WO2013155382A1 - Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks - Google Patents

Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks Download PDF

Info

Publication number
WO2013155382A1
WO2013155382A1 PCT/US2013/036321 US2013036321W WO2013155382A1 WO 2013155382 A1 WO2013155382 A1 WO 2013155382A1 US 2013036321 W US2013036321 W US 2013036321W WO 2013155382 A1 WO2013155382 A1 WO 2013155382A1
Authority
WO
WIPO (PCT)
Prior art keywords
nbdr
primary
enodeb
bandwidth
downlink
Prior art date
Application number
PCT/US2013/036321
Other languages
French (fr)
Inventor
Alexey Vladimirovich Khoryaev
Andrey Chervyakov
Jong-Kae Fwu
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to EP13775493.3A priority Critical patent/EP2837108A4/en
Priority to CN201380017296.1A priority patent/CN104321985B/en
Publication of WO2013155382A1 publication Critical patent/WO2013155382A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments pertain to wireless communications. More particularly, the present disclosure relates to support for narrow bandwidth devices operating in a wide bandwidth broadband network through the provision of narrowband control channel transmissions over carriers of a new carrier type (NCT).
  • NCT new carrier type
  • UEs operating in a typical wireless network can include terminals for use by a human user as well as machine-type communication (MTC) devices and machine-to -machine devices (M2M) that often operate with little or no regular human interaction.
  • MTC and M2M devices do not require high throughput and low latency performance characteristics and thus can successfully operate in narrow signal bandwidths, for example 1.4 MHz and 3 MHz signal bandwidths.
  • Recent trends have shown an increased interest in providing support for narrow bandwidth MTC and M2M devices operating in a cell using a wider bandwidth.
  • Mobile network operators may wish to introduce support of narrow bandwidth devices because of demands from the low end MTC market to substantially decrease the cost of LTE terminal.
  • legacy systems do not support operation of narrow bandwidth devices.
  • LTE legacy systems use wide bandwidth transmission of LTE control channels on the downlink and MTC and M2M devices are thereby required to support wide bandwidth signals in order to reliably operate on the broadband network.
  • FIG. 1 illustrates an example portion of a wireless communications network according to some embodiments.
  • FIG. 2 illustrates eNodeB transmissions in accordance with some embodiments.
  • FIG. 3 is a block diagram of a narrow bandwidth device in accordance with example embodiments.
  • FIG. 4 is a flow diagram of a procedure for operating a narrow bandwidth device in accordance with example embodiments.
  • FIG. 5 is a block diagram of an eNodeB in accordance with example embodiments.
  • FIG. 6 is a flow diagram of a method for communicating with a narrow bandwidth device operating a wide bandwidth broadband network.
  • eNodeBs enhanced Node Bs
  • UEs user equipment
  • NCTs new carrier types
  • the methods and systems described herein incorporate UE-based and eNodeB-assisted techniques for operating on a narrow bandwidth within a wide bandwidth broadband network by receiving control channels over an NCT carrier.
  • narrow bandwidth device regions are allocated in a downlink and/or uplink subframe and control channels are allocated within that narrow bandwidth device region.
  • Cell-specific reference signals may be excluded on NCT carriers at certain sub frames.
  • FIG. 1 illustrates an example portion of a wireless communications network 100 in which example embodiments may be implemented.
  • the wireless communications network 100 comprises an evolved universal terrestrial radio access network (EUTRAN) using the 3rd Generation partnership Project (3GPP) long term evolution (LTE) standard.
  • the wireless communications network 100 includes an evolved Node B (eNodeB) 110. While only one eNodeB 110 is depicted, it will be understood that the wireless communications network 100 may include more than one eNodeB 110.
  • the eNodeB 110 serves a certain geographic area, or cell 120.
  • One or more user equipments (UEs) 130 may associate with the eNodeB 110 when the UE 130 is within the cell 120.
  • UEs user equipments
  • the UE 130 may be a UE of a type typically controlled by, used, or operated by a human user.
  • the UE 130 may be a smartphone, tablet computer, or laptop computer.
  • the UE 130 may communicate with the eNodeB 110 over an uplink 140a and downlink 140b.
  • One or more machine type communication (MTC) UEs 150 may also associate with the eNodeB 110 when the MTC UE 150 is within the cell 120.
  • the MTC UE 150 may communicate with the eNodeB 110 over an uplink 160a and downlink 160b.
  • the MTC UE 150 may transmit infrequently when compared to, for example, the UE 130, and the MTC UE 150 may operate using a relatively low data rate and exhibit low power consumption relative to the UE 130.
  • the MTC UE 150 may be a low power device.
  • wireless network specifications such as for example the 3GPP LTE specification, may prohibit or eliminate the usage of narrow bandwidth devices such as the MTC UE 150 in order to optimize performance and data rates for wide bandwidth devices such as the UE 130.
  • the 3 GPP LTE specification specifies wideband transmission of control channels on the downlink such that control channels are transmitted over a control channel region in a wideband (e.g., 10 MHz). This may restrict operation of the narrow bandwidth MTC UE 150 within the broadband network, because the MTC UE 150 typically operates with bandwidths of 1.4MHz or 3 MHz.
  • the legacy PDCCH channel is always transmitted in distributed mode over the whole signal bandwidth, which makes the PDCCH channel impossible to decode for devices operating in narrow bandwidth.
  • the new enhanced physical downlink control channel may be configured to be transmitted in localized mode and perform resource assignment within a localized part of full system bandwidth, and the MTC UE 150 may be able to decode the ePDCCH before receiving the assigned data resource.
  • Example embodiments use carriers of one or more new carrier types (NCT), to be introduced with 3GPP LTE Release 12, for narrow bandwidth control channel and data channel communications between the eNodeB 110 and the MTC UE 150.
  • NCT new carrier type
  • Example embodiments provide for localized transmission of control channels, for example ePDCCH, within a narrow bandwidth device region (NBDR) over NCT carriers. This may enable or permit operation of narrow bandwidth devices, for example the MTC UE 150, in a wide bandwidth broadband network.
  • FIG. 2 illustrates allocations of a wideband downlink sub frame in accordance with at least one example embodiment.
  • a downlink frame 200 of a signal used to transmit data may include a first slot 202 and a second slot 204.
  • a primary NBDR 210 may be located in the central portion of the signal bandwidth spectrum where the eNodeB 110 transmits primary synchronization signals (PSS) 212, secondary synchronization signals (SSS) 214, and the physical broadcast channel (PBCH) 216.
  • the primary NBDR 210 may share a first slot 202 with the PSS 212 and the SSS 214.
  • the downlink subframe 218 may have a bandwidth of at least 10 MHz.
  • the primary NBDR 210 may have a bandwidth of 3 MHz or less.
  • the primary NBDR 210 may have a bandwidth of 1.4 MHz or 3 MHz. Accordingly, the PSS/SSS 212, 214 may be limited to transmission within a narrow bandwidth allocation. Because the bandwidth of the PSS/SSS 212, 214 is limited to narrow bandwidths, either or both the MTC UE 150 and the wideband UE 130 are able to perform system synchronization and are able to process the PSS/SSS 212, 214.
  • the eNodeB 110 may use the primary NBDR 210 for initial synchronization, carrying of the system control information, and indication of the secondary NBDR's 220 position.
  • Example embodiments may provide localized or distributed ePDCCH and ePHICH resource mapping solutions as shown in FIG. 2.
  • the ePDCCH and ePHICH may comprise contiguous physical resource blocks
  • PRBs Physical Downlink Control Channels
  • ePDCCH and ePHICH may be included in non-contiguous PRBs.
  • the primary NBDR 210 may also include control channel elements (CCEs) of the ePDCCH.
  • the CCEs may include common or UE-specific ePDCCH search spaces (not shown) to enable the eNodeB 110 to broadcast control system information and to schedule downlink and uplink transmissions between the eNodeB 110 and UEs being served by the eNodeB 110, including both narrow bandwidth devices such MTC UE 150 and broad bandwidth devices such as UE 130.
  • the number of available CCEs within the primary NBDR 210 may be limited by bandwidth. Therefore, the size of the ePDCCH search space may be reduced and the number of blind decodings may be reduced, resulting in improved performance for downlink control information (DCI) decoding.
  • DCI downlink control information
  • the primary NBDR 210 may further include a master information block (MIB) (not shown) and system information broadcast (SIB) messages.
  • MIB master information block
  • SIB system information broadcast
  • the eNodeB 110 may transmit a MIB in a broadcast channel, for example a physical broadcast channel (PBCH) 216.
  • PBCH physical broadcast channel
  • the eNodeB 110 may transmit SIB messages in a shared channel, for example a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the eNodeB 110 may transmit the downlink subframe 218 to the MTC UE 150 using carriers of a carrier type.
  • the carriers may be legacy carriers or new carrier type (NCT) carriers defined in Release 12 or later of a standard of the 3GPP LTE family of standards.
  • the primary NBDR 210 may be aligned with the physical structure of the ePDCCH (or equivalent) on the NCT carrier.
  • the eNodeB 110 excludes transmission of cell-specific reference signals (CRSs) on NCT subcarriers in one or more subframes. In some example embodiments, the eNodeB 110 excludes transmission of CRSs on NCT subcarriers in all subframes. In example embodiments, the eNodeB 110 utilizes downlink demodulation reference signal (DMRS)-based transmission modes, which are UE-specific rather than cell specific. The removal of CRSs in NCT subcarriers reduces reference signal overhead and facilitates usage of high capacity MIMO transmission modes.
  • DMRS downlink demodulation reference signal
  • the eNodeB 110 may further configure at least one secondary NBDR 220, 230 in a portion of the total signal bandwidth spectrum.
  • the eNodeB 110 uses the secondary NBDRs 220, 220 for data communication with the narrow bandwidth MTC UE 150, and the eNodeB 110 may use one or more secondary NBDRs 220, 230 to increase the number of MTC UEs 150 that can
  • the MTC UEs assigned to a particular secondary NBDR 220, 230 may periodically switch to the primary NBDR 210 to receive synchronization signals PSS/SSS 212, 214.
  • synchronization signals for synchronizing the MTC UE 150 may be defined within the secondary NBDRs 220, 230.
  • the eNodeB 110 may use the ePDCCH within the primary NBDR 210 to schedule allocations in the secondary NBDRs 220, 230 and vice versa.
  • the secondary NBDRs 220, 230 may be configured by eNodeB 110 using higher layer signaling for each supported bandwidth.
  • the eNodeB 110 may use the primary NBDR 210 for the assignment of secondary NBDRs 220, 230 or for the assignment of a consecutive pattern of different secondary NBDRs 220, 230.
  • the eNodeB 110 may provide this information using a physical control channel, or the eNodeB 110 may provide this information using higher layer signaling, for example, radio resource control (RRC) signaling, system information signaling, broadcast control signaling, or media access control (MAC) signaling.
  • RRC radio resource control
  • MAC media access control
  • information for the secondary NBDR 220, 230 may include a value indicating the number of secondary NBDRs 220, 230 included within the current subframe or a number of secondary NBDRs 220, 230 to be included in future subframes.
  • the eNodeB 110 may transmit higher layer control signaling in either the primary NBDR 210 or the secondary NBDRs 220, 230.
  • the eNodeB 110 may assign secondary NBDDRs 220, 230 to achieve frequency diversity or frequency selectivity gains.
  • an MTC UE 150 may scan candidate secondary NBDRs 220, 230 and report a preferred secondary NBDR 220, 230 to the eNodeB 110.
  • the MTC UE 150 may report a channel quality metric.
  • the eNodeB 110 may assign the secondary NBDR 220, 230 for MTC UE 150 operation.
  • the eNodeB 110 may use frequency diversity to assign secondary NBDRs 220, 230 to the MTC UE 150 using a pre-defined frequency hopping pattern so that in different transmit time intervals, the MTC UE 150 transmits or receives signals at different frequencies.
  • the eNodeB 110 may change the location of the primary and secondary NBDRs 210, 220, 230 semi- statically or dynamically, or the eNodeB 110 may configure the locations according to a predefined pattern for each narrow bandwidth device or group of devices served by the eNodeB 110.
  • the location of the primary NBDR 210 may be fixed and defined at the frequency location where the eNodeB 110 transmits synchronization signals PSS/SSS 212, 214 and broadcast channel PBCH 216. Therefore, the MTC UE 150 should support bandwidths of at least 1.4 MHz.
  • the primary NBDR 210 can further be used for data transmission or data communication between the MTC UE 150 and the eNodeB 110 if the primary NBDR 210 includes data resources in addition to the above-described synchronization, system, and configuration information.
  • PUSCH physical uplink shared channel
  • PRBs physical resource blocks
  • the size or position of the PUSCH allocation maybe controlled through DCIs transmitted inside or within a certain PRB offset relative to the downlink NBDR configured for communication with the MTC UE 150.
  • each downlink NBDR may be associated with one or several uplink NBDRs.
  • the relationship between uplink and downlink NBDRs may be configured by higher layer signaling or defined in a specification of the 3GPP LTE family of specifications.
  • FIG. 3 shows the basic components of an MTC UE 150 capable of operating as a narrow bandwidth device in a broadband network.
  • the MTC UE 150 includes one or more antennas 310 arranged to communicate with a base station (BS), the eNodeB 110, or other types of wireless local area network (WLAN) access points.
  • the MTC UE 150 further includes a digital-to-analog converter (DAC)/analog-to-digital converter (ADC) module 320, a baseband processing module 330, a radio frequency (RF) receiver 340, a processor 350, instructions 355, and a memory 360.
  • DAC digital-to-analog converter
  • ADC analog-to-digital converter
  • RF radio frequency
  • Example embodiments allow a narrow bandwidth wireless device MTC UE 150 to monitor a part ⁇ e.g. , 1.4 MHz or 3 MHz) of the wide bandwidth spectrum (e.g., 10 or 20 MHz).
  • the bandwidth reduction and corresponding signal processing for the narrow bandwidth wireless device can be performed either in a RF receiver 340 or in a baseband processing module 330 for downlink only, uplink only or both downlink and uplink.
  • the downlink signal can be received on the antenna 310.
  • the RF receiver 340 can be configured to receive or transmit an analog signal and one or more primary NBDRs 210 and secondary NBDRs 220, 230.
  • the RF receiver 340, the DAC/ADC module 320, and a baseband processing module 330 of the MTC UE 150 may be arranged to support narrow bandwidth signal processing.
  • the DAC/ADC module 320 may be arranged to convert between an analog channel signal and a digital modulated signal, which may be decoded (for reception) or encoded (for transmission).
  • the baseband processing module 330 may transmit a command to the RF receiver 340 to apply a carrier offset for the secondary
  • the RF receiver 340 may further be tuned to a center of the assigned secondary NBDR 220, 230 for further filtering and processing.
  • the carrier offset mechanism implemented in the analog or digital domain, can allow the components of the MTC UE 150 to operate at the narrow bandwidth, and provide switching between the primary NBDR 210 and the secondary NBDR 220, 230.
  • the RF receiver 340 may receive the full wide bandwidth subframe, which passes through the DAC/ADC module 320.
  • the baseband processing module 330 filters the specified NBDR 210, 220, 230.
  • the MC UE 150 may be characterized as having a simpler or more cost-effective design because processing of the NBDR 210, 220, 230 may be performed in the baseband processing module 330.
  • the processor 350 may include logic or code to enable the MTC UE 150 to process signals received from the network through the antenna 310.
  • the processor 350 may include code or other instructions 355 to allow the MTC UE 150 to operate in a narrow bandwidth in a wide bandwidth broadband network.
  • the instructions 355 may further allow the MTC UE 150 to process narrowband control channel transmissions received within a narrowband device region of a downlink subframe (e.g. , downlink subframe 218).
  • the instructions 355 may additionally or alternatively reside in the memory 360.
  • FIG. 4 illustrates operations implemented by a UE, for example the MTC UE 150, for communicating in a wide bandwidth broadband network.
  • the MTC UE 150 receives a primary NBDR 210.
  • the primary NBDR 210 may include an ePDCCH, an ePHICH, and a PDSCH.
  • the primary NBDR 210 may have a bandwidth of 3 MHz or less and the primary NBDR 210 may be a subset of frequency resources within a wide bandwidth subframe with a bandwidth of at least 10 MHz.
  • the MTC UE 150 retrieves, from the primary NBDR 210, configuration information for at least one secondary NBDR 220, 230.
  • the MTC UE 150 may select a preferred secondary NBDR 220, 230 from the at least one secondary NBDR 220, 230, and the MTC UE 150 may notify the eNodeB 110 of this selection.
  • the MTC UE 150 may generate a carrier signal offset for the at least one secondary NBDR 220, 230 relative to the subcarrier of the primary NBDR 210 and then adjust a radio frequency (RF) receiver 340 to a center frequency of the secondary NBDR 220, 230.
  • RF radio frequency
  • FIG. 5 illustrates an example block diagram showing details of eNodeB 110 according to some embodiments.
  • the eNodeB 110 includes a processor 500, a memory 510, a transceiver 520, and instructions 525.
  • the eNodeB 110 may include other elements (not shown).
  • the processor 500 comprises one or more central processing units (CPUs), graphics processing units (CPUs), or both.
  • the processor 500 provides processing and control functionalities for the eNodeB 110.
  • Memory 510 comprises one or more transient and static memory units configured to store instructions 525 and data for the eNodeB 110.
  • the transceiver 520 comprises one or more transceivers including a multiple-input and multiple-output (MIMO) antenna to support MIMO communications.
  • the transceiver 520 receives uplink transmissions and transmits downlink transmissions, among other things, from and to the MTC UE 150 and the UE 130 respectively.
  • MIMO multiple-input and multiple-output
  • the instructions 525 comprise one or more sets of instructions or software executed on a computing device (or machine) to cause such computing device (or machine) to perform any of the methodologies discussed herein.
  • the instructions 525 (also referred to as computer- or machine-executable instructions) may reside, completely or at least partially, within the processor 500 and/or the memory 510 during execution thereof by the eNodeB 110.
  • the processor 500 and memory 510 also comprise machine-readable media.
  • FIG. 6 illustrates operations for communicating with a narrow bandwidth device, for example MTC UE 150, in a wide bandwidth broadband network.
  • the eNodeB 110 configures a primary NBDR 210 of a downlink sub frame 218.
  • the primary NBDR 210 may be located in a central portion of a signal bandwidth spectrum. The primary NBDR 210 was described above with respect to FIG. 2.
  • the eNodeB 110 allocates, within the primary NBDR 210, an enhanced physical data control channel (ePDCCH).
  • ePDCCH enhanced physical data control channel
  • the eNodeB 110 transmits the downlink sub frame 218 to the MTC UE 150 using carriers of a carrier type.
  • the carriers may be of a new carrier type (NCT) defined in a standard of the 3GPP LTE family of standards as described above with respect to FIG. 2.
  • NCT new carrier type
  • the eNodeB 110 does not transmit CRSs on NCT subcarriers at certain subframes. In other words, the eNodeB 110 excludes CRS transmission on NCT subcarriers at certain or at all subframes of the downlink frame.
  • Example embodiments described above may allow MTC UEs to coexist with wide bandwidth UEs in a wide bandwidth network.
  • Equipment costs for MTC UEs may be reduced by allowing MTC UEs to remove support for the receiving of wideband control channel information.
  • Mobile network operators may experience an increased revenue stream by providing support for MTC UEs operating in wide bandwidth networks.
  • the embodiments as described above may be implemented in various hardware configurations that may include a processor for executing instructions that perform the techniques described. Such instructions may be contained in a suitable storage medium from which they are transferred to a memory or other processor-executable medium.

Abstract

Apparatuses and methods for supporting operation of narrow bandwidth devices within a broadband network are described herein. A user equipment (UE) may retrieve control channels within a narrow bandwidth device region of a downlink subframe. The control channels may be received in a subcarrier of a new carrier type (NCT) implemented in accordance with a standard of the 3GPP family of standards. Cell-specific reference signals may be excluded on the NCT subcarrier.

Description

EVOLVED NODE B, USER EQUIPMENT, AND METHOD FOR OPERATION OF NARROW BANDWIDTH USER EQUIPMENT IN WIDE BANDWIDTH BROADBAND NETWORKS
PRIORITY APPLICATIONS
[0001] This application claims the benefit of priority to U.S. Application Serial No. 13/682,950, filed November 21 , 2012, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/624,185, filed on April 13, 2012, all of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
[0002] Embodiments pertain to wireless communications. More particularly, the present disclosure relates to support for narrow bandwidth devices operating in a wide bandwidth broadband network through the provision of narrowband control channel transmissions over carriers of a new carrier type (NCT).
BACKGROUND
[0003] Current 3r Generation Partnership Project (3 GPP) long term evolution (LTE) specifications define a scalable set of signal bandwidths, ranging from relatively low bandwidths (e.g. , 1.4 MHz and 3MHz) to relatively high bandwidths (e.g. , 20 MHz). A user equipment (UE) operating in a wireless network often supports the full set of bandwidths. Moreover, there is an underlying assumption that evolved Node Bs (eNodeBs) and UEs attached to eNodeBs use the same operating bandwidth. [0004] UEs operating in a typical wireless network can include terminals for use by a human user as well as machine-type communication (MTC) devices and machine-to -machine devices (M2M) that often operate with little or no regular human interaction. Many MTC and M2M devices do not require high throughput and low latency performance characteristics and thus can successfully operate in narrow signal bandwidths, for example 1.4 MHz and 3 MHz signal bandwidths. Recent trends have shown an increased interest in providing support for narrow bandwidth MTC and M2M devices operating in a cell using a wider bandwidth. Mobile network operators may wish to introduce support of narrow bandwidth devices because of demands from the low end MTC market to substantially decrease the cost of LTE terminal. However, due to PHY layer constraints legacy systems do not support operation of narrow bandwidth devices. For example, LTE legacy systems use wide bandwidth transmission of LTE control channels on the downlink and MTC and M2M devices are thereby required to support wide bandwidth signals in order to reliably operate on the broadband network.
[0005] Thus, there exists a general need to provide methods and apparatuses to enable or optimize operation of narrow bandwidth devices in wideband LTE deployments by providing narrow bandwidth transmission of control channels.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 illustrates an example portion of a wireless communications network according to some embodiments.
[0007] FIG. 2 illustrates eNodeB transmissions in accordance with some embodiments.
[0008] FIG. 3 is a block diagram of a narrow bandwidth device in accordance with example embodiments. [0009] FIG. 4 is a flow diagram of a procedure for operating a narrow bandwidth device in accordance with example embodiments.
[0010] FIG. 5 is a block diagram of an eNodeB in accordance with example embodiments. [0011] FIG. 6 is a flow diagram of a method for communicating with a narrow bandwidth device operating a wide bandwidth broadband network.
DETAILED DESCRIPTION
[0012] The following description is presented to enable any person skilled in the art to create and use enhanced Node Bs (eNodeBs), user equipment (UEs), and related methods for supporting operation of narrow bandwidth UEs on new carrier types (NCTs). The methods and systems described herein incorporate UE-based and eNodeB-assisted techniques for operating on a narrow bandwidth within a wide bandwidth broadband network by receiving control channels over an NCT carrier. In at least one embodiment, narrow bandwidth device regions are allocated in a downlink and/or uplink subframe and control channels are allocated within that narrow bandwidth device region. Cell-specific reference signals may be excluded on NCT carriers at certain sub frames.
[0013] Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the scope of the present disclosure. Moreover, in the following description, numerous details are set forth for the purpose of explanation. However, one of ordinary skill in the art will realize that embodiments may be practiced without the use of these specific details. In other instances, well-known structures and processes are not shown in block diagram form in order not to obscure the description of the embodiments with unnecessary detail. Thus, the present disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
[0014] FIG. 1 illustrates an example portion of a wireless communications network 100 in which example embodiments may be implemented. In one embodiment, the wireless communications network 100 comprises an evolved universal terrestrial radio access network (EUTRAN) using the 3rd Generation partnership Project (3GPP) long term evolution (LTE) standard. In one embodiment, the wireless communications network 100 includes an evolved Node B (eNodeB) 110. While only one eNodeB 110 is depicted, it will be understood that the wireless communications network 100 may include more than one eNodeB 110. [0015] The eNodeB 110 serves a certain geographic area, or cell 120. One or more user equipments (UEs) 130 may associate with the eNodeB 110 when the UE 130 is within the cell 120. The UE 130 may be a UE of a type typically controlled by, used, or operated by a human user. For example, the UE 130 may be a smartphone, tablet computer, or laptop computer. The UE 130 may communicate with the eNodeB 110 over an uplink 140a and downlink 140b.
[0016] One or more machine type communication (MTC) UEs 150 may also associate with the eNodeB 110 when the MTC UE 150 is within the cell 120. The MTC UE 150 may communicate with the eNodeB 110 over an uplink 160a and downlink 160b. The MTC UE 150 may transmit infrequently when compared to, for example, the UE 130, and the MTC UE 150 may operate using a relatively low data rate and exhibit low power consumption relative to the UE 130. The MTC UE 150 may be a low power device.
[0017] Because human-oriented devices such as the UE 130 may have high data rates and use broader bandwidths, wireless network specifications, such as for example the 3GPP LTE specification, may prohibit or eliminate the usage of narrow bandwidth devices such as the MTC UE 150 in order to optimize performance and data rates for wide bandwidth devices such as the UE 130.
[0018] The 3 GPP LTE specification specifies wideband transmission of control channels on the downlink such that control channels are transmitted over a control channel region in a wideband (e.g., 10 MHz). This may restrict operation of the narrow bandwidth MTC UE 150 within the broadband network, because the MTC UE 150 typically operates with bandwidths of 1.4MHz or 3 MHz. The legacy PDCCH channel is always transmitted in distributed mode over the whole signal bandwidth, which makes the PDCCH channel impossible to decode for devices operating in narrow bandwidth. In future releases of LTE technology (i.e., Release 11 and beyond), the new enhanced physical downlink control channel (ePDCCH) may be configured to be transmitted in localized mode and perform resource assignment within a localized part of full system bandwidth, and the MTC UE 150 may be able to decode the ePDCCH before receiving the assigned data resource.
[0019] The use of narrow bandwidth control channels can facilitate reception of control information by narrow bandwidth devices. Example embodiments use carriers of one or more new carrier types (NCT), to be introduced with 3GPP LTE Release 12, for narrow bandwidth control channel and data channel communications between the eNodeB 110 and the MTC UE 150. Example embodiments provide for localized transmission of control channels, for example ePDCCH, within a narrow bandwidth device region (NBDR) over NCT carriers. This may enable or permit operation of narrow bandwidth devices, for example the MTC UE 150, in a wide bandwidth broadband network. [0020] FIG. 2 illustrates allocations of a wideband downlink sub frame in accordance with at least one example embodiment.
[0021] Referring to FIG. 2, in an embodiment, a downlink frame 200 of a signal used to transmit data may include a first slot 202 and a second slot 204. A primary NBDR 210 may be located in the central portion of the signal bandwidth spectrum where the eNodeB 110 transmits primary synchronization signals (PSS) 212, secondary synchronization signals (SSS) 214, and the physical broadcast channel (PBCH) 216. The primary NBDR 210 may share a first slot 202 with the PSS 212 and the SSS 214. The downlink subframe 218 may have a bandwidth of at least 10 MHz. The primary NBDR 210 may have a bandwidth of 3 MHz or less. For example, the primary NBDR 210 may have a bandwidth of 1.4 MHz or 3 MHz. Accordingly, the PSS/SSS 212, 214 may be limited to transmission within a narrow bandwidth allocation. Because the bandwidth of the PSS/SSS 212, 214 is limited to narrow bandwidths, either or both the MTC UE 150 and the wideband UE 130 are able to perform system synchronization and are able to process the PSS/SSS 212, 214. The eNodeB 110 may use the primary NBDR 210 for initial synchronization, carrying of the system control information, and indication of the secondary NBDR's 220 position.
[0022] Example embodiments may provide localized or distributed ePDCCH and ePHICH resource mapping solutions as shown in FIG. 2. For example, the ePDCCH and ePHICH may comprise contiguous physical resource blocks
(PRBs), or the ePDCCH and ePHICH may be included in non-contiguous PRBs.
[0023] The primary NBDR 210 may also include control channel elements (CCEs) of the ePDCCH. The CCEs may include common or UE-specific ePDCCH search spaces (not shown) to enable the eNodeB 110 to broadcast control system information and to schedule downlink and uplink transmissions between the eNodeB 110 and UEs being served by the eNodeB 110, including both narrow bandwidth devices such MTC UE 150 and broad bandwidth devices such as UE 130. The number of available CCEs within the primary NBDR 210 may be limited by bandwidth. Therefore, the size of the ePDCCH search space may be reduced and the number of blind decodings may be reduced, resulting in improved performance for downlink control information (DCI) decoding.
[0024] The primary NBDR 210 may further include a master information block (MIB) (not shown) and system information broadcast (SIB) messages. The eNodeB 110 may transmit a MIB in a broadcast channel, for example a physical broadcast channel (PBCH) 216. The eNodeB 110 may transmit SIB messages in a shared channel, for example a physical downlink shared channel (PDSCH).
[0025] The eNodeB 110 may transmit the downlink subframe 218 to the MTC UE 150 using carriers of a carrier type. The carriers may be legacy carriers or new carrier type (NCT) carriers defined in Release 12 or later of a standard of the 3GPP LTE family of standards. The primary NBDR 210 may be aligned with the physical structure of the ePDCCH (or equivalent) on the NCT carrier.
[0026] The eNodeB 110 excludes transmission of cell-specific reference signals (CRSs) on NCT subcarriers in one or more subframes. In some example embodiments, the eNodeB 110 excludes transmission of CRSs on NCT subcarriers in all subframes. In example embodiments, the eNodeB 110 utilizes downlink demodulation reference signal (DMRS)-based transmission modes, which are UE-specific rather than cell specific. The removal of CRSs in NCT subcarriers reduces reference signal overhead and facilitates usage of high capacity MIMO transmission modes.
[0027] The eNodeB 110 may further configure at least one secondary NBDR 220, 230 in a portion of the total signal bandwidth spectrum. The eNodeB 110 uses the secondary NBDRs 220, 220 for data communication with the narrow bandwidth MTC UE 150, and the eNodeB 110 may use one or more secondary NBDRs 220, 230 to increase the number of MTC UEs 150 that can
simultaneously be served by the eNodeB 110. In an embodiment, the MTC UEs assigned to a particular secondary NBDR 220, 230 may periodically switch to the primary NBDR 210 to receive synchronization signals PSS/SSS 212, 214. In an embodiment, synchronization signals for synchronizing the MTC UE 150 may be defined within the secondary NBDRs 220, 230.
[0028] The eNodeB 110 may use the ePDCCH within the primary NBDR 210 to schedule allocations in the secondary NBDRs 220, 230 and vice versa. The secondary NBDRs 220, 230 may be configured by eNodeB 110 using higher layer signaling for each supported bandwidth. The eNodeB 110 may use the primary NBDR 210 for the assignment of secondary NBDRs 220, 230 or for the assignment of a consecutive pattern of different secondary NBDRs 220, 230. The eNodeB 110 may provide this information using a physical control channel, or the eNodeB 110 may provide this information using higher layer signaling, for example, radio resource control (RRC) signaling, system information signaling, broadcast control signaling, or media access control (MAC) signaling. In some embodiments, information for the secondary NBDR 220, 230 may include a value indicating the number of secondary NBDRs 220, 230 included within the current subframe or a number of secondary NBDRs 220, 230 to be included in future subframes. The eNodeB 110 may transmit higher layer control signaling in either the primary NBDR 210 or the secondary NBDRs 220, 230. [0029] In at least one embodiment, the eNodeB 110 may assign secondary NBDDRs 220, 230 to achieve frequency diversity or frequency selectivity gains. In example embodiments, an MTC UE 150 may scan candidate secondary NBDRs 220, 230 and report a preferred secondary NBDR 220, 230 to the eNodeB 110. For example, the MTC UE 150 may report a channel quality metric. Based on the report, the eNodeB 110 may assign the secondary NBDR 220, 230 for MTC UE 150 operation. In further example embodiments, the eNodeB 110 may use frequency diversity to assign secondary NBDRs 220, 230 to the MTC UE 150 using a pre-defined frequency hopping pattern so that in different transmit time intervals, the MTC UE 150 transmits or receives signals at different frequencies.
[0030] The eNodeB 110 may change the location of the primary and secondary NBDRs 210, 220, 230 semi- statically or dynamically, or the eNodeB 110 may configure the locations according to a predefined pattern for each narrow bandwidth device or group of devices served by the eNodeB 110. The location of the primary NBDR 210 may be fixed and defined at the frequency location where the eNodeB 110 transmits synchronization signals PSS/SSS 212, 214 and broadcast channel PBCH 216. Therefore, the MTC UE 150 should support bandwidths of at least 1.4 MHz. In example embodiments, the primary NBDR 210 can further be used for data transmission or data communication between the MTC UE 150 and the eNodeB 110 if the primary NBDR 210 includes data resources in addition to the above-described synchronization, system, and configuration information.
[0031] While example embodiments have been described with respect to downlink communications, it will be understood that embodiments may further support or be modified to support uplink communications. In an embodiment, physical uplink shared channel (PUSCH) allocation may be arbitrarily located within the uplink bandwidth but constrained to a maximum number of contiguously located physical resource blocks (PRBs). The size or position of the PUSCH allocation maybe controlled through DCIs transmitted inside or within a certain PRB offset relative to the downlink NBDR configured for communication with the MTC UE 150. In other example embodiments, each downlink NBDR may be associated with one or several uplink NBDRs. The relationship between uplink and downlink NBDRs may be configured by higher layer signaling or defined in a specification of the 3GPP LTE family of specifications. [0032] FIG. 3 shows the basic components of an MTC UE 150 capable of operating as a narrow bandwidth device in a broadband network. The MTC UE 150 includes one or more antennas 310 arranged to communicate with a base station (BS), the eNodeB 110, or other types of wireless local area network (WLAN) access points. The MTC UE 150 further includes a digital-to-analog converter (DAC)/analog-to-digital converter (ADC) module 320, a baseband processing module 330, a radio frequency (RF) receiver 340, a processor 350, instructions 355, and a memory 360.
[0033] Example embodiments allow a narrow bandwidth wireless device MTC UE 150 to monitor a part {e.g. , 1.4 MHz or 3 MHz) of the wide bandwidth spectrum (e.g., 10 or 20 MHz). The bandwidth reduction and corresponding signal processing for the narrow bandwidth wireless device can be performed either in a RF receiver 340 or in a baseband processing module 330 for downlink only, uplink only or both downlink and uplink. The downlink signal can be received on the antenna 310. The RF receiver 340 can be configured to receive or transmit an analog signal and one or more primary NBDRs 210 and secondary NBDRs 220, 230.
[0034] In an embodiment, the RF receiver 340, the DAC/ADC module 320, and a baseband processing module 330 of the MTC UE 150 may be arranged to support narrow bandwidth signal processing. The DAC/ADC module 320 may be arranged to convert between an analog channel signal and a digital modulated signal, which may be decoded (for reception) or encoded (for transmission). In example embodiments, after decoding of system information in the primary NBDR 210, in embodiments for which the eNodeB 110 has assigned secondary NBDRs 220, 230, the baseband processing module 330 may transmit a command to the RF receiver 340 to apply a carrier offset for the secondary
NBDR 220, 230 and to adjust the MTC UE 150 frequency. The RF receiver 340 may further be tuned to a center of the assigned secondary NBDR 220, 230 for further filtering and processing. The carrier offset mechanism, implemented in the analog or digital domain, can allow the components of the MTC UE 150 to operate at the narrow bandwidth, and provide switching between the primary NBDR 210 and the secondary NBDR 220, 230.
[0035] In other example embodiments, the RF receiver 340 may receive the full wide bandwidth subframe, which passes through the DAC/ADC module 320. In at least these embodiments, the baseband processing module 330 filters the specified NBDR 210, 220, 230. In at least these example embodiments, the MC UE 150 may be characterized as having a simpler or more cost-effective design because processing of the NBDR 210, 220, 230 may be performed in the baseband processing module 330.
[0036] The processor 350 may include logic or code to enable the MTC UE 150 to process signals received from the network through the antenna 310. The processor 350 may include code or other instructions 355 to allow the MTC UE 150 to operate in a narrow bandwidth in a wide bandwidth broadband network. The instructions 355 may further allow the MTC UE 150 to process narrowband control channel transmissions received within a narrowband device region of a downlink subframe (e.g. , downlink subframe 218). The instructions 355 may additionally or alternatively reside in the memory 360.
[0037] FIG. 4 illustrates operations implemented by a UE, for example the MTC UE 150, for communicating in a wide bandwidth broadband network. In operation 410, the MTC UE 150 receives a primary NBDR 210. The primary NBDR 210 may include an ePDCCH, an ePHICH, and a PDSCH. The primary NBDR 210 may have a bandwidth of 3 MHz or less and the primary NBDR 210 may be a subset of frequency resources within a wide bandwidth subframe with a bandwidth of at least 10 MHz.
[0038] In operation 420, the MTC UE 150 retrieves, from the primary NBDR 210, configuration information for at least one secondary NBDR 220, 230. The MTC UE 150 may select a preferred secondary NBDR 220, 230 from the at least one secondary NBDR 220, 230, and the MTC UE 150 may notify the eNodeB 110 of this selection. The MTC UE 150 may generate a carrier signal offset for the at least one secondary NBDR 220, 230 relative to the subcarrier of the primary NBDR 210 and then adjust a radio frequency (RF) receiver 340 to a center frequency of the secondary NBDR 220, 230.
[0039] FIG. 5 illustrates an example block diagram showing details of eNodeB 110 according to some embodiments. The eNodeB 110 includes a processor 500, a memory 510, a transceiver 520, and instructions 525. The eNodeB 110 may include other elements (not shown). [0040] The processor 500 comprises one or more central processing units (CPUs), graphics processing units (CPUs), or both. The processor 500 provides processing and control functionalities for the eNodeB 110. Memory 510 comprises one or more transient and static memory units configured to store instructions 525 and data for the eNodeB 110. The transceiver 520 comprises one or more transceivers including a multiple-input and multiple-output (MIMO) antenna to support MIMO communications. The transceiver 520 receives uplink transmissions and transmits downlink transmissions, among other things, from and to the MTC UE 150 and the UE 130 respectively.
[0041] The instructions 525 comprise one or more sets of instructions or software executed on a computing device (or machine) to cause such computing device (or machine) to perform any of the methodologies discussed herein. The instructions 525 (also referred to as computer- or machine-executable instructions) may reside, completely or at least partially, within the processor 500 and/or the memory 510 during execution thereof by the eNodeB 110. The processor 500 and memory 510 also comprise machine-readable media.
[0042] FIG. 6 illustrates operations for communicating with a narrow bandwidth device, for example MTC UE 150, in a wide bandwidth broadband network. In operation 610, the eNodeB 110 configures a primary NBDR 210 of a downlink sub frame 218. The primary NBDR 210 may be located in a central portion of a signal bandwidth spectrum. The primary NBDR 210 was described above with respect to FIG. 2.
[0043] In operation 620, the eNodeB 110 allocates, within the primary NBDR 210, an enhanced physical data control channel (ePDCCH). [0044] In operation 630, the eNodeB 110 transmits the downlink sub frame 218 to the MTC UE 150 using carriers of a carrier type. The carriers may be of a new carrier type (NCT) defined in a standard of the 3GPP LTE family of standards as described above with respect to FIG. 2. In operation 640, the eNodeB 110 does not transmit CRSs on NCT subcarriers at certain subframes. In other words, the eNodeB 110 excludes CRS transmission on NCT subcarriers at certain or at all subframes of the downlink frame.
[0045] Example embodiments described above may allow MTC UEs to coexist with wide bandwidth UEs in a wide bandwidth network. Equipment costs for MTC UEs may be reduced by allowing MTC UEs to remove support for the receiving of wideband control channel information. Mobile network operators may experience an increased revenue stream by providing support for MTC UEs operating in wide bandwidth networks.
[0046] The embodiments as described above may be implemented in various hardware configurations that may include a processor for executing instructions that perform the techniques described. Such instructions may be contained in a suitable storage medium from which they are transferred to a memory or other processor-executable medium.
[0047] It will be appreciated that, for clarity purposes, the above description describes some embodiments with reference to different functional units or processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processors or domains may be used without detracting from embodiments. For example, functionality illustrated to be performed by separate processors or controllers may be performed by the same processor or controller. Hence, references to specific functional units are only to be seen as references to suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
[0048] Although the present inventive subject matter has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. One skilled in the art would recognize that various features of the described embodiments may be combined in accordance with the disclosure. Moreover, it will be appreciated that various modifications and alterations may be made by those skilled in the art without departing from the scope of the disclosure. [0049] The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.

Claims

CLAIMS What is claimed is:
1. User Equipment (UE) comprising processing circuitry to:
operate, using a narrow bandwidth, in a wide bandwidth broadband network;
retrieve, from a downlink subframe, channels within a primary narrow bandwidth device region (NBDR), the primary NBDR being a subset of frequency resources within a wide bandwidth subframe, the primary NBDR being allocated within a central part of a signal spectrum, and the channels including a control channel; and
process control channels in the primary NBDR.
2. The UE of claim 1 , wherein the channels include an enhanced physical downlink control channel (ePDCCH), an enhanced physical hybrid ARQ indicator channel (ePHICH), and a physical downlink shared channel (PDSCH).
3. The UE of claim 1 , wherein
the primary NBDR is received in a new carrier type (NCT) implemented in accordance with a standard of the 3 GPP family of standards, and
cell-specific reference signals (CRSs) are suppressed on the NCT at one or more downlink subframes of a downlink frame.
4. The UE of claim 3, wherein CRSs are suppressed on all downlink subframes of the downlink frame.
5. The UE of claim 1 , wherein the processing circuitry is further configured to: retrieve, from the primary NBDR, configuration information for at least one secondary NBDR, the at least one secondary NBDR using frequency resources within the downlink subframe that are not used by the primary NBDR.
6. The UE of claim 5, wherein the processing circuitry is further configured to: process baseband signals to receive primary NBDR information; generate a carrier signal offset for the at least one secondary NBDR and adjust a receiver to a center frequency of the at least one secondary NBDR.
7. The UE of claim 5, further configured to:
retrieve information for more than one secondary NBDR;
select a preferred secondary NBDR from the more than one secondary
NBDR; and
notify an evolved Node B (eNodeB) of the selection.
8. An evolved Node B (eNodeB) to communicate with a narrow bandwidth device in a wide bandwidth broadband network, the eNodeB comprising:
a configuration module arranged to
configure a primary narrow bandwidth device region (NBDR) of a downlink subframe, and
allocate a downlink control channel within the primary NBDR; and
a transceiver module arranged to transmit the downlink subframe to the narrow bandwidth device on subcarriers of a first carrier type.
9. The eNodeB of claim 8, wherein the eNodeB is further configured to exclude transmission of cell-specific reference signals (CRSs) on carriers of the first carrier type.
10. The eNodeB of claim 8, wherein the configuration module is further arranged to allocate, within the primary NBDR, an enhanced physical data control channel (ePDCCH), an enhanced physical hybrid ARQ indicator channel (ePHICH), and a physical downlink shared channel (PDSCH).
11. The eNodeB of claim 8, wherein the primary NBDR is allocated in a central part of a signal bandwidth spectrum.
12. The eNodeB of claim 11, wherein the primary NBDR is aligned with a synchronization signal in the central part of the signal bandwidth spectrum.
13. The eNodeB of claim 8, wherein the primary NBDR has a bandwidth lower than a total signal bandwidth available for transmission at eNodeB.
14. The eNodeB of claim 8, wherein the first carrier type is a new carrier type (NCT) implemented in accordance with a standard of the 3GPP family of standards.
15. The eNodeB of claim 8, wherein the transceiver module is further arranged to transmit at least one secondary NBDR in other parts of a signal bandwidth spectrum.
16. The eNodeB of claim 15, wherein control signaling is used to assign the at least one secondary NBDR.
17. A method for communicating with a narrow bandwidth device in a wide bandwidth broadband network, the method comprising:
configuring, at an evolved Node B (eNodeB), a primary narrow bandwidth device region (NBDR) of a downlink subframe, the primary NBDR being located in a central portion of a signal bandwidth spectrum;
allocating, within the primary NBDR, an enhanced physical downlink control channel (ePDCCH);
transmitting the downlink subframe to the narrow bandwidth device using subcarriers of a first carrier type;
avoiding transmission of cell-specific reference signals (CRSs) on subcarriers of the first carrier type.
18. The method of claim 17, wherein the allocating further comprises allocating an enhanced physical hybrid ARQ indicator channel (ePHICH) and a physical downlink shared channel (PDSCH) and wherein the transmitting transmits the downlink subframe using subcarriers of a new carrier type (NCT) in accordance with a standard of the 3GPP family of standards.
19. The method of claim 17, wherein the primary NBDR has a bandwidth which is lower than or equal to the total signal bandwidth available for signal transmission.
20. The method of claim 17, further comprising aligning the primary NBDR with a synchronization signal in the central portion of the signal bandwidth spectrum.
21. The method of claim 17, further comprising:
configuring at least one secondary NBDR in a separate portion of the signal bandwidth spectrum from the primary NBDR;
including information for the at least one secondary NBDR within the primary NBDR.
22. The method of claim 21 , wherein the information for the at least one secondary NBDR comprises at least one a user equipment (UE) assignment of secondary NBDRs, a secondary NBDR frequency hopping pattern, and a value indicating a number of secondary NBDRs.
23. A method for communicating, by a narrow bandwidth device, in a wide bandwidth broadband network, the method comprising:
receiving a primary narrow bandwidth device region (NBDR) having allocated therein an enhanced physical data control channel (ePDCCH), an enhanced physical hybrid ARQ indicator channel (ePHICH), and a physical downlink shared channel (PDSCH), the primary NBDR having a bandwidth of 3 megahertz (MHz) or less and the primary NBDR being a subset of frequency resources within a wide bandwidth subframe with a bandwidth of at least 10 MHz ; and
retrieving configuration information, from the primary NBDR, for at least one secondary NBDR.
24. The method of claim 23, further comprising: selecting a preferred secondary NBDR from the at least one secondary NBDR; and
notifying an evolved Node B (eNodeB) of the selection.
25. The method of claim 23, further comprising:
generating a carrier signal offset for the at least one secondary NBDR relative to the subcarrier of the primary NBDR; and
adjusting a radio frequency (RF) receiver to a center frequency of the secondary NBDR.
26. At least one machine-readable storage medium comprising instructions that, when executed on a machine, cause the machine to execute the method of any one of claims 17-22.
27. At least one machine-readable storage medium comprising instructions that, when executed on a machine, cause the machine to execute the method of any one of claims 23-25.
PCT/US2013/036321 2012-04-13 2013-04-12 Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks WO2013155382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13775493.3A EP2837108A4 (en) 2012-04-13 2013-04-12 Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
CN201380017296.1A CN104321985B (en) 2012-04-13 2013-04-12 Evolved node B, user equipment and method for operating narrow bandwidth user equipment in the broadband network of wide bandwidth

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261624185P 2012-04-13 2012-04-13
US61/624,185 2012-04-13
US13/682,950 2012-11-21
US13/682,950 US9232437B2 (en) 2012-04-13 2012-11-21 Evolved node B, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks

Publications (1)

Publication Number Publication Date
WO2013155382A1 true WO2013155382A1 (en) 2013-10-17

Family

ID=49324975

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/US2013/035946 WO2013155167A1 (en) 2012-04-13 2013-04-10 Mapping of enhanced physical downlink control channels in a wireless communication network
PCT/US2013/035973 WO2013155182A1 (en) 2012-04-13 2013-04-10 An apparatus and method to enable device-to-device (d2d) discovery in cellular networks
PCT/US2013/036085 WO2013155253A1 (en) 2012-04-13 2013-04-11 Multi-access scheme and signal structure for d2d communications
PCT/US2013/036120 WO2013155265A1 (en) 2012-04-13 2013-04-11 D2d connection recovery schemes
PCT/US2013/036305 WO2013155373A1 (en) 2012-04-13 2013-04-12 Adaptive ul-dl tdd configurations in a heterogneous network
PCT/US2013/036321 WO2013155382A1 (en) 2012-04-13 2013-04-12 Evolved node b, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
PCT/US2013/036364 WO2013155411A1 (en) 2012-04-13 2013-04-12 Small data communications in a wireless communication network
PCT/US2013/036417 WO2013155443A1 (en) 2012-04-13 2013-04-12 Supported, self-optimizing wireless networks, optimized with respect to energy, mobility, and capacity
PCT/US2013/036445 WO2013155459A1 (en) 2012-04-13 2013-04-12 Apparatus for improved mobility in a wireless heterogeneous network

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/US2013/035946 WO2013155167A1 (en) 2012-04-13 2013-04-10 Mapping of enhanced physical downlink control channels in a wireless communication network
PCT/US2013/035973 WO2013155182A1 (en) 2012-04-13 2013-04-10 An apparatus and method to enable device-to-device (d2d) discovery in cellular networks
PCT/US2013/036085 WO2013155253A1 (en) 2012-04-13 2013-04-11 Multi-access scheme and signal structure for d2d communications
PCT/US2013/036120 WO2013155265A1 (en) 2012-04-13 2013-04-11 D2d connection recovery schemes
PCT/US2013/036305 WO2013155373A1 (en) 2012-04-13 2013-04-12 Adaptive ul-dl tdd configurations in a heterogneous network

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/US2013/036364 WO2013155411A1 (en) 2012-04-13 2013-04-12 Small data communications in a wireless communication network
PCT/US2013/036417 WO2013155443A1 (en) 2012-04-13 2013-04-12 Supported, self-optimizing wireless networks, optimized with respect to energy, mobility, and capacity
PCT/US2013/036445 WO2013155459A1 (en) 2012-04-13 2013-04-12 Apparatus for improved mobility in a wireless heterogeneous network

Country Status (13)

Country Link
US (14) US9143984B2 (en)
EP (11) EP2837109A4 (en)
JP (6) JP5986289B2 (en)
KR (3) KR101598476B1 (en)
CN (9) CN104303540B (en)
AU (2) AU2013245908B2 (en)
CA (2) CA2869000C (en)
ES (3) ES2684535T3 (en)
HU (3) HUE039147T2 (en)
MX (3) MX364604B (en)
MY (1) MY179770A (en)
RU (3) RU2593269C2 (en)
WO (9) WO2013155167A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602349A (en) * 2013-10-31 2015-05-06 索尼公司 Carrier allocation device and method and terminal
US9232437B2 (en) 2012-04-13 2016-01-05 Intel Corporation Evolved node B, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
CN107005297A (en) * 2014-11-05 2017-08-01 英特尔Ip公司 It is used for user equipment and method that CSI is measured in the case where bandwidth is supported to reduce
CN108432285A (en) * 2016-02-05 2018-08-21 华为技术有限公司 A kind of transmission method, the apparatus and system of physical down channel
US11224015B2 (en) 2014-10-31 2022-01-11 Qualcomm Incorporated Dynamic bandwidth switching for reducing power consumption in wireless communication devices

Families Citing this family (514)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US20130336193A1 (en) * 2012-06-19 2013-12-19 Qualcomm Incorporated Network information for assisting user equipment
US9055534B2 (en) * 2011-01-10 2015-06-09 Lg Electronics Inc. Method for determining transmission power for transmitting uplink signals between terminals in a wireless communication system that supports terminal-to-terminal communication, and apparatus therefor
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
US9312993B2 (en) * 2011-06-29 2016-04-12 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
JP5772345B2 (en) * 2011-07-25 2015-09-02 富士通株式会社 Parameter setting apparatus, computer program, and parameter setting method
US8750896B2 (en) 2011-10-13 2014-06-10 At&T Mobility Ii Llc Femtocell measurements for macro beam steering
US8811994B2 (en) 2011-12-06 2014-08-19 At&T Mobility Ii Llc Closed loop heterogeneous network for automatic cell planning
CN105517023B (en) * 2012-01-19 2020-06-26 华为技术有限公司 Method and device for evaluating network performance
US9049708B2 (en) 2012-02-03 2015-06-02 Interdigital Patent Holdings, Inc. Method and apparatus for coexistence among wireless transmit/receive units (WTRUs) operating in the same spectrum
EP2639989A1 (en) 2012-03-16 2013-09-18 Panasonic Corporation Search space for ePDCCH control information in an OFDM-based mobile communication system
US9590780B2 (en) * 2012-04-10 2017-03-07 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink signals in wireless communication systems
US9252908B1 (en) 2012-04-12 2016-02-02 Tarana Wireless, Inc. Non-line of sight wireless communication system and method
US9585176B2 (en) * 2012-04-17 2017-02-28 Qualcomm Incorporated Methods and apparatus for opportunistic scheduling of peer to peer links in wide area network
EP2836038A4 (en) * 2012-04-20 2015-04-15 Huawei Tech Co Ltd Pilot signal sending method and receiving method, user equipment, and base station
US9294161B2 (en) * 2012-04-26 2016-03-22 Huawei Technologies Co., Ltd. System and method for interference coordination
US9510212B2 (en) * 2012-04-27 2016-11-29 Qualcomm Incorporated Signal designs for densely deployed network
JP2015520556A (en) 2012-04-27 2015-07-16 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for optimizing proximity data path setup
EP3897016A3 (en) 2012-04-27 2021-11-24 Interdigital Patent Holdings, Inc. Method and apparatus for provisioning of d2d policies for a wireless transmit receive unit (wtru)
US9451595B2 (en) * 2012-04-27 2016-09-20 Qualcomm Incorporated Methods and apparatus for TDD reconfiguration
US9078144B2 (en) * 2012-05-02 2015-07-07 Nokia Solutions And Networks Oy Signature enabler for multi-vendor SON coordination
US9635645B2 (en) * 2012-05-02 2017-04-25 Industrial Technology Research Institute Method of handling resource allocation in TDD system and related communication device
JP6117913B2 (en) * 2012-05-03 2017-04-19 エルジー エレクトロニクス インコーポレイティド HARQ execution method based on dynamic radio resource change in radio communication system and apparatus therefor
US9253785B2 (en) * 2012-05-04 2016-02-02 Broadcom Corporation Multi-cell incremental redundancy
CN103384179B (en) * 2012-05-04 2017-08-11 电信科学技术研究院 Use the uplink-downlink configuration method and equipment in the system of time division duplex communication standard
US20130301561A1 (en) * 2012-05-08 2013-11-14 Futurewei Technologies, Inc. System and Method for Antenna Port Association
IN2014DN09129A (en) * 2012-05-11 2015-05-22 Nokia Siemens Networks Oy
IN2014DN09426A (en) * 2012-05-11 2015-07-17 Ericsson Telefon Ab L M
US10349385B2 (en) * 2012-05-16 2019-07-09 Qualcomm Incorporated Methods and apparatus for subframe configuration for wireless networks
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
US9049632B1 (en) * 2012-05-22 2015-06-02 Sprint Communications Company L.P. Idle mode handoff transfer of network access information
WO2013173987A1 (en) * 2012-05-23 2013-11-28 Telefonaktiebolaget L M Ericsson (Publ) Radio resource adaptation method and associated wireless communication devices
US9467993B2 (en) * 2012-05-29 2016-10-11 Lg Electronics Inc. Method for transmitting and receiving downlink control channels in wireless communication systems, and apparatus for same
US9185620B2 (en) 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
JP6297542B2 (en) * 2012-05-31 2018-03-20 クゥアルコム・インコーポレイテッドQualcomm Incorporated Interference mitigation in asymmetric LTE deployment
JP2013251860A (en) * 2012-06-04 2013-12-12 Ntt Docomo Inc Communication control method, wireless communication system, wireless base station and user terminal
JP5781016B2 (en) * 2012-06-04 2015-09-16 株式会社Nttドコモ Wireless base station, wireless communication system, and wireless communication method
CN103476055B (en) * 2012-06-05 2017-02-08 电信科学技术研究院 Method for determining uplink transmission interruption time, and equipment
KR20150023777A (en) * 2012-06-17 2015-03-05 엘지전자 주식회사 An apparatus for transceiving signals in accordance with a frame structure supportive of a plurlaity of carriers in a wireless communication system and method thereof
US9356745B2 (en) * 2012-06-25 2016-05-31 Lg Electronics Inc. Method for transmitting enhanced control channel in a wireless communication system and apparatus therefor
JP6131458B2 (en) * 2012-06-27 2017-05-24 シャープ株式会社 Mobile station apparatus, base station apparatus, and radio communication method
KR101429339B1 (en) * 2012-06-29 2014-08-12 인텔렉추얼디스커버리 주식회사 Method and apparatus for avoiding macro interference
EP2958260A1 (en) * 2012-07-04 2015-12-23 Nokia Solutions and Networks Oy Method and apparatus for signalling of harq timing at ul/dl subframe reconfiguration
EP2871900B1 (en) * 2012-07-05 2019-11-27 Sony Corporation Communication control device, communication control method, program, terminal device, and communication control system
CN103580772B (en) * 2012-07-18 2017-06-06 华为技术有限公司 Data transmission method, system and equipment, terminal obtain the method and terminal of data
AU2013293772B2 (en) * 2012-07-24 2017-02-02 Samsung Electronics Co., Ltd. Method and apparatus for transmitting HARQ-ACK
RU2608580C1 (en) * 2012-07-27 2017-01-23 Хуавэй Дивайс Ко., Лтд. Method and device for control channel transmitting
US9247436B2 (en) * 2012-07-27 2016-01-26 Nokia Solutions And Networks Oy Insight based orchestration of network optimization in communication networks
US9615360B2 (en) * 2012-07-27 2017-04-04 Futurewei Technologies, Inc. System and method for multiple point communications
EP2874451B1 (en) * 2012-08-02 2020-04-01 Huawei Technologies Co., Ltd. Method for configuring reference signal, base station, and user equipment
US9445410B2 (en) * 2012-08-03 2016-09-13 Qualcomm Incorporated Communicating with an enhanced new carrier type
WO2014019874A1 (en) 2012-08-03 2014-02-06 Nokia Siemens Networks Oy Interference measurement resource (imr) signaling and use to support interference coordination between cells
EP2883416A1 (en) 2012-08-07 2015-06-17 Corning Optical Communications Wireless Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
CN103582000A (en) * 2012-08-10 2014-02-12 北京三星通信技术研究有限公司 Interference coordinating method
WO2014029435A1 (en) * 2012-08-23 2014-02-27 Nokia Siemens Networks Oy Massive discovery of devices
WO2014034389A1 (en) * 2012-08-29 2014-03-06 京セラ株式会社 Mobile communication system, user terminal and communication control method
GB2505489A (en) * 2012-08-31 2014-03-05 Sony Corp A mobile communications device for use in a virtual narrowband carrier within a wideband carrier of a mobile communications system
US9191943B2 (en) * 2012-09-13 2015-11-17 Kt Corporation Reception and configuration of downlink control channel
WO2014040282A1 (en) * 2012-09-14 2014-03-20 华为终端有限公司 Method and device for mapping enhanced downlink control channel resource and antenna port
CN104798330B (en) 2012-09-14 2018-06-12 谷歌有限责任公司 Transmit the control information transferring method and this transmission receiving point, the control message receiving method of terminal and this terminal of receiving point
US9398577B2 (en) * 2012-09-18 2016-07-19 Kt Corporation Transmission and reception of control information
KR102130353B1 (en) * 2012-09-18 2020-07-06 삼성전자주식회사 Method and apparatus for generating control channel element in communication system
WO2014043863A1 (en) * 2012-09-19 2014-03-27 Qualcomm Incorporated Method and apparatus for separating a cell cluster for lte eimta interference mitigation
US9516576B2 (en) 2012-09-27 2016-12-06 Lg Electronics Inc. Method and apparatus for receiving extended access barring parameters in wireless communication system
CN103716753B (en) * 2012-09-29 2018-12-25 中兴通讯股份有限公司 A kind of small data sending method, system and user equipment
US8902907B2 (en) * 2012-10-05 2014-12-02 Futurewei Technologies, Inc. Terminal based grouping virtual transmission and reception in wireless networks
WO2014057604A1 (en) * 2012-10-12 2014-04-17 Nec Corporation Communications node
JP5814207B2 (en) * 2012-10-15 2015-11-17 株式会社Nttドコモ Base station apparatus and mobile terminal apparatus
US9503934B2 (en) 2012-10-18 2016-11-22 Huawei Technologies Co., Ltd. System and method for radio access virtualization
US9313739B2 (en) 2012-10-23 2016-04-12 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for WLAN
US8958349B2 (en) * 2012-10-25 2015-02-17 Blackberry Limited Method and apparatus for dynamic change of the TDD UL/DL configuration in LTE systems
CN103988568A (en) * 2012-10-26 2014-08-13 华为技术有限公司 Reference signal transmission method and device
CN104769857B (en) * 2012-11-01 2018-05-22 Lg 电子株式会社 The method and apparatus of the scheduling group of holding equipment characteristic in a wireless communication system
US9420511B2 (en) 2012-11-01 2016-08-16 Intel Corporation Signaling QoS requirements and UE power preference in LTE-A networks
US9532224B2 (en) * 2012-11-05 2016-12-27 Electronics And Telecommunications Research Institute Method of device-to-device discovery and apparatus thereof
EP2918100A4 (en) * 2012-11-12 2015-12-09 Ericsson Telefon Ab L M Method and network node for cell configuration of low power node
CN104919857A (en) * 2012-11-20 2015-09-16 瑞典爱立信有限公司 Method and node for reducing handover signaling
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9769803B2 (en) * 2012-11-29 2017-09-19 Nokia Technologies Oy Methods for device-to-device connection re-establishment and related user equipments and radio access node
US9407302B2 (en) 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
US9025527B2 (en) * 2012-12-13 2015-05-05 Qualcomm Incorporated Adaptive channel reuse mechanism in communication networks
US20140169163A1 (en) * 2012-12-13 2014-06-19 General Electric Company Systems and methods for communication channel capacity change detection
KR101988506B1 (en) * 2012-12-14 2019-09-30 삼성전자 주식회사 Method and apparatus for transmitting/receiving discovery signal in mobile communication system
US9591631B2 (en) * 2012-12-17 2017-03-07 Lg Electronics Inc. Method and user device for receiving uplink control information, and method and base station for transmitting uplink control information
US9647818B2 (en) 2013-01-03 2017-05-09 Intel IP Corporation Apparatus and method for single-tone device discovery in wireless communication networks
US10091773B2 (en) * 2013-01-07 2018-10-02 Lg Electronics Inc. Method for transceiving signal based on dynamic change of wireless resource in wireless communications system and apparatus therefor
EP2978256B1 (en) 2013-01-08 2017-07-05 NEC Corporation A wireless communication system, a base station and a corresponding method
US20150358133A1 (en) * 2013-01-09 2015-12-10 Sharp Kabushiki Kaisha User equipment, base station, and radio communication method
EP2944061A4 (en) * 2013-01-14 2016-09-07 Commscope Technologies Llc Interceptor system for characterizing digital data in telecommunication system
GB2519456B (en) * 2013-01-15 2017-05-31 Zte Wistron Telecom Ab Operation of a heterogeneous wireless network by determining location of a wireless device
JP6101082B2 (en) * 2013-01-15 2017-03-22 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method
WO2014110728A1 (en) * 2013-01-16 2014-07-24 Nec(China) Co., Ltd. Method and apparatus for dl/ul resource configuration in a tdd system
JP6174714B2 (en) * 2013-01-16 2017-08-02 エルジー エレクトロニクス インコーポレイティド Inter-terminal communication execution method and apparatus therefor
WO2014110762A1 (en) * 2013-01-17 2014-07-24 Nec (China) Co., Ltd. Method and apparatus for cross-subframe interference coordination
WO2014110691A1 (en) * 2013-01-17 2014-07-24 Qualcomm Incorporated Intra-cluster coordination for cell clustering interference mitigation
US9036580B2 (en) * 2013-01-17 2015-05-19 Sharp Laboratories Of America, Inc. Systems and methods for dynamically configuring a flexible subframe
CN103944692A (en) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 Transmitting method, transmitting device, receiving method and receiving device for ePHICH (enhanced Physical HybridARQ Indicator Channel)
US20140204847A1 (en) * 2013-01-18 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Network-assisted d2d communication using d2d capability information
CN111245561B (en) * 2013-01-18 2022-11-22 北京三星通信技术研究有限公司 Method and equipment for processing uplink and downlink transmission of flexible subframe
GB2510141A (en) * 2013-01-24 2014-07-30 Sony Corp Mobile communications network including reduced capability devices
KR102171361B1 (en) * 2013-01-25 2020-10-28 엘지전자 주식회사 Method and apparatus for performing initial access procedure in wireless communication system
US9351250B2 (en) * 2013-01-31 2016-05-24 Qualcomm Incorporated Methods and apparatus for low power wake up signal and operations for WLAN
CN103974422A (en) * 2013-02-05 2014-08-06 电信科学技术研究院 Communication processing method and device
US9172515B2 (en) 2013-02-05 2015-10-27 Wipro Limited Method and system for inter-cell interference coordination in wireless networks
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
EP2947955A4 (en) 2013-02-08 2016-03-09 Huawei Tech Co Ltd Device-to-device communication method, terminal, and network device
WO2014126345A1 (en) * 2013-02-15 2014-08-21 Samsung Electronics Co., Ltd. Mobile terminal handover in an lte network
US10038526B2 (en) * 2013-02-15 2018-07-31 Telefonaktiebolaget L M Ericsson (Publ) Wireless device, a network node and methods therein for transmitting control information in a D2D communication
GB2510897B (en) 2013-02-18 2019-06-19 Cisco Tech Inc Controlling uplink transmit power in a plurality of basestations
WO2014129951A1 (en) * 2013-02-25 2014-08-28 Telefonaktiebolaget L M Ericsson (Publ) Extended system information distribution mechanisms
CN104010382B (en) * 2013-02-25 2019-02-01 中兴通讯股份有限公司 Data transmission method, apparatus and system
KR102179533B1 (en) * 2013-02-28 2020-11-17 삼성전자주식회사 Method and appratus of controlling access from wireless local acess network and providing valid neighbor wireless local acess network access point in mobile communication system
US9706522B2 (en) * 2013-03-01 2017-07-11 Intel IP Corporation Wireless local area network (WLAN) traffic offloading
CN104039017A (en) * 2013-03-06 2014-09-10 夏普株式会社 Method for transmitting scheduling information and base station
JP6153350B2 (en) * 2013-03-07 2017-06-28 株式会社Nttドコモ Wireless base station, user terminal, wireless communication system, and wireless communication method
US9125101B2 (en) * 2013-03-08 2015-09-01 Intel Corporation Distributed power control for D2D communications
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9300451B2 (en) * 2013-03-13 2016-03-29 Samsung Electronics Co., Ltd. Transmission of sounding reference signals for adaptively configured TDD communication systems
US9306725B2 (en) * 2013-03-13 2016-04-05 Samsung Electronics Co., Ltd. Channel state information for adaptively configured TDD communication systems
RU2767777C2 (en) 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
CN104066093B (en) * 2013-03-18 2018-03-23 财团法人工业技术研究院 Interference management method, anchor point equipment, base station and system of wireless communication system
JP6161347B2 (en) * 2013-03-19 2017-07-12 株式会社Nttドコモ User terminal, radio base station, and radio communication method
US9294246B2 (en) * 2013-03-19 2016-03-22 Electronics And Telecommunications Research Institute Wireless communication device using common control channel and wireless communication method using the same
US10200139B2 (en) * 2013-03-22 2019-02-05 Lg Electronics Inc. Method and apparatus for performing interference coordination in wireless communication system
WO2014153700A1 (en) * 2013-03-25 2014-10-02 Telefonaktiebolaget L M Ericsson (Publ) Method for initiating handover, wireless device and base station
EP2966895B1 (en) * 2013-03-26 2018-06-06 Huawei Technologies Co., Ltd. Method and system for transmitting data packet, terminal device and network device
GB2512399A (en) 2013-03-28 2014-10-01 Nec Corp Direct communication between mobile radio communication devices
CN105103634B (en) 2013-03-29 2019-03-22 英特尔Ip公司 Extended pattern in cordless communication network calls discontinuous reception (DRX) period
GB2512611A (en) * 2013-04-03 2014-10-08 Sharp Kk Wireless telecommunication cell detection technique
US9160515B2 (en) * 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
US10091766B2 (en) 2013-04-05 2018-10-02 Qualcomm Incorporated Interference cancellation/suppression in TDD wireless communications systems
JP6320683B2 (en) * 2013-04-05 2018-05-09 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method
US9084275B2 (en) * 2013-04-12 2015-07-14 Blackberry Limited Selecting an uplink-downlink configuration for a cluster of cells
CN104113851B (en) * 2013-04-16 2019-04-16 中兴通讯股份有限公司 A kind of D2D discovery method and base station, user equipment
US9130784B2 (en) * 2013-04-22 2015-09-08 Google Technology Holdings LLC Method and apparatus for enhanced modulation in a wirless communication system
CN105144609B (en) * 2013-04-23 2018-08-03 Lg 电子株式会社 The method and apparatus for controlling data transmission in a wireless communication system
KR102061650B1 (en) * 2013-04-30 2020-01-03 삼성전자주식회사 A method and apparatus for synchronizaton of device to device communication in unlicensed bands
EP2802091A1 (en) * 2013-05-08 2014-11-12 Panasonic Intellectual Property Corporation of America Flexible TDD uplink-downlink configuration with flexible subframes
US9088397B2 (en) * 2013-05-09 2015-07-21 Nokia Solutions And Networks Oy Carrier type for time division communication
US9692582B2 (en) * 2013-05-09 2017-06-27 Sharp Kabushiki Kaisha Systems and methods for signaling reference configurations
US20140335907A1 (en) * 2013-05-10 2014-11-13 Elwha Llc Dynamic Point to Point Mobile Network Including Base Station Aspects System and Method
US9832728B2 (en) 2013-05-10 2017-11-28 Elwha Llc Dynamic point to point mobile network including origination user interface aspects system and method
US9559766B2 (en) 2013-05-10 2017-01-31 Elwha Llc Dynamic point to point mobile network including intermediate device aspects system and method
US10243707B2 (en) 2013-05-10 2019-03-26 Qualcomm Incorporated Efficient downlink operation for eIMTA
US9591692B2 (en) 2013-05-10 2017-03-07 Elwha Llc Dynamic point to point mobile network including destination device aspects system and method
US9356681B2 (en) 2013-05-10 2016-05-31 Elwha Llc Dynamic point to point mobile network including destination device aspects system and method
US9420605B2 (en) * 2013-05-10 2016-08-16 Blackberry Limited Method and apparatus for cell coordination in heterogeneous cellular networks
US9380467B2 (en) 2013-05-10 2016-06-28 Elwha Llc Dynamic point to point mobile network including intermediate device aspects system and method
BR112015028078B1 (en) 2013-05-10 2023-03-07 Telefonaktiebolaget Lm Ericsson (Publ) METHODS FOR ENABLING USER EQUIPMENT AND DETERMINING A SUBFRAME, NETWORK NO, AND USER EQUIPMENT
US9763166B2 (en) 2013-05-10 2017-09-12 Elwha Llc Dynamic point to point mobile network including communication path monitoring and analysis aspects system and method
KR101664876B1 (en) * 2013-05-14 2016-10-12 삼성전자 주식회사 Method and apparatus of interference measurement for inter-cell interference mitigation in tdd wireless communication system
KR20140135331A (en) * 2013-05-15 2014-11-26 삼성전자주식회사 Method and apparatus of operation for dynamic time division duplex in wireless communication system
US9974068B2 (en) 2013-05-16 2018-05-15 Lg Electronics Inc. Method for transmitting signal for improving coverage and apparatus for same
US9713026B2 (en) * 2013-05-17 2017-07-18 Qualcomm Incorporated Channel state information (CSI) measurement and reporting for enhanced interference management for traffic adaptation (eIMTA) in LTE
GB2514561B (en) * 2013-05-28 2016-01-13 Broadcom Corp Overhearing
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
CN105324946B (en) * 2013-06-21 2018-09-18 Lg电子株式会社 The method of coverage area for enhancing user equipment and the device for utilizing this method
KR102179820B1 (en) * 2013-06-25 2020-11-17 엘지전자 주식회사 Method for performing beamforming based on partial antenna array in wireless communication system and apparatus therefor
JP2015012404A (en) * 2013-06-27 2015-01-19 京セラ株式会社 Communication control method, base station, and user terminal
WO2015000112A1 (en) * 2013-07-01 2015-01-08 华为技术有限公司 Method, terminal, and wireless communications node for uplink data transmission
WO2015005601A1 (en) * 2013-07-10 2015-01-15 엘지전자 주식회사 Power control method for device-to-device (d2d) communication in wireless communication system and apparatus therefor
KR101821711B1 (en) * 2013-07-12 2018-01-24 콘비다 와이어리스, 엘엘씨 Neighbor discovery to support sleepy nodes
CN105393599B (en) * 2013-07-16 2018-11-30 Lg电子株式会社 Signaling method and its equipment for MTC
JP6283110B2 (en) * 2013-07-22 2018-02-21 ゼットティーイー ウィストロン テレコム エービー Cell synchronization and synchronous cell indication
EP2829301A1 (en) 2013-07-25 2015-01-28 Bruno Escarguel Medical device for radiotherapy treatment
WO2015013862A1 (en) * 2013-07-29 2015-02-05 Qualcomm Incorporated Dynamic indication of time division (tdd) duplex uplink/downlink subframe configurations
US9167449B2 (en) * 2013-08-08 2015-10-20 Blackberry Limited Dynamic cell clustering
US10244534B2 (en) * 2013-08-08 2019-03-26 Sharp Kabushiki Kaisha Terminal device, base station device, integrated circuit, and wireless communication method
CN105393470B (en) * 2013-08-08 2018-11-02 英特尔Ip公司 The methods, devices and systems adjusted for the electrical tilt angle in multi-input multi-output system
WO2015020108A1 (en) * 2013-08-09 2015-02-12 シャープ株式会社 Terminal, base station, integrated circuit, and communications method
US9705649B2 (en) * 2013-08-12 2017-07-11 Telefonaktiebolaget L M Ericsson (Publ) Mobile relay node based CoMP assisted interference mitigation
CN104378789B (en) * 2013-08-16 2019-06-07 索尼公司 Communication quality determination/acquisition device and method in wireless communication system
WO2015026285A2 (en) * 2013-08-21 2015-02-26 Telefonaktiebolaget L M Ericsson (Publ) Paging in coverage extension mode
KR102051831B1 (en) * 2013-09-13 2019-12-04 삼성전자주식회사 Method and apparatus for traffic load balancing in mobile communication system
CN105580487B (en) 2013-09-25 2019-04-26 索尼公司 Remote communication devices and method
US20150085686A1 (en) * 2013-09-26 2015-03-26 Qualcomm Incorporated Scheduling based on signal quality measurements
US9419757B2 (en) * 2013-10-04 2016-08-16 Cellos Software Ltd Method and apparatus for coordinating one or more downlink transmissions in a wireless communication system
US9301314B2 (en) 2013-10-08 2016-03-29 Broadcom Corporation WLAN and LTE time division based scheduling devices and methods
EP3057368B1 (en) * 2013-10-11 2019-07-17 Kyocera Corporation Communication control method, user terminal, and communication device
US9332465B2 (en) * 2013-10-15 2016-05-03 Qualcomm Incorporated Long term evolution interference management in unlicensed bands for wi-fi operation
GB2519341A (en) * 2013-10-18 2015-04-22 Nec Corp Data transmission from mobile radio communications device
US9888479B2 (en) * 2013-10-22 2018-02-06 Collision Communications, Inc Method and system for improving efficiency in a cellular communications network
WO2015065061A1 (en) * 2013-10-30 2015-05-07 엘지전자 주식회사 Method for transmitting and receiving control information for device-to-device (d2d) communication in wireless communication system and apparatus therefor
US20150117295A1 (en) * 2013-10-30 2015-04-30 Electronics And Telecommunications Research Institute Method and apparatus for device-to-device communication
WO2015061987A1 (en) 2013-10-30 2015-05-07 Qualcomm Incorporated Cross-carrier indication of uplink/downlink subframe configurations
CN106068668B (en) 2013-10-31 2019-11-08 Lg电子株式会社 The method and apparatus of device-to-device communication are executed in a wireless communication system
WO2015065112A1 (en) * 2013-10-31 2015-05-07 엘지전자(주) Method for transmitting discovery message in wireless communication system and method for same
WO2015062918A1 (en) 2013-10-31 2015-05-07 Sony Corporation Network element and method of communicating using a plurality of controls channels modules
EP3300403A1 (en) * 2013-10-31 2018-03-28 NEC Corporation Apparatus, system and method for mobile communication
US9854424B2 (en) 2013-10-31 2017-12-26 Lg Electronics Inc. Method and apparatus for device-to-device communication in wireless communication system
WO2015065110A1 (en) * 2013-10-31 2015-05-07 엘지전자(주) Method for transmitting discovery message in wireless communication system and apparatus for same
KR102180254B1 (en) * 2013-11-01 2020-11-18 주식회사 아이티엘 Apparatus and method for configuring reference signal in wireless communication system supporting small cells
US9819471B2 (en) 2013-11-04 2017-11-14 Texas Instruments Incorporated Method and apparatus for configuration, measurement and reporting of channel state information for LTE TDD with dynamic UL/DL configuration
US10708914B2 (en) * 2013-11-07 2020-07-07 Lg Electronics Inc. Method for transmitting and receiving downlink signal in wireless communication system and device for same
CN104640056B (en) * 2013-11-07 2021-08-17 中兴通讯股份有限公司 Method and device for controlling node selection and resource distribution
US20150131624A1 (en) * 2013-11-08 2015-05-14 Qualcomm Incorporated Systems and methods for protecting low-rate communications in high-efficiency wireless networks
KR20150054055A (en) * 2013-11-08 2015-05-20 한국전자통신연구원 Method and apparatus for allocating resource in cellular communication system
CN104639486B (en) * 2013-11-12 2018-04-10 华为技术有限公司 Transmission method and device
EP3073658B1 (en) * 2013-11-22 2019-11-06 LG Electronics Inc. Method for receiving bundle of pdcch, and mtc device
US9173106B2 (en) * 2013-11-25 2015-10-27 At&T Intellectual Property I, L.P. Efficient cell site outage mitigation
US9538483B2 (en) * 2013-11-26 2017-01-03 The Regents Of The University Of Colorado, A Body Corporate Maximizing efficiency of multi-user communications networks
US20150146565A1 (en) * 2013-11-27 2015-05-28 Wei Yu Method and apparatus for downlink transmission in a cloud radio access network
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US10028132B2 (en) * 2013-12-04 2018-07-17 Lg Electronics Inc. Method for transceiving system information in cloud wireless communication system and apparatus therefor
WO2015083914A1 (en) * 2013-12-08 2015-06-11 엘지전자 주식회사 Method and apparatus for transmitting data in non-licensed band
AU2013407434B2 (en) * 2013-12-11 2017-09-21 Sca Hygiene Products Ab Expanded protocol frames for data transmission
WO2015088276A1 (en) * 2013-12-12 2015-06-18 엘지전자 주식회사 Method and device for performing measurement in wireless communication system
KR101870275B1 (en) 2013-12-13 2018-06-22 후아웨이 테크놀러지 컴퍼니 리미티드 Interference coordination method, apparatus, and system
US20150189574A1 (en) * 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Methods for dormant cell signaling for advanced cellular network
JP6312438B2 (en) * 2014-01-06 2018-04-18 三菱電機株式会社 Communication apparatus and communication system
CN104796931B (en) * 2014-01-08 2018-06-12 财团法人资讯工业策进会 Radio Network System and its base station bus connection method
US9179355B2 (en) * 2014-01-09 2015-11-03 Apple Inc. Cell utilization estimation by a wireless device
US20150200751A1 (en) * 2014-01-10 2015-07-16 Sharp Laboratories Of America, Inc. Enhanced pucch reporting for carrier aggregation
US9350483B2 (en) 2014-01-15 2016-05-24 Qualcomm Incorporated Mitigate adjacent channel interference and non-Wi-Fi interference
JP2015138996A (en) * 2014-01-20 2015-07-30 堅一 前 Communication device, communication program, communication system, and communication method
CN105900368B (en) * 2014-01-22 2019-05-31 华为终端有限公司 Device-to-device communication means and user equipment
KR102206280B1 (en) * 2014-01-24 2021-01-22 삼성전자주식회사 Method and apparatus for setting a handover parameter in mobile communication system
CN110876190B (en) * 2014-01-29 2022-03-25 交互数字专利控股公司 Resource selection for device-to-device discovery or communication
KR101923399B1 (en) 2014-01-30 2018-11-29 닛본 덴끼 가부시끼가이샤 eNodeB, MME(Mobility Management Entity), METHOD OF eNodeB, AND METHOD OF MME
WO2015115951A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Radio node, communication devices and methods therein
NO2705215T3 (en) 2014-01-31 2018-02-17
AP2016009384A0 (en) * 2014-01-31 2016-08-31 Ericsson Telefon Ab L M Methods and nodes relating to system information acquisition during flexible subframe operation
US9578600B2 (en) 2014-02-13 2017-02-21 Samsung Electronics Co., Ltd Method and apparatus for providing advanced indication for ePDCCH
EP3107327B1 (en) * 2014-02-14 2020-06-17 Nec Corporation Network control device, communication device, network control method, communication method and communication system
US10278219B2 (en) * 2014-02-18 2019-04-30 Kyocera Corporation User terminal and communication control method
KR101553529B1 (en) * 2014-02-19 2015-09-16 (주)티엘씨테크놀로지 A multi-band optical repeater system duplexing optical module and the method thereof
US9313012B2 (en) * 2014-02-21 2016-04-12 Qualcomm Incorporated Apparatus and methods for full duplex communication
KR102010323B1 (en) * 2014-02-21 2019-08-13 콘비다 와이어리스, 엘엘씨 Handover in integrated small cell and wifi networks
WO2015130067A1 (en) * 2014-02-25 2015-09-03 엘지전자 주식회사 Method and apparatus for generating device-to-device terminal signal in wireless communication system
KR102118402B1 (en) * 2014-02-25 2020-06-03 삼성전자 주식회사 Method and apparatus for saving power of user equipment in wireless communication system supporing device to device communication
WO2015133825A1 (en) * 2014-03-04 2015-09-11 Lg Electronics Inc. Method of receiving control information for receiving discovery reference signal and apparatus thereof
US9426715B1 (en) 2014-03-07 2016-08-23 Sprint Spectrum L.P. Neighbor access node determination
WO2015131959A1 (en) * 2014-03-07 2015-09-11 Telefonaktiebolaget L M Ericsson (Publ) Handling messages
KR102079553B1 (en) * 2014-03-11 2020-04-07 삼성전자주식회사 A method and apparatus for controlling interference of device to device communication
US9794033B2 (en) * 2014-03-14 2017-10-17 Intel IP Corporation Systems, methods and devices for opportunistic networking
US10348394B1 (en) * 2014-03-14 2019-07-09 Tarana Wireless, Inc. System architecture and method for enhancing wireless networks with mini-satellites and pseudollites and adaptive antenna processing
NO2710652T3 (en) * 2014-03-18 2018-03-17
KR101914352B1 (en) 2014-03-19 2018-11-01 인터디지탈 패튼 홀딩스, 인크 Device-to-device synchronization
US9629145B2 (en) * 2014-03-20 2017-04-18 Intel Corporation Resource allocation techniques for device-to-device (D2D) communications
US10499421B2 (en) 2014-03-21 2019-12-03 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
US9578484B2 (en) * 2014-03-24 2017-02-21 Intel IP Corporation Apparatuses, systems, and methods for differentiation of payload size for D2D discovery
BR112016021081A2 (en) * 2014-03-31 2017-08-15 Fujitsu Ltd DEVICE AND METHOD FOR SIGNAL RETRANSMISSION, AND COMMUNICATION SYSTEM
US9877259B2 (en) * 2014-03-31 2018-01-23 Huawei Technologies Co., Ltd. Dynamic energy-efficient transmit point (TP) muting for virtual radio access network (V-RAN)
US10171147B2 (en) 2014-04-14 2019-01-01 Lg Electronics Inc. Method for transmitting signal in multiple-antenna wireless communication system and apparatus for same
RU2016144338A (en) * 2014-04-14 2018-05-14 Нек Корпорейшн COMMUNICATION DEVICE, COMMUNICATION METHOD AND MEDIA
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9635629B2 (en) * 2014-04-17 2017-04-25 Acer Incorporated Method of performing device-to-device communication between two user equipments
US9185238B1 (en) * 2014-04-23 2015-11-10 Outlook Amusements, Inc. System and method for scheduling, establishing and maintaining an open communication channel with an advisor
WO2015163642A1 (en) * 2014-04-25 2015-10-29 엘지전자 주식회사 Method and device for channel state reporting
WO2015163668A1 (en) * 2014-04-25 2015-10-29 Lg Electronics Inc. Method for a configuration error management for a sidelink radio bearer and device therefor
US9713049B2 (en) 2014-04-28 2017-07-18 Intel IP Corporation User equipment and methods for measurement of reference signal received quality
EP3139559B1 (en) * 2014-04-30 2019-11-20 LG Electronics Inc. Method for transmitting device-to-device signal in wireless communication system and apparatus for same
US9660836B2 (en) 2014-05-06 2017-05-23 Lattice Semiconductor Corporation Network topology discovery
CN105101389B (en) * 2014-05-08 2020-04-03 索尼公司 Method and arrangement in a wireless communication system
CN105940729B (en) 2014-05-09 2020-04-21 华为技术有限公司 Method and device for receiving D2D discovery information
US9590825B2 (en) 2014-05-09 2017-03-07 Lattice Semiconductor Corporation Stream creation with limited topology information
US20150334743A1 (en) * 2014-05-15 2015-11-19 Qualcomm Incorporated Physical cell identifier and physical random access channel offset joint planning
CN111432491A (en) * 2014-05-20 2020-07-17 索尼公司 Electronic device, method, and computer-readable storage medium in wireless communication system
US10159079B2 (en) 2014-05-21 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for social-aware cooperative device-to-device communications
KR102265455B1 (en) 2014-06-02 2021-06-17 삼성전자주식회사 Apparatus and method for mitigating for interference in wireless communication system
US9369961B2 (en) * 2014-06-05 2016-06-14 Sony Corporation User equipment, cellular communication network node and method of controlling operation of a user equipment
TWI526106B (en) 2014-06-06 2016-03-11 財團法人工業技術研究院 Base station and scheduling method for wireless network
ES2791352T3 (en) 2014-06-09 2020-11-04 Commscope Technologies Llc Programming of the same resource in radio access networks
KR102111286B1 (en) * 2014-06-10 2020-06-08 에스케이 텔레콤주식회사 Method and Apparatus for Managing Cell Mode Adaptively
US10194322B2 (en) 2014-06-23 2019-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Coordinated transmission method for unbalanced load
CN106416401B (en) * 2014-06-27 2019-11-12 华为技术有限公司 Transmit the method, apparatus and the network equipment of signal
CN106416405A (en) 2014-06-27 2017-02-15 夏普株式会社 Resource pool access for device to device communications
KR102268512B1 (en) * 2014-07-15 2021-06-23 에스케이텔레콤 주식회사 Base station and control method thereof, terminal device
JP6090253B2 (en) * 2014-07-18 2017-03-08 トヨタ自動車株式会社 Communication method, wireless communication system, and wireless connection providing apparatus in wireless communication system
US9602322B2 (en) 2014-08-01 2017-03-21 Qualcomm Incorporated Transmission and reception of discovery signals over a radio frequency spectrum band
KR102073902B1 (en) 2014-08-07 2020-02-05 엘지전자 주식회사 Device-to-device (d2d) operation method performed by terminal in wireless communications system and terminal using same
US9608794B2 (en) * 2014-08-08 2017-03-28 Sprint Spectrum L.P. Systems and methods for scheduling transmissions between an access node and wireless devices
US10264496B2 (en) * 2014-08-15 2019-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive cell selection in heterogeneous networks
WO2016026068A1 (en) * 2014-08-18 2016-02-25 Qualcomm Incorporated Low cost device with broadcast support
WO2016032377A1 (en) 2014-08-28 2016-03-03 Telefonaktiebolaget L M Ericsson (Publ) Methods communicating radiation pattern information and related network nodes and base stations
EP3186995A1 (en) * 2014-08-28 2017-07-05 Telefonaktiebolaget LM Ericsson (publ) Methods receiving radiation pattern information and related network nodes and base stations
EP3186942B1 (en) * 2014-08-28 2019-12-18 Telefonaktiebolaget LM Ericsson (publ) Communication devices and methods therein for enabling interference management of data transmissions in a wireless communications network
US10880883B2 (en) 2014-09-02 2020-12-29 Qualcomm Incorporated Low-latency, low-bandwidth and low duty cycle operation in a wireless communication system
EP3187016B1 (en) * 2014-09-04 2019-11-06 Huawei Technologies Co., Ltd. System and method for communicating resource allocation for d2d
US10779161B2 (en) 2014-09-15 2020-09-15 Nokia Solutions And Networks Oy Delivery of cellular network insights to subscriber devices through SSID via cellular system information block
US10103805B2 (en) * 2014-09-21 2018-10-16 Lg Electronics Inc. Method and apparatus for requesting transmission of synchronization signals in wireless communication system
CN105516966B (en) * 2014-09-24 2020-10-02 索尼公司 Apparatus and method in a wireless communication system
CN107079434A (en) * 2014-09-25 2017-08-18 株式会社Ntt都科摩 User's set and resource selection method
BR112017003265B1 (en) 2014-09-25 2023-11-28 Apple Inc. Transmission of common control messages to user equipment with reduced bandwidth machine-type communications (MTC)
WO2016054183A1 (en) * 2014-09-30 2016-04-07 Viavi Solutions, Inc. Methods and apparatus for self optimization and/or improvement of a cloud-based wireless network
EP3177047A4 (en) * 2014-09-30 2017-07-19 Huawei Technologies Co., Ltd. Terminal, base station, system, and notification method
US10200872B2 (en) * 2014-10-08 2019-02-05 Qualcomm Incorporated DC subcarrier handling in narrowband devices
WO2016060175A1 (en) * 2014-10-17 2016-04-21 株式会社Nttドコモ User device, base station, and discontinuous reception method
US10033577B2 (en) * 2014-10-27 2018-07-24 Qualcomm Incorporated Dynamically reconfigurable radio air interface for communicating over a mesh network and a wide area network
US10560864B2 (en) 2014-10-31 2020-02-11 At&T Intellectual Property I, L.P. Event-driven network demand finder of a radio access network
CN104410975B (en) * 2014-11-06 2018-06-15 东莞宇龙通信科技有限公司 Resource allocation method, system, the equipment and terminal with base station functions
CN105636217A (en) 2014-11-07 2016-06-01 北京三星通信技术研究有限公司 Method and device used for accessing cellular network
WO2016075124A1 (en) * 2014-11-13 2016-05-19 Sony Corporation Telecommunications apparatus and methods
US10462684B2 (en) 2014-11-13 2019-10-29 Sony Corporation Telecommunications apparatus and methods
US9906973B2 (en) * 2014-11-28 2018-02-27 Industrial Technology Research Institute Evolved NodeB and traffic dispatch method thereof
US10448332B2 (en) * 2014-12-02 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up for D2D communication
CN105760337B (en) * 2014-12-17 2019-03-12 联芯科技有限公司 Data transmission method and its system, terminal
WO2016099196A1 (en) * 2014-12-18 2016-06-23 엘지전자 주식회사 Method for allocating transmission resources in wireless communication system supporting device-to-device (d2d) communication
US10231232B2 (en) * 2014-12-19 2019-03-12 Intel IP Corporation Remote radio unit and baseband unit for asymetric radio area network channel processing
JP6463480B2 (en) 2014-12-23 2019-02-06 エルジー エレクトロニクス インコーポレイティド Method and apparatus for supporting transmission / reception of improved physical downlink control channel in wireless access system supporting unlicensed band
EP3242501B1 (en) * 2014-12-29 2020-07-08 Huawei Technologies Co., Ltd. Uplink transmission control method and apparatus
US20180054807A1 (en) 2014-12-30 2018-02-22 Lg Electronics Inc. Method and apparatus for allocating recources for bi-directional transmission in wireless communication system
US9674837B1 (en) 2015-01-07 2017-06-06 Sprint Spectrum L.P. Coordinated multipoint based air-interface resource scheduling
US11006400B2 (en) 2015-01-16 2021-05-11 Sharp Kabushiki Kaisha User equipments, base stations and methods
CN107211418B (en) * 2015-01-29 2021-06-01 株式会社Ntt都科摩 User terminal, radio base station, and radio communication method
EP3251271B1 (en) * 2015-01-29 2020-05-27 Telefonaktiebolaget LM Ericsson (publ) Pdcch initialization suitable for mtc devices
US20160233940A1 (en) * 2015-02-06 2016-08-11 Po-Kai Huang Wireless device, method, and computer readable media for spatial reuse in a high efficiency wireless local-area network
EP3826345A1 (en) * 2015-02-11 2021-05-26 IPCom GmbH & Co. KG Method and device for configuring a single frequency network
JP6543718B2 (en) * 2015-02-20 2019-07-10 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Wireless unit and method of controlling power level of spatially separated transceiver of wireless communication network with wireless unit
US10681676B2 (en) * 2015-02-25 2020-06-09 Qualcomm Incorporated Narrowband management for machine type communications
JP6369756B2 (en) 2015-02-26 2018-08-08 パナソニックIpマネジメント株式会社 Base station and transmission control method
US9980218B2 (en) * 2015-02-27 2018-05-22 Huawei Technologies Canada Co., Ltd. System and method for user terminal-aware cell switch-off
US10349313B2 (en) 2015-03-02 2019-07-09 Corning Optical Communications LLC Enhanced features for a gateway coordinating multiple small cell radio access networks
US11071032B2 (en) 2015-03-02 2021-07-20 Corning Optical Communications LLC Gateway coordinating multiple small cell radio access networks
US10148510B2 (en) 2015-03-02 2018-12-04 Spidercloud Wireless, Inc. Topology discovery and management and SON orchestration
KR102301121B1 (en) * 2015-03-05 2021-09-10 한국전자통신연구원 Method and apparatus for transmitting and receiving discovery information
US10129805B2 (en) * 2015-03-12 2018-11-13 Spidercloud Wireless, Inc. Hitless software upgrade for a virtualized gateway coordinating multiple small cell radio access networks
US9788273B2 (en) 2015-03-12 2017-10-10 Samsung Electronics Co., Ltd Method and system for paging reception optimization in LTE direct devices
KR20160112143A (en) 2015-03-18 2016-09-28 삼성전자주식회사 Electronic device and method for updating screen of display panel thereof
JP6359760B2 (en) * 2015-03-20 2018-07-18 株式会社東芝 Wireless communication apparatus and wireless communication method
WO2016152686A1 (en) * 2015-03-20 2016-09-29 株式会社 東芝 Integrated circuit for wireless communication
WO2016153130A1 (en) * 2015-03-23 2016-09-29 엘지전자(주) Method and device for transmitting or receiving data by terminal in wireless communication system
EP3281475A4 (en) * 2015-04-07 2018-10-10 Sierra Wireless, Inc. Method and apparatus for communicating system information and random access in a wireless system
CN106162929B (en) * 2015-04-07 2021-08-06 中兴通讯股份有限公司 Communication method and device for user terminal and relay node in equipment direct connection system
US9826563B2 (en) 2015-04-09 2017-11-21 Sharp Kabushiki Kaisha Method and apparatus for sidelink direct discovery resource pool allocation for out-of-coverage wireless terminal
EP3281325A4 (en) 2015-04-09 2018-12-26 ZTE (USA) Inc. Method and system of bi-directional transmission to improve uplink performance
US10652768B2 (en) 2015-04-20 2020-05-12 Qualcomm Incorporated Control channel based broadcast messaging
WO2016173217A1 (en) 2015-04-27 2016-11-03 华为技术有限公司 Data transmission method, apparatus and system
JP6619802B2 (en) * 2015-04-27 2019-12-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmission method, transmission control method, and communication apparatus
EP3282790B1 (en) * 2015-04-29 2019-09-25 Huawei Technologies Co., Ltd. Data transmission method, device, and system
US9554375B1 (en) * 2015-05-01 2017-01-24 Sprint Spectrum L.P. Sector selection for coordinated multipoint based on application type
US9468078B1 (en) * 2015-05-01 2016-10-11 Abl Ip Holding Llc Lighting system with cellular networking
US10326493B2 (en) * 2015-05-13 2019-06-18 Samsung Electronics Co., Ltd. Control channel transmission and frequency error correction
US10085158B2 (en) 2015-05-14 2018-09-25 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10506591B2 (en) * 2015-05-15 2019-12-10 Qualcomm Incorporated Narrowband definition for enhanced machine type communication
US9681314B2 (en) 2015-05-21 2017-06-13 At&T Intellectual Property I, L.P. Self organizing radio access network in a software defined networking environment
CN107637027B (en) * 2015-05-29 2021-07-23 瑞典爱立信有限公司 System, method and storage medium for communication between base stations in a radio access network
WO2016204661A1 (en) * 2015-06-16 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) A high power radio base station, a low power radio base station and respective method performed thereby for communication with a wireless device
US10470089B2 (en) * 2015-06-18 2019-11-05 Lg Electronics Inc. Method for changing coverage enhanced mode with multiple threshold values for cell reselection in wireless communication system and an apparatus therefor
US10855597B2 (en) * 2015-06-29 2020-12-01 T-Mobile Usa, Inc. Channel coding for real time wireless traffic
EP3238355A1 (en) * 2015-07-02 2017-11-01 Huawei Technologies Co., Ltd. Receiver device and methods thereof
EP3116256A1 (en) * 2015-07-07 2017-01-11 Vodafone IP Licensing limited Device for controlling network resources
US11533675B2 (en) * 2015-07-27 2022-12-20 Apple Inc. System and methods for system operation for narrowband-LTE for cellular IoT
CN107852776B (en) * 2015-08-05 2021-09-21 IPCom两合公司 inter-SFN node messaging
US10999886B2 (en) * 2015-08-10 2021-05-04 Qualcomm Incorporated Techniques for harmonization between CRS and DM-RS based transmission modes in unlicensed spectrum
JP6413021B2 (en) * 2015-08-13 2018-10-24 株式会社Nttドコモ User device, signal transmission method and signal reception method
JPWO2017026463A1 (en) * 2015-08-13 2018-07-05 株式会社Nttドコモ User device and signal transmission method
US10506466B2 (en) * 2015-08-17 2019-12-10 Huawei Technologies Co., Ltd. System and method for coordinating uplink transmissions based on backhaul conditions
US10091775B2 (en) 2015-08-18 2018-10-02 Apple Inc. Non-PDCCH signaling of SIB resource assignment
US10893520B2 (en) 2015-08-26 2021-01-12 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications
US9967855B2 (en) * 2015-08-31 2018-05-08 Verizon Patent And Licensing Inc. Multicast delivery of network congestion information
US9775045B2 (en) 2015-09-11 2017-09-26 Intel IP Corporation Slicing architecture for wireless communication
US9942906B1 (en) * 2015-09-16 2018-04-10 Sprint Spectrum L.P. Systems and methods for determining a subframe configuration for an access node based on coverage
WO2017048101A1 (en) 2015-09-17 2017-03-23 엘지전자 주식회사 Method and apparatus for transreceiving messages from v2x terminal in wireless communication system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10506664B2 (en) 2015-10-14 2019-12-10 Lg Electronics Inc. Method and apparatus for supporting user equipments capable of uplink transmission only via grouping in wireless communication system
TWI578825B (en) * 2015-10-21 2017-04-11 財團法人工業技術研究院 Communication system, base station, user equipment and timing synchronization method for base station thereof
CN106612166B (en) * 2015-10-26 2019-08-09 上海朗帛通信技术有限公司 A kind of method and apparatus of narrow band transmission
CN110446218B (en) * 2015-10-30 2023-03-24 上海朗帛通信技术有限公司 Method and device in narrow-band communication
CN106685607A (en) * 2015-11-05 2017-05-17 上海朗帛通信技术有限公司 Method and device for narrowband wireless transmission
CN108141905B (en) * 2015-11-06 2020-11-17 华为技术有限公司 Method and device for coordinating cell interference between equipment
US10097336B2 (en) 2015-11-30 2018-10-09 Qualcomm Incorporated Uplink (UL) frequency-division duplex (FDD) subframe
US10820162B2 (en) 2015-12-08 2020-10-27 At&T Intellectual Property I, L.P. Method and system for mobile user-initiated LTE broadcast
EP3370351B1 (en) * 2015-12-17 2020-03-25 Huawei Technologies Co., Ltd. Sounding reference symbol transmission method and radio remote unit
CN111328150B (en) * 2015-12-24 2023-04-07 上海朗帛通信技术有限公司 Scheduling method and device in wireless communication
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
WO2017120091A2 (en) * 2016-01-08 2017-07-13 Zte Corporation Methods of transmitting mission critical small data using random access channel
US10044559B2 (en) * 2016-01-22 2018-08-07 Qualcomm Incorporated Systems and methods for provisioning devices
CN108370603B (en) * 2016-01-29 2021-07-23 诺基亚通信公司 MME-assisted system information update
CN108476121B (en) * 2016-02-03 2021-06-29 苹果公司 Apparatus for physical downlink shared channel transmission with short transmission time interval
EP3412062B1 (en) * 2016-02-04 2020-04-22 Telefonaktiebolaget LM Ericsson (publ) Low power node which preferably allocates pcell on carrier in frequency band shared with macro node
CN111629361A (en) * 2016-02-04 2020-09-04 中兴通讯股份有限公司 Data transmission method, device and system
US20190037636A1 (en) * 2016-02-17 2019-01-31 Lg Electronics Inc. Method for transmitting/receiving location registration-related message in wireless communication system and apparatus for same
US11115994B2 (en) * 2016-02-17 2021-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Triggering/initiating backoff procedure(s) based on congestion indication(s) to defer scheduling request transmission
WO2017141179A1 (en) * 2016-02-18 2017-08-24 Reliance Jio Infocomm Limited Systems and methods for performing a handover in heterogeneous networks
US10608919B2 (en) 2016-02-19 2020-03-31 Commscope Technologies Llc Passive intermodulation (PIM) testing in distributed base transceiver station architecture
CN109156030B (en) * 2016-03-01 2021-11-30 诺基亚技术有限公司 PUCCH resource allocation
WO2017148535A1 (en) * 2016-03-04 2017-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Inter-frequency load balancing
JP6821930B2 (en) 2016-03-18 2021-01-27 富士通株式会社 Calibration method for base stations, wireless communication systems and wireless communication systems
CN107241811A (en) * 2016-03-29 2017-10-10 富士通株式会社 For the dispatching device of communication system, method and base station
CN107294670A (en) * 2016-03-30 2017-10-24 联芯科技有限公司 point-to-point communication method and system
KR102467752B1 (en) 2016-04-01 2022-11-16 주식회사 아이티엘 Method and apparatus for synchronization for vehicle-to-x communication
US10237906B2 (en) 2016-04-27 2019-03-19 Asustek Computer Inc. Method and apparatus for improving uplink transmission in a wireless communication system
WO2017191926A1 (en) * 2016-05-03 2017-11-09 주식회사 케이티 Method and apparatus for changing connection state of terminal
CN109076496B (en) 2016-05-03 2021-09-03 株式会社Kt Method and apparatus for changing connection state of terminal
JP6325597B2 (en) * 2016-05-10 2018-05-16 株式会社Nttドコモ User terminal, radio base station, and radio communication method
TW201803393A (en) * 2016-05-20 2018-01-16 內數位專利控股公司 Methods, apparatus, systems and procedures for supporting multicast transmission
CN107454672B (en) * 2016-05-31 2020-04-28 华为技术有限公司 Method and device for configuring subframes
CN106131967A (en) * 2016-06-30 2016-11-16 南京理工大学 Security coordination dispatching method based on cloud Radio Access Network downlink
US10306441B2 (en) * 2016-07-08 2019-05-28 Qualcomm Incorporated Techniques for supporting a wider band mode for enhanced machine type communication
CN109479225B (en) * 2016-07-29 2020-11-17 华为技术有限公司 Method for accessing different-system cell and related equipment
CN107666681B (en) * 2016-07-29 2022-08-26 北京三星通信技术研究有限公司 Method and device for transmitting data
US10644833B2 (en) * 2016-08-12 2020-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Reducing overhead in sidelink transmissions
RU2020139092A (en) * 2016-08-16 2020-12-10 АйПиКОМ ГМБХ УНД КО.КГ METHOD FOR JOINT USE OF RADIOR RESOURCES FOR DEVICE-DEVICE COMMUNICATION
US20180063306A1 (en) * 2016-08-23 2018-03-01 Bruce Allen Scannell, JR. Cell Phone Case with Reconfigurable Plates
CN107787012B (en) * 2016-08-31 2021-10-29 中国移动通信有限公司研究院 Interference processing method and base station
WO2018043559A1 (en) * 2016-08-31 2018-03-08 株式会社Nttドコモ User equipment and wireless communication method
EP3501221A4 (en) * 2016-09-07 2020-04-15 MediaTek Inc. Dynamic tdd design, methods and apparatus thereof
US10609582B2 (en) 2016-09-08 2020-03-31 Commscope Technologies Llc Interference detection and identification in wireless network from RF or digitized signal
US20180077682A1 (en) * 2016-09-15 2018-03-15 Huawei Technologies Co., Ltd. Method and apparatus for application aware notifications in a wireless communication network
US11076261B1 (en) * 2016-09-16 2021-07-27 Apple Inc. Location systems for electronic device communications
WO2018057494A1 (en) 2016-09-21 2018-03-29 Intel Corporation Reduced csi (channel state information)-rs (reference signal) density support for fd (full dimensional)-mimo (multiple input multiple output) systems
WO2018053808A1 (en) * 2016-09-23 2018-03-29 富士通株式会社 Power control method and device, and communication system
US11477783B2 (en) * 2016-09-26 2022-10-18 Qualcomm Incorporated Uplink based mobility
GB2554698B (en) * 2016-10-04 2020-12-30 Samsung Electronics Co Ltd Improvements in and relating to interference management in a communication network
WO2018066945A1 (en) * 2016-10-04 2018-04-12 Samsung Electronics Co., Ltd. Apparatus and method for interference management in wireless communication system
CN110121908B (en) * 2016-11-01 2024-01-16 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
CN108184214A (en) 2016-12-08 2018-06-19 中兴通讯股份有限公司 A kind of method and device of determining data sender's formula
BR112019012810B1 (en) * 2016-12-22 2024-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd METHOD AND DEVICE FOR TRANSMITTING SYSTEM INFORMATION
WO2018126453A1 (en) 2017-01-06 2018-07-12 广东欧珀移动通信有限公司 Handover method, base station, and terminal
EP3557926B1 (en) 2017-01-06 2021-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement method, base station and terminal
SG11201906251TA (en) 2017-01-06 2019-08-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Service transmission method, base station, and terminal
CN108307335B (en) * 2017-01-13 2022-10-28 中兴通讯股份有限公司 Data transmission method, device and system
US11265948B2 (en) * 2017-01-20 2022-03-01 Lg Electronics Inc. Method for recovering link between terminals in wireless communication system, and device therefor
US10469159B2 (en) 2017-02-14 2019-11-05 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US10420102B2 (en) 2017-02-15 2019-09-17 Qualcomm Incorporated Narrowband time-division duplex frame structure for narrowband communications
US10383101B1 (en) 2017-03-06 2019-08-13 Sprint Spectrum L.P. Dynamic link adaptation
US10834759B2 (en) * 2017-03-20 2020-11-10 Motorola Mobility Llc Feedback for a system information request
JP7023970B2 (en) 2017-03-31 2022-02-22 エルジー エレクトロニクス インコーポレイティド Uplink data transfer method and device for it in wireless communication system
US10547422B2 (en) * 2017-04-13 2020-01-28 Qualcomm Incorporated SRS transmission with implied RTS/CTS
CN110547017B (en) * 2017-05-04 2023-08-01 苹果公司 Interference coordination for a network serving an aircraft
CN111277397B (en) * 2017-05-04 2022-07-15 维沃移动通信有限公司 System information transmission method, terminal and network side equipment
US10187752B2 (en) 2017-05-16 2019-01-22 Apple Inc. UE motion estimate based on cellular parameters
CN109152001B (en) * 2017-06-15 2021-02-02 大唐移动通信设备有限公司 Time-frequency resource allocation method and device
US11245481B2 (en) * 2017-06-16 2022-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Cross-link interference avoidance methods and signaling in NR dynamic TDD
CN109120355B (en) * 2017-06-26 2024-01-02 华为技术有限公司 Method and device for determining path loss
US10680706B2 (en) * 2017-08-01 2020-06-09 Qualcomm Incorporated Techniques and apparatuses for time division duplex coexistence configuration
US10075817B1 (en) 2017-08-04 2018-09-11 Apple Inc. UE motion estimate in unconventional cell deployments
CN109391498B (en) * 2017-08-10 2021-07-16 华为技术有限公司 Management method of network component and network equipment
CN109391304B (en) * 2017-08-11 2020-11-27 电信科学技术研究院 Data transmission method, base station, terminal and storage medium
WO2019032653A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation Unlicensed narrowband internet of things control channel communication
WO2019064465A1 (en) * 2017-09-28 2019-04-04 株式会社Nttドコモ User device and resource selection method
US11647493B2 (en) * 2017-10-06 2023-05-09 Qualcomm Incorporated Techniques and apparatuses for using a second link for beam failure recovery of a first link
US11212837B2 (en) * 2017-10-19 2021-12-28 Qualcomm Incorporated Listen before talk sequence design for wireless communication
EP3700264A4 (en) * 2017-10-19 2020-10-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
US11304072B2 (en) 2017-11-16 2022-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus, and computer-readable medium for providing synchronization signal block (SSB) transmission pattern
WO2019095188A1 (en) 2017-11-16 2019-05-23 Qualcomm Incorporated Techniques and apparatuses for carrier management
KR102445529B1 (en) * 2017-11-17 2022-09-20 지티이 코포레이션 Method and device for configuration of interferometric parameters
US11044129B2 (en) * 2017-12-21 2021-06-22 Qualcomm Incorporated Hierarchical communication for device-to-device communications
PL3735059T3 (en) * 2017-12-28 2023-09-04 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for determining transmission direction information
US11259152B2 (en) * 2017-12-29 2022-02-22 Lg Electronics Inc. V2X communication device, and its message transmission and reception method for V2X communication device
CN110011771B (en) 2018-01-05 2020-07-10 中国移动通信有限公司研究院 Information transmission method, base station and network management unit
CN110012504B (en) * 2018-01-05 2022-10-14 中国移动通信有限公司研究院 Information transmission method, base station and network management unit
US10484892B2 (en) * 2018-02-20 2019-11-19 Verizon Patent And Licensing Inc. Contextualized network optimization
CN110351709B (en) * 2018-04-04 2020-12-04 华为技术有限公司 Communication method and communication device
US20200396619A1 (en) * 2018-05-04 2020-12-17 Lg Electronics Inc. Method and apparatus for enhancing measurement rule on unlicensed frequency in wireless communication system
US10700775B2 (en) 2018-05-11 2020-06-30 At&T Intellectual Property I, L.P. Resource coordination for integrated access and backhaul
US10645604B2 (en) * 2018-06-04 2020-05-05 Verizon Patent And Licensing Inc. Intelligent optimization of cells in a mobile network
WO2020001731A1 (en) * 2018-06-25 2020-01-02 Nokia Technologies Oy Position determination
WO2020006366A1 (en) 2018-06-28 2020-01-02 Convida Wireless, Llc Prioritization procedures for nr v2x sidelink shared channel data transmission
US11166184B2 (en) 2018-06-29 2021-11-02 Qualcomm Incorporated Techniques to reduce base station to base station interference in semi-synchronous time division duplex operations
JP2020010219A (en) * 2018-07-10 2020-01-16 Hapsモバイル株式会社 Single frequency network cell configuration using HAPS
BR112021001380A2 (en) * 2018-07-25 2021-04-20 Huawei Technologies Co., Ltd. energy-saving method and device, and computer-readable storage medium
WO2020019297A1 (en) * 2018-07-27 2020-01-30 北京小米移动软件有限公司 Method, device and system for transmitting information between internet of vehicles devices
TWI731383B (en) * 2018-08-07 2021-06-21 南韓商Lg電子股份有限公司 Node operation method in wireless communication system and node using the same
JP7142148B2 (en) 2018-08-08 2022-09-26 アイディーエーシー ホールディングス インコーポレイテッド Method and Apparatus for Physical Sidelink Control Channel (PSCCH) Design in New Radio (NR)
KR20210035321A (en) * 2018-08-21 2021-03-31 삼성전자주식회사 Method and apparatus for performing communication in a wireless communication system
CN110891313B (en) * 2018-09-10 2022-08-02 维沃移动通信有限公司 Information transmission method, network equipment and terminal
EP3850884A1 (en) * 2018-09-12 2021-07-21 Nokia Solutions and Networks Oy Dynamic cell selection for radio network optimization
CN110958688B (en) * 2018-09-26 2024-01-09 夏普株式会社 User equipment and execution method thereof, base station and execution method thereof
EP3860185A1 (en) * 2018-09-27 2021-08-04 NTT DoCoMo, Inc. User equipment
EP3844998B1 (en) * 2018-10-05 2022-09-07 Google LLC User equipment context transfer over radio access network paging
CN111107618A (en) * 2018-10-29 2020-05-05 华为技术有限公司 Power control method and terminal equipment
CN113079711A (en) * 2018-10-31 2021-07-06 联发科技(新加坡)私人有限公司 Inter-frequency cell reselection in new radio non-authorization
WO2020091556A1 (en) * 2018-11-02 2020-05-07 Samsung Electronics Co., Ltd. Method and apparatus for automatic gain control in vehicle-to-everything system
KR20200050853A (en) * 2018-11-02 2020-05-12 삼성전자주식회사 A method and apparatus for automatic gain control in vehicle-to-everything
US20220038943A1 (en) * 2018-12-18 2022-02-03 Lenovo (Beijing) Limited METHOD AND APPARATUS FOR QoS MONITORING AND FEEDBACK
DE112019006580T5 (en) * 2019-01-07 2021-12-16 Sony Group Corporation COMMUNICATION DEVICE AND COMMUNICATION PROCEDURE
US10833812B2 (en) * 2019-02-15 2020-11-10 At&T Intellectual Property I, L.P. Configurable hybrid automatic repeat request feedback types for sidelink communication for 5G or other next generation network
US11412549B2 (en) * 2019-03-27 2022-08-09 Mediatek Singapore Pte. Ltd. Broadcast and group-based handover in NR-based LEO-NTN
US11018707B2 (en) * 2019-03-29 2021-05-25 Qualcomm Incorporated Adaptive gain control for sidelink communications
CN110012486B (en) * 2019-04-09 2022-04-08 中国联合网络通信集团有限公司 Method and device for judging cross-zone coverage
CN109996290A (en) * 2019-04-15 2019-07-09 深圳森格瑞通信有限公司 Equipment interference elimination method and device based on intelligent high bandwidth WLAN
US10757584B1 (en) * 2019-04-23 2020-08-25 Sprint Spectrum L.P. Use of different co-existing TDD configurations on a TDD carrier, with uplink beamforming to help minimize interference
US20220182889A1 (en) * 2019-04-26 2022-06-09 Sony Group Corporation Communication in cellular networks comprising dynamic cells
WO2020226644A1 (en) * 2019-05-08 2020-11-12 Nokia Solutions And Networks Oy Inter-radio access technology load balancing under multi-carrier dynamic spectrum sharing
WO2020229552A1 (en) * 2019-05-13 2020-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment supporting conditional handovers to cells of a cellular network and a cellular network supporting conditional handovers
CN110337113B (en) * 2019-05-29 2022-06-21 西北农林科技大学 Interference control method based on cell dynamic clustering in dense DTDD network
US11212770B2 (en) * 2019-06-27 2021-12-28 Qualcomm Incorporated Techniques for configuring paging cycles
US11882554B2 (en) 2019-06-27 2024-01-23 Qualcomm Incorporated Opportunistic transmission for sidelink communications
KR20210004535A (en) * 2019-07-05 2021-01-13 삼성전자주식회사 Apparatus and method for controlling gain of receivec signals in wireless communication system
US10834688B1 (en) * 2019-08-28 2020-11-10 International Business Machines Corporation Wireless cross-connect datacenter
US10939444B1 (en) * 2019-09-13 2021-03-02 Verizon Patent And Licensing Inc. Systems and methods for determining a mobility rating of a base station
KR20210051011A (en) 2019-10-29 2021-05-10 삼성전자주식회사 Method and apparatus for channel estimation for ofdm based single carrier system
CN112788750B (en) * 2019-11-06 2023-09-29 大唐移动通信设备有限公司 SRS transmission method, SRS transmission device, network equipment, terminal and storage medium
US10743358B1 (en) * 2019-12-11 2020-08-11 Cypress Semiconductor Corporation Dedicated TDLS link in off-channel 5 GHz band using RSDB
EP4094514A4 (en) * 2020-01-20 2023-11-08 Qualcomm Incorporated Multiple component carrier scheduling parameter for dci scheduling multiple component carriers
US20210227604A1 (en) * 2020-01-21 2021-07-22 Asustek Computer Inc. Method and apparatus for monitoring device-to-device sidelink control signal in a wireless communication system
US20230232327A1 (en) * 2020-06-03 2023-07-20 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission processing method, apparatus, user equipment and storage medium
US11950184B2 (en) * 2020-06-15 2024-04-02 Qualcomm Incorporated Zone identification (ID) for wireless sidelink communications
US11122525B1 (en) * 2020-06-24 2021-09-14 Charter Communications Operating, Llc Wireless channel access and power adjust access requests
CN113873664A (en) * 2020-06-30 2021-12-31 华为技术有限公司 Communication resource scheduling method and device
US11743951B2 (en) * 2020-07-28 2023-08-29 Qualcomm Incorporated Two step RACH based L1/L2 inter-cell mobility
JP7419562B2 (en) * 2020-10-01 2024-01-22 京セラ株式会社 Communication control method
US11212710B1 (en) * 2020-11-13 2021-12-28 At&T Intellectual Property I, L.P. Zero touch cellular carrier configuration
US11395307B1 (en) * 2020-12-30 2022-07-19 Verizon Patent And Licensing Inc. Systems and methods for interference management in a radio access network
US11647442B2 (en) * 2021-01-22 2023-05-09 Verizon Patent And Licensing Inc. Centralized ran cell sector clustering based on cell sector performance
CN116889091A (en) * 2021-01-26 2023-10-13 中兴通讯股份有限公司 Method for small data transmission
US11490329B1 (en) 2021-04-29 2022-11-01 T-Mobile Usa, Inc. Determining a cell to which to connect user equipment
WO2022245478A1 (en) * 2021-05-18 2022-11-24 Microsoft Technology Licensing, Llc Real-time radio access network analytics
US11856534B2 (en) * 2021-06-25 2023-12-26 Qualcomm Incorporated Transmitting sidelink reference signals for joint channel estimation and automatic gain control
US11589314B2 (en) * 2021-07-02 2023-02-21 Qualcomm Incorporated Wideband micro sleep techniques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245258A1 (en) * 2004-04-28 2005-11-03 Classon Brian K Method and apparatus for transmission and reception of narrowband signals within a wideband communication system
KR20080050734A (en) * 2006-12-04 2008-06-10 삼성전자주식회사 Apparatus and method for frame structure in wide-band wireless communication systems
KR20090055039A (en) * 2006-09-19 2009-06-01 콸콤 인코포레이티드 Accommodating wideband and narrowband communication devices
US20100067418A1 (en) * 2006-11-01 2010-03-18 Telefonaktiebolaget Lm Ericsson(Publ) Method and arrangement for reducing power consumption in user equipments in multi-carrier radio systems
US20110211489A1 (en) * 2008-11-03 2011-09-01 Jae Hoon Chung Communication Method and Apparatus in Multi-Carrier System

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002689A (en) * 1996-11-22 1999-12-14 Sprint Communications Co. L.P. System and method for interfacing a local communication device
JP3485860B2 (en) * 2000-03-27 2004-01-13 松下電器産業株式会社 Base station apparatus and wireless communication method
JP2003224505A (en) * 2002-01-28 2003-08-08 Telecommunication Advancement Organization Of Japan Communication system between road and vehicle, base station thereof and method for controlling radio zone
JP2006511981A (en) * 2002-05-06 2006-04-06 インターディジタル テクノロジー コーポレイション Method and system for reducing message instances
US7715855B2 (en) * 2004-01-12 2010-05-11 Qualcomm Incorporated Method and apparatus optimizing receipt of call/broadcast paging messages by self-powered wireless communications devices
GB2409952B (en) * 2004-01-12 2008-10-15 Nec Corp Mobile telecommunications
US7733898B2 (en) * 2004-08-25 2010-06-08 Intel Corporation Method and apparatus for preventing starvation in a slotted-ring network
KR100705042B1 (en) 2004-12-09 2007-04-10 엘지전자 주식회사 Portable communication terminal having that have water vein inquiry function
CN101496430A (en) * 2005-01-25 2009-07-29 美商内数位科技公司 Peer-to-peer wireless communication system
CN1852568B (en) * 2005-08-29 2010-05-05 华为技术有限公司 Small-zone switching-over method
KR100705040B1 (en) 2005-11-28 2007-04-09 엘지전자 주식회사 Data transmission method for mobile communication system and controlling method for mobile communication terminal
WO2008003815A1 (en) * 2006-07-07 2008-01-10 Nokia Corporation Improved radio resource allocation mechanism
US20080108374A1 (en) 2006-11-02 2008-05-08 Motorola, Inc. Standalone positioning in 3G UMTS systems
EP1933507A1 (en) 2006-12-15 2008-06-18 Ubiwave Low-power multi-hop networks
JP2010524294A (en) * 2007-03-28 2010-07-15 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Measurement of cell-specific reference symbols in the presence of an MBMS single frequency network
KR101467008B1 (en) * 2007-04-27 2014-12-02 인터디지탈 테크날러지 코포레이션 Method and apparatus of resource management for multimedia broadcast multicast services
US8000272B2 (en) * 2007-08-14 2011-08-16 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
KR101467567B1 (en) * 2007-08-14 2014-12-04 엘지전자 주식회사 Method of Transmitting Scheduling Request Signal
WO2009038350A1 (en) * 2007-09-21 2009-03-26 Lg Electronics Inc. Method of mapping physical resource to logical resource in wireless communication system
US7801231B2 (en) * 2007-09-27 2010-09-21 Intel Corporation Preamble techniques for communications networks
ATE524046T1 (en) * 2007-10-29 2011-09-15 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT IN A TELECOMMUNICATIONS SYSTEM
EP2206378B1 (en) * 2007-11-02 2017-10-18 Telefonaktiebolaget LM Ericsson (publ) Speed-dependent adaptation of mobility parameters with dual speed measurement
US8326372B2 (en) * 2007-11-09 2012-12-04 Qualcomm Incorporated Direct link set-up power save delivery
US7995508B2 (en) * 2007-12-11 2011-08-09 Electronics & Telecommunications Research Institute Energy saving method in wireless network
US8644874B2 (en) * 2008-01-07 2014-02-04 Telefonaktiebolaget L M Ericsson (Publ) Uplink power control for power limited terminals
US8861502B2 (en) * 2008-03-03 2014-10-14 Qualcomm Incorporated Assisted initial network acquisition and system determination
PL2263411T3 (en) 2008-03-21 2017-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Prohibiting unnecessary scheduling requests for uplink grants
CA2711260A1 (en) 2008-03-24 2009-10-01 Zte U.S.A., Inc. Dynamic adjustment and signaling of downlink/uplink allocation ratio in lte/tdd systems
MX2010010913A (en) * 2008-04-04 2010-12-21 Powerwave Cognition Inc Methods and systems for a mobile, broadband, routable internet.
WO2010028311A1 (en) * 2008-09-04 2010-03-11 Powerwave Cognition, Inc. Enhanced wireless ad hoc communication techniques
JP4901800B2 (en) * 2008-04-14 2012-03-21 株式会社日立製作所 Wireless terminal, base station control station, and handoff control method in wireless communication system
US8064374B2 (en) * 2008-05-09 2011-11-22 Nokia Corporation Power save mechanism for wireless communication devices
JP2009302964A (en) * 2008-06-13 2009-12-24 Nec Corp Wireless system, wireless terminal, power control method and power control program
US8577363B2 (en) 2008-07-14 2013-11-05 Nokia Corporation Setup of device-to-device connection
CN101686497B (en) * 2008-09-24 2013-04-17 华为技术有限公司 Cell load equalization method, and cell load evaluation method and device
US9294219B2 (en) * 2008-09-30 2016-03-22 Qualcomm Incorporated Techniques for supporting relay operation in wireless communication systems
US20100105395A1 (en) 2008-10-28 2010-04-29 Samsung Electronics Co., Ltd. Method for the cell ID selection for femtocell basestation
CN102246575A (en) * 2008-10-29 2011-11-16 诺基亚公司 Apparatus and method for dynamic communication resource allocation for device-to-device communications in a wireless communication system
WO2010049587A1 (en) * 2008-10-31 2010-05-06 Nokia Corporation Dynamic allocation of subframe scheduling for time division duplex operation in a packet-based wireless communication system
US8948208B2 (en) * 2008-11-07 2015-02-03 Qualcomm Incorporated Conveying information through phase offset on PSS relative to DL-RS
KR101299277B1 (en) 2008-11-10 2013-08-23 리서치 인 모션 리미티드 Method and apparatus of transition to a battery efficient state or configuration by indicating end of data transmission in long term evolution
KR101487562B1 (en) * 2008-11-11 2015-01-30 엘지전자 주식회사 Method for relaying data in wireless communication system based on tdd
KR101179627B1 (en) * 2008-12-22 2012-09-04 한국전자통신연구원 Method And Apparatus For Allocating Demodulation Reference Signal
US9900779B2 (en) 2008-12-30 2018-02-20 Qualcomm Incorporated Centralized control of peer-to-peer communication
US8493887B2 (en) * 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
CN101772093A (en) 2008-12-31 2010-07-07 华为技术有限公司 User uplink and downlink out-of-step switching method and device
US8203985B2 (en) * 2008-12-31 2012-06-19 Intel Corporation Power saving in peer-to-peer communication devices
US8982759B2 (en) * 2009-01-15 2015-03-17 Lg Electronics Inc. System information transmitting and receiving device
ATE546972T1 (en) 2009-02-25 2012-03-15 Alcatel Lucent METHOD AND DEVICE FOR DYNAMIC UPDATE OF NEIGHBOR CELL LISTS IN HETEROGENEOUS NETWORKS
KR20100100017A (en) 2009-03-05 2010-09-15 엘지에릭슨 주식회사 Method for gathering idle measurement report message and mobile telecommunication system for the same
WO2010102450A1 (en) * 2009-03-11 2010-09-16 华为技术有限公司 Method, device and system for identifying different frame structures
US8401033B2 (en) * 2009-03-13 2013-03-19 Qualcomm Incorporated Systems, apparatus and methods to facilitate physical cell identifier collision detection
US9647810B2 (en) * 2009-03-17 2017-05-09 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
US8811314B2 (en) * 2009-03-18 2014-08-19 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
US8966090B2 (en) 2009-04-15 2015-02-24 Nokia Corporation Method, apparatus and computer program product for providing an indication of device to device communication availability
CN102804694B (en) * 2009-04-29 2015-11-25 三星电子株式会社 For managing the terminal equipment of emergency, telegon and method
US9055105B2 (en) * 2009-05-29 2015-06-09 Nokia Technologies Oy Method and apparatus for engaging in a service or activity using an ad-hoc mesh network
CN102461297A (en) 2009-06-04 2012-05-16 诺基亚公司 Effective labeling of subframes based on device-to-device transmission in cellular downlink spectrums
US20100311407A1 (en) * 2009-06-08 2010-12-09 Motorola, Inc. Resolving conflicting physical cell identification in a wireless communication system
US8811262B2 (en) * 2009-06-08 2014-08-19 Lg Electronics Inc. Method in which a relay allocates carriers on a backhaul link and an access link in a multi-carrier wireless communication system
CN101931885B (en) * 2009-06-19 2015-06-03 中兴通讯股份有限公司 Method and system for informing updating of multimedia broadcast and mutlicast service control channel
US8538434B2 (en) * 2009-06-26 2013-09-17 Intel Corporation GPS assisted network administration
US8902858B2 (en) * 2009-07-15 2014-12-02 Qualcomm Incorporated Low reuse preamble
US8644277B2 (en) * 2009-08-06 2014-02-04 Qualcomm Incorporated Dynamic selection of random access channel configurations
US20110038290A1 (en) * 2009-08-11 2011-02-17 Michelle Xiaohong Gong Device, system and method of power management in a wireless area network
WO2011019175A2 (en) * 2009-08-11 2011-02-17 Lg Electronics Inc. Apparatus and method for power save mode in wireless local area network
RU2508614C2 (en) * 2009-08-14 2014-02-27 Нокиа Корпорейшн Flexible ways to indicate downlink/uplink backhaul subframe configurations in relay systems
KR101573001B1 (en) * 2009-08-24 2015-11-30 삼성전자주식회사 Receiver and method for using reference singnal thereof
WO2011033612A1 (en) 2009-09-15 2011-03-24 株式会社 東芝 Wireless communication apparatus
US20120184306A1 (en) 2009-09-28 2012-07-19 Nokia Corporation Random Access Process Reusing For D2D Probing in Cellular-Aided D2D Networks
US9401784B2 (en) * 2009-10-21 2016-07-26 Qualcomm Incorporated Time and frequency acquisition and tracking for OFDMA wireless systems
US9559829B2 (en) * 2009-11-04 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Signaling for flexible carrier aggregation
US8750145B2 (en) * 2009-11-23 2014-06-10 Interdigital Patent Holdings, Inc. Method and apparatus for machine-to-machine communication registration
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
US8762543B2 (en) 2009-12-15 2014-06-24 Intel Corporation Method and apparatus for autonomous peer discovery and enhancing link reliability for wireless peer direct links
US8335937B2 (en) 2009-12-24 2012-12-18 Intel Corporation Method and system for discoverability of power saving P2P devices
US20130028184A1 (en) * 2010-01-06 2013-01-31 Electronics And Telecommunications Research Institute Machine type communication system
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
US8565169B2 (en) * 2010-01-12 2013-10-22 Qualcomm Incorporated Timing synchronization methods and apparatus
US8599708B2 (en) * 2010-01-14 2013-12-03 Qualcomm Incorporated Channel feedback based on reference signal
US8868091B2 (en) * 2010-01-18 2014-10-21 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
EP2526713A4 (en) * 2010-01-22 2014-12-24 Nokia Corp Cellular control sensing for multi-cell device-to-device interference control
US8996900B2 (en) * 2010-02-04 2015-03-31 Cisco Technology, Inc. System and method for managing power consumption in data propagation environments
JP5482258B2 (en) * 2010-02-05 2014-05-07 三菱電機株式会社 Mobile radio communication system
WO2011097760A1 (en) 2010-02-12 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Signal measurements for positioning, signalling means for their support and methods of utilizing the measurements to enhance positioning quality in lte
MX2011006037A (en) * 2010-02-17 2011-10-28 Zte Usa Inc Methods and systems for csi-rs transmission in lte-advance systems.
US8737998B2 (en) 2010-02-17 2014-05-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for processing of neighbor cell information
JP5340995B2 (en) * 2010-02-26 2013-11-13 株式会社日立製作所 Base station, radio communication system and interference-based handover control method
KR101829922B1 (en) * 2010-03-05 2018-02-20 엘지전자 주식회사 Method of communication with a network in a wireless communication sysyem and apparatus thereof
EP2547058B1 (en) * 2010-03-10 2018-07-04 LG Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
WO2011112051A2 (en) 2010-03-11 2011-09-15 엘지전자 주식회사 Method and apparatus for mtc in a wireless communication system
US20110223953A1 (en) 2010-03-15 2011-09-15 Lg Electronics Inc. Apparatus for direct communication in a wireless system and method thereof
EP3328102B1 (en) 2010-03-23 2020-02-19 IOT Holdings, Inc. Method for communication for a machine type communication device and corresponding wireless transmit/receive unit
CA2784035C (en) * 2010-03-29 2020-07-21 Lg Electronics Inc. Method and apparatus for measurement for inter-cell interference coordination in radio communication system
KR101684867B1 (en) * 2010-04-07 2016-12-09 삼성전자주식회사 Transmission and reception method of control information to exploit the spatial multiplexing gain
US8712401B2 (en) 2010-04-16 2014-04-29 Qualcomm Incorporated Radio link monitoring (RLM) and reference signal received power (RSRP) measurement for heterogeneous networks
US8867458B2 (en) * 2010-04-30 2014-10-21 Nokia Corporation Network controlled device to device / machine to machine cluster operation
US8780860B2 (en) * 2010-05-01 2014-07-15 Pantech Co., Ltd. Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers
US8504052B2 (en) 2010-05-06 2013-08-06 Nokia Corporation Measurements and fast power adjustments in D2D communications
US9578550B2 (en) 2010-05-28 2017-02-21 Nokia Solutions And Networks Oy Method and apparatus for device-to-device communication
WO2011147464A1 (en) * 2010-05-28 2011-12-01 Osram Gesellschaft mit beschränkter Haftung Method for compensating the burn-back of electrode tips in high-pressure discharge lamps
US8526347B2 (en) * 2010-06-10 2013-09-03 Qualcomm Incorporated Peer-to-peer communication with symmetric waveform for downlink and uplink
JP5334918B2 (en) * 2010-06-17 2013-11-06 三菱電機株式会社 Wireless communication system, cell optimization method, server device, and base station
US20110312359A1 (en) * 2010-06-17 2011-12-22 Nokia Siemens Networks Oy Energy Savings For Multi-Point Transmission Wireless Network
US8937937B2 (en) * 2010-06-22 2015-01-20 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization in heterogeneous networks
JP5766796B2 (en) * 2010-06-23 2015-08-19 クゥアルコム・インコーポレイテッドQualcomm Incorporated Event-triggered peer discovery
US8977276B2 (en) * 2010-07-15 2015-03-10 Nokia Corporation Method and apparatus for device initiated offloading to unlicensed bands
JP5306293B2 (en) * 2010-07-22 2013-10-02 三菱電機株式会社 Wireless communication system
GB2482183B (en) * 2010-07-23 2013-03-27 Sca Ipla Holdings Inc Cellular communication system, communication units, and method for broadcast and unicast communication
CN102347817B (en) * 2010-08-02 2014-01-08 华为技术有限公司 Method for notifying reference signal configuration information and device thereof
JP5664651B2 (en) * 2010-08-11 2015-02-04 富士通株式会社 Wireless communication system, control station, and control method
US8830930B2 (en) 2010-08-16 2014-09-09 Electronics And Telecommunications Research Institute Device in wireless network, device resource management apparatus, gateway and network server, and control method of the network server
CN102378116B (en) * 2010-08-17 2016-03-30 华为技术有限公司 The collocation method of energy-saving cell, Apparatus and system
JP2012054736A (en) * 2010-09-01 2012-03-15 Hitachi Ltd Mobile communication system and load distribution method for the same
US8416741B2 (en) * 2010-09-07 2013-04-09 Verizon Patent And Licensing Inc. Machine-to-machine communications over fixed wireless networks
EP2617145A4 (en) * 2010-09-14 2015-03-11 Nokia Corp Interference measurement and reporting for device-to-device communications in communication system
WO2012044211A1 (en) * 2010-09-27 2012-04-05 Telefonaktiebolaget Lm Ericsson (Publ) A method and an arrangement for sharing of a first cell radio network temporary identifier
KR101077778B1 (en) 2010-09-29 2011-10-28 주식회사 이노와이어리스 Automatic detection apparatus for ul/dl configuration in lte-tdd signal and the method thereby
WO2012043524A1 (en) * 2010-10-01 2012-04-05 三菱電機株式会社 Communication system
BR112013006930A2 (en) 2010-10-04 2016-07-12 Ericsson Telefon Ab L M Cell information acquisition to improve network operation in heterogeneous environment
US9356725B2 (en) * 2010-10-08 2016-05-31 Qualcomm Incorporated Method and apparatus for managing inter-cell interference coordination actions for time-domain partitioned cells
US9344248B2 (en) * 2010-11-12 2016-05-17 Google Technology Holdings LLC Positioning reference signal assistance data signaling for enhanced interference coordination in a wireless communication network
CN102014428B (en) * 2010-12-02 2015-05-20 新邮通信设备有限公司 Method and device for selecting cells to be switched at switching preparatory stage
US20130315197A1 (en) * 2010-12-14 2013-11-28 Lg Electronics Inc. Method for transmitting and method for receiving a channel state information reference signal in a distributed multi-node system
WO2012079197A1 (en) * 2010-12-16 2012-06-21 Nokia Siemens Networks Oy Common control deactivation in carrier aggregation
US20120163261A1 (en) * 2010-12-23 2012-06-28 Texas Instruments Incorporated Timing measurements between wireless stations with reduced power consumption
CN103430459A (en) * 2011-02-07 2013-12-04 英特尔公司 Co-phasing of transmissions from multiple infrastructure node
US10187859B2 (en) * 2011-02-14 2019-01-22 Qualcomm Incorporated Power control and user multiplexing for heterogeneous network coordinated multipoint operations
US20120207071A1 (en) * 2011-02-16 2012-08-16 Samsung Electronics Co., Ltd. Enhanced power save multi-poll (psmp) protocol for multi-user mimo based wireless local area networks
WO2012118740A1 (en) * 2011-02-28 2012-09-07 Interdigital Patent Holdings, Inc. Method and apparatus for coordinating change of operating frequency
KR101859594B1 (en) * 2011-03-10 2018-06-28 삼성전자 주식회사 Method and Apparatus for Supporting Flexible Time Division Duplex in Communication System
CN102684855A (en) * 2011-03-11 2012-09-19 北京三星通信技术研究有限公司 Indicating method for HARQ (Hybrid Automatic Repeat reQuest) timing relation
US20120236805A1 (en) * 2011-03-14 2012-09-20 Innovative Sonic Corporation Method and apparatus for providing information to determine a cause of low quality of service in a wireless communication system
US8891548B2 (en) * 2011-03-22 2014-11-18 Interdigital Patent Holdings, Inc. Method and apparatus for data transmissions in a wireless network
US9265078B2 (en) * 2011-05-02 2016-02-16 Lg Electronics Inc. Method for performing device-to-device communication in wireless access system and apparatus therefor
EP2707985A4 (en) * 2011-05-13 2014-11-26 Broadcom Corp Methods, devices and computer program products for interference reduction in tdd systems allowing allocation of flexible subframes for uplink or downlink transmission
WO2012167431A1 (en) * 2011-06-09 2012-12-13 Renesas Mobile Corporation Interference control in time division duplex communication
WO2012171465A1 (en) * 2011-06-14 2012-12-20 华为技术有限公司 Communication method and device in time division duplex system
CN102395157B (en) * 2011-06-30 2014-02-12 西安电子科技大学 Regional load balancing method in cellular mobile communication system
EP2727305A4 (en) * 2011-07-01 2015-01-07 Intel Corp Layer shifting in open loop multiple-input, multiple-output communications
EP2742627B1 (en) * 2011-08-10 2021-03-03 Interdigital Patent Holdings, Inc. Uplink feedback for multi-site scheduling
WO2013025139A1 (en) * 2011-08-15 2013-02-21 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for handling a scheduling request
US9100900B2 (en) * 2011-08-16 2015-08-04 Amazon Technologies, Inc. Home or higher priority PLMN scan in 4G connected mode
CN102333293B (en) * 2011-09-21 2014-07-09 电信科学技术研究院 Small data transmission method and equipment
US9973877B2 (en) * 2011-09-23 2018-05-15 Htc Corporation Method of handling small data transmission
EP2761927A4 (en) 2011-09-30 2015-08-12 Intel Corp Methods to transport internet traffic over multiple wireless networks simultaneously
CN102316595B (en) * 2011-09-30 2017-04-12 中兴通讯股份有限公司 Resource determination method and device for physical uplink control channel (PUCCH) of large-band-width system
US9232540B2 (en) * 2011-09-30 2016-01-05 Qualcomm Incorporated Random access channel design for narrow bandwidth operation in a wide bandwidth system
US11239971B2 (en) * 2011-11-03 2022-02-01 Texas Instruments Incorporated Method and apparatus with enhanced control messages and search space
CN103907394B (en) * 2011-11-04 2019-06-28 英特尔公司 Method and apparatus for delivering the transmission of small data payload and triggering small data payload within a wireless communication network
WO2013090809A1 (en) * 2011-12-14 2013-06-20 Interdigital Patent Holdings, Inc. Method and apparatus for triggering machine type communications applications
EP2807860A4 (en) 2012-01-23 2016-04-13 Intel Corp Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
GB2498721B (en) * 2012-01-24 2014-10-15 Broadcom Corp Apparatus,method and computer program for wireless communication
WO2013112972A1 (en) * 2012-01-27 2013-08-01 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9629050B2 (en) * 2012-02-03 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus and computer program for cell identification
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US8744449B2 (en) * 2012-03-16 2014-06-03 Blackberry Limited Mobility parameter adjustment and mobility state estimation in heterogeneous networks
US8811258B2 (en) * 2012-04-13 2014-08-19 Intel Corporation Enhanced local communications in mobile broadband networks
US9143984B2 (en) 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9521669B2 (en) * 2012-04-16 2016-12-13 Blackberry Limited HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems
US9451595B2 (en) * 2012-04-27 2016-09-20 Qualcomm Incorporated Methods and apparatus for TDD reconfiguration
US8982741B2 (en) * 2012-05-11 2015-03-17 Intel Corporation Method, system and apparatus of time-division-duplex (TDD) uplink-downlink (UL-DL) configuration management
US9014064B2 (en) * 2012-05-11 2015-04-21 Intel Corporation Scheduling and hybrid automatic repeat request (HARQ) timing indication for an uplink-downlink (UL-DL) reconfiguration
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245258A1 (en) * 2004-04-28 2005-11-03 Classon Brian K Method and apparatus for transmission and reception of narrowband signals within a wideband communication system
KR20090055039A (en) * 2006-09-19 2009-06-01 콸콤 인코포레이티드 Accommodating wideband and narrowband communication devices
US20100067418A1 (en) * 2006-11-01 2010-03-18 Telefonaktiebolaget Lm Ericsson(Publ) Method and arrangement for reducing power consumption in user equipments in multi-carrier radio systems
KR20080050734A (en) * 2006-12-04 2008-06-10 삼성전자주식회사 Apparatus and method for frame structure in wide-band wireless communication systems
US20110211489A1 (en) * 2008-11-03 2011-09-01 Jae Hoon Chung Communication Method and Apparatus in Multi-Carrier System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2837108A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232437B2 (en) 2012-04-13 2016-01-05 Intel Corporation Evolved node B, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
CN104602349A (en) * 2013-10-31 2015-05-06 索尼公司 Carrier allocation device and method and terminal
US11224015B2 (en) 2014-10-31 2022-01-11 Qualcomm Incorporated Dynamic bandwidth switching for reducing power consumption in wireless communication devices
US11711762B2 (en) 2014-10-31 2023-07-25 Qualcomm Incorporated Dynamic bandwidth switching for reducing power consumption in wireless communication devices
CN107005297A (en) * 2014-11-05 2017-08-01 英特尔Ip公司 It is used for user equipment and method that CSI is measured in the case where bandwidth is supported to reduce
CN108432285A (en) * 2016-02-05 2018-08-21 华为技术有限公司 A kind of transmission method, the apparatus and system of physical down channel
CN108432285B (en) * 2016-02-05 2021-08-03 华为技术有限公司 Transmission method, device and system of physical downlink channel

Also Published As

Publication number Publication date
EP2837119A1 (en) 2015-02-18
RU2643702C1 (en) 2018-02-06
CN104321985B (en) 2017-09-19
CN104170281A (en) 2014-11-26
HUE039147T2 (en) 2018-12-28
EP2837107A1 (en) 2015-02-18
KR20140136470A (en) 2014-11-28
EP2837108A4 (en) 2016-03-23
KR20140130518A (en) 2014-11-10
CN104205673B (en) 2018-09-25
EP2837110A1 (en) 2015-02-18
WO2013155265A1 (en) 2013-10-17
RU2014138945A (en) 2016-04-10
AU2013245908A1 (en) 2014-10-02
JP6424396B2 (en) 2018-11-21
WO2013155411A1 (en) 2013-10-17
EP2837249A1 (en) 2015-02-18
KR20140138235A (en) 2014-12-03
US20130272132A1 (en) 2013-10-17
JP2015515814A (en) 2015-05-28
EP3696994A1 (en) 2020-08-19
CN104205962A (en) 2014-12-10
ES2684535T3 (en) 2018-10-03
CN104205686B (en) 2017-08-25
CA2869000A1 (en) 2013-10-17
AU2013245792B2 (en) 2016-01-07
US20130272262A1 (en) 2013-10-17
CN104303540A (en) 2015-01-21
US9814070B2 (en) 2017-11-07
EP2837111A1 (en) 2015-02-18
MX347089B (en) 2017-04-11
JP5886471B2 (en) 2016-03-16
US20130273923A1 (en) 2013-10-17
US9143984B2 (en) 2015-09-22
EP2837249A4 (en) 2015-12-30
MX2014011467A (en) 2015-05-11
MX364604B (en) 2019-05-02
MY179770A (en) 2020-11-13
EP2837246A4 (en) 2015-04-15
EP2837119B1 (en) 2018-06-27
US9232437B2 (en) 2016-01-05
KR101612358B1 (en) 2016-04-26
JP2015518335A (en) 2015-06-25
US10091818B2 (en) 2018-10-02
JP2017005740A (en) 2017-01-05
US20150349942A1 (en) 2015-12-03
HUE044206T2 (en) 2019-10-28
EP2837119A4 (en) 2016-04-20
EP2837107A4 (en) 2015-12-23
AU2013245792A1 (en) 2014-10-02
EP2837111A4 (en) 2016-01-06
CN104205673A (en) 2014-12-10
CN104321985A (en) 2015-01-28
JP2016195400A (en) 2016-11-17
EP2837228B1 (en) 2018-06-20
US9066258B2 (en) 2015-06-23
EP3166234B1 (en) 2020-01-01
WO2013155373A1 (en) 2013-10-17
CN104170281B (en) 2017-09-08
WO2013155182A1 (en) 2013-10-17
US20130272182A1 (en) 2013-10-17
US20130272170A1 (en) 2013-10-17
EP2837109A1 (en) 2015-02-18
EP2837110B1 (en) 2019-02-27
EP2837228A1 (en) 2015-02-18
WO2013155459A1 (en) 2013-10-17
RU2582078C2 (en) 2016-04-20
US20130273878A1 (en) 2013-10-17
EP2837228A4 (en) 2016-01-06
US9107103B2 (en) 2015-08-11
CA2867734A1 (en) 2013-10-17
CN108667591A (en) 2018-10-16
KR101598476B1 (en) 2016-03-14
JP5954647B2 (en) 2016-07-20
JP2015515803A (en) 2015-05-28
US20170311350A1 (en) 2017-10-26
WO2013155443A1 (en) 2013-10-17
JP6077640B2 (en) 2017-02-08
CN104205915B (en) 2018-05-01
CN104205686A (en) 2014-12-10
US9055474B2 (en) 2015-06-09
US10231264B2 (en) 2019-03-12
WO2013155167A1 (en) 2013-10-17
MX344027B (en) 2016-12-01
JP6250736B2 (en) 2017-12-20
US9661658B2 (en) 2017-05-23
ES2727123T3 (en) 2019-10-14
US9936521B2 (en) 2018-04-03
JP5986289B2 (en) 2016-09-06
HUE040204T2 (en) 2019-02-28
US9119097B2 (en) 2015-08-25
EP2837246A1 (en) 2015-02-18
US20130272148A1 (en) 2013-10-17
WO2013155253A1 (en) 2013-10-17
US20130272215A1 (en) 2013-10-17
US9325485B2 (en) 2016-04-26
US9125091B2 (en) 2015-09-01
AU2013245908B2 (en) 2016-02-11
CN104272850A (en) 2015-01-07
ES2683975T3 (en) 2018-10-01
EP3166234A1 (en) 2017-05-10
CN104205962B (en) 2019-02-15
JP2015518333A (en) 2015-06-25
US20180167974A1 (en) 2018-06-14
EP2837109A4 (en) 2015-12-30
RU2014138943A (en) 2016-04-10
US20130272214A1 (en) 2013-10-17
KR101596187B1 (en) 2016-02-19
US9736861B2 (en) 2017-08-15
US20150327301A1 (en) 2015-11-12
CN104272850B (en) 2018-09-07
US20160381708A1 (en) 2016-12-29
CN104303540B (en) 2019-02-15
CN108667591B (en) 2021-03-19
EP2837110A4 (en) 2015-12-23
RU2593269C2 (en) 2016-08-10
CN104205915A (en) 2014-12-10
CA2869000C (en) 2017-07-04
EP2837108A1 (en) 2015-02-18
MX2014011698A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US9232437B2 (en) Evolved node B, user equipment, and method for operation of narrow bandwidth user equipment in wide bandwidth broadband networks
EP3563489B1 (en) Method for signaling bandwidth part (bwp) indicators and radio communication equipment using the same
US11576165B2 (en) Method and apparatus for transmitting and receiving downlink control information in a wireless communication system
US11729703B2 (en) Communication system for communicating minimum system information
CN107210810B (en) Apparatus, system, and method for using a unified flexible 5G air interface
US9596069B2 (en) Narrow bandwidth device in a broadband network
EP3058676B1 (en) Downlink control format indicator
US11582781B2 (en) SPS support for multi-TRP
TW201739290A (en) Downlink control for demodulation reference signal transmissions
US20180109406A1 (en) Resource block alignment in mixed numerology wireless communications
CN111164930B (en) PDCCH search space monitoring configuration method, network node and wireless equipment
US20130100899A1 (en) Machine type communication device, apparatus and method for allocating resources to the same, and data transmission/reception method of the same
US20220070891A1 (en) Transmitter direct current subcarrier location indication in wireless communication
CN116018865A (en) Method and apparatus for allocating frequency resources in a wireless communication system
WO2022115170A1 (en) Long physical sidelink shared channel format for sidelink communication
US20220312459A1 (en) Enhanced Configured Grants
CN113966639A (en) Parameter override rules for multiple SPS/CG configurations
CN114557052A (en) Configuration for ungrouped wake-up signals and grouped wake-up signals
JP2022521484A (en) Transceiver device and scheduling device
US20220304042A1 (en) Enhanced Configured Grants
CN115088355A (en) Beam Failure Detection (BFD) in dormant bandwidth part (BWP)
CN116803179A (en) DCI size restriction and discard rules for reduced capability UEs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013775493

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE