WO2013168274A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2013168274A1
WO2013168274A1 PCT/JP2012/062050 JP2012062050W WO2013168274A1 WO 2013168274 A1 WO2013168274 A1 WO 2013168274A1 JP 2012062050 W JP2012062050 W JP 2012062050W WO 2013168274 A1 WO2013168274 A1 WO 2013168274A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
along
axis
base
magnetic field
Prior art date
Application number
PCT/JP2012/062050
Other languages
French (fr)
Japanese (ja)
Inventor
純 鈴木
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/062050 priority Critical patent/WO2013168274A1/en
Publication of WO2013168274A1 publication Critical patent/WO2013168274A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means

Definitions

  • the present invention relates to a technical field of a driving device such as a MEMS scanner that rotates a driven object such as a mirror.
  • MEMS Micro Electro Mechanical System
  • a display field in which light incident from a light source is scanned with respect to a predetermined screen region to embody an image, or light reflected by scanning light with respect to a predetermined screen region.
  • a micro-structured mirror driving device optical scanner or MEMS scanner
  • a mirror driving device includes a fixed main body serving as a base, a mirror that can rotate around a predetermined rotation axis, and a torsion bar (twisting member) that connects or joins the main body and the mirror.
  • the structure provided is known (refer patent document 1).
  • a configuration in which a mirror is driven using a coil and a magnet is generally used.
  • a configuration in which a coil is directly attached to the mirror so as to surround the mirror can be given as an example.
  • a force in the rotational direction is applied to the mirror by the interaction between the magnetic field generated by passing a current through the coil and the magnetic field of the magnet, and as a result, the mirror is rotated.
  • Patent Document 1 described above a configuration is adopted in which the coil and the magnet are arranged so as to cause distortion in the twisting direction (in other words, the rotation axis direction of the mirror) of the torsion bar.
  • the torsion bar is distorted in the twisting direction due to the interaction between the magnetic field generated by passing a current through the coil and the magnetic field of the magnet, and the distortion in the twisting direction of the torsion bar rotates the mirror.
  • the coil since the coil is arranged so as to surround the mirror, the coil becomes relatively large. As a result, the magnet for applying a magnetic field to the coil is also relatively large. This causes a technical problem that the magnetic gap between the coil and the magnet becomes large and the MEMS scanner cannot be downsized.
  • the coil since the coil is arranged so as to surround the mirror, the arrangement of the magnet is limited or it is difficult to arrange the magnet at a suitable position. Specifically, since the reflection of light by the mirror is hindered, it is possible to arrange a magnet above the center of the coil (specifically, above the inside of the coil winding (that is, above the mirror). Have difficulty.
  • the present invention uses a coil and a magnet to drive a mirror (or a driven object to be rotated) while driving a relatively small driving device (that is, It is an object to provide a MEMS scanner.
  • the drive device connects the first base portion, the second base portion supported by the first base portion, the first base portion and the second base portion, and A first elastic portion having elasticity that rotates the second base portion about an axis along another direction as a rotation axis, a rotatable driven portion, and the second base portion and the driven portion are connected to each other. And a second elastic part having elasticity for rotating the driven part about an axis along one direction different from the other direction as a rotation axis, and a second elastic part disposed on the second base part.
  • the driven portion is sandwiched between the first coil portion and the first coil portion, which is a one-coil portion and the driven portion is disposed outside the winding of the first coil portion.
  • a second coil portion disposed on the base portion, and the second coil A second coil part in which the driven part is disposed outside a winding of the part, and a magnetic field applying part that applies a magnetic field to the first coil part and the second coil part, and the first coil
  • the part is arranged so that the center of the first coil part is located at a position offset along the one direction from the rotation axis of the second base part.
  • the driving apparatus of the present embodiment connects the first base portion, the second base portion supported by the first base portion, the first base portion and the second base portion, and the second base portion.
  • a first elastic part having elasticity such that an axis along the other direction is a rotation axis
  • a rotatable driven part such that an axis along the other direction is a rotation axis
  • a rotatable driven part such that an axis along the other direction is a rotation axis
  • a rotatable driven part such that an axis along the other direction is a rotation axis
  • a rotatable driven part such that an axis along the other direction is a rotation axis
  • the second base part and the driven part and
  • a first coil part disposed on the second base part. And on the base portion so as to sandwich the driven portion between the first coil portion and
  • a second coil part disposed on the outside of the winding of the second coil part A second coil unit in which the driven unit is disposed, and a magnetic field applying unit that applies a magnetic field to the first coil unit and the second coil unit, wherein the first coil unit includes the second coil unit It arrange
  • the first base portion serving as the base and the second base portion supported by the first base portion have the first elastic portion having elasticity (for example, a first torsion bar described later). Etc.) directly or indirectly.
  • the second base portion and a driven portion (for example, a mirror described later) rotatably arranged are directly or by a second elastic portion (for example, a second torsion bar described later) having elasticity. Connected indirectly.
  • the second base portion has elasticity of the first elastic portion (for example, elasticity that allows the second base portion to rotate about an axis along another direction (for example, an X-axis direction described later) as a rotation axis).
  • an axis along another direction different from one direction is rotated as a rotation axis. Therefore, the driven part connected via the second base part and the second elastic part also rotates about the axis along the other direction as the rotation axis.
  • the driven part is made by the elasticity of the second elastic part (for example, the elasticity that the driven part can be rotated about an axis along one direction (for example, a Y-axis direction described later) as a rotation axis).
  • the axis along one direction is rotated as a rotation axis. That is, the driving device of the present embodiment can perform biaxial driving of the driven part.
  • the drive apparatus of this embodiment may perform multi-axis drive (for example, 3-axis drive, 4-axis drive,...) Of the driven part.
  • the first coil portion is disposed so that the center of the first coil portion is located at a position offset along one direction from the rotation axis of the second base portion.
  • the rotation axis of the first coil portion along the other direction is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction.
  • the second coil portion may be arranged such that the center of the first coil portion is located at a position offset along one direction from the rotation axis of the second base portion.
  • the rotation axis of the second coil portion along the other direction may be located at a position shifted along one direction from the rotation axis of the second base portion along the other direction.
  • the 2nd coil part may be arranged so that the center of the 1st coil part may be located in the position (namely, position on a rotation axis) corresponding to the rotation axis of the 2nd base part.
  • the rotation axis of the second coil part along the other direction may be located at a position corresponding to the rotation axis of the second base part along the other direction.
  • the second base with the axis along the other direction as the rotation axis is caused by the force caused by the electromagnetic interaction between each of the first coil unit and the second coil unit and the magnetic field applying unit.
  • the part (in other words, the driven part supported by the second base part) rotates.
  • the driving force for rotating the second base part about the axis along the other direction as a rotation axis is an electromagnetic interaction between the first coil part and the second coil part and the magnetic field applying part.
  • the resulting electromagnetic force is generated electromagnetic force.
  • the driven part rotates about the axis along one direction as a rotation axis by the force caused by the electromagnetic interaction between each of the first coil part and the second coil part and the magnetic field applying part.
  • the driving force for the driven part to rotate with the axis along one direction as the rotation axis is due to the electromagnetic interaction between the first coil part and the second coil part and the magnetic field applying part. Electromagnetic force.
  • each of the first coil portion and the second coil portion has a control current for rotating the second base portion about the axis along the other direction as a rotation axis.
  • This control current may be, for example, an alternating current having a frequency that is the same as or synchronized with a frequency (in other words, a cycle) at which the second base portion rotates about an axis along another direction as a rotation axis.
  • each of the first coil portion and the second coil portion is supplied with a control current for rotating the driven portion with an axis along one direction as a rotation axis.
  • This control current is preferably an alternating current having a frequency that is the same as or synchronized with a frequency (in other words, a cycle) at which the driven part rotates about an axis along one direction as a rotation axis.
  • the control current is the resonance frequency of the driven part determined by the driven part and the second elastic part (more specifically, the driven frequency determined by the moment of inertia of the driven part and the torsion spring constant of the second elastic part). It is preferable that the alternating current has the same frequency as the resonance frequency of the part or a synchronized frequency.
  • a magnetic field is applied from the magnetic field applying unit to each of the first coil unit and the second coil unit.
  • Lorentz force is generated in the first coil portion due to electromagnetic interaction between the control current supplied to the first coil portion and the magnetic field applied by the magnetic field applying portion.
  • Lorentz force is generated in the second coil portion due to the electromagnetic interaction between the control current supplied to the second coil portion and the magnetic field applied by the magnetic field applying portion. Due to this Lorentz force, the second base portion rotates with an axis along the other direction as a rotation axis.
  • the rotation axis of the first coil portion along the other direction is located at a position shifted along the one direction from the rotation axis of the second base portion along the other direction. Yes.
  • At least two of the Lorentz force centers (rotational force centers) generated in the part are displaced along one direction.
  • the Lorentz force generated in the first coil portion due to such a shift acts to deform and vibrate the second base portion.
  • the driven portion rotates about the axis along one direction as the rotation axis.
  • each of the first coil portion and the second coil portion is disposed on the second base portion so that the driven portion is disposed outside the winding.
  • each of the first coil portion and the second coil portion is disposed on the second base portion so that the driven portion is not disposed inside the winding. That is, each of the first coil portion and the second coil portion is disposed at a position offset in a predetermined direction (for example, another direction (for example, an X-axis direction described later)) from a position where the driven portion is disposed. .
  • the first coil unit is arranged such that the center of the first coil unit (for example, the center of the winding) is disposed at a position offset in a predetermined direction from the position where the center of the driven unit is disposed.
  • the second coil portion is arranged such that the center of the second coil portion (for example, the center of the winding) is disposed at a position offset in a predetermined direction from the position where the center of the driven portion is disposed. It is arranged on the base part.
  • the first coil portion, the driven portion, and the second coil portion are arranged so as to be arranged in this order along a predetermined direction (for example, another direction).
  • at least a part of the shape of the second base portion is disposed in each of the first coil portion and the second coil portion. It preferably has a possible shape.
  • each of the first coil part and the second coil part may not be arranged so as to surround the driven part.
  • each size of the first coil portion and the second coil portion is compared with a case where at least one of the first coil portion and the second coil portion is disposed so as to surround the driven portion.
  • the diameter of a winding, the length of a winding, etc. can be made relatively small.
  • the sizes of the first coil portion and the second coil portion are relatively set regardless of the size of the driven portion. Can be small.
  • the size of the magnetic field application unit for example, a magnet
  • the first coil portion and the second coil portion are compared with the case where at least one of the first coil portion and the second coil portion is disposed so as to surround the driven portion, regardless of the size of the driven portion.
  • the magnetic gap between each of the part and the second coil part and the magnetism applying part can be made relatively small. Therefore, in the present embodiment, the size of the driving device can be suitably reduced as compared with the case where at least one of the first coil portion and the second coil portion is disposed so as to surround the driven portion.
  • the first coil portion is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction.
  • the magnetic field applying unit for applying a magnetic field across the first coil unit along one direction and the first coil along the other direction. Even if a magnetic field applying unit for applying a magnetic field across the unit is not separately provided, the driven unit is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the first coil unit along one direction is arranged, the driven unit is driven in two axes.
  • the driven portion in addition to the first coil portion and the second coil portion where the driven portion is located outside the winding, the driven portion is further provided with another coil portion located inside the winding. May be. That is, it is not required that the driven part is located outside the windings of all the coil parts included in the driving device. In other words, the driven part is located outside the winding of at least two coil parts (for example, two coil parts arranged so as to sandwich the driven part between them) among all the coil parts included in the driving device. If it is done, it is enough.
  • a plurality of coil parts may be constituted by a single winding. Even in this case, after substantially distinguishing each of a plurality of coil parts constituted by a single winding according to the arrangement position, shape, etc., a plurality of coil parts constituted by a single winding While the driven part is located outside the windings of the first and second coil parts, the inside of the windings of the other coil parts of the plurality of coil parts composed of a single winding The driven part may be located in the position.
  • the magnetic field applying unit for applying a magnetic field across the first coil unit along one direction and the first coil unit along the other direction Even if the magnetic field applying unit for applying the crossing magnetic field is not separately arranged independently, the driven unit is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the first coil unit along one direction is arranged, the driven unit is driven in two axes.
  • the pair of first magnetic bodies are (i) opposed to each other along the one direction of the first coil sections.
  • the magnetic field is applied to two sides, and the pair of first magnetic bodies (ii-1) does not apply the magnetic field to two sides of the first coil portion that face each other along the other direction.
  • two sides of the first coil portion that face along the other direction are given to two sides of the first coil portion that face along the one direction
  • the magnetic flux leakage magnetic flux may be applied.
  • the driven unit is driven in two axes.
  • the second coil portion is positioned at the center offset from the rotation axis of the second base portion along the one direction. Is arranged.
  • the Lorentz force generated in the second coil portion due to such deviation (that is, unbalance) acts to cause the second base portion to deform and vibrate.
  • a magnetic field applying unit for applying a magnetic field that crosses the second coil unit along one direction and a magnetic field that crosses the second coil unit along the other direction.
  • the driven part is driven in two axes.
  • the driven unit is biaxially driven.
  • the center of the second coil portion is located at a position offset in one direction from the rotation axis of the second base portion as described above, the first position based on the rotation axis of the second base portion.
  • the offset amount at the center of the two coil portions is different from the offset amount at the center of the first coil portion based on the rotation axis of the second base portion.
  • the two-axis drive of the driven part is suitably performed.
  • the magnetic field applying unit is arranged along the one direction. You may comprise so that a pair of 1st magnetic body which pinches
  • a magnetic field applying unit for applying a magnetic field across the second coil unit along one direction and a second coil unit along the other direction Even if a magnetic field applying unit for applying a magnetic field that crosses is not separately provided, the driven unit is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the second coil unit along one direction is disposed, the driven unit is driven in two axes.
  • the pair of second magnetic bodies are (i) opposed along the one direction of the second coil sections.
  • the magnetic field is applied to two sides, and the pair of second magnetic bodies (ii-1) does not apply the magnetic field to two sides of the second coil portion that are opposed along the other direction.
  • two sides facing the other direction of the second coil portion are given to two sides facing the one direction of the second coil portion.
  • the magnetic flux leakage magnetic flux may be applied.
  • the driven unit is driven in two axes.
  • the first coil portion and the second coil portion are arranged at positions symmetrical with respect to the driven portion.
  • the rotation axis along one direction of each of the first coil portion and the second coil portion (however, in the present embodiment, (i) the first axis with the axis along one direction as the rotation axis is the first axis. It may be an actual rotation axis when each of the coil section and the second coil section is actually rotated, or (ii) the first coil section and the second coil section with the axis along one direction as the rotation axis It is not necessary to match the rotation axis along one direction of the driven part with a virtual rotation axis when it is assumed that each of the rotation axes is rotated.
  • the rotation axis along one direction of each of the first coil portion and the second coil portion is shifted along the other direction from the rotation axis along one direction of the driven portion.
  • the first coil portion is arranged on the second base portion so that the center of the first coil portion (for example, the center of the winding) is arranged at a position shifted from the center of the driven portion along the other direction. It is preferable to arrange
  • the second coil portion is arranged so that the center of the second coil portion (for example, the center of the winding) is shifted from the center of the driven portion along the other direction. It is preferable to be arranged on the top.
  • the second base portion rotates about the axis along the other direction as a rotation axis and along the other direction.
  • the first coil section and the first coil having a shaft as a rotation axis; Due to each rotation of the coil part, the second base part deforms and vibrates in a standing wave shape along the other direction, and due to the deformation vibration of the second base part, the driven part , The axis along the one direction is rotated as a rotation axis.
  • a control current for rotating the second base portion about the axis along the other direction as a rotation axis is supplied to each of the first coil portion and the second coil portion.
  • each of the first coil portion and the second coil portion is supplied with a control current for rotating the driven portion with an axis along one direction as a rotation axis.
  • a magnetic field is applied from the magnetic field applying unit to each of the first coil unit and the second coil unit. For this reason, Lorentz force is generated in the first coil portion due to electromagnetic interaction between the control current supplied to the first coil portion and the magnetic field applied by the magnetic field applying portion.
  • Lorentz force is generated in the second coil portion due to the electromagnetic interaction between the control current supplied to the second coil portion and the magnetic field applied by the magnetic field applying portion.
  • each of the first coil portion and the second coil portion rotates about an axis along the other direction as a rotation axis (more specifically, reciprocatingly drives to rotate).
  • the two sides of the first coil unit facing each other in one direction act in different directions.
  • the Lorentz force is applied simultaneously.
  • the Lorentz force applied to the first coil portion at a certain timing is a force that acts as an upward force on one of the two sides of the first coil portion facing in the one direction, and It is preferable that the force acts as a downward force on the other side of the two sides of the first coil portion facing in one direction.
  • the Lorentz force applied to the first coil portion at another timing that is in tandem with the one timing is a downward force on one of the two sides of the first coil portion that are opposed along the one direction. It is preferable that the force acts as an upward force on the other side of the two sides of the first coil portion facing in one direction. Similarly, in order to realize the rotation of the second coil portion with the axis along the other direction as the rotation axis, the two sides of the second coil portion facing each other along one direction act in different directions. It is preferable that the Lorentz force is applied simultaneously.
  • the Lorentz force applied to the second coil portion at a certain timing is a force that acts as an upward force on one of the two sides of the second coil portion that are opposed along one direction, and It is preferable that the force acts as a downward force on the other side of the two sides of the second coil portion facing in one direction.
  • the Lorentz force applied to the second coil portion at another timing that is in tandem with the one timing is a downward force on one of the two sides of the second coil portion that are opposed along the one direction. It is preferable that the force acts as an upward force on the other side of the two sides of the second coil portion facing in one direction.
  • the second base portion on which each of the first coil portion and the second coil portion is arranged is Rotate the axis along the other direction as a rotation axis.
  • the rotation axis of the first coil portion along the other direction is shifted along the one direction from the rotation axis of the second base portion along the other direction. Located in position. For this reason, the rotation axis (rotating body rotation support center) of the second base part along the other direction, the center of gravity of the entire second base part including the first coil part (rotating body center of gravity), and the first coil At least two of the Lorentz force centers (rotational force centers) generated in the part are displaced along one direction.
  • the Lorentz force generated in the first coil portion due to such a shift acts to deform and vibrate the second base portion.
  • the second base portion on which the first coil portion is disposed becomes a standing wave shape along the other direction (that is, Oscillates in the shape of a standing wave.
  • the Lorentz force generated in the two coil portions also acts to deform and vibrate the second base portion. This is because each of the first coil portion and the second coil portion has not only a control current for rotating the second base portion about the axis along the other direction as a rotation axis, but also along one direction.
  • a control current for rotating the driven part about the axis as a rotation axis is also supplied. That is, according to the control current for rotating the driven part about the axis along one direction as the rotation axis, the second base part has a standing wave shape along the other direction (that is, a standing wave shape). ) Deformation vibration. That is, the external appearance of the second base portion is deformed so that a part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration. Due to the deformation vibration of the second base portion, a belly and a node appear along other directions.
  • the deformation vibration of the second base portion is performed in accordance with a so-called standing wave waveform, the positions of its antinodes and nodes are substantially fixed. At this time, the deformation vibration of the second base portion may be resonance.
  • the resonance frequency at which the second base portion resonates (that is, the frequency of deformation vibration of the base portion) may be the same as the frequency at which the driven portion rotates (or the resonance frequency of the driven portion).
  • the driven part rotates about the axis along one direction as a rotation axis.
  • the driven part is driven by the resonance frequency of the driven part determined by the driven part and the second elastic part (more specifically, the driven frequency determined by the moment of inertia of the driven part and the torsion spring constant of the second elastic part). May be rotated with an axis along one direction as a rotation axis so as to resonate at a resonance frequency of the portion.
  • the second base portion suitably deforms and vibrates due to the Lorentz force generated in the first coil portion and the Lorentz force generated in the second coil portion. More specifically, as will be described in detail later, a portion corresponding to the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A node in the deformation vibration of the second base portion appears. In addition, in the deformation vibration of the second base portion at a location between the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A belly appears. As a result, the driven part is suitably rotated.
  • the second base portion suitably deforms and vibrates due to the Lorentz force generated in the first coil portion and the Lorentz force generated in the second coil portion. More specifically, as will be described in detail later, a portion corresponding to the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A node in the deformation vibration of the second base portion appears. In addition, in the deformation vibration of the second base portion at a location between the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A belly appears. As a result, the driven part is suitably rotated.
  • the driven part is connected to the location corresponding to the node in the deformation vibration of the second base part.
  • Each of the first coil portion and the second coil portion is disposed at a location corresponding to a node in the deformation vibration of the second base portion.
  • the second base portion deforms and vibrates in a higher order vibration mode, it corresponds to the rotational direction of the driven portion and the driven portion with the axis along one direction as the rotation axis (for example, the driven portion
  • the rotation direction of the second base portion may be reversed. That is, the rotation directions of the first coil portion and the second coil portion having an axis along one direction as the rotation axis and the rotation direction of the driven portion having the axis along the one direction as the rotation axis are mutually different. It may be the same orientation.
  • FIG. 1 is a plan view conceptually showing the structure of the MEMS scanner 101 according to the first embodiment.
  • the MEMS scanner 101 includes a base 110, torsion bars 120a and 120b, a mirror 130, a coil 140a, a coil 140b, magnets 151a and 152a, a magnet 151b, 152b.
  • the base 110 has a frame shape with a gap inside. That is, the base 110 has two sides extending in the Y-axis direction in FIG. 1 and two sides extending in the X-axis direction (that is, a direction orthogonal to the Y-axis direction) in FIG. It has a frame shape having a gap surrounded by two sides extending in the axial direction and two sides extending in the X-axis direction.
  • the base 110 has a square shape, but is not limited thereto, and other shapes (for example, a rectangular shape such as a rectangle or a circular shape) may be used. You may have.
  • FIG. 1 shows an example in which the base 110 has a frame shape
  • the base 110 may have a U-shape in which a part of the base 110 is an opening.
  • the base 110 may have a box shape with a gap inside. That is, the base 110 is defined by two surfaces distributed on a plane defined by the X axis and the Y axis, and the X axis and a Z axis (not shown) (that is, an axis orthogonal to both the X axis and the Y axis).
  • each of the torsion bars 120 a and 120 b is connected to the base 110.
  • the other end of each of the torsion bars 120 a and 120 b is connected to the mirror 130. That is, the torsion bars 120a and 120b suspend the mirror 130 so as to sandwich the mirror 130 therebetween.
  • the mirror 130 is arranged to be suspended or supported by the torsion bars 120a and 120b in the gap inside the base 110.
  • the mirror 130 is configured to rotate about the axis along the Y-axis direction as a rotation axis by the elasticity of the torsion bars 120a and 120b.
  • the coil 140a is a plurality of windings made of, for example, a material having relatively high conductivity (for example, gold, copper, etc.).
  • the coil 140a has a rectangular shape.
  • the length of two sides along the X-axis direction (that is, the direction orthogonal to the direction of the rotation axis of the mirror 130) among the four sides of the coil 140a is the Y-axis direction among the four sides of the coil 140a. That is, it is shorter than the length of two sides along the direction of the rotation axis of the mirror 130.
  • the coil 140a includes two long sides that face each other along the X-axis direction and two short sides that face each other along the Y-axis direction.
  • the coil 140a has a rectangular shape.
  • the coil 140a may have any shape (for example, a square, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
  • the coil 140b is a plurality of windings composed of, for example, a material having relatively high conductivity (for example, gold, copper, etc.).
  • the coil 140b has a rectangular shape.
  • the length of two sides along the X-axis direction (that is, the direction orthogonal to the direction of the rotation axis of the mirror 130) among the four sides of the coil 140b is the Y-axis direction among the four sides of the coil 140b. That is, it is shorter than the length of two sides along the direction of the rotation axis of the mirror 130.
  • the coil 140b includes two long sides that face each other along the X-axis direction and two short sides that face each other along the Y-axis direction.
  • the coil 140b has a rectangular shape.
  • the coil 140b may have an arbitrary shape (for example, a square, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
  • the coil 140a is disposed on the base 110.
  • the coil 140a has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed).
  • the coil 140a is located at a position shifted by a predetermined distance along the line (particularly, the center or the center of gravity of the coil 140a is located).
  • the coil 140a has a base such that the coil 140a is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 110 may be arranged. In addition, the coil 140a is disposed on the base 110 so that the mirror 130 and the coil 140a are aligned along the X-axis direction. As a result, the mirror 130 is positioned outside the windings that constitute the coil 140a. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140a.
  • the coil 140b is disposed on the base 110.
  • the coil 140b has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed).
  • the coil 140b is located at a position shifted by a predetermined distance along the line (particularly, the center or the center of gravity of the coil 140b is located).
  • the coil 140b is positioned so that the coil 140b is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 110 may be arranged.
  • the coil 140b is disposed on the base 110 so that the mirror 130 and the coil 140b are arranged along the X-axis direction.
  • the mirror 130 is positioned outside the winding wire that constitutes the coil 140b. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140b.
  • the coils 140a and 140b are disposed on the base 110 such that the mirror 130 is disposed between the coils 140a and 140b.
  • the coils 140a and 140b are arranged on the base 110 such that the coil 140a, the mirror 130, and the coil 140b are arranged in this order along the X-axis direction.
  • the distance between the coil 140a and the mirror 130 may be the same as the distance between the coil 140b and the mirror 130. That is, the coils 140a and 140b may be arranged on the base 110 such that the coils 140a and 140b are arranged symmetrically with respect to the mirror 130.
  • the coil 140a is supplied with a control current for rotating the mirror 130 from the power supply via the power supply terminal 141a formed on the base 110.
  • a control current for rotating the mirror 130 is supplied to the coil 140b from the power supply via the power supply terminal 141b formed on the base 110.
  • the control current is typically an alternating current that includes a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
  • the power source may be a power source provided in the MEMS scanner 101 itself, or may be a power source prepared outside the MEMS scanner 101.
  • Magnets 151a and 152a are arranged such that magnet 151a and magnet 152a are arranged along the X-axis direction.
  • the magnets 151a and 152a are arranged such that the magnet 151a and the magnet 152a sandwich the coil 140a along the X-axis direction.
  • one of the magnets 151a and 152a is on the magnetic flux exit side, and the other of the magnets 151a and 152a is on the magnetic flux entrance side.
  • the magnet 151a is on the magnetic flux incident side and the magnet 152a is on the magnetic flux outgoing side.
  • the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b are arranged along the X-axis direction.
  • the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b sandwich the coil 140b along the X-axis direction.
  • one of the magnets 151b and 152b is a magnetic flux exit side, and the other of the magnets 151b and 152b is a magnetic flux entrance side.
  • description will be given using an example in which the magnet 151b is on the magnetic flux incident side and the magnet 152b is on the magnetic flux output side.
  • FIG. 2 is a plan view and a cross-sectional view conceptually showing an operation mode of the MEMS scanner 101 according to the first embodiment.
  • FIGS. 3A and 3B are a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 101 according to the first embodiment.
  • FIG. 4 is a sectional view conceptually showing an operation mode of the MEMS scanner 101 according to the first embodiment.
  • a control current is supplied to each of the coils 140a and 140b.
  • the control current includes a current component for rotating the mirror 130 about the axis along the Y-axis direction as a rotation axis.
  • the mirror 130 has a resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b (more specifically, a resonance frequency determined by the moment of inertia of the mirror 130 and the torsion spring constant of the torsion bars 120a and 120b). In order to resonate, it rotates with the axis along the Y-axis direction as the rotation axis.
  • the resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b is finely corrected in consideration of the mass and the moment of inertia of the base 110 that supports the torsion bars 120a and 120b.
  • the control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the resonance frequency of the mirror 130.
  • the mirror 130 may rotate around the axis along the Y-axis direction at a frequency different from or not synchronized with the resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b.
  • the control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
  • a magnetic field is applied to the coil 140a from the magnets 151a and 152a.
  • the magnets 151a and 152a preferably apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. In this case, the magnets 151a and 152a do not need to apply a magnetic field to the two sides of the coil 140a facing each other along the Y-axis direction. Alternatively, the magnets 151a and 152a may apply a magnetic field to two sides of the coil 140a facing each other along the Y-axis direction.
  • Lorentz force is generated in the coil 140a due to electromagnetic interaction between the control current supplied to the coil 140a and the magnetic field applied to the coil 140a.
  • a magnetic field is applied to the coil 140b from the magnets 151b and 152b.
  • the magnets 151b and 152b preferably apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. In this case, the magnets 151b and 152b do not need to apply a magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction. Alternatively, the magnets 151b and 152b may apply a magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction.
  • FIG. 2A a control current flowing in the clockwise direction in FIG. 2A is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 152a toward the magnet 151a is generated.
  • FIG. 2 (b) which is a drawing of the MEMS scanner 101 shown in FIG. 2 (a) observed from the direction of arrow II, the two long sides of the coil 140a facing each other along the X-axis direction are shown.
  • FIG. 2B is generated on the long side on the right side (that is, the outside in FIG. 2A).
  • the left side of the two long sides of the coil 140a facing along the X-axis direction (that is, the inner side in FIG. 2A) is shown on the left side.
  • a Lorentz force toward the upper direction in 2 (b) is generated. That is, Lorentz forces in different directions are generated on the two long sides of the coil 140a facing each other along the X-axis direction.
  • Lorentz force which is a couple, is generated on the two long sides of the coil 140a facing each other along the X-axis direction. Therefore, the coil 140a rotates in the clockwise direction in FIG.
  • Lorentz force which is a couple
  • the coil 140a rotates in the counterclockwise direction in FIG.
  • the right side of the two long sides of the coil 140b facing in the X-axis direction that is, the inner side in FIG. 2A
  • Lorentz force toward the upper direction in 3 (b) is generated.
  • the left side of the two long sides of the coil 140b facing in the X-axis direction is shown on the left side.
  • a Lorentz force toward the lower direction in 3 (b) is generated.
  • Lorentz forces in different directions are generated on the two long sides of the coil 140b facing each other along the X-axis direction.
  • Lorentz force which is a couple, is generated on the two long sides of the coil 140b facing each other along the X-axis direction. Accordingly, the coil 140b rotates in the counterclockwise direction in FIG.
  • the magnitude and direction of the Lorentz force that rotates the coil 140a in the clockwise direction at a certain timing is such that the coil 140b is rotated in the clockwise direction at a certain timing. It is preferable that the magnitude and direction of the Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is the same. Similarly, the magnitude of the Lorentz force that rotates the coil 140a counterclockwise at a certain timing (ie, the Lorentz force generated in the coil 140a) is such that the coil 140b is counterclockwise at a certain timing.
  • the Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is preferably the same. More specifically, the magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 2B) of the two long sides of the coil 140a facing along the X axis direction is The magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 2B) of the two long sides of the coil 140b facing in the direction are preferably the same. Similarly, the magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 2B) of the two long sides of the coil 140a facing each other along the X-axis direction is along the X-axis direction.
  • the magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 2B) of the two long sides of the opposing coil 140b are preferably the same.
  • the magnitude of the magnetic field from the magnet 152a to the magnet 151a and the magnitude of the magnetic field from the magnet 152b to the magnet 151b are made the same and supplied to the coil 140a.
  • the control current to be supplied and the control current supplied to the coil 140b are preferably the same.
  • the base 110 is not deformed and oscillated along the X-axis direction when each of the coils 140a and 140b is not rotating about the axis along the Y-axis direction as a rotation axis. For this reason, the mirror 130 is also not rotated about the axis along the Y-axis direction as the rotation axis.
  • the base 110 indicates that a portion corresponding to the rotation axis along the Y-axis direction of each of the coils 140a and 140b (that is, a position located on the rotation axis along the Y-axis direction of the coil 140) is a node. It begins to deform and vibrate along the axial direction.
  • the rotation directions of the coils 140a and 140b and the rotation direction of the mirror 130 are opposite to each other.
  • the mirror 130 rotates clockwise when the coils 140a and 140b are rotating counterclockwise.
  • FIGS. 4C to 4G in a state where the coils 140a and 140b are rotating clockwise, the mirror 130 rotates counterclockwise. Note that the coils 110a and 140b in the state shown in FIG. 4G, the base 110, and the mirror 130 respectively change to the state shown in FIG. 4A after passing through the state shown in FIG.
  • the rotation direction of the coil 140a and the rotation direction of the coil 140b are the same. Specifically, as shown in FIGS. 4A to 4C, when the coil 140a rotates counterclockwise, the coil 140b also rotates counterclockwise. Similarly, as shown in FIGS. 4C to 4G, when the coil 140a rotates clockwise, the coil 140b also rotates clockwise.
  • the sizes of the magnets 151a and 152a for applying a magnetic field to the coil 140a can also be made relatively small.
  • the sizes of the magnets 151b and 152b for applying a magnetic field to the coil 140b can also be made relatively small.
  • the coil 140a and the magnet 151a are independent of the size of the mirror 130.
  • the magnetic gap between the coil 140b and the magnets 151b and 152b can be made relatively small. Therefore, in the first embodiment, the MEMS scanner 101 can be reduced in size as compared with the comparative MEMS scanner in which at least one of the coils 140 a and 140 b is arranged so as to surround the mirror 130.
  • the mirror 130 and the coils 140a and 140b are respectively in the vertical direction (specifically, the direction orthogonal to the X-axis direction and the Y-axis direction, respectively, with respect to the surface of the base 110). In the vertical Z-axis direction). Therefore, highly accurate rotational driving of the mirror 130 can be realized.
  • the Lorentz force generated in each of the coils 140a and 140b is, for example, as described in Japanese Patent No. 4827993, “micro vibration (that is, a force having no directionality, which is a torsion bar 120a and 120b. As a force that does not act directly to twist in the direction of rotation of the mirror 130) ”.
  • the Lorentz force is propagated to the base 110 as a slight vibration, so that the base 110 undergoes deformation vibration. That is, the Lorentz force as fine vibration appears in the form of deformation vibration of the base 110.
  • FIG. 5 is a plan view conceptually showing the structure of the MEMS scanner 102 according to the second embodiment.
  • the MEMS scanner 101 includes a first base 110-1, a first torsion bar 120a-1, a first torsion bar 120b-1, and a second base 110-2.
  • Second torsion bar 120a-2, second torsion bar 120b-2, mirror 130, coil 140a, coil 140b, magnets 151a and 152a, magnets 151b and 152b, magnets 161a and 162a, Magnets 161b and 162b are provided.
  • the first base 110-1 is a structure that is the basis of the MEMS scanner 102 according to the second embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the MEMS scanner 102). It is preferably fixed inside the system. Alternatively, the first base 110-1 may be suspended by a suspension (not shown) or the like.
  • FIG. 5 shows an example in which the first base 110-1 has a frame shape, but it goes without saying that the first base 110-1 may have other shapes.
  • the first base 110-1 may have a U-shape in which a part of the first base 110-1 is an opening.
  • the first base 110-1 may have a box shape with a gap inside. That is, the first base 110-1 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis).
  • the second base 110-2 has a frame shape with a gap inside. That is, the second base 110-2 has two sides extending in the Y-axis direction in FIG. 5 and two sides extending in the X-axis direction in FIG. It has a frame shape having a gap surrounded by the side and two sides extending in the X-axis direction. In the example shown in FIG. 5, the second base 110-2 has a square shape. However, the second base 110-2 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.).
  • the shape of the second base 110-2 may be arbitrarily changed according to the manner in which the mirror 130 is disposed.
  • Each of the second torsion bars 120a-2 and 120b-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like.
  • Each of second torsion bars 120a-2 and 120b-2 is arranged to extend in the Y-axis direction in FIG. In other words, each of the second torsion bars 120a-2 and 120b-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction.
  • each of the second torsion bars 120a-2 and 120b-2 has a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction, depending on the setting state of the resonance frequency described later. You may have.
  • One end of each of the second torsion bars 120a-2 and 120b-2 is connected to the second base 110-2.
  • the other ends of the second torsion bars 120 a-2 and 120 b-2 are connected to the mirror 130. That is, the second torsion bars 120a-2 and 120b-2 suspend the mirror 130 so as to sandwich the mirror 130 therebetween.
  • the mirror 130 is arranged to be suspended or supported by the second torsion bars 120a-2 and 120b-2 in the gap inside the second base 110-2.
  • the mirror 130 is configured to rotate about the axis along the Y-axis direction as a rotation axis by the elasticity of the second torsion bars 120a-2 and 120b-2.
  • the coil 140a is disposed on the second base 110-2.
  • the coil 140a has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed).
  • the coil 140a is located at a position shifted by a predetermined distance along the center (particularly, the center or center of gravity of the coil 140a is located).
  • the coil 140a is positioned so that the coil 140a is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 2 may be arranged on the base 110-2.
  • the coil 140a is disposed on the second base 110-2 so that the mirror 130 and the coil 140a are aligned along the X-axis direction.
  • the mirror 130 is positioned outside the windings that constitute the coil 140a. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140a.
  • the coil 140b is disposed on the second base 110-2.
  • the coil 140b has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed). Is arranged on the second base 110-2 so that the coil 140b is located at a position shifted by a predetermined distance along the line (particularly, the center or center of gravity of the coil 140b is located).
  • the coil 140b is positioned so that the coil 140b is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with reference to the position where the mirror 130 is disposed. 2 may be arranged on the base 110-2.
  • the coil 140b is disposed on the second base 110-2 so that the mirror 130 and the coil 140b are aligned along the X-axis direction.
  • the mirror 130 is positioned outside the winding wire that constitutes the coil 140b. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140b.
  • the coil 140a is supplied with a control current for rotating the mirror 130 and the second base 110-2 from the power source via the power terminal 141a formed on the second base 110-2.
  • the coil 140b is supplied with a control current for rotating the mirror 130 and the second base 110-2 from the power supply via the power supply terminal 141b formed on the second base 110-2.
  • the control current is typically a signal component having a frequency that is the same as or synchronized with the frequency of rotation of the mirror 130 about the axis along the Y-axis direction and the second axis about the axis along the X-axis direction. This is an alternating current including both signal components having the same or synchronized frequency as the frequency at which the base 110-2 rotates.
  • the power source may be a power source provided in the MEMS scanner 102 itself or a power source prepared outside the MEMS scanner 102.
  • a current component for rotating the mirror 130 with the axis along the Y-axis direction as a rotation axis in the control current is referred to as “Y-axis drive control current”.
  • a current component for rotating the second base 110-2 with the axis along the X-axis direction as the rotation axis in the control current is referred to as “X-axis drive control current”.
  • Magnets 151a and 152a are arranged such that magnet 151a and magnet 152a are arranged along the X-axis direction.
  • the magnets 151a and 152a are arranged such that the magnet 151a and the magnet 152a sandwich the coil 140a along the X-axis direction.
  • one of the magnets 151a and 152a is on the magnetic flux exit side, and the other of the magnets 151a and 152a is on the magnetic flux entrance side.
  • the magnet 151a is on the magnetic flux incident side and the magnet 152a is on the magnetic flux outgoing side.
  • the magnetic field applied from the magnet 151a and the magnet 152a is mainly used to rotate the mirror 130 about the axis along the Y-axis direction as a rotation axis.
  • the magnetic field applied from the magnets 151a and 152a (that is, the magnetic field for rotating the mirror 130 about the axis along the Y-axis direction) is expressed as “Y-axis drive”. "Magnetic field”.
  • the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b are arranged along the X-axis direction.
  • the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b sandwich the coil 140b along the X-axis direction.
  • one of the magnets 151b and 152b is a magnetic flux exit side, and the other of the magnets 151b and 152b is a magnetic flux entrance side.
  • description will be given using an example in which the magnet 151b is on the magnetic flux incident side and the magnet 152b is on the magnetic flux output side.
  • the magnetic field applied from the magnet 151b and the magnet 152b is mainly used to rotate the mirror 130 about the axis along the Y-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, the magnetic field applied from the magnets 151b and 152b (that is, the magnetic field for rotating the mirror 130 about the axis along the Y-axis direction) is expressed as “Y-axis drive”. "Magnetic field”.
  • Magnets 161a and 162a are arranged such that magnets 161a and 162a are arranged along the Y-axis direction.
  • the magnets 161a and 162a are arranged such that the magnet 161a and the magnet 162a sandwich the coil 140a along the Y-axis direction.
  • one of the magnets 161a and 162a is on the magnetic flux exit side, and the other of the magnets 161a and 162a is on the magnetic flux entrance side.
  • description will be given using an example in which the magnet 161a is on the magnetic flux exit side and the magnet 162a is on the magnetic flux entrance side.
  • the magnetic field applied from the magnet 161a and the magnet 162a is mainly used to rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, a magnetic field applied from the magnets 161a and 162a (that is, a magnetic field for rotating the second base 110-2 with the axis along the X-axis direction as a rotation axis) This is referred to as “X-axis driving magnetic field”.
  • Magnets 161b and 162b are arranged such that magnets 161b and 162b are arranged along the Y-axis direction.
  • the magnets 161b and 162b are arranged such that the magnet 161b and the magnet 162b sandwich the coil 140b along the Y-axis direction.
  • one of the magnets 161b and 162b is a magnetic flux exit side
  • the other of the magnets 161b and 162b is a magnetic flux incident side.
  • description will be given using an example in which the magnet 161b is on the magnetic flux exit side and the magnet 162b is on the magnetic flux entrance side.
  • the magnetic field applied from the magnet 161b and the magnet 162b is mainly used to rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, a magnetic field applied from the magnets 161b and 162b (that is, a magnetic field for rotating the second base 110-2 with the axis along the X-axis direction as a rotation axis) This is referred to as “X-axis driving magnetic field”.
  • FIG. 6 is a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 102 according to the second embodiment.
  • FIGS. 7A and 7B are a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 102 according to the second embodiment.
  • FIG. 8 is a sectional view conceptually showing an operation mode of the MEMS scanner 102 according to the second embodiment.
  • a control current is supplied to each of the coils 140a and 140b.
  • the control current includes a current component (that is, an X-axis drive control current) for rotating the second base 110-2 about the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 rotates at an arbitrary frequency (for example, 60 Hz) with an axis along the X-axis direction as a rotation axis.
  • the X-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency of rotation of the second base 110-2 whose axis is the axis along the X-axis direction.
  • the second base 110-2 is a suspended portion including the second base 110-2 (that is, a suspended portion including the second base portion 110-2, the second torsion bars 120a-2 and 120b-2, and the mirror 130).
  • the resonance frequency determined by the first torsion bars 120a-1 and 120b-1 (more specifically, the inertia moment of the suspended part including the second base 110-2 and the first torsion bars 120a-1 and 120b- (Resonance frequency determined by a torsion spring constant of 1) may be rotated about the axis along the X-axis direction as a rotation axis.
  • an X-axis driving magnetic field is applied to the coil 140a from the magnets 161a and 162a.
  • the magnets 161a and 162a preferably apply a magnetic field for X-axis driving to the two sides of the coil 140a facing each other along the Y-axis direction.
  • the magnets 161a and 162a do not need to apply the X-axis driving magnetic field to the two sides of the coil 140a facing in the X-axis direction.
  • the magnets 161a and 162a may apply an X-axis driving magnetic field to two sides of the coil 140a facing each other along the X-axis direction.
  • the magnets 161a and 162a may apply the leakage flux of the X-axis driving magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
  • Lorentz force is generated in the coil 140a due to electromagnetic interaction between the X-axis drive control current supplied to the coil 140a and the X-axis drive magnetic field applied to the coil 140a. Become.
  • an X-axis driving magnetic field is applied to the coil 140b from the magnets 161b and 162b.
  • the magnets 161b and 162b preferably apply an X-axis driving magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction.
  • the magnets 161b and 162b do not need to apply the X-axis driving magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
  • the magnets 161b and 162b may apply an X-axis driving magnetic field to two sides of the coil 140b facing each other along the X-axis direction.
  • the magnets 161b and 162b may apply the leakage flux of the X-axis driving magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
  • Lorentz force is generated in the coil 140b due to electromagnetic interaction between the X-axis driving control current supplied to the coil 140b and the X-axis driving magnetic field applied to the coil 140b. Become.
  • the X-axis drive control current flowing in the clockwise direction in FIG. 6A is supplied to each of the coils 140a and 140b, and the magnet 161a to the magnet 162a.
  • a situation will be described in which an X-axis driving magnetic field toward the magnet is applied to the coil 140a, and an X-axis driving magnetic field directed from the magnet 161b to the magnet 162b is applied to each of the coils 140b.
  • FIG. 6 (b) which is a drawing of the MEMS scanner 102 shown in FIG. 6 (a) observed from the direction of the arrow VI, of the two sides of the coil 140a facing along the Y-axis direction.
  • FIG. 6B is generated on the right side (that is, the upper side in FIG. 6A).
  • FIG. 6B the left side (that is, the lower side in FIG. 6A) of the two sides of the coil 140a facing in the Y-axis direction is shown in FIG.
  • a Lorentz force toward the lower direction in (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140a facing each other along the Y-axis direction.
  • Lorentz force which is a couple, is generated on the two sides of the coil 140a facing each other along the Y-axis direction. Therefore, the coil 140a rotates in the counterclockwise direction in FIG.
  • FIG. 6B the right side of the two sides of the coil 140b facing in the Y-axis direction (that is, the upper side in FIG. 6A) is shown in FIG. A Lorentz force toward the upper direction in b) is generated.
  • FIG. 6B the left side (that is, the lower side in FIG. 6A) of the two sides of the coil 140b facing in the Y-axis direction is shown in FIG. A Lorentz force toward the lower direction in (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140b facing each other along the Y-axis direction.
  • Lorentz force which is a couple, is generated on the two sides of the coil 140b facing each other along the Y-axis direction. Accordingly, the coil 140b rotates in the counterclockwise direction in FIG.
  • the X-axis driving control current is an alternating current
  • the X-axis driving control current flowing in the counterclockwise direction in FIG. 140b an X-axis driving magnetic field directed from the magnet 161a to the magnet 162a is applied to the coil 140a
  • an X-axis driving magnetic field directed from the magnet 161b to the magnet 162b is applied to the coil 140b.
  • FIG. 7B which is a drawing of the MEMS scanner 101 shown in FIG. 7A observed from the direction of the arrow VII, of the two sides of the coil 140a opposed along the Y-axis direction.
  • FIG. 7B the right side of the two sides of the coil 140b facing in the Y-axis direction (that is, the upper side in FIG. 7A) is shown in FIG. A Lorentz force in the downward direction in b) is generated.
  • FIG. 7B the long side on the left side (that is, the lower side in FIG. 6A) of the two sides of the coil 140b facing in the Y-axis direction is A Lorentz force toward the upper direction in 7 (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140b facing each other along the Y-axis direction.
  • Lorentz force which is a couple, is generated on the two sides of the coil 140b facing each other along the Y-axis direction. Accordingly, the coil 140b rotates in the clockwise direction in FIG.
  • the magnitude and direction of the Lorentz force that rotates the coil 140a in the clockwise direction at a certain timing is such that the coil 140b is rotated in the clockwise direction at a certain timing. It is preferable that the magnitude and direction of the Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is the same. Similarly, the magnitude of the Lorentz force that rotates the coil 140a counterclockwise at a certain timing (ie, the Lorentz force generated in the coil 140a) is such that the coil 140b is counterclockwise at a certain timing.
  • the Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is preferably the same. More specifically, the magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 6B) of the two long sides of the coil 140a opposed along the Y-axis direction is The magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 6B) of the two long sides of the coil 140b facing in the direction are preferably the same. Similarly, the magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 6B) of the two long sides of the coil 140a facing each other along the Y-axis direction is along the Y-axis direction.
  • the magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 6B) of the two long sides of the opposing coil 140b are preferably the same.
  • the magnitude of the magnetic field from the magnet 162a to the magnet 161a and the magnitude of the magnetic field from the magnet 162b to the magnet 161b are made the same and supplied to the coil 140a.
  • the control current to be supplied and the control current supplied to the coil 140b are preferably the same.
  • each of the coils 140a and 140b rotates about the axis along the X-axis direction as a rotation axis (more specifically, reciprocatingly drives to rotate).
  • the rotation axes of the coils 140a and 140b along the X-axis direction overlap the rotation axis of the second base 110-2 along the X-axis direction.
  • the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis in accordance with the rotation of the coils 140a and 140b having the axis along the X-axis direction as the rotation axis.
  • the second base 110-2 supports the mirror 130 via the second torsion bars 120a-2 and 120b-2. Therefore, as the second base 110-2 rotates with the axis along the X-axis direction as the rotation axis, the mirror 130 also rotates with the axis along the X-axis direction as the rotation axis.
  • each of the coils 140a and 140b having the axis along the X-axis direction as the rotation axis
  • the rotation of the second base 110-2 having the axis along the X-axis direction as the rotation axis
  • the relationship of rotation of the mirror 130 with the axis as the rotation axis will be described in more detail with reference to FIG.
  • the second base 110-2 is also along the X-axis direction.
  • the shaft is not rotating around its axis of rotation.
  • the mirror 130 is also not rotated about the axis along the X-axis direction as the rotation axis.
  • the mirror 130 in time series, with the rotation of the second base 110-2 whose axis is the axis along the X-axis direction, the mirror 130 is also Moreover, it rotates with an axis along the X-axis direction as a rotation axis.
  • the coils 140a and 140b in the state shown in FIG. 8 (g), the second base 110-2, and the mirror 130 are then in the state shown in FIG. 8 (a) after the state shown in FIG. 8 (f). Transition to. Thereafter, the coils 140a and 140b, the second base 110-2, and the mirror 130, respectively, rotate according to the time series shown in FIGS. 8A to 8G.
  • the control current includes a current component (that is, a Y-axis drive control current) for rotating the mirror 130 about the axis along the Y-axis direction as a rotation axis.
  • the mirror 130 has a resonance frequency determined by the mirror 130 and the second torsion bars 120a-2 and 120b-2 (more specifically, the moment of inertia of the mirror 130 and the second torsion bars 120a-2 and 120b-2).
  • the axis rotates along the axis along the Y-axis direction.
  • the Y-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the resonance frequency of the mirror 130.
  • the mirror 130 may rotate around the axis along the Y-axis direction at a frequency different from or not synchronized with the resonance frequency determined by the mirror 130 and the second torsion bars 120a-2 and 120b-2.
  • the Y-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
  • a magnetic field for Y-axis driving is applied to the coil 140a from the magnets 151a and 152a.
  • the magnets 151a and 152a preferably apply a Y-axis driving magnetic field to two sides of the coil 140a facing each other along the X-axis direction.
  • the magnets 151a and 152a do not need to apply the Y-axis driving magnetic field to the two sides of the coil 140a facing each other along the Y-axis direction.
  • the magnets 151a and 152a may apply a Y-axis driving magnetic field to the two sides of the coil 140a facing each other along the Y-axis direction.
  • the magnets 151a and 152a may apply only the leakage flux of the Y-axis driving magnetic field to the two sides of the coil 140a that are opposed in the Y-axis direction.
  • a magnetic field for Y-axis driving is applied to the coil 140b from the magnets 151b and 152b.
  • the magnets 151b and 152b preferably apply a Y-axis driving magnetic field to two sides of the coil 140b facing each other along the X-axis direction.
  • the magnets 151b and 152b do not need to apply the Y-axis driving magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction.
  • the magnets 151b and 152b may apply a Y-axis driving magnetic field to two sides of the coil 140b facing each other along the Y-axis direction.
  • the magnets 151b and 152b may apply only the leakage magnetic flux of the Y-axis driving magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction.
  • Lorentz force is generated in the coil 140b due to electromagnetic interaction between the Y-axis drive control current supplied to the coil 140b and the Y-axis drive magnetic field applied to the coil 140b. Become.
  • each of the coils 140a and 140b rotates about the axis along the Y-axis direction as a rotation axis (more specifically, To reciprocate to rotate).
  • the rotation axes of the coils 140a and 140b along the Y-axis direction are different from the rotation axis of the mirror 130 along the Y-axis direction.
  • the respective rotation axes of the coils 140a and 140b along the Y-axis direction exist at positions shifted by a predetermined distance in the X-axis direction with respect to the rotation axis of the mirror 130 along the Y-axis direction. Therefore, the respective rotations of the coils 140a and 140b having the axis along the Y-axis direction as the rotation axis do not directly rotate the mirror 130 with the axis along the Y-axis direction as the rotation axis.
  • the second base 110-2 on which the coils 140a and 140b are arranged is deformed and oscillated in a standing wave shape (that is, in a standing wave shape) along the X-axis direction.
  • the second base 110-2 is deformed and oscillated so as to wave along the X-axis direction. That is, the appearance of the second base 110-2 is deformed so that a part of the second base 110-2 becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis. At this time, the mirror 130 rotates so as to resonate at a resonance frequency (for example, 20 kHz) determined according to the mirror 130 and the second torsion bars 120a-2 and 120b-2.
  • a resonance frequency for example, 20 kHz
  • the torsion spring constant when the moment of inertia about the axis along the Y-axis direction of the mirror 130 is I (Y) and the second torsion bars 120a-2 and 120b-2 are regarded as one spring is k ( Y)
  • the mirror 130 has a resonance frequency (or (1 / (2 ⁇ )) ⁇ specified by (1 / (2 ⁇ )) ⁇ ⁇ (k (Y) / I (Y)) ⁇
  • the relationship of the rotation of the mirror 130 is that the rotation of the coils 140a and 140b with the axis along the Y-axis direction as the rotation axis in the first embodiment, the deformation vibration of the base 110 along the X-axis direction, and the Y-axis direction. This is the same as the relationship of rotation of the mirror 130 about the axis along the axis (see FIG. 4).
  • the MEMS scanner 102 of the second embodiment can rotate the mirror 130 about the axis along the Y-axis direction as the rotation axis.
  • the MEMS scanner 102 of the second embodiment can rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis.
  • the first axis about the axis along the X-axis direction is the rotation axis.
  • the mirror 130 also rotates about the axis along the X-axis direction as the rotation axis. Therefore, the MEMS scanner 102 according to the second embodiment can rotate the mirror 130 about the axis along the X-axis direction as the rotation axis. That is, the MEMS scanner 102 of the second embodiment can drive the mirror 130 biaxially.
  • the mirror 130 is positioned outside the windings of the coils 140a and 140b. Accordingly, each of the coils 140a and 140b may not be disposed so as to surround the mirror 130.
  • the size of each of the coils 140a and 140b (for example, the winding The diameter, the length of the winding, etc.) can be made relatively small. In other words, in the second embodiment, the sizes of the coils 140a and 140b can be made relatively small regardless of the size of the mirror 130.
  • the sizes of the magnets 151a and 152a and the magnets 161a and 162a for applying a magnetic field to the coil 140a can also be made relatively small.
  • the sizes of the magnets 151b and 152b and the magnets 161b and 162b for applying a magnetic field to the coil 140b can also be made relatively small.
  • the coil 140a and the magnet 151a are independent of the size of the mirror 130.
  • the MEMS scanner 102 can be reduced in size as compared with the comparative MEMS scanner in which at least one of the coils 140a and 140b is disposed so as to surround the mirror 130.
  • second torsion bars 120a-2 and 120b-2 connected to the mirror 130 are connected to locations corresponding to nodes in the deformation vibration of the second base 110-2. That is, the part corresponding to the node in the deformation vibration of the second base 110-2 coincides with the rotational axis of the mirror 130 along the Y-axis direction.
  • the coils 140a and 140b are arranged at locations corresponding to nodes in the deformation vibration of the second base 110-2. That is, the location corresponding to the node in the deformation vibration of the second base 110-2 coincides with the rotation axis along the Y-axis direction of each of the coils 140a and 140b.
  • the mirror 130 and the coils 140a and 140b are respectively in the vertical direction (specifically, the direction orthogonal to the X-axis direction and the Y-axis direction, respectively, and the first base 110-1 Alternatively, movement or vibration in the Z-axis direction perpendicular to the surface of the second base 110-2 is prevented. Therefore, high-precision rotation of the mirror 130 can be realized.
  • FIG. 9 is a plan view conceptually showing the structure of the MEMS scanner 103 according to the third example.
  • the MEMS scanner 103 according to the third embodiment is different from the MEMS scanner 102 according to the second embodiment in that the arrangement positions of the magnets 161a and 162a and the magnets 161b and 162b are changed. The difference is that the magnet 151a and the magnet 152a and the magnet 151b and the magnet 152b are not provided.
  • the other components of the MEMS scanner 103 of the third embodiment may be the same as the other components of the MEMS scanner 102 of the second embodiment.
  • the magnets 161a and 162a are arranged so that the magnet 161a and the magnet 162a sandwich the coil 140a along the Y-axis direction, as in the second embodiment.
  • the magnets 161a and 162a are displaced along the X-axis direction (in other words, the magnet 161a (for example, the center of the magnet 161a) and the magnet 162a (for example, the center of the magnet 162a). Offset).
  • the magnet 161a and the magnet 162a may sandwich the coil 140a along the X-axis direction, and the position where the magnet 161a is disposed and the position where the magnet 162a is disposed may be offset along the Y-axis direction.
  • the magnets 161a and 162a are preferably arranged at positions where the magnet 161a and the magnet 162a are point-symmetric with respect to the coil 140a. In other words, the magnets 161a and 162a are preferably arranged at positions where the magnet 161a and the magnet 162a are point-symmetric with respect to the center of the winding constituting the coil 140a.
  • the magnets 161b and 162b are arranged such that the magnet 161b and the magnet 162b sandwich the coil 140b along the Y-axis direction, as in the second embodiment.
  • the magnets 161b and 162b are shifted in the X-axis direction between the magnet 161b (for example, the center of the magnet 161b) and the magnet 162b (for example, the center of the magnet 162b) (in other words, Offset).
  • the magnet 161b and the magnet 162b may sandwich the coil 140b along the X-axis direction, and the position where the magnet 161b is disposed and the position where the magnet 162b is disposed may be offset along the Y-axis direction.
  • the magnets 161b and 162b are preferably arranged at positions where the magnet 161b and the magnet 162b are point-symmetric with respect to the coil 140b. In other words, the magnets 161b and 162b are preferably arranged at positions where the magnet 161b and the magnet 162b are point-symmetric with respect to the center of the winding constituting the coil 140b.
  • FIG. 10 is a plan view conceptually showing an operation mode of the MEMS scanner 103 according to the third embodiment.
  • control currents that is, the X-axis drive control current and the Y-axis
  • the control currents are applied to the coils 140a and 140b, respectively.
  • a magnetic field is applied to the coil 140a from the magnets 161a and 162a.
  • the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • a magnetic field is applied to the coil 140b from the magnets 161b and 162b.
  • the magnetic field applied from the magnets 161b and 162b is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • the magnets 161a and 162a are arranged in the Y-axis direction.
  • a magnetic field is applied to the two sides of the coil 140a facing each other so as to obliquely cross the two sides.
  • the magnets 161a and 162a apply a magnetic field that intersects the two sides of the coil 140a facing each other along the Y-axis direction at an angle other than 90 degrees with respect to the two sides. That is, the magnets 161a and 162a apply a magnetic field that intersects the two sides of the coil 140a facing each other along the Y-axis direction in the diagonal direction of the winding of the coil 140a.
  • the magnets 161b and 162b are arranged in the Y-axis direction.
  • a magnetic field is applied to the two sides of the coil 140b facing each other so as to cross the two sides obliquely.
  • the magnets 161b and 162b apply a magnetic field that intersects the two sides of the coil 140b facing each other along the Y-axis direction at an angle other than 90 degrees with respect to the two sides. That is, the magnets 161b and 162b apply a magnetic field that intersects the two sides of the coil 140b facing each other along the Y-axis direction in the diagonal direction of the winding of the coil 140b.
  • the magnets 161a and 162a do not apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
  • the magnets 161a and 162a apply only the leakage flux of the magnetic field to be applied to the two sides of the coil 140a facing in the Y-axis direction to the two sides of the coil 140a facing in the X-axis direction. May be. That is, it is preferable that the magnets 161a and 162a do not actively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
  • the magnets 161a and 162a may positively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
  • the magnets 161b and 162b do not apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
  • the magnets 161b and 162b give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140b facing in the Y-axis direction to the two sides of the coil 140b facing in the X-axis direction. May be. That is, it is preferable that the magnets 161b and 162b do not positively apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. However, the magnets 161b and 162b may positively apply a magnetic field to two sides of the coil 140b facing each other along the X-axis direction.
  • a control current flowing in the clockwise direction in FIG. 10 is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 161a toward the magnet 162a is applied to the coil 140a.
  • a magnetic field from the magnet 161b toward the magnet 162b is applied to the coil 140b will be described.
  • one side (for example, the upper side in FIG. 10) of the two sides of the coil 140 a facing along the Y-axis direction is formed from the back side in the drawing of FIG. 10.
  • Lorentz force toward the front side of the page is generated.
  • this Lorentz force is applied to the two coils 140a facing each other along the Y-axis direction. It occurs on the relatively outer side of one of the sides (that is, the side relatively far from the mirror 130).
  • the other side for example, the lower side of FIG.
  • one side (for example, the upper side in FIG. 10) of the two sides of the coil 140 b facing in the Y-axis direction is formed from the back side in the drawing of FIG. 10.
  • Lorentz force toward the front side of the page is generated.
  • this Lorentz force is applied to the two coils 140b opposed along the Y-axis direction. It occurs on the relatively outer side of one of the sides (that is, the side relatively far from the mirror 130).
  • the other side for example, the lower side of FIG.
  • the position where the Lorentz force is generated is shifted along the Y-axis direction.
  • the Lorentz force generated in the coil 140a acts on the coil 140a as a rotational force with the axis along the X-axis direction as the rotation axis. become.
  • the coil 140a rotates about the axis along the X-axis direction as a rotation axis.
  • the position where the Lorentz force is generated is shifted along the Y-axis direction.
  • the Lorentz force generated in the coil 140b acts on the coil 140b as a rotational force having the axis along the X-axis direction as the rotation axis. become.
  • the coil 140b rotates using the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • the vibration propagates to the second base 110-2 due to the rotation of the coils 140a and 140b whose rotation axis is the axis along the X-axis direction. Due to this vibration, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the control current supplied to the coil 140a includes the Y-axis drive control current
  • a magnetic field is not applied to the two sides of the coil 140a facing along the X-axis direction.
  • the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140a.
  • the control current supplied to the coil 140b includes the Y-axis drive control current
  • the magnetic field is not applied to the two sides of the coil 140b facing each other along the X-axis direction.
  • the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140b.
  • the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the position where the Lorentz force is generated on the other side of the two sides is shifted along the X-axis direction.
  • the Lorentz force generated in the coil 140a (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force with the axis along the Y-axis direction as the rotation axis. 140a may be affected.
  • the coil 140a rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment.
  • the position where the Lorentz force is generated on the other side of the two sides is shifted along the X-axis direction.
  • the Lorentz force generated in the coil 140b (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force having the axis along the Y-axis direction as the rotation axis.
  • the coil 140b may be affected. For this reason, the coil 140b rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment. As a result, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the MEMS scanner 103 according to the third embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
  • the MEMS scanner 103 according to the third embodiment does not need to include the magnets 151a and 152a and the magnets 161a and 162b as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
  • FIG. 11 is a plan view conceptually showing the structure of the MEMS scanner 104 according to the fourth example.
  • the MEMS scanner 104 of the fourth embodiment is different from the MEMS scanner 103 of the third embodiment in that it further includes a magnetic yoke 170a and a magnetic yoke 170b.
  • the other components of the MEMS scanner 104 of the fourth embodiment may be the same as the other components of the MEMS scanner 103 of the third embodiment.
  • the magnetic yoke 170a forms a magnetic field path in which the magnetic field emitted from the magnet 161a reaches the magnet 162a while being applied to the two sides of the coil 140a facing each other along the Y-axis direction.
  • the magnetic yoke 170a has a shape extending from one end portion where the magnetic field emitted from the magnet 161a is incident toward the other end portion where the magnetic field incident on the magnet 162a is emitted.
  • FIG. 11 shows an example in which the magnetic yoke 170a has a shape extending along the X-axis direction.
  • the magnetic yoke 170b forms a magnetic field path in which the magnetic field emitted from the magnet 161b reaches the magnet 162b while being applied to two sides of the coil 140b facing each other along the Y-axis direction. That is, the magnetic yoke 170b has a shape extending from one end portion where the magnetic field emitted from the magnet 161b is incident toward the other end portion where the magnetic field incident on the magnet 162b is emitted.
  • FIG. 11 shows an example in which the magnetic yoke 170b has a shape extending along the X-axis direction.
  • FIG. 12 is a plan view conceptually showing an operation mode of the MEMS scanner 104 according to the fourth embodiment.
  • control currents that is, the X-axis drive control current and the Y-axis
  • the control currents are applied to the coils 140a and 140b, respectively.
  • a magnetic field is applied to the coil 140a from the magnets 161a and 162a.
  • the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • a magnetic field is applied to the side portion on the other side (for example, the right side in FIG. 12A). That is, the magnets 161b and 162b are part of the two sides of the coil 140b facing each other along the Y-axis direction and are opposed along the diagonal direction (that is, the diagonal direction) of the coil 140b.
  • a magnetic field is applied to the two side portions.
  • the magnet 161b and one end of the magnetic yoke 170b face each other along the diagonal direction of the coil 140b. It arrange
  • FIGS. 12 (a) and 12 (b) a control current flowing in the clockwise direction in FIG. 12 (a) is supplied to the coil 140a, and the magnetic yoke 170a is moved from the magnet 161a.
  • FIGS. 12 (a) and 12 (b) A situation in which a magnetic field directed to the magnet 162a via the coil 140a is applied to the coil 140a will be described.
  • one of the two sides of the coil 140a facing along the Y-axis direction for example, the upper side of FIG. 12 (a)).
  • a Lorentz force is generated from the back side of the sheet of FIG.
  • FIGS. 12 (a) and 12 (b) a control current flowing in the clockwise direction in FIG. 12 (a) is supplied to the coil 140b, and the magnetic yoke 170b is moved from the magnet 161b.
  • FIGS. 12 (a) and 12 (b) one of the two sides of the coil 140b facing along the Y-axis direction (for example, the upper side of FIG. 12 (a)).
  • a Lorentz force is generated from the back side of the sheet of FIG. 12A toward the front side of the sheet (in other words, the upper side of FIG.
  • this Lorentz force is relative to the inner side of one of the two sides of the coil 140b facing in the Y-axis direction (that is, relative to the mirror 130). Will occur on the near side).
  • the other side of the two sides of the coil 140b facing along the Y-axis direction for example, the lower side of FIG. 12A
  • the Lorentz force is generated from the front side of FIG. 12A toward the back side of the paper surface (in other words, the lower side of FIG. 12B).
  • the Lorentz force is relatively relative to the other side of the two sides of the coil 140b facing in the Y-axis direction (that is, relative to the mirror 130). Will occur on the far side). Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • the position where the Lorentz force is generated is shifted along the Y-axis direction.
  • the Lorentz force generated in the coil 140b acts on the coil 140b as a rotational force having the axis along the X-axis direction as the rotation axis. become.
  • the coil 140b rotates using the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • the vibration propagates to the second base 110-2 due to the rotation of the coils 140a and 140b whose rotation axis is the axis along the X-axis direction. Due to this vibration, the second base 110-2 deforms and vibrates along the X-axis direction as in the third embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the control current supplied to the coil 140a includes the Y-axis drive control current
  • a magnetic field is not applied to the two sides of the coil 140a facing along the X-axis direction.
  • the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140a.
  • the control current supplied to the coil 140b includes the Y-axis drive control current
  • the magnetic field is not applied to the two sides of the coil 140b facing each other along the X-axis direction.
  • the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140b.
  • the second base 110-2 undergoes deformation vibration along the X-axis direction, as in the third embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the position where the Lorentz force is generated on the other side of the two sides 140a is displaced along the X-axis direction.
  • the Lorentz force generated in the coil 140a (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force with the axis along the Y-axis direction as the rotation axis. 140a may be affected.
  • the coil 140a rotates with the axis along the Y-axis direction as the rotation axis, as in the third embodiment.
  • the position where the Lorentz force is generated on one of the two sides of the coil 140 b facing along the Y-axis direction is opposed along the Y-axis direction.
  • the position where the Lorentz force is generated on the other side of the two sides of the coil 140b is shifted along the X-axis direction.
  • the Lorentz force generated in the coil 140b (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force having the axis along the Y-axis direction as the rotation axis.
  • the coil 140b may be affected. For this reason, the coil 140b rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment. As a result, the second base 110-2 undergoes deformation vibration along the X-axis direction, as in the third embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the MEMS scanner 104 of the fourth embodiment can suitably enjoy various effects that the MEMS scanner 103 of the third embodiment enjoys.
  • the MEMS scanner 104 according to the fourth embodiment does not need to include the magnets 151a and 152a and the magnets 161a and 162b as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
  • FIG. 13 is a plan view conceptually showing the basic structure of the MEMS scanner 105 according to the fourth example.
  • the MEMS scanner 105 of the fifth embodiment is different from the MEMS scanner 102 of the second embodiment in that the arrangement positions of the coil 140a and the coil 140b are changed, and the magnet 151a and the magnet It differs in that it does not include 152a, magnet 151b and magnet 152b.
  • the other components of the MEMS scanner 105 of the fifth embodiment may be the same as the other components of the MEMS scanner 102 of the second embodiment.
  • the coil 140a includes a rotation axis of the coil 140a (specifically, a rotation axis along the X-axis direction) and a rotation axis of the second base 110-2 (specifically, in the X-axis direction).
  • the coil 140a matches the rotation center of the coil 140a that coincides with the rotation axis of the coil 140a along the X-axis direction and the second base 110- coincides with the rotation axis of the second base 110-2 along the X-axis direction.
  • the two rotation centers are arranged so as to be shifted by a predetermined amount a along the Y-axis direction.
  • the coil 140a includes the center of the coil 140a where the Lorentz force is generated (the center of the rotational force), the center of gravity of the rotating body including the coil 140a and the second base 110-2, and the first that supports the rotating body. At least two of the centers (support centers) of the torsion bars 120a-1 and 120b-1 are arranged so as to be shifted by a predetermined amount a along the Y-axis direction.
  • the coil 140b includes a rotation axis of the coil 140b (specifically, a rotation axis along the X-axis direction) and a rotation axis of the second base 110-2 (specifically, rotation along the X-axis direction).
  • (Axis) is shifted along the Y-axis direction (in other words, offset by a predetermined amount b (where a ⁇ b)).
  • the coil 140b matches the rotation center of the coil 140b that coincides with the rotation axis of the coil 140b along the X-axis direction and the second base 110- that coincides with the rotation axis of the second base 110-2 along the X-axis direction.
  • the rotation center of 2 is arranged so as to be shifted by a predetermined amount b along the Y-axis direction.
  • the coil 140b includes the center of the coil 140b where the Lorentz force is generated (the center of the rotational force), the center of gravity of the rotating body including the coil 140b and the second base 110-2, and the first supporting the rotating body.
  • At least two of the centers (support centers) of the torsion bars 120a-1 and 120b-1 are arranged so as to be shifted by a predetermined amount b along the Y-axis direction.
  • control currents ie, the X-axis drive control current and the Y-axis
  • the control currents are applied to the coils 140a and 140b, respectively.
  • a magnetic field is applied to the coil 140a from the magnets 161a and 162a.
  • the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • the magnets 161b and 162b apply a magnetic field to two sides of the coil 140b facing each other along the Y-axis direction.
  • the magnets 161b and 162b preferably do not apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
  • the magnets 161b and 162b give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140b facing in the Y-axis direction to the two sides of the coil 140b facing in the X-axis direction. May be.
  • one side (for example, the upper side in FIG. 14) of the two sides of the coil 140 a facing along the Y-axis direction is formed from the back side of the page of FIG. 14.
  • Lorentz force toward the front side of the page is generated.
  • the other side (for example, the lower side of FIG. 14) of the two sides of the coil 140 a facing along the Y-axis direction is on the front side of the sheet of FIG. 14.
  • Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140a is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • one side (for example, the upper side in FIG. 14) of the two sides of the coil 140 b facing in the Y-axis direction is formed from the back side of the drawing in FIG. 14. Lorentz force toward the front side of the page is generated.
  • the other side (for example, the lower side of FIG. 14) of the two sides of the coil 140 b facing in the Y-axis direction is on the front side of the sheet of FIG. 14. Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • the coil 140b rotates using the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 similarly to the second embodiment, also rotates about the axis along the X-axis direction as the rotation axis.
  • the rotational axis of the coil 140a along the X-axis direction and the rotational axis of the second base 110-2 along the X-axis direction are displaced along the Y-axis direction.
  • the rotation axis of the coil 140b along the X-axis direction and the rotation axis of the second base 110-2 along the X-axis direction are shifted along the Y-axis direction. Due to such imbalance caused by the rotational axis deviation, the respective rotations of the coils 140a and 140b having the axis along the X-axis direction as the rotation axis propagate to the second base 110-2 as vibration. become. Due to this vibration, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • the MEMS scanner 105 of the fifth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys.
  • the MEMS scanner 105 of the fifth embodiment does not have to include the magnets 151a and 152a and the magnets 151b and 152b, as compared with the MEMS scanner 102 of the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
  • the MEMS scanner 106 of the sixth embodiment is different from the MEMS scanner 102 of the second embodiment in that it does not include the magnet 151a and the magnet 152a, and the magnet 151b and the magnet 152b. Yes.
  • Other configurations of the MEMS scanner 106 of the sixth embodiment may be the same as other configurations of the MEMS scanner 102 of the second embodiment.
  • FIG. 16 is a plan view conceptually showing an operation mode of the MEMS scanner 106 according to the sixth embodiment.
  • control currents that is, the X-axis drive control current and the Y-axis
  • the control currents are applied to the coils 140a and 140b, respectively.
  • a magnetic field is applied to the coil 140a from the magnets 161a and 162a.
  • the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • a magnetic field is applied to the coil 140b from the magnets 161b and 162b.
  • the magnetic field applied from the magnets 161b and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
  • the magnets 161b and 162b apply a magnetic field to two sides of the coil 140b facing each other along the Y-axis direction.
  • the magnets 161b and 162b preferably do not apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
  • the magnets 161b and 162b give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140b facing in the Y-axis direction to the two sides of the coil 140b facing in the X-axis direction. May be. That is, it is preferable that the magnets 161b and 162b do not positively apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
  • a control current flowing in the clockwise direction in FIG. 16 is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 161a toward the magnet 162a is applied to the coil 140a.
  • a magnetic field from the magnet 161b toward the magnet 162b is applied to the coil 140b will be described.
  • one side (for example, the upper side in FIG. 16) of the two sides of the coil 140 a facing along the Y-axis direction is formed from the back side in the drawing of FIG. 16.
  • Lorentz force toward the front side of the page is generated.
  • the other side (for example, the lower side of FIG. 16) of the two sides of the coil 140a facing in the Y-axis direction is on the front side of the sheet of FIG.
  • Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140a is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • one of the two sides of the coil 140 b facing in the Y-axis direction (for example, the upper side in FIG. 16) is inserted from the back side of the drawing in FIG. 16.
  • Lorentz force toward the front side of the page is generated.
  • the other side (for example, the lower side of FIG. 16) of the two sides of the coil 140b facing each other along the Y-axis direction is on the front side of the sheet of FIG.
  • Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
  • the Lorentz force generated in the coil 140a acts on the coil 140a as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140a rotates about the axis along the X-axis direction as a rotation axis.
  • the Lorentz force generated in the coil 140b acts on the coil 140b as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140b rotates using the axis along the X-axis direction as a rotation axis.
  • the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
  • control current supplied to the coil 140a and the coil 140b includes the Y-axis drive control current
  • the two sides of the coil 140a facing each other along the X-axis direction and the X-axis direction are used. It was confirmed by experiments conducted by the present inventors that the following phenomenon occurs even when a magnetic field is not applied to the two sides of the opposing coil 140b.
  • the control current supplied to the coil 140a includes the Y-axis drive control current, a magnetic field is not applied to the two sides of the coil 140a facing each other along the X-axis direction.
  • a Lorentz force corresponding to the Y-axis drive control current is generated on one of the two sides of the coil 140a facing in the Y-axis direction (for example, the upper side in FIG. 16).
  • the control current supplied to the coil 140b includes the Y-axis drive control current
  • the magnetic field is not applied to the two sides of the coil 140b facing each other along the X-axis direction.
  • a Lorentz force corresponding to the Y-axis drive control current is generated on one side (for example, the upper side in FIG. 16) of the two sides of the coil 140b facing each other along the Y-axis direction.
  • the two sides of the coil 140b facing along the X-axis direction are A leakage flux of a magnetic field that is positively applied to two sides of the coil 140b facing each other along the Y-axis direction may be applied.
  • a slight Lorentz force corresponding to the Y-axis drive control current is generated on the two sides of the coil 140b facing each other along the X-axis direction.
  • the second base 110-2 is deformed and oscillated along the direction of the X-axis as in the second embodiment.
  • the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
  • a magnetic field is positively applied to two sides of the coil 140a facing along the X-axis direction, and 2 of the coil 140b facing along the X-axis direction.
  • the gain of rotation of the mirror 130 when a magnetic field was actively applied to one side was 60 dB.
  • a magnetic field is not positively applied to the two sides of the coil 140a facing along the X-axis direction, and a magnetic field is positively applied to the two sides of the coil 140b facing along the X-axis direction.
  • the gain of the rotation of the mirror 130 when it was not done was 54 dB.
  • the MEMS scanner 106 of the sixth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys.
  • the MEMS scanner 106 of the sixth embodiment does not need to include the magnets 151a and 152a and the magnets 151b and 152b as compared with the MEMS scanner 102 of the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
  • the MEMS scanner 107 of the seventh embodiment differs from the MEMS scanner 102 of the second embodiment in that the coil 140a and the coil 140b are composed of the same winding. Yes. That is, in the seventh embodiment, the coil 140a formed along the second base portion 110-2 and the coil 140a and the coil portion 140b are formed from the same winding.
  • Other configurations of the MEMS scanner 107 of the seventh embodiment may be the same as other configurations of the MEMS scanner 102 of the second embodiment.
  • the mirror 130 is positioned at least outside the windings of the coils 140a and 140b. For this reason, the MEMS scanner 107 according to the seventh embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
  • the MEMS scanner 107 may include four or more coils. Also in this case, while the mirror 130 is located outside the winding of some of the four or more coils, the inside of the winding of some other coils of the four or more coils. The mirror 130 may be located in the center.
  • FIG. 18 is a plan view conceptually showing the basic structure of the MEMS scanner 108 in the eighth example.
  • the MEMS scanner 108 according to the eighth embodiment is different from the MEMS scanner 107 according to the seventh embodiment in that the winding method of the coil 140a, the coil 140b, and the coil 130c is different. That is, in the eighth embodiment, an opening is present in part from the same winding (for example, an opening exists on the right side of the coil 140a in FIG. 18) and an opening is present in a part. There are formed an open loop-shaped coil part 140b (for example, an opening exists on the left side of the coil 140b in FIG. 18) and a coil 140c formed on the second base part 110-2. Other configurations of the MEMS scanner 108 of the eighth embodiment may be the same as other configurations of the MEMS scanner 107 of the seventh embodiment.
  • the coil 140a, the coil 140, and the coil 140c can be distinguished from each other by their shapes, arrangement positions, and the like. That is, the MEMS scanner 108 according to the eighth embodiment includes three coils (that is, the coil 140a, the coil 140, and the coil 140c), similarly to the MEMS scanner 107 according to the seventh embodiment.
  • the mirror 130 is located inside the winding of the coil 140c. That is, in the seventh embodiment, the mirror 130 is positioned outside the winding of two coils (that is, the coil 140a and the coil 140b) of the plurality of coils (that is, the coil 140a, the coil 140b, and the coil 140c).
  • the mirror 130 is positioned inside the winding of the remaining one of the plurality of coils (that is, the coil 140c). That is, also in the eighth embodiment, the mirror 130 does not have to be positioned outside all the windings of the plurality of coils included in the MEMS scanner 108.
  • the mirror 130 is positioned at least outside the windings of the coils 140a and 140b. For this reason, the MEMS scanner 108 according to the eighth embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
  • the MEMS scanner 107 may include four or more coils. Also in this case, while the mirror 130 is located outside the winding of some of the four or more coils, the inside of the winding of some other coils of the four or more coils. The mirror 130 may be located in the center.
  • the present invention can be appropriately changed without departing from the gist or concept of the present invention that can be read from the claims and the entire specification, and a drive device that includes such a change is also included in the technical concept of the present invention. It is.
  • 101 to 106 MEMS scanner 110 base 110-1 first base 110-2 second base 120a, 120b torsion bar 120a-1, 120b-1 first torsion bar 120a-2, 120b-2 second torsion bar 130 mirror 140a, 140b Coil 141a, 141b Power supply terminal 151a, 151b, 152a, 152b Magnet 161a, 161b, 162a, 162b Magnet 170a, 170b Magnetic yoke

Abstract

The present invention solves the problem of difficulties with miniaturization and positioning magnets in suitable locations due to coils being disposed in such a manner as to surround a mirror in a drive device such as a MEMS scanner in which a driven object such as a mirror is made to rotate. This drive device (105) is provided with: a second base (110-2) that rotates around the X-axis via first elastic parts (120a-1, 120b-1) inside a first base (110-1); and a driven part (130) that rotates around the Y-axis via second elastic parts (120a-2, 120b-2) inside the second base. The driven part is disposed on the outsides of the windings of a first coil (140a) and a second coil (140b), which are disposed on the second base with the driven part therebetween. In addition, magnetic field applying parts (161, 162), which each apply a magnetic field to each coil, are provided, and the first coil is disposed in such a manner that the center of the first coil is positioned in a position that is offset along the Y-axis from the axis of rotation of the second base.

Description

駆動装置Drive device
 本発明は、例えばミラー等の被駆動物を回転させるMEMSスキャナ等の駆動装置の技術分野に関する。 The present invention relates to a technical field of a driving device such as a MEMS scanner that rotates a driven object such as a mirror.
 例えば、ディスプレイ、プリンティング装置、精密測定、精密加工、情報記録再生などの多様な技術分野において、半導体工程技術によって製造されるMEMS(Micro Electro Mechanical System)デバイスについての研究が活発に進められている。このようなMEMSデバイスとして、例えば、光源から入射された光を所定の画面領域に対して走査して画像を具現するディスプレイ分野、または所定の画面領域に対して光を走査して反射された光を受光して画像情報を読み込むスキャニング分野では、微小構造のミラー駆動装置(光スキャナないしはMEMSスキャナ)が注目されている。 For example, in various technical fields such as a display, a printing apparatus, precision measurement, precision processing, and information recording / reproduction, research on MEMS (Micro Electro Mechanical System) devices manufactured by semiconductor process technology is being actively promoted. As such a MEMS device, for example, a display field in which light incident from a light source is scanned with respect to a predetermined screen region to embody an image, or light reflected by scanning light with respect to a predetermined screen region. In the scanning field where light is received and image information is read, a micro-structured mirror driving device (optical scanner or MEMS scanner) has attracted attention.
 ミラー駆動装置は、一般的には、ベースとなる固定された本体と、所定の回転軸の周りに回転可能なミラーと、本体とミラーとを接続する又は接合するトーションバー(ねじれ部材)とを備える構成が知られている(特許文献1参照)。 In general, a mirror driving device includes a fixed main body serving as a base, a mirror that can rotate around a predetermined rotation axis, and a torsion bar (twisting member) that connects or joins the main body and the mirror. The structure provided is known (refer patent document 1).
特表2007-522529号公報Special table 2007-522529
 このような構成を有するミラー駆動装置では、コイルと磁石を用いてミラーを駆動する構成が一般的である。このような構成では、例えばミラーを取り囲むようにミラーにコイルを直接貼り付ける構成が一例としてあげられる。この場合、コイルに電流を流すことで生ずる磁界と磁石の磁界との間の相互作用によってミラーに対して回転方向の力が加えられ、その結果、ミラーが回転させられる。また、上述の特許文献1では、コイルと磁石とが、トーションバーにねじれ方向(言い換えれば、ミラーの回転軸方向)の歪みを生じさせるように配置される構成を採用している。この場合、コイルに電流を流すことで生ずる磁界と磁石の磁界との間の相互作用によってトーションバーがねじれ方向に歪み、トーションバーのねじれ方向の歪みがミラーを回転させることになる。 In a mirror driving device having such a configuration, a configuration in which a mirror is driven using a coil and a magnet is generally used. In such a configuration, for example, a configuration in which a coil is directly attached to the mirror so as to surround the mirror can be given as an example. In this case, a force in the rotational direction is applied to the mirror by the interaction between the magnetic field generated by passing a current through the coil and the magnetic field of the magnet, and as a result, the mirror is rotated. In Patent Document 1 described above, a configuration is adopted in which the coil and the magnet are arranged so as to cause distortion in the twisting direction (in other words, the rotation axis direction of the mirror) of the torsion bar. In this case, the torsion bar is distorted in the twisting direction due to the interaction between the magnetic field generated by passing a current through the coil and the magnetic field of the magnet, and the distortion in the twisting direction of the torsion bar rotates the mirror.
 しかしながら、ミラーを取り囲むようにコイルが配置されるがゆえに、コイルが比較的大きくなってしまう。その結果、当該コイルに対して磁界を付与するための磁石もまた比較的大きくなってしまう。このため、コイルと磁石との間の磁気ギャップが大きくなってしまうと共に、MEMSスキャナの小型化を図ることができなくなってしまうという技術的な問題点が生ずる。また、ミラーを取り囲むようにコイルが配置されるがゆえに、磁石の配置が限定されてしまう又は磁石を好適な位置に配置することが困難になってしまう。具体的には、ミラーによる光の反射が妨げられてしまうがゆえに、コイルの中心上方(具体的には、コイルの巻き線の内側の上方(つまり、ミラーの上方)へ磁石を配置することが困難である。 However, since the coil is arranged so as to surround the mirror, the coil becomes relatively large. As a result, the magnet for applying a magnetic field to the coil is also relatively large. This causes a technical problem that the magnetic gap between the coil and the magnet becomes large and the MEMS scanner cannot be downsized. In addition, since the coil is arranged so as to surround the mirror, the arrangement of the magnet is limited or it is difficult to arrange the magnet at a suitable position. Specifically, since the reflection of light by the mirror is hindered, it is possible to arrange a magnet above the center of the coil (specifically, above the inside of the coil winding (that is, above the mirror). Have difficulty.
 このような従来のミラー駆動装置に対して、本発明は、例えば、コイルと磁石とを用いてミラー(或いは、回転する被駆動物)を駆動しつつも相対的に小型な駆動装置(つまり、MEMSスキャナ)を提供することを課題とする。 In contrast to such a conventional mirror driving device, the present invention, for example, uses a coil and a magnet to drive a mirror (or a driven object to be rotated) while driving a relatively small driving device (that is, It is an object to provide a MEMS scanner.
 上記課題を解決するために、駆動装置は、第1ベース部と、第1ベース部によって支持される第2ベース部と、前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を回転軸として回転させるような弾性を有する第1弾性部と、回転可能な被駆動部と、前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を回転軸として回転させるような弾性を有する第2弾性部と、前記第2ベース部上に配置される第1コイル部であって、且つ当該第1コイル部の巻き線の外側に前記被駆動部が配置される第1コイル部と、前記第1コイル部との間に前記被駆動部を挟み込むように前記ベース部上に配置される第2コイル部であって、且つ当該第2コイル部の巻き線の外側に前記被駆動部が配置される第2コイル部と、前記第1コイル部及び前記第2コイル部に対して磁界を付与する磁界付与部とを備え、前記第1コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記第1コイル部の中心が位置するように、配置されている。 In order to solve the above problem, the drive device connects the first base portion, the second base portion supported by the first base portion, the first base portion and the second base portion, and A first elastic portion having elasticity that rotates the second base portion about an axis along another direction as a rotation axis, a rotatable driven portion, and the second base portion and the driven portion are connected to each other. And a second elastic part having elasticity for rotating the driven part about an axis along one direction different from the other direction as a rotation axis, and a second elastic part disposed on the second base part. The driven portion is sandwiched between the first coil portion and the first coil portion, which is a one-coil portion and the driven portion is disposed outside the winding of the first coil portion. A second coil portion disposed on the base portion, and the second coil A second coil part in which the driven part is disposed outside a winding of the part, and a magnetic field applying part that applies a magnetic field to the first coil part and the second coil part, and the first coil The part is arranged so that the center of the first coil part is located at a position offset along the one direction from the rotation axis of the second base part.
 本発明のこのような作用及び利得は次に説明する実施の形態から明らかにされる。 The operation and gain of the present invention will be clarified from the embodiments described below.
第1実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 1st Example. 第1実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。It is the top view and sectional view which show notionally the mode of operation by the MEMS scanner concerning the 1st example. 第1実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。It is the top view and sectional view which show notionally the mode of operation by the MEMS scanner concerning the 1st example. 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す断面図である。It is sectional drawing which shows notionally the aspect of the operation | movement by the MEMS scanner which concerns on 2nd Example. 第2実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 2nd Example. 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。It is the top view and sectional drawing which show notionally the aspect of the operation | movement by the MEMS scanner which concerns on 2nd Example. 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図及び断面図である。It is the top view and sectional drawing which show notionally the aspect of the operation | movement by the MEMS scanner which concerns on 2nd Example. 第2実施例に係るMEMSスキャナによる動作の態様を概念的に示す断面図である。It is sectional drawing which shows notionally the aspect of the operation | movement by the MEMS scanner which concerns on 2nd Example. 第3実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 3rd Example. 第3実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。It is a top view which shows notionally the aspect of the operation | movement by the MEMS scanner which concerns on 3rd Example. 第4実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 4th Example. 第4実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。It is a top view which shows notionally the aspect of the operation | movement by the MEMS scanner which concerns on 4th Example. 第5実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 5th Example. 第5実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。It is a top view which shows notionally the aspect of the operation | movement by the MEMS scanner which concerns on 5th Example. 第6実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 6th Example. 第6実施例に係るMEMSスキャナによる動作の態様を概念的に示す平面図である。It is a top view which shows notionally the aspect of the operation | movement by the MEMS scanner which concerns on 6th Example. 第7実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on 7th Example. 第8実施例に係るMEMSスキャナの構成を概念的に示す平面図である。It is a top view which shows notionally the structure of the MEMS scanner which concerns on an 8th Example.
 以下、駆動装置に係る実施形態について順に説明する。 Hereinafter, embodiments according to the drive device will be described in order.
 <1>
 本実施形態の駆動装置は、第1ベース部と、第1ベース部によって支持される第2ベース部と、前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を回転軸として回転させるような弾性を有する第1弾性部と、回転可能な被駆動部と、前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を回転軸として回転させるような弾性を有する第2弾性部と、前記第2ベース部上に配置される第1コイル部であって、且つ当該第1コイル部の巻き線の外側に前記被駆動部が配置される第1コイル部と、前記第1コイル部との間に前記被駆動部を挟み込むように前記ベース部上に配置される第2コイル部であって、且つ当該第2コイル部の巻き線の外側に前記被駆動部が配置される第2コイル部と、前記第1コイル部及び前記第2コイル部に対して磁界を付与する磁界付与部とを備え、前記第1コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記第1コイル部の中心が位置するように、配置されている。
<1>
The driving apparatus of the present embodiment connects the first base portion, the second base portion supported by the first base portion, the first base portion and the second base portion, and the second base portion. Connecting a first elastic part having elasticity such that an axis along the other direction is a rotation axis, a rotatable driven part, the second base part and the driven part, and A second elastic part having elasticity that rotates the driven part about an axis along one direction different from the other direction as a rotation axis; and a first coil part disposed on the second base part. And on the base portion so as to sandwich the driven portion between the first coil portion and the first coil portion where the driven portion is disposed outside the winding of the first coil portion. A second coil part disposed on the outside of the winding of the second coil part A second coil unit in which the driven unit is disposed, and a magnetic field applying unit that applies a magnetic field to the first coil unit and the second coil unit, wherein the first coil unit includes the second coil unit It arrange | positions so that the center of a said 1st coil part may be located in the position offset along the said one direction from the rotating shaft of a base part.
 本実施形態の駆動装置によれば、基礎となる第1ベース部と当該第1ベース部に支持される第2ベース部とが、弾性を有する第1弾性部(例えば、後述する第1トーションバー等)によって直接的に又は間接的に接続されている。更に、第2ベース部と回転可能に配置される被駆動部(例えば、後述するミラー等)とが、弾性を有する第2弾性部(例えば、後述する第2トーションバー等)によって直接的に又は間接的に接続されている。第2ベース部は、第1弾性部の弾性(例えば、第2ベース部を他の方向(例えば、後述のX軸方向)に沿った軸を回転軸として回転させることができるという弾性)によって、一の方向とは異なる(好ましくは、交わる、より好ましくは、直交する)他の方向に沿った軸を回転軸として回転する。従って、第2ベース部と第2弾性部を介して接続されている被駆動部もまた、他の方向に沿った軸を回転軸として回転する。加えて、被駆動部は、第2弾性部の弾性(例えば、被駆動部を一の方向(例えば、後述のY軸方向)に沿った軸を回転軸として回転させることができるという弾性)によって、一の方向に沿った軸を回転軸として回転する。つまり、本実施形態の駆動装置は、被駆動部の2軸駆動を行うことができる。但し、本実施形態の駆動装置は、被駆動部の多軸駆動(例えば、3軸駆動、4軸駆動・・・)を行ってもよい。 According to the drive device of the present embodiment, the first base portion serving as the base and the second base portion supported by the first base portion have the first elastic portion having elasticity (for example, a first torsion bar described later). Etc.) directly or indirectly. Further, the second base portion and a driven portion (for example, a mirror described later) rotatably arranged are directly or by a second elastic portion (for example, a second torsion bar described later) having elasticity. Connected indirectly. The second base portion has elasticity of the first elastic portion (for example, elasticity that allows the second base portion to rotate about an axis along another direction (for example, an X-axis direction described later) as a rotation axis). An axis along another direction different from one direction (preferably intersecting, more preferably orthogonal) is rotated as a rotation axis. Therefore, the driven part connected via the second base part and the second elastic part also rotates about the axis along the other direction as the rotation axis. In addition, the driven part is made by the elasticity of the second elastic part (for example, the elasticity that the driven part can be rotated about an axis along one direction (for example, a Y-axis direction described later) as a rotation axis). , The axis along one direction is rotated as a rotation axis. That is, the driving device of the present embodiment can perform biaxial driving of the driven part. However, the drive apparatus of this embodiment may perform multi-axis drive (for example, 3-axis drive, 4-axis drive,...) Of the driven part.
 本実施形態では、第1コイル部は、第2ベース部の回転軸から一の方向に沿ってオフセットした位置に第1コイル部の中心が位置するように、配置されている。言い換えれば、他の方向に沿った第1コイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置する。尚、第2コイル部は、第2ベース部の回転軸から一の方向に沿ってオフセットした位置に第1コイル部の中心が位置するように、配置されていてもよい。言い換えれば、他の方向に沿った第2コイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置していてもよい。或いは、第2コイル部は、第2ベース部の回転軸に対応する位置(つまり、回転軸上の位置)第1コイル部の中心が位置するように、配置されていてもよい。言い換えれば、他の方向に沿った第2コイル部の回転軸が、他の方向に沿った第2ベース部の回転軸に対応する位置に位置していてもよい。 In the present embodiment, the first coil portion is disposed so that the center of the first coil portion is located at a position offset along one direction from the rotation axis of the second base portion. In other words, the rotation axis of the first coil portion along the other direction is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction. The second coil portion may be arranged such that the center of the first coil portion is located at a position offset along one direction from the rotation axis of the second base portion. In other words, the rotation axis of the second coil portion along the other direction may be located at a position shifted along one direction from the rotation axis of the second base portion along the other direction. Or the 2nd coil part may be arranged so that the center of the 1st coil part may be located in the position (namely, position on a rotation axis) corresponding to the rotation axis of the 2nd base part. In other words, the rotation axis of the second coil part along the other direction may be located at a position corresponding to the rotation axis of the second base part along the other direction.
 本実施形態の駆動装置では、第1コイル部及び第2コイル部の夫々と磁界付与部との間の電磁相互作用に起因した力によって、他の方向に沿った軸を回転軸として第2ベース部(言い換えれば、第2ベース部によって支持されている被駆動部)が回転する。言い換えれば、他の方向に沿った軸を回転軸として第2ベース部が回転するための駆動力は、第1コイル部及び第2コイル部の夫々と磁界付与部との間の電磁相互作用に起因した電磁力である。加えて、第1コイル部及び第2コイル部の夫々と磁界付与部との間の電磁相互作用に起因した力によって、一の方向に沿った軸を回転軸として被駆動部が回転する。言い換えれば、一の方向に沿った軸を回転軸として被駆動部が回転するための駆動力は、第1コイル部及び第2コイル部の夫々と磁界付与部との間の電磁相互作用に起因した電磁力である。 In the driving device of the present embodiment, the second base with the axis along the other direction as the rotation axis is caused by the force caused by the electromagnetic interaction between each of the first coil unit and the second coil unit and the magnetic field applying unit. The part (in other words, the driven part supported by the second base part) rotates. In other words, the driving force for rotating the second base part about the axis along the other direction as a rotation axis is an electromagnetic interaction between the first coil part and the second coil part and the magnetic field applying part. The resulting electromagnetic force. In addition, the driven part rotates about the axis along one direction as a rotation axis by the force caused by the electromagnetic interaction between each of the first coil part and the second coil part and the magnetic field applying part. In other words, the driving force for the driven part to rotate with the axis along one direction as the rotation axis is due to the electromagnetic interaction between the first coil part and the second coil part and the magnetic field applying part. Electromagnetic force.
 より具体的には、後に詳述するように、第1コイル部及び第2コイル部の夫々には、他の方向に沿った軸を回転軸として第2ベース部を回転させるための制御電流が供給される。この制御電流は、例えば、他の方向に沿った軸を回転軸として第2ベース部が回転する周波数(言い換えれば、周期)と同一の周波数を有する又は同期した周波数を有する交流電流であることが好ましい。加えて、第1コイル部及び第2コイル部の夫々には、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流が供給される。この制御電流は、例えば、一の方向に沿った軸を回転軸として被駆動部が回転する周波数(言い換えれば、周期)と同一の周波数を有する又は同期した周波数を有する交流電流であることが好ましい。より好ましくは、制御電流は、被駆動部及び第2弾性部によって定まる被駆動部の共振周波数(より具体的には、被駆動部の慣性モーメント及び第2弾性部のねじりバネ定数によって定まる被駆動部の共振周波数)と同一の周波数を有する又は同期した周波数を有する交流電流であることが好ましい。 More specifically, as will be described in detail later, each of the first coil portion and the second coil portion has a control current for rotating the second base portion about the axis along the other direction as a rotation axis. Supplied. This control current may be, for example, an alternating current having a frequency that is the same as or synchronized with a frequency (in other words, a cycle) at which the second base portion rotates about an axis along another direction as a rotation axis. preferable. In addition, each of the first coil portion and the second coil portion is supplied with a control current for rotating the driven portion with an axis along one direction as a rotation axis. This control current is preferably an alternating current having a frequency that is the same as or synchronized with a frequency (in other words, a cycle) at which the driven part rotates about an axis along one direction as a rotation axis. . More preferably, the control current is the resonance frequency of the driven part determined by the driven part and the second elastic part (more specifically, the driven frequency determined by the moment of inertia of the driven part and the torsion spring constant of the second elastic part). It is preferable that the alternating current has the same frequency as the resonance frequency of the part or a synchronized frequency.
 一方で、第1コイル部及び第2コイル部の夫々には、磁界付与部から磁界が付与される。 Meanwhile, a magnetic field is applied from the magnetic field applying unit to each of the first coil unit and the second coil unit.
 このため、第1コイル部に供給される制御電流と磁界付与部が付与する磁界との電磁相互作用に起因して、第1コイル部には、ローレンツ力が発生する。同様に、第2コイル部に供給される制御電流と磁界付与部が付与する磁界との電磁相互作用に起因して、第2コイル部には、ローレンツ力が発生する。このローレンツ力によって、第2ベース部は、他の方向に沿った軸を回転軸として回転する。 For this reason, Lorentz force is generated in the first coil portion due to electromagnetic interaction between the control current supplied to the first coil portion and the magnetic field applied by the magnetic field applying portion. Similarly, Lorentz force is generated in the second coil portion due to the electromagnetic interaction between the control current supplied to the second coil portion and the magnetic field applied by the magnetic field applying portion. Due to this Lorentz force, the second base portion rotates with an axis along the other direction as a rotation axis.
 加えて、本実施形態では、他の方向に沿った第1コイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している。このため、他の方向に沿った第2ベース部の回転軸(回転体回転支持中心)と、第1コイル部を含む第2ベース部全体の系の重心(回転体重心)と、第1コイル部に発生するローレンツ力の中心(回転力中心)とのうちの少なくとも2つが、一の方向に沿ってずれることになる。このようなずれ(つまり、アンバランス)に起因して、第1コイル部に発生するローレンツ力は、第2ベース部を変形振動させるように作用する。その結果、第2ベース部の変形振動に伴って、被駆動部は、一の方向に沿った軸を回転軸として回転する。 In addition, in the present embodiment, the rotation axis of the first coil portion along the other direction is located at a position shifted along the one direction from the rotation axis of the second base portion along the other direction. Yes. For this reason, the rotation axis (rotating body rotation support center) of the second base part along the other direction, the center of gravity of the entire second base part including the first coil part (rotating body center of gravity), and the first coil At least two of the Lorentz force centers (rotational force centers) generated in the part are displaced along one direction. The Lorentz force generated in the first coil portion due to such a shift (that is, unbalance) acts to deform and vibrate the second base portion. As a result, along with the deformation vibration of the second base portion, the driven portion rotates about the axis along one direction as the rotation axis.
 本実施形態では特に、第1コイル部及び第2コイル部の夫々は、巻き線の外側に被駆動部が配置されるように、第2ベース部上に配置される。言い換えれば、第1コイル部及び第2コイル部の夫々は、巻き線の内側に被駆動部が配置されないように、第2ベース部上に配置される。つまり、第1コイル部及び第2コイル部の夫々は、被駆動部が配置される箇所から所定方向(例えば、他の方向(例えば、後述のX軸方向))にオフセットした位置に配置される。より具体的には、第1コイル部は、被駆動部の中心が配置される箇所から所定方向にオフセットした位置に第1コイル部の中心(例えば、巻き線の中心)が配置されるように、第2ベース部上に配置される。同様に、第2コイル部は、被駆動部の中心が配置される箇所から所定方向にオフセットした位置に第2コイル部の中心(例えば、巻き線の中心)が配置されるように、第2ベース部上に配置される。その結果、第1コイル部と被駆動部と第2コイル部とは、所定方向(例えば、他の方向)に沿ってこの順に配列するように配置される。尚、第1コイル部及び第2コイル部の夫々が第2ベース部上に配置されるため、第2ベース部の少なくとも一部の形状は、第1コイル部及び第2コイル部の夫々を配置可能な形状を有していることが好ましい。 Particularly in the present embodiment, each of the first coil portion and the second coil portion is disposed on the second base portion so that the driven portion is disposed outside the winding. In other words, each of the first coil portion and the second coil portion is disposed on the second base portion so that the driven portion is not disposed inside the winding. That is, each of the first coil portion and the second coil portion is disposed at a position offset in a predetermined direction (for example, another direction (for example, an X-axis direction described later)) from a position where the driven portion is disposed. . More specifically, the first coil unit is arranged such that the center of the first coil unit (for example, the center of the winding) is disposed at a position offset in a predetermined direction from the position where the center of the driven unit is disposed. , Disposed on the second base portion. Similarly, the second coil portion is arranged such that the center of the second coil portion (for example, the center of the winding) is disposed at a position offset in a predetermined direction from the position where the center of the driven portion is disposed. It is arranged on the base part. As a result, the first coil portion, the driven portion, and the second coil portion are arranged so as to be arranged in this order along a predetermined direction (for example, another direction). In addition, since each of the first coil portion and the second coil portion is disposed on the second base portion, at least a part of the shape of the second base portion is disposed in each of the first coil portion and the second coil portion. It preferably has a possible shape.
 このように、本実施形態では、被駆動部は、第1コイル部及び第2コイル部の夫々の巻き線の外側に位置することになる。従って、第1コイル部及び第2コイル部の夫々は、被駆動部を取り囲むように配置されなくともよい。その結果、本実施形態では、第1コイル部及び第2コイル部の少なくとも一方が被駆動部を取り囲むように配置される場合と比較して、第1コイル部及び第2コイル部の夫々のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。言い換えれば、本実施形態では、被駆動部の大きさに関係なく、第1コイル部及び第2コイル部の夫々のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。その結果、当該第1コイル部及び第2コイル部の夫々に対して磁界を付与するための磁界付与部(例えば、磁石)のサイズもまた、相対的に小さくすることができる。このため、本実施形態では、第1コイル部及び第2コイル部の少なくとも一方が被駆動部を取り囲むように配置される場合と比較して、被駆動部の大きさに関係なく、第1コイル部及び第2コイル部の夫々と磁気付与部との間の磁気ギャップを相対的に小さくすることができる。従って、本実施形態では、第1コイル部及び第2コイル部の少なくとも一方が被駆動部を取り囲むように配置される場合と比較して、駆動装置の小型化が好適に実現される。 Thus, in this embodiment, the driven part is located outside the respective windings of the first coil part and the second coil part. Therefore, each of the first coil part and the second coil part may not be arranged so as to surround the driven part. As a result, in the present embodiment, each size of the first coil portion and the second coil portion is compared with a case where at least one of the first coil portion and the second coil portion is disposed so as to surround the driven portion. (For example, the diameter of a winding, the length of a winding, etc.) can be made relatively small. In other words, in this embodiment, the sizes of the first coil portion and the second coil portion (for example, the diameter of the winding and the length of the winding) are relatively set regardless of the size of the driven portion. Can be small. As a result, the size of the magnetic field application unit (for example, a magnet) for applying a magnetic field to each of the first coil unit and the second coil unit can also be relatively reduced. For this reason, in the present embodiment, the first coil portion and the second coil portion are compared with the case where at least one of the first coil portion and the second coil portion is disposed so as to surround the driven portion, regardless of the size of the driven portion. The magnetic gap between each of the part and the second coil part and the magnetism applying part can be made relatively small. Therefore, in the present embodiment, the size of the driving device can be suitably reduced as compared with the case where at least one of the first coil portion and the second coil portion is disposed so as to surround the driven portion.
 加えて、本実施形態では、被駆動部を取り囲むように第1コイル部及び第2コイル部が配置されなくともよくなるため、被駆動部を取り囲むように第1コイル部及び第2コイル部の少なくとも一方が配置される駆動装置と比較して、磁界付与部の配置の自由度が相対的に高くなる。このため、第1コイル部及び第2コイル部の夫々の中心上方(具体的には、第1コイル部及び第2コイル部の夫々の巻き線の内側の上方に磁界付与部を配置することができる。 In addition, in the present embodiment, since the first coil portion and the second coil portion do not have to be arranged so as to surround the driven portion, at least the first coil portion and the second coil portion so as to surround the driven portion. Compared with the drive device in which one is arranged, the degree of freedom of arrangement of the magnetic field application unit is relatively high. For this reason, it is possible to dispose the magnetic field applying unit above the center of each of the first coil unit and the second coil unit (specifically, above the inside of each winding of the first coil unit and the second coil unit). it can.
 加えて、本実施形態では、第1コイル部は、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している。このため、本実施形態では、後に図面を用いて詳述するように、一の方向に沿って第1コイル部を横切る磁界を付与するための磁界付与部と他の方向に沿って第1コイル部を横切る磁界を付与するための磁界付与部とが別個独立に配置されなくとも、被駆動部の2軸駆動が行われる。言い換えれば、本実施形態では、例えば一の方向に沿って第1コイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。 In addition, in the present embodiment, the first coil portion is located at a position shifted along one direction from the rotation axis of the second base portion along the other direction. For this reason, in this embodiment, as will be described in detail later with reference to the drawings, the magnetic field applying unit for applying a magnetic field across the first coil unit along one direction and the first coil along the other direction. Even if a magnetic field applying unit for applying a magnetic field across the unit is not separately provided, the driven unit is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the first coil unit along one direction is arranged, the driven unit is driven in two axes.
 但し、本実施形態では、被駆動部が巻き線の外側に位置する第1コイル部及び第2コイル部に加えて、被駆動部が巻き線の内側に位置する他のコイル部を更に備えていてもよい。つまり、駆動装置が備える全てのコイル部の巻き線の外側に被駆動部が位置することが要求されているものではない。言い換えれば、駆動装置が備える全てのコイル部のうちの少なくとも2つのコイル部(例えば、被駆動部を間に挟み込むように配置される2つのコイル部)の巻き線の外側に被駆動部が位置していれば足りる。 However, in the present embodiment, in addition to the first coil portion and the second coil portion where the driven portion is located outside the winding, the driven portion is further provided with another coil portion located inside the winding. May be. That is, it is not required that the driven part is located outside the windings of all the coil parts included in the driving device. In other words, the driven part is located outside the winding of at least two coil parts (for example, two coil parts arranged so as to sandwich the driven part between them) among all the coil parts included in the driving device. If it is done, it is enough.
 加えて、複数のコイル部が単一の巻き線によって構成されることがある。この場合であっても、配置位置や形状等によって単一の巻き線から構成される複数のコイル部の夫々を実質的に区別した上で、単一の巻き線から構成される複数のコイル部のうちの第1及び第2コイル部の巻き線の外側に被駆動部が位置する一方で、単一の巻き線から構成される複数のコイル部のうちの他のコイル部の巻き線の内側に被駆動部が位置していてもよい。 In addition, a plurality of coil parts may be constituted by a single winding. Even in this case, after substantially distinguishing each of a plurality of coil parts constituted by a single winding according to the arrangement position, shape, etc., a plurality of coil parts constituted by a single winding While the driven part is located outside the windings of the first and second coil parts, the inside of the windings of the other coil parts of the plurality of coil parts composed of a single winding The driven part may be located in the position.
 <2>
 本実施形態の駆動装置の他の態様では、前記磁界付与部は、前記一の方向に沿って前記第1コイル部を挟み込む一対の第1磁性体を備えている。
<2>
In another aspect of the driving apparatus of the present embodiment, the magnetic field application unit includes a pair of first magnetic bodies that sandwich the first coil unit along the one direction.
 この態様によれば、後に図面を用いて詳述するように、一の方向に沿って第1コイル部を横切る磁界を付与するための磁界付与部と他の方向に沿って第1コイル部を横切る磁界を付与するための磁界付与部とが別個独立に配置されなくとも、被駆動部の2軸駆動が行われる。言い換えれば、本実施形態では、例えば一の方向に沿って第1コイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。 According to this aspect, as will be described in detail later with reference to the drawings, the magnetic field applying unit for applying a magnetic field across the first coil unit along one direction and the first coil unit along the other direction. Even if the magnetic field applying unit for applying the crossing magnetic field is not separately arranged independently, the driven unit is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the first coil unit along one direction is arranged, the driven unit is driven in two axes.
 <3>
 上述の如く磁界付与部が一対の第1磁性体を備えている駆動装置の態様では、前記一対の第1磁性体は、(i)前記第1コイル部のうち前記一の方向に沿って対向する2つの辺に前記磁界を付与し、前記一対の第1磁性体は、(ii-1)前記第1コイル部のうち前記他の方向に沿って対向する2つの辺に前記磁界を付与しない、又は(ii-2)前記第1コイル部のうち前記他の方向に沿って対向する2つの辺には、前記第1コイル部のうち前記一の方向に沿って対向する2つの辺に付与される前記磁界の漏れ磁束が付与されるように構成してもよい。
<3>
In the aspect of the driving apparatus in which the magnetic field applying unit includes the pair of first magnetic bodies as described above, the pair of first magnetic bodies are (i) opposed to each other along the one direction of the first coil sections. The magnetic field is applied to two sides, and the pair of first magnetic bodies (ii-1) does not apply the magnetic field to two sides of the first coil portion that face each other along the other direction. Or (ii-2) two sides of the first coil portion that face along the other direction are given to two sides of the first coil portion that face along the one direction The magnetic flux leakage magnetic flux may be applied.
 このように構成すれば、例えば一の方向に沿って第1コイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。 With this configuration, for example, if a magnetic field applying unit that applies a magnetic field across the first coil unit along one direction is arranged, the driven unit is driven in two axes.
 <4>
 本実施形態の駆動装置の他の態様では、前記第2コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記第2コイル部の中心が位置するように、配置されている。
<4>
In another aspect of the driving apparatus of the present embodiment, the second coil portion is positioned at the center offset from the rotation axis of the second base portion along the one direction. Is arranged.
 この態様によれば、他の方向に沿った第2ベース部の回転軸(回転体回転支持中心)と、第2コイル部を含む第2ベース部全体の系の重心(回転体重心)と、第2コイル部に発生するローレンツ力の中心(回転力中心)とのうちの少なくとも2つが、一の方向に沿ってずれることになる。このようなずれ(つまり、アンバランス)に起因して、第2コイル部に発生するローレンツ力は、第2ベース部を変形振動させるように作用する。このため、後に図面を用いて詳述するように、一の方向に沿って第2コイル部を横切る磁界を付与するための磁界付与部と他の方向に沿って第2コイル部を横切る磁界を付与するための磁界付与部とが別個独立に配置されなくとも、被駆動部の2軸駆動が行われる。言い換えれば、例えば一の方向に沿って第2コイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。 According to this aspect, the rotation axis (rotating body rotation support center) of the second base portion along the other direction, the center of gravity of the entire second base portion including the second coil portion (rotating body gravity center), At least two of the centers of Lorentz forces (rotational force centers) generated in the second coil portion are displaced along one direction. The Lorentz force generated in the second coil portion due to such deviation (that is, unbalance) acts to cause the second base portion to deform and vibrate. For this reason, as will be described in detail later with reference to the drawings, a magnetic field applying unit for applying a magnetic field that crosses the second coil unit along one direction and a magnetic field that crosses the second coil unit along the other direction. Even if the magnetic field applying unit for applying is not arranged separately and independently, the driven part is driven in two axes. In other words, for example, if a magnetic field application unit that applies a magnetic field across the second coil unit is disposed along one direction, the driven unit is biaxially driven.
 <5>
 上述の如く第2ベース部の回転軸から一の方向に沿ってオフセットした位置に第2コイル部の中心が位置する駆動装置の態様では、前記第2ベース部の回転軸を基準とする前記第2コイル部の中心のオフセット量は、前記第2ベース部の回転軸を基準とする前記第1コイル部の中心のオフセット量と異なる。
<5>
In the aspect of the driving device in which the center of the second coil portion is located at a position offset in one direction from the rotation axis of the second base portion as described above, the first position based on the rotation axis of the second base portion. The offset amount at the center of the two coil portions is different from the offset amount at the center of the first coil portion based on the rotation axis of the second base portion.
 この態様によれば、被駆動部の2軸駆動が好適に行われる。 According to this aspect, the two-axis drive of the driven part is suitably performed.
 <6>
 上述の如く第2ベース部の回転軸から一の方向に沿ってオフセットした位置に第2コイル部の中心が位置する駆動装置の態様では、前記磁界付与部は、前記一の方向に沿って前記第1コイル部を挟み込む一対の第1磁性体を備えているように構成してもよい。
<6>
As described above, in the aspect of the driving device in which the center of the second coil portion is located at a position offset along the one direction from the rotation axis of the second base portion, the magnetic field applying unit is arranged along the one direction. You may comprise so that a pair of 1st magnetic body which pinches | interposes a 1st coil part may be provided.
 このように構成すれば、後に図面を用いて詳述するように、一の方向に沿って第2コイル部を横切る磁界を付与するための磁界付与部と他の方向に沿って第2コイル部を横切る磁界を付与するための磁界付与部とが別個独立に配置されなくとも、被駆動部の2軸駆動が行われる。言い換えれば、本実施形態では、例えば一の方向に沿って第2コイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。 With this configuration, as will be described in detail later with reference to the drawings, a magnetic field applying unit for applying a magnetic field across the second coil unit along one direction and a second coil unit along the other direction. Even if a magnetic field applying unit for applying a magnetic field that crosses is not separately provided, the driven unit is driven in two axes. In other words, in this embodiment, for example, if a magnetic field application unit that applies a magnetic field across the second coil unit along one direction is disposed, the driven unit is driven in two axes.
 <7>
 上述の如く磁界付与部が一対の第2磁性体を備えている駆動装置の態様では、前記一対の第2磁性体は、(i)前記第2コイル部のうち前記一の方向に沿って対向する2つの辺に前記磁界を付与し、前記一対の第2磁性体は、(ii-1)前記第2コイル部のうち前記他の方向に沿って対向する2つの辺に前記磁界を付与しない、又は(ii-2)前記第2コイル部のうち前記他の方向に沿って対向する2つの辺には、前記第2コイル部のうち前記一の方向に沿って対向する2つの辺に付与される前記磁界の漏れ磁束が付与されるように構成してもよい。
<7>
In the aspect of the drive device in which the magnetic field applying unit includes the pair of second magnetic bodies as described above, the pair of second magnetic bodies are (i) opposed along the one direction of the second coil sections. The magnetic field is applied to two sides, and the pair of second magnetic bodies (ii-1) does not apply the magnetic field to two sides of the second coil portion that are opposed along the other direction. Or (ii-2) Two sides facing the other direction of the second coil portion are given to two sides facing the one direction of the second coil portion. The magnetic flux leakage magnetic flux may be applied.
 このように構成すれば、例えば一の方向に沿って第2コイル部を横切る磁界を付与する磁界付与部を配置すれば、被駆動部の2軸駆動が行われる。 If constituted in this way, for example, if a magnetic field application unit that applies a magnetic field across the second coil unit along one direction is disposed, the driven unit is driven in two axes.
 <8>
 本実施形態の駆動装置の他の態様では、前記第1コイル部及び前記第2コイル部は、前記被駆動部に対して対称な位置に配置される。
<8>
In another aspect of the driving apparatus of the present embodiment, the first coil portion and the second coil portion are arranged at positions symmetrical with respect to the driven portion.
 この態様によれば、第1コイル部及び第2コイル部が配置されたとしても、後に詳述するように、被駆動部並びに第1コイル部及び第2コイル部の上下方向(具体的には、一の方向及び他の方向の夫々に直交する方向であって、第2ベース部の表面に対して垂直な方向)の移動ないしは振動を防ぐことができる。従って、被駆動部の高精度な回転を実現することができる。 According to this aspect, even if the first coil portion and the second coil portion are arranged, as will be described in detail later, the driven portion and the vertical direction of the first coil portion and the second coil portion (specifically, , Movement or vibration in a direction perpendicular to each of the one direction and the other direction and perpendicular to the surface of the second base portion) can be prevented. Therefore, highly accurate rotation of the driven part can be realized.
 <9>
 上述の如くローレンツ力によって第1コイル部及び第2コイル部の夫々が回転する駆動装置の態様では、前記第1コイル部及び前記第2コイル部の夫々の前記一の方向に沿った回転軸は、前記被駆動部の前記一の方向に沿った回転軸とは異なる。
<9>
In the aspect of the driving device in which each of the first coil portion and the second coil portion is rotated by the Lorentz force as described above, the rotation axis along the one direction of each of the first coil portion and the second coil portion is , Different from the rotation axis of the driven part along the one direction.
 この態様によれば、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸(但し、本実施形態では、(i)一の方向に沿った軸を回転軸として第1コイル部及び第2コイル部の夫々が実際に回転した場合における実際の回転軸であってもよいし、(ii)一の方向に沿った軸を回転軸として第1コイル部及び第2コイル部の夫々が回転したと仮定した場合における仮想的な回転軸であってもよい)と被駆動部の一の方向に沿った回転軸とを一致させなくともよくなる。このため、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸と被駆動部の一の方向に沿った回転軸とを一致させる必要がある駆動装置と比較して、被駆動部の配置の自由度が相対的に高くなる。このため、被駆動部は、第1コイル部及び第2コイル部の夫々の巻き線の外側に位置しやすくなる。従って、上述した各種効果が好適に実現される。 According to this aspect, the rotation axis along one direction of each of the first coil portion and the second coil portion (however, in the present embodiment, (i) the first axis with the axis along one direction as the rotation axis is the first axis. It may be an actual rotation axis when each of the coil section and the second coil section is actually rotated, or (ii) the first coil section and the second coil section with the axis along one direction as the rotation axis It is not necessary to match the rotation axis along one direction of the driven part with a virtual rotation axis when it is assumed that each of the rotation axes is rotated. For this reason, as compared with a driving device in which the rotation axis along one direction of each of the first coil portion and the second coil portion needs to coincide with the rotation axis along one direction of the driven portion, The degree of freedom of arrangement of the driven parts becomes relatively high. For this reason, a driven part becomes easy to be located in the outer side of each winding of a 1st coil part and a 2nd coil part. Therefore, the various effects described above are suitably realized.
 尚、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸は、被駆動部の一の方向に沿った回転軸から、他の方向に沿ってシフトしていることが好ましい。つまり、第1コイル部は、第1コイル部の中心(例えば、巻き線の中心)が被駆動部の中心から他の方向に沿ってシフトした位置に配置されるように、第2ベース部上に配置されていることが好ましい。同様に、第2コイル部は、第2コイル部の中心(例えば、巻き線の中心)が被駆動部の中心から他の方向に沿ってシフトした位置に配置されるように、第2ベース部上に配置されていることが好ましい。 Note that the rotation axis along one direction of each of the first coil portion and the second coil portion is shifted along the other direction from the rotation axis along one direction of the driven portion. preferable. That is, the first coil portion is arranged on the second base portion so that the center of the first coil portion (for example, the center of the winding) is arranged at a position shifted from the center of the driven portion along the other direction. It is preferable to arrange | position. Similarly, the second coil portion is arranged so that the center of the second coil portion (for example, the center of the winding) is shifted from the center of the driven portion along the other direction. It is preferable to be arranged on the top.
 また、一の方向に沿った軸を回転軸とする第1及び第2コイル部の回転並びに一の方向に沿った軸を回転軸とする被駆動部の回転については、後に詳述する。 Further, the rotation of the first and second coil parts having the axis along one direction as the rotation axis and the rotation of the driven part having the axis along the one direction as the rotation axis will be described in detail later.
 <10>
 本実施形態の駆動装置の他の態様では、前記第1コイル部に供給される制御電流と前記磁界付与部が付与する磁界との電磁相互作用に起因して前記第1コイル部に発生するローレンツ力によって、前記第1コイル部は、前記他の方向に沿った軸を回転軸として回転し、前記第2コイル部に供給される制御電流と前記磁界付与部が付与する磁界との電磁相互作用に起因して前記第2コイル部に発生するローレンツ力によって、前記第2コイル部は、前記他の方向に沿った軸を回転軸として回転し、前記他の方向に沿った軸を回転軸とする前記第1コイル部及び前記第2コイル部の夫々の回転に起因して、前記第2ベース部は、前記他の方向に沿った軸を回転軸として回転し、前記他の方向に沿った軸を回転軸とする前記第1コイル部及び前記第2コイル部の夫々の回転に起因して、前記第2ベース部は、前記他の方向に沿って定常波状に変形振動し、前記第2ベース部の変形振動に起因して、前記被駆動部は、前記一の方向に沿った軸を回転軸として回転する。
<10>
In another aspect of the driving apparatus of the present embodiment, Lorentz generated in the first coil unit due to electromagnetic interaction between a control current supplied to the first coil unit and a magnetic field applied by the magnetic field applying unit. Due to the force, the first coil unit rotates about the axis along the other direction as a rotation axis, and electromagnetic interaction between the control current supplied to the second coil unit and the magnetic field applied by the magnetic field applying unit Due to the Lorentz force generated in the second coil portion due to the above, the second coil portion rotates about the axis along the other direction as a rotation axis, and the axis along the other direction as the rotation axis. Due to the respective rotations of the first coil portion and the second coil portion, the second base portion rotates about the axis along the other direction as a rotation axis and along the other direction. The first coil section and the first coil having a shaft as a rotation axis; Due to each rotation of the coil part, the second base part deforms and vibrates in a standing wave shape along the other direction, and due to the deformation vibration of the second base part, the driven part , The axis along the one direction is rotated as a rotation axis.
 この態様によれば、第1コイル部及び第2コイル部の夫々と磁界付与部との間の電磁相互作用に起因した力によって、一の方向に沿った軸を回転軸として被駆動部が回転すると共に、他の方向に沿った軸を回転軸として第2ベース部が回転する。以下、一の方向に沿った軸を回転軸として被駆動部が回転する具体的な態様及び他の方向に沿った軸を回転軸として第2ベース部が回転する具体的な態様について説明を進める。 According to this aspect, the driven part rotates about the axis along one direction as the rotation axis by the force caused by the electromagnetic interaction between each of the first coil part and the second coil part and the magnetic field applying part. At the same time, the second base portion rotates with the axis along the other direction as the rotation axis. Hereinafter, a specific mode in which the driven portion rotates with the axis along one direction as the rotation axis and a specific mode in which the second base portion rotates with the axis along the other direction as the rotation axis will be described. .
 第1コイル部及び第2コイル部の夫々には、他の方向に沿った軸を回転軸として第2ベース部を回転させるための制御電流が供給される。加えて、第1コイル部及び第2コイル部の夫々には、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流が供給される。一方で、第1コイル部及び第2コイル部の夫々には、磁界付与部から磁界が付与される。このため、第1コイル部に供給される制御電流と磁界付与部が付与する磁界との電磁相互作用に起因して、第1コイル部には、ローレンツ力が発生する。同様に、第2コイル部に供給される制御電流と磁界付与部が付与する磁界との電磁相互作用に起因して、第2コイル部には、ローレンツ力が発生する。 A control current for rotating the second base portion about the axis along the other direction as a rotation axis is supplied to each of the first coil portion and the second coil portion. In addition, each of the first coil portion and the second coil portion is supplied with a control current for rotating the driven portion with an axis along one direction as a rotation axis. On the other hand, a magnetic field is applied from the magnetic field applying unit to each of the first coil unit and the second coil unit. For this reason, Lorentz force is generated in the first coil portion due to electromagnetic interaction between the control current supplied to the first coil portion and the magnetic field applied by the magnetic field applying portion. Similarly, Lorentz force is generated in the second coil portion due to the electromagnetic interaction between the control current supplied to the second coil portion and the magnetic field applied by the magnetic field applying portion.
 このローレンツ力によって、第1コイル部及び第2コイル部の夫々は、他の方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このような他の方向に沿った軸を回転軸とする第1コイル部の回転を実現するために、一の方向に沿って対向する第1コイル部の2つの辺に、異なる方向に作用するローレンツ力が同時に加わることが好ましい。例えば、ある一のタイミングで第1コイル部に加わるローレンツ力は、一の方向に沿って対向する第1コイル部の2つの辺のうちの一方の辺に上向きの力として作用する力であり且つ一の方向に沿って対向する第1コイル部の2つの辺のうちの他方の辺に下向きの力として作用する力であることが好ましい。更に、当該一のタイミングに相前後する他のタイミングで第1コイル部に加わるローレンツ力は、一の方向に沿って対向する第1コイル部の2つの辺のうちの一方の辺に下向きの力として作用する力であり且つ一の方向に沿って対向する第1コイル部の2つの辺のうちの他方の辺に上向きの力として作用する力であることが好ましい。同様に、他の方向に沿った軸を回転軸とする第2コイル部の回転を実現するために、一の方向に沿って対向する第2コイル部の2つの辺に、異なる方向に作用するローレンツ力が同時に加わることが好ましい。例えば、ある一のタイミングで第2コイル部に加わるローレンツ力は、一の方向に沿って対向する第2コイル部の2つの辺のうちの一方の辺に上向きの力として作用する力であり且つ一の方向に沿って対向する第2コイル部の2つの辺のうちの他方の辺に下向きの力として作用する力であることが好ましい。更に、当該一のタイミングに相前後する他のタイミングで第2コイル部に加わるローレンツ力は、一の方向に沿って対向する第2コイル部の2つの辺のうちの一方の辺に下向きの力として作用する力であり且つ一の方向に沿って対向する第2コイル部の2つの辺のうちの他方の辺に上向きの力として作用する力であることが好ましい。このようなローレンツ力が第1コイル部及び第2コイル部の夫々に発生することで、第1コイル部及び第2コイル部の夫々は、他の方向に沿った軸を回転軸として回転する。 </ RTI> By this Lorentz force, each of the first coil portion and the second coil portion rotates about an axis along the other direction as a rotation axis (more specifically, reciprocatingly drives to rotate). In order to realize the rotation of the first coil unit with the axis along the other direction as a rotation axis, the two sides of the first coil unit facing each other in one direction act in different directions. It is preferable that the Lorentz force is applied simultaneously. For example, the Lorentz force applied to the first coil portion at a certain timing is a force that acts as an upward force on one of the two sides of the first coil portion facing in the one direction, and It is preferable that the force acts as a downward force on the other side of the two sides of the first coil portion facing in one direction. Further, the Lorentz force applied to the first coil portion at another timing that is in tandem with the one timing is a downward force on one of the two sides of the first coil portion that are opposed along the one direction. It is preferable that the force acts as an upward force on the other side of the two sides of the first coil portion facing in one direction. Similarly, in order to realize the rotation of the second coil portion with the axis along the other direction as the rotation axis, the two sides of the second coil portion facing each other along one direction act in different directions. It is preferable that the Lorentz force is applied simultaneously. For example, the Lorentz force applied to the second coil portion at a certain timing is a force that acts as an upward force on one of the two sides of the second coil portion that are opposed along one direction, and It is preferable that the force acts as a downward force on the other side of the two sides of the second coil portion facing in one direction. Furthermore, the Lorentz force applied to the second coil portion at another timing that is in tandem with the one timing is a downward force on one of the two sides of the second coil portion that are opposed along the one direction. It is preferable that the force acts as an upward force on the other side of the two sides of the second coil portion facing in one direction. When such a Lorentz force is generated in each of the first coil portion and the second coil portion, each of the first coil portion and the second coil portion rotates about an axis along the other direction as a rotation axis.
 他の方向に沿った軸を回転軸とする第1コイル部及び第2コイル部の夫々の回転に伴って、第1コイル部及び第2コイル部の夫々が配置されている第2ベース部は、他の方向に沿った軸を回転軸として回転する。 As the first coil portion and the second coil portion rotate with the axis along the other direction as the rotation axis, the second base portion on which each of the first coil portion and the second coil portion is arranged is Rotate the axis along the other direction as a rotation axis.
 加えて、上述したように、本実施形態では、他の方向に沿った第1コイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している。このため、他の方向に沿った第2ベース部の回転軸(回転体回転支持中心)と、第1コイル部を含む第2ベース部全体の系の重心(回転体重心)と、第1コイル部に発生するローレンツ力の中心(回転力中心)とのうちの少なくとも2つが、一の方向に沿ってずれることになる。このようなずれ(つまり、アンバランス)に起因して、第1コイル部に発生するローレンツ力は、第2ベース部を変形振動させるように作用する。つまり、他の方向に沿った軸を回転軸とする第1コイル部の回転に伴って、第1コイル部が配置されている第2ベース部は、他の方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。尚、他の方向に沿った第2コイル部の回転軸が、他の方向に沿った第2ベース部の回転軸から一の方向に沿ってシフトした位置に位置している場合には、第2コイル部に発生するローレンツ力もまた、第2ベース部を変形振動させるように作用する。というのも、第1コイル部及び第2コイル部の夫々には、他の方向に沿った軸を回転軸として第2ベース部を回転させるための制御電流のみならず、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流も供給されるからである。つまり、一の方向に沿った軸を回転軸として被駆動部を回転させるための制御電流に応じて、第2ベース部は、他の方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。つまり、第2ベース部は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。このような第2ベース部の変形振動によって、他の方向に沿って腹及び節が現れる。第2ベース部の変形振動は、いわゆる定常波の波形に従って行われるため、その腹及び節の位置は実質的には固定されている。このとき、第2ベース部の変形振動は、共振となっていてもよい。また、第2ベース部が共振する共振周波数(つまり、ベース部の変形振動の周波数)は、被駆動部が回転する周波数(或いは、被駆動部の共振周波数)と同一となっていてもよい。 In addition, as described above, in the present embodiment, the rotation axis of the first coil portion along the other direction is shifted along the one direction from the rotation axis of the second base portion along the other direction. Located in position. For this reason, the rotation axis (rotating body rotation support center) of the second base part along the other direction, the center of gravity of the entire second base part including the first coil part (rotating body center of gravity), and the first coil At least two of the Lorentz force centers (rotational force centers) generated in the part are displaced along one direction. The Lorentz force generated in the first coil portion due to such a shift (that is, unbalance) acts to deform and vibrate the second base portion. That is, with the rotation of the first coil portion having the axis along the other direction as the rotation axis, the second base portion on which the first coil portion is disposed becomes a standing wave shape along the other direction (that is, Oscillates in the shape of a standing wave. When the rotation axis of the second coil portion along the other direction is located at a position shifted along the one direction from the rotation axis of the second base portion along the other direction, The Lorentz force generated in the two coil portions also acts to deform and vibrate the second base portion. This is because each of the first coil portion and the second coil portion has not only a control current for rotating the second base portion about the axis along the other direction as a rotation axis, but also along one direction. This is because a control current for rotating the driven part about the axis as a rotation axis is also supplied. That is, according to the control current for rotating the driven part about the axis along one direction as the rotation axis, the second base part has a standing wave shape along the other direction (that is, a standing wave shape). ) Deformation vibration. That is, the external appearance of the second base portion is deformed so that a part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration. Due to the deformation vibration of the second base portion, a belly and a node appear along other directions. Since the deformation vibration of the second base portion is performed in accordance with a so-called standing wave waveform, the positions of its antinodes and nodes are substantially fixed. At this time, the deformation vibration of the second base portion may be resonance. The resonance frequency at which the second base portion resonates (that is, the frequency of deformation vibration of the base portion) may be the same as the frequency at which the driven portion rotates (or the resonance frequency of the driven portion).
 このような第2ベース部の変形振動に起因して、被駆動部は、一の方向に沿った軸を回転軸として回転する。このとき、被駆動部は、被駆動部及び第2弾性部によって定まる被駆動部の共振周波数(より具体的には、被駆動部の慣性モーメント及び第2弾性部のねじりバネ定数によって定まる被駆動部の共振周波数)で共振するように、一の方向に沿った軸を回転軸として回転してもよい。 Due to the deformation vibration of the second base part, the driven part rotates about the axis along one direction as a rotation axis. At this time, the driven part is driven by the resonance frequency of the driven part determined by the driven part and the second elastic part (more specifically, the driven frequency determined by the moment of inertia of the driven part and the torsion spring constant of the second elastic part). May be rotated with an axis along one direction as a rotation axis so as to resonate at a resonance frequency of the portion.
 <11>
 上述の如くローレンツ力によって第1コイル部及び第2コイル部の夫々が回転する駆動装置の態様では、前記第1コイル部に発生するローレンツ力の大きさと前記第2コイル部に発生するローレンツ力の大きさとは同一であるように構成してもよい。
<11>
In the aspect of the driving device in which each of the first coil portion and the second coil portion is rotated by the Lorentz force as described above, the magnitude of the Lorentz force generated in the first coil portion and the Lorentz force generated in the second coil portion. You may comprise so that a magnitude | size may be the same.
 このように構成すれば、第1コイル部に発生するローレンツ力及び第2コイル部に発生するローレンツ力に起因して、第2ベース部が好適に変形振動する。より具体的には、後に詳述するように、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸並びに被駆動部の一の方向に沿った回転軸に対応する箇所に第2ベース部の変形振動における節が現れる。加えて、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸と被駆動部の一の方向に沿った回転軸との間の箇所に第2ベース部の変形振動における腹が現れる。その結果、被駆動部が好適に回転する。 If configured in this way, the second base portion suitably deforms and vibrates due to the Lorentz force generated in the first coil portion and the Lorentz force generated in the second coil portion. More specifically, as will be described in detail later, a portion corresponding to the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A node in the deformation vibration of the second base portion appears. In addition, in the deformation vibration of the second base portion at a location between the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A belly appears. As a result, the driven part is suitably rotated.
 <12>
 上述の如くローレンツ力によって第1コイル部及び第2コイル部の夫々が回転する駆動装置の態様では、前記一の方向に沿った軸を回転軸とする前記第1コイル部の回転方向と前記一の方向に沿った軸を回転軸とする前記第2コイル部の回転方向とは同一であるように構成してもよい。
<12>
In the aspect of the driving device in which each of the first coil portion and the second coil portion is rotated by the Lorentz force as described above, the rotation direction of the first coil portion and the one direction having the axis along the one direction as a rotation axis. You may comprise so that it may be the same as the rotation direction of the said 2nd coil part which makes the axis | shaft along this direction the rotating shaft.
 このように構成すれば、第1コイル部に発生するローレンツ力及び第2コイル部に発生するローレンツ力に起因して、第2ベース部が好適に変形振動する。より具体的には、後に詳述するように、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸並びに被駆動部の一の方向に沿った回転軸に対応する箇所に第2ベース部の変形振動における節が現れる。加えて、第1コイル部及び第2コイル部の夫々の一の方向に沿った回転軸と被駆動部の一の方向に沿った回転軸との間の箇所に第2ベース部の変形振動における腹が現れる。その結果、被駆動部が好適に回転する。 If configured in this way, the second base portion suitably deforms and vibrates due to the Lorentz force generated in the first coil portion and the Lorentz force generated in the second coil portion. More specifically, as will be described in detail later, a portion corresponding to the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A node in the deformation vibration of the second base portion appears. In addition, in the deformation vibration of the second base portion at a location between the rotation axis along one direction of each of the first coil portion and the second coil portion and the rotation axis along one direction of the driven portion. A belly appears. As a result, the driven part is suitably rotated.
 <13>
 上述の如くローレンツ力によって第1コイル部及び第2コイル部の夫々が回転する駆動装置の態様では、前記第1コイル部及び前記第2コイル部の夫々の前記一の方向に沿った回転軸及び前記被駆動部の前記一の方向に沿った回転軸に対応する箇所には、前記第2ベース部の変形振動における節が現れ、前記第1コイル部及び前記第2コイル部の夫々の前記一の方向に沿った回転軸と前記被駆動部の前記一の方向に沿った回転軸との間の箇所には、前記第2ベース部の変形振動における腹が現れる。
<13>
In the aspect of the drive device in which each of the first coil portion and the second coil portion is rotated by the Lorentz force as described above, the rotation axis along the one direction of each of the first coil portion and the second coil portion, and A node in the deformation vibration of the second base portion appears at a location corresponding to the rotation axis along the one direction of the driven portion, and the one of the first coil portion and the second coil portion respectively. An antinode in the deformation vibration of the second base portion appears at a location between the rotation axis along the direction of and the rotation axis along the one direction of the driven portion.
 この態様によれば、第2ベース部の変形振動における節に対応する箇所に被駆動部が接続されている。また、第2ベース部の変形振動における節に対応する箇所に第1コイル部及び第2コイル部の夫々が配置されている。このため、被駆動部並びに第1コイル部及び第2コイル部の夫々の上下方向(具体的には、一の方向及び他の方向の夫々に直交する方向であって、第2ベース部の表面に対して垂直な方向)の移動ないしは振動を防ぐことができる。従って、被駆動部の高精度な回転を実現することができる。 According to this aspect, the driven part is connected to the location corresponding to the node in the deformation vibration of the second base part. Each of the first coil portion and the second coil portion is disposed at a location corresponding to a node in the deformation vibration of the second base portion. For this reason, the driven part and the vertical direction of each of the first coil part and the second coil part (specifically, the direction perpendicular to each of the one direction and the other direction, and the surface of the second base part) Can be prevented from moving or vibrating. Therefore, highly accurate rotation of the driven part can be realized.
 <14>
 上述の如くローレンツ力によって第1コイル部及び第2コイル部の夫々が回転する駆動装置の態様では、前記一の方向に沿った軸を回転軸とする前記第1コイル部及び前記第2コイル部の夫々の回転方向と前記一の方向に沿った軸を回転軸とする前記被駆動部の回転方向とは、互いに逆になる。
<14>
In the aspect of the driving device in which each of the first coil portion and the second coil portion is rotated by the Lorentz force as described above, the first coil portion and the second coil portion having the axis along the one direction as a rotation axis. The rotation direction of each of the driven parts and the rotation direction of the driven portion having the axis along the one direction as a rotation axis are opposite to each other.
 この態様によれば、一の方向に沿った軸を回転軸とする第1コイル部及び第2コイル部の夫々の回転に起因した第2ベース部の変形振動を用いて、被駆動部は、一の方向に沿った軸を回転軸として好適に回転する。 According to this aspect, using the deformation vibration of the second base portion caused by the rotation of each of the first coil portion and the second coil portion having the axis along one direction as the rotation axis, the driven portion is The axis along one direction is preferably rotated as a rotation axis.
 尚、一の方向に沿った軸を回転軸とする第1コイル部及び第2コイル部の夫々の回転方向と一の方向に沿った軸を回転軸とする被駆動部の回転方向とが互いに逆向きとなる例は、厳密に言えば、一の方向に沿った軸を回転軸とする第1コイル部及び第2コイル部の夫々の回転方向と被駆動部に対応する(例えば、被駆動部を支持している部分に相当する)ベース部の回転方向(言い換えれば、変形振動に伴う疑似的な回転方向)とが互いに逆向きとなる例とも表現できる。 Note that the rotation direction of each of the first coil portion and the second coil portion having the axis along one direction as the rotation axis and the rotation direction of the driven portion having the axis along the one direction as the rotation axis are mutually different. Strictly speaking, the example of the opposite direction corresponds to the rotation direction and the driven part of each of the first coil part and the second coil part whose axis is the axis along one direction (for example, the driven part). It can also be expressed as an example in which the rotation direction of the base portion (corresponding to the portion supporting the portion) (in other words, the pseudo rotation direction accompanying deformation vibration) is opposite to each other.
 但し、第2ベース部がより高次の振動モードで変形振動する場合には、一の方向に沿った軸を回転軸とする被駆動部の回転方向と被駆動部に対応する(例えば、被駆動部を支持している部分に相当する)第2ベース部の回転方向とが逆になってもよい。つまり、一の方向に沿った軸を回転軸とする第1コイル部及び第2コイル部の夫々の回転方向と一の方向に沿った軸を回転軸とする被駆動部の回転方向とが互いに同じ向きとなってもよい。 However, when the second base portion deforms and vibrates in a higher order vibration mode, it corresponds to the rotational direction of the driven portion and the driven portion with the axis along one direction as the rotation axis (for example, the driven portion The rotation direction of the second base portion (corresponding to the portion supporting the drive portion) may be reversed. That is, the rotation directions of the first coil portion and the second coil portion having an axis along one direction as the rotation axis and the rotation direction of the driven portion having the axis along the one direction as the rotation axis are mutually different. It may be the same orientation.
 本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。 Such an operation and other advantages of the present embodiment will be clarified from examples described below.
 以上説明したように、本実施形態の駆動装置によれば、第1ベース部と、第2ベース部と、第1弾性部と、第1コイル部及び第2コイル部の夫々の巻き線の外側に配置される被駆動部と、第2弾性部と、第1コイル部と、第2コイル部と、磁界付与部とを備え、第1コイル部は、第2ベース部の回転軸から一の方向に沿ってオフセットした位置に第1コイル部の中心が位置するように、配置されている。従って、第1コイル部及び第2コイル部と磁界付与部とを用いて被駆動物を駆動する、相対的に小型な駆動装置が提供される。 As described above, according to the driving apparatus of the present embodiment, the first base portion, the second base portion, the first elastic portion, and the outer sides of the respective windings of the first coil portion and the second coil portion. A driven portion, a second elastic portion, a first coil portion, a second coil portion, and a magnetic field applying portion, the first coil portion being one from the rotation axis of the second base portion. It arrange | positions so that the center of a 1st coil part may be located in the position offset along the direction. Therefore, a relatively small driving device that drives the driven object using the first coil unit, the second coil unit, and the magnetic field applying unit is provided.
 以下、図面を参照しながら、駆動装置の実施例について説明する。尚、以下では、駆動装置をMEMSスキャナに適用した例について説明する。 Hereinafter, embodiments of the drive device will be described with reference to the drawings. In the following, an example in which the driving device is applied to a MEMS scanner will be described.
 (1)第1実施例
 初めに、図1から図4を参照して、MEMSスキャナの第1実施例について説明する。
(1) First Embodiment First, a first embodiment of a MEMS scanner will be described with reference to FIGS.
 (1-1)MEMSスキャナの構成
 初めに、図1を参照して、第1実施例に係るMEMSスキャナ101の構成について説明する。ここに、図1は、第1実施例に係るMEMSスキャナ101の構成を概念的に示す平面図である。
(1-1) Configuration of MEMS Scanner First, the configuration of the MEMS scanner 101 according to the first embodiment will be described with reference to FIG. FIG. 1 is a plan view conceptually showing the structure of the MEMS scanner 101 according to the first embodiment.
 図1に示すように、第1実施例に係るMEMSスキャナ101は、ベース110と、トーションバー120a及び120bと、ミラー130と、コイル140aと、コイル140bと、磁石151a及び152aと、磁石151b及び152bとを備えている。 As shown in FIG. 1, the MEMS scanner 101 according to the first embodiment includes a base 110, torsion bars 120a and 120b, a mirror 130, a coil 140a, a coil 140b, magnets 151a and 152a, a magnet 151b, 152b.
 ベース110は、内部に空隙を備える枠形状を有している。つまり、ベース110は、図1中のY軸方向に延伸する2つの辺と図1中のX軸方向(つまり、Y軸方向に直交する方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図1に示す例では、ベース110は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、ベース110は、第1実施例に係るMEMSスキャナ101の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ100という系の内部においては固定されている)ことが好ましい。或いは、ベース110は、不図示のサスペンション等によって吊り下げられていてもよい。 The base 110 has a frame shape with a gap inside. That is, the base 110 has two sides extending in the Y-axis direction in FIG. 1 and two sides extending in the X-axis direction (that is, a direction orthogonal to the Y-axis direction) in FIG. It has a frame shape having a gap surrounded by two sides extending in the axial direction and two sides extending in the X-axis direction. In the example illustrated in FIG. 1, the base 110 has a square shape, but is not limited thereto, and other shapes (for example, a rectangular shape such as a rectangle or a circular shape) may be used. You may have. The base 110 is a structure that is the basis of the MEMS scanner 101 according to the first embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the inside of the system called the MEMS scanner 100). Is preferably fixed). Alternatively, the base 110 may be suspended by a suspension (not shown).
 尚、図1では、ベース110が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、ベース110は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、ベース110は、内部に空隙を備える箱型形状を有していてもよい。つまり、ベース110は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜ベース110の形状を任意に代えてもよい。 Although FIG. 1 shows an example in which the base 110 has a frame shape, it goes without saying that it may have other shapes. For example, the base 110 may have a U-shape in which a part of the base 110 is an opening. Alternatively, for example, the base 110 may have a box shape with a gap inside. That is, the base 110 is defined by two surfaces distributed on a plane defined by the X axis and the Y axis, and the X axis and a Z axis (not shown) (that is, an axis orthogonal to both the X axis and the Y axis). Box having two planes distributed on a flat plane and two planes distributed on a plane defined by a Y-axis and a Z-axis (not shown) and a space surrounded by these six planes You may have a shape. Alternatively, the shape of the base 110 may be arbitrarily changed according to the manner in which the mirror 130 is disposed.
 トーションバー120a及び120bの夫々は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。トーションバー120a及び120bの夫々は、図1中Y軸方向に延伸するように配置される。言い換えれば、トーションバー120a及び120bの夫々は、Y軸方向に延伸する長手を有すると共にX軸方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、トーションバー120a及び120bの夫々は、Y軸方向に延伸する短手を有すると共にX軸方向に延伸する長手を有する形状を有していてもよい。トーションバー120a及び120bの夫々の一方の端部は、ベース110に接続される。トーションバー120a及び120bの夫々の他方の端部は、ミラー130に接続される。つまり、トーションバー120a及び120bは、間にミラー130を挟み込むようにミラー130を吊り下げている。 Each of the torsion bars 120a and 120b is an elastic member such as a spring made of silicon, copper alloy, iron alloy, other metal, resin, or the like. Each of the torsion bars 120a and 120b is arranged to extend in the Y-axis direction in FIG. In other words, each of the torsion bars 120a and 120b has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, each of the torsion bars 120a and 120b may have a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction depending on the setting state of the resonance frequency described later. . One end of each of the torsion bars 120 a and 120 b is connected to the base 110. The other end of each of the torsion bars 120 a and 120 b is connected to the mirror 130. That is, the torsion bars 120a and 120b suspend the mirror 130 so as to sandwich the mirror 130 therebetween.
 ミラー130は、ベース110の内部の空隙に、トーションバー120a及び120bによって吊り下げられる又は支持されるように配置される。ミラー130は、トーションバー120a及び120bの弾性によって、Y軸方向に沿った軸を回転軸として回転するように構成されている。 The mirror 130 is arranged to be suspended or supported by the torsion bars 120a and 120b in the gap inside the base 110. The mirror 130 is configured to rotate about the axis along the Y-axis direction as a rotation axis by the elasticity of the torsion bars 120a and 120b.
 コイル140aは、例えば相対的に導電率の高い材料(例えば、金や銅等)から構成される複数の巻き線である。第1実施例では、コイル140aは、矩形の形状を有している。特に、コイル140aの4つの辺のうちX軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿った2つの辺の長さが、コイル140aの4つの辺のうちY軸方向(つまり、ミラー130の回転軸の方向)に沿った2つの辺の長さよりも短い。言い換えれば、コイル140aは、X軸方向に沿って対向する2つの長辺と、Y軸方向に沿って対向する2つの短辺を含んでいる。つまり、第1実施例では、コイル140aは、長方形状の形状を有している。但し、コイル140aは、任意の形状(例えば、正方形やひし形や平行四辺形や円形や楕円形やその他の任意のループ形状)を有していてもよい。 The coil 140a is a plurality of windings made of, for example, a material having relatively high conductivity (for example, gold, copper, etc.). In the first embodiment, the coil 140a has a rectangular shape. In particular, the length of two sides along the X-axis direction (that is, the direction orthogonal to the direction of the rotation axis of the mirror 130) among the four sides of the coil 140a is the Y-axis direction among the four sides of the coil 140a. That is, it is shorter than the length of two sides along the direction of the rotation axis of the mirror 130. In other words, the coil 140a includes two long sides that face each other along the X-axis direction and two short sides that face each other along the Y-axis direction. That is, in the first embodiment, the coil 140a has a rectangular shape. However, the coil 140a may have any shape (for example, a square, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
 同様に、コイル140bは、例えば相対的に導電率の高い材料(例えば、金や銅等)から構成される複数の巻き線である。第1実施例では、コイル140bは、矩形の形状を有している。特に、コイル140bの4つの辺のうちX軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿った2つの辺の長さが、コイル140bの4つの辺のうちY軸方向(つまり、ミラー130の回転軸の方向)に沿った2つの辺の長さよりも短い。言い換えれば、コイル140bは、X軸方向に沿って対向する2つの長辺と、Y軸方向に沿って対向する2つの短辺を含んでいる。つまり、第1実施例では、コイル140bは、長方形状の形状を有している。但し、コイル140bは、任意の形状(例えば、正方形やひし形や平行四辺形や円形や楕円形やその他の任意のループ形状)を有していてもよい。 Similarly, the coil 140b is a plurality of windings composed of, for example, a material having relatively high conductivity (for example, gold, copper, etc.). In the first embodiment, the coil 140b has a rectangular shape. In particular, the length of two sides along the X-axis direction (that is, the direction orthogonal to the direction of the rotation axis of the mirror 130) among the four sides of the coil 140b is the Y-axis direction among the four sides of the coil 140b. That is, it is shorter than the length of two sides along the direction of the rotation axis of the mirror 130. In other words, the coil 140b includes two long sides that face each other along the X-axis direction and two short sides that face each other along the Y-axis direction. That is, in the first embodiment, the coil 140b has a rectangular shape. However, the coil 140b may have an arbitrary shape (for example, a square, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
 コイル140aは、ベース110上に配置されている。特に、コイル140aは、ミラー130が配置される位置(特に、ミラー130の中心ないしは重心が配置される位置)を基準として、X軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿って所定距離だけシフトした位置にコイル140aが位置する(特に、コイル140aの中心又は重心が位置する)ように、ベース110上に配置されている。但し、コイル140aは、ミラー130が配置される位置を基準として、Y軸方向(つまり、ミラー130の回転軸の方向)に沿って所定距離だけシフトした位置にコイル140aが位置するように、ベース110上に配置されていてもよい。加えて、コイル140aは、ミラー130とコイル140aとがX軸方向に沿って並ぶように、ベース110上に配置されている。その結果、ミラー130は、コイル140aを構成する巻き線の外側に位置することになる。言い換えれば、ミラー130は、コイル140aを構成する巻き線の内側に位置することはない。 The coil 140a is disposed on the base 110. In particular, the coil 140a has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed). Are arranged on the base 110 so that the coil 140a is located at a position shifted by a predetermined distance along the line (particularly, the center or the center of gravity of the coil 140a is located). However, the coil 140a has a base such that the coil 140a is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 110 may be arranged. In addition, the coil 140a is disposed on the base 110 so that the mirror 130 and the coil 140a are aligned along the X-axis direction. As a result, the mirror 130 is positioned outside the windings that constitute the coil 140a. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140a.
 同様に、コイル140bは、ベース110上に配置されている。特に、コイル140bは、ミラー130が配置される位置(特に、ミラー130の中心ないしは重心が配置される位置)を基準として、X軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿って所定距離だけシフトした位置にコイル140bが位置する(特に、コイル140bの中心又は重心が位置する)ように、ベース110上に配置されている。但し、コイル140bは、ミラー130が配置される位置を基準として、Y軸方向(つまり、ミラー130の回転軸の方向)に沿って所定距離だけシフトした位置にコイル140bが位置するように、ベース110上に配置されていてもよい。加えて、コイル140bは、ミラー130とコイル140bとがX軸方向に沿って並ぶように、ベース110上に配置されている。その結果、ミラー130は、コイル140bを構成する巻き線の外側に位置することになる。言い換えれば、ミラー130は、コイル140bを構成する巻き線の内側に位置することはない。 Similarly, the coil 140b is disposed on the base 110. In particular, the coil 140b has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed). Are arranged on the base 110 so that the coil 140b is located at a position shifted by a predetermined distance along the line (particularly, the center or the center of gravity of the coil 140b is located). However, the coil 140b is positioned so that the coil 140b is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 110 may be arranged. In addition, the coil 140b is disposed on the base 110 so that the mirror 130 and the coil 140b are arranged along the X-axis direction. As a result, the mirror 130 is positioned outside the winding wire that constitutes the coil 140b. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140b.
 コイル140a及び140bは、コイル140aとコイル140bとの間にミラー130が配置されるように、ベース110上に配置される。言い換えれば、コイル140a及び140bは、コイル140aとミラー130とコイル140bとが、X軸方向に沿ってこの順に配置されるように、ベース110上に配置される。このとき、コイル140aとミラー130との間の距離は、コイル140bとミラー130との間の距離と同一であってもよい。つまり、コイル140a及び140bは、コイル140aとコイル140bとがミラー130に対して対称に配置されるように、ベース110上に配置されていてもよい。 The coils 140a and 140b are disposed on the base 110 such that the mirror 130 is disposed between the coils 140a and 140b. In other words, the coils 140a and 140b are arranged on the base 110 such that the coil 140a, the mirror 130, and the coil 140b are arranged in this order along the X-axis direction. At this time, the distance between the coil 140a and the mirror 130 may be the same as the distance between the coil 140b and the mirror 130. That is, the coils 140a and 140b may be arranged on the base 110 such that the coils 140a and 140b are arranged symmetrically with respect to the mirror 130.
 コイル140aには、ベース110上に形成されている電源端子141aを介して、電源から、ミラー130を回転させるための制御電流が供給される。同様に、コイル140bには、ベース110上に形成されている電源端子141bを介して、電源から、ミラー130を回転させるための制御電流が供給される。制御電流は、典型的には、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分を含む交流電流である。尚、電源は、MEMSスキャナ101自身が備えている電源であってもよいし、MEMSスキャナ101の外部に用意される電源であってもよい。 The coil 140a is supplied with a control current for rotating the mirror 130 from the power supply via the power supply terminal 141a formed on the base 110. Similarly, a control current for rotating the mirror 130 is supplied to the coil 140b from the power supply via the power supply terminal 141b formed on the base 110. The control current is typically an alternating current that includes a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis. Note that the power source may be a power source provided in the MEMS scanner 101 itself, or may be a power source prepared outside the MEMS scanner 101.
 磁石151a及び152aは、磁石151aと磁石152aとがX軸方向に沿って配列するように配置される。特に、磁石151a及び152aは、磁石151aと磁石152aとがX軸方向に沿ってコイル140aを挟み込むように配置される。加えて、磁石151a及び152aのいずれか一方が磁束の出射側になると共に、磁石151a及び152aのいずれか他方が磁束の入射側になる。尚、以下では、磁石151aが磁束の入射側になり且つ磁石152aが磁束の出射側になる例を用いて説明を進める。 Magnets 151a and 152a are arranged such that magnet 151a and magnet 152a are arranged along the X-axis direction. In particular, the magnets 151a and 152a are arranged such that the magnet 151a and the magnet 152a sandwich the coil 140a along the X-axis direction. In addition, one of the magnets 151a and 152a is on the magnetic flux exit side, and the other of the magnets 151a and 152a is on the magnetic flux entrance side. In the following description, the magnet 151a is on the magnetic flux incident side and the magnet 152a is on the magnetic flux outgoing side.
 同様に、磁石151b及び152bは、磁石151bと磁石152bとがX軸方向に沿って配列するように配置される。特に、磁石151b及び152bは、磁石151bと磁石152bとがX軸方向に沿ってコイル140bを挟み込むように配置される。加えて、磁石151b及び152bのいずれか一方が磁束の出射側になると共に、磁石151b及び152bのいずれか他方が磁束の入射側になる。尚、以下では、磁石151bが磁束の入射側になり且つ磁石152bが磁束の出射側になる例を用いて説明を進める。 Similarly, the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b are arranged along the X-axis direction. In particular, the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b sandwich the coil 140b along the X-axis direction. In addition, one of the magnets 151b and 152b is a magnetic flux exit side, and the other of the magnets 151b and 152b is a magnetic flux entrance side. In the following, description will be given using an example in which the magnet 151b is on the magnetic flux incident side and the magnet 152b is on the magnetic flux output side.
 (1-2)MEMSスキャナの動作
 続いて、図2から図4を参照して、第1実施例に係るMEMSスキャナ101の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図2は、第1実施例に係るMEMSスキャナ101による動作の態様を概念的に示す平面図及び断面図である。図3は、第1実施例に係るMEMSスキャナ101による動作の態様を概念的に示す平面図及び断面図である。図4は、第1実施例に係るMEMSスキャナ101による動作の態様を概念的に示す断面図である。
(1-2) Operation of MEMS Scanner Next, with reference to FIGS. 2 to 4, an operation mode of the MEMS scanner 101 according to the first embodiment (specifically, an operation mode of rotating the mirror 130). Will be described. FIG. 2 is a plan view and a cross-sectional view conceptually showing an operation mode of the MEMS scanner 101 according to the first embodiment. FIGS. 3A and 3B are a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 101 according to the first embodiment. FIG. 4 is a sectional view conceptually showing an operation mode of the MEMS scanner 101 according to the first embodiment.
 第1実施例に係るMEMSスキャナ101の動作時には、まず、コイル140a及び140bの夫々に制御電流が供給される。制御電流は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための電流成分を含んでいる。第1実施例では、ミラー130は、ミラー130とトーションバー120a及び120bによって定まる共振周波数(より具体的には、ミラー130の慣性モーメントとトーションバー120a及び120bのねじりバネ定数によって定まる共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。尚、厳密に言えば、トーションバー120a及び120bを支持するベース110の質量及び慣性モーメントも考慮した上で、ミラー130とトーションバー120a及び120bによって定まる共振周波数が微修正されることが好ましい。但し、以下では(特に、第1実施例のみならず、その他の実施例も含めて)、説明の簡略化のため、共振周波数の微修正については省略して説明を進める。従って、制御電流は、ミラー130の共振周波数と同一の又は同期した周波数の信号成分を含む交流電流である。但し、ミラー130は、ミラー130とトーションバー120a及び120bによって定まる共振周波数とは異なる又は同期しない周波数で、Y軸方向に沿った軸を回転軸として回転してもよい。この場合には、制御電流は、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分を含む交流電流である。 During the operation of the MEMS scanner 101 according to the first embodiment, first, a control current is supplied to each of the coils 140a and 140b. The control current includes a current component for rotating the mirror 130 about the axis along the Y-axis direction as a rotation axis. In the first embodiment, the mirror 130 has a resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b (more specifically, a resonance frequency determined by the moment of inertia of the mirror 130 and the torsion spring constant of the torsion bars 120a and 120b). In order to resonate, it rotates with the axis along the Y-axis direction as the rotation axis. Strictly speaking, it is preferable that the resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b is finely corrected in consideration of the mass and the moment of inertia of the base 110 that supports the torsion bars 120a and 120b. However, in the following (especially including not only the first embodiment but also other embodiments), for the sake of simplification of description, the description will be omitted while omitting fine correction of the resonance frequency. Therefore, the control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the resonance frequency of the mirror 130. However, the mirror 130 may rotate around the axis along the Y-axis direction at a frequency different from or not synchronized with the resonance frequency determined by the mirror 130 and the torsion bars 120a and 120b. In this case, the control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
 一方で、コイル140aには、磁石151a及び152aから磁界が付与されている。尚、磁石151a及び152aは、X軸方向に沿って対向するコイル140aの2つの辺に対して、磁界を付与することが好ましい。この場合、磁石151a及び152aは、Y軸方向に沿って対向するコイル140aの2つの辺に対しては、磁界を付与しなくともよい。或いは、磁石151a及び152aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、磁界を付与してもよい。或いは、磁石151a及び152aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、Y軸方向に沿って対向するコイル140aの2つの辺に対して付与している磁界の漏れ磁束のみを付与してもよい。 On the other hand, a magnetic field is applied to the coil 140a from the magnets 151a and 152a. The magnets 151a and 152a preferably apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. In this case, the magnets 151a and 152a do not need to apply a magnetic field to the two sides of the coil 140a facing each other along the Y-axis direction. Alternatively, the magnets 151a and 152a may apply a magnetic field to two sides of the coil 140a facing each other along the Y-axis direction. Alternatively, the magnets 151a and 152a leak the magnetic field applied to the two sides of the coil 140a facing in the Y-axis direction with respect to the two sides of the coil 140a facing in the Y-axis direction. Only magnetic flux may be applied.
 従って、コイル140aには、コイル140aに供給されている制御電流とコイル140aに付与されている磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。 Therefore, Lorentz force is generated in the coil 140a due to electromagnetic interaction between the control current supplied to the coil 140a and the magnetic field applied to the coil 140a.
 同様に、コイル140bには、磁石151b及び152bから磁界が付与されている。尚、磁石151b及び152bは、X軸方向に沿って対向するコイル140bの2つの辺に対して、磁界を付与することが好ましい。この場合、磁石151b及び152bは、Y軸方向に沿って対向するコイル140bの2つの辺に対しては、磁界を付与しなくともよい。或いは、磁石151b及び152bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、磁界を付与してもよい。或いは、磁石151b及び152bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、Y軸方向に沿って対向するコイル140bの2つの辺に対して付与している磁界の漏れ磁束のみを付与してもよい。 Similarly, a magnetic field is applied to the coil 140b from the magnets 151b and 152b. The magnets 151b and 152b preferably apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. In this case, the magnets 151b and 152b do not need to apply a magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction. Alternatively, the magnets 151b and 152b may apply a magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction. Alternatively, the magnets 151b and 152b leak the magnetic field applied to the two sides of the coil 140b facing in the Y-axis direction with respect to the two sides of the coil 140b facing in the Y-axis direction. Only magnetic flux may be applied.
 従って、コイル140bには、コイル140bに供給されている制御電流とコイル140bに付与されている磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。 Therefore, the Lorentz force resulting from the electromagnetic interaction between the control current supplied to the coil 140b and the magnetic field applied to the coil 140b is generated in the coil 140b.
 ここで、図2(a)に示すように、図2(a)中の時計周りの方向に流れる制御電流がコイル140a及び140bの夫々に供給されており、磁石152aから磁石151aに向かう磁界がコイル140aに付与されており、磁石152bから磁石151bに向かう磁界がコイル140bに付与されている状況について説明する。この場合、図2(a)に示すMEMSスキャナ101を矢印IIの方向から観察した図面である図2(b)に示すように、X軸方向に沿って対向するコイル140aの2つの長辺のうちの右側(つまり、図2(a)では外側)の長辺には、図2(b)における下側の方向に向かうローレンツ力が発生する。同様に、図2(b)に示すように、X軸方向に沿って対向するコイル140aの2つの長辺のうちの左側(つまり、図2(a)では内側)の長辺には、図2(b)における上側の方向に向かうローレンツ力が発生する。つまり、X軸方向に沿って対向するコイル140aの2つの長辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、X軸方向に沿って対向するコイル140aの2つの長辺には、偶力となるローレンツ力が発生する。従って、コイル140aは、図2(b)における時計周りの方向に向かって回転する。加えて、図2(b)に示すように、X軸方向に沿って対向するコイル140bの2つの長辺のうちの右側(つまり、図2(a)では内側)の長辺には、図2(b)における下側の方向に向かうローレンツ力が発生する。同様に、図2(b)に示すように、X軸方向に沿って対向するコイル140bの2つの長辺のうちの左側(つまり、図2(a)では外側)の長辺には、図2(b)における上側の方向に向かうローレンツ力が発生する。つまり、X軸方向に沿って対向するコイル140bの2つの長辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、X軸方向に沿って対向するコイル140bの2つの長辺には、偶力となるローレンツ力が発生する。従って、コイル140bは、図2(b)における時計周りの方向に向かって回転する。 一方で、制御電流が交流電流であるため、図3(a)に示すように、図3(a)中の反時計周りの方向に流れる制御電流がコイル140a及び140bの夫々に供給されており、磁石152aから磁石151aに向かう磁界がコイル140aに付与されており、磁石152bから磁石151bに向かう磁界がコイル140bに付与される状況が、図2(a)に示す状況に続けて生ずる。この場合、図3(a)に示すMEMSスキャナ101を矢印IIIの方向から観察した図面である図3(b)に示すように、X軸方向に沿って対向するコイル140aの2つの長辺のうちの右側(つまり、図2(a)では外側)の長辺には、図3(b)における上側の方向に向かうローレンツ力が発生する。同様に、図3(b)に示すように、X軸方向に沿って対向するコイル140aの2つの長辺のうちの左側(つまり、図3(a)では内側)の長辺には、図3(b)における下側の方向に向かうローレンツ力が発生する。つまり、X軸方向に沿って対向するコイル140aの2つの長辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、X軸方向に沿って対向するコイル140aの2つの長辺には、偶力となるローレンツ力が発生する。従って、コイル140aは、図3(b)における半時計周りの方向に向かって回転する。加えて、図3(b)に示すように、X軸方向に沿って対向するコイル140bの2つの長辺のうちの右側(つまり、図2(a)では内側)の長辺には、図3(b)における上側の方向に向かうローレンツ力が発生する。同様に、図3(b)に示すように、X軸方向に沿って対向するコイル140bの2つの長辺のうちの左側(つまり、図3(a)では外側)の長辺には、図3(b)における下側の方向に向かうローレンツ力が発生する。つまり、X軸方向に沿って対向するコイル140bの2つの長辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、X軸方向に沿って対向するコイル140bの2つの長辺には、偶力となるローレンツ力が発生する。従って、コイル140bは、図3(b)における半時計周りの方向に向かって回転する。 Here, as shown in FIG. 2A, a control current flowing in the clockwise direction in FIG. 2A is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 152a toward the magnet 151a is generated. A situation where a magnetic field applied to the coil 140a and directed from the magnet 152b toward the magnet 151b is applied to the coil 140b will be described. In this case, as shown in FIG. 2 (b), which is a drawing of the MEMS scanner 101 shown in FIG. 2 (a) observed from the direction of arrow II, the two long sides of the coil 140a facing each other along the X-axis direction are shown. A Lorentz force in the lower direction in FIG. 2B is generated on the long side on the right side (that is, the outside in FIG. 2A). Similarly, as shown in FIG. 2B, the left side of the two long sides of the coil 140a facing along the X-axis direction (that is, the inner side in FIG. 2A) is shown on the left side. A Lorentz force toward the upper direction in 2 (b) is generated. That is, Lorentz forces in different directions are generated on the two long sides of the coil 140a facing each other along the X-axis direction. In other words, Lorentz force, which is a couple, is generated on the two long sides of the coil 140a facing each other along the X-axis direction. Therefore, the coil 140a rotates in the clockwise direction in FIG. In addition, as shown in FIG. 2B, the long side on the right side (that is, the inner side in FIG. 2A) of the two long sides of the coil 140b facing in the X-axis direction is Lorentz force toward the lower direction in 2 (b) is generated. Similarly, as shown in FIG. 2B, the left side of the two long sides of the coil 140b facing in the X-axis direction (that is, the outside in FIG. 2A) is shown on the left side. A Lorentz force toward the upper direction in 2 (b) is generated. That is, Lorentz forces in different directions are generated on the two long sides of the coil 140b facing each other along the X-axis direction. In other words, Lorentz force, which is a couple, is generated on the two long sides of the coil 140b facing each other along the X-axis direction. Accordingly, the coil 140b rotates in the clockwise direction in FIG. On the other hand, since the control current is an alternating current, as shown in FIG. 3A, the control current flowing in the counterclockwise direction in FIG. 3A is supplied to each of the coils 140a and 140b. The situation where the magnetic field from the magnet 152a toward the magnet 151a is applied to the coil 140a and the magnetic field from the magnet 152b toward the magnet 151b is applied to the coil 140b follows the situation shown in FIG. In this case, as shown in FIG. 3B, which is a drawing of the MEMS scanner 101 shown in FIG. 3A observed from the direction of arrow III, the two long sides of the coil 140a facing each other along the X-axis direction are shown. On the long side of the right side (that is, the outside in FIG. 2A), a Lorentz force is generated in the upper direction in FIG. 3B. Similarly, as shown in FIG. 3B, the left side of the two long sides of the coil 140a facing along the X-axis direction (that is, the inner side in FIG. 3A) A Lorentz force toward the lower direction in 3 (b) is generated. That is, Lorentz forces in different directions are generated on the two long sides of the coil 140a facing each other along the X-axis direction. In other words, Lorentz force, which is a couple, is generated on the two long sides of the coil 140a facing each other along the X-axis direction. Therefore, the coil 140a rotates in the counterclockwise direction in FIG. In addition, as shown in FIG. 3B, the right side of the two long sides of the coil 140b facing in the X-axis direction (that is, the inner side in FIG. 2A) Lorentz force toward the upper direction in 3 (b) is generated. Similarly, as shown in FIG. 3B, the left side of the two long sides of the coil 140b facing in the X-axis direction (that is, the outside in FIG. 3A) is shown on the left side. A Lorentz force toward the lower direction in 3 (b) is generated. That is, Lorentz forces in different directions are generated on the two long sides of the coil 140b facing each other along the X-axis direction. In other words, Lorentz force, which is a couple, is generated on the two long sides of the coil 140b facing each other along the X-axis direction. Accordingly, the coil 140b rotates in the counterclockwise direction in FIG.
 このとき、あるタイミングでコイル140aを時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140aに発生するローレンツ力)の大きさ及び方向は、あるタイミングでコイル140bを時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140bに発生するローレンツ力)の大きさ及び方向と同一であることが好ましい。同様に、あるタイミングでコイル140aを反時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140aに発生するローレンツ力)の大きさは、あるタイミングでコイル140bを反時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140bに発生するローレンツ力)の大きさと同一であることが好ましい。より具体的には、X軸方向に沿って対向するコイル140aの2つの長辺のうちの右側(図2(b)参照)の長辺に発生するローレンツ力の大きさ及び方向は、X軸方向に沿って対向するコイル140bの2つの長辺のうちの右側(図2(b)参照)の長辺に発生するローレンツ力の大きさ及び方向と同一であることが好ましい。同様に、X軸方向に沿って対向するコイル140aの2つの長辺のうちの左側(図2(b)参照)の長辺に発生するローレンツ力の大きさ及び方向は、X軸方向に沿って対向するコイル140bの2つの長辺のうちの左側(図2(b)参照)の長辺に発生するローレンツ力の大きさ及び方向と同一であることが好ましい。このようなローレンツ力の大きさ及び方向を同一にするためには、磁石152aから磁石151aに向かう磁界の大きさと磁石152bから磁石151bに向かう磁界の大きさとを同一にすると共に、コイル140aに供給される制御電流とコイル140bに供給される制御電流とを同一にすることが好ましい。 At this time, the magnitude and direction of the Lorentz force that rotates the coil 140a in the clockwise direction at a certain timing (that is, the Lorentz force generated in the coil 140a) is such that the coil 140b is rotated in the clockwise direction at a certain timing. It is preferable that the magnitude and direction of the Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is the same. Similarly, the magnitude of the Lorentz force that rotates the coil 140a counterclockwise at a certain timing (ie, the Lorentz force generated in the coil 140a) is such that the coil 140b is counterclockwise at a certain timing. The Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is preferably the same. More specifically, the magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 2B) of the two long sides of the coil 140a facing along the X axis direction is The magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 2B) of the two long sides of the coil 140b facing in the direction are preferably the same. Similarly, the magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 2B) of the two long sides of the coil 140a facing each other along the X-axis direction is along the X-axis direction. The magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 2B) of the two long sides of the opposing coil 140b are preferably the same. In order to make the magnitude and direction of the Lorentz force the same, the magnitude of the magnetic field from the magnet 152a to the magnet 151a and the magnitude of the magnetic field from the magnet 152b to the magnet 151b are made the same and supplied to the coil 140a. The control current to be supplied and the control current supplied to the coil 140b are preferably the same.
 このようなローレンツ力によって、コイル140a及び140bの夫々は、Y軸方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このとき、Y軸方向に沿ったコイル140a及び140bの夫々の回転軸は、Y軸方向に沿ったミラー130の回転軸とは異なっている。具体的には、Y軸方向に沿ったコイル140a及び140bの夫々の回転軸は、Y軸方向に沿ったミラー130の回転軸を基準として、X軸方向に所定距離シフトした位置に存在する。このため、Y軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転は、Y軸方向に沿った軸を回転軸としてミラー130を直接的に回転させることはない。 By such Lorentz force, each of the coils 140a and 140b rotates about the axis along the Y-axis direction as a rotation axis (more specifically, reciprocatingly drives to rotate). At this time, the rotation axes of the coils 140a and 140b along the Y-axis direction are different from the rotation axis of the mirror 130 along the Y-axis direction. Specifically, the respective rotation axes of the coils 140a and 140b along the Y-axis direction exist at positions shifted by a predetermined distance in the X-axis direction with respect to the rotation axis of the mirror 130 along the Y-axis direction. Therefore, the respective rotations of the coils 140a and 140b having the axis along the Y-axis direction as the rotation axis do not directly rotate the mirror 130 with the axis along the Y-axis direction as the rotation axis.
 一方で、Y軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転に伴って、コイル140a及び140bの夫々からベース110に対して微振動が伝搬する。その結果、コイル140a及び140bの夫々が配置されているベース110は、X軸方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。言い換えれば、ベース110は、X軸方向に沿って波打つように変形振動する。つまり、ベース110は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。 On the other hand, micro vibrations propagate from the coils 140a and 140b to the base 110 as the coils 140a and 140b rotate with the axis along the Y-axis direction as the rotation axis. As a result, the base 110 on which each of the coils 140a and 140b is disposed deforms and vibrates in a standing wave shape (that is, in a standing wave shape) along the X-axis direction. In other words, the base 110 deforms and vibrates so as to wave along the X-axis direction. In other words, the appearance of the base 110 is deformed so that one part thereof becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration.
 このようなベース110の変形振動に起因して、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。このとき、ミラー130は、ミラー130並びにトーションバー120a及び120bに応じて定まる共振周波数(例えば、20kHz)で共振するように回転する。例えば、ミラー130のY軸方向に沿った軸回り慣性モーメントがIであり且つトーションバー120a及び120bを1本のバネとみなした場合のねじりバネ定数がkであるとすれば、ミラー130は、(1/(2π))×√(k/I)にて特定される共振周波数(或いは、(1/(2π))×√(k/I)のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。 Due to the deformation vibration of the base 110, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis. At this time, the mirror 130 rotates so as to resonate at a resonance frequency (for example, 20 kHz) determined according to the mirror 130 and the torsion bars 120a and 120b. For example, if the moment of inertia about the axis along the Y-axis direction of the mirror 130 is I and the torsion spring constant is k when the torsion bars 120a and 120b are regarded as one spring, the mirror 130 is Resonance frequency (or (1 / (2π)) × √ (k / I) specified by (1 / (2π)) × √ (k / I) N times or 1 / N times (however, N is rotated about an axis along the Y-axis direction so as to resonate at a resonance frequency of 1).
 ここで、Y軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転とX軸方向に沿ったベース110の変形振動とY軸方向に沿った軸を回転軸とするミラー130の回転の関係について、図4を参照しながらより詳細に説明する。 Here, the rotation of the coils 140a and 140b with the axis along the Y-axis direction as the rotation axis, the deformation vibration of the base 110 along the X-axis direction, and the mirror 130 with the axis along the Y-axis direction as the rotation axis. The rotation relationship will be described in more detail with reference to FIG.
 図4(a)に示すように、Y軸方向に沿った軸を回転軸としてコイル140a及び140bの夫々が回転していない状態では、X軸方向に沿ってベース110は変形振動していない。このため、ミラー130もまた、Y軸方向に沿った軸を回転軸として回転していない。 As shown in FIG. 4A, the base 110 is not deformed and oscillated along the X-axis direction when each of the coils 140a and 140b is not rotating about the axis along the Y-axis direction as a rotation axis. For this reason, the mirror 130 is also not rotated about the axis along the Y-axis direction as the rotation axis.
 その後、図4(b)に示すように、Y軸方向に沿った軸を回転軸としてコイル140a及び140bの夫々が図4(b)における反時計回りの方向に沿って回転し始めると、ベース110は、コイル140a及び140bの夫々のY軸方向に沿った回転軸に対応する箇所(つまり、コイル140のY軸方向に沿った回転軸上に位置する箇所)が節となるように、X軸方向に沿って変形振動し始める。加えて、ベース110は、ミラー130のY軸方向に沿った回転軸に対応する箇所(つまり、ミラー130のY軸方向に沿った回転軸上に位置する箇所)が節となるように、X軸方向に沿って変形振動し始める。言い換えれば、ベース110は、コイル140a及び140bの夫々のY軸方向に沿った回転軸に対応する箇所とミラー130のY軸方向に沿った回転軸に対応する箇所との間に腹が存在するように、X軸方向に沿って変形振動し始める。つまり、ベース110の変形振動によって、X軸方向に沿って腹及び節が現れる。尚、ベース110の変形振動は、いわゆる定常波の波形に従って行われるため、その腹及び節の位置は実質的には固定されている。このとき、ベース110の変形振動の周波数は、典型的には、上述したミラー130の共振周波数と同一になる。 Thereafter, as shown in FIG. 4B, when each of the coils 140a and 140b starts to rotate in the counterclockwise direction in FIG. 4B with the axis along the Y-axis direction as the rotation axis, the base 110 indicates that a portion corresponding to the rotation axis along the Y-axis direction of each of the coils 140a and 140b (that is, a position located on the rotation axis along the Y-axis direction of the coil 140) is a node. It begins to deform and vibrate along the axial direction. In addition, the base 110 has a portion corresponding to the rotation axis along the Y-axis direction of the mirror 130 (that is, a position located on the rotation axis along the Y-axis direction of the mirror 130) as a node. It begins to deform and vibrate along the axial direction. In other words, the base 110 has an antinode between a location corresponding to the rotation axis along the Y-axis direction of each of the coils 140a and 140b and a location corresponding to the rotation axis along the Y-axis direction of the mirror 130. Thus, deformation vibration starts along the X-axis direction. That is, antinodes and nodes appear along the X-axis direction due to the deformation vibration of the base 110. In addition, since the deformation vibration of the base 110 is performed in accordance with a so-called standing wave waveform, the positions of the antinodes and nodes are substantially fixed. At this time, the frequency of deformation vibration of the base 110 is typically the same as the resonance frequency of the mirror 130 described above.
 このようなベース110の変形振動を実現するために、ベース110の剛性が調整されてもよい。例えば、ベース110のうち節となる箇所の剛性が相対的に高くなると共に、ベース110のうち腹となる箇所の剛性が相対的に低くなっていてもよい。より具体的には、例えば、ベース110のうち節となる箇所にリブが形成されると共にベース110のうち腹となる箇所にリブが形成されなくともよい。この場合、リブが形成されているベース110の箇所は、剛性が相対的に高いため、コイル140の回転に伴って屈曲しにくい一方で、リブが形成されていないベース110の箇所は、剛性が相対的に低いため、コイル140の回転に伴って屈曲しやすい。その結果、ベース110は、リブが形成されている箇所を節とし且つリブが形成されていない箇所を腹にして、X軸の方向に沿って波打つように変形振動する。 In order to realize such deformation vibration of the base 110, the rigidity of the base 110 may be adjusted. For example, the rigidity of the base 110 may be relatively high and the rigidity of the base 110 may be relatively low. More specifically, for example, a rib may be formed at a node portion of the base 110 and a rib may not be formed at a belly portion of the base 110. In this case, since the portion of the base 110 where the rib is formed has a relatively high rigidity, it is difficult to bend as the coil 140 rotates, whereas the portion of the base 110 where the rib is not formed has a rigidity. Since it is relatively low, it tends to bend as the coil 140 rotates. As a result, the base 110 deforms and vibrates so as to wave along the direction of the X axis, with a portion where the rib is formed as a node and a portion where the rib is not formed as a belly.
 その結果、図4(a)から図4(g)に時系列的に示すように、コイル140a及び140bの夫々の回転に伴って、ベース110は、定常波の如き外観を有するように変形振動する。つまり、ベース110は、ミラー130の回転軸に直交する方向(つまり、X軸方向)に沿って定常波が現れるような外観を有する。その結果、図4(a)から図4(g)に時系列的に示すように、ベース110の変形振動に合わせて、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 As a result, as shown in FIG. 4A to FIG. 4G in time series, the base 110 deforms and vibrates so as to have an appearance like a standing wave as the coils 140a and 140b rotate. . That is, the base 110 has an appearance such that a standing wave appears along a direction orthogonal to the rotation axis of the mirror 130 (that is, the X-axis direction). As a result, as shown in FIG. 4A to FIG. 4G in time series, the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis in accordance with the deformation vibration of the base 110.
 尚、図4(a)から図4(g)に示すように、典型的には、コイル140a及び140bの夫々の回転方向とミラー130の回転方向とは、互いに逆向きとなる。具体的には、図4(a)から図4(c)に示すように、コイル140a及び140bの夫々が反時計回りに回転している状態では、ミラー130が時計回りに回転する。同様に、図4(c)から図4(g)に示すように、コイル140a及び140bの夫々が時計回りに回転している状態では、ミラー130が反時計回りに回転する。尚、図4(g)に示す状態のコイル140a及び140bの夫々、ベース110並びにミラー130は、その後、図4(f)に示す状態を経てから図4(a)に示す状態に遷移する。以降、コイル140a及び140bの夫々、ベース110並びにミラー130は、図4(a)から図4(g)に示す時系列に従って変形振動ないしは回転する。但し、図4(a)から図4(g)に示すベース110の変形モードは、あくまで一例であって、ベース110は、他の変形モード(例えば、更に多くの節を有する変形モード)で変形振動してもよい。 As shown in FIGS. 4A to 4G, typically, the rotation directions of the coils 140a and 140b and the rotation direction of the mirror 130 are opposite to each other. Specifically, as shown in FIGS. 4 (a) to 4 (c), the mirror 130 rotates clockwise when the coils 140a and 140b are rotating counterclockwise. Similarly, as shown in FIGS. 4C to 4G, in a state where the coils 140a and 140b are rotating clockwise, the mirror 130 rotates counterclockwise. Note that the coils 110a and 140b in the state shown in FIG. 4G, the base 110, and the mirror 130 respectively change to the state shown in FIG. 4A after passing through the state shown in FIG. Thereafter, the base 110 and the mirror 130 of the coils 140a and 140b, respectively, deform or vibrate or rotate in accordance with the time series shown in FIGS. 4A to 4G. However, the deformation mode of the base 110 shown in FIGS. 4A to 4G is merely an example, and the base 110 is deformed in another deformation mode (for example, a deformation mode having more nodes). You may vibrate.
 また、図4(a)から図4(g)は、コイル140a及び140bの夫々の回転方向とミラー130の回転方向とが互いに逆向きとなる例を示している。この例は、厳密に言えば、コイル140a及び140bの夫々の回転方向とミラー130を支持している部分におけるベース110の回転方向とが互いに逆向きとなる例とも表現できる。 4 (a) to 4 (g) show examples in which the rotation directions of the coils 140a and 140b and the rotation direction of the mirror 130 are opposite to each other. Strictly speaking, this example can also be expressed as an example in which the rotation directions of the coils 140a and 140b and the rotation direction of the base 110 in the portion supporting the mirror 130 are opposite to each other.
 但し、ベース110がより高次の振動モード(例えば、図4(a)から図4(g)に示す状態と比較して、節や腹の数が増加する振動モード)で変形振動する場合には、ミラー130の回転方向とミラー130を支持している部分におけるベース110の回転方向とが逆になってもよい。つまり、コイル140a及び140bの夫々の回転方向とミラー130の回転方向とが互いに同じ向きとなってもよい。 However, when the base 110 is deformed and oscillated in a higher-order vibration mode (for example, a vibration mode in which the number of nodes and abdomen increases as compared with the state shown in FIGS. 4A to 4G). The rotation direction of the mirror 130 and the rotation direction of the base 110 in the portion supporting the mirror 130 may be reversed. That is, the rotation directions of the coils 140a and 140b and the rotation direction of the mirror 130 may be the same.
 加えて、図4(a)から図4(g)に示すように、典型的には、コイル140aの回転方向とコイル140bの回転方向とは、互いに同一となる。具体的には、図4(a)から図4(c)に示すように、コイル140aが反時計回りに回転している状態では、コイル140bもまた反時計回りに回転する。同様に、図4(c)から図4(g)に示すように、コイル140aが時計回りに回転している状態では、コイル140bもまた時計回りに回転する。 In addition, as shown in FIGS. 4A to 4G, typically, the rotation direction of the coil 140a and the rotation direction of the coil 140b are the same. Specifically, as shown in FIGS. 4A to 4C, when the coil 140a rotates counterclockwise, the coil 140b also rotates counterclockwise. Similarly, as shown in FIGS. 4C to 4G, when the coil 140a rotates clockwise, the coil 140b also rotates clockwise.
 以上説明したように、第1実施例のMEMSスキャナ101は、Y軸方向に沿った軸を回転軸としてミラー130を回転させることができる。つまり、第1実施例のMEMSスキャナ101は、ミラー130の1軸駆動を行うことができる。 As described above, the MEMS scanner 101 of the first embodiment can rotate the mirror 130 about the axis along the Y-axis direction as the rotation axis. That is, the MEMS scanner 101 of the first embodiment can drive the mirror 130 uniaxially.
 加えて、第1実施例のMEMSスキャナ101では、ミラー130は、コイル140a及び140bの夫々の巻き線の外側に位置することになる。従って、コイル140a及び140bの夫々は、ミラー130を取り囲むように配置されなくともよい。その結果、第1実施例では、コイル140a及び140bの少なくとも一方がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、コイル140a及び140bの夫々のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。言い換えれば、第1実施例では、ミラー130の大きさに関係なく、コイル140a及び140bの夫々のサイズを相対的に小さくすることができる。その結果、当該コイル140aに対して磁界を付与するための磁石151a及び152aのサイズもまた、相対的に小さくすることができる。同様に、当該コイル140bに対して磁界を付与するための磁石151b及び152bのサイズもまた、相対的に小さくすることができる。このため、第1実施例では、コイル140a及び140bの少なくとも一方がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、ミラー130の大きさに関係なく、コイル140aと磁石151a及び152aとの間の磁気ギャップ並びにコイル140bと磁石151b及び152bとの間の磁気ギャップを相対的に小さくすることができる。従って、第1実施例では、コイル140a及び140bの少なくとも一方がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、MEMSスキャナ101の小型化が好適に実現される。 In addition, in the MEMS scanner 101 of the first embodiment, the mirror 130 is positioned outside the windings of the coils 140a and 140b. Accordingly, each of the coils 140a and 140b may not be disposed so as to surround the mirror 130. As a result, in the first embodiment, compared to the comparative MEMS scanner in which at least one of the coils 140a and 140b is disposed so as to surround the mirror 130, the size of each of the coils 140a and 140b (for example, winding The diameter, the length of the winding, etc.) can be made relatively small. In other words, in the first embodiment, the sizes of the coils 140a and 140b can be made relatively small regardless of the size of the mirror 130. As a result, the sizes of the magnets 151a and 152a for applying a magnetic field to the coil 140a can also be made relatively small. Similarly, the sizes of the magnets 151b and 152b for applying a magnetic field to the coil 140b can also be made relatively small. For this reason, in the first embodiment, compared to the MEMS scanner of the comparative example in which at least one of the coils 140a and 140b is disposed so as to surround the mirror 130, the coil 140a and the magnet 151a are independent of the size of the mirror 130. And the magnetic gap between the coil 140b and the magnets 151b and 152b can be made relatively small. Therefore, in the first embodiment, the MEMS scanner 101 can be reduced in size as compared with the comparative MEMS scanner in which at least one of the coils 140 a and 140 b is arranged so as to surround the mirror 130.
 加えて、第1実施例では、ミラー130を取り囲むようにコイル140a及び140bの夫々が配置されなくともよくなる。このため、ミラー130を取り囲むようにコイル140a及び140bの少なくとも一方が配置される比較例のMEMSスキャナと比較して、磁石151a及び152a並びに磁石151b及び152bの配置の自由度が相対的に高くなる。このため、コイル140aの中心上方(具体的には、コイル140aの巻き線の内側の上方)に磁石151a及び152aを配置することができる。特に、コイル140aの中心上方に磁石151a及び152aを配置したとしても、当該磁石151a及び152aがミラー130の上方の光路を遮ることはない。同様に、コイル140bの中心上方(具体的には、コイル140bの巻き線の内側の上方)に磁石151b及び152bを配置することができる。特に、コイル140bの中心上方に磁石151b及び152bを配置したとしても、当該磁石151b及び152bがミラー130の上方の光路を遮ることはない。従って、MEMSスキャナ101としての好適な動作を維持しつつ、磁石151a及び152a並びに磁石151b及び152bの配置の自由度が相対的に高くなる。 In addition, in the first embodiment, the coils 140a and 140b do not have to be arranged so as to surround the mirror 130. For this reason, the freedom degree of arrangement | positioning of the magnets 151a and 152a and the magnets 151b and 152b becomes relatively high compared with the MEMS scanner of the comparative example in which at least one of the coils 140a and 140b is arranged so as to surround the mirror 130. . Therefore, the magnets 151a and 152a can be arranged above the center of the coil 140a (specifically, above the inside of the winding of the coil 140a). In particular, even if the magnets 151a and 152a are arranged above the center of the coil 140a, the magnets 151a and 152a do not block the optical path above the mirror 130. Similarly, the magnets 151b and 152b can be disposed above the center of the coil 140b (specifically, above the inside of the winding of the coil 140b). In particular, even if the magnets 151b and 152b are arranged above the center of the coil 140b, the magnets 151b and 152b do not block the optical path above the mirror 130. Therefore, the degree of freedom of arrangement of the magnets 151a and 152a and the magnets 151b and 152b is relatively high while maintaining a preferable operation as the MEMS scanner 101.
 加えて、第1実施例では、ベース110の変形振動における節に対応する箇所に、ミラー130につながるトーションバー120a及び120bが接続されている。つまり、ベース110の変形振動における節に対応する箇所が、ミラー130のY軸方向に沿った回転軸と一致する。また、ベース110の変形振動における節に対応する箇所に、コイル140a及び140bの夫々が配置されている。つまり、ベース110の変形振動における節に対応する箇所が、コイル140a及び140bの夫々のY軸方向に沿った回転軸と一致する。このため、第1実施例では、ミラー130並びにコイル140a及び140bの夫々の上下方向(具体的には、X軸方向及びY軸方向の夫々に直交する方向であって、ベース110の表面に対して垂直なZ軸方向)の移動を防ぐことができる。従って、ミラー130の高精度な回転駆動を実現することができる。 In addition, in the first embodiment, torsion bars 120 a and 120 b connected to the mirror 130 are connected to locations corresponding to nodes in the deformation vibration of the base 110. That is, the part corresponding to the node in the deformation vibration of the base 110 coincides with the rotation axis of the mirror 130 along the Y-axis direction. Each of the coils 140a and 140b is arranged at a location corresponding to a node in the deformation vibration of the base 110. That is, the part corresponding to the node in the deformation vibration of the base 110 coincides with the rotation axis of each of the coils 140a and 140b along the Y-axis direction. For this reason, in the first embodiment, the mirror 130 and the coils 140a and 140b are respectively in the vertical direction (specifically, the direction orthogonal to the X-axis direction and the Y-axis direction, respectively, with respect to the surface of the base 110). In the vertical Z-axis direction). Therefore, highly accurate rotational driving of the mirror 130 can be realized.
 加えて、第1実施例では、ミラー130の両側にコイル140a及びコイル140bが対称的に配置される。このため、ミラー130の回転に対する重量バランスが取れている。従って、コイル140a及びコイル140bをベース110に配置したとしても、ミラー130の好適な回転が妨げられることは殆ど又は全くない。 In addition, in the first embodiment, the coils 140a and 140b are symmetrically arranged on both sides of the mirror 130. For this reason, the weight balance with respect to the rotation of the mirror 130 is balanced. Therefore, even if the coil 140a and the coil 140b are arranged on the base 110, the suitable rotation of the mirror 130 is hardly or completely prevented.
 尚、コイル140a及び140bの夫々に発生するローレンツ力は、例えば、特許第4827993号公報に開示されているように、「微振動(つまり、方向性のない力であって、トーションバー120a及び120bを、ミラー130の回転方向に向かってねじれさせるように直接的に作用しない力)」として、ベース110に伝搬されてもよい。この場合には、ローレンツ力が微振動としてベース110に伝搬されることで、ベース110が変形振動する。つまり、微振動としてのローレンツ力は、ベース110の変形振動という形で発現する。或いは、コイル140a及び140bの夫々に発生するローレンツ力は、例えば、独立行政法人産業総合研究所のホームページ(http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100209/pr20100209.html)に開示されているように、「ラム波」として、ベース110に伝搬されてもよい。この場合には、ローレンツ力がラム波としてベース110に伝搬されることで、ベース110が変形振動する。以下の第2実施例から第5実施例においても同様である。 The Lorentz force generated in each of the coils 140a and 140b is, for example, as described in Japanese Patent No. 4827993, “micro vibration (that is, a force having no directionality, which is a torsion bar 120a and 120b. As a force that does not act directly to twist in the direction of rotation of the mirror 130) ”. In this case, the Lorentz force is propagated to the base 110 as a slight vibration, so that the base 110 undergoes deformation vibration. That is, the Lorentz force as fine vibration appears in the form of deformation vibration of the base 110. Alternatively, the Lorentz force generated in each of the coils 140a and 140b is, for example, the homepage of the National Institute of Advanced Industrial Science and Technology (http://www.aist.go.jp/aist_j/press_release/pr2010/pr20100209/pr20100209.html ) May be propagated to the base 110 as “Lamb waves”. In this case, the Lorentz force is propagated to the base 110 as a Lamb wave, so that the base 110 undergoes deformation vibration. The same applies to the following second to fifth embodiments.
 (2)第2実施例
 続いて、図5から図8を参照して、MEMSスキャナの第2実施例について説明する。尚、上述の第1実施例のMEMSスキャナ101と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(2) Second Embodiment Next, a second embodiment of the MEMS scanner will be described with reference to FIGS. In addition, about the structure same as the MEMS scanner 101 of the above-mentioned 1st Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 (2-1)MEMSスキャナの構成
 初めに、図5を参照して、第2実施例に係るMEMSスキャナ102の構成について説明する。ここに、図5は、第2実施例に係るMEMSスキャナ102の構成を概念的に示す平面図である。
(2-1) Configuration of MEMS Scanner First, the configuration of the MEMS scanner 102 according to the second embodiment will be described with reference to FIG. FIG. 5 is a plan view conceptually showing the structure of the MEMS scanner 102 according to the second embodiment.
 図5に示すように、第2実施例に係るMEMSスキャナ101は、第1ベース110-1と、第1トーションバー120a-1と、第1トーションバー120b-1と、第2ベース110-2と、第2トーションバー120a-2と、第2トーションバー120b-2と、ミラー130と、コイル140aと、コイル140bと、磁石151a及び152aと、磁石151b及び152bと、磁石161a及び162aと、磁石161b及び162bとを備えている。 As shown in FIG. 5, the MEMS scanner 101 according to the second embodiment includes a first base 110-1, a first torsion bar 120a-1, a first torsion bar 120b-1, and a second base 110-2. Second torsion bar 120a-2, second torsion bar 120b-2, mirror 130, coil 140a, coil 140b, magnets 151a and 152a, magnets 151b and 152b, magnets 161a and 162a, Magnets 161b and 162b are provided.
 第1ベース110-1は、内部に空隙を備える枠形状を有している。つまり、第1ベース110-1は、図5中のY軸方向に延伸する2つの辺と図5中のX軸方向(つまり、Y軸方向に直交する方向)に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図5に示す例では、第1ベース110-1は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。また、第1ベース110-1は、第2実施例に係るMEMSスキャナ102の基礎となる構造体であって、不図示の基板ないしは支持部材に対して固定されている(言い換えれば、MEMSスキャナ102という系の内部においては固定されている)ことが好ましい。或いは、第1ベース110-1は、不図示のサスペンション等によって吊り下げられていてもよい。 The first base 110-1 has a frame shape with a gap inside. That is, the first base 110-1 has two sides extending in the Y-axis direction in FIG. 5 and two sides extending in the X-axis direction (that is, a direction orthogonal to the Y-axis direction) in FIG. And a frame shape having a gap surrounded by two sides extending in the Y-axis direction and two sides extending in the X-axis direction. In the example shown in FIG. 5, the first base 110-1 has a square shape. However, the first base 110-1 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.). The first base 110-1 is a structure that is the basis of the MEMS scanner 102 according to the second embodiment, and is fixed to a substrate or a support member (not shown) (in other words, the MEMS scanner 102). It is preferably fixed inside the system. Alternatively, the first base 110-1 may be suspended by a suspension (not shown) or the like.
 尚、図5では、第1ベース110-1が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第1ベース110-1は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第1ベース110-1は、内部に空隙を備える箱型形状を有していてもよい。つまり、第1ベース110-1は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜第1ベース110-1の形状を任意に代えてもよい。 Note that FIG. 5 shows an example in which the first base 110-1 has a frame shape, but it goes without saying that the first base 110-1 may have other shapes. For example, the first base 110-1 may have a U-shape in which a part of the first base 110-1 is an opening. Alternatively, for example, the first base 110-1 may have a box shape with a gap inside. That is, the first base 110-1 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis). 2 planes distributed on a plane defined by the axis) and two planes distributed on a plane defined by the Y axis and a Z axis (not shown) and surrounded by these 6 planes You may have the box shape which has a space | gap. Alternatively, the shape of the first base 110-1 may be arbitrarily changed according to the manner in which the mirror 130 is disposed.
 第1トーションバー120a-1及び120b-1の夫々は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第1トーションバー120a-1及び120b-1の夫々は、図5中X軸方向に延伸するように配置される。言い換えれば、第1トーションバー120a-1及び120b-1の夫々は、X軸方向に延伸する長手を有すると共にY軸方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第1トーションバー120a-1及び120b-1の夫々は、X軸方向に延伸する短手を有すると共にY軸方向に延伸する長手を有する形状を有していてもよい。第1トーションバー120a-1及び120b-1の夫々の一方の端部は、第1ベース110-1に接続される。第1トーションバー120a-1及び120b-1の夫々の他方の端部は、第2ベース110-2に接続される。つまり、第1トーションバー120a-1及び120b-1は、間に第2ベース110-2を挟み込むように第2ベース110-2を吊り下げている。 Each of the first torsion bars 120a-1 and 120b-1 is an elastic member such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. Each of the first torsion bars 120a-1 and 120b-1 is disposed so as to extend in the X-axis direction in FIG. In other words, each of the first torsion bars 120a-1 and 120b-1 has a shape having a long side extending in the X-axis direction and a short side extending in the Y-axis direction. However, each of the first torsion bars 120a-1 and 120b-1 has a shape having a short side extending in the X-axis direction and a long side extending in the Y-axis direction depending on the setting state of the resonance frequency described later. You may have. One end of each of the first torsion bars 120a-1 and 120b-1 is connected to the first base 110-1. The other ends of the first torsion bars 120a-1 and 120b-1 are connected to the second base 110-2. In other words, the first torsion bars 120a-1 and 120b-1 suspend the second base 110-2 so as to sandwich the second base 110-2 therebetween.
 第2ベース110-2は、内部に空隙を備える枠形状を有している。つまり、第2ベース110-2は、図5中のY軸方向に延伸する2つの辺と図5中のX軸方向に延伸する2つの辺とを有すると共に、Y軸方向に延伸する2つの辺とX軸方向に延伸する2つの辺とによって取り囲まれた空隙を有する枠形状を有している。図5に示す例では、第2ベース110-2は、正方形の形状を有しているが、これに限定されることはなく、例えばその他の形状(例えば、長方形等の矩形の形状や円形の形状等)を有していてもよい。 The second base 110-2 has a frame shape with a gap inside. That is, the second base 110-2 has two sides extending in the Y-axis direction in FIG. 5 and two sides extending in the X-axis direction in FIG. It has a frame shape having a gap surrounded by the side and two sides extending in the X-axis direction. In the example shown in FIG. 5, the second base 110-2 has a square shape. However, the second base 110-2 is not limited to this. For example, other shapes (for example, a rectangular shape such as a rectangle or a circular shape) Shape etc.).
 また、第2ベース110-2は、第1ベース110-1の内部の空隙に、第1トーションバー120a-1及び120b-1によって吊り下げられる又は支持されるように配置される。第2ベース110-2は、第1トーションバー120a-1及び120b-1の弾性によって、X軸方向に沿った軸を回転軸として回転するように構成されている。 Also, the second base 110-2 is arranged to be suspended or supported by the first torsion bars 120a-1 and 120b-1 in the gap inside the first base 110-1. The second base 110-2 is configured to rotate about the axis along the X-axis direction by the elasticity of the first torsion bars 120a-1 and 120b-1.
 尚、図5では、第2ベース110-2が枠形状を有している例を示しているが、その他の形状を有していてもよいことは言うまでもない。例えば、第2ベース110-2は、その一部の辺が開口となるコの字型形状を有していてもよい。或いは、例えば、第2ベース110-2は、内部に空隙を備える箱型形状を有していてもよい。つまり、第2ベース110-2は、X軸及びY軸によって規定される平面上に分布する2つの面と、X軸及び不図示のZ軸(つまり、X軸及びY軸の双方に直交する軸)によって規定される平面上に分布する2つの面と、Y軸及び不図示のZ軸によって規定される平面上に分布する2つの面とを有すると共に、これらの6つの面によって取り囲まれた空隙を有する箱形状を有していてもよい。或いは、ミラー130が配置される態様に応じて適宜第2ベース110-2の形状を任意に代えてもよい。 Although FIG. 5 shows an example in which the second base 110-2 has a frame shape, it goes without saying that the second base 110-2 may have other shapes. For example, the second base 110-2 may have a U-shape in which a part of the second base 110-2 is an opening. Alternatively, for example, the second base 110-2 may have a box shape with a gap inside. That is, the second base 110-2 is orthogonal to the two surfaces distributed on the plane defined by the X axis and the Y axis, and the Z axis (not shown) (that is, both the X axis and the Y axis). 2 planes distributed on a plane defined by the axis) and two planes distributed on a plane defined by the Y axis and a Z axis (not shown) and surrounded by these 6 planes You may have the box shape which has a space | gap. Alternatively, the shape of the second base 110-2 may be arbitrarily changed according to the manner in which the mirror 130 is disposed.
 第2トーションバー120a-2及び120b-2の夫々は、例えばシリコン、銅合金、鉄系合金、その他金属、樹脂等を材料とするバネ等のような弾性を有する部材である。第2トーションバー120a-2及び120b-2の夫々は、図5中Y軸方向に延伸するように配置される。言い換えれば、第2トーションバー120a-2及び120b-2の夫々は、Y軸方向に延伸する長手を有すると共にX軸方向に延伸する短手を有する形状を有している。但し、後述する共振周波数の設定状況に応じて、第2トーションバー120a-2及び120b-2の夫々は、Y軸方向に延伸する短手を有すると共にX軸方向に延伸する長手を有する形状を有していてもよい。第2トーションバー120a-2及び120b-2の夫々の一方の端部は、第2ベース110-2に接続される。第2トーションバー120a-2及び120b-2の夫々の他方の端部は、ミラー130に接続される。つまり、第2トーションバー120a-2及び120b-2は、間にミラー130を挟み込むようにミラー130を吊り下げている。 Each of the second torsion bars 120a-2 and 120b-2 is a member having elasticity such as a spring made of, for example, silicon, copper alloy, iron alloy, other metal, resin, or the like. Each of second torsion bars 120a-2 and 120b-2 is arranged to extend in the Y-axis direction in FIG. In other words, each of the second torsion bars 120a-2 and 120b-2 has a shape having a long side extending in the Y-axis direction and a short side extending in the X-axis direction. However, each of the second torsion bars 120a-2 and 120b-2 has a shape having a short side extending in the Y-axis direction and a long side extending in the X-axis direction, depending on the setting state of the resonance frequency described later. You may have. One end of each of the second torsion bars 120a-2 and 120b-2 is connected to the second base 110-2. The other ends of the second torsion bars 120 a-2 and 120 b-2 are connected to the mirror 130. That is, the second torsion bars 120a-2 and 120b-2 suspend the mirror 130 so as to sandwich the mirror 130 therebetween.
 ミラー130は、第2ベース110-2の内部の空隙に、第2トーションバー120a-2及び120b-2によって吊り下げられる又は支持されるように配置される。ミラー130は、第2トーションバー120a-2及び120b-2の弾性によって、Y軸方向に沿った軸を回転軸として回転するように構成されている。 The mirror 130 is arranged to be suspended or supported by the second torsion bars 120a-2 and 120b-2 in the gap inside the second base 110-2. The mirror 130 is configured to rotate about the axis along the Y-axis direction as a rotation axis by the elasticity of the second torsion bars 120a-2 and 120b-2.
 コイル140aは、例えば相対的に導電率の高い材料(例えば、金や銅等)から構成される複数の巻き線である。第2実施例では、コイル140aは、矩形の形状を有している。特に、コイル140aの4つの辺の夫々の長さが略同一である。つまり、第2実施例では、コイル140aは、正方形状の形状を有している。但し、コイル140aは、任意の形状(例えば、長方形やひし形や平行四辺形や円形や楕円形やその他の任意のループ形状)を有していてもよい。 The coil 140a is a plurality of windings made of, for example, a material having relatively high conductivity (for example, gold, copper, etc.). In the second embodiment, the coil 140a has a rectangular shape. In particular, the lengths of the four sides of the coil 140a are substantially the same. That is, in the second embodiment, the coil 140a has a square shape. However, the coil 140a may have an arbitrary shape (for example, a rectangle, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
 同様に、コイル140bは、例えば相対的に導電率の高い材料(例えば、金や銅等)から構成される複数の巻き線である。第2実施例では、コイル140bは、矩形の形状を有している。特に、コイル140bの4つの辺の夫々の長さが略同一である。つまり、第2実施例では、コイル140bは、正方形状の形状を有している。但し、コイル140bは、任意の形状(例えば、長方形やひし形や平行四辺形や円形や楕円形やその他の任意のループ形状)を有していてもよい。 Similarly, the coil 140b is a plurality of windings composed of, for example, a material having relatively high conductivity (for example, gold, copper, etc.). In the second embodiment, the coil 140b has a rectangular shape. In particular, the lengths of the four sides of the coil 140b are substantially the same. That is, in the second embodiment, the coil 140b has a square shape. However, the coil 140b may have an arbitrary shape (for example, a rectangle, a rhombus, a parallelogram, a circle, an ellipse, or any other loop shape).
 コイル140aは、第2ベース110-2上に配置されている。特に、コイル140aは、ミラー130が配置される位置(特に、ミラー130の中心ないしは重心が配置される位置)を基準として、X軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿って所定距離だけシフトした位置にコイル140aが位置する(特に、コイル140aの中心又は重心が位置する)ように、第2ベース110-2上に配置されている。但し、コイル140aは、ミラー130が配置される位置を基準として、Y軸方向(つまり、ミラー130の回転軸の方向)に沿って所定距離だけシフトした位置にコイル140aが位置するように、第2ベース110-2上に配置されていてもよい。加えて、コイル140aは、ミラー130とコイル140aとがX軸方向に沿って並ぶように、第2ベース110-2上に配置されている。その結果、ミラー130は、コイル140aを構成する巻き線の外側に位置することになる。言い換えれば、ミラー130は、コイル140aを構成する巻き線の内側に位置することはない。 The coil 140a is disposed on the second base 110-2. In particular, the coil 140a has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed). Are arranged on the second base 110-2 so that the coil 140a is located at a position shifted by a predetermined distance along the center (particularly, the center or center of gravity of the coil 140a is located). However, the coil 140a is positioned so that the coil 140a is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with respect to the position where the mirror 130 is disposed. 2 may be arranged on the base 110-2. In addition, the coil 140a is disposed on the second base 110-2 so that the mirror 130 and the coil 140a are aligned along the X-axis direction. As a result, the mirror 130 is positioned outside the windings that constitute the coil 140a. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140a.
 同様に、コイル140bは、第2ベース110-2上に配置されている。特に、コイル140bは、ミラー130が配置される位置(特に、ミラー130の中心ないしは重心が配置される位置)を基準として、X軸方向(つまり、ミラー130の回転軸の方向に直交する方向)に沿って所定距離だけシフトした位置にコイル140bが位置する(特に、コイル140bの中心又は重心が位置する)ように、第2ベース110-2上に配置されている。但し、コイル140bは、ミラー130が配置される位置を基準として、Y軸方向(つまり、ミラー130の回転軸の方向)に沿って所定距離だけシフトした位置にコイル140bが位置するように、第2ベース110-2上に配置されていてもよい。加えて、コイル140bは、ミラー130とコイル140bとがX軸方向に沿って並ぶように、第2ベース110-2上に配置されている。その結果、ミラー130は、コイル140bを構成する巻き線の外側に位置することになる。言い換えれば、ミラー130は、コイル140bを構成する巻き線の内側に位置することはない。 Similarly, the coil 140b is disposed on the second base 110-2. In particular, the coil 140b has an X-axis direction (that is, a direction orthogonal to the direction of the rotation axis of the mirror 130) based on the position where the mirror 130 is disposed (particularly, the position where the center or the center of gravity of the mirror 130 is disposed). Is arranged on the second base 110-2 so that the coil 140b is located at a position shifted by a predetermined distance along the line (particularly, the center or center of gravity of the coil 140b is located). However, the coil 140b is positioned so that the coil 140b is positioned at a position shifted by a predetermined distance along the Y-axis direction (that is, the direction of the rotation axis of the mirror 130) with reference to the position where the mirror 130 is disposed. 2 may be arranged on the base 110-2. In addition, the coil 140b is disposed on the second base 110-2 so that the mirror 130 and the coil 140b are aligned along the X-axis direction. As a result, the mirror 130 is positioned outside the winding wire that constitutes the coil 140b. In other words, the mirror 130 is not positioned inside the winding wire constituting the coil 140b.
 コイル140a及び140bは、コイル140aとコイル140bとの間にミラー130が配置されるように、第2ベース110-2上に配置される。言い換えれば、コイル140a及び140bは、コイル140aとミラー130とコイル140bとが、X軸方向に沿ってこの順に配置されるように、第2ベース110-2上に配置される。このとき、コイル140aとミラー130との間の距離は、コイル140bとミラー130との間の距離と同一であってもよい。つまり、コイル140a及び140bは、コイル140aとコイル140bとがミラー130に対して対称に配置されるように、第2ベース110-2上に配置されていてもよい。 The coils 140a and 140b are disposed on the second base 110-2 so that the mirror 130 is disposed between the coils 140a and 140b. In other words, the coils 140a and 140b are arranged on the second base 110-2 so that the coil 140a, the mirror 130, and the coil 140b are arranged in this order along the X-axis direction. At this time, the distance between the coil 140a and the mirror 130 may be the same as the distance between the coil 140b and the mirror 130. That is, the coils 140a and 140b may be arranged on the second base 110-2 so that the coils 140a and 140b are arranged symmetrically with respect to the mirror 130.
 コイル140aには、第2ベース110-2上に形成されている電源端子141aを介して、電源から、ミラー130及び第2ベース110-2を回転させるための制御電流が供給される。同様に、コイル140bには、第2ベース110-2上に形成されている電源端子141bを介して、電源から、ミラー130及び第2ベース110-2を回転させるための制御電流が供給される。制御電流は、典型的には、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分及びX軸方向に沿った軸を回転軸として第2ベース110-2が回転する周波数と同一の又は同期した周波数の信号成分の双方を含む交流電流である。尚、電源は、MEMSスキャナ102自身が備えている電源であってもよいし、MEMSスキャナ102の外部に用意される電源であってもよい。尚、以下の説明では、説明の便宜上、制御電流のうちY軸方向に沿った軸を回転軸としてミラー130を回転させるための電流成分を、“Y軸駆動用制御電流”と称する。同様に、制御電流のうちX軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための電流成分を、“X軸駆動用制御電流”と称する。 The coil 140a is supplied with a control current for rotating the mirror 130 and the second base 110-2 from the power source via the power terminal 141a formed on the second base 110-2. Similarly, the coil 140b is supplied with a control current for rotating the mirror 130 and the second base 110-2 from the power supply via the power supply terminal 141b formed on the second base 110-2. . The control current is typically a signal component having a frequency that is the same as or synchronized with the frequency of rotation of the mirror 130 about the axis along the Y-axis direction and the second axis about the axis along the X-axis direction. This is an alternating current including both signal components having the same or synchronized frequency as the frequency at which the base 110-2 rotates. The power source may be a power source provided in the MEMS scanner 102 itself or a power source prepared outside the MEMS scanner 102. In the following description, for convenience of explanation, a current component for rotating the mirror 130 with the axis along the Y-axis direction as a rotation axis in the control current is referred to as “Y-axis drive control current”. Similarly, a current component for rotating the second base 110-2 with the axis along the X-axis direction as the rotation axis in the control current is referred to as “X-axis drive control current”.
 磁石151a及び152aは、磁石151aと磁石152aとがX軸方向に沿って配列するように配置される。特に、磁石151a及び152aは、磁石151aと磁石152aとがX軸方向に沿ってコイル140aを挟み込むように配置される。加えて、磁石151a及び152aのいずれか一方が磁束の出射側になると共に、磁石151a及び152aのいずれか他方が磁束の入射側になる。尚、以下では、磁石151aが磁束の入射側になり且つ磁石152aが磁束の出射側になる例を用いて説明を進める。 Magnets 151a and 152a are arranged such that magnet 151a and magnet 152a are arranged along the X-axis direction. In particular, the magnets 151a and 152a are arranged such that the magnet 151a and the magnet 152a sandwich the coil 140a along the X-axis direction. In addition, one of the magnets 151a and 152a is on the magnetic flux exit side, and the other of the magnets 151a and 152a is on the magnetic flux entrance side. In the following description, the magnet 151a is on the magnetic flux incident side and the magnet 152a is on the magnetic flux outgoing side.
 尚、磁石151a及び磁石152aから付与される磁界は、主としてY軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられる。このため、以下の説明では、説明の便宜上、磁石151a及び152aから付与される磁界(つまり、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための磁界)を、“Y軸駆動用磁界”と称する。 The magnetic field applied from the magnet 151a and the magnet 152a is mainly used to rotate the mirror 130 about the axis along the Y-axis direction as a rotation axis. For this reason, in the following description, for convenience of explanation, the magnetic field applied from the magnets 151a and 152a (that is, the magnetic field for rotating the mirror 130 about the axis along the Y-axis direction) is expressed as “Y-axis drive”. "Magnetic field".
 同様に、磁石151b及び152bは、磁石151bと磁石152bとがX軸方向に沿って配列するように配置される。特に、磁石151b及び152bは、磁石151bと磁石152bとがX軸方向に沿ってコイル140bを挟み込むように配置される。加えて、磁石151b及び152bのいずれか一方が磁束の出射側になると共に、磁石151b及び152bのいずれか他方が磁束の入射側になる。尚、以下では、磁石151bが磁束の入射側になり且つ磁石152bが磁束の出射側になる例を用いて説明を進める。 Similarly, the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b are arranged along the X-axis direction. In particular, the magnets 151b and 152b are arranged such that the magnet 151b and the magnet 152b sandwich the coil 140b along the X-axis direction. In addition, one of the magnets 151b and 152b is a magnetic flux exit side, and the other of the magnets 151b and 152b is a magnetic flux entrance side. In the following, description will be given using an example in which the magnet 151b is on the magnetic flux incident side and the magnet 152b is on the magnetic flux output side.
 尚、磁石151b及び磁石152bから付与される磁界は、主としてY軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられる。このため、以下の説明では、説明の便宜上、磁石151b及び152bから付与される磁界(つまり、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための磁界)を、“Y軸駆動用磁界”と称する。 Note that the magnetic field applied from the magnet 151b and the magnet 152b is mainly used to rotate the mirror 130 about the axis along the Y-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, the magnetic field applied from the magnets 151b and 152b (that is, the magnetic field for rotating the mirror 130 about the axis along the Y-axis direction) is expressed as “Y-axis drive”. "Magnetic field".
 磁石161a及び162aは、磁石161aと磁石162aとがY軸方向に沿って配列するように配置される。特に、磁石161a及び162aは、磁石161aと磁石162aとがY軸方向に沿ってコイル140aを挟み込むように配置される。加えて、磁石161a及び162aのいずれか一方が磁束の出射側になると共に、磁石161a及び162aのいずれか他方が磁束の入射側になる。尚、以下では、磁石161aが磁束の出射側になり且つ磁石162aが磁束の入射側になる例を用いて説明を進める。 Magnets 161a and 162a are arranged such that magnets 161a and 162a are arranged along the Y-axis direction. In particular, the magnets 161a and 162a are arranged such that the magnet 161a and the magnet 162a sandwich the coil 140a along the Y-axis direction. In addition, one of the magnets 161a and 162a is on the magnetic flux exit side, and the other of the magnets 161a and 162a is on the magnetic flux entrance side. In the following, description will be given using an example in which the magnet 161a is on the magnetic flux exit side and the magnet 162a is on the magnetic flux entrance side.
 尚、磁石161a及び磁石162aから付与される磁界は、主としてX軸方向に沿った軸を回転軸として第2ベース110-2を回転させるために用いられる。このため、以下の説明では、説明の便宜上、磁石161a及び162aから付与される磁界(つまり、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための磁界)を、“X軸駆動用磁界”と称する。 The magnetic field applied from the magnet 161a and the magnet 162a is mainly used to rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, a magnetic field applied from the magnets 161a and 162a (that is, a magnetic field for rotating the second base 110-2 with the axis along the X-axis direction as a rotation axis) This is referred to as “X-axis driving magnetic field”.
 磁石161b及び162bは、磁石161bと磁石162bとがY軸方向に沿って配列するように配置される。特に、磁石161b及び162bは、磁石161bと磁石162bとがY軸方向に沿ってコイル140bを挟み込むように配置される。加えて、磁石161b及び162bのいずれか一方が磁束の出射側になると共に、磁石161b及び162bのいずれか他方が磁束の入射側になる。尚、以下では、磁石161bが磁束の出射側になり且つ磁石162bが磁束の入射側になる例を用いて説明を進める。 Magnets 161b and 162b are arranged such that magnets 161b and 162b are arranged along the Y-axis direction. In particular, the magnets 161b and 162b are arranged such that the magnet 161b and the magnet 162b sandwich the coil 140b along the Y-axis direction. In addition, one of the magnets 161b and 162b is a magnetic flux exit side, and the other of the magnets 161b and 162b is a magnetic flux incident side. In the following, description will be given using an example in which the magnet 161b is on the magnetic flux exit side and the magnet 162b is on the magnetic flux entrance side.
 尚、磁石161b及び磁石162bから付与される磁界は、主としてX軸方向に沿った軸を回転軸として第2ベース110-2を回転させるために用いられる。このため、以下の説明では、説明の便宜上、磁石161b及び162bから付与される磁界(つまり、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための磁界)を、“X軸駆動用磁界”と称する。 The magnetic field applied from the magnet 161b and the magnet 162b is mainly used to rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis. Therefore, in the following description, for convenience of description, a magnetic field applied from the magnets 161b and 162b (that is, a magnetic field for rotating the second base 110-2 with the axis along the X-axis direction as a rotation axis) This is referred to as “X-axis driving magnetic field”.
 (2-2)MEMSスキャナの動作
 続いて、図6から図8を参照して、第2実施例に係るMEMSスキャナ102の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図6は、第2実施例に係るMEMSスキャナ102による動作の態様を概念的に示す平面図及び断面図である。図7は、第2実施例に係るMEMSスキャナ102による動作の態様を概念的に示す平面図及び断面図である。図8は、第2実施例に係るMEMSスキャナ102による動作の態様を概念的に示す断面図である。
(2-2) Operation of MEMS Scanner Next, with reference to FIGS. 6 to 8, the mode of operation of the MEMS scanner 102 according to the second embodiment (specifically, mode of operation for rotating the mirror 130) Will be described. FIG. 6 is a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 102 according to the second embodiment. FIGS. 7A and 7B are a plan view and a cross-sectional view conceptually showing a mode of operation by the MEMS scanner 102 according to the second embodiment. FIG. 8 is a sectional view conceptually showing an operation mode of the MEMS scanner 102 according to the second embodiment.
 第2実施例に係るMEMSスキャナ102の動作時には、まず、コイル140a及び140bの夫々に制御電流が供給される。制御電流は、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるための電流成分(つまり、X軸駆動用制御電流)を含んでいる。第2実施例では、第2ベース110-2は、任意の周波数(例えば、60Hz)で、X軸方向に沿った軸を回転軸として回転する。従って、X軸駆動用制御電流は、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転の周波数と同一の又は同期した周波数の信号成分を含む交流電流である。但し、第2ベース110-2は、第2ベース110-2を含む被懸架部(つまり、第2ベース部110-2、第2トーションバー120a―2及び120b-2並びにミラー130を含む被懸架部)と第1トーションバー120a-1及び120b-1によって定まる共振周波数(より具体的には、第2ベース110-2を含む被懸架部の慣性モーメントと第1トーションバー120a-1及び120b-1のねじりバネ定数によって定まる共振周波数)で、X軸方向に沿った軸を回転軸として回転してもよい。 During the operation of the MEMS scanner 102 according to the second embodiment, first, a control current is supplied to each of the coils 140a and 140b. The control current includes a current component (that is, an X-axis drive control current) for rotating the second base 110-2 about the axis along the X-axis direction as a rotation axis. In the second embodiment, the second base 110-2 rotates at an arbitrary frequency (for example, 60 Hz) with an axis along the X-axis direction as a rotation axis. Therefore, the X-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency of rotation of the second base 110-2 whose axis is the axis along the X-axis direction. However, the second base 110-2 is a suspended portion including the second base 110-2 (that is, a suspended portion including the second base portion 110-2, the second torsion bars 120a-2 and 120b-2, and the mirror 130). Part) and the resonance frequency determined by the first torsion bars 120a-1 and 120b-1 (more specifically, the inertia moment of the suspended part including the second base 110-2 and the first torsion bars 120a-1 and 120b- (Resonance frequency determined by a torsion spring constant of 1) may be rotated about the axis along the X-axis direction as a rotation axis.
 一方で、コイル140aには、磁石161a及び162aからX軸駆動用磁界が付与されている。尚、磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、X軸駆動用磁界を付与することが好ましい。この場合、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺に対しては、X軸駆動用磁界を付与しなくともよい。或いは、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺に対して、X軸駆動用磁界を付与してもよい。或いは、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺に対して、X軸駆動用磁界の漏れ磁束を付与してもよい。 On the other hand, an X-axis driving magnetic field is applied to the coil 140a from the magnets 161a and 162a. The magnets 161a and 162a preferably apply a magnetic field for X-axis driving to the two sides of the coil 140a facing each other along the Y-axis direction. In this case, the magnets 161a and 162a do not need to apply the X-axis driving magnetic field to the two sides of the coil 140a facing in the X-axis direction. Alternatively, the magnets 161a and 162a may apply an X-axis driving magnetic field to two sides of the coil 140a facing each other along the X-axis direction. Alternatively, the magnets 161a and 162a may apply the leakage flux of the X-axis driving magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
 従って、コイル140aには、コイル140aに供給されているX軸駆動用制御電流とコイル140aに付与されているX軸駆動用磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。 Therefore, Lorentz force is generated in the coil 140a due to electromagnetic interaction between the X-axis drive control current supplied to the coil 140a and the X-axis drive magnetic field applied to the coil 140a. Become.
 同様に、コイル140bには、磁石161b及び162bからX軸駆動用磁界が付与されている。尚、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、X軸駆動用磁界を付与することが好ましい。この場合、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺に対しては、X軸駆動用磁界を付与しなくともよい。或いは、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺に対して、X軸駆動用磁界を付与してもよい。或いは、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺に対して、X軸駆動用磁界の漏れ磁束を付与してもよい。 Similarly, an X-axis driving magnetic field is applied to the coil 140b from the magnets 161b and 162b. The magnets 161b and 162b preferably apply an X-axis driving magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction. In this case, the magnets 161b and 162b do not need to apply the X-axis driving magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. Alternatively, the magnets 161b and 162b may apply an X-axis driving magnetic field to two sides of the coil 140b facing each other along the X-axis direction. Alternatively, the magnets 161b and 162b may apply the leakage flux of the X-axis driving magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
 従って、コイル140bには、コイル140bに供給されているX軸駆動用制御電流とコイル140bに付与されているX軸駆動用磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。 Therefore, Lorentz force is generated in the coil 140b due to electromagnetic interaction between the X-axis driving control current supplied to the coil 140b and the X-axis driving magnetic field applied to the coil 140b. Become.
 ここで、図6(a)に示すように、図6(a)中の時計周りの方向に流れるX軸駆動用制御電流がコイル140a及び140bの夫々に供給されており、磁石161aから磁石162aに向かうX軸駆動用磁界がコイル140aに付与されており、磁石161bから磁石162bに向かうX軸駆動用磁界がコイル140bの夫々に付与されている状況について説明する。この場合、図6(a)に示すMEMSスキャナ102を矢印VIの方向から観察した図面である図6(b)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの右側(つまり、図6(a)では上側)の辺には、図6(b)における上側の方向に向かうローレンツ力が発生する。同様に、図6(b)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの左側(つまり、図6(a)では下側)の辺には、図6(b)における下側の方向に向かうローレンツ力が発生する。つまり、Y軸方向に沿って対向するコイル140aの2つの辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、Y軸方向に沿って対向するコイル140aの2つの辺には、偶力となるローレンツ力が発生する。従って、コイル140aは、図6(b)における反時計周りの方向に向かって回転する。加えて、図6(b)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの右側(つまり、図6(a)では上側)の辺には、図6(b)における上側の方向に向かうローレンツ力が発生する。同様に、図6(b)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの左側(つまり、図6(a)では下側)の辺には、図6(b)における下側の方向に向かうローレンツ力が発生する。つまり、Y軸方向に沿って対向するコイル140bの2つの辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、Y軸方向に沿って対向するコイル140bの2つの辺には、偶力となるローレンツ力が発生する。従って、コイル140bは、図6(b)における反時計周りの方向に向かって回転する。 Here, as shown in FIG. 6A, the X-axis drive control current flowing in the clockwise direction in FIG. 6A is supplied to each of the coils 140a and 140b, and the magnet 161a to the magnet 162a. A situation will be described in which an X-axis driving magnetic field toward the magnet is applied to the coil 140a, and an X-axis driving magnetic field directed from the magnet 161b to the magnet 162b is applied to each of the coils 140b. In this case, as shown in FIG. 6 (b), which is a drawing of the MEMS scanner 102 shown in FIG. 6 (a) observed from the direction of the arrow VI, of the two sides of the coil 140a facing along the Y-axis direction. A Lorentz force toward the upper direction in FIG. 6B is generated on the right side (that is, the upper side in FIG. 6A). Similarly, as shown in FIG. 6B, the left side (that is, the lower side in FIG. 6A) of the two sides of the coil 140a facing in the Y-axis direction is shown in FIG. A Lorentz force toward the lower direction in (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140a facing each other along the Y-axis direction. In other words, Lorentz force, which is a couple, is generated on the two sides of the coil 140a facing each other along the Y-axis direction. Therefore, the coil 140a rotates in the counterclockwise direction in FIG. In addition, as shown in FIG. 6B, the right side of the two sides of the coil 140b facing in the Y-axis direction (that is, the upper side in FIG. 6A) is shown in FIG. A Lorentz force toward the upper direction in b) is generated. Similarly, as shown in FIG. 6B, the left side (that is, the lower side in FIG. 6A) of the two sides of the coil 140b facing in the Y-axis direction is shown in FIG. A Lorentz force toward the lower direction in (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140b facing each other along the Y-axis direction. In other words, Lorentz force, which is a couple, is generated on the two sides of the coil 140b facing each other along the Y-axis direction. Accordingly, the coil 140b rotates in the counterclockwise direction in FIG.
 一方で、X軸駆動用制御電流が交流電流であるため、図7(a)に示すように、図7(a)中の反時計周りの方向に流れるX軸駆動用制御電流がコイル140a及び140bの夫々に供給されており、磁石161aから磁石162aに向かうX軸駆動用磁界がコイル140aに付与されており、磁石161bから磁石162bに向かうX軸駆動用磁界がコイル140bに付与される状況が、図6(a)に示す状況に続けて生ずる。この場合、図7(a)に示すMEMSスキャナ101を矢印VIIの方向から観察した図面である図7(b)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの右側(つまり、図7(a)では上側)の辺には、図7(b)における下側の方向に向かうローレンツ力が発生する。同様に、図7(b)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの左側(つまり、図6(a)では下側)の長辺には、図7(b)における上側の方向に向かうローレンツ力が発生する。つまり、Y軸方向に沿って対向するコイル140aの2つの辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、Y軸方向に沿って対向するコイル140aの2つの辺には、偶力となるローレンツ力が発生する。従って、コイル140aは、図7(b)における時計周りの方向に向かって回転する。加えて、図7(b)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの右側(つまり、図7(a)では上側)の辺には、図7(b)における下側の方向に向かうローレンツ力が発生する。同様に、図7(b)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの左側(つまり、図6(a)では下側)の長辺には、図7(b)における上側の方向に向かうローレンツ力が発生する。つまり、Y軸方向に沿って対向するコイル140bの2つの辺には、相互に異なる方向のローレンツ力が発生する。言い換えれば、Y軸方向に沿って対向するコイル140bの2つの辺には、偶力となるローレンツ力が発生する。従って、コイル140bは、図7(b)における時計周りの方向に向かって回転する。 On the other hand, since the X-axis driving control current is an alternating current, as shown in FIG. 7A, the X-axis driving control current flowing in the counterclockwise direction in FIG. 140b, an X-axis driving magnetic field directed from the magnet 161a to the magnet 162a is applied to the coil 140a, and an X-axis driving magnetic field directed from the magnet 161b to the magnet 162b is applied to the coil 140b. Follows the situation shown in FIG. In this case, as shown in FIG. 7B, which is a drawing of the MEMS scanner 101 shown in FIG. 7A observed from the direction of the arrow VII, of the two sides of the coil 140a opposed along the Y-axis direction. A Lorentz force toward the lower side in FIG. 7B is generated on the right side (that is, the upper side in FIG. 7A). Similarly, as shown in FIG. 7B, the left side of the two sides of the coil 140a facing along the Y-axis direction (that is, the lower side in FIG. 6A) is A Lorentz force toward the upper direction in 7 (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140a facing each other along the Y-axis direction. In other words, Lorentz force, which is a couple, is generated on the two sides of the coil 140a facing each other along the Y-axis direction. Therefore, the coil 140a rotates in the clockwise direction in FIG. In addition, as shown in FIG. 7B, the right side of the two sides of the coil 140b facing in the Y-axis direction (that is, the upper side in FIG. 7A) is shown in FIG. A Lorentz force in the downward direction in b) is generated. Similarly, as shown in FIG. 7B, the long side on the left side (that is, the lower side in FIG. 6A) of the two sides of the coil 140b facing in the Y-axis direction is A Lorentz force toward the upper direction in 7 (b) is generated. That is, Lorentz forces in different directions are generated on the two sides of the coil 140b facing each other along the Y-axis direction. In other words, Lorentz force, which is a couple, is generated on the two sides of the coil 140b facing each other along the Y-axis direction. Accordingly, the coil 140b rotates in the clockwise direction in FIG.
 このとき、あるタイミングでコイル140aを時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140aに発生するローレンツ力)の大きさ及び方向は、あるタイミングでコイル140bを時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140bに発生するローレンツ力)の大きさ及び方向と同一であることが好ましい。同様に、あるタイミングでコイル140aを反時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140aに発生するローレンツ力)の大きさは、あるタイミングでコイル140bを反時計回りの方向に向かって回転させるローレンツ力(つまり、コイル140bに発生するローレンツ力)の大きさと同一であることが好ましい。より具体的には、Y軸方向に沿って対向するコイル140aの2つの長辺のうちの右側(図6(b)参照)の長辺に発生するローレンツ力の大きさ及び方向は、Y軸方向に沿って対向するコイル140bの2つの長辺のうちの右側(図6(b)参照)の長辺に発生するローレンツ力の大きさ及び方向と同一であることが好ましい。同様に、Y軸方向に沿って対向するコイル140aの2つの長辺のうちの左側(図6(b)参照)の長辺に発生するローレンツ力の大きさ及び方向は、Y軸方向に沿って対向するコイル140bの2つの長辺のうちの左側(図6(b)参照)の長辺に発生するローレンツ力の大きさ及び方向と同一であることが好ましい。このようなローレンツ力の大きさ及び方向を同一にするためには、磁石162aから磁石161aに向かう磁界の大きさと磁石162bから磁石161bに向かう磁界の大きさとを同一にすると共に、コイル140aに供給される制御電流とコイル140bに供給される制御電流とを同一にすることが好ましい。 At this time, the magnitude and direction of the Lorentz force that rotates the coil 140a in the clockwise direction at a certain timing (that is, the Lorentz force generated in the coil 140a) is such that the coil 140b is rotated in the clockwise direction at a certain timing. It is preferable that the magnitude and direction of the Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is the same. Similarly, the magnitude of the Lorentz force that rotates the coil 140a counterclockwise at a certain timing (ie, the Lorentz force generated in the coil 140a) is such that the coil 140b is counterclockwise at a certain timing. The Lorentz force to be rotated (that is, the Lorentz force generated in the coil 140b) is preferably the same. More specifically, the magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 6B) of the two long sides of the coil 140a opposed along the Y-axis direction is The magnitude and direction of the Lorentz force generated on the long side on the right side (see FIG. 6B) of the two long sides of the coil 140b facing in the direction are preferably the same. Similarly, the magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 6B) of the two long sides of the coil 140a facing each other along the Y-axis direction is along the Y-axis direction. The magnitude and direction of the Lorentz force generated on the long side on the left side (see FIG. 6B) of the two long sides of the opposing coil 140b are preferably the same. In order to make the magnitude and direction of the Lorentz force the same, the magnitude of the magnetic field from the magnet 162a to the magnet 161a and the magnitude of the magnetic field from the magnet 162b to the magnet 161b are made the same and supplied to the coil 140a. The control current to be supplied and the control current supplied to the coil 140b are preferably the same.
 このようなローレンツ力によって、コイル140a及び140bの夫々は、X軸方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このとき、コイル140a及び140bの夫々のX軸方向に沿った回転軸は、第2ベース110-2のX軸方向に沿った回転軸と重なっている。従って、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転に伴って、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。 By such Lorentz force, each of the coils 140a and 140b rotates about the axis along the X-axis direction as a rotation axis (more specifically, reciprocatingly drives to rotate). At this time, the rotation axes of the coils 140a and 140b along the X-axis direction overlap the rotation axis of the second base 110-2 along the X-axis direction. Accordingly, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis in accordance with the rotation of the coils 140a and 140b having the axis along the X-axis direction as the rotation axis.
 加えて、第2ベース110-2は、第2トーションバー120a-2及び120b-2を介してミラー130を支持している。このため、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転に伴って、ミラー130もまたX軸方向に沿った軸を回転軸として回転することになる。 In addition, the second base 110-2 supports the mirror 130 via the second torsion bars 120a-2 and 120b-2. Therefore, as the second base 110-2 rotates with the axis along the X-axis direction as the rotation axis, the mirror 130 also rotates with the axis along the X-axis direction as the rotation axis.
 ここで、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転とX軸方向に沿った軸を回転軸とする第2ベース110-2の回転とX軸方向に沿った軸を回転軸とするミラー130の回転の関係について、図8を参照しながらより詳細に説明する。 Here, the rotation of each of the coils 140a and 140b having the axis along the X-axis direction as the rotation axis, the rotation of the second base 110-2 having the axis along the X-axis direction as the rotation axis, and along the X-axis direction. The relationship of rotation of the mirror 130 with the axis as the rotation axis will be described in more detail with reference to FIG.
 図8(a)に示すように、X軸方向に沿った軸を回転軸としてコイル140a及び140bの夫々が回転していない状態では、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転していない。このため、ミラー130もまた、X軸方向に沿った軸を回転軸として回転していない。 As shown in FIG. 8A, in a state where the coils 140a and 140b are not rotating with the axis along the X-axis direction being the rotation axis, the second base 110-2 is also along the X-axis direction. The shaft is not rotating around its axis of rotation. For this reason, the mirror 130 is also not rotated about the axis along the X-axis direction as the rotation axis.
 その後、図8(b)に示すように、X軸方向に沿った軸を回転軸としてコイル140a及び140bの夫々が図8(b)における反時計回りの方向に沿って回転し始めると、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として図8(b)における反時計回りの方向に沿って回転し始める。その結果、図8(a)から図8(g)に時系列的に示すように、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転に伴って、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。このため、図8(a)から図8(g)に時系列的に示すように、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転に伴って、ミラー130もまた、X軸方向に沿った軸を回転軸として回転する。尚、図8(g)に示す状態のコイル140a及び140bの夫々、第2ベース110-2並びにミラー130は、その後、図8(f)に示す状態を経てから図8(a)に示す状態に遷移する。以降、コイル140a及び140bの夫々、第2ベース110-2並びにミラー130は、図8(a)から図8(g)に示す時系列に従って回転する。 Thereafter, as shown in FIG. 8B, when each of the coils 140a and 140b starts to rotate along the counterclockwise direction in FIG. The two bases 110-2 also start to rotate along the counterclockwise direction in FIG. 8B with the axis along the X-axis direction as the rotation axis. As a result, as shown in FIG. 8 (a) to FIG. 8 (g) in time series, as the coils 140a and 140b rotate about the axis along the X-axis direction, the second base 110-2 also rotates about the axis along the X-axis direction as a rotation axis. For this reason, as shown in FIG. 8 (a) to FIG. 8 (g) in time series, with the rotation of the second base 110-2 whose axis is the axis along the X-axis direction, the mirror 130 is also Moreover, it rotates with an axis along the X-axis direction as a rotation axis. The coils 140a and 140b in the state shown in FIG. 8 (g), the second base 110-2, and the mirror 130 are then in the state shown in FIG. 8 (a) after the state shown in FIG. 8 (f). Transition to. Thereafter, the coils 140a and 140b, the second base 110-2, and the mirror 130, respectively, rotate according to the time series shown in FIGS. 8A to 8G.
 他方で、制御電流は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるための電流成分(つまり、Y軸駆動用制御電流)を含んでいる。第2実施例では、ミラー130は、ミラー130と第2トーションバー120a-2及び120b-2とによって定まる共振周波数(より具体的には、ミラー130の慣性モーメントと第2トーションバー120a-2及び120b-2のねじりバネ定数によって定まる共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。従って、Y軸駆動用制御電流は、ミラー130の共振周波数と同一の又は同期した周波数の信号成分を含む交流電流である。但し、ミラー130は、ミラー130と第2トーションバー120a-2及び120b-2とによって定まる共振周波数とは異なる又は同期しない周波数で、Y軸方向に沿った軸を回転軸として回転してもよい。この場合には、Y軸駆動用制御電流は、Y軸方向に沿った軸を回転軸としてミラー130が回転する周波数と同一の又は同期した周波数の信号成分を含む交流電流である。 On the other hand, the control current includes a current component (that is, a Y-axis drive control current) for rotating the mirror 130 about the axis along the Y-axis direction as a rotation axis. In the second embodiment, the mirror 130 has a resonance frequency determined by the mirror 130 and the second torsion bars 120a-2 and 120b-2 (more specifically, the moment of inertia of the mirror 130 and the second torsion bars 120a-2 and 120b-2). In order to resonate at a resonance frequency determined by a torsion spring constant of 120b-2, the axis rotates along the axis along the Y-axis direction. Therefore, the Y-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the resonance frequency of the mirror 130. However, the mirror 130 may rotate around the axis along the Y-axis direction at a frequency different from or not synchronized with the resonance frequency determined by the mirror 130 and the second torsion bars 120a-2 and 120b-2. . In this case, the Y-axis drive control current is an alternating current including a signal component having a frequency that is the same as or synchronized with the frequency at which the mirror 130 rotates with the axis along the Y-axis direction as the rotation axis.
 一方で、コイル140aには、磁石151a及び152aからY軸駆動用磁界が付与されている。尚、磁石151a及び152aは、X軸方向に沿って対向するコイル140aの2つの辺に対して、Y軸駆動用磁界を付与することが好ましい。この場合、磁石151a及び152aは、Y軸方向に沿って対向するコイル140aの2つの辺に対しては、Y軸駆動用磁界を付与しなくともよい。或いは、磁石151a及び152aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、Y軸駆動用磁界を付与してもよい。或いは、磁石151a及び152aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、Y軸駆動用磁界の漏れ磁束のみを付与してもよい。 On the other hand, a magnetic field for Y-axis driving is applied to the coil 140a from the magnets 151a and 152a. The magnets 151a and 152a preferably apply a Y-axis driving magnetic field to two sides of the coil 140a facing each other along the X-axis direction. In this case, the magnets 151a and 152a do not need to apply the Y-axis driving magnetic field to the two sides of the coil 140a facing each other along the Y-axis direction. Alternatively, the magnets 151a and 152a may apply a Y-axis driving magnetic field to the two sides of the coil 140a facing each other along the Y-axis direction. Alternatively, the magnets 151a and 152a may apply only the leakage flux of the Y-axis driving magnetic field to the two sides of the coil 140a that are opposed in the Y-axis direction.
 従って、コイル140aには、コイル140aに供給されているY軸駆動用制御電流とコイル140aに付与されているY軸駆動用磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。 Therefore, a Lorentz force is generated in the coil 140a due to electromagnetic interaction between the Y-axis drive control current supplied to the coil 140a and the Y-axis drive magnetic field applied to the coil 140a. Become.
 同様に、コイル140bには、磁石151b及び152bからY軸駆動用磁界が付与されている。尚、磁石151b及び152bは、X軸方向に沿って対向するコイル140bの2つの辺に対して、Y軸駆動用磁界を付与することが好ましい。この場合、磁石151b及び152bは、Y軸方向に沿って対向するコイル140bの2つの辺に対しては、Y軸駆動用磁界を付与しなくともよい。或いは、磁石151b及び152bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、Y軸駆動用磁界を付与してもよい。或いは、磁石151b及び152bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、Y軸駆動用磁界の漏れ磁束のみを付与してもよい。 Similarly, a magnetic field for Y-axis driving is applied to the coil 140b from the magnets 151b and 152b. The magnets 151b and 152b preferably apply a Y-axis driving magnetic field to two sides of the coil 140b facing each other along the X-axis direction. In this case, the magnets 151b and 152b do not need to apply the Y-axis driving magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction. Alternatively, the magnets 151b and 152b may apply a Y-axis driving magnetic field to two sides of the coil 140b facing each other along the Y-axis direction. Alternatively, the magnets 151b and 152b may apply only the leakage magnetic flux of the Y-axis driving magnetic field to the two sides of the coil 140b facing each other along the Y-axis direction.
 従って、コイル140bには、コイル140bに供給されているY軸駆動用制御電流とコイル140bに付与されているY軸駆動用磁界との間の電磁相互作用に起因したローレンツ力が発生することになる。 Therefore, Lorentz force is generated in the coil 140b due to electromagnetic interaction between the Y-axis drive control current supplied to the coil 140b and the Y-axis drive magnetic field applied to the coil 140b. Become.
 この場合には、第1実施例と同様に(つまり、図2及び図3と同様に)、コイル140a及び140bの夫々は、Y軸方向に沿った軸を回転軸として回転する(より具体的には、回転するように往復駆動する)。このとき、Y軸方向に沿ったコイル140a及び140bの夫々の回転軸は、Y軸方向に沿ったミラー130の回転軸とは異なっている。具体的には、Y軸方向に沿ったコイル140a及び140bの夫々の回転軸は、Y軸方向に沿ったミラー130の回転軸を基準として、X軸方向に所定距離シフトした位置に存在する。このため、Y軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転は、Y軸方向に沿った軸を回転軸としてミラー130を直接的に回転させることはない。 In this case, as in the first embodiment (that is, as in FIGS. 2 and 3), each of the coils 140a and 140b rotates about the axis along the Y-axis direction as a rotation axis (more specifically, To reciprocate to rotate). At this time, the rotation axes of the coils 140a and 140b along the Y-axis direction are different from the rotation axis of the mirror 130 along the Y-axis direction. Specifically, the respective rotation axes of the coils 140a and 140b along the Y-axis direction exist at positions shifted by a predetermined distance in the X-axis direction with respect to the rotation axis of the mirror 130 along the Y-axis direction. Therefore, the respective rotations of the coils 140a and 140b having the axis along the Y-axis direction as the rotation axis do not directly rotate the mirror 130 with the axis along the Y-axis direction as the rotation axis.
 一方で、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転に伴って、コイル140a及び140bの夫々から第2ベース110-2に対して微振動が伝搬する。その結果、コイル140a及び140bの夫々が配置されている第2ベース110-2は、X軸方向に沿って定常波状に(つまり、定常波の波形状に)変形振動する。言い換えれば、第2ベース110-2は、X軸方向に沿って波打つように変形振動する。つまり、第2ベース110-2は、そのある一部分が変形振動の腹となり且つその他の一部分が変形振動の節となるように、その外観を変形させる。 On the other hand, as the coils 140a and 140b rotate about the axis along the X-axis direction, micro vibrations propagate from the coils 140a and 140b to the second base 110-2. As a result, the second base 110-2 on which the coils 140a and 140b are arranged is deformed and oscillated in a standing wave shape (that is, in a standing wave shape) along the X-axis direction. In other words, the second base 110-2 is deformed and oscillated so as to wave along the X-axis direction. That is, the appearance of the second base 110-2 is deformed so that a part of the second base 110-2 becomes an antinode of deformation vibration and the other part becomes a node of deformation vibration.
 このような第2ベース110-2の変形振動に起因して、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。このとき、ミラー130は、ミラー130並びに第2トーションバー120a-2及び120b-2に応じて定まる共振周波数(例えば、20kHz)で共振するように回転する。例えば、ミラー130のY軸方向に沿った軸回り慣性モーメントがI(Y)であり且つ第2トーションバー120a-2及び120b-2を1本のバネとみなした場合のねじりバネ定数がk(Y)であるとすれば、ミラー130は、(1/(2π))×√(k(Y)/I(Y))にて特定される共振周波数(或いは、(1/(2π))×√(k(Y)/I(Y))のN倍若しくはN分の1倍(但し、Nは1以上の整数)の共振周波数)で共振するように、Y軸方向に沿った軸を回転軸として回転する。 Due to the deformation vibration of the second base 110-2, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis. At this time, the mirror 130 rotates so as to resonate at a resonance frequency (for example, 20 kHz) determined according to the mirror 130 and the second torsion bars 120a-2 and 120b-2. For example, the torsion spring constant when the moment of inertia about the axis along the Y-axis direction of the mirror 130 is I (Y) and the second torsion bars 120a-2 and 120b-2 are regarded as one spring is k ( Y), the mirror 130 has a resonance frequency (or (1 / (2π)) × specified by (1 / (2π)) × √ (k (Y) / I (Y)) × Rotate the axis along the Y-axis direction so that it resonates at N times or 1 / N times (k (Y) / I (Y))) (where N is an integer of 1 or more). Rotates as an axis.
 尚、Y軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転とX軸方向に沿った第2ベース110-2の変形振動とY軸方向に沿った軸を回転軸とするミラー130の回転の関係は、第1実施例におけるY軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転とX軸方向に沿ったベース110の変形振動とY軸方向に沿った軸を回転軸とするミラー130の回転の関係(図4参照)と同様である。 The rotation of the coils 140a and 140b with the axis along the Y-axis direction as the rotation axis, the deformation vibration of the second base 110-2 along the X-axis direction, and the axis along the Y-axis direction as the rotation axis. The relationship of the rotation of the mirror 130 is that the rotation of the coils 140a and 140b with the axis along the Y-axis direction as the rotation axis in the first embodiment, the deformation vibration of the base 110 along the X-axis direction, and the Y-axis direction. This is the same as the relationship of rotation of the mirror 130 about the axis along the axis (see FIG. 4).
 以上説明したように、第2実施例のMEMSスキャナ102は、Y軸方向に沿った軸を回転軸としてミラー130を回転させることができる。加えて、第2実施例のMEMSスキャナ102は、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させることができる。このとき、第2トーションバー120a-2及び120b-2を介してミラー130が第2ベース110-2に支持されていることを考慮すれば、X軸方向に沿った軸を回転軸とする第2ベース110-2の回転に伴って、ミラー130もまた、X軸方向に沿った軸を回転軸として回転することになる。従って、第2実施例のMEMSスキャナ102は、X軸方向に沿った軸を回転軸としてミラー130を回転させることができる。つまり、第2実施例のMEMSスキャナ102は、ミラー130の2軸駆動を行うことができる。 As described above, the MEMS scanner 102 of the second embodiment can rotate the mirror 130 about the axis along the Y-axis direction as the rotation axis. In addition, the MEMS scanner 102 of the second embodiment can rotate the second base 110-2 with the axis along the X-axis direction as a rotation axis. At this time, considering that the mirror 130 is supported by the second base 110-2 via the second torsion bars 120a-2 and 120b-2, the first axis about the axis along the X-axis direction is the rotation axis. As the 2 base 110-2 rotates, the mirror 130 also rotates about the axis along the X-axis direction as the rotation axis. Therefore, the MEMS scanner 102 according to the second embodiment can rotate the mirror 130 about the axis along the X-axis direction as the rotation axis. That is, the MEMS scanner 102 of the second embodiment can drive the mirror 130 biaxially.
 加えて、第2実施例のMEMSスキャナ102では、ミラー130は、コイル140a及び140bの夫々の巻き線の外側に位置することになる。従って、コイル140a及び140bの夫々は、ミラー130を取り囲むように配置されなくともよい。その結果、第2実施例では、コイル140a及び140bの少なくとも一方がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、コイル140a及び140bの夫々のサイズ(例えば、巻き線の径や巻き線の長さ等)を相対的に小さくすることができる。言い換えれば、第2実施例では、ミラー130の大きさに関係なく、コイル140a及び140bの夫々のサイズを相対的に小さくすることができる。その結果、当該コイル140aに対して磁界を付与するための磁石151a及び152a並びに磁石161a及び162aのサイズもまた、相対的に小さくすることができる。同様に、当該コイル140bに対して磁界を付与するための磁石151b及び152b並びに磁石161b及び162bのサイズもまた、相対的に小さくすることができる。このため、第2実施例では、コイル140a及び140bの少なくとも一方がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、ミラー130の大きさに関係なく、コイル140aと磁石151a及び152a並びに磁石161a及び162aとの間の磁気ギャップ並びにコイル140bと磁石151b及び152b並びに磁石161b及び162bとの間の磁気ギャップを相対的に小さくすることができる。従って、第2実施例では、コイル140a及び140bの少なくとも一方がミラー130を取り囲むように配置される比較例のMEMSスキャナと比較して、MEMSスキャナ102の小型化が好適に実現される。 In addition, in the MEMS scanner 102 of the second embodiment, the mirror 130 is positioned outside the windings of the coils 140a and 140b. Accordingly, each of the coils 140a and 140b may not be disposed so as to surround the mirror 130. As a result, in the second embodiment, compared with the comparative MEMS scanner in which at least one of the coils 140a and 140b is disposed so as to surround the mirror 130, the size of each of the coils 140a and 140b (for example, the winding The diameter, the length of the winding, etc.) can be made relatively small. In other words, in the second embodiment, the sizes of the coils 140a and 140b can be made relatively small regardless of the size of the mirror 130. As a result, the sizes of the magnets 151a and 152a and the magnets 161a and 162a for applying a magnetic field to the coil 140a can also be made relatively small. Similarly, the sizes of the magnets 151b and 152b and the magnets 161b and 162b for applying a magnetic field to the coil 140b can also be made relatively small. For this reason, in the second embodiment, compared to the MEMS scanner of the comparative example in which at least one of the coils 140a and 140b is disposed so as to surround the mirror 130, the coil 140a and the magnet 151a are independent of the size of the mirror 130. And the magnetic gap between the magnets 161a and 162a and the magnetic gap between the coil 140b and the magnets 151b and 152b and the magnets 161b and 162b can be made relatively small. Therefore, in the second embodiment, the MEMS scanner 102 can be reduced in size as compared with the comparative MEMS scanner in which at least one of the coils 140a and 140b is disposed so as to surround the mirror 130.
 加えて、第2実施例では、第2ベース110-2の変形振動における節に対応する箇所に、ミラー130につながる第2トーションバー120a-2及び120b-2が接続されている。つまり、第2ベース110-2の変形振動における節に対応する箇所が、ミラー130のY軸方向に沿った回転軸と一致する。また、第2ベース110-2の変形振動における節に対応する箇所に、コイル140a及び140bの夫々が配置されている。つまり、第2ベース110-2の変形振動における節に対応する箇所が、コイル140a及び140bの夫々のY軸方向に沿った回転軸と一致する。このため、第2実施例では、ミラー130並びにコイル140a及び140bの夫々の上下方向(具体的には、X軸方向及びY軸方向の夫々に直交する方向であって、第1ベース110-1又は第2ベース110-2の表面に対して垂直なZ軸方向)の移動ないしは振動が防止される。従って、ミラー130の高精度な回転を実現することができる。 In addition, in the second embodiment, second torsion bars 120a-2 and 120b-2 connected to the mirror 130 are connected to locations corresponding to nodes in the deformation vibration of the second base 110-2. That is, the part corresponding to the node in the deformation vibration of the second base 110-2 coincides with the rotational axis of the mirror 130 along the Y-axis direction. In addition, the coils 140a and 140b are arranged at locations corresponding to nodes in the deformation vibration of the second base 110-2. That is, the location corresponding to the node in the deformation vibration of the second base 110-2 coincides with the rotation axis along the Y-axis direction of each of the coils 140a and 140b. For this reason, in the second embodiment, the mirror 130 and the coils 140a and 140b are respectively in the vertical direction (specifically, the direction orthogonal to the X-axis direction and the Y-axis direction, respectively, and the first base 110-1 Alternatively, movement or vibration in the Z-axis direction perpendicular to the surface of the second base 110-2 is prevented. Therefore, high-precision rotation of the mirror 130 can be realized.
 (3)第3実施例
 続いて、図9及び図10を参照して、MEMSスキャナの第3実施例について説明する。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(3) Third Embodiment Next, a third embodiment of the MEMS scanner will be described with reference to FIGS. In addition, about the structure same as the MEMS scanner 102 of the above-mentioned 2nd Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 (3-1)MEMSスキャナの構成
 初めに、図9を参照して、第3実施例に係るMEMSスキャナ103の構成について説明する。ここに、図9は、第3実施例に係るMEMSスキャナ103の構成を概念的に示す平面図である。
(3-1) Configuration of MEMS Scanner First, the configuration of the MEMS scanner 103 according to the third embodiment will be described with reference to FIG. FIG. 9 is a plan view conceptually showing the structure of the MEMS scanner 103 according to the third example.
 図9に示すように、第3実施例のMEMSスキャナ103は、第2実施例のMEMSスキャナ102と比較して、磁石161a及び磁石162a並びに磁石161b及び磁石162bの配置位置が変更されていると共に磁石151a及び磁石152a並びに磁石151b及び磁石152bを備えていないという点で異なっている。第3実施例のMEMSスキャナ103のその他の構成要素は、第2実施例のMEMSスキャナ102のその他の構成要素と同一であってもよい。 As shown in FIG. 9, the MEMS scanner 103 according to the third embodiment is different from the MEMS scanner 102 according to the second embodiment in that the arrangement positions of the magnets 161a and 162a and the magnets 161b and 162b are changed. The difference is that the magnet 151a and the magnet 152a and the magnet 151b and the magnet 152b are not provided. The other components of the MEMS scanner 103 of the third embodiment may be the same as the other components of the MEMS scanner 102 of the second embodiment.
 第3実施例では、磁石161a及び162aは、第2実施例と同様に、磁石161aと磁石162aとがY軸方向に沿ってコイル140aを挟み込むように配置される。一方で、第3実施例では、磁石161a及び162aは、磁石161a(例えば、磁石161aの中心)と磁石162a(例えば、磁石162aの中心)とが、X軸方向に沿ってずれる(言い換えれば、オフセットされる)ように配置される。但し、磁石161aと磁石162aとがX軸方向に沿ってコイル140aを挟み込むと共に磁石161aが配置される位置と磁石162aが配置される位置とがY軸方向に沿ってオフセットされていてもよい。 In the third embodiment, the magnets 161a and 162a are arranged so that the magnet 161a and the magnet 162a sandwich the coil 140a along the Y-axis direction, as in the second embodiment. On the other hand, in the third embodiment, the magnets 161a and 162a are displaced along the X-axis direction (in other words, the magnet 161a (for example, the center of the magnet 161a) and the magnet 162a (for example, the center of the magnet 162a). Offset). However, the magnet 161a and the magnet 162a may sandwich the coil 140a along the X-axis direction, and the position where the magnet 161a is disposed and the position where the magnet 162a is disposed may be offset along the Y-axis direction.
 磁石161a及び162aは、磁石161aと磁石162aとがコイル140aに対して点対称となる位置に配置されることが好ましい。言い換えれば、磁石161a及び162aは、磁石161aと磁石162aとがコイル140aを構成する巻き線の中心に対して点対称となる位置に配置されることが好ましい。 The magnets 161a and 162a are preferably arranged at positions where the magnet 161a and the magnet 162a are point-symmetric with respect to the coil 140a. In other words, the magnets 161a and 162a are preferably arranged at positions where the magnet 161a and the magnet 162a are point-symmetric with respect to the center of the winding constituting the coil 140a.
 同様に、第3実施例では、磁石161b及び162bは、第2実施例と同様に、磁石161bと磁石162bとがY軸方向に沿ってコイル140bを挟み込むように配置される。一方で、第3実施例では、磁石161b及び162bは、磁石161b(例えば、磁石161bの中心)と磁石162b(例えば、磁石162bの中心)とが、X軸方向に沿ってずれる(言い換えれば、オフセットされる)ように配置される。但し、磁石161bと磁石162bとがX軸方向に沿ってコイル140bを挟み込むと共に磁石161bが配置される位置と磁石162bが配置される位置とがY軸方向に沿ってオフセットされていてもよい。 Similarly, in the third embodiment, the magnets 161b and 162b are arranged such that the magnet 161b and the magnet 162b sandwich the coil 140b along the Y-axis direction, as in the second embodiment. On the other hand, in the third embodiment, the magnets 161b and 162b are shifted in the X-axis direction between the magnet 161b (for example, the center of the magnet 161b) and the magnet 162b (for example, the center of the magnet 162b) (in other words, Offset). However, the magnet 161b and the magnet 162b may sandwich the coil 140b along the X-axis direction, and the position where the magnet 161b is disposed and the position where the magnet 162b is disposed may be offset along the Y-axis direction.
 磁石161b及び162bは、磁石161bと磁石162bとがコイル140bに対して点対称となる位置に配置されることが好ましい。言い換えれば、磁石161b及び162bは、磁石161bと磁石162bとがコイル140bを構成する巻き線の中心に対して点対称となる位置に配置されることが好ましい。 The magnets 161b and 162b are preferably arranged at positions where the magnet 161b and the magnet 162b are point-symmetric with respect to the coil 140b. In other words, the magnets 161b and 162b are preferably arranged at positions where the magnet 161b and the magnet 162b are point-symmetric with respect to the center of the winding constituting the coil 140b.
 (3-2)MEMSスキャナの動作
 続いて、図10を参照して、第3実施例に係るMEMSスキャナ103の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図10は、第3実施例に係るMEMSスキャナ103による動作の態様を概念的に示す平面図である。
(3-2) Operation of MEMS Scanner Next, with reference to FIG. 10, the mode of operation of the MEMS scanner 103 according to the third embodiment (specifically, the mode of operation for rotating the mirror 130) will be described. . FIG. 10 is a plan view conceptually showing an operation mode of the MEMS scanner 103 according to the third embodiment.
 第3実施例に係るMEMSスキャナ103の動作時には、第2実施例に係るMEMSスキャナ102の動作時と同様に、コイル140a及び140bの夫々に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。 During the operation of the MEMS scanner 103 according to the third embodiment, similarly to the operation of the MEMS scanner 102 according to the second embodiment, the control currents (that is, the X-axis drive control current and the Y-axis) are applied to the coils 140a and 140b, respectively. A control current superimposed with a drive control current).
 一方で、コイル140aには、磁石161a及び162aから磁界が付与されている。尚、第3実施例では、磁石161a及び162aから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 On the other hand, a magnetic field is applied to the coil 140a from the magnets 161a and 162a. In the third embodiment, the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 同様に、コイル140bには、磁石161b及び162bから磁界が付与されている。尚、第3実施例では、磁石161b及び162bから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 Similarly, a magnetic field is applied to the coil 140b from the magnets 161b and 162b. In the third embodiment, the magnetic field applied from the magnets 161b and 162b is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 このとき、図10に示すように、磁石161aが配置される位置と磁石162aが配置される位置とがX軸方向に沿ってオフセットされているがゆえ、磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、当該2つの辺を斜めに横切るように磁界を付与する。言い換えれば、磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、当該2つの辺に対して90度以外の角度で交わる磁界を付与する。つまり、磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して、当該2つの辺に対してコイル140aの巻き線の対角方向に交わる磁界を付与する。 At this time, as shown in FIG. 10, since the position where the magnet 161a is arranged and the position where the magnet 162a is arranged are offset along the X-axis direction, the magnets 161a and 162a are arranged in the Y-axis direction. A magnetic field is applied to the two sides of the coil 140a facing each other so as to obliquely cross the two sides. In other words, the magnets 161a and 162a apply a magnetic field that intersects the two sides of the coil 140a facing each other along the Y-axis direction at an angle other than 90 degrees with respect to the two sides. That is, the magnets 161a and 162a apply a magnetic field that intersects the two sides of the coil 140a facing each other along the Y-axis direction in the diagonal direction of the winding of the coil 140a.
 同様に、図10に示すように、磁石161bが配置される位置と磁石162bが配置される位置とがX軸方向に沿ってオフセットされているがゆえ、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、当該2つの辺を斜めに横切るように磁界を付与する。言い換えれば、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、当該2つの辺に対して90度以外の角度で交わる磁界を付与する。つまり、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して、当該2つの辺に対してコイル140bの巻き線の対角方向に交わる磁界を付与する。 Similarly, as shown in FIG. 10, since the position where the magnet 161b is arranged and the position where the magnet 162b is arranged are offset along the X-axis direction, the magnets 161b and 162b are arranged in the Y-axis direction. A magnetic field is applied to the two sides of the coil 140b facing each other so as to cross the two sides obliquely. In other words, the magnets 161b and 162b apply a magnetic field that intersects the two sides of the coil 140b facing each other along the Y-axis direction at an angle other than 90 degrees with respect to the two sides. That is, the magnets 161b and 162b apply a magnetic field that intersects the two sides of the coil 140b facing each other along the Y-axis direction in the diagonal direction of the winding of the coil 140b.
 このとき、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、磁界を付与しないことが好ましい。但し、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、Y軸方向に沿って対向するコイル140aの2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、積極的に磁界を付与しないことが好ましい。但し、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺に、磁界を積極的に付与してもよい。 At this time, it is preferable that the magnets 161a and 162a do not apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. However, the magnets 161a and 162a apply only the leakage flux of the magnetic field to be applied to the two sides of the coil 140a facing in the Y-axis direction to the two sides of the coil 140a facing in the X-axis direction. May be. That is, it is preferable that the magnets 161a and 162a do not actively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. However, the magnets 161a and 162a may positively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
 同様に、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、磁界を付与しないことが好ましい。但し、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、Y軸方向に沿って対向するコイル140bの2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、積極的に磁界を付与しないことが好ましい。但し、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺に、磁界を積極的に付与してもよい。 Similarly, it is preferable that the magnets 161b and 162b do not apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. However, the magnets 161b and 162b give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140b facing in the Y-axis direction to the two sides of the coil 140b facing in the X-axis direction. May be. That is, it is preferable that the magnets 161b and 162b do not positively apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. However, the magnets 161b and 162b may positively apply a magnetic field to two sides of the coil 140b facing each other along the X-axis direction.
 ここで、図10に示すように、図10中の時計周りの方向に流れる制御電流がコイル140a及び140bの夫々に供給されており、磁石161aから磁石162aに向かう磁界がコイル140aに付与されており、磁石161bから磁石162bに向かう磁界がコイル140bに付与されている状況について説明する。 Here, as shown in FIG. 10, a control current flowing in the clockwise direction in FIG. 10 is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 161a toward the magnet 162a is applied to the coil 140a. A situation in which a magnetic field from the magnet 161b toward the magnet 162b is applied to the coil 140b will be described.
 この場合、図10に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺(例えば、図10の上側の辺)には、図10の紙面奥側から紙面手前側に向かうローレンツ力が発生する。このとき、Y軸方向に沿って対向するコイル140aの2つの辺を斜めに横切るように磁界が付与されているがゆえに、このローレンツ力は、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺の相対的に外側(つまり、ミラー130から相対的に遠い側)に発生することになる。同様に、図10に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺(例えば、図10の下側の辺)には、図10の紙面手前側から紙面奥側に向かうローレンツ力が発生する。このとき、Y軸方向に沿って対向するコイル140aの2つの辺を斜めに横切るように磁界が付与されているがゆえに、このローレンツ力は、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺の相対的に内側(つまり、ミラー130に相対的に近い側)に発生することになる。尚、コイル140aに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 In this case, as shown in FIG. 10, one side (for example, the upper side in FIG. 10) of the two sides of the coil 140 a facing along the Y-axis direction is formed from the back side in the drawing of FIG. 10. Lorentz force toward the front side of the page is generated. At this time, since the magnetic field is applied so as to obliquely cross the two sides of the coil 140a facing each other along the Y-axis direction, this Lorentz force is applied to the two coils 140a facing each other along the Y-axis direction. It occurs on the relatively outer side of one of the sides (that is, the side relatively far from the mirror 130). Similarly, as shown in FIG. 10, the other side (for example, the lower side of FIG. 10) of the two sides of the coil 140a facing along the Y-axis direction is on the front side of the sheet of FIG. Lorentz force is generated toward the back side of the page. At this time, since the magnetic field is applied so as to obliquely cross the two sides of the coil 140a facing each other along the Y-axis direction, this Lorentz force is applied to the two coils 140a facing each other along the Y-axis direction. This occurs on the relatively inner side of the other side (that is, the side relatively close to the mirror 130). Even when the direction (that is, polarity) of the control current supplied to the coil 140a is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 同様に、図10に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺(例えば、図10の上側の辺)には、図10の紙面奥側から紙面手前側に向かうローレンツ力が発生する。このとき、Y軸方向に沿って対向するコイル140bの2つの辺を斜めに横切るように磁界が付与されているがゆえに、このローレンツ力は、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺の相対的に外側(つまり、ミラー130から相対的に遠い側)に発生することになる。同様に、図10に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺(例えば、図10の下側の辺)には、図10の紙面手前側から紙面奥側に向かうローレンツ力が発生する。このとき、Y軸方向に沿って対向するコイル140bの2つの辺を斜めに横切るように磁界が付与されているがゆえに、このローレンツ力は、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺の相対的に内側(つまり、ミラー130に相対的に近い側)に発生することになる。尚、コイル140bに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 Similarly, as shown in FIG. 10, one side (for example, the upper side in FIG. 10) of the two sides of the coil 140 b facing in the Y-axis direction is formed from the back side in the drawing of FIG. 10. Lorentz force toward the front side of the page is generated. At this time, since the magnetic field is applied so as to obliquely cross the two sides of the coil 140b opposed along the Y-axis direction, this Lorentz force is applied to the two coils 140b opposed along the Y-axis direction. It occurs on the relatively outer side of one of the sides (that is, the side relatively far from the mirror 130). Similarly, as shown in FIG. 10, the other side (for example, the lower side of FIG. 10) of the two sides of the coil 140b facing each other along the Y-axis direction is on the front side of the sheet of FIG. Lorentz force is generated toward the back side of the page. At this time, since the magnetic field is applied so as to obliquely cross the two sides of the coil 140b opposed along the Y-axis direction, this Lorentz force is applied to the two coils 140b opposed along the Y-axis direction. This occurs on the relatively inner side of the other side (that is, the side relatively close to the mirror 130). Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 その結果、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、Y軸方向に沿ってずれている。このため、コイル140aに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転力としてコイル140aに作用することになる。このため、コイル140aは、X軸方向に沿った軸を回転軸として回転する。同様に、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、Y軸方向に沿ってずれている。このため、コイル140bに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転力としてコイル140bに作用することになる。このため、コイル140bは、X軸方向に沿った軸を回転軸として回転する。その結果、第2実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。 As a result, the position where the Lorentz force is generated on one of the two sides of the coil 140a facing along the Y-axis direction, and the other of the two sides of the coil 140a facing along the Y-axis direction. The position where the Lorentz force is generated is shifted along the Y-axis direction. For this reason, the Lorentz force generated in the coil 140a (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140a as a rotational force with the axis along the X-axis direction as the rotation axis. become. For this reason, the coil 140a rotates about the axis along the X-axis direction as a rotation axis. Similarly, the position where the Lorentz force is generated on one of the two sides of the coil 140b facing in the Y-axis direction and the other of the two sides of the coil 140b facing in the Y-axis direction. The position where the Lorentz force is generated is shifted along the Y-axis direction. For this reason, the Lorentz force generated in the coil 140b (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140b as a rotational force having the axis along the X-axis direction as the rotation axis. become. For this reason, the coil 140b rotates using the axis along the X-axis direction as a rotation axis. As a result, similarly to the second embodiment, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
 加えて、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転に起因して、第2ベース110-2には振動が伝搬することになる。この振動に起因して、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 In addition, the vibration propagates to the second base 110-2 due to the rotation of the coils 140a and 140b whose rotation axis is the axis along the X-axis direction. Due to this vibration, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 或いは、コイル140aに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140aの2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力がわずかながらにコイル140aに発生することが本願発明者等によって行われた実験で確認された。同様に、コイル140bに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140bの2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力がわずかながらにコイル140bに発生することが本願発明者等によって行われた実験で確認された。その結果、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 Alternatively, when the control current supplied to the coil 140a includes the Y-axis drive control current, a magnetic field is not applied to the two sides of the coil 140a facing along the X-axis direction. In addition, it was confirmed by experiments conducted by the inventors of the present application that the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140a. Similarly, when the control current supplied to the coil 140b includes the Y-axis drive control current, the magnetic field is not applied to the two sides of the coil 140b facing each other along the X-axis direction. However, it has been confirmed by an experiment conducted by the inventors of the present application that the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140b. As a result, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 或いは、図10に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、X軸方向に沿ってずれている。このため、コイル140aに発生するローレンツ力(特に、主として、Y軸駆動用制御電流に応じたローレンツ力)は、実質的には、Y軸方向に沿った軸を回転軸とする回転力としてコイル140aに作用し得る。このため、コイル140aは、第2実施例と同様に、Y軸方向に沿った軸を回転軸として回転する。同様に、図10に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、X軸方向に沿ってずれている。このため、コイル140bに発生するローレンツ力(特に、主として、Y軸駆動用制御電流に応じたローレンツ力)は、実質的には、Y軸方向に沿った軸を回転軸とする回転力としてコイル140bに作用し得る。このため、コイル140bは、第2実施例と同様に、Y軸方向に沿った軸を回転軸として回転する。その結果、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 Alternatively, as shown in FIG. 10, the position where the Lorentz force is generated on one of the two sides of the coil 140 a facing along the Y-axis direction, and 2 of the coil 140 a facing along the Y-axis direction. The position where the Lorentz force is generated on the other side of the two sides is shifted along the X-axis direction. For this reason, the Lorentz force generated in the coil 140a (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force with the axis along the Y-axis direction as the rotation axis. 140a may be affected. For this reason, the coil 140a rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment. Similarly, as shown in FIG. 10, the position where the Lorentz force is generated on one of the two sides of the coil 140b facing along the Y-axis direction and the position of the coil 140b facing along the Y-axis direction. The position where the Lorentz force is generated on the other side of the two sides is shifted along the X-axis direction. For this reason, the Lorentz force generated in the coil 140b (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force having the axis along the Y-axis direction as the rotation axis. 140b may be affected. For this reason, the coil 140b rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment. As a result, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 以上説明したように、第3実施例のMEMSスキャナ103は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第3実施例のMEMSスキャナ103は、第2実施例のMEMSスキャナ102と比較して、磁石151a及び152a並びに磁石161a及び162bを備えていなくともよくなる。このため、MEMSスキャナ103のより一層の小型化が実現される。 As described above, the MEMS scanner 103 according to the third embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys. In addition, the MEMS scanner 103 according to the third embodiment does not need to include the magnets 151a and 152a and the magnets 161a and 162b as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
 (4)第4実施例
 続いて、図11及び図12を参照して、MEMSスキャナの第4実施例について説明する。尚、上述の第3実施例のMEMSスキャナ103と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(4) Fourth Embodiment Next, a fourth embodiment of the MEMS scanner will be described with reference to FIGS. In addition, about the structure same as the MEMS scanner 103 of the above-mentioned 3rd Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 (4-1)MEMSスキャナの構成
 初めに、図11を参照して、第4実施例に係るMEMSスキャナ104の構成について説明する。ここに、図11は、第4実施例に係るMEMSスキャナ104の構成を概念的に示す平面図である。
(4-1) Configuration of MEMS Scanner First, the configuration of the MEMS scanner 104 according to the fourth embodiment will be described with reference to FIG. FIG. 11 is a plan view conceptually showing the structure of the MEMS scanner 104 according to the fourth example.
 図11に示すように、第4実施例のMEMSスキャナ104は、第3実施例のMEMSスキャナ103と比較して、磁気ヨーク170a及び磁気ヨーク170bを更に備えているという点で異なっている。第4実施例のMEMSスキャナ104のその他の構成要素は、第3実施例のMEMSスキャナ103のその他の構成要素と同一であってもよい。 As shown in FIG. 11, the MEMS scanner 104 of the fourth embodiment is different from the MEMS scanner 103 of the third embodiment in that it further includes a magnetic yoke 170a and a magnetic yoke 170b. The other components of the MEMS scanner 104 of the fourth embodiment may be the same as the other components of the MEMS scanner 103 of the third embodiment.
 第4実施例では、磁気ヨーク170aは、磁石161aから出射される磁界が、Y軸方向に沿って対向するコイル140aの2つの辺に付与されながら磁石162aに到達するような磁界の経路を形成する。つまり、磁気ヨーク170aは、磁石161aから出射される磁界が入射する一方の端部から、磁石162aに入射する磁界が出射する他方の端部に向かって延びる形状を有している。図11では、磁気ヨーク170aがX軸方向に沿って延びる形状を有している例が示されている。 In the fourth embodiment, the magnetic yoke 170a forms a magnetic field path in which the magnetic field emitted from the magnet 161a reaches the magnet 162a while being applied to the two sides of the coil 140a facing each other along the Y-axis direction. To do. That is, the magnetic yoke 170a has a shape extending from one end portion where the magnetic field emitted from the magnet 161a is incident toward the other end portion where the magnetic field incident on the magnet 162a is emitted. FIG. 11 shows an example in which the magnetic yoke 170a has a shape extending along the X-axis direction.
 同様に、磁気ヨーク170bは、磁石161bから出射される磁界が、Y軸方向に沿って対向するコイル140bの2つの辺に付与されながら磁石162bに到達するような磁界の経路を形成する。つまり、磁気ヨーク170bは、磁石161bから出射される磁界が入射する一方の端部から、磁石162bに入射する磁界が出射する他方の端部に向かって延びる形状を有している。図11では、磁気ヨーク170bがX軸方向に沿って延びる形状を有している例が示されている。 Similarly, the magnetic yoke 170b forms a magnetic field path in which the magnetic field emitted from the magnet 161b reaches the magnet 162b while being applied to two sides of the coil 140b facing each other along the Y-axis direction. That is, the magnetic yoke 170b has a shape extending from one end portion where the magnetic field emitted from the magnet 161b is incident toward the other end portion where the magnetic field incident on the magnet 162b is emitted. FIG. 11 shows an example in which the magnetic yoke 170b has a shape extending along the X-axis direction.
 (4-2)MEMSスキャナの動作
 続いて、図12を参照して、第4実施例に係るMEMSスキャナ104の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図12は、第4実施例に係るMEMSスキャナ104による動作の態様を概念的に示す平面図である。
(4-2) Operation of MEMS Scanner Next, with reference to FIG. 12, an operation mode of the MEMS scanner 104 according to the fourth embodiment (specifically, an operation mode of rotating the mirror 130) will be described. . FIG. 12 is a plan view conceptually showing an operation mode of the MEMS scanner 104 according to the fourth embodiment.
 第4実施例に係るMEMSスキャナ104の動作時には、第3実施例に係るMEMSスキャナ103の動作時と同様に、コイル140a及び140bの夫々に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。 During the operation of the MEMS scanner 104 according to the fourth embodiment, similarly to the operation of the MEMS scanner 103 according to the third embodiment, the control currents (that is, the X-axis drive control current and the Y-axis) are applied to the coils 140a and 140b, respectively. A control current superimposed with a drive control current).
 一方で、コイル140aには、磁石161a及び162aから磁界が付与されている。尚、第4実施例では、磁石161a及び162aから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 On the other hand, a magnetic field is applied to the coil 140a from the magnets 161a and 162a. In the fourth embodiment, the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 同様に、コイル140bには、磁石161b及び162bから磁界が付与されている。尚、第4実施例では、磁石161b及び162bから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 Similarly, a magnetic field is applied to the coil 140b from the magnets 161b and 162b. In the fourth embodiment, the magnetic field applied from the magnets 161b and 162b is not only used to rotate the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 このとき、図12(a)の平面図及び図12(b)の断面図に示すように、磁石161aが配置される位置と磁石162aが配置される位置とがX軸方向に沿ってオフセットされており且つX軸方向に沿って延びる磁気ヨーク170aが配置されているがゆえ、磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺(例えば、図12(a)の下側の辺)の相対的に一方側(例えば、図12(a)の左側)の辺部分及び他方の辺(例えば、図12(a)の上側の辺)の相対的に他方側(例えば、図12(a)の右側)の辺部分に対して磁界を付与する。つまり、磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一部の辺部分であって且つコイル140aの対角方向(つまり、斜め方向)に沿って対向する2つの辺部分に磁界を付与する。このような磁界を付与するために、磁石161aと磁気ヨーク170aの一方の端部(つまり、磁石161aから出射される磁界が入射する端部)とは、コイル140aの対角方向に沿って対向するコイル140aの2つの辺部分のうちの一方の辺部分に磁界を付与することができるように配置される。同様に、磁石162aと磁気ヨーク170aの他方の端部(つまり、磁石162aに入射する磁界が出射する端部)とは、コイル140aの対角方向に沿って対向するコイル140aの2つの辺部分のうちの他方の辺部分に磁界を付与することができるように配置される。 At this time, as shown in the plan view of FIG. 12A and the cross-sectional view of FIG. 12B, the position where the magnet 161a is disposed and the position where the magnet 162a is disposed are offset along the X-axis direction. Since the magnetic yoke 170a that extends along the X-axis direction is disposed, the magnets 161a and 162a are disposed on one of the two sides of the coil 140a facing along the Y-axis direction (for example, Relative to the side portion of one side (for example, the left side of FIG. 12 (a)) and the other side (for example, the upper side of FIG. 12 (a)) relative to the lower side of FIG. 12 (a). Therefore, a magnetic field is applied to the side portion on the other side (for example, the right side in FIG. 12A). That is, the magnets 161a and 162a are part of the two sides of the coil 140a opposed along the Y-axis direction and opposed along the diagonal direction (that is, the diagonal direction) of the coil 140a. A magnetic field is applied to the two side portions. In order to apply such a magnetic field, the magnet 161a and one end of the magnetic yoke 170a (that is, the end where the magnetic field emitted from the magnet 161a is incident) face each other along the diagonal direction of the coil 140a. It arrange | positions so that a magnetic field can be provided to one side part of the two side parts of the coil 140a to perform. Similarly, the magnet 162a and the other end of the magnetic yoke 170a (that is, the end from which the magnetic field incident on the magnet 162a is emitted) are the two side portions of the coil 140a that face each other along the diagonal direction of the coil 140a. It arrange | positions so that a magnetic field can be provided to the other side part of these.
 同様に、図12(a)の平面図及び図12(b)の断面図に示すように、磁石161bが配置される位置と磁石162bが配置される位置とがX軸方向に沿ってオフセットされており且つX軸方向に沿って延びる磁気ヨーク170bが配置されているがゆえ、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺(例えば、図12(a)の下側の辺)の相対的に一方側(例えば、図12(a)の左側)の辺部分及び他方の辺(例えば、図12(a)の上側の辺)の相対的に他方側(例えば、図12(a)の右側)の辺部分に対して磁界を付与する。つまり、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一部の辺部分であって且つコイル140bの対角方向(つまり、斜め方向)に沿って対向する2つの辺部分に磁界を付与する。このような磁界を付与するために、磁石161bと磁気ヨーク170bの一方の端部(つまり、磁石161bから出射される磁界が入射する端部)とは、コイル140bの対角方向に沿って対向するコイル140bの2つの辺部分のうちの一方の辺部分に磁界を付与することができるように配置される。同様に、磁石162bと磁気ヨーク170bの他方の端部(つまり、磁石162bに入射する磁界が出射する端部)とは、コイル140bの対角方向に沿って対向するコイル140bの2つの辺部分のうちの他方の辺部分に磁界を付与することができるように配置される。 Similarly, as shown in the plan view of FIG. 12A and the cross-sectional view of FIG. 12B, the position where the magnet 161b is disposed and the position where the magnet 162b is disposed are offset along the X-axis direction. Since the magnetic yoke 170b extending along the X-axis direction is disposed, the magnets 161b and 162b are disposed on one of the two sides of the coil 140b facing along the Y-axis direction (for example, Relative to the side portion of one side (for example, the left side of FIG. 12 (a)) and the other side (for example, the upper side of FIG. 12 (a)) relative to the lower side of FIG. 12 (a). Therefore, a magnetic field is applied to the side portion on the other side (for example, the right side in FIG. 12A). That is, the magnets 161b and 162b are part of the two sides of the coil 140b facing each other along the Y-axis direction and are opposed along the diagonal direction (that is, the diagonal direction) of the coil 140b. A magnetic field is applied to the two side portions. In order to apply such a magnetic field, the magnet 161b and one end of the magnetic yoke 170b (that is, the end where the magnetic field emitted from the magnet 161b is incident) face each other along the diagonal direction of the coil 140b. It arrange | positions so that a magnetic field can be provided to one side part of the two side parts of the coil 140b to perform. Similarly, the magnet 162b and the other end of the magnetic yoke 170b (that is, the end from which the magnetic field incident on the magnet 162b is emitted) are the two side portions of the coil 140b that face each other along the diagonal direction of the coil 140b. It arrange | positions so that a magnetic field can be provided to the other side part of these.
 ここで、図12(a)及び図12(b)に示すように、図12(a)中の時計周りの方向に流れる制御電流がコイル140aに供給されており、磁石161aから磁気ヨーク170aを介して磁石162aに向かう磁界がコイル140aに付与されている状況について説明する。この場合、図12(a)及び図12(b)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺(例えば、図12(a)の上側の辺ないしは図12(b)の右側の辺)には、図12(a)の紙面奥側から紙面手前側(言い換えれば、図12(b)の上側)に向かうローレンツ力が発生する。このとき、図12(a)に示すように、このローレンツ力は、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺の相対的に外側(つまり、ミラー130から相対的に遠い側)に発生することになる。同様に、図12(a)及び図12(b)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺(例えば、図12(a)の下側の辺ないしは図12(b)の左側の辺)には、図12(a)の紙面手前側から紙面奥側(言い換えれば、図12(b)の下側)に向かうローレンツ力が発生する。このとき、図12(b)に示すように、このローレンツ力は、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺の相対的に内側(つまり、ミラー130に相対的に近い側)に発生することになる。尚、コイル140aに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 Here, as shown in FIGS. 12 (a) and 12 (b), a control current flowing in the clockwise direction in FIG. 12 (a) is supplied to the coil 140a, and the magnetic yoke 170a is moved from the magnet 161a. A situation in which a magnetic field directed to the magnet 162a via the coil 140a is applied to the coil 140a will be described. In this case, as shown in FIGS. 12 (a) and 12 (b), one of the two sides of the coil 140a facing along the Y-axis direction (for example, the upper side of FIG. 12 (a)). On the side or the right side in FIG. 12B, a Lorentz force is generated from the back side of the sheet of FIG. 12A toward the front side of the sheet (in other words, the upper side of FIG. 12B). At this time, as shown in FIG. 12A, this Lorentz force is relatively outside of one of the two sides of the coil 140a facing along the Y-axis direction (that is, relative to the mirror 130). Will occur on the far side). Similarly, as shown in FIGS. 12A and 12B, the other side of the two sides of the coil 140a facing along the Y-axis direction (for example, the lower side of FIG. 12A) The Lorentz force is generated from the front side of FIG. 12A toward the back side of the paper surface (in other words, the lower side of FIG. 12B). At this time, as shown in FIG. 12B, this Lorentz force is relatively inward of the other side of the two sides of the coil 140a facing in the Y-axis direction (that is, relative to the mirror 130). Will occur on the near side). Even when the direction (that is, polarity) of the control current supplied to the coil 140a is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 同様に、図12(a)及び図12(b)に示すように、図12(a)中の時計周りの方向に流れる制御電流がコイル140bに供給されており、磁石161bから磁気ヨーク170bを介して磁石162bに向かう磁界がコイル140bに付与されている状況について説明する。この場合、図12(a)及び図12(b)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺(例えば、図12(a)の上側の辺ないしは図12(b)の右側の辺)には、図12(a)の紙面奥側から紙面手前側(言い換えれば、図12(b)の上側)に向かうローレンツ力が発生する。このとき、図12(a)に示すように、このローレンツ力は、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺の相対的に内側(つまり、ミラー130に相対的に近い側)に発生することになる。同様に、図12(a)及び図12(b)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺(例えば、図12(a)の下側の辺ないしは図12(b)の左側の辺)には、図12(a)の紙面手前側から紙面奥側(言い換えれば、図12(b)の下側)に向かうローレンツ力が発生する。このとき、図12(b)に示すように、このローレンツ力は、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺の相対的に内側(つまり、ミラー130から相対的に遠い側)に発生することになる。尚、コイル140bに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 Similarly, as shown in FIGS. 12 (a) and 12 (b), a control current flowing in the clockwise direction in FIG. 12 (a) is supplied to the coil 140b, and the magnetic yoke 170b is moved from the magnet 161b. The situation where the magnetic field toward the magnet 162b is applied to the coil 140b through will be described. In this case, as shown in FIGS. 12 (a) and 12 (b), one of the two sides of the coil 140b facing along the Y-axis direction (for example, the upper side of FIG. 12 (a)). On the side or the right side in FIG. 12B, a Lorentz force is generated from the back side of the sheet of FIG. 12A toward the front side of the sheet (in other words, the upper side of FIG. 12B). At this time, as shown in FIG. 12 (a), this Lorentz force is relative to the inner side of one of the two sides of the coil 140b facing in the Y-axis direction (that is, relative to the mirror 130). Will occur on the near side). Similarly, as shown in FIGS. 12A and 12B, the other side of the two sides of the coil 140b facing along the Y-axis direction (for example, the lower side of FIG. 12A) The Lorentz force is generated from the front side of FIG. 12A toward the back side of the paper surface (in other words, the lower side of FIG. 12B). At this time, as shown in FIG. 12B, the Lorentz force is relatively relative to the other side of the two sides of the coil 140b facing in the Y-axis direction (that is, relative to the mirror 130). Will occur on the far side). Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 その結果、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、Y軸方向に沿ってずれている。このため、コイル140aに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転力としてコイル140aに作用することになる。このため、コイル140aは、X軸方向に沿った軸を回転軸として回転する。同様に、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、Y軸方向に沿ってずれている。このため、コイル140bに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転力としてコイル140bに作用することになる。このため、コイル140bは、X軸方向に沿った軸を回転軸として回転する。その結果、第3実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。 As a result, the position where the Lorentz force is generated on one of the two sides of the coil 140b facing in the Y-axis direction and the other of the two sides of the coil 140a facing in the Y-axis direction. The position where the Lorentz force is generated is shifted along the Y-axis direction. For this reason, the Lorentz force generated in the coil 140a (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140a as a rotational force with the axis along the X-axis direction as the rotation axis. become. For this reason, the coil 140a rotates about the axis along the X-axis direction as a rotation axis. Similarly, the position where the Lorentz force is generated on one of the two sides of the coil 140b facing in the Y-axis direction and the other of the two sides of the coil 140b facing in the Y-axis direction. The position where the Lorentz force is generated is shifted along the Y-axis direction. For this reason, the Lorentz force generated in the coil 140b (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140b as a rotational force having the axis along the X-axis direction as the rotation axis. become. For this reason, the coil 140b rotates using the axis along the X-axis direction as a rotation axis. As a result, similarly to the third embodiment, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
 加えて、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転に起因して、第2ベース110-2には振動が伝搬することになる。この振動に起因して、第2ベース110-2は、第3実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 In addition, the vibration propagates to the second base 110-2 due to the rotation of the coils 140a and 140b whose rotation axis is the axis along the X-axis direction. Due to this vibration, the second base 110-2 deforms and vibrates along the X-axis direction as in the third embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 或いは、コイル140aに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140aの2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力がわずかながらにコイル140aに発生することが本願発明者等によって行われた実験で確認された。同様に、コイル140bに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140bの2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力がわずかながらにコイル140bに発生することが本願発明者等によって行われた実験で確認された。その結果、第2ベース110-2は、第3実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 Alternatively, when the control current supplied to the coil 140a includes the Y-axis drive control current, a magnetic field is not applied to the two sides of the coil 140a facing along the X-axis direction. In addition, it was confirmed by experiments conducted by the inventors of the present application that the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140a. Similarly, when the control current supplied to the coil 140b includes the Y-axis drive control current, the magnetic field is not applied to the two sides of the coil 140b facing each other along the X-axis direction. However, it has been confirmed by an experiment conducted by the inventors of the present application that the Lorentz force corresponding to the Y-axis drive control current is slightly generated in the coil 140b. As a result, the second base 110-2 undergoes deformation vibration along the X-axis direction, as in the third embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 或いは、図12(a)に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、X軸方向に沿ってずれている。このため、コイル140aに発生するローレンツ力(特に、主として、Y軸駆動用制御電流に応じたローレンツ力)は、実質的には、Y軸方向に沿った軸を回転軸とする回転力としてコイル140aに作用し得る。このため、コイル140aは、第3実施例と同様に、Y軸方向に沿った軸を回転軸として回転する。同様に、図12(a)に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺においてローレンツ力が発生する位置と、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺においてローレンツ力が発生する位置とが、X軸方向に沿ってずれている。このため、コイル140bに発生するローレンツ力(特に、主として、Y軸駆動用制御電流に応じたローレンツ力)は、実質的には、Y軸方向に沿った軸を回転軸とする回転力としてコイル140bに作用し得る。このため、コイル140bは、第2実施例と同様に、Y軸方向に沿った軸を回転軸として回転する。その結果、第2ベース110-2は、第3実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 Alternatively, as shown in FIG. 12A, the position where the Lorentz force is generated on one of the two sides of the coil 140a facing along the Y-axis direction and the coil facing along the Y-axis direction. The position where the Lorentz force is generated on the other side of the two sides 140a is displaced along the X-axis direction. For this reason, the Lorentz force generated in the coil 140a (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force with the axis along the Y-axis direction as the rotation axis. 140a may be affected. For this reason, the coil 140a rotates with the axis along the Y-axis direction as the rotation axis, as in the third embodiment. Similarly, as illustrated in FIG. 12A, the position where the Lorentz force is generated on one of the two sides of the coil 140 b facing along the Y-axis direction is opposed along the Y-axis direction. The position where the Lorentz force is generated on the other side of the two sides of the coil 140b is shifted along the X-axis direction. For this reason, the Lorentz force generated in the coil 140b (particularly, the Lorentz force mainly according to the Y-axis drive control current) is substantially the coil as a rotational force having the axis along the Y-axis direction as the rotation axis. 140b may be affected. For this reason, the coil 140b rotates with the axis along the Y-axis direction as the rotation axis, as in the second embodiment. As a result, the second base 110-2 undergoes deformation vibration along the X-axis direction, as in the third embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 以上説明したように、第4実施例のMEMSスキャナ104は、第3実施例のMEMSスキャナ103が享受する各種効果を好適に享受することができる。加えて、第4実施例のMEMSスキャナ104は、第2実施例のMEMSスキャナ102と比較して、磁石151a及び152a並びに磁石161a及び162bを備えていなくともよくなる。このため、MEMSスキャナ103のより一層の小型化が実現される。 As described above, the MEMS scanner 104 of the fourth embodiment can suitably enjoy various effects that the MEMS scanner 103 of the third embodiment enjoys. In addition, the MEMS scanner 104 according to the fourth embodiment does not need to include the magnets 151a and 152a and the magnets 161a and 162b as compared with the MEMS scanner 102 according to the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
 (5)第5実施例
 続いて、図13及び図14を参照して、MEMSスキャナの第5実施例について説明する。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(5) Fifth Embodiment Next, a fifth embodiment of the MEMS scanner will be described with reference to FIGS. In addition, about the structure same as the MEMS scanner 102 of the above-mentioned 2nd Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 (5-1)基本構成
 初めに、図13を参照して、第5実施例に係るMEMSスキャナ105の基本構成について説明する。ここに、図13は、第4実施例に係るMEMSスキャナ105の基本構成を概念的に示す平面図である。
(5-1) Basic Configuration First, the basic configuration of the MEMS scanner 105 according to the fifth embodiment will be described with reference to FIG. FIG. 13 is a plan view conceptually showing the basic structure of the MEMS scanner 105 according to the fourth example.
 図13に示すように、第5実施例のMEMSスキャナ105は、第2実施例のMEMSスキャナ102と比較して、コイル140a及びコイル140bの夫々の配置位置が変更されていると共に磁石151a及び磁石152a並びに磁石151b及び磁石152bを備えていないという点で異なっている。第5実施例のMEMSスキャナ105のその他の構成要素は、第2実施例のMEMSスキャナ102のその他の構成要素と同一であってもよい。 As shown in FIG. 13, the MEMS scanner 105 of the fifth embodiment is different from the MEMS scanner 102 of the second embodiment in that the arrangement positions of the coil 140a and the coil 140b are changed, and the magnet 151a and the magnet It differs in that it does not include 152a, magnet 151b and magnet 152b. The other components of the MEMS scanner 105 of the fifth embodiment may be the same as the other components of the MEMS scanner 102 of the second embodiment.
 第5実施例では、コイル140aは、コイル140aの回転軸(具体的には、X軸方向に沿った回転軸)と第2ベース110-2の回転軸(具体的には、X軸方向に沿った回転軸)とが、Y軸方向に沿ってずれる(言い換えれば、所定量aだけオフセットされる)ように配置される。言い換えれば、コイル140aは、X軸方向に沿ったコイル140aの回転軸と一致するコイル140aの回転中心とX軸方向に沿った第2ベース110-2の回転軸と一致する第2ベース110-2の回転中心とが、Y軸方向に沿って所定量aだけずれるように配置される。言い換えれば、コイル140aは、ローレンツ力が発生するコイル140aの中心(回転力の中心)と、コイル140a及び第2ベース110-2を包含する回転体の重心と、当該回転体を支持する第1トーションバー120a-1及び120b-1の中心(支持中心)とのうちの少なくとも2つが、Y軸方向に沿って所定量aだけずれるように配置される。 In the fifth embodiment, the coil 140a includes a rotation axis of the coil 140a (specifically, a rotation axis along the X-axis direction) and a rotation axis of the second base 110-2 (specifically, in the X-axis direction). Along the Y axis direction (in other words, offset by a predetermined amount a). In other words, the coil 140a matches the rotation center of the coil 140a that coincides with the rotation axis of the coil 140a along the X-axis direction and the second base 110- coincides with the rotation axis of the second base 110-2 along the X-axis direction. The two rotation centers are arranged so as to be shifted by a predetermined amount a along the Y-axis direction. In other words, the coil 140a includes the center of the coil 140a where the Lorentz force is generated (the center of the rotational force), the center of gravity of the rotating body including the coil 140a and the second base 110-2, and the first that supports the rotating body. At least two of the centers (support centers) of the torsion bars 120a-1 and 120b-1 are arranged so as to be shifted by a predetermined amount a along the Y-axis direction.
 同様に、コイル140bは、コイル140bの回転軸(具体的には、X軸方向に沿った回転軸)と第2ベース110-2の回転軸(具体的には、X軸方向に沿った回転軸)とが、Y軸方向に沿ってずれる(言い換えれば、所定量b(但し、a≠b)だけオフセットされる)ように配置される。言い換えれば、コイル140bは、X軸方向に沿ったコイル140bの回転軸と一致するコイル140bの回転中心とX軸方向に沿った第2ベース110-2の回転軸と一致する第2ベース110-2の回転中心とが、Y軸方向に沿って所定量bだけずれるように配置される。言い換えれば、コイル140bは、ローレンツ力が発生するコイル140bの中心(回転力の中心)と、コイル140b及び第2ベース110-2を包含する回転体の重心と、当該回転体を支持する第1トーションバー120a-1及び120b-1の中心(支持中心)とのうちの少なくとも2つが、Y軸方向に沿って所定量bだけずれるように配置される。 Similarly, the coil 140b includes a rotation axis of the coil 140b (specifically, a rotation axis along the X-axis direction) and a rotation axis of the second base 110-2 (specifically, rotation along the X-axis direction). (Axis) is shifted along the Y-axis direction (in other words, offset by a predetermined amount b (where a ≠ b)). In other words, the coil 140b matches the rotation center of the coil 140b that coincides with the rotation axis of the coil 140b along the X-axis direction and the second base 110- that coincides with the rotation axis of the second base 110-2 along the X-axis direction. The rotation center of 2 is arranged so as to be shifted by a predetermined amount b along the Y-axis direction. In other words, the coil 140b includes the center of the coil 140b where the Lorentz force is generated (the center of the rotational force), the center of gravity of the rotating body including the coil 140b and the second base 110-2, and the first supporting the rotating body. At least two of the centers (support centers) of the torsion bars 120a-1 and 120b-1 are arranged so as to be shifted by a predetermined amount b along the Y-axis direction.
 (5-2)MEMSスキャナの動作
 続いて、図14を参照して、第5実施例に係るMEMSスキャナ105の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図14は、第5実施例に係るMEMSスキャナ105による動作の態様を概念的に示す平面図である。
(5-2) Operation of MEMS Scanner Next, with reference to FIG. 14, an operation mode (specifically, an operation mode of rotating the mirror 130) of the MEMS scanner 105 according to the fifth embodiment will be described. . FIG. 14 is a plan view conceptually showing an operation mode of the MEMS scanner 105 according to the fifth embodiment.
 第5実施例に係るMEMSスキャナ105の動作時には、第2実施例に係るMEMSスキャナ102の動作時と同様に、コイル140a及び140bの夫々に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。 During the operation of the MEMS scanner 105 according to the fifth embodiment, similarly to the operation of the MEMS scanner 102 according to the second embodiment, the control currents (ie, the X-axis drive control current and the Y-axis) are applied to the coils 140a and 140b, respectively. A control current superimposed with a drive control current).
 一方で、コイル140aには、磁石161a及び162aから磁界が付与されている。尚、第4実施例では、磁石161a及び162aから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 On the other hand, a magnetic field is applied to the coil 140a from the magnets 161a and 162a. In the fourth embodiment, the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 同様に、コイル140bには、磁石161b及び162bから磁界が付与されている。尚、第4実施例では、磁石161b及び162bから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 Similarly, a magnetic field is applied to the coil 140b from the magnets 161b and 162b. In the fourth embodiment, the magnetic field applied from the magnets 161b and 162b is not only used to rotate the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して磁界を付与する。一方で、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、磁界を付与しないことが好ましい。但し、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、Y軸方向に沿って対向するコイル140aの2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、積極的に磁界を付与しないことが好ましい。但し、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺に、積極的に磁界を付与してもよい。 Magnets 161a and 162a apply a magnetic field to two sides of coil 140a facing each other along the Y-axis direction. On the other hand, the magnets 161a and 162a preferably do not apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. However, the magnets 161a and 162a apply only the leakage flux of the magnetic field to be applied to the two sides of the coil 140a facing in the Y-axis direction to the two sides of the coil 140a facing in the X-axis direction. May be. That is, it is preferable that the magnets 161a and 162a do not actively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. However, the magnets 161a and 162a may positively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
 同様に、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して磁界を付与する。一方で、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、磁界を付与しないことが好ましい。但し、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、Y軸方向に沿って対向するコイル140bの2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、積極的に磁界を付与しないことが好ましい。但し、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺に、積極的に磁界を付与してもよい。 Similarly, the magnets 161b and 162b apply a magnetic field to two sides of the coil 140b facing each other along the Y-axis direction. On the other hand, the magnets 161b and 162b preferably do not apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. However, the magnets 161b and 162b give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140b facing in the Y-axis direction to the two sides of the coil 140b facing in the X-axis direction. May be. That is, it is preferable that the magnets 161b and 162b do not positively apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. However, the magnets 161b and 162b may positively apply a magnetic field to two sides of the coil 140b facing each other along the X-axis direction.
 ここで、図14に示すように、図14中の時計周りの方向に流れる制御電流がコイル140a及び140bの夫々に供給されており、磁石161aから磁石162aに向かう磁界がコイル140aに付与されており、磁石161bから磁石162bに向かう磁界がコイル140bに付与されている状況について説明する。 Here, as shown in FIG. 14, a control current flowing in the clockwise direction in FIG. 14 is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 161a toward the magnet 162a is applied to the coil 140a. A situation in which a magnetic field from the magnet 161b toward the magnet 162b is applied to the coil 140b will be described.
 この場合、図14に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺(例えば、図14の上側の辺)には、図14の紙面奥側から紙面手前側に向かうローレンツ力が発生する。同様に、図14に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺(例えば、図14の下側の辺)には、図14の紙面手前側から紙面奥側に向かうローレンツ力が発生する。尚、コイル140aに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 In this case, as shown in FIG. 14, one side (for example, the upper side in FIG. 14) of the two sides of the coil 140 a facing along the Y-axis direction is formed from the back side of the page of FIG. 14. Lorentz force toward the front side of the page is generated. Similarly, as shown in FIG. 14, the other side (for example, the lower side of FIG. 14) of the two sides of the coil 140 a facing along the Y-axis direction is on the front side of the sheet of FIG. 14. Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140a is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 同様に、図14に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺(例えば、図14の上側の辺)には、図14の紙面奥側から紙面手前側に向かうローレンツ力が発生する。同様に、図14に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺(例えば、図14の下側の辺)には、図14の紙面手前側から紙面奥側に向かうローレンツ力が発生する。尚、コイル140bに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 Similarly, as shown in FIG. 14, one side (for example, the upper side in FIG. 14) of the two sides of the coil 140 b facing in the Y-axis direction is formed from the back side of the drawing in FIG. 14. Lorentz force toward the front side of the page is generated. Similarly, as shown in FIG. 14, the other side (for example, the lower side of FIG. 14) of the two sides of the coil 140 b facing in the Y-axis direction is on the front side of the sheet of FIG. 14. Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 その結果、コイル140aに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転モーメントとしてコイル140aに作用することになる。このため、コイル140aは、X軸方向に沿った軸を回転軸として回転する。同様に、コイル140bに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする慣性モーメントとしてコイル140bに作用することになる。このため、コイル140bは、X軸方向に沿った軸を回転軸として回転する。その結果、第2実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。 As a result, the Lorentz force generated in the coil 140a (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140a as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140a rotates about the axis along the X-axis direction as a rotation axis. Similarly, the Lorentz force (particularly, the Lorentz force according to the X-axis drive control current) generated in the coil 140b acts on the coil 140b as an inertia moment with the axis along the X-axis direction as the rotation axis. become. For this reason, the coil 140b rotates using the axis along the X-axis direction as a rotation axis. As a result, similarly to the second embodiment, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
 加えて、第5実施例では、上述したように、X軸方向に沿ったコイル140aの回転軸とX軸方向に沿った第2ベース110-2の回転軸とがY軸方向に沿ってずれていると共に、X軸方向に沿ったコイル140bの回転軸とX軸方向に沿った第2ベース110-2の回転軸とがY軸方向に沿ってずれている。このような回転軸のずれに起因したアンバランスによって、X軸方向に沿った軸を回転軸とするコイル140a及び140bの夫々の回転が、第2ベース110-2に対して振動として伝搬することになる。この振動に起因して、第2ベース110-2は、第2実施例と同様に、X軸方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 In addition, in the fifth embodiment, as described above, the rotational axis of the coil 140a along the X-axis direction and the rotational axis of the second base 110-2 along the X-axis direction are displaced along the Y-axis direction. In addition, the rotation axis of the coil 140b along the X-axis direction and the rotation axis of the second base 110-2 along the X-axis direction are shifted along the Y-axis direction. Due to such imbalance caused by the rotational axis deviation, the respective rotations of the coils 140a and 140b having the axis along the X-axis direction as the rotation axis propagate to the second base 110-2 as vibration. become. Due to this vibration, the second base 110-2 is deformed and oscillated along the X-axis direction as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 以上説明したように、第5実施例のMEMSスキャナ105は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第5実施例のMEMSスキャナ105は、第2実施例のMEMSスキャナ102と比較して、磁石151a及び152a並びに磁石151b及び152bを備えていなくともよくなる。このため、MEMSスキャナ103のより一層の小型化が実現される。 As described above, the MEMS scanner 105 of the fifth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys. In addition, the MEMS scanner 105 of the fifth embodiment does not have to include the magnets 151a and 152a and the magnets 151b and 152b, as compared with the MEMS scanner 102 of the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
 (6)第6実施例
 続いて、図15及び図16を参照して、MEMSスキャナの第6実施例について説明する。尚、上述の第2実施例のMEMSスキャナ102と同一の構成については、同一の参照符号を付することでその詳細な説明を省略する。
(6) Sixth Example Next, with reference to FIGS. 15 and 16, a sixth example of the MEMS scanner will be described. In addition, about the structure same as the MEMS scanner 102 of the above-mentioned 2nd Example, the detailed description is abbreviate | omitted by attaching | subjecting the same referential mark.
 (6-1)基本構成
 初めに、図15を参照して、第6実施例に係るMEMSスキャナ106の基本構成について説明する。ここに、図15は、第6実施例に係るMEMSスキャナ106の基本構成を概念的に示す平面図である。
(6-1) Basic Configuration First, the basic configuration of the MEMS scanner 106 according to the sixth embodiment will be described with reference to FIG. FIG. 15 is a plan view conceptually showing the basic structure of the MEMS scanner 106 according to the sixth example.
 図15に示すように、第6実施例のMEMSスキャナ106は、第2実施例のMEMSスキャナ102と比較して、磁石151a及び磁石152a並びに磁石151b及び磁石152bを備えていないという点で異なっている。第6実施例のMEMSスキャナ106のその他の構成は、第2実施例のMEMSスキャナ102のその他の構成と同一であってもよい。 As shown in FIG. 15, the MEMS scanner 106 of the sixth embodiment is different from the MEMS scanner 102 of the second embodiment in that it does not include the magnet 151a and the magnet 152a, and the magnet 151b and the magnet 152b. Yes. Other configurations of the MEMS scanner 106 of the sixth embodiment may be the same as other configurations of the MEMS scanner 102 of the second embodiment.
 (6-2)MEMSスキャナの動作
 続いて、図16を参照して、第6実施例に係るMEMSスキャナ106の動作の態様(具体的には、ミラー130を回転させる動作の態様)について説明する。ここに、図16は、第6実施例に係るMEMSスキャナ106による動作の態様を概念的に示す平面図である。
(6-2) Operation of MEMS Scanner Next, with reference to FIG. 16, an operation mode of the MEMS scanner 106 according to the sixth embodiment (specifically, an operation mode of rotating the mirror 130) will be described. . FIG. 16 is a plan view conceptually showing an operation mode of the MEMS scanner 106 according to the sixth embodiment.
 第6実施例に係るMEMSスキャナ106の動作時には、第2実施例に係るMEMSスキャナ102の動作時と同様に、コイル140a及び140bの夫々に制御電流(つまり、X軸駆動用制御電流及びY軸駆動用制御電流が重畳された制御電流)が供給される。 During the operation of the MEMS scanner 106 according to the sixth embodiment, similarly to the operation of the MEMS scanner 102 according to the second embodiment, the control currents (that is, the X-axis drive control current and the Y-axis) are applied to the coils 140a and 140b, respectively. A control current superimposed with a drive control current).
 一方で、コイル140aには、磁石161a及び162aから磁界が付与されている。尚、第6実施例では、磁石161a及び162aから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 On the other hand, a magnetic field is applied to the coil 140a from the magnets 161a and 162a. In the sixth embodiment, the magnetic field applied from the magnets 161a and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 同様に、コイル140bには、磁石161b及び162bから磁界が付与されている。尚、第6実施例では、磁石161b及び162aから付与される磁界は、Y軸方向に沿った軸を回転軸としてミラー130を回転させるために用いられるのみならず、X軸方向に沿った軸を回転軸として第2ベース110-2を回転させるためにも用いられる。 Similarly, a magnetic field is applied to the coil 140b from the magnets 161b and 162b. In the sixth embodiment, the magnetic field applied from the magnets 161b and 162a is not only used for rotating the mirror 130 about the axis along the Y-axis direction but also the axis along the X-axis direction. Is also used to rotate the second base 110-2 about the rotation axis.
 磁石161a及び162aは、Y軸方向に沿って対向するコイル140aの2つの辺に対して磁界を付与する。一方で、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、磁界を付与しないことが好ましい。但し、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、Y軸方向に沿って対向するコイル140aの2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161a及び162aは、X軸方向に沿って対向するコイル140aの2つの辺には、積極的に磁界を付与しないことが好ましい。 Magnets 161a and 162a apply a magnetic field to two sides of coil 140a facing each other along the Y-axis direction. On the other hand, the magnets 161a and 162a preferably do not apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction. However, the magnets 161a and 162a apply only the leakage flux of the magnetic field to be applied to the two sides of the coil 140a facing in the Y-axis direction to the two sides of the coil 140a facing in the X-axis direction. May be. That is, it is preferable that the magnets 161a and 162a do not actively apply a magnetic field to the two sides of the coil 140a facing each other along the X-axis direction.
 同様に、磁石161b及び162bは、Y軸方向に沿って対向するコイル140bの2つの辺に対して磁界を付与する。一方で、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、磁界を付与しないことが好ましい。但し、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、Y軸方向に沿って対向するコイル140bの2つの辺に付与するべき磁界の漏れ磁束のみを付与してもよい。つまり、磁石161b及び162bは、X軸方向に沿って対向するコイル140bの2つの辺には、積極的に磁界を付与しないことが好ましい。 Similarly, the magnets 161b and 162b apply a magnetic field to two sides of the coil 140b facing each other along the Y-axis direction. On the other hand, the magnets 161b and 162b preferably do not apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction. However, the magnets 161b and 162b give only the leakage flux of the magnetic field to be applied to the two sides of the coil 140b facing in the Y-axis direction to the two sides of the coil 140b facing in the X-axis direction. May be. That is, it is preferable that the magnets 161b and 162b do not positively apply a magnetic field to the two sides of the coil 140b facing each other along the X-axis direction.
 ここで、図16に示すように、図16中の時計周りの方向に流れる制御電流がコイル140a及び140bの夫々に供給されており、磁石161aから磁石162aに向かう磁界がコイル140aに付与されており、磁石161bから磁石162bに向かう磁界がコイル140bに付与されている状況について説明する。 Here, as shown in FIG. 16, a control current flowing in the clockwise direction in FIG. 16 is supplied to each of the coils 140a and 140b, and a magnetic field from the magnet 161a toward the magnet 162a is applied to the coil 140a. A situation in which a magnetic field from the magnet 161b toward the magnet 162b is applied to the coil 140b will be described.
 この場合、図16に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺(例えば、図16の上側の辺)には、図16の紙面奥側から紙面手前側に向かうローレンツ力が発生する。同様に、図16に示すように、Y軸方向に沿って対向するコイル140aの2つの辺のうちの他方の辺(例えば、図16の下側の辺)には、図16の紙面手前側から紙面奥側に向かうローレンツ力が発生する。尚、コイル140aに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 In this case, as shown in FIG. 16, one side (for example, the upper side in FIG. 16) of the two sides of the coil 140 a facing along the Y-axis direction is formed from the back side in the drawing of FIG. 16. Lorentz force toward the front side of the page is generated. Similarly, as shown in FIG. 16, the other side (for example, the lower side of FIG. 16) of the two sides of the coil 140a facing in the Y-axis direction is on the front side of the sheet of FIG. Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140a is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 同様に、図16に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺(例えば、図16の上側の辺)には、図16の紙面奥側から紙面手前側に向かうローレンツ力が発生する。同様に、図16に示すように、Y軸方向に沿って対向するコイル140bの2つの辺のうちの他方の辺(例えば、図16の下側の辺)には、図16の紙面手前側から紙面奥側に向かうローレンツ力が発生する。尚、コイル140bに供給される制御電流の向き(つまり、極性)が逆転した場合にも、同様のローレンツ力(但し、その方向が逆になる)が発生する。 Similarly, as shown in FIG. 16, one of the two sides of the coil 140 b facing in the Y-axis direction (for example, the upper side in FIG. 16) is inserted from the back side of the drawing in FIG. 16. Lorentz force toward the front side of the page is generated. Similarly, as shown in FIG. 16, the other side (for example, the lower side of FIG. 16) of the two sides of the coil 140b facing each other along the Y-axis direction is on the front side of the sheet of FIG. Lorentz force is generated toward the back side of the page. Even when the direction (that is, polarity) of the control current supplied to the coil 140b is reversed, the same Lorentz force (however, the direction is reversed) is generated.
 その結果、コイル140aに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転モーメントとしてコイル140aに作用することになる。このため、コイル140aは、X軸方向に沿った軸を回転軸として回転する。同様に、コイル140bに発生するローレンツ力(特に、主として、X軸駆動用制御電流に応じたローレンツ力)は、X軸方向に沿った軸を回転軸とする回転モーメントとしてコイル140bに作用することになる。このため、コイル140bは、X軸方向に沿った軸を回転軸として回転する。その結果、第2実施例と同様に、第2ベース110-2もまた、X軸方向に沿った軸を回転軸として回転する。 As a result, the Lorentz force generated in the coil 140a (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140a as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140a rotates about the axis along the X-axis direction as a rotation axis. Similarly, the Lorentz force generated in the coil 140b (particularly, mainly the Lorentz force according to the X-axis drive control current) acts on the coil 140b as a rotational moment about the axis along the X-axis direction. become. For this reason, the coil 140b rotates using the axis along the X-axis direction as a rotation axis. As a result, similarly to the second embodiment, the second base 110-2 also rotates about the axis along the X-axis direction as the rotation axis.
 加えて、コイル140a及びコイル140bに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140aの2つの辺及びX軸方向に沿って対向するコイル140bの2つの辺に磁界が付与されていない場合であっても、以下の現象が発生することが本願発明者等によって行われた実験で確認された。具体的には、コイル140aに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140aの2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力が、Y軸方向に沿って対向するコイル140aの2つの辺のうちの一方の辺(例えば、図16の上側の辺)に発生する。同様に、コイル140bに供給される制御電流がY軸駆動用制御電流を含んでいる場合には、X軸方向に沿って対向するコイル140bの2つの辺に磁界が付与されていない場合であっても、Y軸駆動用制御電流に応じたローレンツ力が、Y軸方向に沿って対向するコイル140bの2つの辺のうちの一方の辺(例えば、図16の上側の辺)に発生する。このY軸駆動用制御電流に応じたローレンツ力に起因して、コイル140a及び140b(或いは、当該コイル140a及び140bが配置されている第2ベース110-2)に微振動が発生する。その結果、第2ベース110-2は、第2実施例と同様に、X軸の方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 In addition, when the control current supplied to the coil 140a and the coil 140b includes the Y-axis drive control current, the two sides of the coil 140a facing each other along the X-axis direction and the X-axis direction are used. It was confirmed by experiments conducted by the present inventors that the following phenomenon occurs even when a magnetic field is not applied to the two sides of the opposing coil 140b. Specifically, when the control current supplied to the coil 140a includes the Y-axis drive control current, a magnetic field is not applied to the two sides of the coil 140a facing each other along the X-axis direction. Even so, a Lorentz force corresponding to the Y-axis drive control current is generated on one of the two sides of the coil 140a facing in the Y-axis direction (for example, the upper side in FIG. 16). To do. Similarly, when the control current supplied to the coil 140b includes the Y-axis drive control current, the magnetic field is not applied to the two sides of the coil 140b facing each other along the X-axis direction. However, a Lorentz force corresponding to the Y-axis drive control current is generated on one side (for example, the upper side in FIG. 16) of the two sides of the coil 140b facing each other along the Y-axis direction. Due to the Lorentz force corresponding to the Y-axis drive control current, slight vibrations are generated in the coils 140a and 140b (or the second base 110-2 on which the coils 140a and 140b are arranged). As a result, the second base 110-2 is deformed and oscillated along the direction of the X-axis as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 加えて、X軸方向に沿って対向するコイル140aの2つの辺に磁界が積極的に付与されていない場合であっても、X軸方向に沿って対向するコイル140aの2つの辺には、Y軸方向に沿って対向するコイル140aの2つの辺に積極的に付与した磁界の漏れ磁束が付与されることがある。その結果、X軸方向に沿って対向するコイル140aの2つの辺には、Y軸駆動用制御電流に応じたローレンツ力がわずかながらに発生する。同様に、X軸方向に沿って対向するコイル140bの2つの辺に磁界が積極的に付与されていない場合であっても、X軸方向に沿って対向するコイル140bの2つの辺には、Y軸方向に沿って対向するコイル140bの2つの辺に積極的に付与した磁界の漏れ磁束が付与されることがある。その結果、X軸方向に沿って対向するコイル140bの2つの辺には、Y軸駆動用制御電流に応じたローレンツ力がわずかながらに発生する。その結果、第2ベース110-2は、第2実施例と同様に、X軸の方向に沿って変形振動する。その結果、ミラー130は、Y軸方向に沿った軸を回転軸として回転する。 In addition, even when a magnetic field is not actively applied to the two sides of the coil 140a facing along the X-axis direction, the two sides of the coil 140a facing along the X-axis direction are A magnetic leakage flux that is positively applied to the two sides of the coil 140a facing each other along the Y-axis direction may be applied. As a result, a slight Lorentz force corresponding to the Y-axis drive control current is generated on the two sides of the coil 140a facing each other along the X-axis direction. Similarly, even when a magnetic field is not actively applied to the two sides of the coil 140b facing along the X-axis direction, the two sides of the coil 140b facing along the X-axis direction are A leakage flux of a magnetic field that is positively applied to two sides of the coil 140b facing each other along the Y-axis direction may be applied. As a result, a slight Lorentz force corresponding to the Y-axis drive control current is generated on the two sides of the coil 140b facing each other along the X-axis direction. As a result, the second base 110-2 is deformed and oscillated along the direction of the X-axis as in the second embodiment. As a result, the mirror 130 rotates about the axis along the Y-axis direction as a rotation axis.
 尚、本願発明者等によって行われた実験によれば、X軸方向に沿って対向するコイル140aの2つの辺に磁界が積極的に付与され且つX軸方向に沿って対向するコイル140bの2つの辺に磁界が積極的に付与されているときのミラー130の回転のゲインは、60dBであった。一方で、X軸方向に沿って対向するコイル140aの2つの辺に磁界が積極的に付与されておらず且つX軸方向に沿って対向するコイル140bの2つの辺に磁界が積極的に付与されていないときのミラー130の回転のゲインは、54dBであった。つまり、X軸方向に沿って対向するコイル140aの2つの辺に磁界が積極的に付与されており且つX軸方向に沿って対向するコイル140bの2つの辺に磁界が積極的に付与されているMEMSスキャナと比較して、X軸方向に沿って対向するコイル140aの2つの辺に磁界が積極的に付与されておらず且つX軸方向に沿って対向するコイル140bの2つの辺に磁界が積極的に付与されていないMEMSスキャナでは、ミラー130の回転のゲインが6dB程度減少する。しかしながら、本願発明者等によって行われた実験によれば、6dB程度のゲインの減少は、MEMSスキャナの動作に大きな悪影響を与える程度の減少には相当しない。 According to an experiment conducted by the inventors of the present application, a magnetic field is positively applied to two sides of the coil 140a facing along the X-axis direction, and 2 of the coil 140b facing along the X-axis direction. The gain of rotation of the mirror 130 when a magnetic field was actively applied to one side was 60 dB. On the other hand, a magnetic field is not positively applied to the two sides of the coil 140a facing along the X-axis direction, and a magnetic field is positively applied to the two sides of the coil 140b facing along the X-axis direction. The gain of the rotation of the mirror 130 when it was not done was 54 dB. That is, a magnetic field is positively applied to two sides of the coil 140a facing along the X-axis direction, and a magnetic field is positively applied to two sides of the coil 140b facing along the X-axis direction. Compared with the MEMS scanner, the magnetic field is not positively applied to the two sides of the coil 140a facing along the X-axis direction, and the magnetic field is set on the two sides of the coil 140b facing along the X-axis direction. In a MEMS scanner to which is not positively applied, the rotation gain of the mirror 130 is reduced by about 6 dB. However, according to experiments conducted by the inventors of the present application, a gain reduction of about 6 dB does not correspond to a reduction that greatly affects the operation of the MEMS scanner.
 以上説明したように、第6実施例のMEMSスキャナ106は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。加えて、第6実施例のMEMSスキャナ106は、第2実施例のMEMSスキャナ102と比較して、磁石151a及び152a並びに磁石151b及び152bを備えていなくともよくなる。このため、MEMSスキャナ103のより一層の小型化が実現される。 As described above, the MEMS scanner 106 of the sixth embodiment can suitably enjoy various effects that the MEMS scanner 102 of the second embodiment enjoys. In addition, the MEMS scanner 106 of the sixth embodiment does not need to include the magnets 151a and 152a and the magnets 151b and 152b as compared with the MEMS scanner 102 of the second embodiment. For this reason, further downsizing of the MEMS scanner 103 is realized.
 (7)第7実施例
 続いて、図17を参照して、MEMSスキャナの第7実施例について説明する。ここに、図17は、第7実施例に係るMEMSスキャナ107の基本構成を概念的に示す平面図である。
(7) Seventh Embodiment Next, a seventh embodiment of the MEMS scanner will be described with reference to FIG. FIG. 17 is a plan view conceptually showing the basic structure of the MEMS scanner 107 according to the seventh example.
 図17に示すように、第7実施例のMEMSスキャナ107は、第2実施例のMEMSスキャナ102と比較して、コイル140a及びコイル140bが同一の巻き線から構成されているという点で異なっている。つまり、第7実施例では、同一の巻き線から、コイル140a及びコイル部140b、並びに第2ベース部110-2に沿って形成されるコイル140cが形成されている。第7実施例のMEMSスキャナ107のその他の構成は、第2実施例のMEMSスキャナ102のその他の構成と同一であってもよい。 As shown in FIG. 17, the MEMS scanner 107 of the seventh embodiment differs from the MEMS scanner 102 of the second embodiment in that the coil 140a and the coil 140b are composed of the same winding. Yes. That is, in the seventh embodiment, the coil 140a formed along the second base portion 110-2 and the coil 140a and the coil portion 140b are formed from the same winding. Other configurations of the MEMS scanner 107 of the seventh embodiment may be the same as other configurations of the MEMS scanner 102 of the second embodiment.
 第7実施例では、ミラー130は、コイル140cの巻き線の内側に位置する。つまり、第7実施例では、複数のコイル(つまり、コイル140a、コイル140b及びコイル140c)のうちの2つのコイル(つまり、コイル140a及びコイル140b)の巻き線の外側にミラー130が位置する一方で、複数のコイルのうちの残りの1つのコイル(つまり、コイル140c)の巻き線の内側にミラー130が位置する。つまり、第7実施例では、MEMSスキャナ107が備える複数のコイルの全ての巻き線の外側にミラー130が位置していなくともよい。 In the seventh embodiment, the mirror 130 is positioned inside the winding of the coil 140c. That is, in the seventh embodiment, the mirror 130 is positioned outside the winding of two coils (that is, the coil 140a and the coil 140b) of the plurality of coils (that is, the coil 140a, the coil 140b, and the coil 140c). Thus, the mirror 130 is positioned inside the winding of the remaining one of the plurality of coils (that is, the coil 140c). That is, in the seventh embodiment, the mirror 130 does not have to be positioned outside all the windings of the plurality of coils included in the MEMS scanner 107.
 このような第7実施例のMEMSスキャナ107であっても、少なくともコイル140a及び140bの夫々の巻き線の外側にミラー130が位置することになる。このため、第7実施例のMEMSスキャナ107は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。 Even in the MEMS scanner 107 of the seventh embodiment, the mirror 130 is positioned at least outside the windings of the coils 140a and 140b. For this reason, the MEMS scanner 107 according to the seventh embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
 尚、MEMSスキャナ107は、4つ以上のコイルを備えていてもよい。この場合においても、4つ以上のコイルのうちの一部のコイルの巻き線の外側にミラー130が位置する一方で、4つ以上のコイルのうちの他の一部のコイルの巻き線の内側にミラー130が位置していてもよい。 Note that the MEMS scanner 107 may include four or more coils. Also in this case, while the mirror 130 is located outside the winding of some of the four or more coils, the inside of the winding of some other coils of the four or more coils. The mirror 130 may be located in the center.
 (8)第8実施例
 続いて、図18を参照して、MEMSスキャナの第8実施例について説明する。ここに、図18は、第8実施例に係るMEMSスキャナ108の基本構成を概念的に示す平面図である。
(8) Eighth Example Next, with reference to FIG. 18, an eighth example of the MEMS scanner will be described. FIG. 18 is a plan view conceptually showing the basic structure of the MEMS scanner 108 in the eighth example.
 図18に示すように、第8実施例のMEMSスキャナ108は、第7実施例のMEMSスキャナ107と比較して、コイル140a、コイル140b及びコイル130cの巻き方が異なるという点で異なっている。つまり、第8実施例では、同一の巻き線から、一部に開口が存在する(例えば、図18中のコイル140aの右側に開口が存在する)開ループ状のコイル140a及び一部に開口が存在する(例えば、図18中のコイル140bの左側に開口が存在する)開ループ状のコイル部140b、並びに第2ベース部110-2上に形成されるコイル140cが形成されている。第8実施例のMEMSスキャナ108のその他の構成は、第7実施例のMEMSスキャナ107のその他の構成と同一であってもよい。 As shown in FIG. 18, the MEMS scanner 108 according to the eighth embodiment is different from the MEMS scanner 107 according to the seventh embodiment in that the winding method of the coil 140a, the coil 140b, and the coil 130c is different. That is, in the eighth embodiment, an opening is present in part from the same winding (for example, an opening exists on the right side of the coil 140a in FIG. 18) and an opening is present in a part. There are formed an open loop-shaped coil part 140b (for example, an opening exists on the left side of the coil 140b in FIG. 18) and a coil 140c formed on the second base part 110-2. Other configurations of the MEMS scanner 108 of the eighth embodiment may be the same as other configurations of the MEMS scanner 107 of the seventh embodiment.
 第8実施例においても、コイル140a、コイル140及びコイル140cは、その形状や配置位置等によって互いに区別可能である。つまり、第8実施例のMEMSスキャナ108は、第7実施例のMEMSスキャナ107と同様に、3つのコイル(つまり、コイル140a、コイル140及びコイル140c)を備えている。加えて、第8実施例においても、ミラー130は、コイル140cの巻き線の内側に位置する。つまり、第7実施例では、複数のコイル(つまり、コイル140a、コイル140b及びコイル140c)のうちの2つのコイル(つまり、コイル140a及びコイル140b)の巻き線の外側にミラー130が位置する一方で、複数のコイルのうちの残りの1つのコイル(つまり、コイル140c)の巻き線の内側にミラー130が位置する。つまり、第8実施例においても、MEMSスキャナ108が備える複数のコイルの全ての巻き線の外側にミラー130が位置していなくともよい。 Also in the eighth embodiment, the coil 140a, the coil 140, and the coil 140c can be distinguished from each other by their shapes, arrangement positions, and the like. That is, the MEMS scanner 108 according to the eighth embodiment includes three coils (that is, the coil 140a, the coil 140, and the coil 140c), similarly to the MEMS scanner 107 according to the seventh embodiment. In addition, also in the eighth embodiment, the mirror 130 is located inside the winding of the coil 140c. That is, in the seventh embodiment, the mirror 130 is positioned outside the winding of two coils (that is, the coil 140a and the coil 140b) of the plurality of coils (that is, the coil 140a, the coil 140b, and the coil 140c). Thus, the mirror 130 is positioned inside the winding of the remaining one of the plurality of coils (that is, the coil 140c). That is, also in the eighth embodiment, the mirror 130 does not have to be positioned outside all the windings of the plurality of coils included in the MEMS scanner 108.
 このような第8実施例のMEMSスキャナ108であっても、少なくともコイル140a及び140bの夫々の巻き線の外側にミラー130が位置することになる。このため、第8実施例のMEMSスキャナ108は、第2実施例のMEMSスキャナ102が享受する各種効果を好適に享受することができる。 Even in the MEMS scanner 108 of the eighth embodiment, the mirror 130 is positioned at least outside the windings of the coils 140a and 140b. For this reason, the MEMS scanner 108 according to the eighth embodiment can preferably enjoy various effects that the MEMS scanner 102 according to the second embodiment enjoys.
 尚、MEMSスキャナ107は、4つ以上のコイルを備えていてもよい。この場合においても、4つ以上のコイルのうちの一部のコイルの巻き線の外側にミラー130が位置する一方で、4つ以上のコイルのうちの他の一部のコイルの巻き線の内側にミラー130が位置していてもよい。 Note that the MEMS scanner 107 may include four or more coils. Also in this case, while the mirror 130 is located outside the winding of some of the four or more coils, the inside of the winding of some other coils of the four or more coils. The mirror 130 may be located in the center.
 尚、第1実施例から第8実施例で説明した各構成の一部を適宜組み合わせてもよい。この場合であっても、第1実施例から第8実施例で説明した各構成の一部を適宜組み合わせることで得られるアクチュエータは、上述した各種効果を好適に享受することができる。 In addition, you may combine suitably a part of each structure demonstrated in 1st Example-8th Example. Even in this case, the actuator obtained by appropriately combining a part of the configurations described in the first to eighth embodiments can suitably enjoy the various effects described above.
 また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う駆動装置もまた本発明の技術思想に含まれる。 Further, the present invention can be appropriately changed without departing from the gist or concept of the present invention that can be read from the claims and the entire specification, and a drive device that includes such a change is also included in the technical concept of the present invention. It is.
 101~106 MEMSスキャナ
 110 ベース
 110-1 第1ベース
 110-2 第2ベース
 120a、120b トーションバー
 120a-1、120b-1 第1トーションバー
 120a-2、120b-2 第2トーションバー
 130 ミラー
 140a、140b コイル
 141a、141b 電源端子
 151a、151b、152a、152b 磁石
 161a、161b、162a、162b 磁石
 170a、170b 磁気ヨーク
101 to 106 MEMS scanner 110 base 110-1 first base 110-2 second base 120a, 120b torsion bar 120a-1, 120b-1 first torsion bar 120a-2, 120b-2 second torsion bar 130 mirror 140a, 140b Coil 141a, 141b Power supply terminal 151a, 151b, 152a, 152b Magnet 161a, 161b, 162a, 162b Magnet 170a, 170b Magnetic yoke

Claims (14)

  1.  第1ベース部と、
     第1ベース部によって支持される第2ベース部と、
     前記第1ベース部と前記第2ベース部とを接続し、且つ前記第2ベース部を他の方向に沿った軸を回転軸として回転させるような弾性を有する第1弾性部と、
     回転可能な被駆動部と、
     前記第2ベース部と前記被駆動部とを接続し、且つ前記被駆動部を前記他の方向とは異なる一の方向に沿った軸を回転軸として回転させるような弾性を有する第2弾性部と、
     前記第2ベース部上に配置される第1コイル部であって、且つ当該第1コイル部の巻き線の外側に前記被駆動部が配置される第1コイル部と、
     前記第1コイル部との間に前記被駆動部を挟み込むように前記ベース部上に配置される第2コイル部であって、且つ当該第2コイル部の巻き線の外側に前記被駆動部が配置される第2コイル部と、
     前記第1コイル部及び前記第2コイル部に対して磁界を付与する磁界付与部と
     を備え、
     前記第1コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記第1コイル部の中心が位置するように、配置されていることを特徴とする駆動装置。
    A first base portion;
    A second base portion supported by the first base portion;
    A first elastic part having elasticity that connects the first base part and the second base part and rotates the second base part around an axis along another direction;
    A rotatable driven part; and
    A second elastic part that connects the second base part and the driven part and has elasticity such that the driven part rotates about an axis along a direction different from the other direction as a rotation axis. When,
    A first coil portion disposed on the second base portion, and the driven portion is disposed outside a winding of the first coil portion; and
    A second coil portion disposed on the base portion so as to sandwich the driven portion between the first coil portion and the driven portion outside the winding of the second coil portion. A second coil portion to be disposed;
    A magnetic field application unit that applies a magnetic field to the first coil unit and the second coil unit,
    The first coil unit is disposed such that the center of the first coil unit is located at a position offset along the one direction from the rotation axis of the second base unit. apparatus.
  2.  前記磁界付与部は、前記一の方向に沿って前記第1コイル部を挟み込む一対の第1磁性体を備えていることを特徴とする請求項1に記載の駆動装置。 2. The driving apparatus according to claim 1, wherein the magnetic field application unit includes a pair of first magnetic bodies that sandwich the first coil unit along the one direction.
  3.  前記一対の第1磁性体は、(i)前記第1コイル部のうち前記一の方向に沿って対向する2つの辺に前記磁界を付与し、
     前記一対の第1磁性体は、(ii-1)前記第1コイル部のうち前記他の方向に沿って対向する2つの辺に前記磁界を付与しない、又は(ii-2)前記第1コイル部のうち前記他の方向に沿って対向する2つの辺には、前記第1コイル部のうち前記一の方向に沿って対向する2つの辺に付与される前記磁界の漏れ磁束が付与されることを特徴とする請求項2に記載の駆動装置。
    The pair of first magnetic bodies applies (i) the magnetic field to two sides of the first coil portion that face each other along the one direction,
    The pair of first magnetic bodies does not apply (ii-1) the magnetic field to two sides of the first coil portion facing in the other direction, or (ii-2) the first coil. The leakage flux of the magnetic field applied to the two sides of the first coil unit that are opposed to each other along the one direction is applied to the two sides that are opposed to each other along the other direction. The drive device according to claim 2, wherein
  4.  前記第2コイル部は、前記第2ベース部の回転軸から前記一の方向に沿ってオフセットした位置に前記第2コイル部の中心が位置するように、配置されていることを特徴とする請求項1に記載の駆動装置。 The second coil portion is disposed so that a center of the second coil portion is located at a position offset along the one direction from a rotation axis of the second base portion. Item 2. The driving device according to Item 1.
  5.  前記第2ベース部の回転軸を基準とする前記第2コイル部の中心のオフセット量は、前記第2ベース部の回転軸を基準とする前記第1コイル部の中心のオフセット量と異なることを特徴とする請求項4に記載の駆動装置。 The offset amount of the center of the second coil portion with respect to the rotation axis of the second base portion is different from the offset amount of the center of the first coil portion with respect to the rotation axis of the second base portion. The drive device according to claim 4, wherein the drive device is characterized.
  6.  前記磁界付与部は、前記第2コイル部を挟み込む一対の第2磁性体を備えていることを特徴とする請求項4に記載の駆動装置。 The drive unit according to claim 4, wherein the magnetic field application unit includes a pair of second magnetic bodies that sandwich the second coil unit.
  7.  前記一対の第2磁性体は、(i)前記第2コイル部のうち前記一の方向に沿って対向する2つの辺に前記磁界を付与し、
     前記一対の第2磁性体は、(ii-1)前記第2コイル部のうち前記他の方向に沿って対向する2つの辺に前記磁界を付与しない、又は(ii-2)前記第2コイル部のうち前記他の方向に沿って対向する2つの辺には、前記第2コイル部のうち前記一の方向に沿って対向する2つの辺に付与される前記磁界の漏れ磁束が付与されることを特徴とする請求項4に記載の駆動装置。
    The pair of second magnetic bodies applies (i) the magnetic field to two sides of the second coil portion that face each other along the one direction,
    The pair of second magnetic bodies does not apply (ii-1) the magnetic field to two sides of the second coil portion that are opposed in the other direction, or (ii-2) the second coil. The leakage flux of the magnetic field that is applied to the two sides of the second coil unit that are opposed to each other along the one direction is applied to the two sides that are opposed to each other along the other direction. The drive device according to claim 4.
  8.  前記第1コイル部及び前記第2コイル部は、前記被駆動部に対して対称な位置に配置されることを特徴とする請求項1に記載の駆動装置。 2. The driving apparatus according to claim 1, wherein the first coil portion and the second coil portion are disposed at positions symmetrical with respect to the driven portion.
  9.  前記第1コイル部及び前記第2コイル部の夫々の前記一の方向に沿った回転軸は、前記被駆動部の前記一の方向に沿った回転軸とは異なることを特徴とする請求項1に記載の駆動装置。 The rotation axis along the one direction of each of the first coil part and the second coil part is different from the rotation axis along the one direction of the driven part. The drive device described in 1.
  10.  前記第1コイル部に供給される制御電流と前記磁界付与部が付与する磁界との電磁相互作用に起因して前記第1コイル部に発生するローレンツ力によって、前記第1コイル部は、前記他の方向に沿った軸を回転軸として回転し、
     前記第2コイル部に供給される制御電流と前記磁界付与部が付与する磁界との電磁相互作用に起因して前記第2コイル部に発生するローレンツ力によって、前記第2コイル部は、前記他の方向に沿った軸を回転軸として回転し、
     前記他の方向に沿った軸を回転軸とする前記第1コイル部及び前記第2コイル部の夫々の回転に起因して、前記第2ベース部は、前記他の方向に沿った軸を回転軸として回転し、
     前記他の方向に沿った軸を回転軸とする前記第1コイル部及び前記第2コイル部の夫々の回転に起因して、前記第2ベース部は、前記他の方向に沿って定常波状に変形振動し、
     前記第2ベース部の変形振動に起因して、前記被駆動部は、前記一の方向に沿った軸を回転軸として回転することを特徴とする請求項1に記載の駆動装置。
    Due to the Lorentz force generated in the first coil part due to the electromagnetic interaction between the control current supplied to the first coil part and the magnetic field applied by the magnetic field applying part, the first coil part is The axis along the direction of
    Due to the Lorentz force generated in the second coil part due to the electromagnetic interaction between the control current supplied to the second coil part and the magnetic field applied by the magnetic field applying part, the second coil part is The axis along the direction of
    Due to the rotation of each of the first coil portion and the second coil portion with the axis along the other direction as the rotation axis, the second base portion rotates the axis along the other direction. Rotate as an axis,
    Due to the rotation of each of the first coil portion and the second coil portion with the axis along the other direction as a rotation axis, the second base portion has a standing wave shape along the other direction. Deformation vibration,
    2. The driving device according to claim 1, wherein the driven portion rotates about an axis along the one direction as a rotation axis due to deformation vibration of the second base portion.
  11.  前記第1コイル部に発生するローレンツ力の大きさと前記第2コイル部に発生するローレンツ力の大きさとは同一であることを特徴とする請求項10に記載の駆動装置。 11. The driving device according to claim 10, wherein the magnitude of the Lorentz force generated in the first coil portion and the magnitude of the Lorentz force generated in the second coil portion are the same.
  12.  前記一の方向に沿った軸を回転軸とする前記第1コイル部の回転方向と前記一の方向に沿った軸を回転軸とする前記第2コイル部の回転方向とは同一であることを特徴とする請求項10に記載の駆動装置。 The rotation direction of the first coil portion having the rotation axis as the axis along the one direction is the same as the rotation direction of the second coil portion having the rotation axis as the axis along the one direction. The drive device according to claim 10, wherein the drive device is characterized.
  13.  前記第1コイル部及び前記第2コイル部の夫々の前記一の方向に沿った回転軸及び前記被駆動部の前記一の方向に沿った回転軸に対応する箇所には、前記第2ベース部の変形振動における節が現れ、
     前記第1コイル部及び前記第2コイル部の夫々の前記一の方向に沿った回転軸と前記被駆動部の前記一の方向に沿った回転軸との間の箇所には、前記第2ベース部の変形振動における腹が現れることを特徴とする請求項10に記載の駆動装置。
    The second base portion is provided at a position corresponding to the rotation axis along the one direction of each of the first coil portion and the second coil portion and the rotation axis along the one direction of the driven portion. A node in the deformation vibration of
    The second base is provided at a location between the rotation axis along the one direction of each of the first coil part and the second coil part and the rotation axis along the one direction of the driven part. The drive device according to claim 10, wherein an antinode in deformation vibration of the portion appears.
  14.  前記一の方向に沿った軸を回転軸とする前記第1コイル部及び前記第2コイル部の夫々の回転方向と前記一の方向に沿った軸を回転軸とする前記被駆動部の回転方向とは、互いに逆になることを特徴とする請求項10に記載の駆動装置。 The first coil portion and the second coil portion each having an axis along the one direction as a rotation axis, and the rotation direction of the driven portion having an axis along the one direction as a rotation axis. The driving apparatus according to claim 10, wherein the driving directions are opposite to each other.
PCT/JP2012/062050 2012-05-10 2012-05-10 Drive device WO2013168274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062050 WO2013168274A1 (en) 2012-05-10 2012-05-10 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062050 WO2013168274A1 (en) 2012-05-10 2012-05-10 Drive device

Publications (1)

Publication Number Publication Date
WO2013168274A1 true WO2013168274A1 (en) 2013-11-14

Family

ID=49550357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062050 WO2013168274A1 (en) 2012-05-10 2012-05-10 Drive device

Country Status (1)

Country Link
WO (1) WO2013168274A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122955A (en) * 2006-11-01 2008-05-29 Samsung Electro Mech Co Ltd Electromagnetic micro-actuator
JP2008203497A (en) * 2007-02-20 2008-09-04 Canon Inc Oscillating body apparatus, method of driving the same, light deflector and image display using light deflector
US20110199172A1 (en) * 2008-09-25 2011-08-18 Tjalf Pirk Magnetic yoke, micromechanical component, and method for the manufacture thereof
JP2011180322A (en) * 2010-03-01 2011-09-15 Brother Industries Ltd Optical scanner, method for controlling the same, and image display apparatus using the optical scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122955A (en) * 2006-11-01 2008-05-29 Samsung Electro Mech Co Ltd Electromagnetic micro-actuator
JP2008203497A (en) * 2007-02-20 2008-09-04 Canon Inc Oscillating body apparatus, method of driving the same, light deflector and image display using light deflector
US20110199172A1 (en) * 2008-09-25 2011-08-18 Tjalf Pirk Magnetic yoke, micromechanical component, and method for the manufacture thereof
JP2011180322A (en) * 2010-03-01 2011-09-15 Brother Industries Ltd Optical scanner, method for controlling the same, and image display apparatus using the optical scanner

Similar Documents

Publication Publication Date Title
WO2013168264A1 (en) Drive device
WO2013168266A1 (en) Drive device
JP4827993B2 (en) Drive device
WO2012172652A1 (en) Drive device
EP3006395B1 (en) Drive device
JP6014234B2 (en) Drive device
WO2013168273A1 (en) Drive device
WO2013168271A1 (en) Drive device
JP2014199326A (en) Driving device
JP2019015934A (en) Driving device
WO2013168275A1 (en) Drive device
JP4286553B2 (en) Planar type actuator
WO2013168269A1 (en) Drive device
WO2013168274A1 (en) Drive device
WO2015092938A1 (en) Drive device
WO2013168272A1 (en) Drive device
JP4958195B2 (en) Drive device
WO2014020769A1 (en) Drive unit
WO2013168268A1 (en) Drive device
WO2013168267A1 (en) Drive device
WO2013168265A1 (en) Drive device
JP4958196B2 (en) Drive device
JP2021033087A (en) Mirror scanner
JPWO2013168485A1 (en) Drive device
JP5624213B2 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP