WO2013150585A1 - Edge detecting apparatus - Google Patents

Edge detecting apparatus Download PDF

Info

Publication number
WO2013150585A1
WO2013150585A1 PCT/JP2012/058930 JP2012058930W WO2013150585A1 WO 2013150585 A1 WO2013150585 A1 WO 2013150585A1 JP 2012058930 W JP2012058930 W JP 2012058930W WO 2013150585 A1 WO2013150585 A1 WO 2013150585A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
measured
reflected light
light
edge detection
Prior art date
Application number
PCT/JP2012/058930
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 野口
河野 裕之
仲嶋 一
恵美子 倉田
隆 湯澤
隆史 平位
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014508933A priority Critical patent/JPWO2013150585A1/en
Priority to PCT/JP2012/058930 priority patent/WO2013150585A1/en
Publication of WO2013150585A1 publication Critical patent/WO2013150585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object

Definitions

  • the present invention relates to an edge detection device that includes a light emitting unit for emitting light and a light receiving unit for receiving reflected light from a measured object, and detects an edge position of the measured object based on the reflected light. .
  • a wire electric discharge machine that processes a workpiece by electric discharge between a thin wire (wire) and the workpiece is generally a discharge phenomenon between a wire for processing the workpiece and the wire and the workpiece.
  • the shape of the workpiece is processed by moving it.
  • This type of wire electric discharge machine measures the shape of the workpiece during machining, feeds back the measured workpiece dimensions, performs additional machining on the workpiece, and drives the final shape.
  • a contact-type probe is used for measuring the shape of a workpiece, and the dimensions between the processed cross sections are measured by applying the probe to a plurality of processed cross sections.
  • it is necessary to remove the working liquid once and remove the workpiece from the wire electric discharge machine, and there is a problem that it takes time to drive to the final shape. .
  • non-contact sensors as shown in Patent Document 1 to Patent Document 3 have been developed.
  • Patent Document 1 discloses a method for detecting an edge in a workpiece such as a substrate.
  • a camera is placed on the upper part of the work, while the work is irradiated with light from, for example, 90 degrees, and the obtained captured image is obtained from the average peak intensity of the one-dimensional profile by image processing. It is configured to detect the edge of.
  • Patent Document 2 discloses a method for discriminating the edge of a circuit pattern.
  • a camera is placed above the circuit pattern, the circuit pattern is illuminated by an illuminating device, and the difference in the average value of the density levels of image data obtained by the camera or the difference in the average value is obtained.
  • a threshold value is set for the data portion, and a data portion equal to or higher than the threshold value is recognized as an edge.
  • Patent Document 3 discloses a method for specifying the position of an alignment mark.
  • the light quantity signal reflected from the alignment mark is acquired, and the position of the alignment mark is determined from the peak value of the differential waveform obtained by differentiating this light quantity signal, the integral value within a range of the differential waveform, and the height difference of the differential value. Is configured to do.
  • the object to be measured processed by the wire electric discharge machine extends in the Y direction on a plane orthogonal to the paper surface in FIG. Minute irregularities having a period of several ⁇ m and a height of several ⁇ m are generated in the cross section 6b. Furthermore, the surface 6c of the object to be measured is not a perfect mirror surface and has minute irregularities of about several ⁇ m. Therefore, when the edge of the object to be measured is scanned with a small beam spot having a diameter of about several ⁇ m, the measurement is performed according to the measurement position in the Y direction in FIG. There is a problem that the characteristics change greatly.
  • the edge to be detected is a part of the original edge line 01 as shown in FIG. May be the edge line 02 lacking inside the DUT 6.
  • the edge detecting device of Patent Document 1 also detects the edge missing portion as an edge. Therefore, when the lines A, B, and C in FIG. 23 are averaged in order to reduce the influence of minute irregularities on the side surface and surface of the object to be measured, the true edge is lined under the influence of the edge missing portion. There was a problem of erroneous detection as 02.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an edge detection device capable of detecting the edge of a measurement object more accurately than in the past. To do.
  • an edge detection apparatus includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, and a position of the measurement object.
  • a first driving device for moving the lens in the X-axis and Y-axis directions orthogonal to each other, an edge calculating unit for calculating an edge from the output from the light receiving element and the first driving device movement amount, and the edge calculation
  • an edge detection device comprising an edge determination unit for detecting an abnormal edge from the calculation result obtained by the unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit
  • I is the reflected light quantity characteristic obtained when measuring the M points along the Y axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X-axis direction ⁇ I 1, ⁇ I , ..., characterized by averaging by the following equation I M ⁇ .
  • I ⁇ I 1 + I 2 +... + Im +... + I M ⁇ / M
  • an edge detection apparatus includes a light source for emitting light, a light source for emitting light to an object to be measured, and light reflected from the object to be measured.
  • An edge is calculated from a light receiving element, a first driving device for moving the position of the object to be measured in the X-axis and Y-axis directions orthogonal to each other, an output from the light receiving element, and a moving amount of the first driving device.
  • An edge calculation unit an edge determination unit for detecting an abnormal edge from the calculation result obtained by the edge calculation unit, and an edge detection for calculating a final edge from the result of the edge determination unit
  • M points are measured along the Y-axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X-axis direction.
  • an edge detection apparatus includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, A first driving device for moving the position in the X-axis and Y-axis directions orthogonal to each other; an edge calculating unit for calculating an edge from the output from the light receiving element and the amount of movement of the first driving device; and the edge
  • an edge detection device comprising an edge determination unit for detecting an abnormal edge from a calculation result obtained by the calculation unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit
  • an edge detection apparatus includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, A first driving device for moving the position in the X-axis and Y-axis directions orthogonal to each other; an edge calculating unit for calculating an edge from the output from the light receiving element and the amount of movement of the first driving device; and the edge
  • an edge detection device comprising an edge determination unit for detecting an abnormal edge from a calculation result obtained by the calculation unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit
  • ⁇ I 1, ⁇ Im, ⁇ ⁇ ⁇ , differential waveform ⁇ D 1 of I M ⁇ , ⁇ Dm, ⁇ , derivative peak value at each point from the D M ⁇ ⁇ A 1, ⁇ Am, ⁇ , A M ⁇ is calculated, and a reflected light amount characteristic smaller than a differential threshold preset in the edge determination unit is excluded.
  • an edge detection apparatus includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, A first driving device for moving the position in the X-axis and Y-axis directions orthogonal to each other; an edge calculating unit for calculating an edge from the output from the light receiving element and the amount of movement of the first driving device; and the edge
  • an edge detection device comprising an edge determination unit for detecting an abnormal edge from a calculation result obtained by the calculation unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit
  • the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X-axis direction is I, and M locations along the Y-axis direction. Since the reflected light quantity characteristics ⁇ I 1 ,... Im,..., I M ⁇ obtained when the points are measured are averaged, the edge shape of the object to be measured is determined depending on the measurement location. It is possible to reduce measurement errors that occur when the surface state is slightly changed.
  • the reflected light quantity characteristic ⁇ I 1, ⁇ Im, ⁇ , I M ⁇ edge positions at each point from ⁇ x 1, ⁇ ⁇ ⁇ xm, .., X M ⁇ is calculated, the edge position of the outermost edge portion of the object to be measured is calculated from the edge positions, and the absolute value of the difference between the edge position of the outermost edge portion and the edge position at each point is calculated.
  • a preset threshold value it is configured to be regarded as an abnormal edge and excluded, so that data is excluded when a part of the edge of the object to be measured is missing. Therefore, the original edge position can be detected more accurately.
  • the reflected light quantity characteristic ⁇ I 1, ⁇ Im, ⁇ , I M ⁇ differential waveform ⁇ D 1 obtained by differentiating the, ⁇ ⁇ ⁇ Dm, ⁇ ⁇ ..., D M ⁇ , the differential peak value ⁇ A 1 ,... Am,..., A M ⁇ is calculated, and abnormal when the differential peak value at each point is less than or equal to a preset differential threshold value. Since the configuration is such that data is excluded by considering it as a sharp edge, the original edge position can be detected more accurately even when the edge of the object to be measured is gentle.
  • the reflected light quantity characteristic ⁇ I 1, ⁇ Im, ⁇ , I M ⁇ from the peak intensity ⁇ P 1, ⁇ Pm, ⁇ , P M ⁇ is calculated, and when the peak intensity at each point is equal to or less than a preset intensity threshold, the data is excluded by considering it as an abnormal edge. It is possible to detect the original edge position with higher accuracy.
  • FIG. 2 is a relationship diagram between an object to be measured and a focused spot with respect to the edge detection apparatus shown in FIG. 1.
  • FIG. 2 is a relationship diagram between an object to be measured and a focused spot with respect to the edge detection apparatus shown in FIG. 1.
  • FIG. 2 is a relationship diagram between an object to be measured and a focused spot with respect to the edge detection apparatus shown in FIG. 1.
  • FIG. 1 It is a figure which shows typically the unevenness
  • FIG. 5 It is a figure which shows the structure of the edge detection apparatus in Embodiment 5 of this invention. It is a figure which shows the structure of the light projection system shown in FIG. It is a figure which shows the structure of the light-receiving system shown in FIG. It is a figure which shows the shape change of the condensing spot on a 4-part dividing photodiode at the time of edge detection. It is a figure which shows the shape change of the condensing spot on a 4-part dividing photodiode at the time of edge detection. It is a figure which shows the shape change of the condensing spot on a 4-part dividing photodiode at the time of edge detection.
  • FIG. 29a It is a schematic diagram of the cross section of the edge part in the measurement object which is a mirror surface. It is a figure which shows the light received signal in the 4-part dividing photodiode of the edge part shown to FIG. 29a. It is a figure which shows the difference signal of the light received signal shown in FIG. 29b. It is a figure which shows the light reception signal in a 4-part dividing photodiode at the time of defocusing the light beam irradiated to the edge part shown to FIG. 29a. It is a figure which shows the difference signal of the light received signal shown in FIG. 29d.
  • FIG. 31 is a graph for explaining a change in amplitude intensity of a received light signal in each positional relationship shown in FIG. 30.
  • FIG. It is a schematic diagram of the cross section of the edge part in the to-be-measured object of the metal which is a rough surface. It is a figure which shows the light reception signal in the 4-part dividing photodiode of the edge part shown to FIG. It is a figure which shows the difference signal of the received light signal shown to FIG.
  • FIG. 6 It is a figure which shows the light reception signal in a 4-part dividing photodiode at the time of defocusing the light beam irradiated to the edge part shown to FIG. It is a figure which shows the difference signal of the light received signal shown to FIG. It is a figure which shows the structure of the edge detection apparatus in Embodiment 6 of this invention, and is a block diagram at the time of the focus adjustment of a light projection system. It is a figure which shows the structure of the edge detection apparatus in Embodiment 6 of this invention, and is a block diagram at the time of edge detection. It is a figure which shows the light reception signal in the 4-part dividing photodiode of the edge part obtained with the edge detection apparatus in Embodiment 6. FIG.
  • FIG. 34a It is a figure which shows the difference signal of the received light signal shown to FIG. 34a. It is a figure which shows the condensing spot in the focus state in a 4-part dividing photodiode. It is a figure which shows the condensing spot in the defocusing state in a 4-part dividing photodiode. It is a figure which shows the structure of the edge detection apparatus in Embodiment 7 of this invention. It is a figure which shows the structure of the edge detection apparatus in Embodiment 8 of this invention. It is a figure which shows the structure of the edge detection apparatus in Embodiment 9 of this invention. It is a figure which shows the state scanned with the light beam of a big spot size in the edge detection apparatus shown in FIG.
  • Embodiment 1 The configuration of the edge detection apparatus 101 according to the first embodiment is shown in FIG.
  • the edge detection apparatus 101 is an apparatus that detects an edge of a rough surface of a metal object 6 having a rough scattering surface, that is, a rough surface, by using reflected light of a laser beam irradiated on the rough surface.
  • the edge means a boundary between steps having a height difference on the metal surface.
  • the edge detection apparatus 101 can be used for measuring the shape of a workpiece in electric discharge machining, cutting, grinding, or the like.
  • the object to be measured 6 of the edge detection apparatus 101 is not limited to a metal measurement object having a rough surface.
  • the edge detection apparatus 101 is a mirror-like object to be measured that is not a rough scattering surface. It is applicable to.
  • Such an edge detection device 101 has, as its basic configuration, a light projecting system 110, a light receiving system 120, a first drive device 130, an edge calculation unit 140, an edge determination unit 150, and an edge detection unit 160.
  • the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 correspond to a configuration example of an “edge position acquisition unit”. Below, the component part of the edge detection apparatus 101 is demonstrated sequentially.
  • the light projecting system 110 is a component that collects and irradiates light on the object 6 to be measured, and includes a light source 1, a first lens 3, an objective lens 5, and a beam splitter 4.
  • a semiconductor laser or the like is used as the light source 1.
  • the first lens 3 and the objective lens 5 are lenses for condensing the light from the light source 1, and are installed in the lens barrel 2 to condense the light from the light source 1 onto the object to be measured 6.
  • the beam splitter 4 transmits the light beam from the light source 1 to the objective lens 5 and reflects the reflected light from the object to be measured 6 to the light receiving system 120.
  • the light source 1, the first lens 3, the objective lens 5, and the beam splitter 4 form a linear optical path, but the optical path shape is not limited to this.
  • the light receiving system 120 is a light detection part for receiving the reflected light from the measured object 6 of the light condensed on the measured object 6 by the light projecting system 110.
  • the second lens 7 is a lens for condensing the reflected light from the beam splitter 4 on the photodetector 8.
  • the photodetector 8 for example, a photodiode or the like is used.
  • the light receiving system 120 is also installed in the lens barrel 2, and the arrangement of the optical components and the number of lenses are not particularly limited to the configuration shown in the drawing as long as they perform the functions described above.
  • the first driving device 130 is an XY stage that mounts the DUT 6 and can move in the X-axis direction and the Y-axis direction orthogonal to each other on a plane.
  • the object to be measured 6 is moved by the first driving device 130 with respect to the fixed light projecting system 110 and light receiving system 120.
  • the light projecting system 110, the light receiving system 120, and the object to be measured are moved. Any structure that can move relative to the object 6 may be used. Further, in the present embodiment, it is possible to move only in the XY directions orthogonal to each other in the plane, but a configuration in which a Z-stage is added to move in the direction orthogonal to the XY plane may be adopted.
  • the edge calculation unit 140 is electrically connected to the photodetector 8 and the first driving device 130, and the edge calculation unit 140 detects the edge of the DUT 6 based on the light amount signal from the photodetector 8 and the position information from the first driving device 140. It is a means for obtaining the position.
  • the edge determination unit 150 is a determination unit that is electrically connected to the edge calculation unit 140 and determines an abnormal edge position from the edge position obtained from the edge calculation unit 140.
  • the edge detection unit 160 is an edge detection unit that is electrically connected to the edge determination unit 150 and detects a final edge position from information from the edge calculation unit 140 and the edge determination unit 150.
  • the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 are actually realized using a computer, and the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 have their respective functions. And software such as a CPU (Central Processing Unit) and a memory for executing the software.
  • the computer preferably corresponds to a microcomputer incorporated in the edge detection apparatus 101, but a stand-alone personal computer can also be used. Such configurations in the edge calculation unit, the edge determination unit, and the edge detection unit are the same in the embodiments described later.
  • edge detection apparatus 101 In the edge detection apparatus 101 having the above-described configuration, an operation for obtaining the edge position of the DUT 6 by the edge calculation unit 140 will be described below.
  • the edge of the object 6 to be measured it is considered that the edge 6b extends along the vertical direction (Z direction) as shown in FIG.
  • Edge detection on line A in FIG. 22 showing a top view of the DUT 6 will be described.
  • the light emitted from the light source 1 of the light projecting system 110 passes through the first lens 3, the beam splitter 4, and the objective lens 5 to form a condensing spot 10 (FIG. 2a).
  • a condensing spot 10 FIG. 2a
  • the photodetector 8 detects nothing.
  • the first driving device 130 on which the device under test 6 is mounted is moved in the X direction and the device under test 6 reaches the position where the light condensing spot 10 is formed as shown in FIG. Of these, only the portion 11 irradiated on the DUT 6 is reflected to the light receiving system 120.
  • the light reflected by the DUT 6 passes through the objective lens 5, is reflected by the beam splitter 4, and is collected on the photodetector 8 by the second lens 7. Therefore, the amount of reflected light can be detected by the photodetector 8. At this time, the amount of reflected light detected by the photodetector 8 reflects the size of the portion 11 irradiated on the object 6 to be measured.
  • the condensed spot 10 completely irradiates the object to be measured 6, and the reflected light amount detected by the photodetector 8 is , Larger than in the case of FIG.
  • the surface 6c of the DUT 6 is a mirror surface, even if the first driving device 130 is further moved in the X direction from the state of FIG. It becomes.
  • the surface 6c (measurement surface) of the workpiece 6 to be processed by the wire electric discharge machine is not a perfect mirror surface but a rough surface, so that the first driving device 130 is further moved in the X direction from the state of FIG.
  • the edge calculation unit 140 acquires a waveform like the reflected light amount characteristic 12 shown in FIG. 3 based on the received light amount obtained from the photodetector 8 and the amount of movement of the stage obtained from the first driving device 130. To do.
  • the edge calculation unit 140 detects the peak intensity 13 from the reflected light quantity characteristic 12, and obtains the intersection 15 between the intensity threshold 14 obtained from the peak intensity 13 and the reflected light quantity characteristic 12 as the edge position OA.
  • the intensity threshold 14 is, for example, 50% of the peak intensity 13, but is not limited to this and can be arbitrarily set.
  • the surface 6c of the object 6 to be processed by the wire electric discharge machine is a rough surface, and in the above description, the edge 6b of the object 6 is vertical.
  • the edge 6b of the measured object 6 to be processed has a slightly gentle shape. For this reason, for example, when the surface 6c of the DUT 6 is scanned with the focused spot 10 along the line A in the X direction in FIG. 22, the reflected light quantity characteristic 12 obtained by the edge calculator 140 is a solid line in FIG. As shown. Further, the reflected light quantity characteristics 12 when measured at different positions in the Y direction as in the lines B and C in FIG. 22 are shown in FIG. 4 due to slight differences in the surface 6c and side surfaces of the object 6 to be measured.
  • the peak intensity and the peak position are slightly different from those shown by the solid line. For this reason, an error occurs at the position of the intersection 15 between the intensity threshold 14 obtained from the peak intensity 13 and the reflected light amount characteristic 12, and an error also occurs at the detected edge position.
  • the reflected light quantity characteristics 12a, the reflected light quantity characteristics 12b, the reflected light quantity are reflected in each of the M places, for example, as shown in FIG. Characteristics 12c,...
  • the mth reflected light quantity characteristic 12 is Im (x)
  • I (x) obtained by averaging the reflected light quantity characteristics 12 is obtained as represented by the following formula (1), and the edge of the object 6 to be measured is obtained.
  • I (x) ⁇ I 1 (x) +... + Im (x) +... + I M (x) ⁇ / M (1)
  • each edge position xm of the measurement object 6 corresponding to each reflected light quantity characteristic 12 obtained in each line scanning the surface 6c of the measurement object 6 in the X direction with the focused spot 10 is measured, and the following As shown in Expression (2), each edge position xm may be averaged to obtain the final edge position x.
  • the measured object 6 processed by the wire electric discharge machine may have a part of the edge 6b of the measured object 6 chipped inward as shown in FIG. This is a phenomenon peculiar to the measured object 6 processed by the wire electric discharge machine.
  • the edge 6b of the device under test 6 is vertical as shown in FIG. 24a, and the surface 6c of the device under test 6 is a rough surface.
  • the edge calculation unit 140 obtains the reflected light amount characteristic 12c from the reflected light amount characteristic 12a as shown in FIG.
  • the edge positions OA, OB, and OC are detected. As shown in FIG. 5, the edge position OA and the edge position OC in the line A and the line C coincide with the edge O1 in FIG. 23, but the edge position OB in the line B is affected by the lack of the edge 6b. Compared to the edge positions OA and OC, the reflected light amount characteristic 12b is also shifted backward compared to the reflected light amount characteristics 12a and 12c.
  • the reflected light quantity characteristics 12a to 12c obtained by the edge calculation unit 140 are averaged according to the above-described equation (1) by scanning the lines A to C.
  • the averaged reflected light amount characteristic 12d is as shown in FIG.
  • the peak intensity 13 is detected from the reflected light quantity characteristic 12d, and the intensity threshold value 14 is determined from the peak intensity 13 in the same manner as the edge position is detected from the reflected light quantity characteristics 12a to 12c of the lines A to C described above.
  • the edge position O2 is calculated from the intersection of the intensity threshold 14 and the reflected light quantity characteristic 12d.
  • the edge 6b of the object 6 to be actually detected is an edge O1 different from O2, and if the reflected light quantity characteristics 12a to 12c are simply averaged as shown in FIG.
  • the position of the true edge 6b of the object to be measured 6 is erroneously detected due to the influence of the edge chip.
  • the edge determination unit 150 and the edge detection unit 160 of the edge detection apparatus 101 detect and exclude only the abnormal edges that are largely missing on the inside, and detect the original edges. The operation will be described with reference to the flowchart of FIG.
  • step 300 the edge calculation unit 140 causes the edge position ⁇ x1 of the object 6 to be measured in each line from the reflected light amount characteristic 12 ⁇ I1,... Im,. ,..., Xm,.
  • xm ⁇ xmin is calculated and output to the edge determination unit 150.
  • the edge determination unit 150 compares the threshold value xth preset in the edge determination unit 150 with the difference value bm calculated by the edge calculation unit 140 in step 320, and the difference value bm Exclude all edges that are greater than xth or greater than xth. Then, the edge determination unit 150 outputs the reflected light quantity characteristic 12 ⁇ ... Im,... ⁇ Corresponding to the remaining difference value bm not excluded to the edge detection unit 160.
  • the edge position is calculated based on the intensity threshold value 14 obtained from the peak intensity 13 of the reflected light amount characteristic 12 when the edge 6b is obtained.
  • the absolute value of the reflected light amount is used as the intensity threshold value. It may be set to 14.
  • the edge 6b to be measured in the DUT 6 is parallel to the Y axis in the first driving device 130
  • FIG. 22 As described above, when the edge 6b to be measured in the device under test 6 is tilted with respect to the Y axis of the first drive device 130, that is, the device under test 6 is tilted with respect to the Y axis of the first drive device 130.
  • the first embodiment can be applied.
  • the edge positions in the Y direction are averaged by the expressions (1) and (2).
  • the converted value is a constant, as shown in FIG. 8, when the DUT 6 is mounted on the first driving device 130 with the Y axis tilted, the edge position xi with respect to a specific position yi in the Y direction. Is represented by the following formula (4).
  • the abnormal data due to the lack of the edge 6b of the DUT 6 is obtained by calculating the edge position xi ′ as the edge position calculated at the position yi in the Y direction, and xi as the ideal edge position obtained from the approximate straight line 20. Then, xi′ ⁇ xi is calculated, and when the absolute value of the difference value is larger than a threshold value preset in the edge determination unit 150, the reflected light quantity characteristic 12 including the edge is removed. Just do it.
  • the present embodiment can be applied to the case of a curve instead of a straight line by design, and it is also possible to perform data processing by fitting measurement data of the curve.
  • Embodiment 2 FIG. In the first embodiment described above, the method of detecting the edge 6b of the DUT 6 from the reflected light quantity characteristic 12 has been described. However, in the edge detection apparatus 102 in the second embodiment shown in FIG. A method of detecting the edge position from the calculated differential waveform is adopted.
  • the basic configuration of the edge detection apparatus 102 in the second embodiment is the same as the configuration of the edge detection apparatus 101 in the first embodiment described above, but the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 are different. Instead, an edge calculation unit 142, an edge determination unit 152, and an edge detection unit 162 are provided.
  • the edge calculation unit 142, the edge determination unit 152, and the edge detection unit 162 perform operations different from those of the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 as described below.
  • the other components in the edge detection apparatus 102 in the second embodiment are the same as those in the first embodiment, and a description thereof is omitted here. Therefore, only operations of the edge calculation unit 142, the edge determination unit 152, and the edge detection unit 162 will be described below.
  • the edge detection apparatus 102 in the second embodiment for example, in the case of the first embodiment, when the measurement object 6 in which a part of the edge 6b of the measurement object 6 is missing is measured as shown in FIG. Similarly to the above, the reflected light quantity characteristics 12a to 12c shown in FIG. 5 are obtained.
  • the edge calculation unit 142 calculates the differential waveforms 16a to 16c of the reflected light quantity characteristics 12a to 12c as shown in FIG. 11, and the differential waveforms 16a to 16c obtained. Edge positions OA to OC are detected from the x coordinate of the peak value.
  • the edge calculation unit 142 causes the reflected light quantity characteristics 12 ⁇ I1,... Im,..., IM ⁇ in each scan line to be differentiated waveforms 16 ⁇ D1,. ⁇ Is calculated.
  • the edge calculation unit 142 calculates the edge positions ⁇ x1,... Xm,..., XM ⁇ of each scan line from the peak value of the differential waveform 16.
  • the edge computing unit 142 uses the edge position ⁇ x1, x2,...
  • Xm ⁇ calculated in step 410 to determine the minimum edge position value xmin Min (x1... Xm,. .., XM) is detected.
  • the edge determination unit 152 compares the threshold value xth preset in the edge determination unit 152 with the difference value bm calculated in step 430, and the difference value bm is greater than xth or greater than or equal to xth. Exclude all edges. Then, the edge determination unit 152 outputs the reflected light amount characteristic 12 ⁇ ... Im,... ⁇ Corresponding to the remaining edges that are not excluded to the edge detection unit 162.
  • the edge detector 162 calculates a differential waveform 16-2 obtained by differentially calculating the averaged reflected light amount characteristic 12-2.
  • the edge detection unit 162 calculates the final edge position from the peak value of the differential waveform 16-2 and ends the edge calculation.
  • the edge detection device 102 in the second embodiment as described above can achieve the same effect as the edge detection device 101 in the first embodiment, and even when the edge 6b of the device under test 6 is missing. Thus, the original edge 6b can be detected more accurately than in the prior art.
  • the second embodiment an example in which three scan lines in the Y direction are measured has been described, but the number of measurement points is not particularly limited as long as it is two or more.
  • the minimum value of the edge position is obtained from the edge position of each scan line.
  • the moving direction of the first driving device 130 and the rise and fall of the reflected light amount characteristic 12 are described.
  • the maximum value may be obtained instead of the minimum value.
  • the outermost edge portion of the DUT 6 may be detected.
  • a reference value such as the second smallest value may be determined instead of the minimum value or the maximum value.
  • Embodiment 3 In the first embodiment and the second embodiment, the method of excluding an abnormal edge in which a part of the edge 6b of the object to be measured 6 is missing has been described.
  • the object to be measured shown in FIG. As shown in the side view of the measurement object 6, an edge exclusion method in the case where the cross-sectional shape at the intersection of the edge 6b and the surface 6c is gentle (hereinafter simply referred to as “smooth edge”) will be described.
  • FIG. 13 shows the configuration of the edge detection apparatus 203 according to the third embodiment.
  • the basic configuration of the edge detection device 203 is the same as the configuration of the edge detection devices 101 and 102 of the first and second embodiments described above, but the edge calculation unit 142 and the edge determination unit described in the second embodiment.
  • an edge calculation unit 143, an edge determination unit 153, and an edge detection unit 163 are provided.
  • the edge calculation unit 143 generates the differential waveform 16 from the reflected light quantity characteristic 12 in the same manner as the edge calculation unit 142 in the second embodiment, but the edge determination unit 153 and the edge detection unit 163 are described below. Operations different from those of the edge determination unit 152 and the edge detection unit 162 are performed.
  • the detected edge 6b has a larger error as the slope of the rising portion of the reflected light amount characteristic 12 becomes gentler.
  • the rising portion of the reflected light amount characteristic 12 is a gentle edge, that is, the differential waveform 16 as shown in FIG. It is necessary to provide a differential threshold 17 and to exclude edges having a small differential peak value below the differential threshold 17.
  • the edge calculation unit 143, the edge determination unit 153, and the edge detection unit 163 included in the edge detection device 203 according to the third embodiment excludes the gently shaped edge as an abnormal edge, and the object to be measured
  • the operation of detecting the original edge 6b in FIG. 6 will be described below with reference to the flowchart of FIG.
  • the edge calculator 143 generates the differential waveform 16 from the reflected light amount characteristic 12 in the same manner as the edge calculator 142.
  • the edge calculation unit 143 determines the differential waveform 16 ⁇ D1,1 from the reflected light quantity characteristics 12 ⁇ I1, ... Im, ..., IM ⁇ obtained by the scanning operation of each scan line. ... Dm,..., DM ⁇ are calculated, and the peak value ⁇ A1,... Am,. Output.
  • the edge determination unit 153 determines the differential threshold Ath preset in the edge determination unit 153 and the peak value ⁇ A1,... Am,. AM ⁇ and excludes all edges corresponding to values below the differentiation threshold Ath. Then, the edge determination unit 153 outputs the reflected light quantity characteristic 12 ⁇ ... Im,... ⁇ Corresponding to the remaining edges that are not excluded to the edge detection unit 163.
  • a differential waveform 16-3 obtained by differentiating the averaged reflected light amount characteristic 12-3 is calculated.
  • the edge detection unit 163 calculates the final edge position from the peak value of the differential waveform 16-3, and ends the edge calculation.
  • the same effect as that of the edge detection device 101 in the first embodiment can be obtained, and the edge 6b in the object to be measured 6 can be obtained. Even in a gentle case, since such a gentle edge can be excluded, the original edge 6b of the DUT 6 can be detected with higher accuracy than in the prior art. .
  • the edge is calculated from the peak value of the differential waveform 16-3 in order to obtain the final edge position.
  • the edge position is determined by the intensity threshold 14 obtained from the peak intensity 13 of the reflected light amount characteristic 12. May be calculated.
  • Embodiment 4 FIG.
  • the method of excluding abnormal edges such as when the edge 6b is missing or the edge cross section is gentle has been described.
  • the reflected light quantity characteristic 12 with low edge detection accuracy is excluded. A method will be described.
  • FIG. 17 shows the configuration of the edge detection device 104 of the fourth embodiment.
  • the basic configuration of the edge detection device 104 is the same as the configuration of the edge detection devices 101 to 203 in the first to third embodiments described above, but the edge calculation unit 140, the edge determination unit 150, and Instead of the edge detection unit 160, an edge calculation unit 144, an edge determination unit 154, and an edge detection unit 164 are provided.
  • the edge calculation unit 144, the edge determination unit 154, and the edge detection unit 164 perform different operations from the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160, as will be described below.
  • the other components are the same as those in the first embodiment and the like are not described here, and the operations of the edge calculation unit 144, the edge determination unit 154, and the edge detection unit 164 provided in the fourth embodiment are omitted. Only will be described.
  • Embodiments 1 to 3 the surface 6c of the object 6 to be measured has been shown as a rough surface.
  • the object 6 to be processed by the wire electric discharge machine has a rough surface 6c and the object to be measured.
  • streaky irregularities 18 may be observed as shown in FIG. This is caused, for example, by the presence of the convex portion 18a or the concave portion 18b as shown in FIG. 19 which is a cross section taken along the line AA ′ of FIG.
  • the reflected light amount characteristic 12 in the vicinity of the slope of the convex portion 18a and the concave portion 18b of the device under test 6 is measured, the reflected light returning to the light receiving system 120 side is received at the flat portion 6d of the surface 6c of the device under test 6 shown in FIG.
  • the light is scattered at the convex portion 18a and the concave portion 18b, and the light returning to the light receiving system 120 is reduced.
  • the reflected light quantity characteristic 12-4 having a large peak intensity 13 and the reflected light quantity characteristic 12-5 having a small peak intensity 13 coexist depending on the measurement position in the Y-axis direction.
  • the SN ratio which is the ratio of the received light signal to the noise component, is deteriorated, so that the edge position detection accuracy is lowered. Therefore, it is necessary to monitor the peak intensity 13 of the reflected light quantity characteristic 12, provide a peak intensity threshold 19 for the peak intensity 13, and exclude the reflected light quantity characteristic 12 having a peak intensity 13 smaller than the peak intensity threshold 19.
  • the edge calculation unit 144, the edge determination unit 154, and the edge detection unit 164 included in the fourth embodiment perform an operation of detecting the original edge 6b by excluding the edge whose edge position detection accuracy is low as described above. . Below, this operation
  • the edge calculation unit 144 acquires the reflected light amount characteristics 12 ⁇ I1,... Im,..., IM ⁇ from the photodetector 8 by the scanning operation of each scan line.
  • the peak intensity 13 ⁇ P1,... Pm,..., PM ⁇ of the reflected light quantity characteristic 12 is obtained and output to the edge determination unit 154.
  • the edge determination unit 154 includes the peak intensity threshold value 19Pth preset in the edge determination unit 154 and the peak intensity 13 ⁇ P1,... Pm,. , PM ⁇ . In this comparison operation, the edge determination unit 154 excludes all the reflected light amount characteristics 12 having a peak intensity equal to or less than the peak intensity threshold 19Pth, and uses the remaining reflected light amount characteristics 12 ⁇ ... Im,. To 164.
  • the edge detection unit 164 obtains a final edge position based on the intensity threshold 14 obtained from the peak intensity 13 of the averaged reflected light quantity characteristic 12, and ends the edge calculation.
  • the same effect as that of the edge detection device 101 in the first embodiment can be obtained, and the peak intensity 13 is further low in noise resistance. Therefore, the original edge 6b can be detected with higher accuracy than in the prior art.
  • the edge position when calculating the final edge position, is obtained based on the intensity threshold 14 obtained from the peak intensity 13 of the averaged reflected light quantity characteristic 12.
  • the edge position may be calculated from the peak value of the differentiated waveform 16 by performing a differentiation operation of the characteristic 12.
  • the first driving device 130 is moved only in the X direction.
  • the first driving device 130 is naturally applicable to the case where the first driving device 130 is moved in the Y direction.
  • the methods shown in the first to fourth embodiments are effective even when executed independently, but are more effective when used in appropriate combinations.
  • Embodiment 5 the focused spot 10 irradiated from the light projecting system 110 to the measured object 6 is focused on the measured object 6 in advance. It assumes a structure that does not change.
  • the edge detection apparatus according to the fifth to eighth embodiments described below includes a laser beam focusing function from the light projecting system 110 to the object 6 to be measured.
  • the basic configuration of the edge detection devices according to the fifth to eighth embodiments described below is the same as the configuration of the edge detection devices 101 to 104 according to the first to fourth embodiments described above. Therefore, the same reference numerals are assigned to the same components.
  • FIG. 25 shows a schematic configuration of the edge detection apparatus 201 according to the fifth embodiment of the present invention.
  • the edge detection device 201 particularly detects edges on a rough surface of a metal object 6 having a rough scattering surface, that is, a rough surface. It is a device that detects using the reflected light of laser light irradiated on a rough surface, and can be used for measuring the shape of a workpiece in electric discharge machining, cutting, grinding, or the like.
  • the object to be measured 6 of the edge detector 201 is not limited to a metal object having a rough surface.
  • the edge detector 201 is a mirror-like object to be measured that is not a rough scattering surface. It is applicable to.
  • Such an edge detection device 201 includes a light projecting system 110, a light receiving system 120, and a first drive device 130 as basic components, similar to the edge detection devices 101 to 104 in the first to fourth embodiments. , A second driving device 240, a focus detection unit 250, and an edge detection unit 260. Each of these components will be sequentially described below.
  • the light projecting system 110 is a component that condenses and irradiates laser light onto the DUT 6 as shown in FIG. 26, as with the edge detection devices 101 to 104 in the first to fourth embodiments.
  • the light source 1 and the optical system are provided.
  • the optical system of the light projecting system 110 includes a first lens 3 and an objective lens 5.
  • the light source 1 is composed of a semiconductor laser.
  • the light source 1, the first lens 3, and the objective lens 5 are accommodated in the lens barrel 2 so as to form a linear optical path.
  • the lens barrel 2 is connected to the second driving device 240.
  • the light source 1, the first lens 3, and the objective lens 5 form a linear optical path, but the optical path shape is not limited to this.
  • a beam splitter 4 constituting the light receiving system 120 is installed between the first lens 3 and the objective lens 5.
  • the beam splitter 4 is merely an object that transmits light and does not perform an optical action.
  • the beam splitter 4 is included in the light receiving system 120.
  • the beam splitter 4 may be included in the light projecting system 110.
  • the light 51 emitted from the light source 1 is collimated by the first lens 3, then condensed by the objective lens 5, and the light beam 51 a (see FIG. 26) to form a focused spot 52.
  • FIG. 25 shows a state where only half of the focused spot 52 is present on the measurement surface 6 a of the object 6 to be measured.
  • the second driving device 240 is a mechanism that enables the projection system 110 to move together with the lens barrel 2 in the direction of the optical axis of the objective lens 5, that is, the irradiation direction indicated by the arrow b in FIG. That is, the second driving device 240 enables the light projecting system 110 to focus on the measurement surface 6 a of the DUT 6.
  • the second driving device 240 moves the light projecting system 110 in the direction of the arrow b with respect to the object to be measured 6, but is not limited to this configuration, and the light projecting system 110 and the object to be measured 6. As long as it moves in the direction of the arrow b.
  • the light receiving system 120 is an optical part that receives the reflected light on the measurement surface 6a of the light beam 51a collected by the light projecting system 110 onto the measurement surface 6a of the object 6 to be measured.
  • a photodetector 8 is a photodiode in which one light receiving surface arranged at one light receiving position 8a is divided into a plurality of detection units. In this embodiment, the light receiving surface is divided into four equal parts. It is a photodiode.
  • the optical system in the light receiving system 120 includes the objective lens 5, the beam splitter 4, and the second lens 7, which are arranged in this order along the progress of the reflected light.
  • the light receiving system 120 shares the same lens as the objective lens 5 of the light projecting system 110 as an objective lens.
  • the beam splitter 4 reflects the reflected light that has passed through the objective lens 5 and makes it incident on the second lens 7.
  • the second lens 7 is a condensing lens and condenses the reflected light on the light receiving surface at the light receiving position 8 a of the photodetector 8.
  • the second lens 7 and the photodetector 8 are installed in the lens barrel 9.
  • the beam splitter 4 is installed in the lens barrel 2 of the light projecting system 110, and the lens barrel 9 of the light receiving system 120 and the lens barrel 2 of the light projecting system 110 are orthogonal to each other. It is connected.
  • the light receiving position 8a of the four-divided photodiode that is the light detector 8 is adjusted so as to have an imaging relationship with the position where the light beam from the light projecting system 110 is focused. That is, when the measurement surface 6a of the object to be measured 6 is at the condensing position of the light beam 51a from the light projecting system 110, the reflected light is imaged at the light receiving position 8a of the photodetector 8.
  • the light receiving system 120 configured in this way emits reflected light 54 from a region 53 in the measurement surface 6 a of the object 6 to be measured among the condensing spots 52 by the light projecting system 110.
  • the light is collimated by the objective lens 5 which is also a condensing lens of the system 110, reflected by the beam splitter 4, condensed by the second lens 7 at the center of the light receiving surface at the light receiving position 8 a of the photodetector 8, and the condensed spot 55.
  • the first driving device 130 is a device that has a stage on which the object to be measured 6 is placed and moves the stage, that is, the object to be measured 6 in the X and Y directions orthogonal to each other on a plane.
  • the X and Y directions are directions orthogonal to the irradiation direction indicated by the arrow b, which is the moving direction of the light projecting system 110 by the second driving device 240.
  • the first driving device 130 moves the object 6 to be measured with respect to the fixed light projecting system 110, but is not limited to this configuration, and the light projecting system 110, the object 6 to be measured, and the like. Any device that relatively moves in the X and Y directions may be used.
  • the focus detection unit 250 is a part that is electrically connected to the light detector 8, the first driving device 130, and the second driving device 240, and detects the in-focus position of the light projecting system 110 with respect to the object to be measured 6. Details will be described in the following explanation of operation.
  • the edge detection unit 260 is a part that is electrically connected to the focus detection unit 250 and the first driving device 130 and detects the edge of the DUT 6. Details will be described in the following explanation of operation.
  • the focus detection unit 250 and the edge detection unit 260 are actually implemented using a computer, and include software corresponding to each function and hardware such as a CPU (Central Processing Unit) and a memory for executing the software. It is configured.
  • a CPU Central Processing Unit
  • a memory for executing the software. It is configured.
  • edge detection apparatus 201 configured as described above will be described below. In the following description, an example is described in which edge detection is performed by moving the DUT 6 in the X direction by the first driving device 130, but the same applies to the movement in the Y direction.
  • the principle of edge detection in the edge detection apparatus 201 will be described.
  • a case where the reflectance and scattered radiation angle characteristics of the light beam do not change due to the change of the irradiation position of the light beam on the upper surface of the object to be measured will be considered.
  • a mirror surface without scattering, or a surface having a rough surface structure on the upper surface of an object to be measured, such as paper is equal to or less than the wavelength structure of light.
  • it describes as a non-rough surface measured object.
  • the shape of the condensing spot 55 on the photodetector 8 (quadrant photodiode) is The shape of the condensing spot 52 is reflected. That is, if the condensing spot 52 is circular, the condensing spot 55 is also circular.
  • the non-rough surface measurement object is moved by the first driving device 130 in the X direction, and the non-rough surface measurement is performed by the light beam 51a irradiated to the non-rough surface measurement object from the light projecting system 110.
  • the object is scanned so that the light beam 51a passes through the edge of the non-rough surface measurement object.
  • the reflected light reflected from the non-rough surface measurement object by the condensing spot 52 of the light beam 51 a is transmitted through the objective lens 5, reflected by the beam splitter 4, collected by the second lens 7, and detected by the photodetector 8. Is incident on the light receiving surface.
  • the shape of the focused spot 55 on the light receiving surface of the photodetector 8 changes according to the region where the focused spot 52 of the light beam 51a is reflected by the non-rough surface measurement object. This is shown in FIGS. 28a to 28c.
  • FIG. 28a shows a state where the focused spot 52 is on only a part of the non-rough surface measurement object
  • FIG. 28b shows a state where exactly half of the focused spot 52 is on the non-rough surface measurement object
  • FIG. 28 c shows a state where most of the focused spot 52 is on the non-rough surface measurement object.
  • the light reception intensity of the sum of the region 11 and the region 82 is I (A)
  • the light reception intensity of the sum of the region 83 and the region 84 is I (A B).
  • received light intensity I (A) and I (B) when the condensing spot 52 scans the upper surface of the cross section shown in FIG. 29A is shown in FIG. 29B. Since the received light intensity I (A) and the received light intensity I (B) are signals separated in the X direction, as shown in FIG. 29c, this difference signal, I (A) -I (B), is shown in FIG. A peak appears corresponding to the edge position of the cross section shown in FIG. The positions in the X direction at which these peaks appear are defined as edge positions.
  • the received light intensity of the focused spot 55 on the light receiving surface of the photodetector 8 is I ′ ( A) and I ′ (B) are shown in FIG. 29d.
  • the received light intensities I ′ (A) and I ′ (B) correspond to the above-described received light intensities I (A) and I (B).
  • FIG. 29e shows a difference signal between the received light intensity I '(A) and I' (B).
  • the edge detection apparatus 201 can perform focus adjustment even when the measurement object upper surface is a rough metal. This will also be described below.
  • the measurement surface 6a of the object 6 to be measured is at a position where the light condensing spot 52 is minimum with respect to the light projecting system 110, it is referred to as “the light projecting system is focus-adjusted”.
  • the measurement surface 6a of the object to be measured 6 and the photodetector 8 are in an imaging relationship, they are referred to as “the light receiving system is focus-adjusted”.
  • the position of the light receiving surface of the photodetector (four-division photodiode) 8 is adjusted so as to have an imaging relationship with the position where the light beam from the light projecting system 110 is focused. Therefore, when the light projecting system 110 is focus-adjusted, the light receiving system 120 is also focus-adjusted. In this way, the state in which the light projecting system 110 and the light receiving system 120 are both focused is referred to as “the light projecting / receiving system is focus-adjusted”.
  • FIG. 30 shows a measurement arrangement position of the measurement surface 6a when the measurement surface 6a of the DUT 6 is scanned with the light beam 51a from the light projecting system 110. That is, the distance in the direction of the arrow b between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the object 6 to be measured is shown in the drawing by the measurement surface 6a (a), (b), (c).
  • the focus detection unit 250 is changed by the second driving device 240 so that the object to be measured 6 is moved by the first driving device 130.
  • the measurement surface 6a arranged at each position is scanned.
  • the position (c) corresponds to the in-focus position of the light projecting system 110, and the position (a) corresponds to the most out-of-focus (defocus) position.
  • each signal waveform corresponding to the positions (a) to (c) is obtained as shown in FIG.
  • the diameter of the condensing spot 52 of the light projecting system 110 becomes smaller and the signal waveform of the photodetector 8 also becomes smaller as the focus is adjusted from the positions (a) to (b) and (c). Reflecting the rough structure of the metal, it has a large amplitude.
  • the focus detection unit 250 changes the distance between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the measurement object 6 in the direction of the arrow b while changing the measurement surface of the measurement object 6.
  • the focus adjustment of the light projecting system 110 can be performed. . That is, by adopting such a method, it is possible to adjust the focus of the light projecting system 110 even for a metal whose measurement surface 6a is rough.
  • the signal amplitude in FIG. 31 depends on whether or not the light projecting system 110 is focus-adjusted, and does not depend on whether or not the light-receiving system 120 is focus-adjusted.
  • the edge detection apparatus 201 since the edge detection apparatus 201 is set in advance to the state where “the light projecting / receiving system is focus-adjusted”, the focus adjustment of the light receiving system 120 is also performed at the same time. Therefore, by adopting the above-described method, it is possible to adjust the focus of the light receiving system 120 even for a metal having a rough measurement surface 6a.
  • the position of the four-divided detection unit in the photodetector 8 is moved in the plane, adjusted so that the condensed beam 55 is on one detection unit, and focused using the amplitude intensity of the one signal. Detection may be performed.
  • FIGS. 32a to 32e show measurement examples of edges in the metal object 6 having a rough measurement surface 6a obtained as described above.
  • This edge detection operation is executed by the edge detection unit 260.
  • FIG. 32B shows signals I (A) and I (B) when the measurement surface 6a of the DUT 6 having a cross section as shown in FIG. 32A is scanned in a state in which the light projecting / receiving system is focused.
  • This difference signal I (A) -I (B) is shown in FIG. 32c.
  • a position X that gives peaks at both ends in FIG. 32 c corresponds to the edge positions at both ends of the DUT 6. Based on this edge position, the dimension of the DUT 6 can be measured.
  • FIG. 32d shows the signals I (A) and I (B) when the light projecting system 110 is focused but the light receiving system 120 is defocused
  • FIG. 32e shows the difference signal I ( A) -I (B).
  • the signal I (A) and the signal I (A) can be obtained when the light receiving system 120 is in the defocused state.
  • the difference from the signal I (B) becomes small, and edge measurement becomes difficult.
  • Embodiment 6 FIG.
  • the focusing operation of the light projecting system 110 is performed by the second driving device 240, that is, in the state where the condensing spot 52 on the measurement surface 6 a of the object to be measured 6 is minimum, the edge Scan for detection.
  • the edge detection apparatus 202 according to the sixth embodiment performs scanning by defocusing the focused spot 52 by intentionally changing the size of the focused spot 52 on the measurement surface 6a after focusing.
  • the edge detection device 202 further includes a defocus mechanism 270 for this purpose.
  • the other configuration of the edge detection device 202 is the same as that of the edge detection device 201. Therefore, only the portion related to the defocus mechanism 270 will be described below.
  • the defocus mechanism 270 By providing the defocus mechanism 270, the size of the condensing spot 52 in the projection system 110 on the measurement surface 6a is changed without changing the distance between the objective lens 5 of the projection system 110 and the object 6 to be measured. That is, it can be defocused. As one of the methods, the defocus mechanism 270 changes the interval between optical elements disposed between the light source 1 and the objective lens 5. In the sixth embodiment, the defocus mechanism 270 defocuses the focused spot 52 by changing the distance a between the light source 1 and the first lens 3.
  • the condensing position of the light beam 51a from the light projecting system 110 and the light receiving position 8a of the light receiving surface of the photodetector (four-division photodiode) 8 are in an imaging relationship. It shall be adjusted as follows. Before measuring the object 6 to be measured, for example, at the stage of assembling the edge detection device 202, it is easy to find the distance a0 that satisfies the above conditions by means such as accurately measuring the distance between the lenses.
  • the layout of the edge detection device 102 at that time is shown in FIG. 33b.
  • the size of the condensing spot 52 of the light projecting system 110 on the measurement surface 6a of the object 6 to be measured is enlarged.
  • the following effects can be obtained in addition to the effects described in the fifth embodiment. That is, when the light projecting system 110 is in the in-focus position, as shown in FIG. 32b, a sharp peak is seen in the received light intensity, but the condensing spot 52 of the light projecting system 110 is enlarged by the defocus mechanism 270. Thus, a signal obtained by integrating the reflection signals at the respective points in the light irradiation region is detected by the photodetector 8. Therefore, the fluctuation of the reflected signal due to the difference in the position of the measurement surface 6a of the DUT 6 is reduced, and the received light intensity has a gentle peak as shown in FIG. 34a.
  • the waveforms of the signals I (A) and I (B) are gentle, but the signals I (A) and I (B) are left and right separated in the moving direction of the DUT 6. As shown in FIG. 34b, the difference signal I (A) -I (B) has a large peak at the edge position. Thus, the defocus mechanism 270 can reduce noise due to the metal rough surface and improve edge detection accuracy.
  • the condensing spot 55 on the light receiving surface of the photodetector 8 is increased as shown in FIG.
  • the quadrant photodiode usually has an insensitive region 85 that is not sensitive to light at the boundary between the detection units. Therefore, as shown in FIG. 35a, when the condensing spot 55 is small, the ratio of the insensitive area 85 to the condensing spot 55 is large.
  • the ratio of the insensitive area 85 to the condensing spot 55 is reduced, and the light receiving areas 81 to 84 receive light.
  • the amount of light emitted increases. Therefore, an effect of preventing a decrease in light amount due to the insensitive area can be obtained.
  • Embodiment 7 FIG.
  • the defocus mechanism 270 is provided as described above, and a method for changing the element spacing of the optical system in the light projecting system 110 is adopted. It was.
  • the aperture diameter is increased in order to enlarge the focused spot 52 while maintaining the focus state in the light projecting system 110 and the light receiving system 120.
  • a diaphragm mechanism 290 is provided.
  • the aperture mechanism 290 has an aperture that restricts the light flux in the optical path of the light projecting system 110, whereby the same effect as in the sixth embodiment can be obtained. That is, the condensing spot 52 from the light projecting system 110 is enlarged by the effect of diffraction caused by reducing the aperture.
  • the method of providing the aperture mechanism 290 has an advantage that the structural change is less than the method of changing the element spacing of the optical system in the light projecting system 110. Further, since the measurement surface 6a of the object to be measured 6 is at the condensing position of the light beam 51a, even if the height of the object to be measured 6 fluctuates during edge detection, the position variation of the condensing spot 52 is small. There are also advantages.
  • the installation location of the diaphragm mechanism 290 is not limited between the objective lens 5 and the DUT 6 in the seventh embodiment.
  • Embodiment 8 FIG. In the eighth embodiment, as shown in FIG. 37, a description will be given of an edge detection device 204 that can be applied to an object to be measured 6 that is disposed in a machining fluid 31 in, for example, wire machining discharge.
  • the edge detection device 204 has a structure further provided with a liquid-proof structure 280 with respect to the edge detection devices 201 to 203 in the fifth to seventh embodiments described above.
  • FIG. 37 shows a configuration example in which the edge detection device 201 shown in FIG. 25 is further provided with a liquid-proof structure 280, for example.
  • the edge detection device adopts a configuration in which the light projection system 110 and the light reception system 120 do not share the objective lens 5, the light projection system 110 is disposed on the exit side of the objective lens 5, and the light reception system 120 is disposed on the objective lens 5.
  • a configuration including a liquid-proof structure 280 on each incident side can be employed.
  • the liquid-proof structure 280 is attached to the objective lens 5 side with a liquid-proof specification with respect to the lens barrel 2 of the light projecting system 110.
  • the liquid-proof structure 280 is provided between the objective lens 5 and the measured object 6, and the reflected light 54 incident on the light receiving system 120 from the measured object 6 and the light beam 51 a irradiated from the light projecting system 110 to the measured object 6.
  • the first driving device 130 is disposed outside the machining liquid 31 and moves the DUT 6 in the X direction, for example, or moves the edge detection device 204 in the X direction, for example.
  • Other configurations are the same as those in the edge detection apparatus 201 described above.
  • the edge detection device 204 configured as described above the following effects can be further obtained in addition to the effects described in the fifth to seventh embodiments.
  • the edge detection device 204 it is possible to detect an edge by immersing a so-called optical head portion that performs edge detection of the DUT 6 in the processing liquid 31. More specifically, in a structure that does not have the liquid-proof structure 280, it is necessary to perform measurement so that the optical head portion of the edge detection device does not touch the processing liquid 31, and the edge passes through the processing liquid 31 from above the processing liquid 31. Measurement will be performed. In this case, there is a problem that the signal fluctuates due to the fluctuation of the interface between the machining liquid 31 and air, and accurate edge measurement cannot be performed.
  • the edge detection device that does not have the liquid-proof structure 280 has a problem.
  • the edge detection apparatus 204 of the eighth embodiment the above-described problems can be solved, and high-speed and accurate edge measurement can be performed.
  • Embodiment 9 FIG.
  • the edge detection devices 201 to 204 have been described with respect to an apparatus having a laser beam focusing function from the light projecting system 110 to the object 6 to be measured.
  • An edge detection device obtained by adding the focusing function in the edge detection device 201 of the fifth embodiment to the edge detection device 101 of the first embodiment described above will be described.
  • FIG. 38 shows the configuration of the edge detection device 301 according to the ninth embodiment.
  • This edge detection device 301 is different from the edge detection device 101 in the first embodiment shown in FIG.
  • the focus detection unit 250 is added.
  • the second drive device 240 and the focus detection unit 250 are the same as those described in the fifth embodiment.
  • the photodetector 8 is the same as that in the edge detection apparatus 201 of the fifth embodiment.
  • one light receiving surface arranged at one light receiving position 8a is used as a plurality of detection units. This is a divided photodiode, and here is a photodiode in which the light receiving surface is divided into four equal parts.
  • the configuration of the edge detection apparatus 301 is a combination of the configurations already described, and thus description thereof is omitted here. Therefore, the operation of the edge detection apparatus 301 according to the ninth embodiment will be described below.
  • the measurement object 6 is measured according to the following steps.
  • Step 1 The focus position to the upper surface of the DUT 6 in the light beam emitted from the light projecting system 110 is calculated.
  • Step 2 A surface 6c of the object 6 to be measured in the X-axis direction orthogonal to the edge 6b at a plurality of positions in the Y-axis direction along the edge 6b of the object 6 to be measured by the focused light beam having a small spot size.
  • Scan Scan.
  • Step 3 From the plurality of data obtained from the photodetector 8 by the scan, abnormal data is removed, averaged, and the like, and the edge position of the DUT 6 is detected.
  • Step 1 above that is, the operation in the second drive device 240 and the focus detection unit 250 provided in the edge detection device 301 of the ninth embodiment will be described in detail below.
  • This focus operation is the same as the operation in the edge detection apparatus 201 in the fifth embodiment described above. Therefore, the drawings referred to below are the same as the drawings referred to in the fifth embodiment.
  • FIG. 30 shows a measurement arrangement position of the measurement surface 6a when the measurement surface 6a of the DUT 6 is scanned with the light beam 51a from the light projecting system 110. That is, the distance in the direction of the arrow b between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the object 6 to be measured is shown in the drawing by the measurement surface 6a (a), (b), (c).
  • the focus detection unit 250 is changed by the second driving device 240 and the focus detection unit 250 moves the object 6 to be measured by the first driving device 130.
  • the measurement surface 6a disposed at each position is scanned.
  • the position (c) corresponds to the in-focus position of the light projecting system 110
  • the position (a) corresponds to the most out-of-focus (defocus) position.
  • each signal waveform corresponding to the positions (a) to (c) is obtained as shown in FIG.
  • the diameter of the condensing spot 52 of the light projecting system 110 becomes smaller and the signal waveform of the photodetector 8 also becomes smaller as the focus is adjusted from the positions (a) to (b) and (c). Reflecting the rough structure of the metal, it has a large amplitude.
  • the focus detection unit 250 changes the distance between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the measurement object 6 in the direction of the arrow b while changing the measurement surface of the measurement object 6.
  • the focus adjustment of the light projecting system 110 can be performed. . That is, by adopting such a method, it is possible to adjust the focus of the light projecting system 110 even for a metal whose measurement surface 6a is rough.
  • the Z-direction position Zf of the stage at the focus position calculated here is stored in the memory.
  • step 1 The above is the operation in step 1 above. Note that the operations in step 2 and step 3 are the same as those described in the first to fourth embodiments, and a description thereof will be omitted here.
  • the measurement surface 6a of the object 6 to be measured can be placed at the just focus position, and the spot size on the measurement surface 6a is reduced.
  • the spot size of the light beam irradiated onto the measurement surface 6a by the light projecting system 110 is reduced, and then the measurement object 6 described in the first to fourth embodiments is used. Since the operation of excluding abnormal edges is performed, the edge detection device 301 according to the ninth embodiment can detect the edge position of the DUT 6 more accurately than in the past.
  • Embodiment 10 FIG.
  • the edge detection apparatus 301 according to the ninth embodiment there is a concern that the measurement time becomes long because the light beam is scanned a plurality of times at a plurality of positions along the edge 6b of the object 6 to be measured. Therefore, the edge detection apparatus according to the tenth embodiment can shorten the measurement time as compared with the edge detection apparatus 301 according to the ninth embodiment.
  • the configuration of the edge detection device 302 according to the tenth embodiment is the same as that of the edge detection device 301 according to the ninth embodiment described above, but the second drive device 240 and the focus detection unit 250 will be described below. The operation different from that in the ninth embodiment is performed.
  • the edge detection device 302 measures the DUT 6 in the following steps.
  • Step 1 The focus position to the upper surface of the DUT 6 in the light beam emitted from the light projecting system 110 is calculated.
  • Step 2 The second drive device 240 defocuses the light beam that the projection system 110 irradiates the measurement surface 6a of the object 6 to be measured.
  • Step 3 The edge position of the DUT 6 is obtained with the defocused light beam having a large spot size, and the edge position is set to X0.
  • Step 4 A focused light beam with a small spot size is used to scan only in the vicinity of the edge position X0 in the X-axis direction orthogonal to the edge at a plurality of positions in the Y-axis direction along the edge of the object 6 to be measured. I do.
  • Step 5 Abnormal data is removed, averaged, etc. from a plurality of data obtained from the photodetector 8 by the scan, and the edge position of the DUT 6 is detected.
  • the edge detection device 302 according to the tenth embodiment narrows the width of scanning in the X-axis direction to the vicinity of the edge position X0 in step 4, so the edge detection device 301 according to the ninth embodiment.
  • the measurement time can be shortened compared to.
  • Step 1 and Step 5 correspond to Step 1 and Step 2 described in the ninth embodiment, description thereof will be omitted, and hereinafter, Step 2 to Step 4 will be described below. ,explain in detail.
  • step 2 will be described.
  • the projection system 110 is moved by the second driving device 240 by the distance Za from the Z stage position Zf obtained in step 1 described above, and the light beam irradiated on the measurement surface 6a of the object 6 to be measured is defocused.
  • the spot size of the light beam is enlarged.
  • step 3 will be described.
  • the DUT 6 is scanned in the X-axis direction with the large spot size light beam 350 defocused in the above step 2.
  • the light beam 350 is shown to be scanned in the + X direction, but the light beam 350 is stationary, and the effect is the same even when the DUT 6 is scanned in the ⁇ X direction.
  • FIG. 40 shows a graph of the signal intensity obtained by the photodetector 8 with such a defocused light beam 350. Since the beam size of the light beam 350 is large, a smooth graph with little noise is obtained, but the gradient of the graph near the edge of the DUT 6 is small. Further, by this scan, the edge position of the DUT 6 obtained from the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 by the method described in the first to fourth embodiments is set to X0.
  • the side surface of the object to be measured 6 has irregularities with a height of several ⁇ m with a period of several ⁇ m due to machining traces caused by discharge pulses, and accordingly, at the boundary between the surface 6 c and the side surface of the object to be measured 6. A certain edge portion also fluctuates in the order of several ⁇ m.
  • the surface 6c of the DUT 6 is not subjected to electric discharge machining, and the polished state before electric discharge machining remains. Therefore, as shown in FIG. 18 and FIG. 19, the surface 6 c of the object to be measured 6 has unevenness 18 on the order of several ⁇ m to several tens of ⁇ m.
  • spot irradiation with a light beam having a small beam size with a diameter of several ⁇ m may cause light rays to be reflected outside the objective lens 5, and the noise of the signal obtained by the photodetector 8 is large. Become.
  • the beam size is increased in the Y direction, which is the direction of the edge of the DUT 6, the same result as a signal obtained when scanning at a plurality of different positions in the Y direction is simultaneously performed with a light beam having a small beam size can be obtained. it can. Therefore, noise of the signal obtained by the photodetector 8 can be reduced, and a smooth graph can be obtained as shown in FIG. In other words, a single scan using a light beam with a large spot size has a noise reduction effect equivalent to a process in which scans at different positions in the Y direction using a light beam with a small spot size are averaged.
  • the function C (x) of the received light intensity with respect to the scanning position x of the light beam is the intensity distribution function A ( This is because it is a convolution integral of x) and the reflected light intensity function B (x) by irradiation of the point light source. If the inclination of the graph is small, the accuracy of determining the edge position is deteriorated.
  • the edge position X0 obtained by beam scanning with a large spot size cannot be determined with an accuracy of, for example, 1 ⁇ m or less because the beam size is large in the X direction. Since the noise of the obtained signal is reduced, it does not deviate significantly from the true edge position Xt.
  • FIG. 41 schematically shows the probability that the error amount appears with respect to the error amount of the edge position calculated by scanning the light beam with a small spot size once.
  • FIG. 42 is a schematic diagram similar to the case where a light beam having a large spot size is scanned once.
  • FIG. 43 and FIG. 44 show schematic diagrams of scanning a light beam having a small spot size at a plurality of positions in the Y direction.
  • the edge position is completely unknown, it is necessary to scan with a large width in the X direction as shown in FIG. 43 in order to prevent the true edge position from deviating from the scan range.
  • the scan range in the X direction is large, the measurement takes time.
  • the true edge does not deviate from the scanning range even in a narrow scanning range as shown in FIG.
  • the scan range can be narrowed to 10 ⁇ m.
  • the time required for the measurement can be shortened to 50 seconds, which is 1/10 of the above-described scan range of 100 ⁇ m.
  • the edge detection device 302 As described above in detail, in the edge detection device 302 according to the tenth embodiment, after the focus position is first detected, the light beam is defocused on the object 6 to be measured, and the light beam having a large spot size is used. A rough edge position X0 is measured. Thereafter, the light beam is focused on the object 6 to be measured, and scanning is performed only in the vicinity of the edge position X0 with the light beam having a small spot size.
  • the edge detection apparatus 302 according to the tenth embodiment has an effect that the measurement time can be further shortened in addition to the effects described in the ninth embodiment.
  • the photodetector 8 uses a photodiode in which one light receiving surface is divided into a plurality of detectors.
  • the present invention is not limited to this, and one photo detector is used for each light receiving element.
  • a diode may be used.
  • the present invention can be applied to an edge detection device that detects an edge position in an object to be measured based on reflected light.

Abstract

This edge detecting apparatus is provided with: a projection system (110), which radiates an optical beam to a subject to be measured; a light receiving system (120), which has a light detector (8) that detects light radiated from the projection system and reflected by the subject to be measured; a first drive apparatus (130), which relatively moves the subject to be measured and the projection system; an edge calculating unit (140), which obtains an edge position on the basis of reflection light quantity characteristics obtained from the light detector; an edge determining unit (150), which detects an abnormal edge on the basis of the edge position obtained by means of the edge calculating unit; and an edge detecting unit (160), which detects a final edge on the basis of the edge obtained from an edge determining unit (190). Among edge positions measured at a plurality of areas in the direction orthogonal to the scanning direction, an edge at the outermost end portion is detected, and reflection light quantity characteristics wherein the absolute value of a difference between the edge at the outermost end portion and each of the edge positions is larger than a difference threshold value obtained by means of the edge determining unit are excluded.

Description

エッジ検出装置Edge detection device
 本発明は、光を出射するための発光部と被測定物からの反射光を受光するための受光部とを備え、反射光をもとに被測定物のエッジ位置を検出するエッジ検出装置に関する。 The present invention relates to an edge detection device that includes a light emitting unit for emitting light and a light receiving unit for receiving reflected light from a measured object, and detects an edge position of the measured object based on the reflected light. .
 細線(ワイヤ)と被加工物との間の放電によって被加工物を加工するワイヤ放電加工機は、一般に、被加工物を加工するためのワイヤと、ワイヤと被加工物との間に放電現象を発生させるための駆動装置と、被加工物を所望の形状に加工するためのステージ駆動装置とを備え、被加工物を水や油等の加工液に浸して放電現象を発生させながらステージを移動させることで被加工物の形状を加工する。 A wire electric discharge machine that processes a workpiece by electric discharge between a thin wire (wire) and the workpiece is generally a discharge phenomenon between a wire for processing the workpiece and the wire and the workpiece. And a stage drive device for processing the workpiece into a desired shape, so that the workpiece is immersed in a processing fluid such as water or oil to generate a discharge phenomenon. The shape of the workpiece is processed by moving it.
 この種のワイヤ放電加工機では、加工時に被加工物の形状を測定し、計測された被加工物の寸法をフィードバックして被加工物に追加工を行い最終的な形状に追い込む事が行われている。従来、被加工物の形状測定には接触式のプローブが使用され、複数の加工断面にプローブを当てて加工断面間の寸法を測定することが行われていた。しかしながら、このような形状測定を行うためには、一旦、加工液を取り除き、被加工物をワイヤ放電加工機から取り外す必要があり、最終的な形状に追い込むために時間を要するという問題があった。そこで、このような問題を解決するために、例えば特許文献1から特許文献3に示すような非接触式センサが開発されている。 This type of wire electric discharge machine measures the shape of the workpiece during machining, feeds back the measured workpiece dimensions, performs additional machining on the workpiece, and drives the final shape. ing. Conventionally, a contact-type probe is used for measuring the shape of a workpiece, and the dimensions between the processed cross sections are measured by applying the probe to a plurality of processed cross sections. However, in order to perform such a shape measurement, it is necessary to remove the working liquid once and remove the workpiece from the wire electric discharge machine, and there is a problem that it takes time to drive to the final shape. . In order to solve such problems, for example, non-contact sensors as shown in Patent Document 1 to Patent Document 3 have been developed.
 例えば特許文献1には、基板等のワークにおけるエッジを検出する方法が開示されている。この方法では、ワークの上部にカメラを配置し、一方、その例えば90度真横からワークに照明を照射し、得られた撮像画像について、画像処理にて1次元プロファイルの平均化したピーク強度からワークのエッジを検出するように構成されている。 For example, Patent Document 1 discloses a method for detecting an edge in a workpiece such as a substrate. In this method, a camera is placed on the upper part of the work, while the work is irradiated with light from, for example, 90 degrees, and the obtained captured image is obtained from the average peak intensity of the one-dimensional profile by image processing. It is configured to detect the edge of.
 また、例えば特許文献2には、回路パターンの縁辺を判別する方法が開示されている。この方法では、回路パターンの上部にカメラを配置して、照明装置で回路パターンを照明し、カメラで得られる画像データの濃度レベルの平均値の差あるいは平均値のばらつきの差を求め、さらにこれらに閾値を設定して、閾値以上のデータ部分をエッジとして認識するように構成されている。 Further, for example, Patent Document 2 discloses a method for discriminating the edge of a circuit pattern. In this method, a camera is placed above the circuit pattern, the circuit pattern is illuminated by an illuminating device, and the difference in the average value of the density levels of image data obtained by the camera or the difference in the average value is obtained. A threshold value is set for the data portion, and a data portion equal to or higher than the threshold value is recognized as an edge.
 また、例えば特許文献3には、アライメントマークの位置を特定する方法が開示されている。この方法では、アライメントマークから反射される光量信号を取得し、この光量信号を微分した微分波形のピーク値や微分波形のある範囲の積分値や、微分値の高低差からアライメントマークの位置を特定するように構成されている。 Further, for example, Patent Document 3 discloses a method for specifying the position of an alignment mark. In this method, the light quantity signal reflected from the alignment mark is acquired, and the position of the alignment mark is determined from the peak value of the differential waveform obtained by differentiating this light quantity signal, the integral value within a range of the differential waveform, and the height difference of the differential value. Is configured to do.
特開2000-304510号公報JP 2000-304510 A 特開2000-311245号公報JP 2000-31245 A 特開2005-175041号公報JP 2005-175041 A
 しかしながら、上述した特許文献1~3における共通の課題として以下の点が挙げられる。
 即ち、ワイヤ放電加工機で加工された被測定物には、加工痕等の影響によって、被測定物を上面から見た図である図22において、紙面に直交する面でY方向に延在する断面6bに周期が数μm、高さが数μm程度の微小な凹凸が発生する。さらに、被測定物の表面6cも完全な鏡面ではなく、数μm程度の微小な凹凸が存在する。よって、直径数μm程度の小さなビームスポットにて、被測定物のエッジをスキャンした場合、上記凹凸に起因する、被計測物からの反射光量の違いから、図22のY方向の計測位置によって測定特性が大きく変化してしまうという問題点がある。
However, the following points can be cited as common problems in Patent Documents 1 to 3 described above.
That is, the object to be measured processed by the wire electric discharge machine extends in the Y direction on a plane orthogonal to the paper surface in FIG. Minute irregularities having a period of several μm and a height of several μm are generated in the cross section 6b. Furthermore, the surface 6c of the object to be measured is not a perfect mirror surface and has minute irregularities of about several μm. Therefore, when the edge of the object to be measured is scanned with a small beam spot having a diameter of about several μm, the measurement is performed according to the measurement position in the Y direction in FIG. There is a problem that the characteristics change greatly.
 さらに、例えば、切削加工等による場合には、検出したいエッジに対して「バリ」と呼ばれる出っ張りが発生してしまうが、ワイヤ放電加工機による加工では「バリ」は発生しない。しかしながら、ワイヤ放電加工機に特有の現象としてワイヤ放電加工機で加工した被測定物6では、上面から見た図23に示すように、検出したいエッジが本来のエッジライン01よりも、その一部が被測定物6の内側に欠けたエッジライン02となる場合がある、という問題点がある。 Furthermore, for example, in the case of cutting or the like, a protrusion called “burr” occurs on the edge to be detected, but “burr” does not occur in the processing by the wire electric discharge machine. However, in the measured object 6 processed by the wire electric discharge machine as a phenomenon peculiar to the wire electric discharge machine, the edge to be detected is a part of the original edge line 01 as shown in FIG. May be the edge line 02 lacking inside the DUT 6.
 特許文献1における従来のエッジ検出装置では、なだらかなエッジや、なだらかなエッジの表面が荒れている場合であっても、輝度分布の広がりは変化するものの、そのピーク位置は安定して検出することが可能である。しかしながら、図23に示すようなワイヤ放電加工機に特有の現象であるエッジ欠け部分に対しては、特許文献1のエッジ検出装置では、エッジ欠け部分についても、エッジとして検出してしまう。よって、被測定物の側面や表面の微小な凹凸の影響を低減させるために図23のラインA、B、Cを平均化した場合には、エッジ欠け部分の影響を受けて真のエッジをライン02と誤検出してしまう、という問題点があった。さらに、ワイヤ放電加工機で加工した被測定物6の断面において、図24aに示すように被計測物6のエッジが垂直の場合と、図24bに示すようにエッジがなだらかな場合とが混在している。このような場合に、特許文献1のエッジ検出装置では、被測定物に対して真横から照明しているため、図24aのようなエッジが垂直の場合には、エッジを検出することができず、また、図24bのようななだらかに変化するエッジに対しては、エッジO2を検出してしまい、本来のエッジO1とは異なるエッジを検出してしまう、という問題点があった。 In the conventional edge detection apparatus in Patent Document 1, even if the edge of a smooth edge or a smooth edge is rough, the spread of the luminance distribution changes, but the peak position is detected stably. Is possible. However, with respect to the edge missing portion which is a phenomenon peculiar to the wire electric discharge machine as shown in FIG. 23, the edge detecting device of Patent Document 1 also detects the edge missing portion as an edge. Therefore, when the lines A, B, and C in FIG. 23 are averaged in order to reduce the influence of minute irregularities on the side surface and surface of the object to be measured, the true edge is lined under the influence of the edge missing portion. There was a problem of erroneous detection as 02. Furthermore, in the cross section of the measurement object 6 processed by the wire electric discharge machine, the case where the edge of the measurement object 6 is vertical as shown in FIG. 24a and the case where the edge is gentle as shown in FIG. 24b are mixed. ing. In such a case, since the edge detection apparatus of Patent Document 1 illuminates the object to be measured from the side, the edge cannot be detected when the edge as shown in FIG. 24a is vertical. Further, for the gently changing edge as shown in FIG. 24b, the edge O2 is detected, and an edge different from the original edge O1 is detected.
 また、特許文献2の従来のエッジ検出装置では、上述した構成によって光量変化の小さなノイズ成分を除外することが可能となる。また、特許文献3の従来のエッジ検出装置でも、上述の構成から、アライメントマークの位置検出が可能となる。
 しかしながら、特許文献2及び特許文献3の装置においてもやはりエッジラインの誤認識という問題がある。
Moreover, in the conventional edge detection apparatus of patent document 2, it becomes possible to exclude a noise component with a small light quantity change by the structure mentioned above. Further, even the conventional edge detection device of Patent Document 3 can detect the position of the alignment mark from the above-described configuration.
However, the devices of Patent Document 2 and Patent Document 3 still have a problem of erroneous recognition of edge lines.
 本発明は、上述のような問題点を解決するためになされたもので、従来に比べて正確に被計測物のエッジを検出することが可能である、エッジ検出装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an edge detection device capable of detecting the edge of a measurement object more accurately than in the past. To do.
 上記目的を達成するため、本発明は以下のように構成する。
 即ち、本発明の一様態におけるエッジ検出装置は、被測定物に対して光を出射するための光源と、前記測定物からの反射光を受光するための受光素子と、前記被測定物の位置を互いに直交するX軸とY軸方向に移動させるための第1駆動装置と、前記受光素子からの出力と前記第1駆動装置移動量からエッジを演算するためのエッジ演算部と、前記エッジ演算部で得られた演算結果から異常なエッジを検出するためのエッジ判定部と、前記エッジ判定部での結果から最終的なエッジを演算するためのエッジ検出部とを備えたエッジ検出装置において、前記第1駆動装置をX軸方向移動させたときに前記被測定物から得られる反射光量特性をIとして、Y軸方向に沿ってM箇所の点を計測した時に得られる前記反射光量特性{I,・・・Im,・・・,I}を以下の式で平均化することを特徴とする。
 I={I+I+ … +Im+ … +I}/M
In order to achieve the above object, the present invention is configured as follows.
That is, an edge detection apparatus according to one aspect of the present invention includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, and a position of the measurement object. A first driving device for moving the lens in the X-axis and Y-axis directions orthogonal to each other, an edge calculating unit for calculating an edge from the output from the light receiving element and the first driving device movement amount, and the edge calculation In an edge detection device comprising an edge determination unit for detecting an abnormal edge from the calculation result obtained by the unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit, The reflected light quantity characteristic {I obtained when measuring the M points along the Y axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X-axis direction {I 1, ··· I , ..., characterized by averaging by the following equation I M}.
I = {I 1 + I 2 +... + Im +... + I M } / M
 また、前記エッジ検出装置は以下のように構成してもよい。
 即ち、本発明の一様態におけるエッジ検出装置は、光を出射するための光源と、被測定物に対して光を出射するための光源と、前記被測定物からの反射光を受光するための受光素子と、前記被測定物の位置を互いに直交するX軸とY軸方向に移動させるための第1駆動装置と、前記受光素子からの出力と前記第1駆動装置移動量からエッジを演算するためのエッジ演算部と、前記エッジ演算部で得られた演算結果から異常なエッジを検出するためのエッジ判定部と、前記エッジ判定部での結果から最終的なエッジを演算するためのエッジ検出部とを備えたエッジ検出装置において、前記第1駆動装置をX軸方向移動させたときに前記被測定物から得られる反射光量特性をIとして、Y軸方向に沿ってM箇所の点を計測したときに得られる前記反射光量特性{I,・・・Im,・・・,I}から、各点でのエッジ位置を反射光量特性のピーク強度から決定される強度閾値と前記反射光量特性との交点からエッジ位置{x,・・・xm,・・・,x}を演算し、各エッジ位置{x,・・・xm,・・・,x}の中から前記被測定物の最外縁部のエッジを検出し、得られた最外縁部のエッジと各エッジ位置との差分値の絶対値が、前記エッジ判定部に予め設定された差分閾値よりも大きな反射光量特性を除外することを特徴とする。
The edge detection apparatus may be configured as follows.
In other words, an edge detection apparatus according to an embodiment of the present invention includes a light source for emitting light, a light source for emitting light to an object to be measured, and light reflected from the object to be measured. An edge is calculated from a light receiving element, a first driving device for moving the position of the object to be measured in the X-axis and Y-axis directions orthogonal to each other, an output from the light receiving element, and a moving amount of the first driving device. An edge calculation unit, an edge determination unit for detecting an abnormal edge from the calculation result obtained by the edge calculation unit, and an edge detection for calculating a final edge from the result of the edge determination unit In an edge detection device comprising a unit, M points are measured along the Y-axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X-axis direction. Obtained when Shako amount characteristic {I 1, ··· Im, ··· , I M} edge from the intersection of the, and the reflected light amount characteristics determined by the intensity threshold an edge position from the peak intensity of the reflected light characteristic at each point position {x 1, ··· xm, ··· , x M} calculated and outermost edges of the object to be measured from each edge positions {x 1, ··· xm, ··· , x M} Detecting the edge of the portion, and excluding the reflected light quantity characteristic in which the absolute value of the difference value between the obtained edge of the outermost edge portion and each edge position is larger than the difference threshold value preset in the edge determination portion Features.
 また、前記エッジ検出装置は以下のように構成してもよい。
 即ち、本発明の一様態におけるエッジ検出装置は、被測定物に対して光を出射するための光源と、前記被測定物からの反射光を受光するための受光素子と、前記被測定物の位置を互いに直交するX軸とY軸方向に移動させるための第1駆動装置と、前記受光素子からの出力と前記第1駆動装置移動量からエッジを演算するためのエッジ演算部と、前記エッジ演算部で得られた演算結果から異常なエッジを検出するためのエッジ判定部と、前記エッジ判定部での結果から最終的なエッジを演算するためのエッジ検出部とを備えたエッジ検出装置において、前記第1駆動装置をX軸方向移動させたときに前記被測定物から得られる反射光量特性をIとして、Y軸方向に沿ってM箇所の点を計測したときに得られる前記反射光量特性{I,・・・Im,・・・,I}から、微分演算を実行することで得られる微分波形{D,・・・Dm,・・・,D}の微分ピーク値の位置から各点でのエッジ位置{x,・・・xm,・・・,x}を演算し、各エッジ位置{x,・・・xm,・・・,x}の中から前記被測定物の最外縁部のエッジを検出し、得られた最外縁部のエッジと各エッジ位置との差分値の絶対値が、前記エッジ判定部に予め設定された差分閾値よりも大きな反射光量特性を除外することを特徴とする。
The edge detection apparatus may be configured as follows.
That is, an edge detection apparatus according to an embodiment of the present invention includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, A first driving device for moving the position in the X-axis and Y-axis directions orthogonal to each other; an edge calculating unit for calculating an edge from the output from the light receiving element and the amount of movement of the first driving device; and the edge In an edge detection device comprising an edge determination unit for detecting an abnormal edge from a calculation result obtained by the calculation unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit The reflected light quantity characteristic obtained when measuring the M points along the Y axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X axis direction. {I 1, ·· Im, · · ·, from I M}, differential waveform {D 1 obtained by performing a differentiation operation, ··· Dm, ···, edges at each point from the position of the derivative peak value of D M} position {x 1, ··· xm, ··· , x M} calculated and outermost edges of the object to be measured from each edge positions {x 1, ··· xm, ··· , x M} Detecting the edge of the portion, and excluding the reflected light quantity characteristic in which the absolute value of the difference value between the obtained edge of the outermost edge portion and each edge position is larger than the difference threshold value preset in the edge determination portion Features.
 また、前記エッジ検出装置は以下のように構成してもよい。
 即ち、本発明の一様態におけるエッジ検出装置は、被計測物に対して光を出射するための光源と、前記被計測物からの反射光を受光するための受光素子と、前記被測定物の位置を互いに直交するX軸とY軸方向に移動させるための第1駆動装置と、前記受光素子からの出力と前記第1駆動装置移動量からエッジを演算するためのエッジ演算部と、前記エッジ演算部で得られた演算結果から異常なエッジを検出するためのエッジ判定部と、前記エッジ判定部での結果から最終的なエッジを演算するためのエッジ検出部とを備えたエッジ検出装置において、前記第1駆動装置をX軸方向移動させたときに前記被測定物から得られる反射光量特性をIとして、Y軸方向に沿ってM箇所の点を計測したときに得られる前記反射光量特性{I,・・・Im,・・・,I}の微分波形{D,・・・Dm,・・・,D}から各点での微分ピーク値{A,・・・Am,・・・,A}を算出し、前記エッジ判定部に予め設定された微分閾値よりも小さな反射光量特性を除外することを特徴とする。
The edge detection apparatus may be configured as follows.
That is, an edge detection apparatus according to an embodiment of the present invention includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, A first driving device for moving the position in the X-axis and Y-axis directions orthogonal to each other; an edge calculating unit for calculating an edge from the output from the light receiving element and the amount of movement of the first driving device; and the edge In an edge detection device comprising an edge determination unit for detecting an abnormal edge from a calculation result obtained by the calculation unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit The reflected light quantity characteristic obtained when measuring the M points along the Y axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X axis direction. {I 1, ·· Im, · · ·, differential waveform {D 1 of I M}, ··· Dm, ··· , derivative peak value at each point from the D M} {A 1, ··· Am, ···, A M } is calculated, and a reflected light amount characteristic smaller than a differential threshold preset in the edge determination unit is excluded.
 また、前記エッジ検出装置は以下のように構成してもよい。
 即ち、本発明の一様態におけるエッジ検出装置は、被計測物に対して光を出射するための光源と、前記被計測物からの反射光を受光するための受光素子と、前記被測定物の位置を互いに直交するX軸とY軸方向に移動させるための第1駆動装置と、前記受光素子からの出力と前記第1駆動装置移動量からエッジを演算するためのエッジ演算部と、前記エッジ演算部で得られた演算結果から異常なエッジを検出するためのエッジ判定部と、前記エッジ判定部での結果から最終的なエッジを演算するためのエッジ検出部とを備えたエッジ検出装置において、前記第1駆動装置をX軸方向移動させたときに前記被測定物から得られる反射光量特性をIとして、Y軸方向に沿ってM箇所の点を計測したときに得られる前記反射光量特性{I,・・・Im,・・・,I}から各点でのピーク強度{P,・・・Pm,・・・,P}を算出し、前記エッジ判定部に予め設定された強度閾値よりも小さな反射光量特性を除外することを特徴とする。
The edge detection apparatus may be configured as follows.
That is, an edge detection apparatus according to an embodiment of the present invention includes a light source for emitting light to a measurement object, a light receiving element for receiving reflected light from the measurement object, A first driving device for moving the position in the X-axis and Y-axis directions orthogonal to each other; an edge calculating unit for calculating an edge from the output from the light receiving element and the amount of movement of the first driving device; and the edge In an edge detection device comprising an edge determination unit for detecting an abnormal edge from a calculation result obtained by the calculation unit, and an edge detection unit for calculating a final edge from the result of the edge determination unit The reflected light quantity characteristic obtained when measuring the M points along the Y axis direction, where I is the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X axis direction. {I 1, ·· Small im, · · ·, the peak intensity {P 1 at each point from the I M}, ··· Pm, ··· , calculates the P M}, than a preset strength threshold value to the edge determination unit The reflected light quantity characteristic is excluded.
 本発明の一様態におけるエッジ検出装置によれば、前記第1駆動装置をX軸方向移動させたときに前記被測定物から得られる反射光量特性をIとして、Y軸方向に沿ってM箇所の点を計測したときに得られる反射光量特性{I,・・・Im,・・・,I}を平均化するように構成されているので、計測箇所によって前記被計測物のエッジ形状や表面状態がわずかに変化している場合に生じる計測誤差を低減させることが可能となる。 According to the edge detection device of one aspect of the present invention, the reflected light quantity characteristic obtained from the object to be measured when the first driving device is moved in the X-axis direction is I, and M locations along the Y-axis direction. Since the reflected light quantity characteristics {I 1 ,... Im,..., I M } obtained when the points are measured are averaged, the edge shape of the object to be measured is determined depending on the measurement location. It is possible to reduce measurement errors that occur when the surface state is slightly changed.
 また、本発明の一様態におけるエッジ検出装置によれば、反射光量特性{I,・・・Im,・・・,I}から各点でのエッジ位置{x,・・・xm,・・・,x}を算出し、そのエッジ位置の中から前記被計測物の最外縁部のエッジ位置算出し、最外縁部のエッジ位置と各点でのエッジ位置との差分値の絶対値が、予め設定された閾値以上の場合に異常なエッジと見なして除外するように構成されているので、前記被計測物のエッジの一部が欠けているような場合にデータを除外することが可能となるため、より正確に本来のエッジ位置を検出することが可能となる。 Further, according to the edge detecting device in an aspect of the present invention, the reflected light quantity characteristic {I 1, ··· Im, ··· , I M} edge positions at each point from {x 1, · · · xm, .., X M } is calculated, the edge position of the outermost edge portion of the object to be measured is calculated from the edge positions, and the absolute value of the difference between the edge position of the outermost edge portion and the edge position at each point is calculated. When the value is equal to or greater than a preset threshold value, it is configured to be regarded as an abnormal edge and excluded, so that data is excluded when a part of the edge of the object to be measured is missing. Therefore, the original edge position can be detected more accurately.
 また、本発明の一様態におけるエッジ検出装置によれば、反射光量特性{I,・・・Im,・・・,I}を微分した微分波形{D,・・・Dm,・・・,D}から、微分ピーク値{A,・・・Am,・・・,A}を演算し、各点での微分ピーク値が、予め設定された微分閾値以下の場合に異常なエッジと見なしてデータを除外するように構成されているので、被計測物のエッジがなだらかな場合でもより正確に本来のエッジ位置を検出することが可能となる。 Further, according to the edge detecting device in an aspect of the present invention, the reflected light quantity characteristic {I 1, ··· Im, ··· , I M} differential waveform {D 1 obtained by differentiating the, · · · Dm, · · ..., D M }, the differential peak value {A 1 ,... Am,..., A M } is calculated, and abnormal when the differential peak value at each point is less than or equal to a preset differential threshold value. Since the configuration is such that data is excluded by considering it as a sharp edge, the original edge position can be detected more accurately even when the edge of the object to be measured is gentle.
 また、本発明の一様態におけるエッジ検出装置によれば、反射光量特性{I,・・・Im,・・・,I}からピーク強度{P,・・・Pm,・・・,P}を算出し、各点でのピーク強度が、予め設定された強度閾値以下の場合に異常なエッジと見なしてデータを除外するように構成されているので、SN比の悪いデータを除外することが可能となり、より高精度に本来のエッジ位置を検出することが可能となる。 Further, according to the edge detecting device in an aspect of the present invention, the reflected light quantity characteristic {I 1, ··· Im, ··· , I M} from the peak intensity {P 1, ··· Pm, ··· , P M } is calculated, and when the peak intensity at each point is equal to or less than a preset intensity threshold, the data is excluded by considering it as an abnormal edge. It is possible to detect the original edge position with higher accuracy.
本発明の実施の形態1におけるエッジ検出装置の構成を示す斜視図である。It is a perspective view which shows the structure of the edge detection apparatus in Embodiment 1 of this invention. 図1に示すエッジ検出装置に対する被計測物と集光スポットの関係図である。FIG. 2 is a relationship diagram between an object to be measured and a focused spot with respect to the edge detection apparatus shown in FIG. 1. 図1に示すエッジ検出装置に対する被計測物と集光スポットの関係図である。FIG. 2 is a relationship diagram between an object to be measured and a focused spot with respect to the edge detection apparatus shown in FIG. 1. 図1に示すエッジ検出装置に対する被計測物と集光スポットの関係図である。FIG. 2 is a relationship diagram between an object to be measured and a focused spot with respect to the edge detection apparatus shown in FIG. 1. 図1に示すエッジ検出装置において得られる反射光量特性を示す図である。It is a figure which shows the reflected light quantity characteristic obtained in the edge detection apparatus shown in FIG. 図1に示すエッジ検出装置において得られる反射光量特性を平均化した反射光量特性を示す図である。It is a figure which shows the reflected light quantity characteristic which averaged the reflected light quantity characteristic obtained in the edge detection apparatus shown in FIG. 図1に示すエッジ検出装置において被測定物上の複数箇所のラインをスキャンしたときの反射光量特性を示す図である。It is a figure which shows the reflected light quantity characteristic when the line of several places on a to-be-measured object is scanned in the edge detection apparatus shown in FIG. 図1に示すエッジ検出装置において得られた反射光量特性を平均化したものを示す図である。It is a figure which shows what averaged the reflected light quantity characteristic obtained in the edge detection apparatus shown in FIG. 図1に示すエッジ検出装置におけるエッジ演算動作を説明するフローチャートである。It is a flowchart explaining the edge calculation operation | movement in the edge detection apparatus shown in FIG. 図1に示すエッジ検出装置において、被測定物が第1駆動装置の移動方向に対して傾斜している状態を示す図である。In the edge detection apparatus shown in FIG. 1, it is a figure which shows the state to which a to-be-measured object inclines with respect to the moving direction of a 1st drive device. 図8に示す状態において得られるエッジ位置を説明するための図である。It is a figure for demonstrating the edge position obtained in the state shown in FIG. 本発明の実施の形態2におけるエッジ検出装置の構成を示す斜視図である。It is a perspective view which shows the structure of the edge detection apparatus in Embodiment 2 of this invention. 図10に示すエッジ検出装置において得られる微分波形を示す図である。It is a figure which shows the differential waveform obtained in the edge detection apparatus shown in FIG. 図10に示すエッジ検出装置におけるエッジ検出動作を説明するフローチャートである。It is a flowchart explaining the edge detection operation | movement in the edge detection apparatus shown in FIG. 本発明の実施の形態3におけるエッジ検出装置の構成を示す斜視図である。It is a perspective view which shows the structure of the edge detection apparatus in Embodiment 3 of this invention. 図13に示すエッジ検出装置において得られる反射光量特性を示す図である。It is a figure which shows the reflected light quantity characteristic obtained in the edge detection apparatus shown in FIG. 図13に示すエッジ検出装置において得られる微分波形を示す図である。It is a figure which shows the differential waveform obtained in the edge detection apparatus shown in FIG. 図13に示すエッジ検出装置におけるエッジ検出動作を説明するフローチャートである。It is a flowchart explaining the edge detection operation | movement in the edge detection apparatus shown in FIG. 本発明の実施の形態4におけるエッジ検出装置の構成を示す斜視図である。It is a perspective view which shows the structure of the edge detection apparatus in Embodiment 4 of this invention. 被測定物の表面における凹凸を模式的に示す図である。It is a figure which shows typically the unevenness | corrugation in the surface of a to-be-measured object. 被測定物の表面における凹凸を模式的に示す図である。It is a figure which shows typically the unevenness | corrugation in the surface of a to-be-measured object. 被測定物の表面における凹凸をスキャンしたときに得られる反射光量特性を示す図である。It is a figure which shows the reflected light quantity characteristic obtained when the unevenness | corrugation in the surface of a to-be-measured object is scanned. 図17に示すエッジ検出装置におけるエッジ検出動作を説明するフローチャートである。It is a flowchart explaining the edge detection operation | movement in the edge detection apparatus shown in FIG. 被測定物の平面図である。It is a top view of a to-be-measured object. 被測定物のエッジ部分に欠けがある状態を示す平面図である。It is a top view which shows the state which has a chip | tip in the edge part of a to-be-measured object. 被測定物のエッジ部分を示す側面図である。It is a side view which shows the edge part of a to-be-measured object. 被測定物のエッジ部分を示す側面図である。It is a side view which shows the edge part of a to-be-measured object. 本発明の実施の形態5におけるエッジ検出装置の構成を示す図である。It is a figure which shows the structure of the edge detection apparatus in Embodiment 5 of this invention. 図25に示す投光系の構成を示す図である。It is a figure which shows the structure of the light projection system shown in FIG. 図25に示す受光系の構成を示す図である。It is a figure which shows the structure of the light-receiving system shown in FIG. エッジ検出時における4分割フォトダイオード上の集光スポットの形状変化を示す図である。It is a figure which shows the shape change of the condensing spot on a 4-part dividing photodiode at the time of edge detection. エッジ検出時における4分割フォトダイオード上の集光スポットの形状変化を示す図である。It is a figure which shows the shape change of the condensing spot on a 4-part dividing photodiode at the time of edge detection. エッジ検出時における4分割フォトダイオード上の集光スポットの形状変化を示す図である。It is a figure which shows the shape change of the condensing spot on a 4-part dividing photodiode at the time of edge detection. 鏡面である測定物におけるエッジ部分の断面の模式図である。It is a schematic diagram of the cross section of the edge part in the measurement object which is a mirror surface. 図29aに示すエッジ部分の4分割フォトダイオードでの受光信号を示す図である。It is a figure which shows the light received signal in the 4-part dividing photodiode of the edge part shown to FIG. 29a. 図29bに示す受光信号の差信号を示す図である。It is a figure which shows the difference signal of the light received signal shown in FIG. 29b. 図29aに示すエッジ部分へ照射する光ビームをデフォーカスした場合の4分割フォトダイオードでの受光信号を示す図である。It is a figure which shows the light reception signal in a 4-part dividing photodiode at the time of defocusing the light beam irradiated to the edge part shown to FIG. 29a. 図29dに示す受光信号の差信号を示す図である。It is a figure which shows the difference signal of the light received signal shown in FIG. 29d. 投光系のフォーカス調整における投光系の集光ビームと被測定物との位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of the condensing beam of a light projection system, and a to-be-measured object in the focus adjustment of a light projection system. 図30に示す各位置関係における受光信号の振幅強度の変化を説明するためのグラフである。FIG. 31 is a graph for explaining a change in amplitude intensity of a received light signal in each positional relationship shown in FIG. 30. FIG. 粗面である金属の被測定物におけるエッジ部分の断面の模式図である。It is a schematic diagram of the cross section of the edge part in the to-be-measured object of the metal which is a rough surface. 図32aに示すエッジ部分の4分割フォトダイオードでの受光信号を示す図である。It is a figure which shows the light reception signal in the 4-part dividing photodiode of the edge part shown to FIG. 図32bに示す受光信号の差信号を示す図である。It is a figure which shows the difference signal of the received light signal shown to FIG. 図32aに示すエッジ部分へ照射する光ビームをデフォーカスした場合の4分割フォトダイオードでの受光信号を示す図である。It is a figure which shows the light reception signal in a 4-part dividing photodiode at the time of defocusing the light beam irradiated to the edge part shown to FIG. 図32dに示す受光信号の差信号を示す図である。It is a figure which shows the difference signal of the light received signal shown to FIG. 本発明の実施の形態6におけるエッジ検出装置の構成を示す図であり、投光系のフォーカス調整時における構成図である。It is a figure which shows the structure of the edge detection apparatus in Embodiment 6 of this invention, and is a block diagram at the time of the focus adjustment of a light projection system. 本発明の実施の形態6におけるエッジ検出装置の構成を示す図であり、エッジ検出時における構成図である。It is a figure which shows the structure of the edge detection apparatus in Embodiment 6 of this invention, and is a block diagram at the time of edge detection. 実施の形態6におけるエッジ検出装置にて得られる、エッジ部分の4分割フォトダイオードでの受光信号を示す図である。It is a figure which shows the light reception signal in the 4-part dividing photodiode of the edge part obtained with the edge detection apparatus in Embodiment 6. FIG. 図34aに示す受光信号の差信号を示す図である。It is a figure which shows the difference signal of the received light signal shown to FIG. 34a. 4分割フォトダイオードにおけるフォーカス状態での集光スポットを示す図である。It is a figure which shows the condensing spot in the focus state in a 4-part dividing photodiode. 4分割フォトダイオードにおけるデフォーカス状態での集光スポットを示す図である。It is a figure which shows the condensing spot in the defocusing state in a 4-part dividing photodiode. 本発明の実施の形態7におけるエッジ検出装置の構成を示す図である。It is a figure which shows the structure of the edge detection apparatus in Embodiment 7 of this invention. 本発明の実施の形態8におけるエッジ検出装置の構成を示す図である。It is a figure which shows the structure of the edge detection apparatus in Embodiment 8 of this invention. 本発明の実施の形態9におけるエッジ検出装置の構成を示す図である。It is a figure which shows the structure of the edge detection apparatus in Embodiment 9 of this invention. 図38に示すエッジ検出装置において大きなスポットサイズの光ビームでスキャンする状態を示す図である。It is a figure which shows the state scanned with the light beam of a big spot size in the edge detection apparatus shown in FIG. 図39に示すデフォーカスされた光ビームにて光検出器から得られる信号強度を示す図である。It is a figure which shows the signal strength obtained from a photodetector with the defocused light beam shown in FIG. 小さいスポットサイズの光ビームにてエッジ位置を検出した場合のエッジ位置の誤差量を示すグラフである。It is a graph which shows the error amount of an edge position at the time of detecting an edge position with the light beam of a small spot size. 大きいスポットサイズの光ビームにてエッジ位置を検出した場合のエッジ位置の誤差量を示すグラフである。It is a graph which shows the error amount of an edge position at the time of detecting an edge position with the light beam of a big spot size. 小さなスポットサイズの光ビームを複数のY方向の位置でスキャンする模式図である。It is a schematic diagram which scans the light beam of a small spot size in the position of several Y direction. 小さなスポットサイズの光ビームを複数のY方向の位置でスキャンする模式図である。It is a schematic diagram which scans the light beam of a small spot size in the position of several Y direction.
 本発明の実施形態であるエッジ検出装置について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。 An edge detection apparatus according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals.
 実施の形態1.
 本実施の形態1によるエッジ検出装置101の構成を図1に示す。
 エッジ検出装置101は、特に、荒れた散乱面つまり粗面を有する金属製の被測定物6の粗面におけるエッジを、粗面に照射したレーザ光の反射光を用いて検出する装置である。ここでエッジとは、金属面において高度差を有する段の境界をいう。また、エッジ検出装置101は、放電加工や切削加工、研削加工等において被加工物の形状を計測するために使用可能である。尚、エッジ検出装置101の被測定物6は、粗面を有する金属製の測定物に限定されるものではなく、エッジ検出装置101は、勿論、荒れた散乱面ではない鏡面状の被測定物に対しても適用可能である。
Embodiment 1 FIG.
The configuration of the edge detection apparatus 101 according to the first embodiment is shown in FIG.
The edge detection apparatus 101 is an apparatus that detects an edge of a rough surface of a metal object 6 having a rough scattering surface, that is, a rough surface, by using reflected light of a laser beam irradiated on the rough surface. Here, the edge means a boundary between steps having a height difference on the metal surface. The edge detection apparatus 101 can be used for measuring the shape of a workpiece in electric discharge machining, cutting, grinding, or the like. The object to be measured 6 of the edge detection apparatus 101 is not limited to a metal measurement object having a rough surface. Of course, the edge detection apparatus 101 is a mirror-like object to be measured that is not a rough scattering surface. It is applicable to.
 このようなエッジ検出装置101は、その基本的構成として、投光系110と、受光系120と、第1駆動装置130と、エッジ演算部140と、エッジ判定部150と、エッジ検出部160とを備える。ここで、エッジ演算部140、エッジ判定部150、及びエッジ検出部160は、「エッジ位置取得部」の一構成例に相当する。
 以下に、エッジ検出装置101の構成部分について順次説明する。
Such an edge detection device 101 has, as its basic configuration, a light projecting system 110, a light receiving system 120, a first drive device 130, an edge calculation unit 140, an edge determination unit 150, and an edge detection unit 160. Is provided. Here, the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 correspond to a configuration example of an “edge position acquisition unit”.
Below, the component part of the edge detection apparatus 101 is demonstrated sequentially.
 投光系110は、被測定物6に対して光を集光して照射する構成部分であり、光源1と、第1レンズ3と、対物レンズ5と、ビームスプリッター4とを有する。光源1は、例えば半導体レーザ等が使用される。第1レンズ3及び対物レンズ5は、光源1からの光を集光するためのレンズであり、鏡筒2内に設置され、光源1からの光を被測定物6上に集光させる。ビームスプリッター4は、光源1からの光線を対物レンズ5へ透過させ、かつ被測定物6からの反射光を受光系120へ反射させる。 The light projecting system 110 is a component that collects and irradiates light on the object 6 to be measured, and includes a light source 1, a first lens 3, an objective lens 5, and a beam splitter 4. For example, a semiconductor laser or the like is used as the light source 1. The first lens 3 and the objective lens 5 are lenses for condensing the light from the light source 1, and are installed in the lens barrel 2 to condense the light from the light source 1 onto the object to be measured 6. The beam splitter 4 transmits the light beam from the light source 1 to the objective lens 5 and reflects the reflected light from the object to be measured 6 to the light receiving system 120.
 尚、図1では、光源1、第1レンズ3、対物レンズ5、及びビームスプリッター4は、直線状の光路を形成しているが、光路形状はこれに限定するものではない。 In FIG. 1, the light source 1, the first lens 3, the objective lens 5, and the beam splitter 4 form a linear optical path, but the optical path shape is not limited to this.
 受光系120は、投光系110によって被測定物6上に集光された光の、被測定物6からの反射光を受光するための光検出部分であり、第2レンズ7と、光検出器8とを備える。第2レンズ7は、ビームスプリッター4からの反射光を光検出器8上に集光させるためのレンズである。光検出器8は、例えばフォトダイオード等が使用される。
 また、受光系120も鏡筒2内に設置されており、上述のような機能を行うものであれば光学部品の配置やレンズの枚数は、図示の構成に特に限定されない。
The light receiving system 120 is a light detection part for receiving the reflected light from the measured object 6 of the light condensed on the measured object 6 by the light projecting system 110. And 8. The second lens 7 is a lens for condensing the reflected light from the beam splitter 4 on the photodetector 8. As the photodetector 8, for example, a photodiode or the like is used.
In addition, the light receiving system 120 is also installed in the lens barrel 2, and the arrangement of the optical components and the number of lenses are not particularly limited to the configuration shown in the drawing as long as they perform the functions described above.
 第1駆動装置130は、被測定物6を搭載し、平面上で互いに直交するX軸方向及びY軸方向へ移動可能なXYステージである。本実施の形態では、固定された投光系110及び受光系120に対して、第1駆動装置130によって被測定物6を移動させるとしたが、投光系110及び受光系120と、被測定物6とが相対的に移動可能な構成であれば良い。また、本実施の形態では、平面内で直交するXY方向のみに移動可能としたが、Z-ステージを付加して、XY平面に直交する方向へも移動可能な構成を採っても良い。 The first driving device 130 is an XY stage that mounts the DUT 6 and can move in the X-axis direction and the Y-axis direction orthogonal to each other on a plane. In the present embodiment, the object to be measured 6 is moved by the first driving device 130 with respect to the fixed light projecting system 110 and light receiving system 120. However, the light projecting system 110, the light receiving system 120, and the object to be measured are moved. Any structure that can move relative to the object 6 may be used. Further, in the present embodiment, it is possible to move only in the XY directions orthogonal to each other in the plane, but a configuration in which a Z-stage is added to move in the direction orthogonal to the XY plane may be adopted.
 エッジ演算部140は、光検出器8及び第1駆動装置130と電気的に接続され、光検出器8からの光量信号及び第1駆動装置140からの位置情報によって、被測定物6におけるエッジの位置を求める手段である。また、エッジ判定部150は、エッジ演算部140と電気的に接続され、エッジ演算部140から得られたエッジ位置から異常なエッジ位置を判別するための判定手段である。また、エッジ検出部160は、エッジ判定部150と電気的に接続され、エッジ演算部140及びエッジ判定部150からの情報から最終的なエッジ位置を検出するためのエッジ検出手段である。 The edge calculation unit 140 is electrically connected to the photodetector 8 and the first driving device 130, and the edge calculation unit 140 detects the edge of the DUT 6 based on the light amount signal from the photodetector 8 and the position information from the first driving device 140. It is a means for obtaining the position. The edge determination unit 150 is a determination unit that is electrically connected to the edge calculation unit 140 and determines an abnormal edge position from the edge position obtained from the edge calculation unit 140. The edge detection unit 160 is an edge detection unit that is electrically connected to the edge determination unit 150 and detects a final edge position from information from the edge calculation unit 140 and the edge determination unit 150.
 このようなエッジ演算部140、エッジ判定部150、及びエッジ検出部160は、実際にはコンピュータを用いて実現され、エッジ演算部140、エッジ判定部150、及びエッジ検出部160は、それぞれの機能に対応するソフトウェアと、これを実行するためのCPU(中央演算処理装置)やメモリ等のハードウェアから構成されている。尚、上記コンピュータは、実際には当該エッジ検出装置101に組み込まれたマイクロコンピュータに相当するのが好ましいが、スタンドアロン型のパーソナルコンピュータを用いることもできる。
 また、エッジ演算部、エッジ判定部、及びエッジ検出部におけるこのような構成は、後述する各実施の形態においても同じである。
The edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 are actually realized using a computer, and the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 have their respective functions. And software such as a CPU (Central Processing Unit) and a memory for executing the software. In practice, the computer preferably corresponds to a microcomputer incorporated in the edge detection apparatus 101, but a stand-alone personal computer can also be used.
Such configurations in the edge calculation unit, the edge determination unit, and the edge detection unit are the same in the embodiments described later.
 以上のような構成を有する本実施の形態1によるエッジ検出装置101において、エッジ演算部140によって被測定物6のエッジ位置を求める動作について、以下に説明する。
 ここでは、被測定物6のエッジは、図24aに示すようにエッジ6bが鉛直方向(Z方向)に沿って延在する場合を考え、さらに、被測定物6の表面6cは、微小な凹凸が存在する粗面であるとし、被測定物6の上面図を示した図22のラインAでのエッジ検出について説明する。
In the edge detection apparatus 101 according to the first embodiment having the above-described configuration, an operation for obtaining the edge position of the DUT 6 by the edge calculation unit 140 will be described below.
Here, as for the edge of the object 6 to be measured, it is considered that the edge 6b extends along the vertical direction (Z direction) as shown in FIG. Edge detection on line A in FIG. 22 showing a top view of the DUT 6 will be described.
 投光系110の光源1から出射された光は、第1レンズ3、ビームスプリッター4、及び対物レンズ5を通過して、集光スポット10(図2a)を形成する。図2aに示すように、集光スポット10が形成された位置に被測定物6が存在しない場合には、反射光が存在しないため、光検出器8は何も検出しない。ここで被測定物6を搭載した第1駆動装置130をX方向へ移動させ、図2bに示すように集光スポット10を形成した位置に被測定物6が差し掛かると、集光スポット10のうち、被測定物6上に照射された部分11のみが受光系120へ反射される。被測定物6で反射された光は、対物レンズ5を通過し、ビームスプリッター4で反射されて第2レンズ7にて光検出器8上へ集光される。よって、光検出器8にて、反射光量を検出することができる。このとき光検出器8で検出される反射光量は、被測定物6上に照射された部分11の大きさが反映される。 The light emitted from the light source 1 of the light projecting system 110 passes through the first lens 3, the beam splitter 4, and the objective lens 5 to form a condensing spot 10 (FIG. 2a). As shown in FIG. 2a, when the object to be measured 6 does not exist at the position where the condensing spot 10 is formed, the reflected light does not exist, so the photodetector 8 detects nothing. When the first driving device 130 on which the device under test 6 is mounted is moved in the X direction and the device under test 6 reaches the position where the light condensing spot 10 is formed as shown in FIG. Of these, only the portion 11 irradiated on the DUT 6 is reflected to the light receiving system 120. The light reflected by the DUT 6 passes through the objective lens 5, is reflected by the beam splitter 4, and is collected on the photodetector 8 by the second lens 7. Therefore, the amount of reflected light can be detected by the photodetector 8. At this time, the amount of reflected light detected by the photodetector 8 reflects the size of the portion 11 irradiated on the object 6 to be measured.
 さらに第1駆動装置130をX方向に移動させることで、図2cに示すように、集光スポット10は、完全に被測定物6上を照射し、光検出器8で検出される反射光量は、図2bの場合よりも大きくなる。ここで、被測定物6の表面6cが鏡面の場合には、図2cの状態からさらに第1駆動装置130をX方向に移動させても、光検出器8での受光量は、安定した出力となる。一方、ワイヤ放電加工機で加工する被測定物6の表面6c(測定面)は、完全な鏡面ではなく粗面となっているため、図2cの状態からさらに第1駆動装置130をX方向に移動させると、光検出器8での受光量はゆらぎを生じる。よって結局、エッジ演算部140では、光検出器8から得られる受光量と、第1駆動装置130から得られるステージの移動量情報とによって、図3に示す反射光量特性12のような波形を取得する。 Further, by moving the first driving device 130 in the X direction, as shown in FIG. 2 c, the condensed spot 10 completely irradiates the object to be measured 6, and the reflected light amount detected by the photodetector 8 is , Larger than in the case of FIG. Here, when the surface 6c of the DUT 6 is a mirror surface, even if the first driving device 130 is further moved in the X direction from the state of FIG. It becomes. On the other hand, the surface 6c (measurement surface) of the workpiece 6 to be processed by the wire electric discharge machine is not a perfect mirror surface but a rough surface, so that the first driving device 130 is further moved in the X direction from the state of FIG. When moved, the amount of light received by the photodetector 8 fluctuates. Therefore, in the end, the edge calculation unit 140 acquires a waveform like the reflected light amount characteristic 12 shown in FIG. 3 based on the received light amount obtained from the photodetector 8 and the amount of movement of the stage obtained from the first driving device 130. To do.
 さらにエッジ演算部140は、反射光量特性12からピーク強度13を検出し、ピーク強度13から求めた強度閾値14と反射光量特性12との交点15をエッジ位置OAとして求める。ここで強度閾値14は、例えばピーク強度13の50%の強度が使用されるが、これに限定されずに任意に設定可能である。 Further, the edge calculation unit 140 detects the peak intensity 13 from the reflected light quantity characteristic 12, and obtains the intersection 15 between the intensity threshold 14 obtained from the peak intensity 13 and the reflected light quantity characteristic 12 as the edge position OA. Here, the intensity threshold 14 is, for example, 50% of the peak intensity 13, but is not limited to this and can be arbitrarily set.
 以上の説明では、上述のように、ワイヤ放電加工機で加工する被測定物6の表面6cは粗面であり、また、上述の説明では被測定物6のエッジ6bは垂直としたが、実際には、加工される被測定物6のエッジ6bは、わずかになだらかな形状となっている。このため、例えば図22のX方向へラインAに沿って被測定物6の表面6cを集光スポット10でスキャンした場合、エッジ演算部140で得られる反射光量特性12は、図4において実線で示すようになる。さらに図22のラインBやラインCのように、Y方向における異なる位置で計測した場合の反射光量特性12は、被測定物6の表面6cや側面のわずかな違いに起因して、図4に破線で示すようにピーク強度やピーク位置には、実線で示すものと多少の差異が発生する。このため、ピーク強度13から得られる強度閾値14と反射光量特性12との交点15の位置には、誤差が発生し、よって検出されるエッジ位置にも誤差が発生してしまう。 In the above description, as described above, the surface 6c of the object 6 to be processed by the wire electric discharge machine is a rough surface, and in the above description, the edge 6b of the object 6 is vertical. The edge 6b of the measured object 6 to be processed has a slightly gentle shape. For this reason, for example, when the surface 6c of the DUT 6 is scanned with the focused spot 10 along the line A in the X direction in FIG. 22, the reflected light quantity characteristic 12 obtained by the edge calculator 140 is a solid line in FIG. As shown. Further, the reflected light quantity characteristics 12 when measured at different positions in the Y direction as in the lines B and C in FIG. 22 are shown in FIG. 4 due to slight differences in the surface 6c and side surfaces of the object 6 to be measured. As shown by the broken line, the peak intensity and the peak position are slightly different from those shown by the solid line. For this reason, an error occurs at the position of the intersection 15 between the intensity threshold 14 obtained from the peak intensity 13 and the reflected light amount characteristic 12, and an error also occurs at the detected edge position.
 そこで、Y方向におけるM箇所のラインについて、集光スポット10でX方向へスキャンしたときには、M箇所の各ラインでは、例えば図5に示すように、反射光量特性12a,反射光量特性12b,反射光量特性12c、…が得られる。
 ここで、m番目の反射光量特性12をIm(x)とすると、下記式(1)で表すように、反射光量特性12を平均化したI(x)を求めて、被測定物6のエッジ6bのエッジ位置を演算することで、エッジ位置の計測誤差を低減することが可能となる。
Therefore, when the M spots in the Y direction are scanned in the X direction by the condensing spot 10, the reflected light quantity characteristics 12a, the reflected light quantity characteristics 12b, the reflected light quantity are reflected in each of the M places, for example, as shown in FIG. Characteristics 12c,... Are obtained.
Here, when the mth reflected light quantity characteristic 12 is Im (x), I (x) obtained by averaging the reflected light quantity characteristics 12 is obtained as represented by the following formula (1), and the edge of the object 6 to be measured is obtained. By calculating the edge position of 6b, the measurement error of the edge position can be reduced.
 I(x)={I(x)+ … +Im(x)+ … +I(x)}/M     (1) I (x) = {I 1 (x) +... + Im (x) +... + I M (x)} / M (1)
 また、被測定物6の表面6cを集光スポット10でX方向へスキャンする各ラインで得られるそれぞれの反射光量特性12に対応した、被測定物6の各エッジ位置xmを計測し、下記の式(2)で表すように各エッジ位置xmを平均化して最終的なエッジ位置xを求めてもよい。 In addition, each edge position xm of the measurement object 6 corresponding to each reflected light quantity characteristic 12 obtained in each line scanning the surface 6c of the measurement object 6 in the X direction with the focused spot 10 is measured, and the following As shown in Expression (2), each edge position xm may be averaged to obtain the final edge position x.
 x={x+ … +xm+ … +x}/M         (2) x = {x 1 + ... + xm + ... + x M } / M (2)
 次に、被測定物6を上面から見た図23に示すように、被測定物6のエッジ6bの一部が欠けている場合を考える。
 既に説明したように、ワイヤ放電加工機で加工した被測定物6は、図23に示すように被測定物6のエッジ6bの一部分が内側に欠ける場合がある。これはワイヤ放電加工機で加工した被測定物6に特有の現象である。
 ここでは、被測定物6のエッジ6bは、図24aに示すように垂直であり、被測定物6の表面6cは、粗面である場合を考える。この場合、集光スポット10がX方向へスキャンするラインA~ラインC(図23)に対して、エッジ演算部140では、図5に示すような、反射光量特性12aから反射光量特性12cが得られ、エッジ位置OA、OB、OCがそれぞれ検出される。図5に示すように、ラインAとラインCとにおけるエッジ位置OAとエッジ位置OCとは、図23のエッジO1に一致するが、ラインBのエッジ位置OBは、エッジ6bの欠けの影響によって、エッジ位置OA及びOCに比べて後方へずれ、その反射光量特性12bも、反射光量特性12a,12cに比べて後方へずれた特性となる。
Next, consider a case where a part of the edge 6b of the device under test 6 is missing as shown in FIG.
As already described, the measured object 6 processed by the wire electric discharge machine may have a part of the edge 6b of the measured object 6 chipped inward as shown in FIG. This is a phenomenon peculiar to the measured object 6 processed by the wire electric discharge machine.
Here, it is assumed that the edge 6b of the device under test 6 is vertical as shown in FIG. 24a, and the surface 6c of the device under test 6 is a rough surface. In this case, for the lines A to C (FIG. 23) scanned by the condensed spot 10 in the X direction, the edge calculation unit 140 obtains the reflected light amount characteristic 12c from the reflected light amount characteristic 12a as shown in FIG. The edge positions OA, OB, and OC are detected. As shown in FIG. 5, the edge position OA and the edge position OC in the line A and the line C coincide with the edge O1 in FIG. 23, but the edge position OB in the line B is affected by the lack of the edge 6b. Compared to the edge positions OA and OC, the reflected light amount characteristic 12b is also shifted backward compared to the reflected light amount characteristics 12a and 12c.
 ここで、仮にラインA~ラインCをスキャンすることによって、エッジ演算部140で得られる反射光量特性12a~12cを、上述の(1)式に従って平均化したとする。平均化した反射光量特性12dは、図6に示すようになる。上述した、ラインA~ラインCのそれぞれの反射光量特性12a~12cからエッジ位置を検出する場合と同様にして、反射光量特性12dからピーク強度13を検出し、このピーク強度13から強度閾値14を求め、強度閾値14と反射光量特性12dとの交点からエッジ位置O2が算出される。 Here, it is assumed that the reflected light quantity characteristics 12a to 12c obtained by the edge calculation unit 140 are averaged according to the above-described equation (1) by scanning the lines A to C. The averaged reflected light amount characteristic 12d is as shown in FIG. The peak intensity 13 is detected from the reflected light quantity characteristic 12d, and the intensity threshold value 14 is determined from the peak intensity 13 in the same manner as the edge position is detected from the reflected light quantity characteristics 12a to 12c of the lines A to C described above. The edge position O2 is calculated from the intersection of the intensity threshold 14 and the reflected light quantity characteristic 12d.
 しかしながら、実際に検出したい被測定物6のエッジ6bは、O2とは異なるエッジO1であり、図5のように反射光量特性12a~12cを単純にそのまま平均化すると、図23に示すように被測定物6のエッジ6bの一部に欠けが存在する場合には、このエッジ欠けの影響によって、被測定物6の真のエッジ6bの位置を誤検出してしまう。 However, the edge 6b of the object 6 to be actually detected is an edge O1 different from O2, and if the reflected light quantity characteristics 12a to 12c are simply averaged as shown in FIG. When a part of the edge 6b of the measurement object 6 has a chip, the position of the true edge 6b of the object to be measured 6 is erroneously detected due to the influence of the edge chip.
 即ち、例えばラインBのような特性を除外する必要がある。例えば、切削加工等においては、検出したいエッジに対して「バリ」と呼ばれる出っ張りが発生してしまうが、ワイヤ放電加工機で加工した被測定物6では、「バリ」の発生は無い。しかしながら、検出したいエッジ6bに対して、被測定物6の内側へ向けてエッジ6bが欠けることがあるため、内側に大きく欠けた異常なエッジのみを検出して除外する必要がある。 That is, it is necessary to exclude characteristics such as line B, for example. For example, in cutting or the like, a protrusion called “burr” occurs on the edge to be detected, but no “burr” occurs in the measured object 6 processed by the wire electric discharge machine. However, since the edge 6b may be chipped toward the inside of the DUT 6 with respect to the edge 6b to be detected, it is necessary to detect and exclude only abnormal edges that are largely chipped inside.
 以下には、本実施の形態1によるエッジ検出装置101のエッジ判定部150およびエッジ検出部160によって、上述した内側に大きく欠けた異常なエッジのみを検出して除外し、本来のエッジを検出する動作について、図7のフローチャートを参照して説明する。 In the following, the edge determination unit 150 and the edge detection unit 160 of the edge detection apparatus 101 according to the first embodiment detect and exclude only the abnormal edges that are largely missing on the inside, and detect the original edges. The operation will be described with reference to the flowchart of FIG.
 集光スポット10による被測定物6のスキャン方向をX方向として、X方向と直交するY方向に異なるM箇所のラインを測定することを考える。
 まず、ステップ300では、エッジ演算部140にて、各スキャンラインにおける反射光量特性12{I1,・・・Im,・・・,IM}から各ラインでの、被測定物6のエッジ位置{x1,・・・xm,・・・,xM}を算出する。
 次のステップ310では、エッジ演算部140によって、ステップ300で算出したエッジ位置{x1,・・・xm,・・・,xM}の中からエッジ位置の最小値xmin=Min(x1・・・,xm,・・・,xM)を検出する。
 次にステップ320に進み、エッジ演算部140によって、各ラインのエッジ位置{x1,・・・xm,・・・,xM}と、ステップ310で算出したエッジ位置の最小値xminとの差分bm=xm-xminを計算し、エッジ判定部150へ出力する。
Assume that M lines different in the Y direction perpendicular to the X direction are measured with the scanning direction of the DUT 6 by the focused spot 10 as the X direction.
First, in step 300, the edge calculation unit 140 causes the edge position {x1 of the object 6 to be measured in each line from the reflected light amount characteristic 12 {I1,... Im,. ,..., Xm,.
In the next step 310, the edge calculation unit 140 uses the edge position {x1,... Xm,..., XM} calculated in step 300 by the edge position minimum value xmin = Min (x1. xm,..., xM) are detected.
Next, the process proceeds to step 320, where the edge calculation unit 140 uses the edge position {x1,... Xm,..., XM} of each line and the difference bm = the minimum edge position value xmin calculated in step 310. xm−xmin is calculated and output to the edge determination unit 150.
 次のステップ330では、エッジ判定部150にて、エッジ判定部150に予め設定された閾値xthと、ステップ320でエッジ演算部140にて計算された差分値bmとの比較を行い、差分値bmがxthよりも大きい、もしくはxth以上のエッジを全て除外する。そして、除外されていない残った差分値bmに対応する反射光量特性12{・・・Im,・・・}を、エッジ判定部150は、エッジ検出部160へ出力する。 In the next step 330, the edge determination unit 150 compares the threshold value xth preset in the edge determination unit 150 with the difference value bm calculated by the edge calculation unit 140 in step 320, and the difference value bm Exclude all edges that are greater than xth or greater than xth. Then, the edge determination unit 150 outputs the reflected light quantity characteristic 12 {... Im,...} Corresponding to the remaining difference value bm not excluded to the edge detection unit 160.
 次にステップ340へ進み、エッジ検出部160にて、それら残りの反射光量特性12を平均化したI(平均)=average(・・・,Im,・・・)を算出し、ステップ350にて、平均化したI(平均)から最終的なエッジ位置を算出してエッジ演算を終了する。 Next, the process proceeds to step 340, where the edge detection unit 160 calculates I (average) = average (..., Im,...) Obtained by averaging the remaining reflected light quantity characteristics 12. Then, the final edge position is calculated from the averaged I (average), and the edge calculation is completed.
 以上のような構成によって、被測定物6のエッジ形状や表面状態のわずかなゆらぎによる計測誤差を低減させることが可能となる。本実施形態では特に、ワイヤ放電加工機で加工した被測定物6のエッジ6bの一部が被測定物6の内側方向に欠けた場合であっても、そのようなエッジの検出値を除外することが可能となるため、従来に比べてより正確に本来のエッジを検出することが可能となる。 With the configuration as described above, it is possible to reduce measurement errors due to slight fluctuations in the edge shape and surface state of the DUT 6. In the present embodiment, in particular, even when a part of the edge 6b of the object 6 processed by the wire electric discharge machine is missing in the inner direction of the object 6, such edge detection values are excluded. Therefore, it is possible to detect the original edge more accurately than in the prior art.
 本実施の形態では、上述のように、被測定物6の3箇所を測定する例を示したが、2箇所以上であれば、測定点数は特に限定されない。
 また、本実施の形態では、エッジ6bを求める際に反射光量特性12のピーク強度13から得られる強度閾値14を元にエッジ位置を算出する構成を示したが、反射光量の絶対値を強度閾値14に設定してもよい。
In the present embodiment, as described above, an example in which three locations of the DUT 6 are measured has been described, but the number of measurement points is not particularly limited as long as it is two or more locations.
In the present embodiment, the edge position is calculated based on the intensity threshold value 14 obtained from the peak intensity 13 of the reflected light amount characteristic 12 when the edge 6b is obtained. However, the absolute value of the reflected light amount is used as the intensity threshold value. It may be set to 14.
 また、本実施の形態1では、図22に示すように、被測定物6における計測したいエッジ6bが第1駆動装置130におけるY軸と平行である場合の例を示したが、図8に示すように、被測定物6における計測したいエッジ6bが、第1駆動装置130におけるY軸に対して傾斜している場合、つまり、被測定物6が第1駆動装置130のY軸に対して傾いて第1駆動装置130に搭載された場合でも、本実施の形態1は適用可能である。この場合、第1駆動装置130のX方向に集光スポット10で被測定物6をスキャンするとしてY軸方向にM箇所の点を計測すると、Y方向の位置{y1,・・・ym,・・・,yM}と、Y方向の各点で算出されたエッジ位置{x1,・・・xm,・・・,xM}とは、例えば図9に示すようにプロットされる。得られたY方向の位置{y1,・・・ym,・・・,yM}とエッジ位置{x1,・・・xm,・・・,xM}との各点に対して、例えば最小自乗法等によって、図9のような近似直線20を算出することができ、下記の式(3)で表すことができる。ここで、a及びbは、近似直線20の傾きと切片である。 Further, in the first embodiment, as shown in FIG. 22, an example in which the edge 6b to be measured in the DUT 6 is parallel to the Y axis in the first driving device 130 has been shown, but it is shown in FIG. As described above, when the edge 6b to be measured in the device under test 6 is tilted with respect to the Y axis of the first drive device 130, that is, the device under test 6 is tilted with respect to the Y axis of the first drive device 130. Thus, even when mounted on the first drive device 130, the first embodiment can be applied. In this case, if M points are measured in the Y-axis direction assuming that the object to be measured 6 is scanned with the condensing spot 10 in the X direction of the first driving device 130, positions in the Y direction {y1,... Ym,. .., YM} and edge positions {x1,... Xm,..., XM} calculated at each point in the Y direction are plotted as shown in FIG. For the obtained points in the Y direction {y1,... Ym,..., YM} and edge positions {x1,. Thus, the approximate straight line 20 as shown in FIG. 9 can be calculated, and can be expressed by the following equation (3). Here, a and b are the slope and intercept of the approximate line 20.
 X=a×Y+b      (3) X = a × Y + b (3)
 図22に示すように、被測定物6の計測したいエッジ6bが第1駆動装置130におけるY軸と平行である場合には、(1)式や(2)式でY方向のエッジ位置を平均化した値は定数となるが、図8に示すように被測定物6がY軸と傾いて第1駆動装置130に搭載されている場合には、Y方向の特定の位置yiに対するエッジ位置xiは、下記の式(4)で表される。 As shown in FIG. 22, when the edge 6 b to be measured of the DUT 6 is parallel to the Y axis in the first driving device 130, the edge positions in the Y direction are averaged by the expressions (1) and (2). Although the converted value is a constant, as shown in FIG. 8, when the DUT 6 is mounted on the first driving device 130 with the Y axis tilted, the edge position xi with respect to a specific position yi in the Y direction. Is represented by the following formula (4).
 x=a×y+b     (4) x i = a × y i + b (4)
 さらに、被測定物6のエッジ6bの欠けによる異常なデータは、Y方向の位置yiで算出されたエッジ位置をxi’、近似直線20から得られる理想的なエッジ位置をxiとしてエッジ演算部140にて、xi’-xiを計算し、この差分値の絶対値がエッジ判定部150に予め設定した閾値よりも大きな値となった場合に、そのエッジを含む反射光量特性12を除去するようにすれば良い。 Further, the abnormal data due to the lack of the edge 6b of the DUT 6 is obtained by calculating the edge position xi ′ as the edge position calculated at the position yi in the Y direction, and xi as the ideal edge position obtained from the approximate straight line 20. Then, xi′−xi is calculated, and when the absolute value of the difference value is larger than a threshold value preset in the edge determination unit 150, the reflected light quantity characteristic 12 including the edge is removed. Just do it.
 また、上述の実施の形態1では、Y方向位置{y1,・・・ym,・・・,yM}と、エッジ位置{x1,・・・xm,・・・,xM}とが直線の場合の例を示したが、設計上、直線ではなく曲線の場合に対しても本実施の形態は適用可能であり、その曲線の測定データをフィッティングさせてデータ処理を行うことも可能である。 In the first embodiment described above, the Y-direction position {y1,... Ym,..., YM} and the edge position {x1,... Xm,. Although this example is shown, the present embodiment can be applied to the case of a curve instead of a straight line by design, and it is also possible to perform data processing by fitting measurement data of the curve.
 実施の形態2.
 上述の実施の形態1では、反射光量特性12から被測定物6のエッジ6bを検出する方法について説明したが、図10に示す本実施の形態2におけるエッジ検出装置102では、反射光量特性12から算出される微分波形からエッジ位置を検出する方法を採る。
Embodiment 2. FIG.
In the first embodiment described above, the method of detecting the edge 6b of the DUT 6 from the reflected light quantity characteristic 12 has been described. However, in the edge detection apparatus 102 in the second embodiment shown in FIG. A method of detecting the edge position from the calculated differential waveform is adopted.
 実施の形態2におけるエッジ検出装置102の基本的構成は、上述した実施の形態1のエッジ検出装置101の構成と同じであるが、エッジ演算部140、エッジ判定部150、及びエッジ検出部160に代えて、エッジ演算部142、エッジ判定部152、及びエッジ検出部162を備える。これらのエッジ演算部142、エッジ判定部152、及びエッジ検出部162は、以下に説明するように、エッジ演算部140、エッジ判定部150、及びエッジ検出部160とは異なる動作を行う。
 尚、実施の形態2におけるエッジ検出装置102におけるその他の構成部分については、実施の形態1と同様でありここでの説明は省略する。よって以下には、エッジ演算部142、エッジ判定部152、及びエッジ検出部162の動作についてのみ説明を行う。
The basic configuration of the edge detection apparatus 102 in the second embodiment is the same as the configuration of the edge detection apparatus 101 in the first embodiment described above, but the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 are different. Instead, an edge calculation unit 142, an edge determination unit 152, and an edge detection unit 162 are provided. The edge calculation unit 142, the edge determination unit 152, and the edge detection unit 162 perform operations different from those of the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 as described below.
The other components in the edge detection apparatus 102 in the second embodiment are the same as those in the first embodiment, and a description thereof is omitted here. Therefore, only operations of the edge calculation unit 142, the edge determination unit 152, and the edge detection unit 162 will be described below.
 実施の形態2におけるエッジ検出装置102においても、例えば図23に示すように被測定物6のエッジ6bの一部が欠けているような被測定物6を測定した場合、実施の形態1の場合と同様に図5に示した反射光量特性12a~12cが得られる。
 実施の形態2におけるエッジ検出装置102では、エッジ演算部142は、図11に示すように各反射光量特性12a~12cの微分波形16a~16cを演算し、得られた微分波形16a~16cの微分ピーク値のx座標からエッジ位置OA~OCを検出する。
Also in the edge detection apparatus 102 in the second embodiment, for example, in the case of the first embodiment, when the measurement object 6 in which a part of the edge 6b of the measurement object 6 is missing is measured as shown in FIG. Similarly to the above, the reflected light quantity characteristics 12a to 12c shown in FIG. 5 are obtained.
In the edge detection apparatus 102 according to the second embodiment, the edge calculation unit 142 calculates the differential waveforms 16a to 16c of the reflected light quantity characteristics 12a to 12c as shown in FIG. 11, and the differential waveforms 16a to 16c obtained. Edge positions OA to OC are detected from the x coordinate of the peak value.
 しかしながら、微分波形16a~16cを用いる場合でも、実施の形態1の場合と同様に、また、図11に示すように、ラインBのスキャンにおいては、エッジ欠けの影響によってエッジ位置OBは、他のエッジ位置OA及びOCに比べて後方へとずれた特性となる。よって、実施の形態2におけるエッジ検出装置102においても、このような異常なエッジを除外する必要がある。以下には、エッジ判定部152及びエッジ検出部162によって異常なエッジを除外し、本来のエッジを検出する動作について、図12のフローチャートを参照して説明する。 However, even when the differential waveforms 16a to 16c are used, as in the case of the first embodiment, and as shown in FIG. Compared to the edge positions OA and OC, the characteristic is shifted backward. Therefore, it is necessary to exclude such an abnormal edge also in the edge detection apparatus 102 in the second embodiment. Hereinafter, an operation of excluding abnormal edges by the edge determination unit 152 and the edge detection unit 162 and detecting an original edge will be described with reference to the flowchart of FIG.
 ここでは、被測定物6に対する集光スポット10のスキャン方向をX方向とし、X方向と直交するY方向における異なるM箇所のスキャンラインを測定する場合を考える。
 まずステップ400では、エッジ演算部142によって、各スキャンラインにおける反射光量特性12{I1,・・・Im,・・・,IM}から微分波形16{D1,・・・Dm,・・・,DM}が演算される。
 次のステップ410では、エッジ演算部142によって、微分波形16のピーク値から各スキャンラインのエッジ位置{x1,・・・xm,・・・,xM}が算出される。
 次に、ステップ420では、エッジ演算部142によって、ステップ410で算出したエッジ位置{x1,x2,・・・xm}の中からエッジ位置の最小値xmin=Min(x1・・・,xm,・・・,xM)を検出する。
 次にステップ430に進み、エッジ演算部142は、各スキャンラインのエッジ位置{x1,・・・xm,・・・,xM}と、ステップ420で算出したエッジ位置の最小値xminとの差分bm=xm-xminを計算し、エッジ判定部152へ出力する。
Here, a case is considered in which the scan direction of the focused spot 10 with respect to the object to be measured 6 is the X direction, and M different scan lines in the Y direction orthogonal to the X direction are measured.
First, in step 400, the edge calculation unit 142 causes the reflected light quantity characteristics 12 {I1,... Im,..., IM} in each scan line to be differentiated waveforms 16 {D1,. } Is calculated.
In the next step 410, the edge calculation unit 142 calculates the edge positions {x1,... Xm,..., XM} of each scan line from the peak value of the differential waveform 16.
Next, in step 420, the edge computing unit 142 uses the edge position {x1, x2,... Xm} calculated in step 410 to determine the minimum edge position value xmin = Min (x1... Xm,. .., XM) is detected.
Next, in step 430, the edge calculation unit 142 determines the difference bm between the edge position {x1,... Xm,..., XM} of each scan line and the minimum value xmin of the edge position calculated in step 420. = Xm−xmin is calculated and output to the edge determination unit 152.
 次のステップ440では、エッジ判定部152にて、エッジ判定部152に予め設定した閾値xthと、ステップ430で計算した差分値bmとの比較を行い、差分値bmがxthより大きい、もしくはxth以上のエッジを全て除外する。そしてエッジ判定部152は、除外されていない残りのエッジに対応した反射光量特性12{・・・Im,・・・}をエッジ検出部162へ出力する。 In the next step 440, the edge determination unit 152 compares the threshold value xth preset in the edge determination unit 152 with the difference value bm calculated in step 430, and the difference value bm is greater than xth or greater than or equal to xth. Exclude all edges. Then, the edge determination unit 152 outputs the reflected light amount characteristic 12 {... Im,...} Corresponding to the remaining edges that are not excluded to the edge detection unit 162.
 次にステップ450へ進み、エッジ検出部162は、それら残りの反射光量特性12を平均化したI(平均)=average(・・・,Im,・・・)を算出する。
 次のステップ460では、エッジ検出部162は、平均化した反射光量特性12-2を微分演算した微分波形16-2を算出する。
 次のステップ470では、エッジ検出部162にて、微分波形16-2のピーク値から最終的なエッジ位置を算出してエッジ演算を終了する。
Next, proceeding to step 450, the edge detection unit 162 calculates I (average) = average (... Im (...) Obtained by averaging the remaining reflected light quantity characteristics 12.
In the next step 460, the edge detector 162 calculates a differential waveform 16-2 obtained by differentially calculating the averaged reflected light amount characteristic 12-2.
In the next step 470, the edge detection unit 162 calculates the final edge position from the peak value of the differential waveform 16-2 and ends the edge calculation.
 以上のような実施の形態2におけるエッジ検出装置102によっても、実施の形態1におけるエッジ検出装置101と同じ効果を奏することができ、被測定物6のエッジ6bの欠けが発生している場合でも、従来に比べてより正確に本来のエッジ6bを検出することが可能となる。
 また、本実施の形態2においても、Y方向における3箇所のスキャンラインを測定する例を示したが、2箇所以上であれば測定点数は特に限定されない。
The edge detection device 102 in the second embodiment as described above can achieve the same effect as the edge detection device 101 in the first embodiment, and even when the edge 6b of the device under test 6 is missing. Thus, the original edge 6b can be detected more accurately than in the prior art.
In the second embodiment, an example in which three scan lines in the Y direction are measured has been described, but the number of measurement points is not particularly limited as long as it is two or more.
 また、実施の形態1及び実施の形態2では、各スキャンラインのエッジ位置からエッジ位置の最小値を求めるとしたが、第1駆動装置130の移動方向や、反射光量特性12の立上りや立下りによっては最小値ではなく最大値を求めても良い。要するに、被測定物6の最外縁部を検出するようにすれば良い。また、最小値、或いは最大値ではなく、2番目に小さい値といった基準値を決めるようにしても良い。 In the first embodiment and the second embodiment, the minimum value of the edge position is obtained from the edge position of each scan line. However, the moving direction of the first driving device 130 and the rise and fall of the reflected light amount characteristic 12 are described. Depending on the case, the maximum value may be obtained instead of the minimum value. In short, the outermost edge portion of the DUT 6 may be detected. Further, a reference value such as the second smallest value may be determined instead of the minimum value or the maximum value.
 本実施の形態2においても、図8に示すように被測定物6における計測したいエッジ6bが第1駆動装置130のY軸方向に対して傾斜している場合のデータ処理は、実施の形態1で説明したものと同様に実施することができる。 Also in the second embodiment, the data processing in the case where the edge 6b to be measured in the device under test 6 is inclined with respect to the Y-axis direction of the first drive device 130 as shown in FIG. It can be carried out in the same manner as described above.
 実施の形態3.
 実施の形態1及び実施の形態2では、被測定物6のエッジ6bの一部が欠けているような異常なエッジを除外する方法について説明したが、この実施の形態3では、図24bの被測定物6の側面図に示すように、エッジ6bと表面6cとの交差部分における断面形状がなだらかな場合(以下、単に、「エッジがなだらか」と記す)のエッジ除外方法について説明する。
Embodiment 3 FIG.
In the first embodiment and the second embodiment, the method of excluding an abnormal edge in which a part of the edge 6b of the object to be measured 6 is missing has been described. In this third embodiment, the object to be measured shown in FIG. As shown in the side view of the measurement object 6, an edge exclusion method in the case where the cross-sectional shape at the intersection of the edge 6b and the surface 6c is gentle (hereinafter simply referred to as “smooth edge”) will be described.
 図13に実施の形態3のエッジ検出装置203の構成を示す。エッジ検出装置203の基本的構成は、上述した実施の形態1及び実施の形態2のエッジ検出装置101、102の構成と同じであるが、実施の形態2に示すエッジ演算部142、エッジ判定部152、及びエッジ検出部162に代えて、エッジ演算部143、エッジ判定部153、及びエッジ検出部163を備える。エッジ演算部143は、実施の形態2におけるエッジ演算部142と同様に反射光量特性12から微分波形16を生成するが、エッジ判定部153、及びエッジ検出部163は、以下に説明するように、エッジ判定部152、及びエッジ検出部162とは異なる動作を行う。尚、その他の構成部分については、実施の形態1及び実施の形態2と同様のため、ここでの説明は省略し、実施の形態3に備わるエッジ演算部143、エッジ判定部153、及びエッジ検出部163の動作についてのみ説明を行う。 FIG. 13 shows the configuration of the edge detection apparatus 203 according to the third embodiment. The basic configuration of the edge detection device 203 is the same as the configuration of the edge detection devices 101 and 102 of the first and second embodiments described above, but the edge calculation unit 142 and the edge determination unit described in the second embodiment. Instead of 152 and the edge detection unit 162, an edge calculation unit 143, an edge determination unit 153, and an edge detection unit 163 are provided. The edge calculation unit 143 generates the differential waveform 16 from the reflected light quantity characteristic 12 in the same manner as the edge calculation unit 142 in the second embodiment, but the edge determination unit 153 and the edge detection unit 163 are described below. Operations different from those of the edge determination unit 152 and the edge detection unit 162 are performed. Since the other components are the same as those in the first and second embodiments, the description thereof is omitted here, and the edge calculation unit 143, the edge determination unit 153, and the edge detection provided in the third embodiment are omitted. Only the operation of the unit 163 will be described.
 まず、被測定物6のエッジ検出において、エッジがなだらかな場合の問題点について説明する。
 被測定物6のエッジ6bがなだらかな場合、エッジ演算部143にて得られる反射光量特性12は、図14において実線で示すように、出力変化もなだらかに変化し、ピーク強度13から算出されるエッジ位置は、O2が検出される。一方、被測定物6のエッジ6bが垂直な場合には、図14に破線で示すような反射光量特性12となり、ピーク強度13から得られるエッジ位置はO1が検出される。よって、エッジ位置について、エッジがなだらかな場合には、Δx=O2-O1の誤差が生じてしまう。さらに、反射光量特性12に誤差が重畳された場合には、反射光量特性12の立ち上がり部分の傾きが緩やかなほど検出されるエッジ6bの誤差も大きくなってしまう。
 このため、エッジ断面形状の「なまり」つまりエッジがなだらかな場合によるエッジ位置誤差を低減するためには、反射光量特性12の立ち上がり部分がゆるやかなエッジ、つまり、図15に示すように微分波形16において微分閾値17を設け、微分閾値17以下の微分ピーク値が小さなエッジ、を除外する必要がある。
First, problems in the case where the edge is gentle in the edge detection of the DUT 6 will be described.
When the edge 6b of the DUT 6 is gentle, the reflected light quantity characteristic 12 obtained by the edge calculation unit 143 is calculated from the peak intensity 13 with the output change gradually changing as shown by the solid line in FIG. O2 is detected as the edge position. On the other hand, when the edge 6b of the DUT 6 is vertical, the reflected light quantity characteristic 12 is as shown by a broken line in FIG. 14, and the edge position obtained from the peak intensity 13 is detected as O1. Therefore, when the edge is gentle with respect to the edge position, an error of Δx = O2−O1 occurs. Further, when an error is superimposed on the reflected light amount characteristic 12, the detected edge 6b has a larger error as the slope of the rising portion of the reflected light amount characteristic 12 becomes gentler.
For this reason, in order to reduce the edge position error due to the “smoothness” of the edge cross-sectional shape, that is, when the edge is gentle, the rising portion of the reflected light amount characteristic 12 is a gentle edge, that is, the differential waveform 16 as shown in FIG. It is necessary to provide a differential threshold 17 and to exclude edges having a small differential peak value below the differential threshold 17.
 次に、本実施の形態3によるエッジ検出装置203に備わるエッジ演算部143、エッジ判定部153、およびエッジ検出部163によって、なだらかな形状のエッジを異常なエッジとしてこれを除外し、被測定物6における本来のエッジ6bを検出する動作について、図16のフローチャートを参照して以下に説明する。 Next, the edge calculation unit 143, the edge determination unit 153, and the edge detection unit 163 included in the edge detection device 203 according to the third embodiment excludes the gently shaped edge as an abnormal edge, and the object to be measured The operation of detecting the original edge 6b in FIG. 6 will be described below with reference to the flowchart of FIG.
 ここでも、被測定物6に対する集光スポット10のスキャン方向をX方向とし、X方向と直交するY方向における異なるM箇所のスキャンラインを測定する場合を考える。また、エッジ演算部143は、エッジ演算部142と同様に反射光量特性12から微分波形16を生成する。 Here again, let us consider a case where the scanning direction of the focused spot 10 with respect to the object 6 to be measured is the X direction and different M scan lines in the Y direction perpendicular to the X direction are measured. In addition, the edge calculator 143 generates the differential waveform 16 from the reflected light amount characteristic 12 in the same manner as the edge calculator 142.
 まず、図16におけるステップ500では、エッジ演算部143は、各スキャンラインのスキャン動作にて得られる反射光量特性12{I1,・・・Im,・・・,IM}から微分波形16{D1,・・・Dm,・・・,DM}を求め、次のステップ510にて、微分波形16のピーク値{A1,・・・Am,・・・,AM}を算出し、エッジ判定部153へ出力する。 First, in step 500 in FIG. 16, the edge calculation unit 143 determines the differential waveform 16 {D1,1 from the reflected light quantity characteristics 12 {I1, ... Im, ..., IM} obtained by the scanning operation of each scan line. ... Dm,..., DM} are calculated, and the peak value {A1,... Am,. Output.
 次に、ステップ520では、エッジ判定部153は、エッジ判定部153に予め設定された微分閾値Athと、ステップ510で算出した微分波形16のピーク値{A1,・・・Am,・・・,AM}との比較を行い、微分閾値Ath以下の値に対応するエッジを全て除外する。そして、エッジ判定部153は、除外されていない残ったエッジに対応する反射光量特性12{・・・Im,・・・}をエッジ検出部163へ出力する。 Next, in step 520, the edge determination unit 153 determines the differential threshold Ath preset in the edge determination unit 153 and the peak value {A1,... Am,. AM} and excludes all edges corresponding to values below the differentiation threshold Ath. Then, the edge determination unit 153 outputs the reflected light quantity characteristic 12 {... Im,...} Corresponding to the remaining edges that are not excluded to the edge detection unit 163.
 次のステップ530では、エッジ検出部163は、それら残ったエッジに対応する反射光量特性12を平均化したI(平均)=average(・・・,Im,・・・)を算出し、次のステップ540において、平均化した反射光量特性12-3を微分演算した微分波形16-3を算出する。 In the next step 530, the edge detection unit 163 calculates I (average) = average (... Im (...) Obtained by averaging the reflected light quantity characteristics 12 corresponding to the remaining edges, In step 540, a differential waveform 16-3 obtained by differentiating the averaged reflected light amount characteristic 12-3 is calculated.
 そして次のステップ550において、エッジ検出部163は、微分波形16-3のピーク値から最終的なエッジ位置を算出して、エッジ演算を終了する。 In the next step 550, the edge detection unit 163 calculates the final edge position from the peak value of the differential waveform 16-3, and ends the edge calculation.
 以上説明したように、本実施の形態3におけるエッジ検出装置203の構成によれば、実施の形態1におけるエッジ検出装置101と同じ効果を奏することができるとともに、さらに、被測定物6におけるエッジ6bがなだらかな場合であっても、このようななだらかなエッジを除外することが可能となるため、従来に比べてより高精度に被測定物6の本来のエッジ6bを検出することが可能となる。 As described above, according to the configuration of the edge detection device 203 in the third embodiment, the same effect as that of the edge detection device 101 in the first embodiment can be obtained, and the edge 6b in the object to be measured 6 can be obtained. Even in a gentle case, since such a gentle edge can be excluded, the original edge 6b of the DUT 6 can be detected with higher accuracy than in the prior art. .
 本実施の形態3では、最終的なエッジ位置を求めるのに、微分波形16-3のピーク値からエッジ算出を行っているが、反射光量特性12のピーク強度13から求める強度閾値14によってエッジ位置を算出するようにしても良い。 In the third embodiment, the edge is calculated from the peak value of the differential waveform 16-3 in order to obtain the final edge position. However, the edge position is determined by the intensity threshold 14 obtained from the peak intensity 13 of the reflected light amount characteristic 12. May be calculated.
 実施の形態4.
 上述した実施の形態1~3では、エッジ6bの欠けやエッジ断面がなだらかな場合のような異常エッジを除外する方法について説明したが、ここでは、エッジ検出精度の低い反射光量特性12を除外する方法について説明する。
Embodiment 4 FIG.
In the first to third embodiments described above, the method of excluding abnormal edges such as when the edge 6b is missing or the edge cross section is gentle has been described. Here, however, the reflected light quantity characteristic 12 with low edge detection accuracy is excluded. A method will be described.
 図17に実施の形態4のエッジ検出装置104の構成を示す。エッジ検出装置104の基本的構成は、上述した実施の形態1~3のエッジ検出装置101~203の構成と同じであるが、実施の形態1に示すエッジ演算部140、エッジ判定部150、及びエッジ検出部160に代えて、エッジ演算部144、エッジ判定部154、及びエッジ検出部164を備える。エッジ演算部144、エッジ判定部154、及びエッジ検出部164は、以下に説明するように、エッジ演算部140、エッジ判定部150、及びエッジ検出部160とは異なる動作を行う。尚、その他の構成部分については、実施の形態1等と同様のため、ここでの説明は省略し、実施の形態4に備わるエッジ演算部144、エッジ判定部154、及びエッジ検出部164の動作についてのみ説明を行う。 FIG. 17 shows the configuration of the edge detection device 104 of the fourth embodiment. The basic configuration of the edge detection device 104 is the same as the configuration of the edge detection devices 101 to 203 in the first to third embodiments described above, but the edge calculation unit 140, the edge determination unit 150, and Instead of the edge detection unit 160, an edge calculation unit 144, an edge determination unit 154, and an edge detection unit 164 are provided. The edge calculation unit 144, the edge determination unit 154, and the edge detection unit 164 perform different operations from the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160, as will be described below. The other components are the same as those in the first embodiment and the like are not described here, and the operations of the edge calculation unit 144, the edge determination unit 154, and the edge detection unit 164 provided in the fourth embodiment are omitted. Only will be described.
 まず、ワイヤ放電加工機で加工される被測定物6に特有の問題点について説明する。
 実施の形態1~3でも、被測定物6の表面6cが粗面の例を示してきたが、ワイヤ放電加工機で加工する被測定物6は、表面6cは粗面で、且つ、被測定物6を上面から観察すると、図18のようにスジ状の凹凸18が観察される場合がある。これは例えば、図18のA-A’断面である図19に示すように、凸部18a或いは凹部18bが存在することに起因する。被測定物6の凸部18aや凹部18bの斜面付近の反射光量特性12を計測した場合、図19に示す被測定物6の表面6cの平坦部6dでは、受光系120側へ戻る反射光が多いが、凸部18aや凹部18bでは,光が散乱されて受光系120へ戻る光が少なくなる。このため、図20に示すように、Y軸方向の測定位置によってピーク強度13が大きい反射光量特性12-4と,ピーク強度13の小さい反射光量特性12-5とが混在することになる。ピーク強度13の小さい反射光量特性12-5は、ノイズ成分に対する受光信号の比であるSN比が悪くなるため、エッジ位置の検出精度が低くなってしまう。
 そこで、反射光量特性12のピーク強度13をモニターして、ピーク強度13にピーク強度閾値19を設け、ピーク強度閾値19よりもピーク強度13が小さな反射光量特性12を除外する必要がある。
First, problems peculiar to the workpiece 6 processed by the wire electric discharge machine will be described.
In Embodiments 1 to 3, the surface 6c of the object 6 to be measured has been shown as a rough surface. However, the object 6 to be processed by the wire electric discharge machine has a rough surface 6c and the object to be measured. When the object 6 is observed from the upper surface, streaky irregularities 18 may be observed as shown in FIG. This is caused, for example, by the presence of the convex portion 18a or the concave portion 18b as shown in FIG. 19 which is a cross section taken along the line AA ′ of FIG. When the reflected light amount characteristic 12 in the vicinity of the slope of the convex portion 18a and the concave portion 18b of the device under test 6 is measured, the reflected light returning to the light receiving system 120 side is received at the flat portion 6d of the surface 6c of the device under test 6 shown in FIG. In many cases, the light is scattered at the convex portion 18a and the concave portion 18b, and the light returning to the light receiving system 120 is reduced. For this reason, as shown in FIG. 20, the reflected light quantity characteristic 12-4 having a large peak intensity 13 and the reflected light quantity characteristic 12-5 having a small peak intensity 13 coexist depending on the measurement position in the Y-axis direction. In the reflected light quantity characteristic 12-5 having a small peak intensity 13, the SN ratio, which is the ratio of the received light signal to the noise component, is deteriorated, so that the edge position detection accuracy is lowered.
Therefore, it is necessary to monitor the peak intensity 13 of the reflected light quantity characteristic 12, provide a peak intensity threshold 19 for the peak intensity 13, and exclude the reflected light quantity characteristic 12 having a peak intensity 13 smaller than the peak intensity threshold 19.
 本実施の形態4に備わるエッジ演算部144、エッジ判定部154、及びエッジ検出部164は、上述した、エッジ位置の検出精度が低くなるエッジを除外し、本来のエッジ6bを検出する動作を行う。以下には、この動作について、図21のフローチャートを参照して説明する。 The edge calculation unit 144, the edge determination unit 154, and the edge detection unit 164 included in the fourth embodiment perform an operation of detecting the original edge 6b by excluding the edge whose edge position detection accuracy is low as described above. . Below, this operation | movement is demonstrated with reference to the flowchart of FIG.
 ここでも、被測定物6に対する集光スポット10のスキャン方向をX方向とし、X方向と直交するY方向における異なるM箇所のスキャンラインを測定する場合を考える。
 まず、図21におけるステップ600では、エッジ演算部144は、各スキャンラインのスキャン動作にて光検出器8から反射光量特性12{I1,・・・Im,・・・,IM}を取得し、次のステップ610にて、反射光量特性12のピーク強度13{P1,・・・Pm,・・・,PM}を求め、エッジ判定部154へ出力する。
Here again, a case is considered where the scan direction of the focused spot 10 with respect to the object to be measured 6 is the X direction, and M different scan lines in the Y direction orthogonal to the X direction are measured.
First, in step 600 in FIG. 21, the edge calculation unit 144 acquires the reflected light amount characteristics 12 {I1,... Im,..., IM} from the photodetector 8 by the scanning operation of each scan line. In the next step 610, the peak intensity 13 {P1,... Pm,..., PM} of the reflected light quantity characteristic 12 is obtained and output to the edge determination unit 154.
 次のステップ620では、エッジ判定部154は、エッジ判定部154に予め設定したピーク強度閾値19Pthと、ステップ610で求めた反射光量特性12のピーク強度13{P1,・・・Pm,・・・,PM}との比較を行う。この比較動作にてエッジ判定部154は、ピーク強度閾値19Pth以下のピーク強度を有する反射光量特性12を全て除外し、残りの反射光量特性12{・・・Im,・・・}をエッジ検出部164へ出力する。 In the next step 620, the edge determination unit 154 includes the peak intensity threshold value 19Pth preset in the edge determination unit 154 and the peak intensity 13 {P1,... Pm,. , PM}. In this comparison operation, the edge determination unit 154 excludes all the reflected light amount characteristics 12 having a peak intensity equal to or less than the peak intensity threshold 19Pth, and uses the remaining reflected light amount characteristics 12 {... Im,. To 164.
 次のステップ630では、エッジ検出部164は、残りの反射光量特性12を平均化したI(平均)=average(・・・,Im,・・・)を算出する。 In the next step 630, the edge detection unit 164 calculates I (average) = average (..., Im,...) Obtained by averaging the remaining reflected light quantity characteristics 12.
 次のステップ640では、エッジ検出部164は、平均化した反射光量特性12のピーク強度13から得られる強度閾値14を元に最終的なエッジ位置を求めて、エッジ演算を終了する。 In the next step 640, the edge detection unit 164 obtains a final edge position based on the intensity threshold 14 obtained from the peak intensity 13 of the averaged reflected light quantity characteristic 12, and ends the edge calculation.
 以上説明したように、本実施の形態4におけるエッジ検出装置104の構成によれば、実施の形態1におけるエッジ検出装置101と同じ効果を奏することができるとともに、さらにノイズ耐性の低い、ピーク強度13の小さな反射光量特性12を除外することが可能となるため、従来に比べてより高精度に本来のエッジ6bを検出することが可能となる。 As described above, according to the configuration of the edge detection device 104 in the fourth embodiment, the same effect as that of the edge detection device 101 in the first embodiment can be obtained, and the peak intensity 13 is further low in noise resistance. Therefore, the original edge 6b can be detected with higher accuracy than in the prior art.
 また、上述のように本実施形態では、最終のエッジ位置を算出するあたり、平均化した反射光量特性12のピーク強度13から得られる強度閾値14を元にエッジ位置を求めているが、反射光量特性12の微分演算を実行し、微分波形16のピーク値からエッジ位置を算出するようにしても良い。 Further, as described above, in the present embodiment, when calculating the final edge position, the edge position is obtained based on the intensity threshold 14 obtained from the peak intensity 13 of the averaged reflected light quantity characteristic 12. The edge position may be calculated from the peak value of the differentiated waveform 16 by performing a differentiation operation of the characteristic 12.
 尚、上述の実施の形態1~4では、空気中での測定例を示したが、油中や水中の測定であっても適用可能である。
 また、実施の形態1~4では、受光系120に備わる光検出器8について、その受光素子に一つのフォトダイオードを用いる例を示したが、2分割、或いは4分割のフォトダイオードを用いてエッジ位置を検出するような構成であっても良い。
 また、実施の形態1~4では、第1駆動装置130は、X方向のみに移動させているが、Y方向に移動させる場合にも当然適用可能である。
 また、実施の形態1~4で示した方法は、それぞれ単独で実行する場合でも有効であるが、適宜組み合わせて使用することにより一層効果的である。
In the first to fourth embodiments described above, examples of measurement in air have been shown, but measurement in oil or water is also applicable.
In the first to fourth embodiments, an example in which one photodiode is used for the light receiving element of the photodetector 8 provided in the light receiving system 120 has been described. However, the edge is formed by using two or four divided photodiodes. It may be configured to detect the position.
In the first to fourth embodiments, the first driving device 130 is moved only in the X direction. However, the first driving device 130 is naturally applicable to the case where the first driving device 130 is moved in the Y direction.
In addition, the methods shown in the first to fourth embodiments are effective even when executed independently, but are more effective when used in appropriate combinations.
 実施の形態5.
 上述した実施の形態1~4におけるエッジ検出装置101~104では、投光系110から被測定物6に対して照射される集光スポット10は、被測定物6に対して予め合焦された変化しない構成を前提としている。これに対して、以下に説明する実施の形態5から実施の形態8のエッジ検出装置では、投光系110から被測定物6に対するレーザ光の合焦機能を備える。
 尚、以下に説明する実施の形態5から実施の形態8のエッジ検出装置の基本的構成は、上述した実施の形態1~4におけるエッジ検出装置101~104の構成に同じである。よって、同じ構成部分については同じ符号を付すこととする。
Embodiment 5. FIG.
In the edge detection devices 101 to 104 according to the first to fourth embodiments described above, the focused spot 10 irradiated from the light projecting system 110 to the measured object 6 is focused on the measured object 6 in advance. It assumes a structure that does not change. On the other hand, the edge detection apparatus according to the fifth to eighth embodiments described below includes a laser beam focusing function from the light projecting system 110 to the object 6 to be measured.
The basic configuration of the edge detection devices according to the fifth to eighth embodiments described below is the same as the configuration of the edge detection devices 101 to 104 according to the first to fourth embodiments described above. Therefore, the same reference numerals are assigned to the same components.
 図25には、本発明の実施の形態5におけるエッジ検出装置201の概略構成が示されている。エッジ検出装置201は、実施の形態1~4にて説明したエッジ検出装置101~104と同様に、特に、荒れた散乱面つまり粗面を有する金属製の被測定物6の粗面におけるエッジを、粗面に照射したレーザ光の反射光を用いて検出する装置であり、また、放電加工や切削加工、研削加工等において被加工物の形状を計測するために使用可能である。尚、エッジ検出装置201の被測定物6は、粗面を有する金属製の測定物に限定されるものではなく、エッジ検出装置201は、勿論、荒れた散乱面ではない鏡面状の被測定物に対しても適用可能である。 FIG. 25 shows a schematic configuration of the edge detection apparatus 201 according to the fifth embodiment of the present invention. As in the edge detection devices 101 to 104 described in the first to fourth embodiments, the edge detection device 201 particularly detects edges on a rough surface of a metal object 6 having a rough scattering surface, that is, a rough surface. It is a device that detects using the reflected light of laser light irradiated on a rough surface, and can be used for measuring the shape of a workpiece in electric discharge machining, cutting, grinding, or the like. The object to be measured 6 of the edge detector 201 is not limited to a metal object having a rough surface. Of course, the edge detector 201 is a mirror-like object to be measured that is not a rough scattering surface. It is applicable to.
 このようなエッジ検出装置201は、基本的構成部分として実施の形態1~4におけるエッジ検出装置101~104と同様に、投光系110、受光系120、及び第1駆動装置130を備え、さらに、第2駆動装置240、フォーカス検出部250、及びエッジ検出部260を備える。これらの各構成部分について、順次、以下に説明していく。 Such an edge detection device 201 includes a light projecting system 110, a light receiving system 120, and a first drive device 130 as basic components, similar to the edge detection devices 101 to 104 in the first to fourth embodiments. , A second driving device 240, a focus detection unit 250, and an edge detection unit 260. Each of these components will be sequentially described below.
 投光系110は、実施の形態1~4におけるエッジ検出装置101~104と同様に、また図26に示すように、被測定物6に対してレーザ光を集光し照射する構成部分であり、基本的に光源1と光学系とを備える。当該投光系110の光学系としては、第1レンズ3と対物レンズ5とを有する。光源1は、半導体レーザから構成される。また、光源1、第1レンズ3、及び対物レンズ5は、直線状の光路を形成して鏡筒2に収められている。鏡筒2は、第2駆動装置240と接続されている。 The light projecting system 110 is a component that condenses and irradiates laser light onto the DUT 6 as shown in FIG. 26, as with the edge detection devices 101 to 104 in the first to fourth embodiments. Basically, the light source 1 and the optical system are provided. The optical system of the light projecting system 110 includes a first lens 3 and an objective lens 5. The light source 1 is composed of a semiconductor laser. The light source 1, the first lens 3, and the objective lens 5 are accommodated in the lens barrel 2 so as to form a linear optical path. The lens barrel 2 is connected to the second driving device 240.
 上述のように本実施形態では、光源1、第1レンズ3、及び対物レンズ5は、直線状の光路を形成しているが、光路形状はこれに限定されない。尚、第1レンズ3と対物レンズ5との間には、受光系120を構成するビームスプリッター4が設置される。投光系110において、ビームスプリッター4は単に光を透過させる物であり、光学的作用を行わない。尚、実施の形態4~8では、ビームスプリッター4は受光系120に含まれるとしているが、上述した実施の形態1~4と同様に、投光系110に含まれるとしてもよい。 As described above, in the present embodiment, the light source 1, the first lens 3, and the objective lens 5 form a linear optical path, but the optical path shape is not limited to this. A beam splitter 4 constituting the light receiving system 120 is installed between the first lens 3 and the objective lens 5. In the light projecting system 110, the beam splitter 4 is merely an object that transmits light and does not perform an optical action. In the fourth to eighth embodiments, the beam splitter 4 is included in the light receiving system 120. However, as in the first to fourth embodiments described above, the beam splitter 4 may be included in the light projecting system 110.
 このような投光系110は、光源1から出射された光51が第1レンズ3でコリメートされた後、対物レンズ5で集光され、被測定物6の測定面6aに光ビーム51a(図26)として照射され、集光スポット52を形成する。尚、図25では、集光スポット52の半分だけ被測定物6の測定面6aに存在する様子を示している。 In such a light projecting system 110, the light 51 emitted from the light source 1 is collimated by the first lens 3, then condensed by the objective lens 5, and the light beam 51 a (see FIG. 26) to form a focused spot 52. Note that FIG. 25 shows a state where only half of the focused spot 52 is present on the measurement surface 6 a of the object 6 to be measured.
 第2駆動装置240は、対物レンズ5における光軸の方向、つまり図26に矢印bで示す照射方向に鏡筒2ごと投光系110を移動可能とする機構である。即ち、第2駆動装置240は、被測定物6の測定面6aに対する投光系110の合焦動作を可能にする。尚、本実施形態では、第2駆動装置240は、被測定物6に対して投光系110を矢印b方向に移動させるが、この構成に限定されず、投光系110と被測定物6とを相対的に矢印b方向へ移動させる装置であればよい。 The second driving device 240 is a mechanism that enables the projection system 110 to move together with the lens barrel 2 in the direction of the optical axis of the objective lens 5, that is, the irradiation direction indicated by the arrow b in FIG. That is, the second driving device 240 enables the light projecting system 110 to focus on the measurement surface 6 a of the DUT 6. In the present embodiment, the second driving device 240 moves the light projecting system 110 in the direction of the arrow b with respect to the object to be measured 6, but is not limited to this configuration, and the light projecting system 110 and the object to be measured 6. As long as it moves in the direction of the arrow b.
 受光系120は、図27に示すように、被測定物6の測定面6aへ投光系110により集光された光ビーム51aの測定面6aにおける反射光を受光する光学部分であり、基本的に光検出器8と光学系とを備える。光検出器8は、図28aに示すように、一つの受光位置8aに配置される一つの受光面を複数の検出部に分割したフォトダイオードであり、本実施形態では受光面を4等分したフォトダイオードである。受光系120における光学系としては、対物レンズ5と、ビームスプリッター4と、第2レンズ7とを有し、反射光の進行に沿ってこの順に配置されている。また本実施形態では、受光系120は、投光系110の対物レンズ5と同一のレンズを対物レンズとして共用している。ビームスプリッター4は、対物レンズ5を通過した反射光を反射し、第2レンズ7へ入射させる。第2レンズ7は、集光レンズであり、光検出器8の受光位置8aにおける受光面に反射光を集光させる。第2レンズ7及び光検出器8は、鏡筒9内に設置される。尚、ビームスプリッター4は、上述のように、投光系110の鏡筒2内に設置されており、受光系120の鏡筒9と、投光系110の鏡筒2とは、直交して接続されている。 As shown in FIG. 27, the light receiving system 120 is an optical part that receives the reflected light on the measurement surface 6a of the light beam 51a collected by the light projecting system 110 onto the measurement surface 6a of the object 6 to be measured. Are provided with a photodetector 8 and an optical system. As shown in FIG. 28a, the photodetector 8 is a photodiode in which one light receiving surface arranged at one light receiving position 8a is divided into a plurality of detection units. In this embodiment, the light receiving surface is divided into four equal parts. It is a photodiode. The optical system in the light receiving system 120 includes the objective lens 5, the beam splitter 4, and the second lens 7, which are arranged in this order along the progress of the reflected light. In the present embodiment, the light receiving system 120 shares the same lens as the objective lens 5 of the light projecting system 110 as an objective lens. The beam splitter 4 reflects the reflected light that has passed through the objective lens 5 and makes it incident on the second lens 7. The second lens 7 is a condensing lens and condenses the reflected light on the light receiving surface at the light receiving position 8 a of the photodetector 8. The second lens 7 and the photodetector 8 are installed in the lens barrel 9. As described above, the beam splitter 4 is installed in the lens barrel 2 of the light projecting system 110, and the lens barrel 9 of the light receiving system 120 and the lens barrel 2 of the light projecting system 110 are orthogonal to each other. It is connected.
 受光系120の光学系では、光検出器8である4分割フォトダイオードの受光位置8aは、投光系110からの光ビームが集光する位置と結像関係にあるように調整されている。即ち、投光系110からの光ビーム51aの集光位置に被測定物6の測定面6aがあるとき、その反射光は、光検出器8の受光位置8aに結像されることになる。 In the optical system of the light receiving system 120, the light receiving position 8a of the four-divided photodiode that is the light detector 8 is adjusted so as to have an imaging relationship with the position where the light beam from the light projecting system 110 is focused. That is, when the measurement surface 6a of the object to be measured 6 is at the condensing position of the light beam 51a from the light projecting system 110, the reflected light is imaged at the light receiving position 8a of the photodetector 8.
 このように構成される受光系120は、図27に示すように、投光系110による集光スポット52のうち被測定物6の測定面6aにある領域53からの反射光54が、投光系110の集光レンズでもある対物レンズ5によりコリメートされ、ビームスプリッター4で反射され、第2レンズ7により光検出器8の受光位置8aにある受光面の中心に集光され、集光スポット55を形成する。 As shown in FIG. 27, the light receiving system 120 configured in this way emits reflected light 54 from a region 53 in the measurement surface 6 a of the object 6 to be measured among the condensing spots 52 by the light projecting system 110. The light is collimated by the objective lens 5 which is also a condensing lens of the system 110, reflected by the beam splitter 4, condensed by the second lens 7 at the center of the light receiving surface at the light receiving position 8 a of the photodetector 8, and the condensed spot 55. Form.
 第1駆動装置130は、被測定物6を載置するステージを有し、平面上で互いに直交するX,Y方向へステージつまり被測定物6を可動とする装置である。ここで、X,Y方向は、第2駆動装置240による投光系110の移動方向である矢印bで示す照射方向に直交する方向である。尚、本実施形態では、第1駆動装置130は、固定された投光系110に対して被測定物6を移動させるが、この構成に限定されず、投光系110と被測定物6とを相対的にX,Y方向へ移動させる装置であればよい。 The first driving device 130 is a device that has a stage on which the object to be measured 6 is placed and moves the stage, that is, the object to be measured 6 in the X and Y directions orthogonal to each other on a plane. Here, the X and Y directions are directions orthogonal to the irradiation direction indicated by the arrow b, which is the moving direction of the light projecting system 110 by the second driving device 240. In the present embodiment, the first driving device 130 moves the object 6 to be measured with respect to the fixed light projecting system 110, but is not limited to this configuration, and the light projecting system 110, the object 6 to be measured, and the like. Any device that relatively moves in the X and Y directions may be used.
 フォーカス検出部250は、光検出器8、第1駆動装置130、及び第2駆動装置240と電気的に接続され、被測定物6に対する投光系110の合焦位置を検出する部分である。詳しくは以下の動作説明箇所にて説明する。 The focus detection unit 250 is a part that is electrically connected to the light detector 8, the first driving device 130, and the second driving device 240, and detects the in-focus position of the light projecting system 110 with respect to the object to be measured 6. Details will be described in the following explanation of operation.
 エッジ検出部260は、フォーカス検出部250及び第1駆動装置130と電気的に接続され、被測定物6のエッジを検出する部分である。詳しくは以下の動作説明箇所にて説明する。 The edge detection unit 260 is a part that is electrically connected to the focus detection unit 250 and the first driving device 130 and detects the edge of the DUT 6. Details will be described in the following explanation of operation.
 フォーカス検出部250及びエッジ検出部260は、実際にはコンピュータを用いて実現され、それぞれの機能に対応するソフトウェアと、これを実行するためのCPU(中央演算処理装置)やメモリ等のハードウェアから構成されている。 The focus detection unit 250 and the edge detection unit 260 are actually implemented using a computer, and include software corresponding to each function and hardware such as a CPU (Central Processing Unit) and a memory for executing the software. It is configured.
 以上のように構成されるエッジ検出装置201の動作について、以下に説明する。尚、以下の説明では、第1駆動装置130によって被測定物6をX方向に移動させてエッジ検出を行う場合を例に採るが、Y方向への移動に関しても同様である。 The operation of the edge detection apparatus 201 configured as described above will be described below. In the following description, an example is described in which edge detection is performed by moving the DUT 6 in the X direction by the first driving device 130, but the same applies to the movement in the Y direction.
 まず、エッジ検出装置201におけるエッジ検出の原理から説明する。
 説明の都合上、まず、被測定物上面における光ビームの照射位置の変化によって、光ビームの反射率及び散乱放射角特性が変わらない場合について考察する。具体的には、散乱のない鏡面、もしくは紙などの被測定物上面の粗面構造が光の波長構造以下である表面などが挙げられる。尚、このような表面を有する被測定物について、被測定物6と区別するため、ここの説明箇所では、非粗面測定物と記す。
First, the principle of edge detection in the edge detection apparatus 201 will be described.
For convenience of explanation, first, a case where the reflectance and scattered radiation angle characteristics of the light beam do not change due to the change of the irradiation position of the light beam on the upper surface of the object to be measured will be considered. Specifically, a mirror surface without scattering, or a surface having a rough surface structure on the upper surface of an object to be measured, such as paper, is equal to or less than the wavelength structure of light. In addition, in order to distinguish the to-be-measured object which has such a surface from the to-be-measured object 6, in the description location here, it describes as a non-rough surface measured object.
 このような状態において、エッジから十分離れた非粗面測定物に集光スポット52が照射されている場合には、光検出器8(4分割フォトダイオード)上の集光スポット55の形状は、集光スポット52の形状を反映したものとなる。つまり、集光スポット52が円形状であれば、集光スポット55も円形状となる。 In such a state, when the non-rough surface measurement object sufficiently separated from the edge is irradiated with the condensing spot 52, the shape of the condensing spot 55 on the photodetector 8 (quadrant photodiode) is The shape of the condensing spot 52 is reflected. That is, if the condensing spot 52 is circular, the condensing spot 55 is also circular.
 エッジを検出するには、第1駆動装置130により非粗面測定物をX方向に移動させることにより、投光系110から非粗面測定物に照射される光ビーム51aにて非粗面測定物をスキャンし、光ビーム51aが非粗面測定物のエッジを通過するようにする。 In order to detect the edge, the non-rough surface measurement object is moved by the first driving device 130 in the X direction, and the non-rough surface measurement is performed by the light beam 51a irradiated to the non-rough surface measurement object from the light projecting system 110. The object is scanned so that the light beam 51a passes through the edge of the non-rough surface measurement object.
 光ビーム51aの集光スポット52が非粗面測定物で反射した反射光は、対物レンズ5を透過し、ビームスプリッター4で反射されて、第2レンズ7にて集光され、光検出器8の受光面に入射する。光検出器8の受光面における集光スポット55の形状は、光ビーム51aの集光スポット52が非粗面測定物で反射される領域に応じて、変化する。その様子を図28aから図28cに示す。 The reflected light reflected from the non-rough surface measurement object by the condensing spot 52 of the light beam 51 a is transmitted through the objective lens 5, reflected by the beam splitter 4, collected by the second lens 7, and detected by the photodetector 8. Is incident on the light receiving surface. The shape of the focused spot 55 on the light receiving surface of the photodetector 8 changes according to the region where the focused spot 52 of the light beam 51a is reflected by the non-rough surface measurement object. This is shown in FIGS. 28a to 28c.
 図28aは、非粗面測定物上の一部にのみ集光スポット52が乗っている状態を示し、図28bは、集光スポット52のちょうど半分が非粗面測定物に乗った状態を示し、図28cは、集光スポット52の大部分が非粗面測定物に乗っている状態を示す。ここで、光検出器8の4つに分割されている受光面における、領域11と領域82との和の受光強度をI(A)、領域83と領域84との和の受光強度をI(B)とする。 FIG. 28a shows a state where the focused spot 52 is on only a part of the non-rough surface measurement object, and FIG. 28b shows a state where exactly half of the focused spot 52 is on the non-rough surface measurement object. FIG. 28 c shows a state where most of the focused spot 52 is on the non-rough surface measurement object. Here, on the light receiving surface of the photodetector 8 divided into four, the light reception intensity of the sum of the region 11 and the region 82 is I (A), and the light reception intensity of the sum of the region 83 and the region 84 is I (A B).
 ここで、非粗面測定物における、図29aに示す断面の上面を、集光スポット52がスキャンしたときの、受光強度I(A)、I(B)を図29bに示す。受光強度I(A)と受光強度I(B)とは、X方向に分離した信号となるので、図29cに示すように、この差信号、I(A)-I(B)は、図29aに示す断面のエッジ位置に対応してピークが現れる。これらのピークの現れるX方向の位置を、それぞれエッジ位置とする。 Here, in the non-rough surface measurement object, received light intensity I (A) and I (B) when the condensing spot 52 scans the upper surface of the cross section shown in FIG. 29A is shown in FIG. 29B. Since the received light intensity I (A) and the received light intensity I (B) are signals separated in the X direction, as shown in FIG. 29c, this difference signal, I (A) -I (B), is shown in FIG. A peak appears corresponding to the edge position of the cross section shown in FIG. The positions in the X direction at which these peaks appear are defined as edge positions.
 ここで、仮に、非粗面測定物上の集光スポット52をデフォーカス(非合焦)した場合での、光検出器8の受光面上における集光スポット55の、受光強度をI’(A)、I’(B)とし、これらを図29dに示す。尚、受光強度I’(A)、I’(B)は、上述の受光強度をI(A)、I(B)に相当する。また、受光強度をI’(A)、I’(B)の差信号を図29eに示す。 Here, if the focused spot 52 on the non-rough surface measurement object is defocused (not focused), the received light intensity of the focused spot 55 on the light receiving surface of the photodetector 8 is I ′ ( A) and I ′ (B) are shown in FIG. 29d. Note that the received light intensities I ′ (A) and I ′ (B) correspond to the above-described received light intensities I (A) and I (B). Further, FIG. 29e shows a difference signal between the received light intensity I '(A) and I' (B).
 図29eから明らかなように、光検出器8の受光面上における集光スポット55がデフォーカスすると、つまり、非粗面測定物に対して投光系110がデフォーカスしていると、受光強度I’(A)と、受光強度I’(B)とは、X方向においてほとんど重なってしまい、これらの差信号を取っても、ピークが小さくなり、エッジ検出精度は低下する。このように、非粗面測定物(被測定物6でも同じ)に対する投光系110の集光位置と、受光系120の光検出器8の受光位置8aとが結像関係にあることは、エッジ検出にとって重要である。 As is clear from FIG. 29e, when the condensing spot 55 on the light receiving surface of the photodetector 8 is defocused, that is, when the light projecting system 110 is defocused with respect to the non-rough surface measurement object, the light receiving intensity. I ′ (A) and received light intensity I ′ (B) almost overlap each other in the X direction, and even if these difference signals are taken, the peak becomes small and the edge detection accuracy decreases. Thus, the fact that the light condensing position of the light projecting system 110 and the light receiving position 8a of the photodetector 8 of the light receiving system 120 with respect to the non-rough surface measurement object (the same applies to the object 6 to be measured) is in an imaging relationship. Important for edge detection.
 次に、受光系120のフォーカス調整、換言すると被測定物6のエッジ検出動作について説明する。
 上では非粗面測定物を例に説明したが、エッジ検出装置201は、被測定物上面が粗面である金属の場合でもフォーカス調整が可能である。これについても以下に説明する。
 投光系110に対して、集光スポット52が最小となる位置に被測定物6の測定面6aがあるとき、「投光系はフォーカス調整されている」と呼ぶことにする。同様に、被測定物6の測定面6aと、光検出器8とが結像関係にあるとき、「受光系がフォーカス調整されている」と呼ぶことにする。本実施の形態では、上述したように、光検出器(4分割フォトダイオード)8の受光面の位置は、投光系110からの光ビームが集光する位置と結像関係にあるように調整されているので、投光系110がフォーカス調整されていると、受光系120もフォーカス調整されていることになる。このように、投光系110と受光系120とがともにフォーカス調整されている状態を、「投受光系がフォーカス調整されている」と呼ぶことにする。
Next, the focus adjustment of the light receiving system 120, in other words, the edge detection operation of the DUT 6 will be described.
Although the non-rough surface measurement object has been described above as an example, the edge detection apparatus 201 can perform focus adjustment even when the measurement object upper surface is a rough metal. This will also be described below.
When the measurement surface 6a of the object 6 to be measured is at a position where the light condensing spot 52 is minimum with respect to the light projecting system 110, it is referred to as “the light projecting system is focus-adjusted”. Similarly, when the measurement surface 6a of the object to be measured 6 and the photodetector 8 are in an imaging relationship, they are referred to as “the light receiving system is focus-adjusted”. In the present embodiment, as described above, the position of the light receiving surface of the photodetector (four-division photodiode) 8 is adjusted so as to have an imaging relationship with the position where the light beam from the light projecting system 110 is focused. Therefore, when the light projecting system 110 is focus-adjusted, the light receiving system 120 is also focus-adjusted. In this way, the state in which the light projecting system 110 and the light receiving system 120 are both focused is referred to as “the light projecting / receiving system is focus-adjusted”.
 図30は、投光系110からの光ビーム51aで被測定物6の測定面6aをスキャンするときの、測定面6aの測定配置位置を示す。即ち、投光系110の対物レンズ5と、被測定物6の測定面6aとの間の、矢印b方向における距離を、測定面6aが、図に示す(a),(b),(c)の各位置に配置されるように、フォーカス検出部250は第2駆動装置240にて変化させ、さらにフォーカス検出部250は、第1駆動装置130にて被測定物6を移動させることで、各位置に配置された測定面6aをスキャンする。尚、位置(c)が投光系110の合焦位置に相当し、位置(a)が最も非合焦(デフォーカス)の位置に相当する。 FIG. 30 shows a measurement arrangement position of the measurement surface 6a when the measurement surface 6a of the DUT 6 is scanned with the light beam 51a from the light projecting system 110. That is, the distance in the direction of the arrow b between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the object 6 to be measured is shown in the drawing by the measurement surface 6a (a), (b), (c). The focus detection unit 250 is changed by the second driving device 240 so that the object to be measured 6 is moved by the first driving device 130. The measurement surface 6a arranged at each position is scanned. The position (c) corresponds to the in-focus position of the light projecting system 110, and the position (a) corresponds to the most out-of-focus (defocus) position.
 このような設定下で、測定面6aが粗面である金属に対してスキャンを行い、フォーカス検出部250によって、光検出器8の4つの検出部より得られる全信号の和を、被測定物6の送り距離Xに対して測定することで、図31に示すように、位置(a)~(c)に対応する各信号波形が得られる。これらの信号波形から分かるように、位置(a)から(b),(c)とフォーカスが合うに従って、投光系110の集光スポット52の径は小さくなり、光検出器8の信号波形も金属の粗面構造を反映して大きな振幅を有するようになる。 Under such a setting, the metal whose measurement surface 6a is a rough surface is scanned, and the sum of all signals obtained from the four detection units of the photodetector 8 by the focus detection unit 250 is measured. By measuring with respect to the feed distance X of 6, each signal waveform corresponding to the positions (a) to (c) is obtained as shown in FIG. As can be seen from these signal waveforms, the diameter of the condensing spot 52 of the light projecting system 110 becomes smaller and the signal waveform of the photodetector 8 also becomes smaller as the focus is adjusted from the positions (a) to (b) and (c). Reflecting the rough structure of the metal, it has a large amplitude.
 このように、フォーカス検出部250によって、投光系110の対物レンズ5と、被測定物6の測定面6aとの間の、矢印b方向における距離を変化させながら、被測定物6の測定面6aを光ビーム51aでスキャンすることを繰り返して、光検出器8からの出力信号における振幅強度が最も大きくなる矢印b方向における距離を見つけることで、投光系110のフォーカス調整を行うことができる。即ち、このような手法を採ることで、測定面6aが粗面である金属に対しても投光系110のフォーカス調整が可能となる。 As described above, the focus detection unit 250 changes the distance between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the measurement object 6 in the direction of the arrow b while changing the measurement surface of the measurement object 6. By repeatedly scanning 6a with the light beam 51a and finding the distance in the direction of arrow b where the amplitude intensity in the output signal from the photodetector 8 is the largest, the focus adjustment of the light projecting system 110 can be performed. . That is, by adopting such a method, it is possible to adjust the focus of the light projecting system 110 even for a metal whose measurement surface 6a is rough.
 また、図31の信号振幅は、投光系110がフォーカス調整されているかどうかに依存し、受光系120がフォーカス調整されているかどうかには依存しない。しかしながら、エッジ検出装置201では、上述のように、予め「投受光系がフォーカス調整されている」状態に設定しているので、受光系120のフォーカス調整も同時になされたことになる。したがって、上述の手法を採ることで、測定面6aが粗面である金属に対しても受光系120のフォーカス調整も可能となる。 Further, the signal amplitude in FIG. 31 depends on whether or not the light projecting system 110 is focus-adjusted, and does not depend on whether or not the light-receiving system 120 is focus-adjusted. However, as described above, since the edge detection apparatus 201 is set in advance to the state where “the light projecting / receiving system is focus-adjusted”, the focus adjustment of the light receiving system 120 is also performed at the same time. Therefore, by adopting the above-described method, it is possible to adjust the focus of the light receiving system 120 even for a metal having a rough measurement surface 6a.
 尚、光検出器8における4分割の検出部の位置を平面内で移動させ、集光ビーム55がある一つの検出部上にあるように調整し、その一つの信号の振幅強度を用いてフォーカス検知を行っても良い。 Note that the position of the four-divided detection unit in the photodetector 8 is moved in the plane, adjusted so that the condensed beam 55 is on one detection unit, and focused using the amplitude intensity of the one signal. Detection may be performed.
 上述のようにして得られる、測定面6aが粗面である金属製の被測定物6におけるエッジの測定例を図32a~図32eに示す。このエッジ検出動作は、エッジ検出部260によって実行される。
 投受光系がフォーカス調整されている状態で、図32aに示すような断面を持つ被測定物6の測定面6aをスキャンしたときの信号I(A)、I(B)を図32bに示し、この差信号I(A)-I(B)を図32cに示す。図32cにおける両端のピークを与える位置Xが被測定物6の両端のエッジ位置に相当する。このエッジ位置を元に、被測定物6の寸法測定を行うことができる。
FIGS. 32a to 32e show measurement examples of edges in the metal object 6 having a rough measurement surface 6a obtained as described above. This edge detection operation is executed by the edge detection unit 260.
FIG. 32B shows signals I (A) and I (B) when the measurement surface 6a of the DUT 6 having a cross section as shown in FIG. 32A is scanned in a state in which the light projecting / receiving system is focused. This difference signal I (A) -I (B) is shown in FIG. 32c. A position X that gives peaks at both ends in FIG. 32 c corresponds to the edge positions at both ends of the DUT 6. Based on this edge position, the dimension of the DUT 6 can be measured.
 尚、投光系110はフォーカス調整されているが、受光系120はデフォーカスされている場合の信号I(A)、I(B)を図32dに示し、図32eは、その差信号I(A)-I(B)を示している。図32d及び図32eから明らかなように、測定面6aが粗面である金属製の被測定物6におけるエッジを測定する場合においても、受光系120がデフォーカス状態では、信号I(A)と信号I(B)との差は小さくなり、エッジ測定が困難になる。 Note that the signals I (A) and I (B) when the light projecting system 110 is focused but the light receiving system 120 is defocused are shown in FIG. 32d, and FIG. 32e shows the difference signal I ( A) -I (B). As is apparent from FIGS. 32d and 32e, when measuring the edge of the metal object 6 having a rough measurement surface 6a, the signal I (A) and the signal I (A) can be obtained when the light receiving system 120 is in the defocused state. The difference from the signal I (B) becomes small, and edge measurement becomes difficult.
 実施の形態6.
 実施の形態5では、上述したように、第2駆動装置240によって投光系110の合焦動作を行い、即ち、被測定物6の測定面6aにおける集光スポット52が最小の状態において、エッジ検出用のスキャンを行っている。これに対し、本実施形態6のエッジ検出装置202は、合焦後、意図的に集光スポット52の測定面6aでの大きさを変化させてデフォーカスしてスキャンを行う。図33a及び図33bに示すように、このためのデフォーカス機構270を、エッジ検出装置202はさらに備える。尚、エッジ検出装置202におけるその他の構成は、エッジ検出装置201の構成に同じである。よって、以下では、デフォーカス機構270に関する部分についてのみ説明を行う。
Embodiment 6 FIG.
In the fifth embodiment, as described above, the focusing operation of the light projecting system 110 is performed by the second driving device 240, that is, in the state where the condensing spot 52 on the measurement surface 6 a of the object to be measured 6 is minimum, the edge Scan for detection. In contrast, the edge detection apparatus 202 according to the sixth embodiment performs scanning by defocusing the focused spot 52 by intentionally changing the size of the focused spot 52 on the measurement surface 6a after focusing. As shown in FIGS. 33a and 33b, the edge detection device 202 further includes a defocus mechanism 270 for this purpose. The other configuration of the edge detection device 202 is the same as that of the edge detection device 201. Therefore, only the portion related to the defocus mechanism 270 will be described below.
 デフォーカス機構270を設けることで、投光系110の対物レンズ5と被測定物6との距離を変えることなく、投光系110における集光スポット52の測定面6aでの大きさを変える、つまりデフォーカスさせることができる。その一つの手法として、デフォーカス機構270は、光源1と対物レンズ5との間に配置された光学素子間の間隔を変更する。本実施の形態6では、デフォーカス機構270は、光源1と第1レンズ3との間の距離aを変化させて、集光スポット52のデフォーカスを行う。ここで、a=a0に設定すると、投光系110からの光ビーム51aの集光位置と、光検出器(4分割フォトダイオード)8の受光面の受光位置8aとは、結像関係にあるように調整されるものとする。被測定物6を測定する前、例えば当該エッジ検出装置202を組み立てる段階において、各レンズ間の距離等を正確に測定する等の手段により、上記条件を満たす距離a0を探すことは容易である。 By providing the defocus mechanism 270, the size of the condensing spot 52 in the projection system 110 on the measurement surface 6a is changed without changing the distance between the objective lens 5 of the projection system 110 and the object 6 to be measured. That is, it can be defocused. As one of the methods, the defocus mechanism 270 changes the interval between optical elements disposed between the light source 1 and the objective lens 5. In the sixth embodiment, the defocus mechanism 270 defocuses the focused spot 52 by changing the distance a between the light source 1 and the first lens 3. Here, when a = a0 is set, the condensing position of the light beam 51a from the light projecting system 110 and the light receiving position 8a of the light receiving surface of the photodetector (four-division photodiode) 8 are in an imaging relationship. It shall be adjusted as follows. Before measuring the object 6 to be measured, for example, at the stage of assembling the edge detection device 202, it is easy to find the distance a0 that satisfies the above conditions by means such as accurately measuring the distance between the lenses.
 受光系120のフォーカス調整のために、まず光源1と第1レンズ3との間の距離をa=a0に合わせる。その後、実施の形態5で説明した手順により、被測定物6に対する投光系110のフォーカス位置を合わせる。そのときの装置構成図を図33aに示す。a=a0とし、「投受光系がフォーカス調整されている」状態であるので、受光系120のフォーカス調整もなされたことになる。 In order to adjust the focus of the light receiving system 120, first, the distance between the light source 1 and the first lens 3 is set to a = a0. Thereafter, the focus position of the light projecting system 110 with respect to the DUT 6 is adjusted by the procedure described in the fifth embodiment. FIG. 33a shows a device configuration diagram at that time. Since a = a0 and “the light projecting / receiving system is focus-adjusted”, the focus of the light receiving system 120 is also adjusted.
 投光系110の集光スポット52が過小ではない場合は、金属粗面によるノイズも小さく、投受光系がフォーカス調整されている状態でエッジ検出を行なっても問題がない。一方、投光系の集光スポット52が小さくなり過ぎると、金属粗面によるノイズが大きくなってしまい、エッジ検出精度が劣化する。このような場合、投受光系のフォーカス調整を行った後、デフォーカス機構270によって、光源1と第1レンズ3との間の距離をa=a0から意図的にずらし、受光系120はフォーカス状態のまま、投光系110のみをデフォーカス状態とする。そのときのエッジ検出装置102の配置図を図33bに示す。例えば距離a>a0とすることで、被測定物6の測定面6aにおける投光系110の集光スポット52の大きさは拡大する。 When the condensing spot 52 of the light projecting system 110 is not too small, the noise due to the metal rough surface is small, and there is no problem even if edge detection is performed in a state where the light projecting / receiving system is in focus adjustment. On the other hand, if the light condensing spot 52 of the light projecting system becomes too small, the noise due to the metal rough surface increases, and the edge detection accuracy deteriorates. In such a case, after adjusting the focus of the light projecting / receiving system, the distance between the light source 1 and the first lens 3 is intentionally shifted from a = a0 by the defocus mechanism 270, and the light receiving system 120 is in the focused state. In this state, only the light projecting system 110 is set to the defocused state. The layout of the edge detection device 102 at that time is shown in FIG. 33b. For example, by setting the distance a> a0, the size of the condensing spot 52 of the light projecting system 110 on the measurement surface 6a of the object 6 to be measured is enlarged.
 このように集光スポット52の大きさを拡大させることで、実施の形態5で述べた効果に加えて、さらに以下の効果を得ることができる。
 即ち、投光系110が合焦位置にあるときには、図32bに示すように、受光強度には鋭いピークが見られるが、デフォーカス機構270によって投光系110の集光スポット52を大きくすることで、光照射領域内の各点の反射信号を積分した信号が光検出器8で検出されることになる。よって、被測定物6の測定面6aの位置の違いによる反射信号のゆらぎが小さくなり、図34aに示すように、受光強度は、なだらかなピークとなる。信号I(A)、I(B)の各波形は、なだらかになるが、信号I(A)と信号I(B)とは、被測定物6の移動方向において左右に分離されたままであるので、図34bに示すように、差信号I(A)-I(B)は、エッジ位置で大きなピークが発現する。このように、デフォーカス機構270により、金属粗面によるノイズを低減し、エッジ検出精度を向上させることができる。
In this way, by enlarging the size of the focused spot 52, the following effects can be obtained in addition to the effects described in the fifth embodiment.
That is, when the light projecting system 110 is in the in-focus position, as shown in FIG. 32b, a sharp peak is seen in the received light intensity, but the condensing spot 52 of the light projecting system 110 is enlarged by the defocus mechanism 270. Thus, a signal obtained by integrating the reflection signals at the respective points in the light irradiation region is detected by the photodetector 8. Therefore, the fluctuation of the reflected signal due to the difference in the position of the measurement surface 6a of the DUT 6 is reduced, and the received light intensity has a gentle peak as shown in FIG. 34a. The waveforms of the signals I (A) and I (B) are gentle, but the signals I (A) and I (B) are left and right separated in the moving direction of the DUT 6. As shown in FIG. 34b, the difference signal I (A) -I (B) has a large peak at the edge position. Thus, the defocus mechanism 270 can reduce noise due to the metal rough surface and improve edge detection accuracy.
 また、投光系110からの集光スポット52を大きくすると、図33bに示されるように、光検出器8の受光面における集光スポット55が大きくなることから、光検出器8における不感度領域による光量低下を低減することができるという効果もある。即ち、図35a及び図35bに示すように、4分割フォトダイオードは、通常、各検出部同士の境界部に、光に対する感度がない不感度領域85を有する。よって、図35aに示すように、集光スポット55が小さい場合には、集光スポット55に対する不感度領域85の割合が大きい。これに対し図35bに示すように、投光系110をデフォーカスし集光スポット55を大きくすることで、集光スポット55に対する不感度領域85の割合は小さくなり、受光領域81~84で受光される光量は増加する。よって、不感度領域による光量低下防止効果が得られる。 Further, when the condensing spot 52 from the light projecting system 110 is increased, the condensing spot 55 on the light receiving surface of the photodetector 8 is increased as shown in FIG. There is also an effect that a decrease in the amount of light due to can be reduced. That is, as shown in FIGS. 35a and 35b, the quadrant photodiode usually has an insensitive region 85 that is not sensitive to light at the boundary between the detection units. Therefore, as shown in FIG. 35a, when the condensing spot 55 is small, the ratio of the insensitive area 85 to the condensing spot 55 is large. On the other hand, as shown in FIG. 35b, by defocusing the light projecting system 110 and increasing the condensing spot 55, the ratio of the insensitive area 85 to the condensing spot 55 is reduced, and the light receiving areas 81 to 84 receive light. The amount of light emitted increases. Therefore, an effect of preventing a decrease in light amount due to the insensitive area can be obtained.
 実施の形態7.
 上述の実施の形態6では、投光系110からの集光スポット52を拡大させる手法として、上述したようにデフォーカス機構270を設け、投光系110における光学系の素子間隔を変える手法を採った。
 これに対し図36に示すように、本実施の形態7のエッジ検出装置203では、投光系110及び受光系120におけるフォーカス状態を維持した状態で集光スポット52を拡大させるために、開口径が可変である絞り機構290を設ける。絞り機構290は、投光系110の光路中に光線束を制限する絞りを有し、これにより実施の形態6の場合と同様の効果を得ることができる。即ち、絞りを小さくしぼることにより生じる回折の効果によって、投光系110からの集光スポット52を大きくするものである。
Embodiment 7 FIG.
In the above-described sixth embodiment, as a method for enlarging the condensing spot 52 from the light projecting system 110, the defocus mechanism 270 is provided as described above, and a method for changing the element spacing of the optical system in the light projecting system 110 is adopted. It was.
On the other hand, as shown in FIG. 36, in the edge detection device 203 of the seventh embodiment, the aperture diameter is increased in order to enlarge the focused spot 52 while maintaining the focus state in the light projecting system 110 and the light receiving system 120. A diaphragm mechanism 290 is provided. The aperture mechanism 290 has an aperture that restricts the light flux in the optical path of the light projecting system 110, whereby the same effect as in the sixth embodiment can be obtained. That is, the condensing spot 52 from the light projecting system 110 is enlarged by the effect of diffraction caused by reducing the aperture.
 絞り機構290を設ける手法は、投光系110における光学系の素子間隔を変える手法に比べて構造上の変更が少なくて済むという利点がある。また、被測定物6の測定面6aは、光ビーム51aの集光位置にあるので、エッジ検出中に被測定物6の高さが変動したとしても、集光スポット52の位置変動が小さいという利点もある。 The method of providing the aperture mechanism 290 has an advantage that the structural change is less than the method of changing the element spacing of the optical system in the light projecting system 110. Further, since the measurement surface 6a of the object to be measured 6 is at the condensing position of the light beam 51a, even if the height of the object to be measured 6 fluctuates during edge detection, the position variation of the condensing spot 52 is small. There are also advantages.
 尚、絞り機構290の設置場所は、本実施の形態7における対物レンズ5と被測定物6との間に限定するものではない。 It should be noted that the installation location of the diaphragm mechanism 290 is not limited between the objective lens 5 and the DUT 6 in the seventh embodiment.
 実施の形態8.
 本実施の形態8では、図37に示すように、例えばワイヤ加工放電等における加工液31内に配置した被測定物6に対して適用可能なエッジ検出装置204について説明する。
 エッジ検出装置204は、上述した実施の形態5から7におけるエッジ検出装置201~203に対して防液構造280をさらに備えた構造である。尚、図37では、例えば図25に示すエッジ検出装置201に防液構造280をさらに備えた構成例を示している。また、エッジ検出装置が投光系110と受光系120とで対物レンズ5を共用しない構成を採る場合には、投光系110では対物レンズ5の出射側に、受光系120では対物レンズ5の入射側に、それぞれ防液構造280を備える構成を採ることができる。
Embodiment 8 FIG.
In the eighth embodiment, as shown in FIG. 37, a description will be given of an edge detection device 204 that can be applied to an object to be measured 6 that is disposed in a machining fluid 31 in, for example, wire machining discharge.
The edge detection device 204 has a structure further provided with a liquid-proof structure 280 with respect to the edge detection devices 201 to 203 in the fifth to seventh embodiments described above. Note that FIG. 37 shows a configuration example in which the edge detection device 201 shown in FIG. 25 is further provided with a liquid-proof structure 280, for example. In addition, when the edge detection device adopts a configuration in which the light projection system 110 and the light reception system 120 do not share the objective lens 5, the light projection system 110 is disposed on the exit side of the objective lens 5, and the light reception system 120 is disposed on the objective lens 5. A configuration including a liquid-proof structure 280 on each incident side can be employed.
 防液構造280は、投光系110の鏡筒2に対して対物レンズ5側に防液仕様で取り付けられる。防液構造280は、対物レンズ5と被測定物6との間に、投光系110から被測定物6へ照射される光ビーム51a及び被測定物6から受光系120へ入射する反射光54が透過する透明な材料からなる窓281を有する。このような防液構造280は、例えば窓281部分が加工液31に浸される。 The liquid-proof structure 280 is attached to the objective lens 5 side with a liquid-proof specification with respect to the lens barrel 2 of the light projecting system 110. The liquid-proof structure 280 is provided between the objective lens 5 and the measured object 6, and the reflected light 54 incident on the light receiving system 120 from the measured object 6 and the light beam 51 a irradiated from the light projecting system 110 to the measured object 6. Has a window 281 made of a transparent material. In such a liquid-proof structure 280, for example, the window 281 is immersed in the processing liquid 31.
 また、第1駆動装置130は、加工液31の外側に配置され、被測定物6を例えばX方向に移動させる、あるいは、エッジ検出装置204を例えばX方向に移動させる。その他の構成は、上述の、エッジ検出装置201における構成に同様である。
 このように構成されるエッジ検出装置204によれば、実施の形態5~7で述べた効果に加えて、以下の効果をさらに得ることができる。
The first driving device 130 is disposed outside the machining liquid 31 and moves the DUT 6 in the X direction, for example, or moves the edge detection device 204 in the X direction, for example. Other configurations are the same as those in the edge detection apparatus 201 described above.
According to the edge detection device 204 configured as described above, the following effects can be further obtained in addition to the effects described in the fifth to seventh embodiments.
 即ち、エッジ検出装置204によれば、被測定物6のエッジ検出を行う、いわゆる光学ヘッド部分を加工液31に浸してエッジを検出することが可能になる。詳しく説明すると、防液構造280を持たない構造では、エッジ検出装置の光学ヘッド部分が加工液31に触れないようにして測定を行う必要があり、加工液31の上から、加工液31を通してエッジ測定を行うことになる。この場合、加工液31と空気との界面ゆらぎにより、信号がゆらぎ、正確なエッジ測定ができないという問題がある。一方、この信号のゆらぎを無くすために、加工液31を一旦排出して測定を行うと、加工液31の排出に時間を要し、また、被測定物6のエッジ部に残留する加工液滴も測定精度を悪化させるという問題が生じる。このように防液構造280を有しないエッジ検出装置は、問題を有する。 That is, according to the edge detection device 204, it is possible to detect an edge by immersing a so-called optical head portion that performs edge detection of the DUT 6 in the processing liquid 31. More specifically, in a structure that does not have the liquid-proof structure 280, it is necessary to perform measurement so that the optical head portion of the edge detection device does not touch the processing liquid 31, and the edge passes through the processing liquid 31 from above the processing liquid 31. Measurement will be performed. In this case, there is a problem that the signal fluctuates due to the fluctuation of the interface between the machining liquid 31 and air, and accurate edge measurement cannot be performed. On the other hand, in order to eliminate the fluctuation of the signal, once the machining liquid 31 is discharged and measurement is performed, it takes time to discharge the machining liquid 31, and the machining droplet remaining on the edge portion of the object 6 to be measured is used. However, the problem of deteriorating measurement accuracy arises. Thus, the edge detection device that does not have the liquid-proof structure 280 has a problem.
 一方、本実施形態8のエッジ検出装置204によれば、上述の問題を解決することができ、高速で、かつ精度の良いエッジ計測が可能となる。 On the other hand, according to the edge detection apparatus 204 of the eighth embodiment, the above-described problems can be solved, and high-speed and accurate edge measurement can be performed.
 実施の形態9.
 上述した実施の形態5~8におけるエッジ検出装置201~204では、投光系110から被測定物6に対するレーザ光の合焦機能を備える装置について説明したが、以下の実施の形態9、10では、既に説明した実施の形態1におけるエッジ検出装置101に、実施の形態5のエッジ検出装置201における合焦機能を加えたエッジ検出装置について説明を行う。
Embodiment 9 FIG.
In the above-described fifth to eighth embodiments, the edge detection devices 201 to 204 have been described with respect to an apparatus having a laser beam focusing function from the light projecting system 110 to the object 6 to be measured. An edge detection device obtained by adding the focusing function in the edge detection device 201 of the fifth embodiment to the edge detection device 101 of the first embodiment described above will be described.
 図38には、本実施の形態9によるエッジ検出装置301の構成が示されており、このエッジ検出装置301は、図1に示す実施の形態1におけるエッジ検出装置101に第2駆動装置240及びフォーカス検出部250を加えた構成を有する。ここで、第2駆動装置240及びフォーカス検出部250は、実施の形態5で説明したものと同じである。また、光検出器8は、実施の形態5のエッジ検出装置201におけるものと同じであり、図28aに示すように、一つの受光位置8aに配置される一つの受光面を複数の検出部に分割したフォトダイオードであり、ここでは受光面を4等分したフォトダイオードである。
 このようにエッジ検出装置301の構成は、既に説明した構成を組み合わせたものであるので、ここでの説明を省略する。よって以下では、本実施の形態9によるエッジ検出装置301の動作について説明を行う。
FIG. 38 shows the configuration of the edge detection device 301 according to the ninth embodiment. This edge detection device 301 is different from the edge detection device 101 in the first embodiment shown in FIG. The focus detection unit 250 is added. Here, the second drive device 240 and the focus detection unit 250 are the same as those described in the fifth embodiment. The photodetector 8 is the same as that in the edge detection apparatus 201 of the fifth embodiment. As shown in FIG. 28a, one light receiving surface arranged at one light receiving position 8a is used as a plurality of detection units. This is a divided photodiode, and here is a photodiode in which the light receiving surface is divided into four equal parts.
As described above, the configuration of the edge detection apparatus 301 is a combination of the configurations already described, and thus description thereof is omitted here. Therefore, the operation of the edge detection apparatus 301 according to the ninth embodiment will be described below.
 エッジ検出装置301では、以下のステップに従い被測定物6の計測が行われる。
 ステップ1:投光系110から照射される光ビームにおける被測定物6の上面までのフォーカス位置を算出する。
 ステップ2:フォーカスされた小さなスポットサイズの光ビームにより、被測定物6のエッジ6bに沿った複数のY軸方向における位置にて、エッジ6bと直交するX軸方向に被測定物6の表面6cのスキャンを行う。
 ステップ3:上記スキャンによって光検出器8から得られる複数のデータから、異常データの除去、平均化処理等を行い、被測定物6のエッジ位置を検出する。
In the edge detection apparatus 301, the measurement object 6 is measured according to the following steps.
Step 1: The focus position to the upper surface of the DUT 6 in the light beam emitted from the light projecting system 110 is calculated.
Step 2: A surface 6c of the object 6 to be measured in the X-axis direction orthogonal to the edge 6b at a plurality of positions in the Y-axis direction along the edge 6b of the object 6 to be measured by the focused light beam having a small spot size. Scan.
Step 3: From the plurality of data obtained from the photodetector 8 by the scan, abnormal data is removed, averaged, and the like, and the edge position of the DUT 6 is detected.
 上記ステップ1におけるフォーカス動作、つまり本実施の形態9のエッジ検出装置301に備わる第2駆動装置240及びフォーカス検出部250における動作、について以下に詳しく説明する。尚、このフォーカス動作は、上述の実施の形態5におけるエッジ検出装置201における動作に同じである。よって、以下で参照する図面は、上述の実施の形態5において参照した図に同じである。 The focus operation in Step 1 above, that is, the operation in the second drive device 240 and the focus detection unit 250 provided in the edge detection device 301 of the ninth embodiment will be described in detail below. This focus operation is the same as the operation in the edge detection apparatus 201 in the fifth embodiment described above. Therefore, the drawings referred to below are the same as the drawings referred to in the fifth embodiment.
 投光系110からの光ビーム51aで被測定物6の測定面6aをスキャンするときの、測定面6aの測定配置位置について、図30に示す。即ち、投光系110の対物レンズ5と、被測定物6の測定面6aとの間の、矢印b方向における距離を、測定面6aが、図に示す(a),(b),(c)の各位置に配置されるように、フォーカス検出部250は、第2駆動装置240にて変化させ、さらにフォーカス検出部250は、第1駆動装置130にて被測定物6を移動させることで、各位置に配置された測定面6aをスキャンする。尚、位置(c)が投光系110の合焦位置に相当し、位置(a)が最も非合焦(デフォーカス)の位置に相当する。 FIG. 30 shows a measurement arrangement position of the measurement surface 6a when the measurement surface 6a of the DUT 6 is scanned with the light beam 51a from the light projecting system 110. That is, the distance in the direction of the arrow b between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the object 6 to be measured is shown in the drawing by the measurement surface 6a (a), (b), (c). The focus detection unit 250 is changed by the second driving device 240 and the focus detection unit 250 moves the object 6 to be measured by the first driving device 130. The measurement surface 6a disposed at each position is scanned. The position (c) corresponds to the in-focus position of the light projecting system 110, and the position (a) corresponds to the most out-of-focus (defocus) position.
 このような設定下で、測定面6aが粗面である金属に対してスキャンを行い、フォーカス検出部250によって、光検出器8の4つの検出部より得られる全信号の和を、被測定物6の送り距離Xに対して測定することで、図31に示すように、位置(a)~(c)に対応する各信号波形が得られる。これらの信号波形から分かるように、位置(a)から(b),(c)とフォーカスが合うに従って、投光系110の集光スポット52の径は小さくなり、光検出器8の信号波形も金属の粗面構造を反映して大きな振幅を有するようになる。 Under such a setting, the metal whose measurement surface 6a is a rough surface is scanned, and the sum of all signals obtained from the four detection units of the photodetector 8 by the focus detection unit 250 is measured. By measuring with respect to the feed distance X of 6, each signal waveform corresponding to the positions (a) to (c) is obtained as shown in FIG. As can be seen from these signal waveforms, the diameter of the condensing spot 52 of the light projecting system 110 becomes smaller and the signal waveform of the photodetector 8 also becomes smaller as the focus is adjusted from the positions (a) to (b) and (c). Reflecting the rough structure of the metal, it has a large amplitude.
 このように、フォーカス検出部250によって、投光系110の対物レンズ5と、被測定物6の測定面6aとの間の、矢印b方向における距離を変化させながら、被測定物6の測定面6aを光ビーム51aでスキャンすることを繰り返して、光検出器8からの出力信号における振幅強度が最も大きくなる矢印b方向における距離を見つけることで、投光系110のフォーカス調整を行うことができる。即ち、このような手法を採ることで、測定面6aが粗面である金属に対しても投光系110のフォーカス調整が可能となる。ここで算出したフォーカス位置でのステージのZ方向の位置Zfをメモリに記憶しておく。 As described above, the focus detection unit 250 changes the distance between the objective lens 5 of the light projecting system 110 and the measurement surface 6a of the measurement object 6 in the direction of the arrow b while changing the measurement surface of the measurement object 6. By repeatedly scanning 6a with the light beam 51a and finding the distance in the direction of arrow b where the amplitude intensity in the output signal from the photodetector 8 is the largest, the focus adjustment of the light projecting system 110 can be performed. . That is, by adopting such a method, it is possible to adjust the focus of the light projecting system 110 even for a metal whose measurement surface 6a is rough. The Z-direction position Zf of the stage at the focus position calculated here is stored in the memory.
 以上が上記ステップ1における動作である。尚、上記ステップ2及び上記ステップ3の動作は、上述した実施の形態1~4で説明した動作に同じであるので、ここでの説明を省略する。 The above is the operation in step 1 above. Note that the operations in step 2 and step 3 are the same as those described in the first to fourth embodiments, and a description thereof will be omitted here.
 そして、ステージのZ方向の位置を、ステップ1で得た位置Zfに合わせることで、ジャストフォーカス位置に被測定物6の測定面6aを置くことができ、測定面6aにおけるスポットサイズが小さくなる。本実施の形態9によるエッジ検出装置301では、投光系110が測定面6aに照射する光ビームのスポットサイズを小さくした上で、実施の形態1~4にて説明した、被測定物6における異常なエッジを除外する動作を行うことから、本実施の形態9によるエッジ検出装置301は、従来に比べてより正確な被測定物6のエッジ位置を検出することが可能となる。 Then, by adjusting the position of the stage in the Z direction to the position Zf obtained in step 1, the measurement surface 6a of the object 6 to be measured can be placed at the just focus position, and the spot size on the measurement surface 6a is reduced. In the edge detection apparatus 301 according to the ninth embodiment, the spot size of the light beam irradiated onto the measurement surface 6a by the light projecting system 110 is reduced, and then the measurement object 6 described in the first to fourth embodiments is used. Since the operation of excluding abnormal edges is performed, the edge detection device 301 according to the ninth embodiment can detect the edge position of the DUT 6 more accurately than in the past.
 実施の形態10.
 実施の形態9におけるエッジ検出装置301では、被測定物6のエッジ6bに沿った複数の位置において、複数回、光ビームでのスキャンを行うことから、測定時間が長くなるという懸念もある。そこで、本実施の形態10のエッジ検出装置は、実施の形態9のエッジ検出装置301に比べて測定時間の短縮を可能とするものである。
 尚、本実施の形態10のエッジ検出装置302の構成は、上述した実施の形態9におけるエッジ検出装置301と同じであるが、第2駆動装置240及びフォーカス検出部250は、以下に説明するように実施の形態9における場合とは異なる動作を行う。
Embodiment 10 FIG.
In the edge detection apparatus 301 according to the ninth embodiment, there is a concern that the measurement time becomes long because the light beam is scanned a plurality of times at a plurality of positions along the edge 6b of the object 6 to be measured. Therefore, the edge detection apparatus according to the tenth embodiment can shorten the measurement time as compared with the edge detection apparatus 301 according to the ninth embodiment.
The configuration of the edge detection device 302 according to the tenth embodiment is the same as that of the edge detection device 301 according to the ninth embodiment described above, but the second drive device 240 and the focus detection unit 250 will be described below. The operation different from that in the ninth embodiment is performed.
 本実施の形態10のエッジ検出装置302は、以下のステップで被測定物6の計測を行う。
 ステップ1:投光系110から照射される光ビームにおける被測定物6の上面までのフォーカス位置を算出する。
 ステップ2:第2駆動装置240によって、投光系110が被測定物6の測定面6aに照射する光ビームのデフォーカスを行う。
 ステップ3:デフォーカスされた大きなスポットサイズの光ビームで、被測定物6のエッジ位置を求め、そのエッジ位置をX0とする。
 ステップ4:フォーカスされた小さなスポットサイズの光ビームにより、被測定物6のエッジに沿った複数のY軸方向の位置にて、エッジと直交するX軸方向に、エッジ位置X0の近傍でのみスキャンを行う。
 ステップ5:上記スキャンによって光検出器8から得られる複数のデータから、異常データの除去、平均化処理等を行い、被測定物6のエッジ位置を検出する。
The edge detection device 302 according to the tenth embodiment measures the DUT 6 in the following steps.
Step 1: The focus position to the upper surface of the DUT 6 in the light beam emitted from the light projecting system 110 is calculated.
Step 2: The second drive device 240 defocuses the light beam that the projection system 110 irradiates the measurement surface 6a of the object 6 to be measured.
Step 3: The edge position of the DUT 6 is obtained with the defocused light beam having a large spot size, and the edge position is set to X0.
Step 4: A focused light beam with a small spot size is used to scan only in the vicinity of the edge position X0 in the X-axis direction orthogonal to the edge at a plurality of positions in the Y-axis direction along the edge of the object 6 to be measured. I do.
Step 5: Abnormal data is removed, averaged, etc. from a plurality of data obtained from the photodetector 8 by the scan, and the edge position of the DUT 6 is detected.
 以上の動作によれば、本実施の形態10のエッジ検出装置302は、上記ステップ4においてX軸方向へスキャンする幅をエッジ位置X0の近傍に絞ることから、実施の形態9におけるエッジ検出装置301に比べて測定時間を短縮することができる。 According to the above operation, the edge detection device 302 according to the tenth embodiment narrows the width of scanning in the X-axis direction to the vicinity of the edge position X0 in step 4, so the edge detection device 301 according to the ninth embodiment. The measurement time can be shortened compared to.
 尚、上記ステップ1及び上記ステップ5は、実施の形態9にて説明したステップ1及びステップ2に対応することから、ここでの説明を省略し、以下には、上記ステップ2から上記ステップ4について、詳しく説明する。 Since Step 1 and Step 5 correspond to Step 1 and Step 2 described in the ninth embodiment, description thereof will be omitted, and hereinafter, Step 2 to Step 4 will be described below. ,explain in detail.
 まず、ステップ2について説明する。
 上述したステップ1で求めたZステージの位置Zfから距離Zaだけ、第2駆動装置240によって投光系110を移動させて、被測定物6の測定面6aに照射する光ビームをデフォーカスさせる。光ビームをデフォーカスさせることによって、光ビームのスポットサイズは拡大する。デフォーカス量に対するスポットサイズの拡大量は、投光系110のF値(絞り値)に依存するが、例えばF=8の場合について考察する。フォーカス位置での集光スポットのサイズを、回折像の暗環の直径であるエアリディスクで評価する。波長λ=0.6μmの場合、エアリディスク直径は、
First, step 2 will be described.
The projection system 110 is moved by the second driving device 240 by the distance Za from the Z stage position Zf obtained in step 1 described above, and the light beam irradiated on the measurement surface 6a of the object 6 to be measured is defocused. By defocusing the light beam, the spot size of the light beam is enlarged. The amount of enlargement of the spot size with respect to the defocus amount depends on the F value (aperture value) of the light projecting system 110, but consider the case of F = 8, for example. The size of the focused spot at the focus position is evaluated with an air disk that is the diameter of the dark ring of the diffraction image. For a wavelength λ = 0.6 μm, the Airy disk diameter is
 φAiry=2×1.22×λ×F
であるので、φAiry=12μmとなる。
φAiry = 2 × 1.22 × λ × F
Therefore, φAiry = 12 μm.
 一方、デフォーカス位置でのスポットサイズφdefocusを幾何光学的に見積もると、 On the other hand, when the spot size φdefocus at the defocus position is estimated geometrically,
 φdefocus =Za÷F
である。上記距離Za=200μmであるとすると、φdefocus =25μmであり、ジャストフォーカス時の約2倍にスポットサイズが拡大する。また、上記距離Za=400μmとすると、φdefocus =50μmである。
φdefocus = Za ÷ F
It is. Assuming that the distance Za = 200 μm, φdefocus = 25 μm, and the spot size expands to about twice that during just focus. Further, when the distance Za = 400 μm, φdefocus = 50 μm.
 次に、ステップ3について説明する。
 図39に示すように、上記ステップ2によりデフォーカスされた大きなスポットサイズの光ビーム350でX軸方向に被測定物6をスキャンする。図39では、光ビーム350が+X方向にスキャンされるように示されているが、光ビーム350は静止しており、被測定物6が-X方向にスキャンされても効果は同じである。
Next, step 3 will be described.
As shown in FIG. 39, the DUT 6 is scanned in the X-axis direction with the large spot size light beam 350 defocused in the above step 2. In FIG. 39, the light beam 350 is shown to be scanned in the + X direction, but the light beam 350 is stationary, and the effect is the same even when the DUT 6 is scanned in the −X direction.
 このようなデフォーカスされた光ビーム350によって、光検出器8にて得られる信号強度のグラフを図40に示す。光ビーム350のビームサイズが大きいことから、ノイズの少ない滑らかなグラフが得られているが、被測定物6のエッジ近傍でのグラフの傾きは小さい。
 また、このスキャンにより、実施の形態1~4にて説明した方法によってエッジ演算部140、エッジ判定部150、及びエッジ検出部160から得られる、被測定物6のエッジ位置をX0とする。
FIG. 40 shows a graph of the signal intensity obtained by the photodetector 8 with such a defocused light beam 350. Since the beam size of the light beam 350 is large, a smooth graph with little noise is obtained, but the gradient of the graph near the edge of the DUT 6 is small.
Further, by this scan, the edge position of the DUT 6 obtained from the edge calculation unit 140, the edge determination unit 150, and the edge detection unit 160 by the method described in the first to fourth embodiments is set to X0.
 既に説明したように、被測定物6の側面は、放電パルスによる加工痕のために数μmの周期で高さ数μmの凹凸があり、それに伴い被測定物6の表面6cと側面の境界であるエッジ部も数μmのオーダーで形状が揺らいでいる。一方、被測定物6の表面6cは、放電加工されておらず、放電加工前の研磨状態が残っている。よって、図18及び図19にその一例が示されているように、被測定物6の表面6cにも数μmから数10μmオーダーの凹凸18が存在する。これらの凹凸のために、直径数μmの小さなビームサイズの光ビームによるスポット照射では、対物レンズ5の外に光線が反射される場合があり、光検出器8にて得られる信号のノイズが大きくなる。 As already described, the side surface of the object to be measured 6 has irregularities with a height of several μm with a period of several μm due to machining traces caused by discharge pulses, and accordingly, at the boundary between the surface 6 c and the side surface of the object to be measured 6. A certain edge portion also fluctuates in the order of several μm. On the other hand, the surface 6c of the DUT 6 is not subjected to electric discharge machining, and the polished state before electric discharge machining remains. Therefore, as shown in FIG. 18 and FIG. 19, the surface 6 c of the object to be measured 6 has unevenness 18 on the order of several μm to several tens of μm. Because of these irregularities, spot irradiation with a light beam having a small beam size with a diameter of several μm may cause light rays to be reflected outside the objective lens 5, and the noise of the signal obtained by the photodetector 8 is large. Become.
 被測定物6のエッジの方向であるY方向にビームサイズが大きくなると、小さいビームサイズの光ビームによってY方向に異なる複数の位置でのスキャンを同時に行った場合の信号と同じ結果を得ることができる。よって、光検出器8にて得られる信号のノイズを小さくすることができ、図40に示すように滑らかなグラフを得ることができる。言い換えると、大きなスポットサイズの光ビームを用いた一回のスキャンは、小さなスポットサイズの光ビームを用いたY方向に異なる複数位置でのスキャンを平均化した処理と同等のノイズ低減効果がある。 When the beam size is increased in the Y direction, which is the direction of the edge of the DUT 6, the same result as a signal obtained when scanning at a plurality of different positions in the Y direction is simultaneously performed with a light beam having a small beam size can be obtained. it can. Therefore, noise of the signal obtained by the photodetector 8 can be reduced, and a smooth graph can be obtained as shown in FIG. In other words, a single scan using a light beam with a large spot size has a noise reduction effect equivalent to a process in which scans at different positions in the Y direction using a light beam with a small spot size are averaged.
 一方、スキャン方向であるX方向にビームサイズが大きくなると、エッジ近傍におけるグラフの傾きは小さくなってしまう。なぜなら、エッジの欠けや被測定物6の表面6cにおける乱反射によるノイズ成分を除くと、光ビームのスキャン位置xに対する受光強度の関数C(x)は、光ビームのX方向の強度分布関数A(x)と、点光源の照射による反射光強度関数B(x)の畳み込み積分したものとなるからである。グラフの傾きが小さいと、エッジ位置の決定精度が悪くなる。 On the other hand, when the beam size increases in the X direction, which is the scanning direction, the slope of the graph near the edge decreases. This is because if the noise component due to edge chipping or irregular reflection on the surface 6c of the object 6 to be measured is removed, the function C (x) of the received light intensity with respect to the scanning position x of the light beam is the intensity distribution function A ( This is because it is a convolution integral of x) and the reflected light intensity function B (x) by irradiation of the point light source. If the inclination of the graph is small, the accuracy of determining the edge position is deteriorated.
 大きなスポットサイズのビームスキャンにより得られるエッジ位置X0は、X方向にビームサイズが大きいために、例えば1μm以下の精度で被測定物6エッジ位置を決定することはできないが、光検出器8にて得られる信号のノイズが低減されているので、真のエッジ位置Xtに対して大きく外れていることはない。この様子を模式的に図41及び図42に示す。図41は、小さなスポットサイズの光ビームを一回スキャンすることによって算出されるエッジ位置の誤差量に対して、その誤差量が現れる確率を模式的に示したものである。図42は、大きなスポットサイズの光ビームを一回スキャンする場合の同様の模式図である。 The edge position X0 obtained by beam scanning with a large spot size cannot be determined with an accuracy of, for example, 1 μm or less because the beam size is large in the X direction. Since the noise of the obtained signal is reduced, it does not deviate significantly from the true edge position Xt. This situation is schematically shown in FIG. 41 and FIG. FIG. 41 schematically shows the probability that the error amount appears with respect to the error amount of the edge position calculated by scanning the light beam with a small spot size once. FIG. 42 is a schematic diagram similar to the case where a light beam having a large spot size is scanned once.
 次に、ステップ4について説明する。
 図43及び図44に、小さなスポットサイズの光ビームを複数のY方向の位置でスキャンする模式図を示す。エッジ位置がまったく不明である場合、スキャン範囲から真のエッジ位置が外れないようにするために、図43に示すように、X方向に大きな幅でスキャンする必要がある。しかし、X方向のスキャン範囲が大きいと、それだけ測定に時間を要する。
Next, step 4 will be described.
FIG. 43 and FIG. 44 show schematic diagrams of scanning a light beam having a small spot size at a plurality of positions in the Y direction. When the edge position is completely unknown, it is necessary to scan with a large width in the X direction as shown in FIG. 43 in order to prevent the true edge position from deviating from the scan range. However, if the scan range in the X direction is large, the measurement takes time.
 出願人の実験による知見によれば、光検出器8にて得られる信号のノイズを減らすために十分な平均化を行うためには、Y方向において例えば10μm間隔で異なる50点の位置について、X方向にスキャンをする必要がある。エッジ位置が不明である場合は、X方向のスキャンの幅を例えば100μmに設定する必要がある。ここで、例えば100μmを10秒でスキャンすると仮定すると、この測定を終了させるのに、500秒かかることになる。 According to the findings of the applicant's experiment, in order to perform sufficient averaging to reduce the noise of the signal obtained by the photodetector 8, X positions at 50 different positions in the Y direction, for example, at intervals of 10 μm are used. Need to scan in the direction. When the edge position is unknown, it is necessary to set the scan width in the X direction to 100 μm, for example. Here, assuming that 100 μm is scanned in 10 seconds, for example, it takes 500 seconds to complete this measurement.
 一方、上記ステップ3で求めたエッジ位置X0の周囲でのみスキャンを行うことにすると、図44に示すように狭い範囲のスキャンでも、スキャン範囲から真のエッジが外れることがない。例えば、ステップ3で算出したエッジ位置X0と、真のエッジ位置Xtとの最大誤差が5μmであるとすれば、スキャン範囲を10μmに狭めることができる。この場合、測定に要する時間は、上述のスキャン範囲が100μmの場合の1/10である、50秒に短縮できる。 On the other hand, if scanning is performed only around the edge position X0 obtained in step 3, the true edge does not deviate from the scanning range even in a narrow scanning range as shown in FIG. For example, if the maximum error between the edge position X0 calculated in step 3 and the true edge position Xt is 5 μm, the scan range can be narrowed to 10 μm. In this case, the time required for the measurement can be shortened to 50 seconds, which is 1/10 of the above-described scan range of 100 μm.
 以上詳細に説明したように、本実施の形態10のエッジ検出装置302では、初めにフォーカス位置を検出した後に、被測定物6に対して光ビームをデフォーカスし、大きなスポットサイズの光ビームで大まかなエッジ位置X0を測定する。その後、被測定物6に対して光ビームをフォーカスし、小さなスポットサイズの光ビームによりエッジ位置X0の近傍のみにてスキャンを行う。このような動作を行うことで、本実施の形態10のエッジ検出装置302は、実施の形態9で述べた効果に加え、さらに、測定時間を短縮することができるという効果を有する。 As described above in detail, in the edge detection device 302 according to the tenth embodiment, after the focus position is first detected, the light beam is defocused on the object 6 to be measured, and the light beam having a large spot size is used. A rough edge position X0 is measured. Thereafter, the light beam is focused on the object 6 to be measured, and scanning is performed only in the vicinity of the edge position X0 with the light beam having a small spot size. By performing such an operation, the edge detection apparatus 302 according to the tenth embodiment has an effect that the measurement time can be further shortened in addition to the effects described in the ninth embodiment.
 尚、上述した実施の形態9、10では、光検出器8は、一つの受光面を複数の検出部に分割したフォトダイオードを用いているが、これに限定されず、受光素子に一つのフォトダイオードを用いてもよい。 In the ninth and tenth embodiments described above, the photodetector 8 uses a photodiode in which one light receiving surface is divided into a plurality of detectors. However, the present invention is not limited to this, and one photo detector is used for each light receiving element. A diode may be used.
 尚、上述の様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.
Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 本発明は、反射光を元に被測定物におけるエッジ位置を検出するエッジ検出装置に適用可能である。 The present invention can be applied to an edge detection device that detects an edge position in an object to be measured based on reflected light.
 1 光源、4 ビームスプリッター、5 対物レンズ、6 被測定物、8 光検出器、
 12 反射光量特性、16 微分波形、
 101~104 エッジ検出装置、110 投光系、120 受光系、
 130 第1駆動装置、140 エッジ演算部、150 エッジ判定部、
 160 エッジ検出部、
 201~204 エッジ検出装置、240 第2駆動装置、
 250 フォーカス検出部、260 エッジ検出部、270 デフォーカス機構、
 280 防液機構、281 窓、
 301、302 エッジ検出装置。
1 light source, 4 beam splitter, 5 objective lens, 6 object to be measured, 8 light detector,
12 reflected light quantity characteristics, 16 differential waveform,
101 to 104 edge detection device, 110 light projecting system, 120 light receiving system,
130 first driving device, 140 edge calculation unit, 150 edge determination unit,
160 edge detector,
201-204 edge detection device, 240 second drive device,
250 focus detection unit, 260 edge detection unit, 270 defocus mechanism,
280 Liquid-proof mechanism, 281 window,
301, 302 Edge detection device.

Claims (7)

  1.  被測定物(6)のエッジを検出するエッジ検出装置(101~104、201~204、301,302)であって、
     前記被測定物に対して光ビームを照射する投光系(110)と、
     投光系から照射され被測定物で反射した光を受光する受光系であり、前記反射した光を検出する光検出器(8)を有する受光系(120)と、
     前記被計測物と前記投光系とを互いに直交するX方向及びY方向に相対的に移動させる第1駆動装置(130)と、
     前記光検出器が出力する反射光量特性、及び前記第1駆動装置から得られる位置情報から被測定物のエッジ位置を求めるエッジ位置取得部(140、150、160)と、を備え、
     前記第1駆動装置は、X方向及びY方向のいずれか一方における被測定物の複数のm箇所に対して、X方向及びY方向のいずれか他方に沿って被測定物及び投光系を移動し、
     前記エッジ位置取得部は、前記移動に伴い光検出器から反射光量特性の変化を取得し、取得したm個の反射光量特性変化を平均化処理してエッジ位置を求める、
    ことを特徴とするエッジ検出装置。
    An edge detection device (101 to 104, 201 to 204, 301, 302) for detecting an edge of a device under test (6),
    A light projecting system (110) for irradiating the object to be measured with a light beam;
    A light receiving system (120) that receives light emitted from the light projecting system and reflected by the object to be measured, and having a photodetector (8) that detects the reflected light;
    A first driving device (130) for relatively moving the object to be measured and the light projecting system in the X direction and the Y direction orthogonal to each other;
    An edge position acquisition unit (140, 150, 160) that obtains an edge position of an object to be measured from reflected light amount characteristics output from the photodetector and position information obtained from the first driving device;
    The first driving device moves the measured object and the light projecting system along the other of the X direction and the Y direction with respect to a plurality of m positions of the measured object in either the X direction or the Y direction. And
    The edge position acquisition unit acquires a change in the reflected light amount characteristic from the photodetector along with the movement, and obtains an edge position by averaging the acquired m reflected light amount characteristic changes.
    An edge detection apparatus characterized by the above.
  2.  前記エッジ位置取得部は、
     光検出器から得られる反射光量特性のピーク強度(13)から決定される強度閾値(14)と前記m個の反射光量特性とから各エッジ位置を求め、このエッジ位置の中から被測定物の最外縁部のエッジを取得し、得られた最外縁部のエッジと各エッジ位置との差分値を求めるエッジ演算部(140)と、
     差分閾値を有し、エッジ演算部にて求めた差分値の絶対値が前記差分閾値よりも大きな値に対応する反射光量特性を除外して異常なエッジ位置を除外するエッジ判定部(150)と、
     エッジ判定部にて除外されたもの以外の残りの反射光量特性を平均化し真のエッジ位置を求めるエッジ検出部(160)と、
    を有する請求項1記載のエッジ検出装置。
    The edge position acquisition unit
    Each edge position is obtained from the intensity threshold value (14) determined from the peak intensity (13) of the reflected light quantity characteristic obtained from the photodetector and the m reflected light quantity characteristics, and the measured object is measured from the edge positions. An edge calculation unit (140) that obtains an edge of the outermost edge and obtains a difference value between the obtained edge of the outermost edge and each edge position;
    An edge determination unit (150) having a difference threshold value and excluding the reflected light amount characteristic corresponding to a value whose absolute value of the difference value obtained by the edge calculation unit is larger than the difference threshold value to exclude an abnormal edge position; ,
    An edge detection unit (160) for averaging the remaining reflected light amount characteristics other than those excluded by the edge determination unit to obtain a true edge position;
    The edge detection apparatus according to claim 1, comprising:
  3.  前記エッジ位置取得部は、
     光検出器から得られる反射光量特性の微分波形を求め、この微分波形のピーク値から各エッジ位置を求め、このエッジ位置の中から被測定物の最外縁部のエッジを取得し、得られた最外縁部のエッジと各エッジ位置との差分値を求めるエッジ演算部(142)と、
     差分閾値を有し、エッジ演算部にて求めた差分値が前記差分閾値よりも大きな値に対応する反射光量特性を除外して異常なエッジ位置を除外するエッジ判定部(152)と、
     エッジ判定部にて除外されたもの以外の残りの反射光量特性を平均化し、さらにこの微分波形を求めて真のエッジ位置を求めるエッジ検出部(162)と、
    を有する請求項1記載のエッジ検出装置。
    The edge position acquisition unit
    Obtained the differential waveform of the reflected light amount characteristic obtained from the photodetector, obtained each edge position from the peak value of this differential waveform, obtained the edge of the outermost edge portion of the object to be measured from this edge position, obtained An edge calculation unit (142) for obtaining a difference value between the edge of the outermost edge and each edge position;
    An edge determination unit (152) having a difference threshold and excluding an abnormal edge position by excluding a reflected light amount characteristic corresponding to a value obtained by an edge calculation unit that is greater than the difference threshold;
    An edge detection unit (162) that averages the remaining reflected light amount characteristics other than those excluded by the edge determination unit and further obtains this differential waveform to obtain a true edge position;
    The edge detection apparatus according to claim 1, comprising:
  4.  前記エッジ位置取得部は、
     光検出器から得られる反射光量特性の微分波形を求め、この微分波形のピーク値を求めるエッジ演算部(143)と、
     微分閾値を有し、エッジ演算部にて求めたピーク値が前記微分閾値以下の値に対応する反射光量特性を除外して異常なエッジ位置を除外するエッジ判定部(153)と、
     エッジ判定部にて除外されたもの以外の残りの反射光量特性を平均化し、さらにこの微分波形を求めて真のエッジ位置を求めるエッジ検出部(163)と、
    を有する請求項1記載のエッジ検出装置。
    The edge position acquisition unit
    An edge calculation unit (143) for obtaining a differential waveform of the reflected light amount characteristic obtained from the photodetector and obtaining a peak value of the differential waveform;
    An edge determination unit (153) having a differential threshold and excluding an abnormal edge position by excluding a reflected light amount characteristic corresponding to a value equal to or less than the differential threshold obtained by an edge calculation unit;
    An edge detection unit (163) that averages the remaining reflected light amount characteristics other than those excluded by the edge determination unit and further obtains the differential waveform to obtain the true edge position;
    The edge detection apparatus according to claim 1, comprising:
  5.  前記エッジ位置取得部は、
     光検出器から得られる反射光量特性のピーク強度(13)を求めるエッジ演算部(144)と、
     ピーク強度閾値を有し、エッジ演算部にて求めたピーク強度が前記ピーク強度閾値以下の値に対応する反射光量特性を除外するエッジ判定部(154)と、
     エッジ判定部にて除外されたもの以外の残りの反射光量特性を平均化して真のエッジ位置を求めるエッジ検出部(164)と、
    を有する請求項1記載のエッジ検出装置。
    The edge position acquisition unit
    An edge calculation unit (144) for obtaining the peak intensity (13) of the reflected light amount characteristic obtained from the photodetector;
    An edge determination unit (154) having a peak intensity threshold and excluding a reflected light amount characteristic corresponding to a value of the peak intensity obtained by the edge calculation unit equal to or less than the peak intensity threshold;
    An edge detection unit (164) for averaging the remaining reflected light amount characteristics other than those excluded by the edge determination unit to obtain a true edge position;
    The edge detection apparatus according to claim 1, comprising:
  6.  前記第1駆動装置の移動方向であるX方向及びY方向で規定される面に対して垂直なZ方向に、前記投光系と前記被測定物とを相対的に移動させる第2駆動装置(240)と、
     前記光検出器と電気的に接続され、第2駆動装置によって被測定物と投光系との間の距離を変化させることで光検出器から得られる反射光量特性が最大となるZ方向の位置を検出して被測定物に対する投光系の合焦位置を決定するフォーカス検出部(250)と、をさらに備え、
     被測定物に対する光ビームの合焦位置にて、前記エッジ位置取得部は、被測定物のエッジを検出する、請求項1から5のいずれか1項に記載のエッジ検出装置。
    A second driving device that relatively moves the light projecting system and the object to be measured in a Z direction perpendicular to a plane defined by the X direction and the Y direction, which are moving directions of the first driving device; 240)
    A position in the Z direction where the reflected light quantity characteristic obtained from the photodetector is maximized by being electrically connected to the photodetector and changing the distance between the object to be measured and the light projecting system by the second driving device. And a focus detection unit (250) for determining the focus position of the light projecting system with respect to the object to be measured,
    The edge detection apparatus according to claim 1, wherein the edge position acquisition unit detects an edge of the measurement object at a focus position of the light beam with respect to the measurement object.
  7.  前記第2駆動装置は、被測定物における光ビームのスポット径を合焦状態よりも拡大するように投光系と被測定物とを相対的に移動させ、
     光ビームのスポット径が合焦状態よりも大きい状態にて、前記エッジ位置取得部は、X方向及びY方向における前記いずれか他方の方向に光ビームで被測定物をスキャンしてエッジ測定を行い、大まかなエッジ位置を取得し、得られた大まかなエッジ位置に対して、前記フォーカス検出部にて合焦状態とした光ビームにて、X方向及びY方向における前記いずれか一方の方向の各位置においてスキャンを行い、得られた複数の反射光量特性を用いてエッジ位置を求める、請求項6に記載のエッジ検出装置。
    The second driving device relatively moves the light projecting system and the object to be measured so that the spot diameter of the light beam on the object to be measured is larger than the focused state,
    In a state where the spot diameter of the light beam is larger than the focused state, the edge position acquisition unit performs edge measurement by scanning the object to be measured with the light beam in the other direction in the X direction and the Y direction. The rough edge position is obtained, and the obtained rough edge position is focused on the focus detection unit by the light beam in each of the X direction and the Y direction. The edge detection apparatus according to claim 6, wherein scanning is performed at the position, and the edge position is obtained using the obtained plurality of reflected light amount characteristics.
PCT/JP2012/058930 2012-04-02 2012-04-02 Edge detecting apparatus WO2013150585A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014508933A JPWO2013150585A1 (en) 2012-04-02 2012-04-02 Edge detection device
PCT/JP2012/058930 WO2013150585A1 (en) 2012-04-02 2012-04-02 Edge detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058930 WO2013150585A1 (en) 2012-04-02 2012-04-02 Edge detecting apparatus

Publications (1)

Publication Number Publication Date
WO2013150585A1 true WO2013150585A1 (en) 2013-10-10

Family

ID=49300115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058930 WO2013150585A1 (en) 2012-04-02 2012-04-02 Edge detecting apparatus

Country Status (2)

Country Link
JP (1) JPWO2013150585A1 (en)
WO (1) WO2013150585A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239404A (en) * 1987-11-13 1989-09-25 Lasersense Inc Method and apparatus for detecting edge of object
JPH0465603A (en) * 1990-07-05 1992-03-02 Nikon Corp Aligning method for substrate
JPH11325877A (en) * 1998-03-31 1999-11-26 Siemens Ag Method and apparatus for reducing measuring error
JP2000304510A (en) * 1999-04-23 2000-11-02 Fuji Photo Film Co Ltd Position detecting method of work edge and its device
JP2000311245A (en) * 1999-04-27 2000-11-07 Matsushita Electric Ind Co Ltd Method and edge discriminating device for circuit pattern
JP2002014053A (en) * 2000-06-28 2002-01-18 Sony Corp Equipment and method for inspection
JP2005175041A (en) * 2003-12-09 2005-06-30 Canon Inc Position-specifying method, position-specifying device, exposure apparatus, device and method of manufacturing the same
JP2006194799A (en) * 2005-01-14 2006-07-27 Canon Inc Method of measuring shape and material
JP2007178309A (en) * 2005-12-28 2007-07-12 Mitsutoyo Corp Noncontact displacement measuring device, its edge detection method and edge detection program
JP2007248208A (en) * 2006-03-15 2007-09-27 Omron Corp Apparatus and method for specifying shape
JP2008166482A (en) * 2006-12-28 2008-07-17 Nikon Corp Distortion-matching method, exposure system, and measurement system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239404A (en) * 1987-11-13 1989-09-25 Lasersense Inc Method and apparatus for detecting edge of object
JPH0465603A (en) * 1990-07-05 1992-03-02 Nikon Corp Aligning method for substrate
JPH11325877A (en) * 1998-03-31 1999-11-26 Siemens Ag Method and apparatus for reducing measuring error
JP2000304510A (en) * 1999-04-23 2000-11-02 Fuji Photo Film Co Ltd Position detecting method of work edge and its device
JP2000311245A (en) * 1999-04-27 2000-11-07 Matsushita Electric Ind Co Ltd Method and edge discriminating device for circuit pattern
JP2002014053A (en) * 2000-06-28 2002-01-18 Sony Corp Equipment and method for inspection
JP2005175041A (en) * 2003-12-09 2005-06-30 Canon Inc Position-specifying method, position-specifying device, exposure apparatus, device and method of manufacturing the same
JP2006194799A (en) * 2005-01-14 2006-07-27 Canon Inc Method of measuring shape and material
JP2007178309A (en) * 2005-12-28 2007-07-12 Mitsutoyo Corp Noncontact displacement measuring device, its edge detection method and edge detection program
JP2007248208A (en) * 2006-03-15 2007-09-27 Omron Corp Apparatus and method for specifying shape
JP2008166482A (en) * 2006-12-28 2008-07-17 Nikon Corp Distortion-matching method, exposure system, and measurement system

Also Published As

Publication number Publication date
JPWO2013150585A1 (en) 2015-12-14

Similar Documents

Publication Publication Date Title
US8767218B2 (en) Optical apparatus for non-contact measurement or testing of a body surface
JP5579109B2 (en) Edge detection device
CN103091992A (en) Workpiece position correction device and correction method
JP2015135276A (en) Surface shape measuring apparatus, and machine tool equipped with the same
WO2010106758A1 (en) Shape measurement device and method
JP6056798B2 (en) Edge detection device
JP2016033461A (en) Height measurement device
US6486964B2 (en) Measuring apparatus
CN102607470A (en) Non-contact automatic detection device for straightness errors of milling surface of scale grating of grating ruler
US8314938B2 (en) Method and apparatus for measuring surface profile of an object
WO2013150585A1 (en) Edge detecting apparatus
US10845190B2 (en) Measurement apparatus for measuring height or shape of a surface of a material
US10203201B2 (en) Measurement device
JP2007248208A (en) Apparatus and method for specifying shape
KR20130010845A (en) Charged particle beam drawing apparatus and method of manufacturing article
KR20130088916A (en) Thickness measuring method using laser interferometer
JP2015165210A (en) Surface profile measurement device and machine tool including the same
JP2022117054A (en) Method and device for measuring incident angles of detection light in crack detection and method and device for detecting cracks
TWI617384B (en) Focusing point detecting device
TWI610747B (en) Laser processing apparatus
JP7212833B2 (en) Crack detection device and method
JP5656242B2 (en) Shape measuring method, shape measuring device, and machine tool
KR20110093348A (en) Optical composite measuring apparatus and method
KR102160025B1 (en) Charged particle beam device and optical inspection device
JP2016102667A (en) Displacement sensor and displacement measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873639

Country of ref document: EP

Kind code of ref document: A1