなかったオイルを含んだ冷媒ガスは、送出口から送出された後、一方の容器内空間で旋回流を発生させる。その結果、冷媒ガスは一方の容器内空間においても遠心力によりオイルが分離され、オイル循環量を低減させることができる。 According to this configuration, the refrigerant gas containing oil that could not be separated by the oil separation mechanism section is sent out from the delivery port, and then generates a swirling flow in one of the container inner spaces. As a result, in the refrigerant gas, oil is separated by centrifugal force even in one container inner space, and the amount of oil circulation can be reduced.
 第4の発明は、第1から3のいずれか1つの発明において、冷媒ガスとして、二酸化炭素を用いるものである。 The fourth invention uses carbon dioxide as the refrigerant gas in any one of the first to third inventions.
 この構成によれば、高温冷媒である二酸化炭素を用いても、冷媒ガスによって電動機部及び圧縮機構部が加熱されることがないため、電動機部効率及び体積効率を低下させることがない。 According to this configuration, even if carbon dioxide, which is a high-temperature refrigerant, is used, the electric motor unit and the compression mechanism unit are not heated by the refrigerant gas, so that the electric motor unit efficiency and volume efficiency are not reduced.
 第5の発明は、第1から4のいずれか1つの発明において、オイルの主成分をポリアルキレングリコールとするものである。 In a fifth aspect of the present invention, in any one of the first to fourth aspects, the main component of the oil is polyalkylene glycol.
 この構成によれば、二酸化炭素とポリアルキレングリコールは相溶性が低いため、遠心力によるオイル分離を効率的に行うことができる。 According to this configuration, since carbon dioxide and polyalkylene glycol have low compatibility, oil separation by centrifugal force can be performed efficiently.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1による圧縮機の縦断面図である。図1に示すように、本実施の形態による圧縮機は、密閉容器1内に、冷媒ガスを圧縮する圧縮機構部10と、圧縮機構部10を駆動する電動機部20とを備えている。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1 of the present invention. As shown in FIG. 1, the compressor according to the present embodiment includes a compression mechanism unit 10 that compresses refrigerant gas and an electric motor unit 20 that drives the compression mechanism unit 10 in the sealed container 1.
 密閉容器1内は、圧縮機構部10によって、一方の容器内空間31と他方の容器内空間32に分割している。そして、他方の容器内空間32には、電動機部20を配置している。また、他方の容器内空間32は、電動機部20によって、圧縮機構側空間33と貯オイル側空間34に分割している。そして、貯オイル側空間34には、貯オイル部2を配置している。 The inside of the sealed container 1 is divided by the compression mechanism 10 into one container inner space 31 and the other container inner space 32. The electric motor unit 20 is disposed in the other container space 32. The other container space 32 is divided into a compression mechanism side space 33 and an oil storage side space 34 by the electric motor unit 20. The oil storage section 2 is arranged in the oil storage space 34.
 密閉容器1には、吸接管3と吐出管4とが溶接によって固定されている。吸接管3と吐出管4とは密閉容器1の外部に通じ、冷凍サイクルを構成する部材と接続されている。吸接管3は密閉容器1の外部から冷媒ガスを導入し、吐出管4は一方の容器内空間31から密閉容器1の外部に冷媒ガスを導出する。 The suction tube 3 and the discharge tube 4 are fixed to the sealed container 1 by welding. The suction pipe 3 and the discharge pipe 4 lead to the outside of the sealed container 1 and are connected to members constituting the refrigeration cycle. The suction pipe 3 introduces a refrigerant gas from the outside of the sealed container 1, and the discharge pipe 4 guides the refrigerant gas from one container inner space 31 to the outside of the sealed container 1.
 主軸受部材11は、密閉容器1内に溶接や焼き嵌めなどで固定され、シャフト5を軸支している。この主軸受部材11には、固定スクロール12がボルト止めされている。固定スクロール12と噛み合う旋回スクロール13は、主軸受部材11と固定スクロール12とで挟み込まれている。主軸受部材11、固定スクロール12、及び旋回スクロール13は、スクロール式の圧縮機構部10を構成している。 The main bearing member 11 is fixed in the sealed container 1 by welding or shrink fitting, and supports the shaft 5. A fixed scroll 12 is bolted to the main bearing member 11. The orbiting scroll 13 that meshes with the fixed scroll 12 is sandwiched between the main bearing member 11 and the fixed scroll 12. The main bearing member 11, the fixed scroll 12, and the orbiting scroll 13 constitute a scroll-type compression mechanism unit 10.
 旋回スクロール13と主軸受部材11との間には、オルダムリングなどによる自転拘束機構14を設けている。自転拘束機構14は、旋回スクロール13の自転を防止し、旋回スクロール13が円軌道運動するように案内する。旋回スクロール13は、シャフト5の上端に設けている偏心軸部5aにて偏心駆動される。この偏心駆動により、固定スクロール12と旋回スクロール13との間に形成している圧縮室15は、外周から中央部に向かって移動し、容積を小さくして圧縮を行う。 A rotation restraint mechanism 14 such as an Oldham ring is provided between the orbiting scroll 13 and the main bearing member 11. The rotation restraint mechanism 14 prevents the orbiting scroll 13 from rotating, and guides the orbiting scroll 13 to make a circular orbital motion. The orbiting scroll 13 is eccentrically driven by an eccentric shaft portion 5 a provided at the upper end of the shaft 5. By this eccentric drive, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves from the outer periphery toward the center, and compresses with a reduced volume.
 吸接管3と圧縮室15との間には、吸入経路16が形成されている。吸入経路16は、固定スクロール12に設けられている。固定スクロール12の中央部には、圧縮機構部10の吐出口17が形成されている。吐出口17には、リード弁18が設けられている。固定スクロール12の一方の容器内空間31側には、吐出口17及びリード弁18を覆うマフラー19が設けられている。マフラー19は、吐出口17を一方の容器内空間31から隔離している。冷媒ガスは、吸接管3から、吸入経路16を経て圧縮室15に吸入される。圧縮室15で圧縮された冷媒ガスは、吐出口17からマフラー19内に吐出される。リード弁18は、冷媒ガスが吐出口17から吐出するときに押し開けられる。 A suction path 16 is formed between the suction / contact pipe 3 and the compression chamber 15. The suction path 16 is provided in the fixed scroll 12. A discharge port 17 of the compression mechanism unit 10 is formed at the center of the fixed scroll 12. A reed valve 18 is provided at the discharge port 17. A muffler 19 that covers the discharge port 17 and the reed valve 18 is provided on one container inner space 31 side of the fixed scroll 12. The muffler 19 isolates the discharge port 17 from one container inner space 31. The refrigerant gas is sucked into the compression chamber 15 from the suction pipe 3 through the suction path 16. The refrigerant gas compressed in the compression chamber 15 is discharged into the muffler 19 from the discharge port 17. The reed valve 18 is pushed open when the refrigerant gas is discharged from the discharge port 17.
 シャフト5の下端にはポンプ6が設けられている。ポンプ6の吸い込み口は、密閉容器1の底部に設けられた貯オイル部2内に配置している。ポンプ6は、シャフト5によって駆動される。従って、貯オイル部2にあるオイルを、圧力条件や運転速度に関係なく、確実に吸い上げることができ、摺動部でのオイル切れは発生しない。ポンプ6で吸い上げたオイルは、シャフト5内に形成しているオイル供給穴7を通じて圧縮機構部10に供給される。なお、オイルをポンプ6で吸い上げる前、又は吸い上げた後に、オイルフィルタを用いてオイルから異物を除去すると、圧縮機構部10への異物混入が防止でき、更なる信頼性向上を図ることができる。 A pump 6 is provided at the lower end of the shaft 5. The suction port of the pump 6 is disposed in the oil storage part 2 provided at the bottom of the sealed container 1. The pump 6 is driven by the shaft 5. Therefore, the oil in the oil storage section 2 can be reliably sucked up regardless of the pressure condition and the operating speed, and no oil runs out at the sliding section. The oil sucked up by the pump 6 is supplied to the compression mechanism 10 through an oil supply hole 7 formed in the shaft 5. If foreign matter is removed from the oil using an oil filter before or after the oil is sucked up by the pump 6, foreign matter can be prevented from being mixed into the compression mechanism unit 10, and further reliability can be improved.
 圧縮機構部10に導かれたオイルの圧力は、吐出口17から吐出される冷媒ガスの吐出圧力とほぼ同等であり、旋回スクロール13に対する背圧源ともなる。これにより、旋回スクロール13は、固定スクロール12から離れたり、片当たりすることなく、安定して動作する。さらにオイルの一部は、供給圧や自重によって、逃げ場を求めるようにして偏心軸部5aと旋回スクロール13との嵌合部、及びシャフト5と主軸受部材11との間の軸受部8に進入して潤滑し、その後に落下し、貯オイル部2に戻る。旋回スクロール13には経路7aが形成され、経路7aの一端は高圧領域35に開口し、経路7aの他端は背圧室36に開口している。自転拘束機構14は、背圧室36に配置されている。 The pressure of the oil guided to the compression mechanism unit 10 is substantially the same as the discharge pressure of the refrigerant gas discharged from the discharge port 17 and also serves as a back pressure source for the orbiting scroll 13. As a result, the orbiting scroll 13 operates stably without leaving the fixed scroll 12 or hitting it. Further, part of the oil enters the fitting portion between the eccentric shaft portion 5a and the orbiting scroll 13 and the bearing portion 8 between the shaft 5 and the main bearing member 11 so as to obtain a clearance by the supply pressure and the own weight. Then, it is lubricated, then falls and returns to the oil storage section 2. A path 7 a is formed in the orbiting scroll 13, one end of the path 7 a opens to the high pressure region 35, and the other end of the path 7 a opens to the back pressure chamber 36. The rotation restraint mechanism 14 is disposed in the back pressure chamber 36.
 従って、高圧領域35に供給されたオイルの一部は、経路7aを通って、背圧室36に進入する。背圧室36に進入したオイルは、スラスト摺動部及び自転拘束機構14の摺動部を潤滑し、背圧室36にて旋回スクロール13に背圧を与えている。 Therefore, a part of the oil supplied to the high pressure region 35 enters the back pressure chamber 36 through the path 7a. The oil that has entered the back pressure chamber 36 lubricates the thrust sliding portion and the sliding portion of the rotation restraint mechanism 14 and applies back pressure to the orbiting scroll 13 in the back pressure chamber 36.
 次に、図1及び図2を用いて、実施の形態1による圧縮機のオイル分離機構部について説明する。図2は図1における圧縮機構部の要部拡大断面図である。本実施の形態による圧縮機は、圧縮機構部10から吐出される冷媒ガスからオイルを分離するオイル分離機構部40を設けている。 Next, the oil separation mechanism of the compressor according to the first embodiment will be described with reference to FIGS. 1 and 2. 2 is an enlarged cross-sectional view of the main part of the compression mechanism in FIG. The compressor according to the present embodiment is provided with an oil separation mechanism 40 that separates oil from refrigerant gas discharged from the compression mechanism 10.
 オイル分離機構部40は、冷媒ガスを旋回させる円筒状空間41と、マフラー19内と円筒状空間41とを連通する流入部42と、円筒状空間41と一方の容器内空間31とを連通する送出口43と、円筒状空間41と他方の容器内空間32とを連通する排出口44とを有する。円筒状空間41は、固定スクロール12に形成した第1の円筒状空間41aと主軸受部材11に形成した第2の円筒状空間41bとで構成される。 The oil separation mechanism section 40 communicates the cylindrical space 41 for turning the refrigerant gas, the inflow section 42 that communicates the inside of the muffler 19 and the cylindrical space 41, and the cylindrical space 41 and one container inner space 31. It has the delivery port 43 and the discharge port 44 which connects the cylindrical space 41 and the other container internal space 32. The cylindrical space 41 includes a first cylindrical space 41 a formed in the fixed scroll 12 and a second cylindrical space 41 b formed in the main bearing member 11.
 流入部42は、第1の円筒状空間41aに連通し、好ましくは流入部42の開口を第1の円筒状空間41aの上端内周面に形成する。そして、流入部42は、圧縮機構部10から吐出される冷媒ガスをマフラー19内から円筒状空間41に流入させる。流入部42は、円筒状空間41に対し、接線方向に開口している。 The inflow portion 42 communicates with the first cylindrical space 41a, and preferably the opening of the inflow portion 42 is formed on the inner peripheral surface of the upper end of the first cylindrical space 41a. The inflow portion 42 causes the refrigerant gas discharged from the compression mechanism portion 10 to flow into the cylindrical space 41 from the muffler 19. The inflow portion 42 opens in the tangential direction with respect to the cylindrical space 41.
 送出口43は、円筒状空間41の上端側に形成し、少なくとも流入部42よりも一方の容器内空間31側に形成する。送出口43は、第1の円筒状空間41aの上端面に形成することが好ましい。そして、送出口43は、円筒状空間41から一方の容器内空間31に、オイルを分離した冷媒ガスを送出する。 The delivery port 43 is formed on the upper end side of the cylindrical space 41, and is formed on at least one container inner space 31 side than the inflow portion 42. The delivery port 43 is preferably formed on the upper end surface of the first cylindrical space 41a. And the delivery port 43 sends out the refrigerant gas which isolate | separated oil from the cylindrical space 41 to the one container inner space 31.
 排出口44は、円筒状空間41の下端側に形成し、少なくとも流入部42よりも他方の容器内空間32側に形成する。排出口44は、第2の円筒状空間41bの下端面に形成することが好ましい。そして、排出口44は、円筒状空間41から圧縮機構側空間33に、分離したオイルと冷媒ガスの一部とを排出する。 The discharge port 44 is formed on the lower end side of the cylindrical space 41, and is formed at least on the other container internal space 32 side than the inflow portion 42. The discharge port 44 is preferably formed on the lower end surface of the second cylindrical space 41b. The discharge port 44 discharges the separated oil and a part of the refrigerant gas from the cylindrical space 41 to the compression mechanism side space 33.
 ここで、送出口43の開口部の断面積Aは、円筒状空間41の断面積Cよりも小さく、排出口44の開口部の断面積Bよりも大きい方が好ましい。送出口43の開口部の断面積Aが、円筒状空間41の断面積Cと同じ場合には、冷媒ガスの旋回流が排出口44の方向に導かれることなく、送出口43から吹き出してしまう。また、排出口44の開口部の断面積Bが円筒状空間41の断面積Cと同じ場合には、冷媒ガスの旋回流が排出口44から吹き出してしまう。また、送出口43の開口部の断面積Aを、排出口44の開口部の断面積Bよりも大きくすることで、送出口43における流路抵抗が減る。これにより、冷媒ガスは排出口44よりも送出口43に流れやすくなる。一例として、A/Bは9程度に設定することができる。 Here, the cross-sectional area A of the opening of the delivery port 43 is preferably smaller than the cross-sectional area C of the cylindrical space 41 and larger than the cross-sectional area B of the opening of the discharge port 44. When the cross-sectional area A of the opening of the delivery port 43 is the same as the cross-sectional area C of the cylindrical space 41, the swirling flow of the refrigerant gas is blown out from the delivery port 43 without being guided toward the discharge port 44. . Further, when the cross-sectional area B of the opening of the discharge port 44 is the same as the cross-sectional area C of the cylindrical space 41, the swirling flow of the refrigerant gas blows out from the discharge port 44. Further, by making the cross-sectional area A of the opening of the delivery port 43 larger than the cross-sectional area B of the opening of the discharge port 44, the flow path resistance at the delivery port 43 is reduced. As a result, the refrigerant gas is more likely to flow to the delivery port 43 than to the discharge port 44. As an example, A / B can be set to about 9.
 本実施の形態では、固定スクロール12の外周部に孔加工を施すことで第1の円筒状空間41aを形成し、主軸受部材11の外周部に孔加工を施すことで第2の円筒状空間41bを形成する。また、固定スクロール12の反ラップ側端面には、第1の円筒状空間41aに対し、接線方向に開口する溝を形成し、第1の円筒状空間41a側の溝の一部をマフラー19で覆うことで流入部42を構成している。また、送出口43は、マフラー19に形成した孔で構成し、この孔を第1の円筒状空間41aの開口に配置している。また、排出口44は、軸受けカバー45に形成した孔で構成し、この孔を第2の円筒状空間41bの開口に配置している。 In the present embodiment, the first cylindrical space 41 a is formed by drilling the outer peripheral portion of the fixed scroll 12, and the second cylindrical space is formed by drilling the outer peripheral portion of the main bearing member 11. 41b is formed. In addition, a groove that opens in a tangential direction is formed on the end surface on the non-wrap side of the fixed scroll 12 with respect to the first cylindrical space 41 a, and a part of the groove on the first cylindrical space 41 a side is formed by the muffler 19. The inflow part 42 is comprised by covering. Moreover, the delivery port 43 is comprised with the hole formed in the muffler 19, and this hole is arrange | positioned in opening of the 1st cylindrical space 41a. Further, the discharge port 44 is constituted by a hole formed in the bearing cover 45, and this hole is arranged in the opening of the second cylindrical space 41b.
 以下に本実施の形態によるオイル分離機構部40の作用を説明する。マフラー19内に吐出された冷媒ガスは、固定スクロール12に形成された流入部42を経て、円筒状空間41に導かれる。流入部42は円筒状空間41に対し、接線方向に開口しているため、流入部42から送出される冷媒ガスは、円筒状空間41の内壁面に沿って流れ、円筒状空間41の内周面で旋回流が発生する。この旋回流は、排出口44に向かった流れとなる。冷媒ガスには圧縮機構部10に給油されたオイルが含まれており、冷媒ガスが旋回している間に、比重の高いオイルは遠心力により円筒状空間41の内壁に付着し、冷媒ガスと分離する。 Hereinafter, the operation of the oil separation mechanism 40 according to the present embodiment will be described. The refrigerant gas discharged into the muffler 19 is guided to the cylindrical space 41 through the inflow portion 42 formed in the fixed scroll 12. Since the inflow portion 42 opens in a tangential direction with respect to the cylindrical space 41, the refrigerant gas delivered from the inflow portion 42 flows along the inner wall surface of the cylindrical space 41, and the inner periphery of the cylindrical space 41. A swirling flow is generated on the surface. This swirling flow is a flow toward the discharge port 44. The refrigerant gas contains oil supplied to the compression mechanism unit 10, and while the refrigerant gas is swirling, the oil having a high specific gravity adheres to the inner wall of the cylindrical space 41 by centrifugal force, and the refrigerant gas and To separate.
 円筒状空間41の内周面で発生した旋回流は、排出口44に到達後、又は排出口44近傍で折り返し、円筒状空間41の中心を通る上昇流に変わる。遠心力によりオイルを分離した冷媒ガスは、上昇流により送出口43に到達し、一方の容器内空間31に送出される。一方の容器内空間31に送出された冷媒ガスは、一方の容器内空間31に設けられた吐出管4から密閉容器1の外部に送り出され、冷凍サイクルに供給される。 The swirling flow generated on the inner peripheral surface of the cylindrical space 41 turns back after reaching the discharge port 44 or in the vicinity of the discharge port 44 and changes to an upward flow passing through the center of the cylindrical space 41. The refrigerant gas from which the oil has been separated by the centrifugal force reaches the delivery port 43 by the upward flow and is sent to the one container inner space 31. The refrigerant gas sent out to one container inner space 31 is sent out from the discharge pipe 4 provided in the one container inner space 31 to the outside of the sealed container 1 and supplied to the refrigeration cycle.
 また円筒状空間41で分離されたオイルは、少量の冷媒ガスとともに排出口44から圧縮機構側空間33に送り出される。圧縮機構側空間33に送り出されたオイルは、自重により密閉容器1の壁面や電動機部20の連通路を経て、貯オイル部2に至る。 Also, the oil separated in the cylindrical space 41 is sent out from the discharge port 44 to the compression mechanism side space 33 together with a small amount of refrigerant gas. The oil sent out to the compression mechanism side space 33 reaches the oil storage part 2 through the wall surface of the sealed container 1 and the communication path of the electric motor part 20 due to its own weight.
 圧縮機構側空間33に送り出された冷媒ガスは、圧縮機構部10の隙間を通過して一方の容器内空間31に至り、吐出管4から密閉容器1の外部に送り出される。 The refrigerant gas sent out to the compression mechanism side space 33 passes through the gap of the compression mechanism unit 10 to reach one container inner space 31 and is sent out from the discharge pipe 4 to the outside of the sealed container 1.
 本実施の形態によるオイル分離機構部40は、送出口43を流入部42よりも一方の容器内空間31側に形成し、排出口44を流入部42よりも他方の容器内空間32側に形成する。そのため、流入部42から排出口44までの間では、円筒状空間41の内周面で旋回流が発生し、排出口44から送出口43までの間では、円筒状空間41の中心部で旋回流と逆方向の流れが発生する。従って、排出口44が流入部42から離れるに従い、冷媒ガスの旋回回数が増え、オイルの分離効果が高まる。また旋回後の冷媒ガスは、旋回流の中心部を通過するため、送出口43は、流入部42よりも反排出口側にあればよい。すなわち、流入部42と排出口44との距離を可能な限り大きくすることで、オイル旋回分離の効果を高めることができる。 In the oil separation mechanism 40 according to the present embodiment, the outlet 43 is formed on the one container inner space 31 side with respect to the inflow part 42, and the outlet 44 is formed on the other container inner space 32 side with respect to the inflow part 42. To do. Therefore, a swirl flow is generated on the inner peripheral surface of the cylindrical space 41 between the inflow portion 42 and the discharge port 44, and swirl at the center of the cylindrical space 41 between the discharge port 44 and the delivery port 43. A flow in the opposite direction to the flow is generated. Therefore, as the discharge port 44 moves away from the inflow portion 42, the number of revolutions of the refrigerant gas increases and the oil separation effect increases. Further, since the swirling refrigerant gas passes through the central portion of the swirling flow, the delivery port 43 only needs to be on the side opposite to the discharge port from the inflow portion 42. That is, by increasing the distance between the inflow portion 42 and the discharge port 44 as much as possible, the effect of oil swirl separation can be enhanced.
 また、本実施の形態によるオイル分離機構部40は、容器内空間32に分離したオイルを貯留することなく、オイルを冷媒ガスとともに排出口44から排出するため、円筒状空間41の内周面で発生する旋回流を、排出口44の方向に導く作用を備えている。 In addition, the oil separation mechanism 40 according to the present embodiment discharges the oil together with the refrigerant gas from the discharge port 44 without storing the separated oil in the container inner space 32. An action of guiding the generated swirling flow toward the discharge port 44 is provided.
 仮に、円筒状空間41に排出口44を形成せず、円筒状空間41内にオイルを貯留すると、排出口44から外部に引っ張る流れが発生しないため、オイル面に到達する前に旋回流が消滅してしまうか、オイル面に到達するとオイルを巻き上げてしまう。また円筒状空間41に排出口44を形成せずに、オイル分離機能を発揮させるためには、オイルを貯留するに十分な空間を形成する必要がある。 If the discharge port 44 is not formed in the cylindrical space 41 and the oil is stored in the cylindrical space 41, the flow that pulls to the outside from the discharge port 44 does not occur, so the swirl flow disappears before reaching the oil surface. If it reaches the oil level, it will roll up the oil. Moreover, in order to exhibit the oil separation function without forming the discharge port 44 in the cylindrical space 41, it is necessary to form a space sufficient to store oil.
 しかし、本実施の形態によるオイル分離機構部40のように、オイルを冷媒ガスとともに排出口44から排出することで、旋回流を排出口44に導くことができるとともに、オイルの巻き上げもない。 However, as in the oil separation mechanism 40 according to the present embodiment, by discharging the oil together with the refrigerant gas from the discharge port 44, the swirl flow can be guided to the discharge port 44 and the oil is not wound up.
 本実施の形態によれば、圧縮機構部10で圧縮されてオイル分離機構部40から送出される、ほとんどの高温高圧の冷媒ガスは、一方の容器内空間31に導かれて吐出管4から吐出される。従って、ほとんどの高温高圧の冷媒ガスは、電動機部20を通過しないため、電動機部20が冷媒ガスにより加熱されることがなく、電動機部20の高効率化が図れる。 According to the present embodiment, most of the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 10 and delivered from the oil separation mechanism unit 40 is guided to the one container inner space 31 and discharged from the discharge pipe 4. Is done. Therefore, most of the high-temperature and high-pressure refrigerant gas does not pass through the electric motor unit 20, so that the electric motor unit 20 is not heated by the refrigerant gas, and the electric motor unit 20 can be highly efficient.
 また、本実施の形態によれば、ほとんどの高温高圧の冷媒ガスを、一方の容器内空間31に導くことで、他方の容器内空間32に接する圧縮機構部10の加熱を抑えることができるため、吸入冷媒ガスの加熱を抑制し、圧縮室15内での高い体積効率を得ることができる。 In addition, according to the present embodiment, most of the high-temperature and high-pressure refrigerant gas is guided to the one container inner space 31, so that the heating of the compression mechanism unit 10 in contact with the other container inner space 32 can be suppressed. In addition, the heating of the suction refrigerant gas can be suppressed, and high volumetric efficiency in the compression chamber 15 can be obtained.
 また、本実施の形態によれば、オイル分離機構部40で分離されたオイルを、冷媒ガスとともに他方の容器内空間32に排出するため、円筒状空間41内にはオイルが滞留することがほとんど無い。従って、分離したオイルが、旋回する冷媒ガスによって円筒状空間41内で吹き上げられ、送出口43から冷媒ガスとともに送出することがなく、安定したオイル分離を行える。更に、円筒状空間41内にオイルを滞留させないため、円筒状空間41を小さく構成できる。 In addition, according to the present embodiment, the oil separated by the oil separation mechanism 40 is discharged together with the refrigerant gas to the other container space 32, so that the oil is mostly retained in the cylindrical space 41. No. Therefore, the separated oil is blown up in the cylindrical space 41 by the swirling refrigerant gas and is not sent together with the refrigerant gas from the delivery port 43, so that stable oil separation can be performed. Further, since the oil is not retained in the cylindrical space 41, the cylindrical space 41 can be made small.
 また、本実施の形態によれば、貯オイル部2を貯オイル側空間34に配置し、圧縮機構側空間33ではオイルを貯留しないため、密閉容器1を小型化できる。また、本実施の形態によれば、圧縮機構部10の吐出口17を一方の容器内空間31から隔離するマフラー19を配設し、流入部42によって、マフラー19内と円筒状空間41とを連通することで、圧縮機構部10で圧縮された冷媒ガスを確実にオイル分離機構部40に導くことができる。すなわち、全ての冷媒ガスがオイル分離機構部40を通過することになるので、冷媒ガスから効率よくオイルを分離することができる。また、吐出口17から吐出されたほとんどの高温の冷媒ガスは、他方の容器内空間32を通過することなく、吐出管4から密閉容器1の外部に吐出されるため、電動機部20や圧縮機構部10の加熱を抑えることができる。 Further, according to the present embodiment, since the oil storage section 2 is arranged in the oil storage side space 34 and no oil is stored in the compression mechanism side space 33, the sealed container 1 can be reduced in size. Further, according to the present embodiment, the muffler 19 that isolates the discharge port 17 of the compression mechanism 10 from the one container inner space 31 is disposed, and the inside of the muffler 19 and the cylindrical space 41 are separated by the inflow portion 42. By communicating, the refrigerant gas compressed by the compression mechanism unit 10 can be reliably guided to the oil separation mechanism unit 40. That is, since all the refrigerant gas passes through the oil separation mechanism 40, the oil can be efficiently separated from the refrigerant gas. Further, since most of the high-temperature refrigerant gas discharged from the discharge port 17 is discharged from the discharge pipe 4 to the outside of the sealed container 1 without passing through the other container inner space 32, the electric motor unit 20 and the compression mechanism The heating of the part 10 can be suppressed.
 また、本実施の形態によれば、円筒状空間41を、固定スクロール12と主軸受部材11に形成したことで、吐出口17から吐出管4までの冷媒ガスが流れる経路を短く構成でき、密閉容器1を小型化できる。 Further, according to the present embodiment, since the cylindrical space 41 is formed in the fixed scroll 12 and the main bearing member 11, the path through which the refrigerant gas flows from the discharge port 17 to the discharge pipe 4 can be configured to be short and sealed. The container 1 can be reduced in size.
 ここで、本実施の形態において、システム定格条件における冷媒ガスの循環量をGkg/hとし、流入部42の円筒状空間41への開口の断面積をEmmとし、オイル分離機構部40の総数をNとすると、G/(E×N)が1以上4以下になるように構成されている。 Here, in this embodiment, the circulation amount of the refrigerant gas in the system rated conditions and Gkg / h, the cross-sectional area of the opening into the cylindrical space 41 of the inlet portion 42 and Emm 2, the total number of the oil separation mechanism 40 When N is N, G / (E × N) is configured to be 1 or more and 4 or less.
 冷媒ガスとオイルを遠心力により効率的に分離させるためには、円筒状空間41での旋回速度を上げる必要がある。そのためには、円筒状空間41への流入部42の開口の断面積を小さくする必要がある。 In order to efficiently separate refrigerant gas and oil by centrifugal force, it is necessary to increase the turning speed in the cylindrical space 41. For this purpose, it is necessary to reduce the cross-sectional area of the opening of the inflow portion 42 into the cylindrical space 41.
 しかし一方で、円筒状空間41への流入部42の開口の断面積を小さくしすぎると、吐出時の圧力損失が高まり圧縮機動力を増大させることになる。 However, on the other hand, if the cross-sectional area of the opening of the inflow portion 42 into the cylindrical space 41 is too small, the pressure loss during discharge increases and the compressor power increases.
 そこで、圧縮機動力を増大させない範囲でオイル分離効率を向上させるために、G/(E×N)を1以上4以下としている。 Therefore, G / (E × N) is set to 1 or more and 4 or less in order to improve oil separation efficiency within a range in which the compressor power is not increased.
 ここで、G/(E×N)を1以上としたのは、オイル分離機構部40の円筒状空間41への流入速度を高め、遠心力によるオイル分離を効率的に行うためである。 Here, G / (E × N) is set to 1 or more in order to increase the flow rate of the oil separation mechanism 40 into the cylindrical space 41 and efficiently perform oil separation by centrifugal force.
 図3は、G/(E×N)に対するオイル循環量基準比の関係を示している。ここで、オイル循環量基準比は、システム性能を急激に悪化させるオイル循環量を100%としている。図3に示すように、G/(E×N)が大きくなるに従って(=流入部42の円筒状空間41への開口の断面積を小さくする、若しくはオイル分離機構部40の数を少なくする)、オイル循環量基準比が小さくなることが分かる。そして、G/(E×N)が1以上になると、オイル循環量基準比の値が100%以下になる。 FIG. 3 shows the relationship of the oil circulation amount reference ratio with respect to G / (E × N). Here, the oil circulation amount reference ratio is defined as 100% of the oil circulation amount that rapidly deteriorates the system performance. As shown in FIG. 3, as G / (E × N) increases (= the cross-sectional area of the opening of the inflow portion 42 into the cylindrical space 41 is reduced, or the number of oil separation mechanism portions 40 is reduced). It can be seen that the oil circulation amount reference ratio becomes small. When G / (E × N) is 1 or more, the value of the oil circulation amount reference ratio is 100% or less.
 すなわち、G/(E×N)を1以上にすることで、システム性能に悪影響を及ぼさない範囲まで、オイル循環量を低減できる。 That is, by setting G / (E × N) to 1 or more, the amount of oil circulation can be reduced to a range that does not adversely affect the system performance.
 一方、G/(E×N)を4以下としたのは、圧縮機動力を増大させない範囲に吐出時の圧力損失を抑えるためである。 On the other hand, the reason why G / (E × N) is set to 4 or less is to suppress the pressure loss at the time of discharge in a range where the compressor power is not increased.
 図4は、G/(E×N)に対する圧縮機動力基準比の関係を示している。ここで、圧縮機動力基準比は、オイル分離機構部40を設けていない従来の圧縮機動力を100%としている。図4に示すように、G/(E×N)が小さくなるに従って(=円筒状空間41への流入部42の開口の断面積を大きくする、若しくはオイル分離機構部40の数を増やす)、圧縮機機動力基準比が小さくなることが分かる。そして、G/(E×N)を4以下にすることで、圧縮機動力基準比が100%以下となる。 FIG. 4 shows the relationship of the compressor power reference ratio with respect to G / (E × N). Here, the compressor power reference ratio is 100% of the conventional compressor power in which the oil separation mechanism 40 is not provided. As shown in FIG. 4, as G / (E × N) decreases (= the cross-sectional area of the opening of the inflow portion 42 into the cylindrical space 41 is increased, or the number of oil separation mechanism portions 40 is increased), It can be seen that the compressor power reference ratio becomes smaller. Then, by making G / (E × N) 4 or less, the compressor power reference ratio becomes 100% or less.
 すなわち、G/(E×N)を4以下にすることで、圧縮機動力を増大させない範囲に吐出時の圧力損失を抑えることができ、サイクル性能を向上させることができる。 That is, by setting G / (E × N) to 4 or less, pressure loss at the time of discharge can be suppressed in a range where the compressor power is not increased, and cycle performance can be improved.
 また、本発明におけるシステム定格条件とは、サイクル性能を評価する際に最も代表的な運転条件のことである。例えば、家庭用ヒートポンプ給湯機の場合では、日本工業規格において、JIS C9220という評価基準が定められており、システム定格条件とは、中間期標準加熱条件のことである。 In addition, the system rated condition in the present invention is the most typical operating condition when evaluating the cycle performance. For example, in the case of a household heat pump water heater, an evaluation standard of JIS C9222 is defined in Japanese Industrial Standard, and the system rated condition is an intermediate standard heating condition.
 (実施の形態2)
 図5は本発明の実施の形態2による圧縮機における圧縮機構部の要部拡大断面図である。本実施の形態の基本的な構成は、図1に開示した構成と同一であるので説明を省略する。また、図1及び図2で説明した構成と同一構成には同一符号を付して説明を一部省略する。
(Embodiment 2)
FIG. 5 is an enlarged cross-sectional view of the main part of the compression mechanism portion in the compressor according to Embodiment 2 of the present invention. The basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
 本実施の形態では、固定スクロール12の外周部に段付き孔加工を施すことで第1の円筒状空間41cと送出口43aを形成する。第1の円筒状空間41cは、主軸受部材11との締結面側端面(ラップ側端面)から貫通させない穴を加工して形成する。送出口43aは、主軸受部材11との締結面側端面(ラップ側端面)から、又は主軸受部材11との反締結面側端面(反ラップ側端面)から、第1の円筒状空間41cの断面よりも小さな孔を貫通させて形成する。 In the present embodiment, the first cylindrical space 41c and the outlet 43a are formed by performing stepped hole processing on the outer peripheral portion of the fixed scroll 12. The first cylindrical space 41 c is formed by processing a hole that does not penetrate from the fastening surface side end surface (lap side end surface) with the main bearing member 11. The delivery port 43a extends from the fastening surface side end surface (wrap side end surface) with the main bearing member 11 or from the anti-fastening surface side end surface (anti-wrap side end surface) with the main bearing member 11 to the first cylindrical space 41c. It is formed by penetrating a hole smaller than the cross section.
 また、主軸受部材11の外周部に段付き孔加工を施すことで第2の円筒状空間41dと排出口44aを形成する。第2の円筒状空間41dは、固定スクロール12との締結面(スラスト受面)から貫通させない穴を加工して形成する。排出口44aは、固定スクロール12との締結面(スラスト面)から、又は固定スクロール12との反締結面(反スラスト面)から、第2の円筒状空間41dの断面よりも小さな孔を貫通させて形成する。 Further, the second cylindrical space 41d and the discharge port 44a are formed by performing stepped hole processing on the outer peripheral portion of the main bearing member 11. The second cylindrical space 41d is formed by processing a hole that does not penetrate from the fastening surface (thrust receiving surface) with the fixed scroll 12. The discharge port 44a penetrates a hole smaller than the cross section of the second cylindrical space 41d from the fastening surface (thrust surface) with the fixed scroll 12 or from the anti-fastening surface (anti-thrust surface) with the fixed scroll 12. Form.
 また、流入部42aは、固定スクロール12の主軸受部材11との反締結面側端面(反ラップ側端面)から、第1の円筒状空間41cに対し、接線方向に開口する貫通孔を形成することで構成している。 Moreover, the inflow part 42a forms the through-hole opened in a tangential direction with respect to the 1st cylindrical space 41c from the anti-fastening surface side end surface (anti-wrap side end surface) with the main bearing member 11 of the fixed scroll 12. It consists of that.
 本実施の形態においても、オイル分離機構部40の作用は実施の形態1と同じであり、実施の形態1における作用、効果も同じであるので説明を省略する。 Also in the present embodiment, the operation of the oil separation mechanism unit 40 is the same as that of the first embodiment, and the operation and effect in the first embodiment are also the same, so the description thereof is omitted.
 (実施の形態3)
 図6は本発明の実施の形態3による圧縮機における圧縮機構部の要部拡大断面図である。本実施の形態の基本的な構成は、図1に開示した構成と同一であるので説明を省略する。また、図1及び図2で説明した構成と同一構成には同一符号を付して説明を一部省略する。
(Embodiment 3)
FIG. 6 is an enlarged cross-sectional view of the main part of the compression mechanism in the compressor according to Embodiment 3 of the present invention. The basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
 本実施の形態では、円筒状空間41内に筒状の送出パイプ46を設けている。送出パイプ46の一端46aは、送出口43を形成し、送出パイプ46の他端46bは円筒状空間41内に配置されている。なお、本実施の形態では、送出パイプ46の他端46bは第2の円筒状空間41b内に延出させている。送出パイプ46の外周にはリング状空間46cが形成され、流入部42がリング状空間46cに開口している。送出パイプ46の一端46aには、外方に延出させたフランジ46dを形成している。 In the present embodiment, a cylindrical delivery pipe 46 is provided in the cylindrical space 41. One end 46 a of the delivery pipe 46 forms a delivery outlet 43, and the other end 46 b of the delivery pipe 46 is disposed in the cylindrical space 41. In the present embodiment, the other end 46b of the delivery pipe 46 extends into the second cylindrical space 41b. A ring-shaped space 46c is formed on the outer periphery of the delivery pipe 46, and the inflow portion 42 opens into the ring-shaped space 46c. At one end 46a of the delivery pipe 46, a flange 46d extending outward is formed.
 流入部42から流入した冷媒ガスは、旋回流となって、リング状空間46cを通り、円筒状空間41の内周面に沿って排出口44に至り、その後、円筒状空間41の中心を逆流する。そして、送出パイプ46の他端46bから送出パイプ46内に流入し、送出パイプ46の一端46aから流出する。 The refrigerant gas flowing in from the inflow portion 42 becomes a swirling flow, passes through the ring-shaped space 46c, reaches the discharge port 44 along the inner peripheral surface of the cylindrical space 41, and then flows back in the center of the cylindrical space 41. To do. Then, it flows into the delivery pipe 46 from the other end 46 b of the delivery pipe 46 and flows out from one end 46 a of the delivery pipe 46.
 本実施の形態では、第1の円筒状空間41eは、固定スクロール12の外周部に段付き孔加工を施すことで形成している。すなわち、固定スクロール12の反ラップ側端面には、第1の円筒状空間41eの内周断面よりも大きな孔が形成され、この孔に送出パイプ46のフランジ46dが収められる。ここで、第2の円筒状空間41bは、実施の形態1と同様に主軸受部材11に形成しているが、実施の形態2と同様に主軸受部材11の外周部に段付き孔加工を施して形成してもよい。 In the present embodiment, the first cylindrical space 41e is formed by performing stepped hole processing on the outer peripheral portion of the fixed scroll 12. That is, a hole larger than the inner peripheral cross section of the first cylindrical space 41e is formed in the end surface on the side opposite to the wrap of the fixed scroll 12, and the flange 46d of the delivery pipe 46 is accommodated in this hole. Here, the second cylindrical space 41b is formed in the main bearing member 11 as in the first embodiment, but a stepped hole is formed in the outer peripheral portion of the main bearing member 11 as in the second embodiment. It may be formed by applying.
 本実施の形態に示すように、円筒状空間41内に送出パイプ46を設けることで、例えば、周波数を高くして圧縮機を運転する場合でも、オイル分離効果を確実に得ることができる。なお、送出パイプ46を設ける場合には、円筒状空間41の軸心と送出パイプ46の軸心とを一致させることが重要である。 As shown in the present embodiment, by providing the delivery pipe 46 in the cylindrical space 41, for example, even when the compressor is operated at a high frequency, the oil separation effect can be reliably obtained. When the delivery pipe 46 is provided, it is important that the axis of the cylindrical space 41 and the axis of the delivery pipe 46 are aligned.
 また、送出パイプ46を設ける場合には、送出パイプ46にフランジ46dを設け、このフランジ46dを円筒状空間41に形成した孔内に配置し、マフラー19で送出パイプ46を円筒状空間41に固定することが重要である。また、送出パイプ46の内径断面積Dは、排出口44の断面積Bよりも大きくする。これにより、冷媒ガスは排出口44よりも送出口43に流れやすくなる。一例として、D/Bは9程度に設定することができる。 Further, when the delivery pipe 46 is provided, the delivery pipe 46 is provided with a flange 46 d, the flange 46 d is disposed in a hole formed in the cylindrical space 41, and the delivery pipe 46 is fixed to the cylindrical space 41 by the muffler 19. It is important to. In addition, the inner diameter cross-sectional area D of the delivery pipe 46 is made larger than the cross-sectional area B of the discharge port 44. As a result, the refrigerant gas is more likely to flow to the delivery port 43 than to the discharge port 44. As an example, D / B can be set to about 9.
 本実施の形態によれば、円筒状空間41内に筒状の送出パイプ46を設けることで、円筒状空間41内でのオイル分離効果を高めることができる。送出パイプ46を設けた本実施の形態においても、オイル分離機構部40の基本的な作用は実施の形態1と同様であり、実施の形態1における作用、効果も同じであるので説明を省略する。 According to the present embodiment, by providing the cylindrical delivery pipe 46 in the cylindrical space 41, the oil separation effect in the cylindrical space 41 can be enhanced. Also in the present embodiment in which the delivery pipe 46 is provided, the basic operation of the oil separation mechanism unit 40 is the same as that of the first embodiment, and the operations and effects in the first embodiment are also the same, so the description is omitted. .
 (実施の形態4)
 図7は本発明の実施の形態4による圧縮機における圧縮機構部の要部拡大断面図である。本実施の形態の基本的な構成は、図1に開示した構成と同一であるので説明を省略する。また、図1及び図2で説明した構成と同一構成には同一符号を付して説明を一部省略する。
(Embodiment 4)
FIG. 7 is an enlarged cross-sectional view of a main part of a compression mechanism section in a compressor according to Embodiment 4 of the present invention. The basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
 本実施の形態では、円筒状空間41内に筒状の送出パイプ47を設けている。本実施の形態における送出パイプ47は、マフラー19と一体に形成されている。送出パイプ47の一端47aは、送出口43を形成し、送出パイプ47の他端47bは円筒状空間41内に配置されている。なお、本実施の形態では、送出パイプ47の他端47bは第2の円筒状空間41b内に延出させている。 In the present embodiment, a cylindrical delivery pipe 47 is provided in the cylindrical space 41. The delivery pipe 47 in the present embodiment is formed integrally with the muffler 19. One end 47 a of the delivery pipe 47 forms a delivery outlet 43, and the other end 47 b of the delivery pipe 47 is disposed in the cylindrical space 41. In the present embodiment, the other end 47b of the delivery pipe 47 extends into the second cylindrical space 41b.
 送出パイプ47の外周にはリング状空間47cが形成され、流入部42がリング状空間47cに開口している。流入部42から流入した冷媒ガスは、旋回流となって、リング状空間47cを通り、円筒状空間41の内周面に沿って排出口44に至り、その後、円筒状空間41の中心を逆流する。そして、送出パイプ47の他端47bから送出パイプ47内に流入し、送出パイプ47の一端47aから流出する。 A ring-shaped space 47c is formed on the outer periphery of the delivery pipe 47, and the inflow portion 42 opens into the ring-shaped space 47c. The refrigerant gas flowing in from the inflow portion 42 becomes a swirling flow, passes through the ring-shaped space 47c, reaches the discharge port 44 along the inner peripheral surface of the cylindrical space 41, and then flows back in the center of the cylindrical space 41. To do. Then, it flows into the delivery pipe 47 from the other end 47 b of the delivery pipe 47 and flows out from one end 47 a of the delivery pipe 47.
 本実施の形態に示すように、円筒状空間41内に送出パイプ47を設けることで、例えば、周波数を高くして圧縮機を運転する場合でも、オイル分離効果を確実に得ることができる。なお、送出パイプ47を設ける場合には、円筒状空間41の軸心と送出パイプ47の軸心とを一致させることが重要である。また、送出パイプ47を設ける場合には、送出パイプ47をマフラー19と一体に形成することで、送出パイプ47を円筒状空間41に固定することができる。また、送出パイプ47の内径断面積Dは、排出口44の断面積Bよりも大きくする。 As shown in the present embodiment, by providing the delivery pipe 47 in the cylindrical space 41, for example, even when the compressor is operated at a high frequency, the oil separation effect can be reliably obtained. When the delivery pipe 47 is provided, it is important that the axis of the cylindrical space 41 and the axis of the delivery pipe 47 are aligned. When the delivery pipe 47 is provided, the delivery pipe 47 can be fixed to the cylindrical space 41 by forming the delivery pipe 47 integrally with the muffler 19. In addition, the inner diameter cross-sectional area D of the delivery pipe 47 is made larger than the cross-sectional area B of the discharge port 44.
 本実施の形態によれば、円筒状空間41内に筒状の送出パイプ47を設けることで、円筒状空間41内でのオイル分離効果を高めることができる。 According to the present embodiment, by providing the cylindrical delivery pipe 47 in the cylindrical space 41, the oil separation effect in the cylindrical space 41 can be enhanced.
 送出パイプ47を設けた本実施の形態においても、オイル分離機構部40の基本的な作用は実施の形態1と同様であり、実施の形態1における作用、効果も同じであるので説明を省略する。 Also in the present embodiment in which the delivery pipe 47 is provided, the basic operation of the oil separation mechanism unit 40 is the same as that of the first embodiment, and the operations and effects in the first embodiment are also the same, so the description thereof is omitted. .
 なお、円筒状空間41は、実施の形態1と同様に固定スクロール12に形成した第1の円筒状空間41aと主軸受部材11に形成した第2の円筒状空間41bとで構成しているが、第2の円筒状空間41bを、実施の形態2と同様に主軸受部材11の外周部に段付き孔加工を施して形成してもよい。 The cylindrical space 41 is configured by a first cylindrical space 41a formed in the fixed scroll 12 and a second cylindrical space 41b formed in the main bearing member 11 as in the first embodiment. The second cylindrical space 41b may be formed by performing stepped hole processing on the outer peripheral portion of the main bearing member 11 as in the second embodiment.
 (実施の形態5)
 図8は本発明の実施の形態5による圧縮機の縦断面図である。本実施の形態の基本的な構成は、図1に開示した構成と同一であるので説明を省略する。
(Embodiment 5)
FIG. 8 is a longitudinal sectional view of a compressor according to Embodiment 5 of the present invention. The basic configuration of the present embodiment is the same as the configuration disclosed in FIG.
 本実施の形態では、円筒状空間41を構成する冷媒ガス旋回部材48を一方の容器内空間31に配置している。冷媒ガス旋回部材48は、マフラー19の外周面に設置している。冷媒ガス旋回部材48には、流入部42b、送出口43b、排出口44bが形成されている。 In the present embodiment, the refrigerant gas swirling member 48 constituting the cylindrical space 41 is disposed in one of the container inner spaces 31. The refrigerant gas swirling member 48 is installed on the outer peripheral surface of the muffler 19. The refrigerant gas swirling member 48 is formed with an inflow portion 42b, a delivery port 43b, and a discharge port 44b.
 流入部42bは、マフラー19内と円筒状空間41とを連通し、送出口43bは、円筒状空間41と一方の容器内空間31とを連通し、排出口44bは、円筒状空間41と一方の容器内空間31とを連通している。流入部42bの開口は、円筒状空間41の一端側内周面に形成する。そして、流入部42bは、圧縮機構部10から吐出される冷媒ガスをマフラー19内から円筒状空間41に流入させる。流入部42bは、円筒状空間41に対し、接線方向に開口している。 The inflow portion 42b communicates with the inside of the muffler 19 and the cylindrical space 41, the delivery port 43b communicates with the cylindrical space 41 and one of the container internal spaces 31, and the discharge port 44b communicates with the cylindrical space 41 with one side. The container interior space 31 is communicated with. The opening of the inflow portion 42 b is formed on the inner peripheral surface on one end side of the cylindrical space 41. The inflow portion 42 b allows the refrigerant gas discharged from the compression mechanism portion 10 to flow into the cylindrical space 41 from the muffler 19. The inflow portion 42 b opens in the tangential direction with respect to the cylindrical space 41.
 送出口43bは、円筒状空間41の一端側に形成し、少なくとも流入部42bよりも一端側に形成する。送出口43bは、円筒状空間41の一端側の端面に形成することが好ましい。そして、送出口43bは、円筒状空間41から一方の容器内空間31に、オイルを分離した冷媒ガスを送出する。 The delivery port 43b is formed on one end side of the cylindrical space 41 and is formed on at least one end side of the inflow portion 42b. The delivery port 43b is preferably formed on the end face on one end side of the cylindrical space 41. And the delivery port 43b sends out the refrigerant gas which isolate | separated oil from the cylindrical space 41 to the one container inner space 31. FIG.
 排出口44bは、円筒状空間41の他端側に形成し、少なくとも流入部42bよりも他端側に形成する。また、排出口44bは、送出口43bと対向して配置される。排出口44bは、円筒状空間41の他端側の端面の下部に形成することが好ましい。排出口44bは、円筒状空間41の他端側の側面に形成してもよい。ここで、対向とは、排出口44bが円筒状空間41の底面に設けられている場合だけでなく、円筒状空間41の側面に設けられている場合を含む。そして、排出口44bは、円筒状空間41から一方の容器内空間31に、分離したオイルと冷媒ガスの一部とを排出する。ここで、送出口43bの開口部の断面積Aは、円筒状空間41の断面積Cよりも小さく、排出口44bの開口部の断面積Bよりも大きくしている。 The discharge port 44b is formed on the other end side of the cylindrical space 41 and at least on the other end side than the inflow portion 42b. Moreover, the discharge port 44b is arrange | positioned facing the delivery port 43b. The discharge port 44b is preferably formed below the end surface on the other end side of the cylindrical space 41. The discharge port 44 b may be formed on the side surface on the other end side of the cylindrical space 41. Here, the term “opposing” includes not only the case where the discharge port 44 b is provided on the bottom surface of the cylindrical space 41, but also the case where it is provided on the side surface of the cylindrical space 41. The discharge port 44b discharges the separated oil and a part of the refrigerant gas from the cylindrical space 41 to the one in-container space 31. Here, the cross-sectional area A of the opening of the delivery port 43b is smaller than the cross-sectional area C of the cylindrical space 41 and larger than the cross-sectional area B of the opening of the discharge port 44b.
 以下に本実施の形態によるオイル分離機構部40の作用を説明する。マフラー19内に吐出された冷媒ガスは、マフラー19の上面に形成された流入部42bを経て、円筒状空間41に導かれる。流入部42bは円筒状空間41に対し、接線方向に開口しているため、流入部42bから送出される冷媒ガスは、円筒状空間41の内壁面に沿って流れ、円筒状空間41の内周面で旋回流が発生する。この旋回流は、排出口44bに向かった流れとなる。冷媒ガスには圧縮機構部10に給油されたオイルが含まれており、冷媒ガスが旋回している間に、比重の高いオイルは遠心力により円筒状空間41の内壁に付着し、冷媒ガスと分離する。 Hereinafter, the operation of the oil separation mechanism 40 according to the present embodiment will be described. The refrigerant gas discharged into the muffler 19 is guided to the cylindrical space 41 through an inflow portion 42 b formed on the upper surface of the muffler 19. Since the inflow portion 42 b opens in a tangential direction with respect to the cylindrical space 41, the refrigerant gas delivered from the inflow portion 42 b flows along the inner wall surface of the cylindrical space 41, and the inner periphery of the cylindrical space 41. A swirling flow is generated on the surface. This swirling flow is a flow toward the discharge port 44b. The refrigerant gas contains oil supplied to the compression mechanism unit 10, and while the refrigerant gas is swirling, the oil having a high specific gravity adheres to the inner wall of the cylindrical space 41 by centrifugal force, and the refrigerant gas and To separate.
 円筒状空間41の内周面で発生した旋回流は、排出口44bに到達後、又は排出口44b近傍で折り返し、円筒状空間41の中心を通る逆流に変わる。遠心力によりオイルを分離した冷媒ガスは、円筒状空間41の中心を通る流れにより送出口43bに到達し、一方の容器内空間31に送出される。一方の容器内空間31に送出された冷媒ガスは、一方の容器内空間31に設けられた吐出管4から密閉容器1の外部に送り出され、冷凍サイクルに供給される。 The swirling flow generated on the inner peripheral surface of the cylindrical space 41 turns back after reaching the discharge port 44b or in the vicinity of the discharge port 44b and changes to a reverse flow passing through the center of the cylindrical space 41. The refrigerant gas from which the oil has been separated by the centrifugal force reaches the delivery port 43b by a flow passing through the center of the cylindrical space 41, and is delivered to the one in-container space 31. The refrigerant gas sent out to one container inner space 31 is sent out from the discharge pipe 4 provided in the one container inner space 31 to the outside of the sealed container 1 and supplied to the refrigeration cycle.
 また円筒状空間41で分離されたオイルは、自重により一方に偏って溜まり、排出口44bが他端側の端面の下部又は円筒状空間41の下部に形成しているので、オイルを容易に排出できる。分離されたオイルは、少量の冷媒ガスとともに排出口44bからマフラー19上面に送り出される。マフラー19上面に送り出されたオイルは、自重により圧縮機構部10の隙間を通って一方の容器内空間31から圧縮機構側空間33に至り、更に密閉容器1の壁面や電動機部20の連通路を経て、貯オイル部2に至る。排出口44bから送り出された冷媒ガスは、一方の容器内空間31に設けられた吐出管4から密閉容器1の外部に送り出され、冷凍サイクルに供給される。 Also, the oil separated in the cylindrical space 41 accumulates in one direction due to its own weight, and the discharge port 44b is formed in the lower part of the end face on the other end side or the lower part of the cylindrical space 41, so that the oil is easily discharged. it can. The separated oil is sent to the upper surface of the muffler 19 from the discharge port 44b together with a small amount of refrigerant gas. The oil sent to the upper surface of the muffler 19 passes through the gap of the compression mechanism portion 10 due to its own weight, reaches the compression mechanism side space 33 from one container inner space 31, and further passes through the wall surface of the sealed container 1 and the communication path of the electric motor portion 20. Then, the oil storage unit 2 is reached. The refrigerant gas sent out from the discharge port 44b is sent out from the discharge pipe 4 provided in one container inner space 31 to the outside of the sealed container 1 and supplied to the refrigeration cycle.
 本実施の形態によるオイル分離機構部40は、送出口43bを流入部42bよりも円筒状空間41の一端側に形成し、排出口44bを流入部42bよりも円筒状空間41の他端側に形成する。そのため、流入部42bから排出口44bまでの間では、円筒状空間41の内周面で旋回流が発生し、排出口44bから送出口43bまでの間では、円筒状空間41の中心部で旋回流と逆方向の流れが発生する。従って、排出口44bが流入部42bから離れるに従い、冷媒ガスの旋回回数が増え、オイルの分離効果が高まる。また旋回後の冷媒ガスは、旋回流の中心部を通過するため、送出口43bは、流入部42bよりも反排出口側にあればよい。すなわち、流入部42bと排出口44bとの距離を可能な限り大きくすることで、オイル旋回分離の効果を高めることができる。 In the oil separation mechanism 40 according to the present embodiment, the outlet 43b is formed on one end side of the cylindrical space 41 with respect to the inflow portion 42b, and the discharge port 44b is on the other end side of the cylindrical space 41 with respect to the inflow portion 42b. Form. Therefore, a swirl flow is generated on the inner peripheral surface of the cylindrical space 41 between the inflow portion 42b and the discharge port 44b, and swirl at the center of the cylindrical space 41 between the discharge port 44b and the delivery port 43b. A flow in the opposite direction to the flow is generated. Therefore, as the discharge port 44b moves away from the inflow portion 42b, the number of times the refrigerant gas turns increases and the oil separation effect increases. Moreover, since the refrigerant gas after turning passes through the center of the swirling flow, the delivery port 43b only needs to be on the side opposite to the outlet than the inflow portion 42b. That is, the effect of oil swirl separation can be enhanced by increasing the distance between the inflow portion 42b and the discharge port 44b as much as possible.
 また、本実施の形態によるオイル分離機構部40は、円筒状空間41に分離したオイルを貯留することなく、オイルを冷媒ガスとともに排出口44bから排出するため、円筒状空間41の内周面で発生する旋回流を、排出口44bの方向に導く作用を備えている。 In addition, the oil separation mechanism 40 according to the present embodiment discharges the oil together with the refrigerant gas from the discharge port 44b without storing the oil separated in the cylindrical space 41. An action of guiding the generated swirling flow toward the discharge port 44b is provided.
 仮に、円筒状空間41に排出口44bを形成せず、円筒状空間41内にオイルを貯留すると、排出口44bから外部に引っ張る流れが発生しないため、旋回流がオイルを巻き上げてしまう。また円筒状空間41に排出口44bを形成せずに、オイル分離機能を発揮させるためには、オイルを貯留するに十分な空間を形成する必要がある。しかし、本実施の形態によるオイル分離機構部40のように、オイルを冷媒ガスとともに排出口44bから排出することで、旋回流を排出口44bに導くことができるとともに、オイルの巻き上げもない。 Temporarily, if the discharge port 44b is not formed in the cylindrical space 41 and the oil is stored in the cylindrical space 41, a flow that pulls to the outside from the discharge port 44b does not occur, and the swirling flow winds up the oil. Further, in order to exhibit the oil separation function without forming the discharge port 44b in the cylindrical space 41, it is necessary to form a space sufficient to store oil. However, by discharging the oil from the discharge port 44b together with the refrigerant gas as in the oil separation mechanism unit 40 according to the present embodiment, the swirling flow can be guided to the discharge port 44b and the oil is not wound up.
 本実施の形態によれば、圧縮機の軸方向寸法を変えることなく、旋回分離を行うことが可能となる。また冷媒ガスの旋回回数を多くするため、円筒状空間41、さらに詳しくは流入部42bと排出口44bとの距離を大きくすることも可能となる。これにより圧縮機自体の寸法を維持したまま、オイル分離機構部40を密閉容器1の内部に備えることができ、さらにはオイル旋回分離の効果も高めることができる。 According to the present embodiment, it is possible to perform swivel separation without changing the axial dimension of the compressor. Further, in order to increase the number of revolutions of the refrigerant gas, it is possible to increase the distance between the cylindrical space 41, more specifically, the distance between the inflow portion 42b and the discharge port 44b. As a result, the oil separation mechanism 40 can be provided inside the sealed container 1 while maintaining the dimensions of the compressor itself, and the effect of oil swirl separation can be enhanced.
 また、本実施の形態によれば、円筒状空間41を構成する冷媒ガス旋回部材48を一方の容器内空間31に配置することで、吐出口17から吐出管4までの冷媒ガスが流れる経路を短く構成でき、密閉容器1を小型化できる。 Further, according to the present embodiment, the refrigerant gas swirling member 48 constituting the cylindrical space 41 is arranged in the one container inner space 31, so that a path through which the refrigerant gas flows from the discharge port 17 to the discharge pipe 4 can be obtained. It can be configured to be short and the sealed container 1 can be miniaturized.
 本実施の形態によれば、圧縮機構部10で圧縮され、オイル分離機構部40から送出される高温高圧の冷媒ガスは、一方の容器内空間31に導かれて吐出管4から吐出される。従って、高温高圧の冷媒ガスは、電動機部20を通過しないため、電動機部20が冷媒ガスにより加熱されることがなく、電動機部20の高効率化が図れる。 According to the present embodiment, the high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 10 and delivered from the oil separation mechanism unit 40 is guided to the one container inner space 31 and discharged from the discharge pipe 4. Therefore, since the high-temperature and high-pressure refrigerant gas does not pass through the electric motor unit 20, the electric motor unit 20 is not heated by the refrigerant gas, and the electric motor unit 20 can be highly efficient.
 また、本実施の形態によれば、高温高圧の冷媒ガスを、一方の容器内空間31に導くことで、他方の容器内空間32に接する圧縮機構部10の加熱を抑えることができるため、吸入冷媒ガスの加熱を抑制し、圧縮室15内での高い体積効率を得ることができる。 Further, according to the present embodiment, since the high-temperature and high-pressure refrigerant gas is guided to the one container inner space 31, it is possible to suppress the heating of the compression mechanism unit 10 in contact with the other container inner space 32. Heating of the refrigerant gas can be suppressed, and high volumetric efficiency in the compression chamber 15 can be obtained.
 また、本実施の形態によれば、オイル分離機構部40で分離されたオイルを、冷媒ガスとともに一方の容器内空間31に排出するため、円筒状空間41内にはオイルが滞留することがほとんど無い。従って、分離したオイルが、旋回する冷媒ガスによって円筒状空間41内で吹き上げられ、送出口43bから冷媒ガスとともに送出することがなく、安定したオイル分離を行える。更に、円筒状空間41内にオイルを滞留させないため、円筒状空間41を小さく構成できる。また、本実施の形態によれば、貯オイル部2を貯オイル側空間34に配置し、圧縮機構側空間33ではオイルを貯留しないため、密閉容器1を小型化できる。 Further, according to the present embodiment, the oil separated by the oil separation mechanism 40 is discharged together with the refrigerant gas into the one container inner space 31, so that the oil is mostly retained in the cylindrical space 41. No. Therefore, the separated oil is blown up in the cylindrical space 41 by the swirling refrigerant gas, and is not sent together with the refrigerant gas from the delivery port 43b, so that stable oil separation can be performed. Further, since the oil is not retained in the cylindrical space 41, the cylindrical space 41 can be made small. Moreover, according to this Embodiment, since the oil storage part 2 is arrange | positioned in the oil storage side space 34 and oil is not stored in the compression mechanism side space 33, the airtight container 1 can be reduced in size.
 また、本実施の形態によれば、圧縮機構部10の吐出口17を一方の容器内空間31から隔離するマフラー19を配設し、流入部42bによって、マフラー19内と円筒状空間41とを連通することで、圧縮機構部10で圧縮された冷媒ガスを確実にオイル分離機構部40に導くことができる。すなわち、全ての冷媒ガスがオイル分離機構部40を通過することになるので、冷媒ガスから効率よくオイルを分離することができる。また、吐出口17から吐出された高温の冷媒ガスは、他方の容器内空間32を通過することなく、吐出管4から密閉容器1の外部に吐出されるため、電動機部20や圧縮機構部10の加熱を抑えることができる。 Further, according to the present embodiment, the muffler 19 that isolates the discharge port 17 of the compression mechanism unit 10 from the one container inner space 31 is disposed, and the inside of the muffler 19 and the cylindrical space 41 are separated by the inflow portion 42b. By communicating, the refrigerant gas compressed by the compression mechanism unit 10 can be reliably guided to the oil separation mechanism unit 40. That is, since all the refrigerant gas passes through the oil separation mechanism 40, the oil can be efficiently separated from the refrigerant gas. Further, since the high-temperature refrigerant gas discharged from the discharge port 17 is discharged from the discharge pipe 4 to the outside of the sealed container 1 without passing through the other container inner space 32, the electric motor unit 20 and the compression mechanism unit 10. Can be suppressed.
 上記各実施の形態における圧縮機においては、円筒状空間41を2つ以上設けてもよい。 In the compressor in each of the above embodiments, two or more cylindrical spaces 41 may be provided.
 また、上記各実施の形態における圧縮機においては、冷媒として二酸化炭素を用いることができる。二酸化炭素は高温冷媒であり、このような高温冷媒を用いる場合には、本発明は更に有効である。また、冷媒として二酸化炭素を用いる場合には、オイルとしてポリアルキレングリコールを主成分とするオイル(PAG)を用いることが好ましい。PAGは難相溶性オイルであり、二酸化炭素冷媒と溶け合うことがなく、お互いに分離した状態で混在している。そのため、円筒状空間41に冷媒ガスとPAGが導入されると、冷媒ガスに対し比重の高いPAGには大きな遠心力が働く。結果として、PAGは外周方向へと飛ばされ、円筒状空間41の内壁に付着するため、冷媒ガスと分離することができる。すなわち、難相溶性オイル(もしくは非相溶性オイル)に対しては、本発明に係る効果が顕著に表れる。 Further, in the compressor in each of the above embodiments, carbon dioxide can be used as the refrigerant. Carbon dioxide is a high-temperature refrigerant, and the present invention is more effective when such a high-temperature refrigerant is used. When carbon dioxide is used as the refrigerant, it is preferable to use oil (PAG) mainly composed of polyalkylene glycol as the oil. PAG is a poorly compatible oil, does not dissolve in carbon dioxide refrigerant, and is mixed in a state separated from each other. Therefore, when the refrigerant gas and the PAG are introduced into the cylindrical space 41, a large centrifugal force acts on the PAG having a high specific gravity with respect to the refrigerant gas. As a result, the PAG is blown away in the outer peripheral direction and adheres to the inner wall of the cylindrical space 41, so that it can be separated from the refrigerant gas. That is, the effect according to the present invention is remarkably exhibited with respect to incompatible oil (or incompatible oil).
 (実施の形態6)
 本実施の形態の基本的な構成は、図1に開示した構成と同一であるので説明を省略する。また、図1及び図2で説明した構成と同一構成には同一符号を付して説明を一部省略する。
(Embodiment 6)
The basic configuration of the present embodiment is the same as the configuration disclosed in FIG. Further, the same components as those described in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is partially omitted.
 図9は本発明の実施の形態6における圧縮機構部の要部拡大断面図である。 FIG. 9 is an enlarged cross-sectional view of the main part of the compression mechanism in the sixth embodiment of the present invention.
 また、図9に示すように、円筒状空間41での冷媒ガスの旋回方向を統一させるように、対称となる位置関係に流入部42を2個配置している。 Further, as shown in FIG. 9, two inflow portions 42 are arranged in a symmetrical positional relationship so that the turning direction of the refrigerant gas in the cylindrical space 41 is unified.
 これにより、一方のオイル分離機構部40の送出口43から送出された冷媒ガスの一方の容器内空間31での流れの方向と、他方のオイル分離機構部40cの送出口43cから送出された冷媒ガスの一方の容器内空間31での流れ方向とが一致し、冷媒ガスは一方の容器内空間31の内壁面に沿って流れ、一方の容器内空間31の内周面で旋回流が発生する。一方の容器内空間31で発生する冷媒ガスの旋回流の流れ方向は、円筒状空間41で発生している冷媒ガスの旋回流の流れ方向と一致する。 Thereby, the direction of the flow of the refrigerant gas sent out from the outlet 43 of the one oil separation mechanism 40 in the one container inner space 31 and the refrigerant sent out from the outlet 43c of the other oil separation mechanism 40c. The flow direction of the gas in the one container inner space 31 coincides, the refrigerant gas flows along the inner wall surface of the one container inner space 31, and a swirling flow is generated on the inner peripheral surface of the one container inner space 31. . The flow direction of the swirling flow of the refrigerant gas generated in one of the container spaces 31 coincides with the flow direction of the swirling flow of the refrigerant gas generated in the cylindrical space 41.
 オイル分離機構部40から一方の容器内空間31に送出された冷媒ガスには、オイル分離機構部40で分離しきれなかったオイルが含まれており、冷媒ガスが旋回している間に、比重の高いオイルは遠心力により一方の容器内空間31の内壁に付着し、冷媒ガスと分離する。その後、冷媒ガスは、一方の容器内空間31に設けられた吐出管4から密閉容器1の外部に送り出され、冷凍サイクルに供給される。 The refrigerant gas sent from the oil separation mechanism unit 40 to the one container inner space 31 contains oil that could not be separated by the oil separation mechanism unit 40. High oil adheres to the inner wall of one container inner space 31 by centrifugal force and separates from the refrigerant gas. Thereafter, the refrigerant gas is sent out of the sealed container 1 from the discharge pipe 4 provided in the one container inner space 31 and supplied to the refrigeration cycle.
 また、一方の容器内空間31で分離されたオイルは自重により、貯オイル部2に至る。その結果として、オイル循環量を低減できる。 Further, the oil separated in the one container inner space 31 reaches the oil storage section 2 by its own weight. As a result, the amount of oil circulation can be reduced.
 なお、図9ではオイル分離機構部40を2個配置した形態を示しているが、本実施形態の効果を奏する範囲内で2個以上配置しても良い。 In addition, although the form which has arrange | positioned two oil separation mechanism parts 40 is shown in FIG. 9, you may arrange | position two or more within the range with the effect of this embodiment.
 本発明は、スクロール圧縮機やロータリー圧縮機など、密閉容器内に圧縮機構部と電動機部を有する圧縮機に適用でき、特に高温冷媒を用いる圧縮機に適している。 The present invention can be applied to a compressor having a compression mechanism section and an electric motor section in a sealed container such as a scroll compressor and a rotary compressor, and is particularly suitable for a compressor using a high-temperature refrigerant.

Claims (5)

  1.  冷媒ガスを圧縮する圧縮機構部と、前記圧縮機構部を駆動する電動機部とを密閉容器内に備え、
     前記圧縮機構部によって、前記密閉容器内を、一方の容器内空間と他方の容器内空間に分割し、
     前記一方の容器内空間から前記密閉容器の外部に前記冷媒ガスを吐出する吐出管を設け、前記他方の容器内空間に前記電動機部を配置した圧縮機であって、
     前記圧縮機構部から吐出される前記冷媒ガスからオイルを分離するオイル分離機構部を設け、
     前記オイル分離機構部が、
     前記冷媒ガスを旋回させる円筒状空間と、
     前記圧縮機構部から吐出される前記冷媒ガスを前記円筒状空間に流入させる流入部と、
     前記円筒状空間から前記一方の容器内空間に、前記オイルを分離した前記冷媒ガスを送出する送出口と、分離した前記オイルと前記冷媒ガスの一部とを前記円筒状空間から前記他方の容器内空間に排出する排出口と、
    を有し、
     前記流入部から前記オイル分離機構部に流入する前記冷媒ガスのシステム定格条件における循環量をGkg/hとし、前記オイル分離機構部を構成する前記流入部の前記円筒状空間への開口の断面積をEmmとし、前記オイル分離機構部の総数をNとすると、G/(E×N)が1以上4以下であることを特徴とする圧縮機。
    A compression mechanism that compresses the refrigerant gas, and an electric motor that drives the compression mechanism are provided in a sealed container.
    By the compression mechanism, the inside of the sealed container is divided into one container inner space and the other container inner space,
    A compressor in which a discharge pipe for discharging the refrigerant gas from the one container inner space to the outside of the sealed container is provided, and the electric motor unit is disposed in the other container inner space;
    An oil separation mechanism for separating oil from the refrigerant gas discharged from the compression mechanism;
    The oil separation mechanism is
    A cylindrical space for swirling the refrigerant gas;
    An inflow portion for allowing the refrigerant gas discharged from the compression mechanism portion to flow into the cylindrical space;
    An outlet for delivering the refrigerant gas from which the oil has been separated from the cylindrical space to the one container inner space, and the separated oil and a part of the refrigerant gas from the cylindrical space to the other container. A discharge port for discharging into the inner space;
    Have
    The circulation amount of the refrigerant gas flowing from the inflow part into the oil separation mechanism part under a system rated condition is Gkg / h, and the sectional area of the opening of the inflow part constituting the oil separation mechanism part to the cylindrical space Is Emm 2 and G / (E × N) is 1 or more and 4 or less, where N is the total number of the oil separation mechanisms.
  2.  前記圧縮機構部が、
     固定スクロールと、
     前記固定スクロールと対向配置された旋回スクロールと、
     前記旋回スクロールを駆動するシャフトを軸支する主軸受部材とを備え、
     前記円筒状空間を、前記固定スクロールと前記主軸受部材とに形成し、
     前記排出口を前記他方の容器内空間に連通させたことを特徴とする請求項1に記載の圧縮機。
    The compression mechanism section is
    With fixed scrolling,
    A turning scroll disposed opposite to the fixed scroll;
    A main bearing member that pivotally supports a shaft that drives the orbiting scroll;
    Forming the cylindrical space in the fixed scroll and the main bearing member;
    The compressor according to claim 1, wherein the discharge port communicates with the other container inner space.
  3.  前記オイル分離機構部を複数配置した圧縮機において、前記オイル分離機構部を構成する前記円筒状空間での前記冷媒ガスの流れ方向を統一するように、前記流入部を配置させたことを特徴とする請求項1又は請求項2記載の圧縮機。 In the compressor in which a plurality of the oil separation mechanism portions are arranged, the inflow portion is arranged so as to unify the flow direction of the refrigerant gas in the cylindrical space constituting the oil separation mechanism portion. The compressor according to claim 1 or 2.
  4.  前記冷媒ガスが、二酸化炭素であることを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the refrigerant gas is carbon dioxide.
  5.  前記オイルの、主成分がポリアルキレングリコールであることを特徴とする請求項1から請求項4のいずれかに記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein a main component of the oil is polyalkylene glycol.
PCT/JP2013/002986 2012-05-10 2013-05-09 Compressor WO2013168430A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001845.6A CN103635695B (en) 2012-05-10 2013-05-09 Compressor
JP2013544610A JP6108276B2 (en) 2012-05-10 2013-05-09 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012108253 2012-05-10
JP2012-108253 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013168430A1 true WO2013168430A1 (en) 2013-11-14

Family

ID=49550493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002986 WO2013168430A1 (en) 2012-05-10 2013-05-09 Compressor

Country Status (3)

Country Link
JP (1) JP6108276B2 (en)
CN (1) CN103635695B (en)
WO (1) WO2013168430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020992A1 (en) * 2016-07-28 2018-02-01 パナソニックIpマネジメント株式会社 Compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180295A (en) * 2003-12-19 2005-07-07 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2008088929A (en) * 2006-10-04 2008-04-17 Sanden Corp Hermetic compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103225B2 (en) * 1998-06-24 2008-06-18 株式会社日本自動車部品総合研究所 Compressor
JP4009112B2 (en) * 2002-01-24 2007-11-14 カルソニックコンプレッサー株式会社 Gas compressor
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator
JP2008082238A (en) * 2006-09-27 2008-04-10 Sanden Corp Compressor with built-in oil separator
JP5046983B2 (en) * 2008-01-31 2012-10-10 三菱重工業株式会社 Scroll compressor
CN102072158A (en) * 2011-03-08 2011-05-25 上海威乐汽车空调器有限公司 High-efficiency vehicle air conditioner vortex compressor oil separating mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180295A (en) * 2003-12-19 2005-07-07 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2008088929A (en) * 2006-10-04 2008-04-17 Sanden Corp Hermetic compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020992A1 (en) * 2016-07-28 2018-02-01 パナソニックIpマネジメント株式会社 Compressor
CN109477474A (en) * 2016-07-28 2019-03-15 松下知识产权经营株式会社 Compressor
JPWO2018020992A1 (en) * 2016-07-28 2019-05-16 パナソニックIpマネジメント株式会社 Compressor
CN109477474B (en) * 2016-07-28 2020-12-18 松下知识产权经营株式会社 Compressor with a compressor housing having a plurality of compressor blades
JP7113353B2 (en) 2016-07-28 2022-08-05 パナソニックIpマネジメント株式会社 compressor

Also Published As

Publication number Publication date
CN103635695A (en) 2014-03-12
CN103635695B (en) 2016-01-20
JP6108276B2 (en) 2017-04-05
JPWO2013168430A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5255157B2 (en) Compressor
JP5039869B1 (en) Compressor
JP5861035B2 (en) Compressor
JP6021075B2 (en) Compressor
JP5494691B2 (en) Compressor
JP5126387B2 (en) Compressor
JP5609770B2 (en) Compressor
JP6108276B2 (en) Compressor
JP6134906B2 (en) Compressor
JP5626253B2 (en) Compressor
WO2012127547A1 (en) Compressor
JP6019385B2 (en) Compressor
JP2013185531A (en) Compressor
JP6090169B2 (en) Compressor
JP6108275B2 (en) Compressor
JP5360258B2 (en) Compressor
JP6090170B2 (en) Compressor
JP5938560B2 (en) Compressor
JP6120173B2 (en) Compressor
JP5934912B2 (en) Compressor
JP5445525B2 (en) Compressor
JP2013224625A (en) Compressor
JP2013096352A (en) Compressor
JP2013213478A (en) Compressor
JP2013224594A (en) Compressor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544610

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788262

Country of ref document: EP

Kind code of ref document: A1