WO2013150243A1 - Aube de rotor de turbomachine, disque d'aubes monobloc, rotor de compresseur rotor de soufflante associés - Google Patents
Aube de rotor de turbomachine, disque d'aubes monobloc, rotor de compresseur rotor de soufflante associés Download PDFInfo
- Publication number
- WO2013150243A1 WO2013150243A1 PCT/FR2013/050735 FR2013050735W WO2013150243A1 WO 2013150243 A1 WO2013150243 A1 WO 2013150243A1 FR 2013050735 W FR2013050735 W FR 2013050735W WO 2013150243 A1 WO2013150243 A1 WO 2013150243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- rotor
- distal segment
- turbomachine
- segment
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/384—Blades characterised by form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/002—Axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/36—Application in turbines specially adapted for the fan of turbofan engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/30—Arrangement of components
- F05D2250/38—Arrangement of components angled, e.g. sweep angle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- dawn foot 5 referred to as dawn foot, while the distal end is normally
- dawn head The distance between the foot and the dawn head is known as the dawn height. Between the foot and the blade head, the blade is formed by a stack of aerodynamic profiles substantially perpendicular to a radial axis Y. "Substantially
- French patent application FR 2 851 798 A1 disclosed a rotor blade comprising a distal segment in a rear arrow between the blade head and an intermediate segment having a forward arrow on a large part of the blade height.
- the back arrow of the distal segment in such a configuration can at least partially reduce the risk of dynamic self-engagement.
- the present invention aims to further reduce the risk of dynamic self-engagement in a rotor blade having a distal rear-arrow segment between the blade head and an intermediate segment having a forward deflection over at least 50% of the height of the rotor. 'dawn.
- the intermediate segment may also have a positive tangential inclination on at least one zone adjacent to the distal segment.
- said distal segment may in particular be directly adjacent to said blade head, thus extending to the blade head, and releasing a greater proportion of the blade height for the intermediate segment forward arrow.
- the distal segment can occupy at least 5% and preferably at least 8% of the blade height.
- the distal segment may occupy not more than 30% and preferably not more than 15% of the blade height.
- the invention also relates to a compressor or blower rotor having a plurality of blades each with a distal segment in a rearward arrow between an intermediate segment in forward arrow and the blade head.
- FIG. 2B is a schematic perspective view of a detail of the rotor of FIG. 2A;
- Figure 3B illustrates a rotor blade having a trailing arm
- FIG. 3C illustrates a rotor blade having a negative tangential inclination angle
- Figure 4 schematically illustrates the vibration of a blade in flexion following a contact with the housing
- Figure 5 is a perspective view of a turbomachine blade according to a first embodiment of the invention.
- FIG. 6A is a diagram illustrating the evolution, between the foot and the blade head, of the arrow of the blade of FIG. 5;
- FIG. 6B is a diagram illustrating the evolution, between the foot and the blade head, of the tangential inclination of the blade of the FIG.
- Figure 7A is a diagram illustrating the evolution, between the foot and the blade head, of the arrow of a blade according to a second embodiment.
- FIG. 7B is a diagram illustrating the evolution, between the foot and the blade head, of the tangential inclination of the blade of the second embodiment.
- FIG. 1 shows an exemplary example of a turbomachine, more specifically an axial turbojet engine 1 with a double flow.
- the turbojet engine 1 illustrated comprises a fan 2, a low-pressure compressor 3, a high-pressure compressor 4, a combustion chamber 5, a high-pressure turbine 6, and a low-pressure turbine 7.
- the fan 2 and the low-pressure compressor 3 are connected to the low-pressure turbine 7 by a first transmission shaft 9, while the high-pressure compressor 4 and the high-pressure turbine 6 are connected by a second transmission shaft 10.
- a flow of compressed air by the low and high pressure compressors 3 and 4 feed a combustion into the combustion chamber 5, the expansion of the combustion gases of which drives the high and low pressure turbines 6, 7.
- the turbines 6, 7 thus operate the blower 2 and the compressors 3,4.
- the air propelled by the fan 2 and the combustion gases leaving the turbojet 1 through a propellant nozzle (not shown) downstream of the turbines 6, 7 exert a reaction thrust on the turbojet engine 1 and, through it, on a vehicle or craft such as an airplane (not shown).
- the blade 12 comprises a stack aerodynamic profiles in planes perpendicular to the radial axis Y, forming a leading edge 16 in the upstream direction, a trailing edge 17 in the downstream direction, an extrados 18 and a lower surface 19.
- the direction of rotation R in normal operation is such that each blade 12 moves towards its lower surface 19.
- FIG. 2C Such a profile of blade 12 is illustrated in FIG. 2C.
- Each profile 15 has a rope C between the leading edge 16 and the trailing edge 17 and a center of gravity CG defined as the geometric centroid of the profile 15.
- the inclination of the crossing line the centers of gravity CG of successive profiles with respect to the radial axis Y is used to define the tangential deflection and inclination of a blade 12.
- this line 20 presents an inclination -a upstream in the XY plane, as shown in Figure 3A, the blade 12 has a forward arrow.
- this line 20 has an inclination ⁇ in the downstream direction on the same plane, as illustrated in FIG. 3B, the blade 12 has a rear arrow.
- the tangential inclination is defined by the inclination of this line 20 relative to the radial axis Y in the plane ZY.
- the blade 12 when in the direction of the blade head 14 the line 20 is inclined towards the extrados 18 (and therefore in the opposite direction to the direction of rotation R of the rotor), the blade 12 has a negative tangential inclination - ⁇ as illustrated. in Figure 3C.
- the blade 12 when this inclination is in the direction of the intrados 19 (and therefore in the direction of rotation R of the rotor), the blade 12 has a tangential inclination ⁇ positive, as illustrated in FIG. 3D.
- the turbomachine blades Apart from the arrow and the tangential pinch, the turbomachine blades generally have complex geometries with profiles whose angle of attack, camber, thickness and chord C can also vary along the Y axis.
- FIG. 5 shows a blade 112 according to a first embodiment of the invention and making it possible to overcome this disadvantage of vanes in the forward direction.
- This blade 112 also comprises a blade root 113, a blade head 114, a leading edge 116, a trailing edge 117, a lower surface 118 and an upper surface 119 and is also formed by a stack of airfoils 115 on the blade height h between the blade root 113 and the blade head 114.
- This blade 112 however has between an intermediate segment 112a in forward arrow occupying approximately 65% of the blade height h and the head blade 114, a distal segment 112b in a rear arrow occupying about 10% of the blade height h.
- FIG. 6A illustrates the projection on an XY plane of the line 120 connecting the CG centers of gravity of the profiles 115 of this blade 112. In order to to better distinguish the evolution of the line 120, the distances in the X axis are exaggerated with respect to the Y axis.
- the blade presents a forward arrow on an intermediate segment 112a occupying approximately 65% of the blade height h, followed by a rear arrow on the distal segment 112b located between the intermediate segment 112a and the blade head 114.
- the line 120 moves back by a distance dx on the X axis about 1.75% blade height h, thus reducing the offset of the blade head 114 upstream, and therefore the risk of dynamic self-engagement of the blade 112 following a first contact with a crankcase.
- FIG. 6B illustrates the projection of the same line 120 on a ZY plane, thus showing the positive tangential inclination ⁇ substantially more pronounced on the distal segment 112b than on the intermediate segment 112a.
- the distances in the Z axis are also exaggerated with respect to the Y axis.
- the line 120 advances in the direction of the intrados a distance dz on the Z axis of about 4% of the blade height h, thereby also contributing to reducing the risk of dynamic self-engagement of the blade 112.
- FIGS. 7A and 7B similarly illustrate the projections on, respectively, the XY and ZY planes of a line 120 connecting the centers of gravity of the profiles of a blade according to a second embodiment.
- this blade has a forward arrow on an intermediate segment 112a occupying about 65% of the blade height h, followed by a rear arrow on the distal segment 112b located between the intermediate segment 112a and the dawn head.
- the line 120 moves back by a distance dx on the X axis by approximately 1.25% of the blade height h, thus reducing the offset of the head dawn upstream, and therefore the risk of dynamic self-engagement of the dawn after a first contact with a housing.
- the positive tangential tilt ⁇ is not substantially more pronounced on the distal segment 112b than on an adjacent region of the intermediate segment 112a.
- the rear arrow of the distal segment can roll back on the X axis the center of mass of the blade profiles to a distance of 5% of the blade height depending on the different embodiments.
- the offset of the blade profiles in the Z axis by the positive tangential inclination of the distal segment can also reach up to 7% of the blade height according to the different embodiments.
- individual features of the various embodiments mentioned can be combined in additional embodiments. Therefore, the description and drawings should be considered in an illustrative rather than restrictive sense.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/390,566 US10018050B2 (en) | 2012-04-04 | 2013-04-03 | Turbomachine rotor blade |
CN201380017945.8A CN104246136B (zh) | 2012-04-04 | 2013-04-03 | 涡轮机转子叶片、整体叶盘、压缩机转子和与其相联系的风扇转子 |
CA2868655A CA2868655C (fr) | 2012-04-04 | 2013-04-03 | Aube de rotor de turbomachine |
EP13719976.6A EP2834470B1 (fr) | 2012-04-04 | 2013-04-03 | Aube de rotor de turbomachine, disque d'aubes monobloc, rotor de compresseur et rotor de soufflante associés |
RU2014144262A RU2635734C2 (ru) | 2012-04-04 | 2013-04-03 | Лопатка ротора турбомашины |
BR112014024567-3A BR112014024567B1 (pt) | 2012-04-04 | 2013-04-03 | Pá de rotor para turbomáquina , disco com pás em uma única peça , rotores de compressor e de ventoinha |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1253108A FR2989107B1 (fr) | 2012-04-04 | 2012-04-04 | Aube de rotor de turbomachine |
FR1253108 | 2012-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013150243A1 true WO2013150243A1 (fr) | 2013-10-10 |
Family
ID=48237124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2013/050735 WO2013150243A1 (fr) | 2012-04-04 | 2013-04-03 | Aube de rotor de turbomachine, disque d'aubes monobloc, rotor de compresseur rotor de soufflante associés |
Country Status (8)
Country | Link |
---|---|
US (1) | US10018050B2 (fr) |
EP (1) | EP2834470B1 (fr) |
CN (1) | CN104246136B (fr) |
BR (1) | BR112014024567B1 (fr) |
CA (1) | CA2868655C (fr) |
FR (1) | FR2989107B1 (fr) |
RU (1) | RU2635734C2 (fr) |
WO (1) | WO2013150243A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990604A1 (fr) * | 2014-08-27 | 2016-03-02 | Pratt & Whitney Canada Corp. | Surfaces portantes rotatif et procede de formation d'une aube |
EP3108117A4 (fr) * | 2014-02-19 | 2017-03-22 | United Technologies Corporation | Profil aérodynamique de turbine à gaz |
EP3108104A4 (fr) * | 2014-02-19 | 2018-05-23 | United Technologies Corporation | Surface portante de moteur à turbine à gaz |
EP3361051A1 (fr) * | 2017-02-14 | 2018-08-15 | Rolls-Royce plc | Aube de ventilateur de turbine à gaz à inclinaison axiale |
US11408436B2 (en) | 2014-02-19 | 2022-08-09 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3108116B1 (fr) | 2014-02-19 | 2024-01-17 | RTX Corporation | Moteur à turbine à gaz |
EP3108101B1 (fr) | 2014-02-19 | 2022-04-20 | Raytheon Technologies Corporation | Profil aérodynamique de moteur à turbine à gaz |
US9599064B2 (en) | 2014-02-19 | 2017-03-21 | United Technologies Corporation | Gas turbine engine airfoil |
WO2015178974A2 (fr) | 2014-02-19 | 2015-11-26 | United Technologies Corporation | Surface portante de moteur à turbine à gaz |
US9163517B2 (en) | 2014-02-19 | 2015-10-20 | United Technologies Corporation | Gas turbine engine airfoil |
US10605259B2 (en) | 2014-02-19 | 2020-03-31 | United Technologies Corporation | Gas turbine engine airfoil |
US10570915B2 (en) | 2014-02-19 | 2020-02-25 | United Technologies Corporation | Gas turbine engine airfoil |
EP4279706A3 (fr) | 2014-02-19 | 2024-02-28 | RTX Corporation | Aube de turbine à gaz |
EP3108103B1 (fr) | 2014-02-19 | 2023-09-27 | Raytheon Technologies Corporation | Aube de soufflante pour moteur à turbine à gaz |
US10495106B2 (en) | 2014-02-19 | 2019-12-03 | United Technologies Corporation | Gas turbine engine airfoil |
US10584715B2 (en) | 2014-02-19 | 2020-03-10 | United Technologies Corporation | Gas turbine engine airfoil |
EP3108100B1 (fr) | 2014-02-19 | 2021-04-14 | Raytheon Technologies Corporation | Pale de soufflante de moteur à turbine à gaz |
WO2015175056A2 (fr) | 2014-02-19 | 2015-11-19 | United Technologies Corporation | Surface portante de moteur à turbine à gaz |
US9140127B2 (en) | 2014-02-19 | 2015-09-22 | United Technologies Corporation | Gas turbine engine airfoil |
EP3575551B1 (fr) | 2014-02-19 | 2021-10-27 | Raytheon Technologies Corporation | Surface portante de moteur à turbine à gaz |
WO2015126824A1 (fr) | 2014-02-19 | 2015-08-27 | United Technologies Corporation | Surface portante pour turbine à gaz |
US9567858B2 (en) | 2014-02-19 | 2017-02-14 | United Technologies Corporation | Gas turbine engine airfoil |
EP3108106B1 (fr) | 2014-02-19 | 2022-05-04 | Raytheon Technologies Corporation | Pale de moteur à turbine à gaz |
EP3108105B1 (fr) | 2014-02-19 | 2021-05-12 | Raytheon Technologies Corporation | Surface portante pour turbine à gaz |
US9845684B2 (en) * | 2014-11-25 | 2017-12-19 | Pratt & Whitney Canada Corp. | Airfoil with stepped spanwise thickness distribution |
FR3040071B1 (fr) | 2015-08-11 | 2020-03-27 | Safran Aircraft Engines | Aube de rotor de turbomachine |
JP6694950B2 (ja) * | 2016-03-30 | 2020-05-20 | 三菱重工エンジン&ターボチャージャ株式会社 | 可変容量型ターボチャージャ |
KR101984397B1 (ko) * | 2017-09-29 | 2019-05-30 | 두산중공업 주식회사 | 로터, 터빈 및 이를 포함하는 가스터빈 |
JP6953322B2 (ja) * | 2018-02-01 | 2021-10-27 | 本田技研工業株式会社 | ファンブレードの形状決定方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB680036A (en) * | 1949-04-26 | 1952-10-01 | Francis Henry Keast | Blading for rotary compressors, turbines and the like |
US4012172A (en) * | 1975-09-10 | 1977-03-15 | Avco Corporation | Low noise blades for axial flow compressors |
US6071077A (en) * | 1996-04-09 | 2000-06-06 | Rolls-Royce Plc | Swept fan blade |
US6554564B1 (en) * | 2001-11-14 | 2003-04-29 | United Technologies Corporation | Reduced noise fan exit guide vane configuration for turbofan engines |
EP1333181A1 (fr) * | 2001-05-24 | 2003-08-06 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Aube fixe de soufflante faible bruit |
FR2851798A1 (fr) | 2003-02-27 | 2004-09-03 | Snecma Moteurs | Aube en fleche de turboreacteur |
US20100054946A1 (en) | 2008-09-04 | 2010-03-04 | John Orosa | Compressor blade with forward sweep and dihedral |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1613701A1 (ru) * | 1988-07-15 | 1990-12-15 | Харьковский авиационный институт им.Н.Е.Жуковского | Лопатка осевой турбомашины |
US5642985A (en) * | 1995-11-17 | 1997-07-01 | United Technologies Corporation | Swept turbomachinery blade |
US6290465B1 (en) * | 1999-07-30 | 2001-09-18 | General Electric Company | Rotor blade |
US6331100B1 (en) * | 1999-12-06 | 2001-12-18 | General Electric Company | Doubled bowed compressor airfoil |
US7334997B2 (en) * | 2005-09-16 | 2008-02-26 | General Electric Company | Hybrid blisk |
RU2381388C1 (ru) * | 2008-07-07 | 2010-02-10 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" | Рабочая лопата вентилятора или компрессора |
US8684698B2 (en) * | 2011-03-25 | 2014-04-01 | General Electric Company | Compressor airfoil with tip dihedral |
-
2012
- 2012-04-04 FR FR1253108A patent/FR2989107B1/fr active Active
-
2013
- 2013-04-03 WO PCT/FR2013/050735 patent/WO2013150243A1/fr active Application Filing
- 2013-04-03 BR BR112014024567-3A patent/BR112014024567B1/pt active IP Right Grant
- 2013-04-03 EP EP13719976.6A patent/EP2834470B1/fr active Active
- 2013-04-03 CA CA2868655A patent/CA2868655C/fr active Active
- 2013-04-03 US US14/390,566 patent/US10018050B2/en active Active
- 2013-04-03 RU RU2014144262A patent/RU2635734C2/ru active
- 2013-04-03 CN CN201380017945.8A patent/CN104246136B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB680036A (en) * | 1949-04-26 | 1952-10-01 | Francis Henry Keast | Blading for rotary compressors, turbines and the like |
US4012172A (en) * | 1975-09-10 | 1977-03-15 | Avco Corporation | Low noise blades for axial flow compressors |
US6071077A (en) * | 1996-04-09 | 2000-06-06 | Rolls-Royce Plc | Swept fan blade |
EP1333181A1 (fr) * | 2001-05-24 | 2003-08-06 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Aube fixe de soufflante faible bruit |
US6554564B1 (en) * | 2001-11-14 | 2003-04-29 | United Technologies Corporation | Reduced noise fan exit guide vane configuration for turbofan engines |
FR2851798A1 (fr) | 2003-02-27 | 2004-09-03 | Snecma Moteurs | Aube en fleche de turboreacteur |
US20100054946A1 (en) | 2008-09-04 | 2010-03-04 | John Orosa | Compressor blade with forward sweep and dihedral |
Non-Patent Citations (6)
Title |
---|
"Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting from Heavy Tip Rubs Using An Implicit Time Marching Method", ASME TURBO EXPO 2011, 6 June 2011 (2011-06-06) |
JÖRG BERGNER ET AL: "Influence of sweep on the 3D shock structure in an axial transonic compressor", PROCEEDINGS OF GT2005 ASME TURBO EXPO 2005: POWER FOR LAND, SEA AND AIR JUNE 6-9, 2005, RENO-TAHOE, NEVADA, USA, 9 June 2005 (2005-06-09), pages 1 - 10, XP055057889, Retrieved from the Internet <URL:http://www.triebwerk.info/en/technologies/engineering_news/development/Steinhardt_Influence_of_Sweep_en.pdf> [retrieved on 20130326] * |
JÔRG BERGNER; STEPHAN KABLITZ; DIETMAR K. HENNECKE; HARALD PASSRUCKER; ERICH STEINHARDT: "Influence of Sweep On The 3D Shock Structure In An Axial Transonic Compressor", ASME TURBO EXPO 2005 : POWER FOR LAND SEA AND AIR, 6 June 2005 (2005-06-06) |
KEVIN E. TURNER ET AL: "Airfoil Deflection Characteristics During Rub Events", JOURNAL OF TURBOMACHINERY, vol. 134, no. 1, 31 May 2011 (2011-05-31), pages 011018-1 - 011018-8, XP055057872, ISSN: 0889-504X, DOI: 10.1115/1.4003257 * |
KEVIN E. TURNER; MICHAEL DUNN; CORSO PADOVA: "Airfoil Deflection Characteristics During Rub Events", ASME TURBO EXPO 2010 : POWER FOR LAND SEA AND AIR, 14 June 2010 (2010-06-14) |
ROBIN J. WILLIAMS: "Simulation of blade casing interaction phenomena in gas turbines resulting from heavy tip rubs using an implicit time marching method", PROCEEDINGS OF GT2011 ASME TURBO EXPO 2011: STRUCTURES AND DYNAMICS, JUNE 6-10, 2011, VANCOUVER, BRITISH COLUMBIA, CANADA, vol. 6B, 6 June 2011 (2011-06-06) - 9 June 2011 (2011-06-09), New York, pages 1007 - 1016, XP009168395, ISBN: 978-0-7918-5466-2, DOI: 10.1115/GT2011-45495 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3108117A4 (fr) * | 2014-02-19 | 2017-03-22 | United Technologies Corporation | Profil aérodynamique de turbine à gaz |
EP3108104A4 (fr) * | 2014-02-19 | 2018-05-23 | United Technologies Corporation | Surface portante de moteur à turbine à gaz |
EP3108117B1 (fr) | 2014-02-19 | 2020-02-05 | United Technologies Corporation | Profil aérodynamique de turbine à gaz |
US11391294B2 (en) | 2014-02-19 | 2022-07-19 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US11408436B2 (en) | 2014-02-19 | 2022-08-09 | Raytheon Technologies Corporation | Gas turbine engine airfoil |
US11867195B2 (en) | 2014-02-19 | 2024-01-09 | Rtx Corporation | Gas turbine engine airfoil |
EP2990604A1 (fr) * | 2014-08-27 | 2016-03-02 | Pratt & Whitney Canada Corp. | Surfaces portantes rotatif et procede de formation d'une aube |
US10443390B2 (en) | 2014-08-27 | 2019-10-15 | Pratt & Whitney Canada Corp. | Rotary airfoil |
EP3361051A1 (fr) * | 2017-02-14 | 2018-08-15 | Rolls-Royce plc | Aube de ventilateur de turbine à gaz à inclinaison axiale |
Also Published As
Publication number | Publication date |
---|---|
BR112014024567B1 (pt) | 2022-01-11 |
CN104246136B (zh) | 2016-05-04 |
FR2989107B1 (fr) | 2017-03-31 |
CA2868655A1 (fr) | 2013-10-10 |
CN104246136A (zh) | 2014-12-24 |
US20150118059A1 (en) | 2015-04-30 |
RU2635734C2 (ru) | 2017-11-15 |
EP2834470A1 (fr) | 2015-02-11 |
CA2868655C (fr) | 2020-05-05 |
RU2014144262A (ru) | 2016-05-27 |
BR112014024567A2 (fr) | 2017-06-20 |
FR2989107A1 (fr) | 2013-10-11 |
EP2834470B1 (fr) | 2020-11-11 |
US10018050B2 (en) | 2018-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2868655C (fr) | Aube de rotor de turbomachine | |
EP1462608B1 (fr) | Aube de redresseur à double courbure | |
EP2721306B1 (fr) | Élément de turbomachine | |
EP1980753B1 (fr) | Aube de soufflante | |
EP1693572A2 (fr) | Prélèvement en tête des roues mobiles de compresseur haute pression de turboréacteur | |
CA2836040C (fr) | Rouet de compresseur centrifuge | |
EP2673473B1 (fr) | Ensemble pale-plateforme pour ecoulement supersonique. | |
EP2669475A1 (fr) | Aube a profil en S de compresseur de turbomachine axiale, compresseur et turbomachine associée | |
FR2965292A1 (fr) | Carenage d'extremite d'aube mobile de turbine destine a servir avec un systeme de limitation de jeu d'extremite | |
EP3334905B1 (fr) | Aube de rotor de compresseur de turbomachine | |
FR2935348A1 (fr) | Turbomachine a helices non carenees | |
BE1030761B1 (fr) | Aube pour stator de turbomachine | |
WO2020120898A1 (fr) | Aube de turbomachine a loi d'epaisseur maximale a forte marge au flottement | |
FR2989415A1 (fr) | Aube de turbine axiale | |
FR3089551A1 (fr) | AUBE DE TURBOMACHINE A LOI DE CORDe A FORTE MARGE AU FLOTTEMENT | |
FR3108664A1 (fr) | Rotor de soufflante comprenant des aubes à centre de gravité en amont | |
CA3122856A1 (fr) | Aube de turbomachine a loi de fleche a forte marge au flottement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380017945.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13719976 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2868655 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013719976 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14390566 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014144262 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014024567 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014024567 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141001 |