WO2013150825A1 - Power supply and anomaly detection method of power supply - Google Patents

Power supply and anomaly detection method of power supply Download PDF

Info

Publication number
WO2013150825A1
WO2013150825A1 PCT/JP2013/054353 JP2013054353W WO2013150825A1 WO 2013150825 A1 WO2013150825 A1 WO 2013150825A1 JP 2013054353 W JP2013054353 W JP 2013054353W WO 2013150825 A1 WO2013150825 A1 WO 2013150825A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
charging current
abnormality
power supply
elapsed
Prior art date
Application number
PCT/JP2013/054353
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 天貝
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013150825A1 publication Critical patent/WO2013150825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power supply device and an abnormality detection method for the power supply device.
  • This application claims priority based on Japanese Patent Application No. 2012-84595 filed on Apr. 3, 2012.
  • the contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
  • a smoothing capacitor has been provided between the input terminals of the inverter of an electric vehicle.
  • the precharge relay is closed and the charging current is limited by a precharge resistor connected in series with the precharge relay while precharging the smoothing capacitor.
  • a technique for preventing damage to the contact of the main relay by determining that the precharge is completed when the charging current becomes equal to or less than a predetermined reference value after a predetermined time has elapsed and closing the main relay is known. (For example, see Patent Document 1).
  • the problem to be solved by the present invention is to provide a power supply apparatus and an abnormality detection method for a power supply apparatus that can appropriately detect the abnormality when an abnormality occurs.
  • the present invention provides a difference between a charging current actually flowing and a normal charging current measured in advance when a predetermined time elapses after the precharging switch for precharging the smoothing capacitor is turned on.
  • the above problem is solved by detecting occurrence of abnormality by comparing the calculated difference with a predetermined threshold.
  • the present invention it is possible to determine whether or not an abnormality has occurred based on the difference between the charging current that is actually flowing and the charging current at the normal time measured in advance. It can be detected early.
  • FIG. 1 is a block diagram showing a power supply device according to this embodiment.
  • FIG. 2 is a diagram showing the transition of the current value at the normal time when the smoothing capacitor 13 is charged at the normal time.
  • FIG. 3 is a diagram showing the transition of the current value when an abnormality has occurred in the smoothing capacitor 13.
  • FIG. 4 is a diagram showing the transition of the current value when a circuit short circuit abnormality occurs and when a circuit disconnection abnormality occurs.
  • FIG. 5 is a diagram illustrating the transition of the current value when abnormality occurs in the precharge resistor 17 and the downstream device.
  • FIG. 6 is a diagram for explaining a method of setting the second time t2.
  • FIG. 1 is a block diagram showing a power supply device 100 according to this embodiment.
  • the power supply device 100 is a power supply device mounted on, for example, a hybrid vehicle or an electric vehicle, and includes a battery 11 formed by connecting a plurality of cells in series as shown in FIG.
  • a load 12 is connected to both ends of the battery 11 via a first main relay 14 and a second main relay 15 in the junction box 20 and a switch 18.
  • the cell constituting the battery 11 is, for example, a lithium ion secondary battery, and the battery 11 is provided with a current sensor 19 for detecting a current input to and output from the battery 11. Although it does not specifically limit as the load 12, An inverter etc. are mentioned.
  • the junction box 20 includes a precharge relay 16 and a precharge resistor 17 connected in parallel to the first main relay 14.
  • the power supply device 100 includes a smoothing capacitor 13 connected in parallel with the load 12.
  • the smoothing capacitor 13 is connected to the second main relay 15 and the precharge relay 16 when the system is activated.
  • the battery is charged by being closed.
  • the precharge relay 16 is connected in series with the precharge resistor 17, so that when the smoothing capacitor 13 is charged, the precharge resistor 17 is charged while limiting the current. Become.
  • the control device 10 controls the opening and closing of the first main relay 14, the second main relay 15, and the precharge relay 16 provided in the junction box 20 and the opening and closing of the switch 18 connected to the load 12.
  • the power supply device 100 is controlled.
  • the control device 10 manages the current input to and output from the battery 11 by acquiring information on the current detected by the current sensor 19.
  • control when charging the smoothing capacitor 13 when the system of the power supply apparatus 100 is started will be specifically described.
  • the control described below is executed by the control device 10.
  • the second main relay 15 and the precharge relay 16 are closed, and the current is limited by the precharge resistor 17, Charging is performed.
  • FIG. 2 is a graph showing the transition of the current value when the smoothing capacitor 13 is charged in the power supply device 100 of the present embodiment.
  • FIG. 2 shows the transition of the current value when the power supply device 100 of the present embodiment is normal, that is, the transition of the current value when no abnormality has occurred.
  • the second main relay 15 and the precharge relay 16 are closed at time t0, first, the current corresponding to the voltage of the battery 11 and the resistance value of the precharge resistor 17, that is, the battery 11
  • the voltage is E bat and the resistance value of the precharge resistor 17 is R
  • a current of E bat / R flows, and then the charging current gradually attenuates as the smoothing capacitor 13 is charged. .
  • the smoothing capacitor 13 when the smoothing capacitor 13 is abnormal, specifically, when an abnormality occurs in which the electric charge accumulated in the smoothing capacitor 13 is discharged to the electric load, as shown in FIG. The value will change. That is, when the smoothing capacitor 13 is abnormal, the current decay rate with respect to the elapsed time from the start of the charging of the smoothing capacitor 13 is slow compared to the normal current value transition. Will behave differently.
  • the current value remains unchanged at E bat / R when a circuit short circuit abnormality occurs.
  • the current value remains zero and does not change. That is, even when a circuit short-circuit abnormality or a circuit disconnection abnormality occurs, a behavior different from the transition of the current value at normal time is exhibited.
  • the transition of the normal current value as shown in FIG. 2 that is, the transition of the normal current value when the smoothing capacitor 13 is charged in the normal state is normal.
  • the normal current value transition data is obtained by, for example, charging the smoothing capacitor 13 under normal conditions, measuring the relationship between the elapsed time when charging and the current value in advance, and obtaining the obtained measurement results. Can be obtained on the basis.
  • a specific method for detecting an abnormality is as follows. That is, first, when the second main relay 15 and the precharge relay 16 are closed and the time after the elapse of a predetermined time since the charging of the smoothing capacitor 13 is set to the first time t1, as shown in FIG. to, from the normal time current value transition data, to obtain a first current value I 1 corresponding to the first time t1.
  • the second main relay 15 and the precharge relay 16 are closed and the smoothing capacitor 13 is charged, the actual time detected by the current sensor 19 at the time when the first time t1 has elapsed from the time t0.
  • the current value I obs is acquired.
  • the difference ⁇ I obs ⁇ 1
  • between the actual current value I obs at the first time t 1 and the first current value I 1 at normal time is calculated, and the calculated difference ⁇ I obs ⁇ It is determined whether 1 is greater than a predetermined first threshold value ⁇ 1.
  • a predetermined first threshold value ⁇ 1 As a result of the determination, if the difference ⁇ I obs ⁇ 1 is larger than the first threshold ⁇ 1, that is, if ⁇ I obs ⁇ 1 > ⁇ 1, it is determined that an abnormality occurs.
  • the first threshold value ⁇ 1 is not particularly limited.
  • the first threshold value ⁇ 1 is set to a value that can be determined to be clearly deviated from the current transition at the normal time.
  • the case where the abnormality of the smoothing capacitor 13 shown in FIG. 3 occurs will be described as an example.
  • a difference ⁇ I a-1
  • between the actually detected current value I a and the first current value I 1 at normal time is calculated, and the calculated difference ⁇ I a ⁇ 1
  • the first threshold value ⁇ 1 is compared.
  • current I a in the first hour t1 as is apparent from FIG. 3, because clearly deviate from the current transition of normal, [Delta] I a-1> [alpha] 1, and the reason that, in this case Therefore, it is determined that an abnormality has occurred.
  • a process for canceling the precharge is executed. Specifically, charging the smoothing capacitor 13 is stopped by opening the second main relay 15 and the precharge relay 16. In this case, a process of notifying the user that an abnormality has occurred may be executed.
  • the precharge resistor 17 when the precharge resistor 17 is abnormal, specifically, the resistance value of the precharge resistor 17 or a device located downstream of the junction box 20, specifically, a motor, an inverter, or a heater
  • the current value changes as shown in FIG. That is, compared with the transition of the current value at the normal time, when the precharge resistor 17 and the downstream device are abnormal, the initial current value itself when starting the charging of the smoothing capacitor 13 shows a low value, but the elapsed time Therefore, the current decay rate is slow, so that the behavior of the current value is different from that of the normal state, while the current value is substantially equal in the vicinity of the first time t1.
  • the abnormality may not be detected only by comparing the current values at the first time t1.
  • the predetermined time after the first time t1 has elapsed.
  • the current values are compared in the same manner as described above, and abnormality is determined based on the comparison result.
  • the second threshold value ⁇ 2 is not particularly limited.
  • the second threshold value ⁇ 2 may be set to a value that can be determined to be clearly deviated from the normal current transition, and may be the same value as the first threshold value ⁇ 1 described above. Alternatively, it may be a value different from the first threshold value ⁇ .
  • the precharge resistor 17 shown in FIG. 5 and a downstream device abnormality occur are described as an example, when the smoothing capacitor 13 is charged, the first time t1 has elapsed from the time t0. Even if no abnormality is detected as a result of the abnormality determination, the abnormality determination is performed again at the time when the second time t2 has elapsed from the time t0.
  • the difference ⁇ I d ⁇ 2
  • from the current value I 2 is calculated, and the calculated difference ⁇ I d ⁇ 2 is compared with the second threshold value ⁇ 2.
  • the current value I d at the second time t2 is clearly deviated from the current transition at the normal time, and therefore ⁇ I d ⁇ 2 > ⁇ 2, and in this case, It is determined that an abnormality has occurred. In this case as well, the process for stopping the precharge is executed as described above.
  • the current value detected by the current sensor 19 after the elapse of the second time t2 is a predetermined value.
  • the current is equal to or less than the threshold current I Fin , it is determined that the charging of the smoothing capacitor 13 has been completed, and the first main relay 14 is closed so that power can be supplied from the battery 11 to the load 12 It is said.
  • the current value I obs detected by the current sensor 19 is compared with the first current value I 1 calculated in the normal state, and the difference ⁇ I therebetween.
  • is larger than the first threshold value ⁇ 1, it is determined that an abnormality has occurred. Therefore, according to the present embodiment, when an abnormality occurs, the abnormality can be detected at a relatively early stage.
  • the current value I detected by the current sensor 19 again at the second time t2 after that. Obs is compared with the second current value I 2 calculated in the normal state, and when the difference ⁇ I obs ⁇ 2
  • the abnormal part / abnormal mode is, for example, when it is determined that there is no abnormality at the first time t1, and when it is determined that there is an abnormality at the second time t2 after that, the precharge resistor 17 shown in FIG. It can be determined that the abnormality is, specifically, the resistance increase abnormality of the precharge resistor 17 and the resistance increase abnormality of the downstream device.
  • the precharge relay 16 is opened to stop charging the smoothing capacitor 13 when the abnormality is determined.
  • the precharge relay 16 is opened to stop charging the smoothing capacitor 13 when the abnormality is determined.
  • the first main relay 14 it is determined that no abnormality is detected at the first time t1 and the second time t2, and the charging of the smoothing capacitor 13 is finished after the second time t2.
  • the first main relay 14 is closed. That is, in the present embodiment, after confirming that no abnormality has occurred, the first main relay 14 is closed.
  • the first main relay 14 Contact damage can be prevented appropriately.
  • the first time t1 described above is not particularly limited.
  • the E bat when the voltage of the battery 11 is E bat and the resistance value of the precharge resistor 17 is R, the E bat / R It is preferable to calculate the fusing time of the precharge resistor 17 when the current continues to flow, and to set the first time t1 to be shorter than the fusing time of the precharge resistor 17.
  • a first time t1 by setting a shorter time than fusing time of the precharge resistor 17, for example, like an open circuit short circuit abnormality shown in FIG.
  • the precharge resistor 17 a current of E bat / R
  • the abnormality can be detected in a time shorter than the fusing time of the precharge resistor 17 (that is, the first time t1), secondary such as fusing of the precharge resistor 17 can be detected. Failure can be prevented appropriately.
  • the second time t2 described above is not particularly limited.
  • a first current range D1 (I 1 ⁇ 1 ⁇ D1 ⁇ I 1 + ⁇ 1) determined not to be abnormal at the first time t1
  • the second current range D2 (I 2 ⁇ 2 ⁇ D2 ⁇ I 2 + ⁇ 2) determined not to be abnormal at time t2 is set so as not to overlap. That is, it is preferable that I 1 ⁇ 1 that is the lower limit value of the first current range D1 and I 2 + ⁇ 2 that is the upper limit value of the second current range D2 are set so as to have a relationship represented by the following formula.
  • the current sensor 19 can appropriately detect even in an abnormal mode in which the detected current is constant. That is, for example, even if the value of the current detected by the current sensor 19 is a value within the first current range D1 that is determined not to be abnormal at the first time t1, and is constant, the second Since the second current range D2 determined not to be abnormal at the time t2 is a range different from the first current range D1, it is possible to appropriately detect such an abnormality.
  • the smoothing capacitor 13 is the smoothing capacitor of the present invention
  • the precharge relay 16 is the precharge switch of the present invention
  • the first main relay 14 and the second main relay 15 are the present.
  • the current sensor 19 corresponds to the current switch of the present invention
  • the control device 10 corresponds to the control means, storage means, and abnormality detection means of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This power supply is provided with: a smoothing capacitor (13) electrically connected to the terminals of the battery (11); a precharge switch (16) provided between the battery and the smoothing capacitor and connected in series with a precharge resistance (17); a control means (10) which, by controlling ON/OFF operations of the precharge switch, controls the charging current which precharges the smoothing capacitor; a current detection means (19) for detecting the charging current; a storage means (10) which, when the precharge switch is set to ON during normal operation, stores the charging current during normal operation at the time at which a prescribed first amount of time has elapsed since the precharge switch was turned ON; and an anomaly detection means (10) which detects the occurrence of anomalies by calculating the difference between the charging current detected by the current detection means at the time at which the aforementioned first amount of time had elapsed since the precharge switch was set to ON, and the charging current during normal operation at the time at which the first amount of time has elapsed, and by comparing said difference and a prescribed first threshold value.

Description

電源装置および電源装置の異常検出方法Power supply device and abnormality detection method for power supply device
 本発明は、電源装置および電源装置の異常検出方法に関するものである。
 本出願は、2012年4月3日に出願された日本国特許出願の特願2012―84595に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
The present invention relates to a power supply device and an abnormality detection method for the power supply device.
This application claims priority based on Japanese Patent Application No. 2012-84595 filed on Apr. 3, 2012. For designated countries that are allowed to be incorporated by reference, The contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
 従来、電気自動車のインバータの入力側端子間に平滑コンデンサを設け、まず、プリチャージリレーを閉じて、プリチャージリレーに直列接続されたプリチャージ抵抗により充電電流を制限しながら、平滑コンデンサをプリチャージし、所定時間経過後に、充電電流が所定の基準値以下となった場合にプリチャージが終了したと判断し、メインリレーを閉じることで、メインリレーの接点の損傷を防止する技術が知られている(たとえば、特許文献1参照)。 Conventionally, a smoothing capacitor has been provided between the input terminals of the inverter of an electric vehicle. First, the precharge relay is closed and the charging current is limited by a precharge resistor connected in series with the precharge relay while precharging the smoothing capacitor. In addition, a technique for preventing damage to the contact of the main relay by determining that the precharge is completed when the charging current becomes equal to or less than a predetermined reference value after a predetermined time has elapsed and closing the main relay is known. (For example, see Patent Document 1).
特開平10-304501号公報Japanese Patent Laid-Open No. 10-304501
 しかしながら、上記従来技術においては、たとえば、プリチャージ抵抗の異常によりプリチャージ抵抗の抵抗値が増大している場合に、プリチャージが不十分であるのにもかかわらず、プリチャージを終了したと誤判断してしまうという問題がある。あるいは、回路異常が発生しているのにもかかわらず、充電電流が流れ続けてしまい、プリチャージ抵抗が溶断してしまうなどの2次的な異常が発生してしまうおそれもある。 However, in the above prior art, for example, when the resistance value of the precharge resistor is increased due to an abnormality in the precharge resistor, it is erroneously assumed that the precharge is terminated even though the precharge is insufficient. There is a problem of judging. Alternatively, there is a possibility that a secondary abnormality such as a charging current continues to flow despite the occurrence of a circuit abnormality and the precharge resistor is blown out.
 本発明が解決しようとする課題は、異常が発生した場合に、異常を適切に検出可能な電源装置および電源装置の異常検出方法を提供することにある。 The problem to be solved by the present invention is to provide a power supply apparatus and an abnormality detection method for a power supply apparatus that can appropriately detect the abnormality when an abnormality occurs.
 本発明は、平滑用コンデンサにプリチャージするためのプリチャージ用スイッチをオンにしてから所定時間経過した時点において、実際に流れている充電電流と、予め測定された正常時の充電電流との差を算出し、算出した差と所定の閾値とを比較することで、異常の発生を検出することにより、上記課題を解決する。 The present invention provides a difference between a charging current actually flowing and a normal charging current measured in advance when a predetermined time elapses after the precharging switch for precharging the smoothing capacitor is turned on. The above problem is solved by detecting occurrence of abnormality by comparing the calculated difference with a predetermined threshold.
 本発明によれば、実際に流れている充電電流と、予め測定された正常時の充電電流との差に基づいて異常が発生したか否かを判断できるため、様々な原因による異常を適切かつ早期に検出することができる。 According to the present invention, it is possible to determine whether or not an abnormality has occurred based on the difference between the charging current that is actually flowing and the charging current at the normal time measured in advance. It can be detected early.
図1は、本実施形態に係る電源装置を示すブロック図である。FIG. 1 is a block diagram showing a power supply device according to this embodiment. 図2は、正常時において、平滑コンデンサ13の充電を行った場合における、正常時の電流値の推移を示す図である。FIG. 2 is a diagram showing the transition of the current value at the normal time when the smoothing capacitor 13 is charged at the normal time. 図3は、平滑コンデンサ13に異常が発生している場合の電流値の推移を示す図である。FIG. 3 is a diagram showing the transition of the current value when an abnormality has occurred in the smoothing capacitor 13. 図4は、回路短絡異常が発生している場合および回路断線異常が発生している場合の電流値の推移を示す図である。FIG. 4 is a diagram showing the transition of the current value when a circuit short circuit abnormality occurs and when a circuit disconnection abnormality occurs. 図5は、プリチャージ抵抗17、下流の装置に異常が発生している場合の電流値の推移を示す図である。FIG. 5 is a diagram illustrating the transition of the current value when abnormality occurs in the precharge resistor 17 and the downstream device. 図6は、第2時間t2の設定方法を説明するための図である。FIG. 6 is a diagram for explaining a method of setting the second time t2.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態に係る電源装置100を示すブロック図である。
 本実施形態に係る電源装置100は、たとえば、ハイブリッド自動車または電気自動車に搭載される電源装置であり、図1に示すように、複数のセルが直列接続されて構成されてなるバッテリ11を備え、このバッテリ11の両端には、ジャンクションボックス20内の第1のメインリレー14および第2のメインリレー15、ならびに、スイッチ18を介して、負荷12が接続されている。バッテリ11を構成するセルは、たとえば、リチウムイオン二次電池であり、このバッテリ11には、バッテリ11に入出力される電流を検出するための電流センサ19が備えられている。負荷12としては、特に限定されないが、インバータなどが挙げられる。
FIG. 1 is a block diagram showing a power supply device 100 according to this embodiment.
The power supply device 100 according to the present embodiment is a power supply device mounted on, for example, a hybrid vehicle or an electric vehicle, and includes a battery 11 formed by connecting a plurality of cells in series as shown in FIG. A load 12 is connected to both ends of the battery 11 via a first main relay 14 and a second main relay 15 in the junction box 20 and a switch 18. The cell constituting the battery 11 is, for example, a lithium ion secondary battery, and the battery 11 is provided with a current sensor 19 for detecting a current input to and output from the battery 11. Although it does not specifically limit as the load 12, An inverter etc. are mentioned.
 ジャンクションボックス20には、第1のメインリレー14、および第2のメインリレー15の他、第1のメインリレー14に並列接続されたプリチャージリレー16およびプリチャージ抵抗17が備えられている。 In addition to the first main relay 14 and the second main relay 15, the junction box 20 includes a precharge relay 16 and a precharge resistor 17 connected in parallel to the first main relay 14.
 また、本実施形態に係る電源装置100は、負荷12と並列に接続された平滑コンデンサ13を備えており、この平滑コンデンサ13は、システム起動時に、第2のメインリレー15およびプリチャージリレー16が閉じることにより充電されるようになっている。なお、プリチャージリレー16は、プリチャージ用抵抗17と直列接続されており、そのため、平滑コンデンサ13の充電を行う際には、プリチャージ抵抗17で電流を制限しながら、充電が行われることとなる。 The power supply device 100 according to the present embodiment includes a smoothing capacitor 13 connected in parallel with the load 12. The smoothing capacitor 13 is connected to the second main relay 15 and the precharge relay 16 when the system is activated. The battery is charged by being closed. Note that the precharge relay 16 is connected in series with the precharge resistor 17, so that when the smoothing capacitor 13 is charged, the precharge resistor 17 is charged while limiting the current. Become.
 制御装置10は、ジャンクションボックス20内に備えられた第1のメインリレー14、第2のメインリレー15、およびプリチャージリレー16の開閉や、負荷12と接続されているスイッチ18の開閉を制御し、これにより、電源装置100を制御する。また、制御装置10は、電流センサ19により検出された電流の情報を取得することで、バッテリ11に入出力される電流を管理する。 The control device 10 controls the opening and closing of the first main relay 14, the second main relay 15, and the precharge relay 16 provided in the junction box 20 and the opening and closing of the switch 18 connected to the load 12. Thus, the power supply device 100 is controlled. Further, the control device 10 manages the current input to and output from the battery 11 by acquiring information on the current detected by the current sensor 19.
 次いで、電源装置100のシステム起動時において、平滑コンデンサ13の充電を行う際における制御について、具体的に説明する。なお、以下に説明する制御は、制御装置10により実行される。 Next, the control when charging the smoothing capacitor 13 when the system of the power supply apparatus 100 is started will be specifically described. The control described below is executed by the control device 10.
 上述したように、本実施形態の電源装置100において、平滑コンデンサ13に充電を行う際には、第2のメインリレー15およびプリチャージリレー16が閉じ、プリチャージ抵抗17で電流を制限しながら、充電を行うものである。 As described above, when the smoothing capacitor 13 is charged in the power supply device 100 of the present embodiment, the second main relay 15 and the precharge relay 16 are closed, and the current is limited by the precharge resistor 17, Charging is performed.
 ここで、図2に、本実施形態の電源装置100において、平滑コンデンサ13の充電を行った際における、電流値の推移をグラフ化して示す。なお、図2には、本実施形態の電源装置100の正常時の電流値の推移、すなわち、異常が発生していない場合における電流値の推移を示している。図2に示すように、時間t0において、第2のメインリレー15およびプリチャージリレー16を閉じると、まず、バッテリ11の電圧およびプリチャージ抵抗17の抵抗値に応じた電流、すなわち、バッテリ11の電圧をEbat、プリチャージ抵抗17の抵抗値をRとした場合に、Ebat/Rの電流が流れ、その後、平滑コンデンサ13の充電に伴い、充電電流が徐々に減衰していくこととなる。 FIG. 2 is a graph showing the transition of the current value when the smoothing capacitor 13 is charged in the power supply device 100 of the present embodiment. FIG. 2 shows the transition of the current value when the power supply device 100 of the present embodiment is normal, that is, the transition of the current value when no abnormality has occurred. As shown in FIG. 2, when the second main relay 15 and the precharge relay 16 are closed at time t0, first, the current corresponding to the voltage of the battery 11 and the resistance value of the precharge resistor 17, that is, the battery 11 When the voltage is E bat and the resistance value of the precharge resistor 17 is R, a current of E bat / R flows, and then the charging current gradually attenuates as the smoothing capacitor 13 is charged. .
 これに対し、たとえば、平滑コンデンサ13の異常時、具体的には、平滑コンデンサ13に蓄積された電荷が電気負荷に放電されているという異常が発生しているときには、図3に示すように電流値が推移することとなる。すなわち、正常時の電流値の推移と比較して、平滑コンデンサ13の異常時には、平滑コンデンサ13の充電を開始してからの経過時間に対する電流の減衰速度が遅くなり、正常時の電流値の推移とは異なる挙動を示すこととなる。 On the other hand, for example, when the smoothing capacitor 13 is abnormal, specifically, when an abnormality occurs in which the electric charge accumulated in the smoothing capacitor 13 is discharged to the electric load, as shown in FIG. The value will change. That is, when the smoothing capacitor 13 is abnormal, the current decay rate with respect to the elapsed time from the start of the charging of the smoothing capacitor 13 is slow compared to the normal current value transition. Will behave differently.
 あるいは、たとえば、回路短絡異常が発生している場合や、回路断線異常が発生している場合には、図4に示すように、回路短絡異常時には、電流値がEbat/Rのまま変化しない状態となり、また、回路断線異常時には、電流値がゼロのまま変化しない状態となる。すなわち、回路短絡異常時や回路断線異常時においても、正常時の電流値の推移とは異なる挙動を示すこととなる。 Or, for example, when a circuit short circuit abnormality occurs or when a circuit disconnection abnormality occurs, as shown in FIG. 4, the current value remains unchanged at E bat / R when a circuit short circuit abnormality occurs. When the circuit disconnection is abnormal, the current value remains zero and does not change. That is, even when a circuit short-circuit abnormality or a circuit disconnection abnormality occurs, a behavior different from the transition of the current value at normal time is exhibited.
 そのため、本実施形態では、図2に示すような正常時の電流値の推移のデータ、すなわち、正常時において、平滑コンデンサ13の充電を行った際における、正常時の電流値の推移を、正常時電流値推移データとして、予め記憶しておき、記憶した正常時電流値推移データと、実際に検出された電流値とを比較することで、電源装置100に発生している異常を検知するものである。なお、正常時電流値推移データは、たとえば、正常時において、平滑コンデンサ13に充電を行い、充電を行った際の経過時間と、電流値との関係を予め測定し、得られた測定結果に基づいて得ることができる。 For this reason, in the present embodiment, the transition of the normal current value as shown in FIG. 2, that is, the transition of the normal current value when the smoothing capacitor 13 is charged in the normal state is normal. What is stored in advance as hourly current value transition data and detects an abnormality occurring in the power supply device 100 by comparing the stored normal current value transition data with the actually detected current value It is. The normal current value transition data is obtained by, for example, charging the smoothing capacitor 13 under normal conditions, measuring the relationship between the elapsed time when charging and the current value in advance, and obtaining the obtained measurement results. Can be obtained on the basis.
 異常を検知する具体的な方法としては、以下の通りである。すなわち、まず、第2のメインリレー15およびプリチャージリレー16を閉じて、平滑コンデンサ13の充電を開始してから所定時間経過後の時間を第1時間t1とした場合に、図2に示すように、正常時電流値推移データから、第1時間t1に対応する第1電流値Iを取得する。そして、第2のメインリレー15およびプリチャージリレー16を閉じて、平滑コンデンサ13の充電を行った際に、時間t0から第1時間t1だけ経過した時点において、電流センサ19で検出された実際の電流値Iobsを取得する。次いで、第1時間t1における、実際の電流値Iobsと、正常時の第1電流値Iとの差分ΔIobs-1=|Iobs-I|を算出し、算出した差分ΔIobs-1が所定の第1閾値α1よりも大きいか否かの判定を行う。そして、判定の結果、差分ΔIobs-1が第1閾値α1よりも大きい場合、すなわち、ΔIobs-1>α1である場合に、異常が発生すると判定する。なお、第1閾値α1としては特に限定されないが、たとえば、正常時の電流推移から明らかに外れていると判断できるような値に設定する。 A specific method for detecting an abnormality is as follows. That is, first, when the second main relay 15 and the precharge relay 16 are closed and the time after the elapse of a predetermined time since the charging of the smoothing capacitor 13 is set to the first time t1, as shown in FIG. to, from the normal time current value transition data, to obtain a first current value I 1 corresponding to the first time t1. When the second main relay 15 and the precharge relay 16 are closed and the smoothing capacitor 13 is charged, the actual time detected by the current sensor 19 at the time when the first time t1 has elapsed from the time t0. The current value I obs is acquired. Next, the difference ΔI obs−1 = | I obs −I 1 | between the actual current value I obs at the first time t 1 and the first current value I 1 at normal time is calculated, and the calculated difference ΔI obs− It is determined whether 1 is greater than a predetermined first threshold value α1. As a result of the determination, if the difference ΔI obs−1 is larger than the first threshold α1, that is, if ΔI obs−1 > α1, it is determined that an abnormality occurs. The first threshold value α1 is not particularly limited. For example, the first threshold value α1 is set to a value that can be determined to be clearly deviated from the current transition at the normal time.
 たとえば、図3に示す平滑コンデンサ13の異常が発生した場合を例示して説明すると、平滑コンデンサ13の充電を行った際に、時間t0から第1時間t1だけ経過した時点において、電流センサ19により実際に検出される電流値Iobsは、Iobs=Iとなる。そして、実際に検出された電流値Iと、正常時の第1電流値Iとの差分ΔIa-1=|I-I|を算出し、算出された差分ΔIa-1と第1閾値α1の比較を行う。その結果、第1時間t1における電流値Iは、図3からも明らかなように、正常時の電流推移から明らかに外れているため、ΔIa-1>α1となり、そのため、この場合には、異常が発生していると判定されることとなる。 For example, the case where the abnormality of the smoothing capacitor 13 shown in FIG. 3 occurs will be described as an example. When the smoothing capacitor 13 is charged, when the first time t1 has elapsed from the time t0, the current sensor 19 The actually detected current value I obs is I obs = I a . Then, a difference ΔI a-1 = | I a −I 1 | between the actually detected current value I a and the first current value I 1 at normal time is calculated, and the calculated difference ΔI a−1 The first threshold value α1 is compared. As a result, current I a in the first hour t1, as is apparent from FIG. 3, because clearly deviate from the current transition of normal, [Delta] I a-1> [alpha] 1, and the reason that, in this case Therefore, it is determined that an abnormality has occurred.
 そして、このように異常が発生していると判定された場合には、プリチャージを中止するための処理が実行される。具体的には、第2のメインリレー15およびプリチャージリレー16を開けることで、平滑コンデンサ13への充電が中止させる。また、この際において、ユーザに異常が発生したことを報知する処理を実行してもよい。 If it is determined that an abnormality has occurred in this way, a process for canceling the precharge is executed. Specifically, charging the smoothing capacitor 13 is stopped by opening the second main relay 15 and the precharge relay 16. In this case, a process of notifying the user that an abnormality has occurred may be executed.
 また、同様に、図4に示す回路短絡異常が発生している場合や、回路断線異常が発生している場合においても、平滑コンデンサ13の充電を行った際に、時間t0から第1時間t1だけ経過した時点において、電流センサ19により実際に検出される電流値は、それぞれI,Iとなる。そして、これらの電流値I,Iと、正常時の第1電流値Iの差分ΔIb-1=|I-I|、ΔIc-1=|I-I|を算出し、算出された差分ΔIb-1,ΔIc-1と第1閾値α1の比較を行う。そして、第1時間t1における電流値I,Iは、図4からも明らかなように、正常時の電流推移から明らかに外れているため、ΔIa-1>α1となり、そのため、この場合には、異常が発生していると判定されることとなる。なお、この場合においても上記と同様に、プリチャージを中止するための処理が実行される。 Similarly, when the circuit short-circuit abnormality shown in FIG. 4 or the circuit disconnection abnormality occurs, when the smoothing capacitor 13 is charged, the time t0 to the first time t1 are obtained. The current values actually detected by the current sensor 19 at the time when only elapses are I b and I c , respectively. Then, a difference ΔI b-1 = | I b −I 1 |, ΔI c−1 = | I c −I 1 | between the current values I b and I c and the first current value I 1 in the normal state The calculated differences ΔI b-1 and ΔI c-1 are compared with the first threshold value α1. Since the current values I b and I c at the first time t1 are clearly deviated from the normal current transition, as is apparent from FIG. 4, ΔI a-1 > α1, and in this case It is determined that an abnormality has occurred. In this case as well, the process for stopping the precharge is executed in the same manner as described above.
 しかしその一方で、たとえば、プリチャージ抵抗17の異常時、具体的には、プリチャージ抵抗17の抵抗値や、ジャンクションボックス20より下流側に位置する装置、具体的には、モータ、インバータ、ヒータ、DC/DCコンバータなどの抵抗値が異常であるときには、図5に示すように、電流値が推移することとなる。すなわち、正常時の電流値の推移と比較して、プリチャージ抵抗17、下流の装置の異常時には、平滑コンデンサ13の充電を開始した際の初期の電流値自体は低い値を示すものの、経過時間に対する電流の減衰速度が遅く、そのため、正常時の電流値の推移とは異なる挙動を示すこととなる一方で、第1時間t1付近において、電流値がほぼ等しくなることとなる。 However, on the other hand, for example, when the precharge resistor 17 is abnormal, specifically, the resistance value of the precharge resistor 17 or a device located downstream of the junction box 20, specifically, a motor, an inverter, or a heater When the resistance value of the DC / DC converter or the like is abnormal, the current value changes as shown in FIG. That is, compared with the transition of the current value at the normal time, when the precharge resistor 17 and the downstream device are abnormal, the initial current value itself when starting the charging of the smoothing capacitor 13 shows a low value, but the elapsed time Therefore, the current decay rate is slow, so that the behavior of the current value is different from that of the normal state, while the current value is substantially equal in the vicinity of the first time t1.
 そのため、このような異常が発生した場合には、第1時間t1における電流値を比較するのみでは、異常が検出できない場合がある。 Therefore, when such an abnormality occurs, the abnormality may not be detected only by comparing the current values at the first time t1.
 これに対し、本実施形態では、第1時間t1において、異常判定を行った結果、異常でないと判定された場合でも、図5に示すように、第1時間t1よりもさらに時間の経過した所定の第2時間t2(第2時間t2>第2時間t1)において、上記と同様にして、電流値の比較を行い、該比較結果に基づいて異常を判定する。 On the other hand, in the present embodiment, even when it is determined that there is no abnormality as a result of performing the abnormality determination at the first time t1, as shown in FIG. 5, the predetermined time after the first time t1 has elapsed. In the second time t2 (second time t2> second time t1), the current values are compared in the same manner as described above, and abnormality is determined based on the comparison result.
 具体的には、まず、図2に示すように、正常時電流値推移データから、第2時間t2に対応する第2電流値Iを取得する。そして、第1時間t1において異常でないと判定された後、さらに、時間t0から第2時間t2だけ経過した時点において、電流センサ19で検出された実際の電流値Iobsを取得する。そして、第2時間t2における、実際の電流値Iobsと、正常時の第2電流値Iとの差分ΔIobs-2=|Iobs-I|を算出し、算出した差分ΔIobs-2が所定の第2閾値α2よりも大きいか否かの判定を行う。その結果、差分ΔIobs-2が第2閾値α2よりも大きい場合、すなわち、ΔIobs-2>α2である場合に、異常が発生すると判定する。なお、第2閾値α2としては特に限定されないが、たとえば、正常時の電流推移から明らかに外れていると判断できるような値に設定すればよく、上述した第1閾値α1と同じ値としてもよいし、あるいは、第1閾値αと異なる値としてもよい。 Specifically, first, as shown in FIG. 2, from the normal state current value transition data, and acquires the second current value I 2 corresponding to the second time t2. Then, after it is determined that there is no abnormality at the first time t1, the actual current value I obs detected by the current sensor 19 is acquired at the time when the second time t2 has elapsed from the time t0. Then, a difference ΔI obs−2 = | I obs −I 2 | between the actual current value I obs at the second time t2 and the second current value I 2 at normal time is calculated, and the calculated difference ΔI obs− It is determined whether 2 is larger than a predetermined second threshold value α2. As a result, when the difference ΔI obs−2 is larger than the second threshold α2, that is, when ΔI obs−2 > α2, it is determined that an abnormality has occurred. The second threshold value α2 is not particularly limited. For example, the second threshold value α2 may be set to a value that can be determined to be clearly deviated from the normal current transition, and may be the same value as the first threshold value α1 described above. Alternatively, it may be a value different from the first threshold value α.
 たとえば、図5に示すプリチャージ抵抗17、下流の装置の異常が発生した場合を例示して説明すると、平滑コンデンサ13の充電を行った際に、時間t0から第1時間t1だけ経過した時点において異常判定を行った結果、異常が検出されない場合でも、時間t0から第2時間t2だけ経過した時点において、再度、異常判定を行う。具体的には、第2時間t2において、電流センサ19により実際に検出される電流値Iobsは、Iobs=Iとなり、この実際に検出された電流値Iと、正常時の第2電流値Iとの差分ΔId-2=|I-I|を算出し、算出された差分ΔId-2と第2閾値α2との比較を行う。そして、第2時間t2における電流値Iは、図5からも明らかなように、正常時の電流推移から明らかに外れているため、ΔId-2>α2となり、そのため、この場合には、異常が発生していると判定されることとなる。そして、この場合においても上記と同様に、プリチャージを中止するための処理が実行される。 For example, when the precharge resistor 17 shown in FIG. 5 and a downstream device abnormality occur are described as an example, when the smoothing capacitor 13 is charged, the first time t1 has elapsed from the time t0. Even if no abnormality is detected as a result of the abnormality determination, the abnormality determination is performed again at the time when the second time t2 has elapsed from the time t0. Specifically, the current value I obs actually detected by the current sensor 19 at the second time t2 is I obs = I d , and the actually detected current value I d and the normal second value The difference ΔI d−2 = | I d −I 2 | from the current value I 2 is calculated, and the calculated difference ΔI d−2 is compared with the second threshold value α2. Further, as clearly shown in FIG. 5, the current value I d at the second time t2 is clearly deviated from the current transition at the normal time, and therefore ΔI d−2 > α2, and in this case, It is determined that an abnormality has occurred. In this case as well, the process for stopping the precharge is executed as described above.
 そして、本実施形態では、第1時間t1および第2時間t2において、いずれも異常が検出されなかった場合には、第2時間t2の経過後、電流センサ19で検出される電流値が、所定の閾値電流IFin以下となった場合に、平滑コンデンサ13への充電が終了したと判定し、第1のメインリレー14を閉じることで、バッテリ11から負荷12への電力の供給が可能な状態とされる。 In this embodiment, if no abnormality is detected at the first time t1 and the second time t2, the current value detected by the current sensor 19 after the elapse of the second time t2 is a predetermined value. When the current is equal to or less than the threshold current I Fin , it is determined that the charging of the smoothing capacitor 13 has been completed, and the first main relay 14 is closed so that power can be supplied from the battery 11 to the load 12 It is said.
 このように本実施形態によれば、第1時間t1において、電流センサ19により検出された電流値Iobsと、予め算出した正常時の第1電流値Iとを比較し、これらの差分ΔIobs-1=|Iobs-I|が第1閾値α1より大きい場合に、異常が発生していると判定する。そのため、本実施形態によれば、異常が発生した場合に、比較的早い段階で、異常を検出することができる。 As described above, according to the present embodiment, at the first time t1, the current value I obs detected by the current sensor 19 is compared with the first current value I 1 calculated in the normal state, and the difference ΔI therebetween. When obs−1 = | I obs −I 1 | is larger than the first threshold value α1, it is determined that an abnormality has occurred. Therefore, according to the present embodiment, when an abnormality occurs, the abnormality can be detected at a relatively early stage.
 加えて、本実施形態によれば、第1時間t1において異常でないと判定された場合であっても、それよりも後の第2時間t2において、再度、電流センサ19により検出された電流値Iobsと、予め算出した正常時の第2電流値Iとを比較し、これらの差分ΔIobs-2=|Iobs-I|が第2閾値α2より大きい場合に、異常が発生していると判定する。そのため、本実施形態によれば、発生した異常の種類によっては、その電流推移の影響により、第1時間t1において、一度、異常でないと判定されてしまう場合でも、第2時間t2において、再度、異常判定をすることにより、誤検出の防止が可能となる。また、第1時間t1、第2時間t2の2回にわたり異常検出を行うことにより、異常個所・異常モードを特定することも可能となる。すなわち、たとえば、第1時間t1において異常でないと判定された場合であり、かつ、それよりも後の第2時間t2において異常であると判定された場合には、図5に示すプリチャージ抵抗17の異常、具体的には、プリチャージ抵抗17の抵抗増大異常および下流の装置の抵抗増大異常であると判断することができる。 In addition, according to the present embodiment, even if it is determined that there is no abnormality at the first time t1, the current value I detected by the current sensor 19 again at the second time t2 after that. Obs is compared with the second current value I 2 calculated in the normal state, and when the difference ΔI obs−2 = | I obs −I 2 | is larger than the second threshold value α2, an abnormality occurs. It is determined that Therefore, according to the present embodiment, depending on the type of abnormality that has occurred, even if it is determined that there is no abnormality once in the first time t1 due to the influence of the current transition, again in the second time t2, By making an abnormality determination, it is possible to prevent erroneous detection. In addition, by performing abnormality detection twice in the first time t1 and the second time t2, it is possible to specify the abnormal part / abnormal mode. That is, for example, when it is determined that there is no abnormality at the first time t1, and when it is determined that there is an abnormality at the second time t2 after that, the precharge resistor 17 shown in FIG. It can be determined that the abnormality is, specifically, the resistance increase abnormality of the precharge resistor 17 and the resistance increase abnormality of the downstream device.
 また、本実施形態では、第1時間t1および第2時間t2において、異常判定を行った結果、異常と判定された場合には、プリチャージリレー16を開として、平滑コンデンサ13への充電を中止するものであり、これにより、異常が発生した状態で平滑コンデンサ13への充電が継続されることの不具合(たとえば、各種抵抗の溶断等の不具合)の発生を有効に防止することができる。 In the present embodiment, when the abnormality is determined as a result of the abnormality determination at the first time t1 and the second time t2, the precharge relay 16 is opened to stop charging the smoothing capacitor 13 when the abnormality is determined. As a result, it is possible to effectively prevent the occurrence of malfunctions (for example, malfunctions such as fusing of various resistors) due to continued charging of the smoothing capacitor 13 in a state where an abnormality has occurred.
 さらに、本実施形態においては、第1時間t1および第2時間t2において、いずれも異常が検出されず、かつ、第2時間t2の経過した後に、平滑コンデンサ13への充電が終了したと判定し、第1のメインリレー14を閉じるものである。すなわち、本実施形態においては、異常が発生していないことが確認できた後に、第1のメインリレー14を閉じるものであり、これにより、本実施形態によれば、第1のメインリレー14の接点の損傷を適切に防止することができる。 Further, in the present embodiment, it is determined that no abnormality is detected at the first time t1 and the second time t2, and the charging of the smoothing capacitor 13 is finished after the second time t2. The first main relay 14 is closed. That is, in the present embodiment, after confirming that no abnormality has occurred, the first main relay 14 is closed. Thus, according to the present embodiment, the first main relay 14 Contact damage can be prevented appropriately.
 なお、上述した例においては、図3~図5に示すような平滑コンデンサ13に異常が発生している場合、回路短絡異常が発生している場合、回路断線異常が発生している場合、さらには、プリチャージ抵抗17、下流の装置の異常が発生した場合を例示したが、本実施形態によれば、これらの異常個所および異常モード以外の異常ももちろん検出可能である。 In the above example, when an abnormality occurs in the smoothing capacitor 13 as shown in FIGS. 3 to 5, when a circuit short circuit abnormality occurs, when a circuit disconnection abnormality occurs, Exemplifies a case where an abnormality occurs in the precharge resistor 17 and the downstream device. However, according to the present embodiment, it is possible to detect an abnormality other than these abnormal portions and abnormal modes.
 また、上述した第1時間t1としては、特に限定されないが、たとえば、プリチャージ抵抗17に、バッテリ11の電圧をEbat、プリチャージ抵抗17の抵抗値をRとした場合に、Ebat/Rの電流が流れ続けた場合における、プリチャージ抵抗17の溶断時間を算出し、第1時間t1を、プリチャージ抵抗17の溶断時間よりも短い時間に設定することが好ましい。第1時間t1を、プリチャージ抵抗17の溶断時間よりも短い時間に設定することにより、たとえば、図4に示す開路短絡異常時のように、プリチャージ抵抗17に、Ebat/Rの電流が流れ続けるような異常モードの場合に、プリチャージ抵抗17の溶断時間よりも短い時間(すなわち、第1時間t1)で、異常を検出することができるため、プリチャージ抵抗17の溶断等の二次故障を適切に防ぐことができる。 The first time t1 described above is not particularly limited. For example, when the voltage of the battery 11 is E bat and the resistance value of the precharge resistor 17 is R, the E bat / R It is preferable to calculate the fusing time of the precharge resistor 17 when the current continues to flow, and to set the first time t1 to be shorter than the fusing time of the precharge resistor 17. A first time t1, by setting a shorter time than fusing time of the precharge resistor 17, for example, like an open circuit short circuit abnormality shown in FIG. 4, the precharge resistor 17, a current of E bat / R In the case of an abnormal mode that continues to flow, since the abnormality can be detected in a time shorter than the fusing time of the precharge resistor 17 (that is, the first time t1), secondary such as fusing of the precharge resistor 17 can be detected. Failure can be prevented appropriately.
 さらに、上述した第2時間t2としては、特に限定されないが、たとえば、第1時間t1において異常でないと判定される第1電流範囲D1(I-α1≦D1≦I+α1)と、第2時間t2において異常でないと判定される第2電流範囲D2(I-α2≦D2≦I+α2)とが重複しないような範囲となるように設定することが好ましい。すなわち、第1電流範囲D1の下限値であるI-α1と、第2電流範囲D2の上限値であるI+α2とが、下記式に示す関係となるように設定することが好ましい。
   Δ=(I-α1)-(I+α2)>0
 第2時間t2をこのような時間に設定することにより、たとえば、電流センサ19により検出電流が一定となるような異常モードでも適切に検出することができる。すなわち、たとえば、電流センサ19により検出される電流の値が、第1時間t1において異常でないと判定される第1電流範囲D1の範囲内の値であり、かつ、一定である場合でも、第2時間t2において異常でないと判定される第2電流範囲D2は、第1電流範囲D1と異なる範囲であるため、このような異常を適切に検出することが可能となる。
Further, the second time t2 described above is not particularly limited. For example, a first current range D1 (I 1 −α1 ≦ D1 ≦ I 1 + α1) determined not to be abnormal at the first time t1, It is preferable that the second current range D2 (I 2 −α2 ≦ D2 ≦ I 2 + α2) determined not to be abnormal at time t2 is set so as not to overlap. That is, it is preferable that I 1 −α1 that is the lower limit value of the first current range D1 and I 2 + α2 that is the upper limit value of the second current range D2 are set so as to have a relationship represented by the following formula.
Δ = (I 1 −α1) − (I 2 + α2)> 0
By setting the second time t2 to such a time, for example, the current sensor 19 can appropriately detect even in an abnormal mode in which the detected current is constant. That is, for example, even if the value of the current detected by the current sensor 19 is a value within the first current range D1 that is determined not to be abnormal at the first time t1, and is constant, the second Since the second current range D2 determined not to be abnormal at the time t2 is a range different from the first current range D1, it is possible to appropriately detect such an abnormality.
 なお、上述した実施形態において、平滑用コンデンサ13は本発明の平滑用コンデンサに、プリチャージリレー16は本発明のプリチャージ用スイッチに、第1のメインリレー14、第2のメインリレー15は本発明のメインスイッチに、電流センサ19は本発明の電流検出手段に、制御装置10は本発明の制御手段、記憶手段および異常検出手段に、それぞれ相当する。 In the above-described embodiment, the smoothing capacitor 13 is the smoothing capacitor of the present invention, the precharge relay 16 is the precharge switch of the present invention, and the first main relay 14 and the second main relay 15 are the present. The current sensor 19 corresponds to the current switch of the present invention, and the control device 10 corresponds to the control means, storage means, and abnormality detection means of the present invention.
 以上、本発明の実施形態について説明したが、これらの実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 As mentioned above, although embodiment of this invention was described, these embodiment was described in order to make an understanding of this invention easy, and was not described in order to limit this invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
100…電源装置
 10…制御装置
 11…バッテリ
 12…負荷
 13…平滑コンデンサ
 14…第1のメインリレー
 15…第2のメインリレー
 16…プリチャージリレー
 17…プリチャージ抵抗
DESCRIPTION OF SYMBOLS 100 ... Power supply device 10 ... Control apparatus 11 ... Battery 12 ... Load 13 ... Smoothing capacitor 14 ... 1st main relay 15 ... 2nd main relay 16 ... Precharge relay 17 ... Precharge resistance

Claims (8)

  1.  バッテリの両極に電気的に接続される平滑用コンデンサと、
     前記バッテリと前記平滑用コンデンサとの間に設けられ、プリチャージ抵抗と直列に接続されたプリチャージ用スイッチと、
     前記プリチャージ用スイッチのオン/オフ動作を制御することで、前記平滑用コンデンサにプリチャージする充電電流を制御する制御手段と、
     充電電流を検出する電流検出手段と、
     正常時において、前記プリチャージ用スイッチをオンにした際に、前記プリチャージ用スイッチをオンにしてから所定の第1時間経過した時点における、正常時の充電電流を記憶する記憶手段と、
     前記プリチャージ用スイッチをオンにしてから前記第1時間経過した時点において前記電流検出手段により検出された充電電流と、前記第1時間経過した時点における、正常時の充電電流との差を算出し、前記差と所定の第1閾値とを比較することで、異常の発生を検出する異常検出手段と、を備えることを特徴とする電源装置。
    A smoothing capacitor electrically connected to both electrodes of the battery;
    A precharge switch provided between the battery and the smoothing capacitor and connected in series with a precharge resistor;
    Control means for controlling a charging current to precharge the smoothing capacitor by controlling on / off operation of the precharging switch;
    Current detecting means for detecting a charging current;
    Storage means for storing a normal charging current when a predetermined first time has elapsed since the precharge switch was turned on when the precharge switch was turned on in a normal state;
    The difference between the charging current detected by the current detection means when the first time has elapsed since the precharge switch was turned on and the normal charging current when the first time has elapsed is calculated. A power supply apparatus comprising: an abnormality detection unit that detects the occurrence of an abnormality by comparing the difference with a predetermined first threshold value.
  2.  請求項1に記載の電源装置において、
     前記異常検出手段は、前記第1時間経過した時点において前記電流検出手段により検出された充電電流と、前記第1時間経過した時点における、正常時の充電電流との差が、前記第1閾値よりも大きい場合に、異常が発生していると判断することを特徴とする電源装置。
    The power supply device according to claim 1,
    The abnormality detection unit is configured such that a difference between a charging current detected by the current detection unit when the first time has elapsed and a normal charging current when the first time has elapsed is greater than the first threshold. A power supply device that determines that an abnormality has occurred.
  3.  請求項2に記載の電源装置において、
     前記記憶手段は、正常時において、前記プリチャージ用スイッチをオンにした際に、前記プリチャージ用スイッチをオンにしてから、前記第1時間よりも長い所定の第2時間経過した時点における、正常時の充電電流をさらに記憶しており、
     前記異常検出手段は、前記第1時間経過した時点において前記電流検出手段により検出された充電電流と、前記第1時間経過した時点における、正常時の充電電流との差が、前記第1閾値以下である場合には、前記プリチャージ用スイッチをオンにしてから前記第2時間経過した時点において前記電流検出手段により検出された充電電流と、前記第2時間経過した時点における、正常時の充電電流との差を算出し、前記差が所定の第2閾値よりも大きい場合に、異常が発生していると判断することを特徴とする電源装置。
    The power supply device according to claim 2,
    The storage means is normal when a predetermined second time longer than the first time elapses after the precharge switch is turned on when the precharge switch is turned on. I memorize the charging current at the time,
    The abnormality detecting means is configured such that a difference between a charging current detected by the current detecting means when the first time has elapsed and a normal charging current when the first time has elapsed is equal to or less than the first threshold value. When the second time has elapsed since the precharge switch was turned on, the charging current detected by the current detection means and the normal charging current when the second time has elapsed And determining that an abnormality has occurred when the difference is greater than a predetermined second threshold value.
  4.  請求項1~3のいずれかに記載の電源装置において、
     前記制御手段は、前記異常検出手段により異常が検出された場合に、前記プリチャージ用スイッチをオフとすることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The control unit turns off the precharge switch when an abnormality is detected by the abnormality detection unit.
  5.  請求項1~4のいずれかに記載の電源装置において、
     前記第1時間は、前記プリチャージ用スイッチをオンにした際の充電電流が、前記プリチャージ抵抗に流れ続けた場合に、前記プリチャージ抵抗が溶断する時間よりも短い時間に設定されることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 4,
    The first time is set to a time shorter than the time when the precharge resistor is blown when the charging current when the precharge switch is turned on continues to flow through the precharge resistor. A featured power supply.
  6.  請求項5に記載の電源装置において、
     前記第1時間経過した時点における、正常時の充電電流の値をIとし、前記第1閾値をα1とし、前記第2時間経過した時点における、正常時の充電電流の値をIとし、前記第2閾値をα2とした場合に、下記式(1)を満足するように、前記第2時間を設定することを特徴とする電源装置。
       (I-α1)-(I+α2)>0  …(1)
    The power supply device according to claim 5,
    At the time of the lapse of the first time, the value of the charging current during normal and I 1, the first threshold value and [alpha] 1, at the time has elapsed the second time, the value of the charging current during normal and I 2, When the second threshold value is α2, the second time is set so as to satisfy the following formula (1).
    (I 1 -α1)-(I 2 + α2)> 0 (1)
  7.  請求項3~6のいずれかに記載の電源装置において、
     前記プリチャージ用スイッチと並列に接続されたメインスイッチをさらに備え、
     前記制御手段は、前記第2時間経過後、前記電流検出手段により検出された充電電流が、所定値以下となった場合に、前記メインスイッチをオンとすることを特徴とする電源装置。
    The power supply device according to any one of claims 3 to 6,
    A main switch connected in parallel with the precharge switch;
    The control unit turns on the main switch when the charging current detected by the current detection unit becomes a predetermined value or less after the second time has elapsed.
  8.  バッテリの両極に電気的に接続される平滑用コンデンサにプリチャージするためのプリチャージ用スイッチをオンにしてから所定時間経過した時点において、実際に流れている充電電流と、予め測定された正常時の充電電流との差を算出し、算出した差と所定の閾値とを比較することで、異常の発生を検出する電源装置の異常検出方法。 The charging current actually flowing at the time when a predetermined time has passed since the precharge switch for precharging the smoothing capacitor electrically connected to both electrodes of the battery is turned on, and the normal time measured in advance An abnormality detection method for a power supply device that detects the occurrence of an abnormality by calculating a difference between the charging current and a predetermined threshold value.
PCT/JP2013/054353 2012-04-03 2013-02-21 Power supply and anomaly detection method of power supply WO2013150825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012084595 2012-04-03
JP2012-084595 2012-04-03

Publications (1)

Publication Number Publication Date
WO2013150825A1 true WO2013150825A1 (en) 2013-10-10

Family

ID=49300325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054353 WO2013150825A1 (en) 2012-04-03 2013-02-21 Power supply and anomaly detection method of power supply

Country Status (1)

Country Link
WO (1) WO2013150825A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769359A (en) * 2017-11-24 2018-03-06 安徽维新能源技术有限公司 A kind of electric machine controller bus capacitor charge-discharge circuit
JP2019092341A (en) * 2017-11-16 2019-06-13 三菱自動車工業株式会社 Power supply controller for electric vehicle
CN110696626A (en) * 2019-11-21 2020-01-17 北京京邦达贸易有限公司 Unmanned vehicle and power supply control method thereof
CN110719856A (en) * 2017-04-07 2020-01-21 三星Sdi株式会社 Power supply system for driving vehicle
JP2020099112A (en) * 2018-12-17 2020-06-25 株式会社デンソー Precharge control device
CN112924859A (en) * 2021-01-26 2021-06-08 东风汽车集团股份有限公司 Electric automobile high-voltage pre-charging loop and relay adhesion state detection method
CN113071315A (en) * 2021-03-10 2021-07-06 重庆长安汽车股份有限公司 Method and system for detecting connection integrity of high-voltage electrical system of electric automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304501A (en) * 1997-04-23 1998-11-13 Honda Motor Co Ltd Controlling device for electric vehicle
JP2006238509A (en) * 2005-02-22 2006-09-07 Panasonic Ev Energy Co Ltd Control device of electric vehicle, control method of the electric vehicle, program and computer-readable recording medium
JP2007089241A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Fault detector of power supply circuit
JP2009153274A (en) * 2007-12-19 2009-07-09 Sanyo Electric Co Ltd Vehicular power supply unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304501A (en) * 1997-04-23 1998-11-13 Honda Motor Co Ltd Controlling device for electric vehicle
JP2006238509A (en) * 2005-02-22 2006-09-07 Panasonic Ev Energy Co Ltd Control device of electric vehicle, control method of the electric vehicle, program and computer-readable recording medium
JP2007089241A (en) * 2005-09-20 2007-04-05 Toyota Motor Corp Fault detector of power supply circuit
JP2009153274A (en) * 2007-12-19 2009-07-09 Sanyo Electric Co Ltd Vehicular power supply unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719856A (en) * 2017-04-07 2020-01-21 三星Sdi株式会社 Power supply system for driving vehicle
CN110719856B (en) * 2017-04-07 2024-03-15 三星Sdi株式会社 Power supply system for driving vehicle
JP2019092341A (en) * 2017-11-16 2019-06-13 三菱自動車工業株式会社 Power supply controller for electric vehicle
CN107769359A (en) * 2017-11-24 2018-03-06 安徽维新能源技术有限公司 A kind of electric machine controller bus capacitor charge-discharge circuit
JP2020099112A (en) * 2018-12-17 2020-06-25 株式会社デンソー Precharge control device
US11342772B2 (en) * 2018-12-17 2022-05-24 Denso Corporation Precharge controller
JP7103199B2 (en) 2018-12-17 2022-07-20 株式会社デンソー Precharge controller
CN110696626A (en) * 2019-11-21 2020-01-17 北京京邦达贸易有限公司 Unmanned vehicle and power supply control method thereof
CN112924859A (en) * 2021-01-26 2021-06-08 东风汽车集团股份有限公司 Electric automobile high-voltage pre-charging loop and relay adhesion state detection method
CN113071315A (en) * 2021-03-10 2021-07-06 重庆长安汽车股份有限公司 Method and system for detecting connection integrity of high-voltage electrical system of electric automobile

Similar Documents

Publication Publication Date Title
WO2013150825A1 (en) Power supply and anomaly detection method of power supply
US9746522B2 (en) Switch failure diagnosis device and electric storage apparatus
US7843706B2 (en) Circuit controller, inrush current limiting circuit, inrush current limiting circuit with battery, inverter, and inverter with battery
US8866441B2 (en) Interlock mechanism for a multiple battery pack
JP7120072B2 (en) Precharge controller
JP2003102101A (en) Power control device for electric vehicle
JP5115093B2 (en) Pre-charging circuit and vehicle
WO2007097190A1 (en) Abnormality judgment device and abnormality judgment method of power supply unit
JP2010041794A (en) Vehicle driving device
JP7334734B2 (en) Failure diagnosis method, storage device management device and system
CN105450139B (en) Motor drive
KR20150080122A (en) Method for diagnosing breakdown during pre-charging
JP2007242247A (en) Arrangement for controlling vehicular power supply system
JP4604485B2 (en) Power system abnormality detection device
KR101795319B1 (en) System and method for detecting opening of fuse in high voltage system of vehicle
JP6717388B2 (en) Relay device
JP2017079496A (en) Contactor failure determining device and contactor failure determining method
JP7103199B2 (en) Precharge controller
JP5704085B2 (en) Power control device
JP6370681B2 (en) Abnormality detection circuit
JP2023511169A (en) RELAY DIAGNOSTIC DEVICE, RELAY DIAGNOSTIC METHOD, BATTERY SYSTEM AND ELECTRIC VEHICLE
JP2017093008A (en) Contactor failure determination device and contactor failure determination method
KR20230002747A (en) How to detect insulation failure between power and ground
CN107004540A (en) The method for monitoring the contacts of contactor state of the contactor controlled by magnet exciting coil
JP6742471B2 (en) Battery system monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP