WO2013148408A1 - Benzoxazines and compositions containing the same - Google Patents

Benzoxazines and compositions containing the same Download PDF

Info

Publication number
WO2013148408A1
WO2013148408A1 PCT/US2013/032897 US2013032897W WO2013148408A1 WO 2013148408 A1 WO2013148408 A1 WO 2013148408A1 US 2013032897 W US2013032897 W US 2013032897W WO 2013148408 A1 WO2013148408 A1 WO 2013148408A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzoxazine
blend
alkyl
resin composition
aryl
Prior art date
Application number
PCT/US2013/032897
Other languages
French (fr)
Inventor
Steven Richard WARD
Mark Edward HARRIMAN
Original Assignee
Cytec Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cytec Technology Corp. filed Critical Cytec Technology Corp.
Priority to MX2014010321A priority Critical patent/MX349687B/en
Priority to BR112014019823A priority patent/BR112014019823B1/en
Priority to KR1020147024424A priority patent/KR102043742B1/en
Priority to JP2015503366A priority patent/JP6153234B2/en
Priority to RU2014135227A priority patent/RU2014135227A/en
Priority to CA2868786A priority patent/CA2868786C/en
Priority to ES13713697.4T priority patent/ES2639856T3/en
Priority to AU2013240174A priority patent/AU2013240174B2/en
Priority to CN201380009038.9A priority patent/CN104105693B/en
Priority to EP13713697.4A priority patent/EP2831052B1/en
Publication of WO2013148408A1 publication Critical patent/WO2013148408A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/161,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with only hydrogen or carbon atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • benzoxazines offer a number of advantages as compared to other thermosetting resins including relatively long shelf-life, molecular design flexibility, low cost, high glass transition temperature (T g ), high modulus, relatively low viscosities, good flame retardant properties, low moisture absorption, no by-products released during curing and very low shrinkage upon curing. Furthermore, benzoxazines are capable of being self-cured upon heating; i.e. there is no need for an additional curing agent. This combination of properties means benzoxazines are potentially attractive for use in aerospace applications. In particular they may be useful as the thermosetting matrix in composite materials. However, currently available multifunctional benzoxazines are glassy solids at temperatures below 120°C making them difficult to process using standard aerospace techniques such as prepregging and resin infusion.
  • Prepregging refers to the process of impregnating unidirectionally aligned reinforcing fibers or woven fabric with a resin matrix to form prepregs in the form of tapes or sheets. These prepregs are then layered onto each other in a particular orientation on a tool to form a laminate. The prepreg lay-up is then subjected to elevated temperature and pressure to cure and consolidate the composite part. The method of pressure application is dependent on the part and configuration, but the use of an autoclave is most common for high-performance structural parts. The prepregs must have a certain amount of tack and drape in order to mold properly. "Tack” is the ability of prepreg plies to stick together, while “drape” is the ability of the prepreg to conform to different contours.
  • Resin infusion approach differs from that of conventional prepregging in that dry structural reinforcement fibers are placed into a mold cavity or other shaping tool, and a matrix resin is injected or infused into the structural reinforcement fibers.
  • Resin infusion covers processing techniques such as Resin Transfer Molding (RTM), Liquid Resin Infusion (LRI), Resin Infusion under Flexible Tooling (RIFT), Vacuum Assisted Resin Transfer Molding (VARTM), Resin Film Infusion (RFI) and the like.
  • RTM Resin Transfer Molding
  • LRI Liquid Resin Infusion
  • RIFT Resin Infusion under Flexible Tooling
  • VARTM Vacuum Assisted Resin Transfer Molding
  • RFI Resin Film Infusion
  • Such conventional techniques require the resins to be of relatively low viscosity and to be thermally stable at processing temperatures.
  • a benzoxazine blend containing one or more monofunctional benzoxazine compounds having at least one electron-withdrawing group and one or more multifunctional benzoxazine compounds.
  • This benzoxazine blend is combinable with additional components such as catalysts and toughening agents to form a curable resin composition suitable for forming resinous films or composite materials.
  • the presence of monofunctional benzoxazine improves the processability of the benzoxazine-based resin composition by reducing the viscosity of the resin composition, and results in improved tack and drape in the films and composite materials formed from the composition without the loss of modulus in the cured resin.
  • the monofunctional benzoxazine compounds offer increased stability at the high temperatures that are typically used in the curing cycles of aerospace applications as compared to the currently available benzoxazine systems.
  • a further benefit of the electron withdrawing group is a decrease in the cure onset temperature, thereby allowing for beneficial modifications to the curing cycles.
  • FIG. 1 shows cured samples based on different blends of Bisphenol A-benzoxazine and fluorinated liquid benzoxazine formed from 3-fluorophenol and m-toluidine.
  • FIG. 2 shows the Differential Scanning Calorimetry (DSC) curve and reactivity table for Bisphenol-A benzoxazine.
  • FIG. 3A shows the DSC activation energy curves and reactivity table for certain fluorinated benzoxazines.
  • FIG. 3B shows the DSC activation energy curves and reactivity table for certain chlorinated benzoxazines.
  • FIG. 4 shows the DSC activation energy curve and reactivity table for an alkylated liquid benzoxazine.
  • FIG. 5 shows blends of alkylated liquid benzoxazine and Bisphenol-A benzoxazine at different weight ratios.
  • FIG. 6 shows the DSC activation energy curve and reactivity table for a commercially available liquid benzoxazine RD2009-008.
  • FIG. 7 shows a cured resin sample formed from a blend of RD2009-008 (32%) and Bisphenol-A benzoxazine (68%.)
  • FIG. 8 shows Thermal Gravimetric Analysis (TGA) curves for various liquid benzoxazines.
  • FIG. 9 shows resin samples formed from 100% Bisphenol-A benzoxazine (a), 80:20 Bisphenol-A:3-fluoro benzoxazine (b), and 50:50 Bisphenol-A:3-fluoro benzoxazine (c), after being heated to 300 ° C.
  • One aspect of the present disclosure is to provide a benzoxazine blend that retains all of the beneficial properties of neat multifunctional benzoxazines, and at the same time, exhibits thermal mechanical properties suitable for high-performance aerospace applications.
  • multifunctional benzoxazines are latent until heat is applied and typically require cure temperatures of 180 ° C or greater.
  • benzoxazine hybrid systems based on epoxy-benzoxazine blends are commercially available, but the addition of the epoxy as a co- reactant negates some of the benefits brought on by neat benzoxazines.
  • Liquid monofunctional benzoxazines are also available but they suffer from being very unstable at temperatures normally used for curing cycles in aerospace applications.
  • liquid monofunctional benzoxazine improves the processability of the benzoxazine-based resin composition by reducing the viscosity of the uncured composition, making it suitable for impregnation/infusion of reinforcing fibers. Furthermore, the presence of liquid monofunctional benzoxazine improves the handling characteristics (e.g. tack and drape) of the uncured (or partially cured) composite material (e.g. prepreg) made from the benzoxazine-based resin composition without a loss of modulus in the cured resin.
  • Two physical properties desired of film adhesives and prepregs are tack and drape at their intended use temperature. Tack is necessary to ensure correct placement of the prepreg when laying up composite parts. Drape is necessary in order that the composite parts having shapes other than planar may be easily fabricated. As such, benzoxazine-based resins with increased tack and drape enable the fabrication of composite parts with complex shapes.
  • monofunctional benzoxazine refers to a compound in which there is a single benzoxazine moiety
  • multifunctional benzoxazine refers to a compound in which there are two or more benzoxazine moieties, thereby enabling the formation of cross-linked network.
  • the substituted monofunctional benzoxazines of the present disclosure are based on electron-withdrawing substituted derivatives, and could be in liquid form at ambient temperature (20 ° C-25 ° C).
  • these substituted monofunctional benzoxazines offer increased stability at the high temperatures typically used in aerospace cure cycles (e.g. 180°C or greater) compared to the currently available liquid benzoxazines.
  • a further benefit of the electron-withdrawing group is a decrease in the cure onset temperature allowing for beneficial modifications to the cure cycle.
  • these monofunctional benzoxazines are particularly suitable for use in aerospace applications due to the increase in thermal stability over currently available liquid benzoxazines, thereby allowing for the blending of monofunctional benzoxazines with multifunctional benzoxazines, and subsequent curing at high temperature without degradation.
  • the presence of monofunctional benzoxazines with the electron- withdrawing groups in benzoxazine systems containing multifunctional benzoxazines has been found to lower the activation energy which decreases the temperature at which they react. Without being bound to any particular theory, it is believed that the decreased cure onset is a consequence of the intermediate or transition state of the monofunctional benzoxazine structure being more stable, thus, less energy is needed to initiate polymerization.
  • a decrease in cure onset temperature could allow for the use of lower temperature cure cycles, the removal of the post cure time, or curing with a shorter cure time as compared to benzoxazine systems with no electron-withdrawing substituents. These benefits are observed without a loss of glass transition temperature (T g ) or modulus in the cured resin.
  • T g glass transition temperature
  • modulus of the cured resin, as discussed herein, includes flexural modulus and tensile modulus.
  • Xi, X 2 , X 3 , X 4 is an electron-withdrawing group selected from a halogen (such as F, CI, Br, I), -COH, -COCH 3 , -COOCH 3 , -S0 3 H, N0 2 , CF 3 , or CCI 3 , and the others are independently selected from hydrogen (H), alkyl (preferably d -8 alkyl), cycloalkyi (preferably C5.7 cycloalkyi, more preferably C 6 cycloalkyi), and aryl, wherein the cycloalkyi and aryl groups are optionally substituted, for instance by Ci_ 8 alkyl, halogen and amine groups, and preferably by d. 8 alkyl;
  • a halogen such as F, CI, Br, I
  • R 2 , R 3 , R 4 , R 5 are independently selected from: H; alkyl (preferably Ci -8 alkyl); cycloalkyi (preferably C 5 . 7 cycloalkyi, more preferably C 6 cycloalkyi); aryl; wherein the cycloalkyi and aryl groups are optionally substituted, for instance by Ci -8 alkyl, halogen and amine groups, and preferably by Ci -8 alkyl; an electron-donating group such as alkoxy (e.g. methoxy -OCH 3 ), -CH3, phenyl, -NHCOR, OCOR, NH 2 , and OH.
  • alkoxy e.g. methoxy -OCH 3
  • -CH3 phenyl
  • -NHCOR OCOR
  • substituted monofunctional benzoxazine examples include the following structures:
  • the substituted monofunctional benzoxazine compound discussed above is a reaction product of a phenol (represented by Formula II), an aromatic amine (represented by Formula III), and an aldehyde.
  • X 4 in Formula II and Ri , R 2 , R 3 , R 4 , R5 in Formula II I are as defined above in reference to Formula I.
  • the preferred aldehyde is formaldehyde (H-CHO).
  • the substituted monofunctional benzoxazine compounds may be formed by ring formation in a compatible solvent or in a solventless system.
  • the synthesis of monofunctional benzoxazine monomers using phenol, amine and aldehyde as reactants is well known in the art. Generally, the reactants are mixed at a temperature which causes the reactants to combine chemically, and the reactants are maintained at this temperature for a time period sufficient to form the benzoxazine compounds.
  • the monofunctional benzoxazine compounds with halogen substituents may be formed by reacting halogenated phenol with aromatic amine in the presence of formaldehyde or paraformaldehyde as represented by the following exemplary reaction:
  • the benzoxazine product formed will be a blend of isomers represented by the following structures:
  • this isomer blend may exist as a blend with the ratio of compound (IV) to compound (V) in the range of 70:30 to 80:20.
  • the substituted monofunctional benzoxazine contains both an electron-withdrawing substituent and an electron-donating substituent. It has been discovered that the presence of the electron-donating substituent further enhances reactivity during polymerization.
  • a halogenated phenol may be reacted with an amine having -OCH 3 as an electron-donating substituent and formaldehyde to form a substituted monofunctional benzoxazine as follows:
  • X is a halogen such as fluorine (F) or chlorine (CI).
  • one or more of the substituted monofunctional benzoxazine compounds discussed above may be mixed with one or more multifunctional benzoxazine compounds to form a benzoxazine blend that is combinable with additional components such as tougheners and catalysts to form a curable resin composition.
  • the total amount of monofunctional and multifunctional benzoxazines in the resin composition may be adjusted to obtain the desired properties for the uncured composition (such as reactivity, viscosity, tack and drape) and in the cured composition (such as T g , modulus, toughness etc).
  • the viscosity of the curable resin composition may be adjusted by the appropriate proportions of monofunctional and multifunctional benzoxazines to achieve certain T g for the uncured resin and to impart the required tack and drape to the uncured composite material (e.g. prepreg) formed from the resin composition.
  • the weight ratio of multifunctional benzoxazine(s) to substituted monofunctional benzoxazine may be varied within the range of 99.9:0.1 to 0.1 :99.9. In some embodiments, the weight ratio of multifunctional benzoxazine(s) to substituted monofunctional benzoxazine may be 99.9:0.1 to 50:50. Even at high
  • the composition remains thermally stable (i.e., is not degraded) during curing at temperature equal to or above 180 ° C, e.g. 180 ° C - 200 ° C.
  • a "curable resin composition” refers to a composition prior to curing.
  • the monofunctional and multifunctional benzoxazine compounds readily polymerize via ring opening polymerization. Such polymerization may be initiated cationically (using cationic initiators) or thermally.
  • the multifunctional benzoxazine may be a compound (monomer or oligomer) in which there are two or more benzoxazine moieties, enabling the formation of cross-linked polymer matrix.
  • Any conventional multifunctional benzoxazine compounds, including di-functional, tri- functional and tetra-functional benzoxazines, may be combined with the substituted monofunctional benzoxazine compounds described above to form a benzoxazine blend.
  • the multifunctional benzoxazine may be represented by the following formula (VI):
  • Z is selected from a direct bond, -C(R 3 )(R 4 )-, -C(R 3 )(aryl)-, -C(O)-, -S-, -0-, -S(O)-, -S(0) 2 -, a divalent heterocycle and -[C(R 3 )(R 4 )] x -arylene-[C(R 5 )(R 6 )] y -, or the two benzyl rings of the benzoxazine moieties may be fused; and
  • R and R 2 are independently selected from alkyl (preferably Ci -8 alkyl), cycloalkyl (preferably C 5 - 7 cycloalkyl, preferably C 6 cycloalkyl) and aryl, wherein the cycloalkyl and aryl groups are optionally substituted, for instance by Ci -8 alkyl, halogen and amine groups, and preferably by Ci-8 alkyl, and where substituted, one or more substituent groups (preferably one substituent group) may be present on the or each cycloalkyl and aryl group;
  • R 3 , R 4 , R 5 and R 6 are independently selected from H, Ci-8 alkyl (preferably Ci -4 alkyl, and preferably methyl), and halogenated alkyl (wherein the halogen is typically chlorine or fluorine (preferably fluorine) and wherein the halogenated alkyl is preferably CF 3 ); and x and y are independently 0 or 1 .
  • Z is selected from a direct bond, -C(R 3 )(R 4 )-, -C(R 3 )(aryl)-, -C(O)-, -S-, -0-, a divalent heterocycle and -[C(R 3 )(R 4 )] x -arylene-[C(R 5 )(R 6 )] y -, or the two benzyl rings of the benzoxazine moieties may be fused.
  • Z is selected from a divalent heterocycle, it is preferably 3, 3-isobenzofuran- 1 (3h)-one, i.e. wherein the compound of formula (VI) is derived from phenolphthalein.
  • the chain linking the two benzoxazine groups may further comprise, or be optionally interrupted by, one or more arylene group(s) and/or one or more -C(R 7 )(R 8 )- group(s) (where R 7 and R 8 are independently selected from the groups defined hereinabove for R 3 ), provided that the or each substituted or unsubstituted methylene group is not adjacent to another substituted or unsubstituted methylene group.
  • the arylene group is phenylene.
  • the groups attached to the phenylene group may be configured in para- or meta-positions relative to each other.
  • the aryl group is phenyl.
  • the group ⁇ ⁇ may be linear or non-linear, and is typically linear.
  • the group ⁇ ⁇ is preferably bound to the benzyl group of each of the benzoxazine moieties at the para-position relative to the oxygen atom of the benzoxazine moieties, as shown in formula (VI), and this is the preferred isomeric configuration.
  • the group ⁇ ⁇ may also be attached at either of the meta-positions or the ortho-position, in one or both of the benzyl group(s) in the bis- benzoxazine compound.
  • the group ⁇ may be attached to the benzyl rings in a para/para; para/meta; para/ortho, meta/meta or ortho/meta configuration.
  • thermoset benzoxazine resin component (A) comprises a mixture of isomers, preferably wherein the major portion of the mixture is the para/para isomer shown in formula (VI), and preferably this is present in at least 75mol%, preferably at least 90mol%, and preferably at least 99mol%, of the total isomeric mixture.
  • the multifunctional benzoxazine is selected from compounds wherein Z is selected from -C(CH 3 ) 2 -, -CH 2 - and 3,3-isobenzofuran-1 (3H)-one, i.e. benzoxazine derivatives of bisphenol A, bisphenol F and phenolphthalein.
  • the multifunctional benzoxazine is selected from compounds wherein R and R 2 are independently selected from aryl, preferably phenyl.
  • the aryl group may be substituted, preferably wherein the substituent(s) are selected from d -8 alkyl, and preferably wherein there is a single substituent present on at least one aryl group.
  • Ci -8 alkyl includes linear and branched alkyl chains.
  • R and R 2 are independently selected from unsubstituted aryl, preferably unsubstituted phenyl.
  • each benzoxazine group of the multifunctional benzoxazine compounds defined herein may be independently substituted at any of the three available positions of each ring, and typically any optional substituent is present at the position ortho to the position of attachment of the Z group. Preferably, however, the benzyl ring remains unsubstituted.
  • the substituted monofunctional benzoxazine disclosed herein, in isolation or in a blend with one or more multifunctional benzoxazines, may be combined with additional components to form a curable resin composition suitable for the manufacture of resinous films (e.g. adhesive films, surfacing films) or fiber-reinforced composites (e.g. prepregs).
  • resinous films e.g. adhesive films, surfacing films
  • fiber-reinforced composites e.g. prepregs
  • the addition of catalysts is optional, but the use of such may increase the cure rate and/or reduce the cure temperatures.
  • Suitable catalysts for the benzoxazine-based resin composition include, but are not limited to, Lewis acids, such as phenols and derivatives thereof, strong acids, such as alkylenic acids, methyl tosylate, cyanate esters, p-toluenesulfonic acid, 2-ethyl-4- methylimidazole (EMI), 2,4-di-tert-butylphenol, BF 3 0(Et) 2 , adipic acid, organic acids, phosphorous pentachloride (PCI 5 ).
  • Lewis acids such as phenols and derivatives thereof
  • strong acids such as alkylenic acids, methyl tosylate, cyanate esters, p-toluenesulfonic acid, 2-ethyl-4- methylimidazole (EMI), 2,4-di-tert-butylphenol, BF 3 0(Et) 2 , adipic acid, organic acids, phosphorous pentachloride (PCI
  • Toughening agents may be added to produce a toughened resin matrix suitable for manufacturing advanced composite structures.
  • Suitable toughening agents include, but are not limited to, thermoplastic toughening agents such as polyethersulphone (PES), co-polymer of PES and polyetherethersulphone (PEES) (e.g. KM 180 from Cytec Industries Inc.), elastomers, including liquid rubbers having reactive groups, particulate toughening agents such as thermoplastic particles, glass beads, rubber particles, and core- shell rubber particles.
  • Functional additives may also be included to influence one or more of mechanical, rheological, electrical, optical, chemical, flame resistance and/or thermal properties of the cured or uncured resin composition.
  • functional additives include, but are not limited to, fillers, color pigments, rheology control agents, tackifiers, conductive additives, flame retardants, ultraviolet (UV) protectors, and the like.
  • UV ultraviolet
  • additives may take the form of various geometries including, but are not limited to, particles, flakes, rods, and the like.
  • the curable resin composition contains substituted monofunctional benzoxazine in combination with di-functional benzoxazine and tri-functional benzoxazine, and one or more additives discussed above.
  • the curable resin composition as discussed above may be combined with reinforcement fibers to form a composite material or structure.
  • Reinforcing fibers may take the form of whiskers, short fibers, continuous fibers, filaments, tows, bundles, sheets, plies, and combinations thereof.
  • Continuous fibers may further adopt any of unidirectional, multidirectional, non-woven, woven, knitted, stitched, wound, and braided configurations, as well as swirl mat, felt mat, and chopped-fiber mat structures.
  • the composition of the fibers may be varied to achieve the required properties for the final composite structure.
  • Exemplary fiber materials may include, but are not limited to, glass, carbon, graphite, aramid, quartz, polyethylene, polyester, poly-p-phenylene-benzobisoxazole (PBO), boron, polyamide, graphite, silicon carbide, silicon nitride, and combinations thereof.
  • PBO poly-p-phenylene-benzobisoxazole
  • a solvent for example, a halogenated hydrocarbon or an alcohol, or combination thereof
  • the solvent and the proportion thereof are chosen so that the mixture of the components forms at least a stable emulsion, preferably a stable single-phase solution. Thereafter, the solvent is removed by evaporation to yield a resin composition.
  • the reinforcing fibers are impregnated or infused with the curable resin composition using conventional processing techniques such as prepregging and resin infusion.
  • curing is carried out at elevated temperature up to 200 ⁇ , preferably in the range of ⁇ ⁇ ' ⁇ to 200 ⁇ , more preferably at about 170 ⁇ - " ⁇ ⁇ ' ⁇ , and with the use of elevated pressure to restrain deforming effects of escaping gases, or to restrain void formation, suitably at pressure of up to 10 bar, preferably in the range of 3 to 7 bar abs.
  • the cure temperature is attained by heating at up to for example 2° to SOmin and is maintained for the required period of up to 9 hours, preferably up to 6 hours, for example 3 to 4 hours. Pressure is released throughout and temperature reduced by cooling at up to for example up to SOmin. Post-curing at temperatures in the range of ⁇ ⁇ ' ⁇ to 200 ⁇ may be performed, at atmospheric pressure, employing suitable heating rates to improve the glass transition temperature of the product or otherwise.
  • a resin film may be formed from the curable resin composition by, for example, compression moulding, extrusion, melt-casting or belt-casting, followed by laminating such film to one or both opposing surfaces of a layer of reinforcement fibers in the form of, for example, a non-woven mat of relatively short fibers, a woven fabric of continuous fibers, or a layer of unilaterally aligned fibers (i.e., fibers aligned along the same direction), at temperature and pressure sufficient to cause the resin film to flow and impregnate the fibers.
  • a layer of reinforcement fibers in the form of, for example, a non-woven mat of relatively short fibers, a woven fabric of continuous fibers, or a layer of unilaterally aligned fibers (i.e., fibers aligned along the same direction), at temperature and pressure sufficient to cause the resin film to flow and impregnate the fibers.
  • the prepreg may be fabricated by providing the curable resin composition in liquid form, and passing the layer of fibers through the liquid resin composition to infuse the layer of fibers with the heat curable composition, and removing the excess resin from the infused fibrous layer.
  • the presence of substituted monofunctional benzoxazine results in prepregs with improved tack and drape as compared to those formed from the same resin composition without such substituted monofunctional benzoxazine.
  • plies of impregnated reinforcing fibers are laid up on a tool and laminated together by heat and pressure, for example by autoclave, vacuum or compression moulding, or by heated rollers, at a temperature above the curing temperature of the resin composition or, if curing has already taken place, above the glass transition temperature of the resin, typically, at least 180° C and up to 200 °C, and at a pressure in particular in excess of 1 bar, preferably in the range of 1 -10 bar.
  • the resulting multi-ply layup may be anisotropic in which the fibres are continuous and unidirectional, orientated essentially parallel to one another, or quasi-isotropic in which the fibres in a ply are orientated at an angle, e.g. 45°, 30°, 60° or 90°, relative to those in the plies above and below. Orientations intermediate between anisotropic and quasi-isotropic, and combination thereof, may also be provided. Woven fabrics are an example of quasi-isotropic or intermediate between anisotropic and quasi-isotropic. Suitable layup contains at least 4, preferably at least 8 plies.
  • the number of plies is dependent on the application for the layup, for example, the strength required, and layups containing 32 or even more, for example several hundred, plies may be desirable to form large composite parts.
  • the first step is to form a dry fiber preform in the shape of the desired structural part.
  • the preform generally includes a number of fabric layers or plies made from dry reinforcement fibers that impart the desired reinforcing properties to a resulting composite part.
  • the preform is placed in a mold.
  • the curable resin composition is injected/infused directly into fiber preform, and then the resin-infused preform is cured.
  • Liquid monofunctional benzoxazines were prepared by the following method:
  • the blended material was stirred while the glass jar is being placed in an oil bath heated to 1 15 °C for 40 minutes.
  • the oil bath was increased in temperature to 120 ⁇ and mixing continued for a further 20 minutes.
  • the final product was dried under vacuum at 60 ⁇ in a vacuum oven for 2 hours.
  • Table 1 discloses five substituted monofunctional benzoxazines that were prepared by this method using phenol and amine reactants.
  • the jar was immersed in an oil bath heated at 90 ⁇ for 30 minutes and then the blend of materials was stirred at 90 ⁇ for 45 minutes 4. The blend was removed from the oil bath and poured into aluminum dishes.
  • the degassed benzoxazine blends were cured using the following cure cycle: 25 C to 180 C at 1 C/min, held for 2 hours, 180 C to 200 C at 1 C/min, held for 2 hours, 200 C to 25 C at 2 C/min.
  • FIG. 1 shows cured samples based on blends of Bisphenol A-benzoxazine and 3-fluorophenol, m- toluidine benzoxazine (Structure 2 in Table 1 ) at different weight ratios of Bisphenol-A benzoxazine:fluorinated benzoxazine.
  • FIG. 2 shows the DSC curve for Bisphenol-A benzoxazine.
  • FIG. 3A shows the DSC curves for fluorinated benzoxazines and
  • FIG. 3B shows the DSC curves for chlorinated benzoxazines. It can be seen from FIGS. 2, 3A, and 3B that the effect of the halogen group on reactivity is greatest when it is in the meta position relative to the oxygen.
  • alkylated liquid benzoxazine which does not contain an electron- withdrawing group, was formed from m-cresol, m-toluidine and paraformaldehyde using the method described in Example 1 .
  • the alkylated liquid benzoxazine has the following structure:
  • FIG. 4 shows the DSC activation energy curve and reactivity table generated for this alkylated liquid benzoxazine. From FIG. 4, a higher activation energy and a lower conversion rate are seen as compared to the data shown in FIGS. 3A-3B for the halogenated liquid benzoxazines.
  • Blends of alkylated liquid benzoxazine and Bisphenol-A benzoxazine were formed based on Bisphenol-A benzoxazine:alkylated liquid benzoxazine weight ratio of 95:5, 90:10, 80:20, and 50:50.
  • the blends were then cured according the curing cycle described in Example 1 .
  • the cured blends are shown in FIG. 5.
  • FIG. 5 shows that the level of stability of the alkylated liquid benzoxazine when cured with Bisphenol-A benzoxazine is decreased with increasing amount of alkylated benzoxazine.
  • FIG. 6 shows the DSC activation energy curve and reactivity table for RD2009-008. From FIG. 6, again a higher activation energy and lower conversion rate are seen as compared to the data shown in FIGS. 3A-3B for the halogenated liquid benzoxazines.
  • FIG. 7 shows that the level of stability of the RD2009-008 material when cured with Bisphenol-A benzoxazine was also decreased.
  • FIG. 8 shows Thermal Gravimetric Analysis (TGA) curves for RD2009-008, alkylated liquid benzoxazine and fluorinated liquid benzoxazine (Example 1 , Structure 2). From FIG. 8, it can be seen that the stability of both the commercial RD2009-008 benzoxazine and the alkylated liquid benzoxazine show greater weight loss in TGA than that for the fluorinated liquid benzoxazine. This corresponds well with the greater stability shown in the optical images of FIG. 1 for fluorinated benzoxazine blends.
  • TGA Thermal Gravimetric Analysis
  • the halogenated liquid benzoxazines When cured, the halogenated liquid benzoxazines also showed higher performance (T g , torsional modulus) than the RD2009-008 benzoxazine blended with Bisphenol-A benzoxazine, see Table 2.
  • the uncured T g of the halogenated benzoxazine systems is lower than that of pure Bisphenol-A benzoxazine and that of the Bisphenol-A Benzoxazine/Epoxy blend.
  • This reduction in uncured T g relates to the malleability of the uncured sample.
  • the uncured T g should be approximately at or below room temperature.
  • Tack testing on the halogenated benzoxazine systems has shown an increase in tack when halogenated liquid benzoxazines were blended with Bisphenol-A benzoxazine as compared to pure Bisphenol-A benzoxazine or to the commercial Bisphenol-A benzoxazine/epoxy blend from Huntsman.
  • the increase in tack and malleability exhibited by the fluorinated and chlorinated benzoxazine blends should allow for easier processability.
  • FIG. 9 shows that there is an increase in thermal stability at high temperature as the result of adding the fluorinated liquid benzoxazine.
  • the top image (a) is the image for 100% Bisphenol- A benzoxazine
  • the middle image (b) is for 80:20 Bisphenol-A:3-fluoro benzoxazine
  • the bottom image (c) is for 50:50 Bisphenol-A:3-fluoro benzoxazine.
  • Table 4 shows that the cured samples of Bisphenol-A /3-fluoro benzoxazine blends retain similar T g and similar torsional modulus as compared to pure Bisphenol-A benzoxazine.
  • the 68%/32% blend also shows a flexural modulus that is comparable to that of pure Bisphenol A benzoxazine.
  • Test samples were in the form of rectangular bars (40 x 1 .4 x 4 mm), dried prior to analysis. T g measurements were recorded at peak tan delta while modulus values were recorded at 30 °C and T g + 40 °C.
  • Ranges disclosed herein are inclusive and independently combinable, and is inclusive of the endpoints and all intermediate values within the ranges.
  • the range of "1 % to 10%” includes 1 %, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% as well as intermediate values such as 1 .1 %, 1 .2%, 1 .3%, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

Disclosed herein are monofunctional benzoxazine compounds having at least one electron-withdrawing group. The monofunctional benzoxazine compounds may be combined with one or more multifunctional benzoxazine compounds to form a unique benzoxazine blend. This benzoxazine blend may be combined with additional components such as catalysts and toughening agents to form a curable resin composition suitable for forming resinous films or composite materials. The presence of monofunctional benzoxazine improves the processability of the benzoxazine-based resin composition by reducing the viscosity of the resin composition, and results in improved tack and drape in the films and composite materials formed from the composition without the loss of modulus in the cured resin.

Description

BENZOXAZINES AND COMPOSITIONS CONTAINING THE SAME
BACKGROUND
The use of benzoxazines offers a number of advantages as compared to other thermosetting resins including relatively long shelf-life, molecular design flexibility, low cost, high glass transition temperature (Tg), high modulus, relatively low viscosities, good flame retardant properties, low moisture absorption, no by-products released during curing and very low shrinkage upon curing. Furthermore, benzoxazines are capable of being self-cured upon heating; i.e. there is no need for an additional curing agent. This combination of properties means benzoxazines are potentially attractive for use in aerospace applications. In particular they may be useful as the thermosetting matrix in composite materials. However, currently available multifunctional benzoxazines are glassy solids at temperatures below 120°C making them difficult to process using standard aerospace techniques such as prepregging and resin infusion.
"Prepregging" refers to the process of impregnating unidirectionally aligned reinforcing fibers or woven fabric with a resin matrix to form prepregs in the form of tapes or sheets. These prepregs are then layered onto each other in a particular orientation on a tool to form a laminate. The prepreg lay-up is then subjected to elevated temperature and pressure to cure and consolidate the composite part. The method of pressure application is dependent on the part and configuration, but the use of an autoclave is most common for high-performance structural parts. The prepregs must have a certain amount of tack and drape in order to mold properly. "Tack" is the ability of prepreg plies to stick together, while "drape" is the ability of the prepreg to conform to different contours.
Resin infusion approach differs from that of conventional prepregging in that dry structural reinforcement fibers are placed into a mold cavity or other shaping tool, and a matrix resin is injected or infused into the structural reinforcement fibers. Resin infusion covers processing techniques such as Resin Transfer Molding (RTM), Liquid Resin Infusion (LRI), Resin Infusion under Flexible Tooling (RIFT), Vacuum Assisted Resin Transfer Molding (VARTM), Resin Film Infusion (RFI) and the like. Such conventional techniques require the resins to be of relatively low viscosity and to be thermally stable at processing temperatures.
SUMMARY Disclosed herein is a benzoxazine blend containing one or more monofunctional benzoxazine compounds having at least one electron-withdrawing group and one or more multifunctional benzoxazine compounds. This benzoxazine blend is combinable with additional components such as catalysts and toughening agents to form a curable resin composition suitable for forming resinous films or composite materials. The presence of monofunctional benzoxazine improves the processability of the benzoxazine-based resin composition by reducing the viscosity of the resin composition, and results in improved tack and drape in the films and composite materials formed from the composition without the loss of modulus in the cured resin. Through the addition of the electron withdrawing group, the monofunctional benzoxazine compounds offer increased stability at the high temperatures that are typically used in the curing cycles of aerospace applications as compared to the currently available benzoxazine systems. A further benefit of the electron withdrawing group is a decrease in the cure onset temperature, thereby allowing for beneficial modifications to the curing cycles.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows cured samples based on different blends of Bisphenol A-benzoxazine and fluorinated liquid benzoxazine formed from 3-fluorophenol and m-toluidine.
FIG. 2 shows the Differential Scanning Calorimetry (DSC) curve and reactivity table for Bisphenol-A benzoxazine.
FIG. 3A shows the DSC activation energy curves and reactivity table for certain fluorinated benzoxazines.
FIG. 3B shows the DSC activation energy curves and reactivity table for certain chlorinated benzoxazines.
FIG. 4 shows the DSC activation energy curve and reactivity table for an alkylated liquid benzoxazine.
FIG. 5 shows blends of alkylated liquid benzoxazine and Bisphenol-A benzoxazine at different weight ratios.
FIG. 6 shows the DSC activation energy curve and reactivity table for a commercially available liquid benzoxazine RD2009-008. FIG. 7 shows a cured resin sample formed from a blend of RD2009-008 (32%) and Bisphenol-A benzoxazine (68%.)
FIG. 8 shows Thermal Gravimetric Analysis (TGA) curves for various liquid benzoxazines.
FIG. 9 shows resin samples formed from 100% Bisphenol-A benzoxazine (a), 80:20 Bisphenol-A:3-fluoro benzoxazine (b), and 50:50 Bisphenol-A:3-fluoro benzoxazine (c), after being heated to 300°C.
DETAILED DESCRIPTION
One aspect of the present disclosure is to provide a benzoxazine blend that retains all of the beneficial properties of neat multifunctional benzoxazines, and at the same time, exhibits thermal mechanical properties suitable for high-performance aerospace applications. Currently available multifunctional benzoxazines are latent until heat is applied and typically require cure temperatures of 180°C or greater. Several benzoxazine hybrid systems based on epoxy-benzoxazine blends are commercially available, but the addition of the epoxy as a co- reactant negates some of the benefits brought on by neat benzoxazines. Liquid monofunctional benzoxazines are also available but they suffer from being very unstable at temperatures normally used for curing cycles in aerospace applications. It has been discovered that certain substituted monofunctional benzoxazines may be mixed with multifunctional benzoxazines to improve the processability of the multifunctional benzoxazine system, which are normally solid or semi-solid at room temperature. The benzoxazine blend is combinable with additional components such as toughening agents and catalysts to form a curable resin composition, which is suitable for forming resinous films (e.g. surfacing films, adhesive films) or advanced composite materials (e.g. prepregs) using conventional techniques such as prepregging and resin infusion. The presence of liquid monofunctional benzoxazine improves the processability of the benzoxazine-based resin composition by reducing the viscosity of the uncured composition, making it suitable for impregnation/infusion of reinforcing fibers. Furthermore, the presence of liquid monofunctional benzoxazine improves the handling characteristics (e.g. tack and drape) of the uncured (or partially cured) composite material (e.g. prepreg) made from the benzoxazine-based resin composition without a loss of modulus in the cured resin. Two physical properties desired of film adhesives and prepregs are tack and drape at their intended use temperature. Tack is necessary to ensure correct placement of the prepreg when laying up composite parts. Drape is necessary in order that the composite parts having shapes other than planar may be easily fabricated. As such, benzoxazine-based resins with increased tack and drape enable the fabrication of composite parts with complex shapes.
As used herein, "monofunctional benzoxazine" refers to a compound in which there is a single benzoxazine moiety, and "multifunctional benzoxazine" refers to a compound in which there are two or more benzoxazine moieties, thereby enabling the formation of cross-linked network.
The substituted monofunctional benzoxazines of the present disclosure are based on electron-withdrawing substituted derivatives, and could be in liquid form at ambient temperature (20°C-25°C). Through the addition of the electron-withdrawing groups, these substituted monofunctional benzoxazines offer increased stability at the high temperatures typically used in aerospace cure cycles (e.g. 180°C or greater) compared to the currently available liquid benzoxazines. A further benefit of the electron-withdrawing group is a decrease in the cure onset temperature allowing for beneficial modifications to the cure cycle. As such, these monofunctional benzoxazines are particularly suitable for use in aerospace applications due to the increase in thermal stability over currently available liquid benzoxazines, thereby allowing for the blending of monofunctional benzoxazines with multifunctional benzoxazines, and subsequent curing at high temperature without degradation. Furthermore, the presence of monofunctional benzoxazines with the electron- withdrawing groups in benzoxazine systems containing multifunctional benzoxazines has been found to lower the activation energy which decreases the temperature at which they react. Without being bound to any particular theory, it is believed that the decreased cure onset is a consequence of the intermediate or transition state of the monofunctional benzoxazine structure being more stable, thus, less energy is needed to initiate polymerization. Additionally, a decrease in cure onset temperature could allow for the use of lower temperature cure cycles, the removal of the post cure time, or curing with a shorter cure time as compared to benzoxazine systems with no electron-withdrawing substituents. These benefits are observed without a loss of glass transition temperature (Tg) or modulus in the cured resin. The "modulus" of the cured resin, as discussed herein, includes flexural modulus and tensile modulus.
The substituted monofunctional benzoxazine discussed above is a compound represented by the following Formula I:
Figure imgf000006_0001
wherein:
at least one of Xi, X2, X3, X4 is an electron-withdrawing group selected from a halogen (such as F, CI, Br, I), -COH, -COCH3, -COOCH3, -S03H, N02, CF3, or CCI3, and the others are independently selected from hydrogen (H), alkyl (preferably d-8 alkyl), cycloalkyi (preferably C5.7 cycloalkyi, more preferably C6 cycloalkyi), and aryl, wherein the cycloalkyi and aryl groups are optionally substituted, for instance by Ci_8 alkyl, halogen and amine groups, and preferably by d.8 alkyl;
Ft!, R2, R3, R4, R5 are independently selected from: H; alkyl (preferably Ci-8 alkyl); cycloalkyi (preferably C5.7 cycloalkyi, more preferably C6 cycloalkyi); aryl; wherein the cycloalkyi and aryl groups are optionally substituted, for instance by Ci-8 alkyl, halogen and amine groups, and preferably by Ci-8 alkyl; an electron-donating group such as alkoxy (e.g. methoxy -OCH3), -CH3, phenyl, -NHCOR, OCOR, NH2, and OH.
Examples of substituted monofunctional benzoxazine include the following structures:
(1 )
Figure imgf000006_0002
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
It has been found that the effect of the halogen group in the meta position (Structures 2 and 4) is the greatest on reactivity, as such this position is most preferred.
The substituted monofunctional benzoxazine compound discussed above is a reaction product of a phenol (represented by Formula II), an aromatic amine (represented by Formula III), and an aldehyde.
Figure imgf000007_0004
i , 2, 3, X4 in Formula II and Ri , R2, R3, R4, R5 in Formula II I are as defined above in reference to Formula I. Although various aldehydes may be used, the preferred aldehyde is formaldehyde (H-CHO).
The substituted monofunctional benzoxazine compounds may be formed by ring formation in a compatible solvent or in a solventless system. The synthesis of monofunctional benzoxazine monomers using phenol, amine and aldehyde as reactants is well known in the art. Generally, the reactants are mixed at a temperature which causes the reactants to combine chemically, and the reactants are maintained at this temperature for a time period sufficient to form the benzoxazine compounds.
In some embodiments, the monofunctional benzoxazine compounds with halogen substituents may be formed by reacting halogenated phenol with aromatic amine in the presence of formaldehyde or paraformaldehyde as represented by the following exemplary reaction:
Figure imgf000008_0001
For the above type of reaction, it should be noted that, when the electron-withdrawing substituent on the phenol compound is in the meta position as shown, the benzoxazine product formed will be a blend of isomers represented by the following structures:
Figure imgf000008_0002
(IV) wherein X is a halogen such as fluorine (F) or chlorine (CI). When synthesized, this isomer blend may exist as a blend with the ratio of compound (IV) to compound (V) in the range of 70:30 to 80:20.
In one embodiment, the substituted monofunctional benzoxazine contains both an electron-withdrawing substituent and an electron-donating substituent. It has been discovered that the presence of the electron-donating substituent further enhances reactivity during polymerization. As an example, a halogenated phenol may be reacted with an amine having -OCH3 as an electron-donating substituent and formaldehyde to form a substituted monofunctional benzoxazine as follows:
Figure imgf000009_0001
wherein X is a halogen such as fluorine (F) or chlorine (CI).
As discussed previously, one or more of the substituted monofunctional benzoxazine compounds discussed above may be mixed with one or more multifunctional benzoxazine compounds to form a benzoxazine blend that is combinable with additional components such as tougheners and catalysts to form a curable resin composition. The total amount of monofunctional and multifunctional benzoxazines in the resin composition may be adjusted to obtain the desired properties for the uncured composition (such as reactivity, viscosity, tack and drape) and in the cured composition (such as Tg, modulus, toughness etc). The viscosity of the curable resin composition may be adjusted by the appropriate proportions of monofunctional and multifunctional benzoxazines to achieve certain Tg for the uncured resin and to impart the required tack and drape to the uncured composite material (e.g. prepreg) formed from the resin composition. The weight ratio of multifunctional benzoxazine(s) to substituted monofunctional benzoxazine may be varied within the range of 99.9:0.1 to 0.1 :99.9. In some embodiments, the weight ratio of multifunctional benzoxazine(s) to substituted monofunctional benzoxazine may be 99.9:0.1 to 50:50. Even at high
concentration of substituted monofunctional benzoxazine, the composition remains thermally stable (i.e., is not degraded) during curing at temperature equal to or above 180°C, e.g. 180°C - 200°C.
As used herein, a "curable resin composition" refers to a composition prior to curing. Upon curing, the monofunctional and multifunctional benzoxazine compounds readily polymerize via ring opening polymerization. Such polymerization may be initiated cationically (using cationic initiators) or thermally.
The multifunctional benzoxazine may be a compound (monomer or oligomer) in which there are two or more benzoxazine moieties, enabling the formation of cross-linked polymer matrix. Any conventional multifunctional benzoxazine compounds, including di-functional, tri- functional and tetra-functional benzoxazines, may be combined with the substituted monofunctional benzoxazine compounds described above to form a benzoxazine blend.
In one embodiment, the multifunctional benzoxazine may be represented by the following formula (VI):
Figure imgf000010_0001
2 wherein:
Z is selected from a direct bond, -C(R3)(R4)-, -C(R3)(aryl)-, -C(O)-, -S-, -0-, -S(O)-, -S(0)2-, a divalent heterocycle and -[C(R3)(R4)]x-arylene-[C(R5)(R6)]y-, or the two benzyl rings of the benzoxazine moieties may be fused; and
R and R2 are independently selected from alkyl (preferably Ci-8 alkyl), cycloalkyl (preferably C5-7 cycloalkyl, preferably C6 cycloalkyl) and aryl, wherein the cycloalkyl and aryl groups are optionally substituted, for instance by Ci-8 alkyl, halogen and amine groups, and preferably by Ci-8 alkyl, and where substituted, one or more substituent groups (preferably one substituent group) may be present on the or each cycloalkyl and aryl group;
R3, R4, R5 and R6 are independently selected from H, Ci-8 alkyl (preferably Ci-4 alkyl, and preferably methyl), and halogenated alkyl (wherein the halogen is typically chlorine or fluorine (preferably fluorine) and wherein the halogenated alkyl is preferably CF3); and x and y are independently 0 or 1 .
In one embodiment, Z is selected from a direct bond, -C(R3)(R4)-, -C(R3)(aryl)-, -C(O)-, -S-, -0-, a divalent heterocycle and -[C(R3)(R4)]x-arylene-[C(R5)(R6)]y-, or the two benzyl rings of the benzoxazine moieties may be fused.
Where Z is selected from a divalent heterocycle, it is preferably 3, 3-isobenzofuran- 1 (3h)-one, i.e. wherein the compound of formula (VI) is derived from phenolphthalein.
Where Z is selected from -[C(R3)(R4)]x-arylene-[C(R5)(R6)]y-, then the chain linking the two benzoxazine groups may further comprise, or be optionally interrupted by, one or more arylene group(s) and/or one or more -C(R7)(R8)- group(s) (where R7 and R8 are independently selected from the groups defined hereinabove for R3), provided that the or each substituted or unsubstituted methylene group is not adjacent to another substituted or unsubstituted methylene group.
In a preferred embodiment, the arylene group is phenylene. In one embodiment, the groups attached to the phenylene group may be configured in para- or meta-positions relative to each other. In a preferred embodiment, the aryl group is phenyl.
The group Ζλ may be linear or non-linear, and is typically linear. The group Ζλ is preferably bound to the benzyl group of each of the benzoxazine moieties at the para-position relative to the oxygen atom of the benzoxazine moieties, as shown in formula (VI), and this is the preferred isomeric configuration. However, the group Ζλ may also be attached at either of the meta-positions or the ortho-position, in one or both of the benzyl group(s) in the bis- benzoxazine compound. Thus, the group Ζ may be attached to the benzyl rings in a para/para; para/meta; para/ortho, meta/meta or ortho/meta configuration. In one embodiment, the thermoset benzoxazine resin component (A) comprises a mixture of isomers, preferably wherein the major portion of the mixture is the para/para isomer shown in formula (VI), and preferably this is present in at least 75mol%, preferably at least 90mol%, and preferably at least 99mol%, of the total isomeric mixture.
In a preferred embodiment, the multifunctional benzoxazine is selected from compounds wherein Z is selected from -C(CH3)2-, -CH2- and 3,3-isobenzofuran-1 (3H)-one, i.e. benzoxazine derivatives of bisphenol A, bisphenol F and phenolphthalein.
In another embodiment, the multifunctional benzoxazine is selected from compounds wherein R and R2 are independently selected from aryl, preferably phenyl. In one embodiment, the aryl group may be substituted, preferably wherein the substituent(s) are selected from d-8 alkyl, and preferably wherein there is a single substituent present on at least one aryl group. Ci-8 alkyl includes linear and branched alkyl chains. Preferably, R and R2 are independently selected from unsubstituted aryl, preferably unsubstituted phenyl.
The benzyl ring in each benzoxazine group of the multifunctional benzoxazine compounds defined herein may be independently substituted at any of the three available positions of each ring, and typically any optional substituent is present at the position ortho to the position of attachment of the Z group. Preferably, however, the benzyl ring remains unsubstituted.
Curable resin composition and applications thereof
The substituted monofunctional benzoxazine disclosed herein, in isolation or in a blend with one or more multifunctional benzoxazines, may be combined with additional components to form a curable resin composition suitable for the manufacture of resinous films (e.g. adhesive films, surfacing films) or fiber-reinforced composites (e.g. prepregs). The addition of catalysts is optional, but the use of such may increase the cure rate and/or reduce the cure temperatures. Suitable catalysts for the benzoxazine-based resin composition include, but are not limited to, Lewis acids, such as phenols and derivatives thereof, strong acids, such as alkylenic acids, methyl tosylate, cyanate esters, p-toluenesulfonic acid, 2-ethyl-4- methylimidazole (EMI), 2,4-di-tert-butylphenol, BF30(Et)2, adipic acid, organic acids, phosphorous pentachloride (PCI5).
Toughening agents (or tougheners) may be added to produce a toughened resin matrix suitable for manufacturing advanced composite structures. Suitable toughening agents include, but are not limited to, thermoplastic toughening agents such as polyethersulphone (PES), co-polymer of PES and polyetherethersulphone (PEES) (e.g. KM 180 from Cytec Industries Inc.), elastomers, including liquid rubbers having reactive groups, particulate toughening agents such as thermoplastic particles, glass beads, rubber particles, and core- shell rubber particles.
Functional additives may also be included to influence one or more of mechanical, rheological, electrical, optical, chemical, flame resistance and/or thermal properties of the cured or uncured resin composition. Examples of such functional additives include, but are not limited to, fillers, color pigments, rheology control agents, tackifiers, conductive additives, flame retardants, ultraviolet (UV) protectors, and the like. These additives may take the form of various geometries including, but are not limited to, particles, flakes, rods, and the like.
In one embodiment, the curable resin composition contains substituted monofunctional benzoxazine in combination with di-functional benzoxazine and tri-functional benzoxazine, and one or more additives discussed above.
The curable resin composition as discussed above may be combined with reinforcement fibers to form a composite material or structure. Reinforcing fibers may take the form of whiskers, short fibers, continuous fibers, filaments, tows, bundles, sheets, plies, and combinations thereof. Continuous fibers may further adopt any of unidirectional, multidirectional, non-woven, woven, knitted, stitched, wound, and braided configurations, as well as swirl mat, felt mat, and chopped-fiber mat structures. The composition of the fibers may be varied to achieve the required properties for the final composite structure. Exemplary fiber materials may include, but are not limited to, glass, carbon, graphite, aramid, quartz, polyethylene, polyester, poly-p-phenylene-benzobisoxazole (PBO), boron, polyamide, graphite, silicon carbide, silicon nitride, and combinations thereof.
It is possible, although not necessary, to add a solvent, for example, a halogenated hydrocarbon or an alcohol, or combination thereof, to aid in the mixing of the components. The solvent and the proportion thereof are chosen so that the mixture of the components forms at least a stable emulsion, preferably a stable single-phase solution. Thereafter, the solvent is removed by evaporation to yield a resin composition.
To form composite materials, the reinforcing fibers are impregnated or infused with the curable resin composition using conventional processing techniques such as prepregging and resin infusion. After resin impregnation or infusion, curing is carried out at elevated temperature up to 200^, preferably in the range of Ι ΘΟ'Ό to 200^, more preferably at about 170^ -"Ι ΘΟ'Ό, and with the use of elevated pressure to restrain deforming effects of escaping gases, or to restrain void formation, suitably at pressure of up to 10 bar, preferably in the range of 3 to 7 bar abs. Suitably the cure temperature is attained by heating at up to
Figure imgf000013_0001
for example 2° to SOmin and is maintained for the required period of up to 9 hours, preferably up to 6 hours, for example 3 to 4 hours. Pressure is released throughout and temperature reduced by cooling at up to
Figure imgf000013_0002
for example up to SOmin. Post-curing at temperatures in the range of Ι ΘΟ'Ό to 200^ may be performed, at atmospheric pressure, employing suitable heating rates to improve the glass transition temperature of the product or otherwise.
To fabricate prepregs, a resin film may be formed from the curable resin composition by, for example, compression moulding, extrusion, melt-casting or belt-casting, followed by laminating such film to one or both opposing surfaces of a layer of reinforcement fibers in the form of, for example, a non-woven mat of relatively short fibers, a woven fabric of continuous fibers, or a layer of unilaterally aligned fibers (i.e., fibers aligned along the same direction), at temperature and pressure sufficient to cause the resin film to flow and impregnate the fibers. Alternatively, the prepreg may be fabricated by providing the curable resin composition in liquid form, and passing the layer of fibers through the liquid resin composition to infuse the layer of fibers with the heat curable composition, and removing the excess resin from the infused fibrous layer. The presence of substituted monofunctional benzoxazine results in prepregs with improved tack and drape as compared to those formed from the same resin composition without such substituted monofunctional benzoxazine.
To fabricate a composite part from prepregs, plies of impregnated reinforcing fibers are laid up on a tool and laminated together by heat and pressure, for example by autoclave, vacuum or compression moulding, or by heated rollers, at a temperature above the curing temperature of the resin composition or, if curing has already taken place, above the glass transition temperature of the resin, typically, at least 180° C and up to 200 °C, and at a pressure in particular in excess of 1 bar, preferably in the range of 1 -10 bar.
The resulting multi-ply layup may be anisotropic in which the fibres are continuous and unidirectional, orientated essentially parallel to one another, or quasi-isotropic in which the fibres in a ply are orientated at an angle, e.g. 45°, 30°, 60° or 90°, relative to those in the plies above and below. Orientations intermediate between anisotropic and quasi-isotropic, and combination thereof, may also be provided. Woven fabrics are an example of quasi-isotropic or intermediate between anisotropic and quasi-isotropic. Suitable layup contains at least 4, preferably at least 8 plies. The number of plies is dependent on the application for the layup, for example, the strength required, and layups containing 32 or even more, for example several hundred, plies may be desirable to form large composite parts. There may be provided toughening interleaf or toughening particles, in the interlaminar regions between plies.
To fabricate a composite part through resin infusion, e.g. RTM or VaRTM processes, the first step is to form a dry fiber preform in the shape of the desired structural part. The preform generally includes a number of fabric layers or plies made from dry reinforcement fibers that impart the desired reinforcing properties to a resulting composite part. After the fiber preform has been formed, the preform is placed in a mold. The curable resin composition is injected/infused directly into fiber preform, and then the resin-infused preform is cured. EXAMPLES
Example 1
Liquid monofunctional benzoxazines were prepared by the following method:
1 . 18.68g of phenol, 20.94g of amine and 20.76 g of paraformaldehyde were weighed and then mixed in a glass jar at room temperature (-20.0 'Ό) for 20 minutes.
2. The blended material was stirred while the glass jar is being placed in an oil bath heated to 1 15 °C for 40 minutes.
3. The oil bath was increased in temperature to 120 ^ and mixing continued for a further 20 minutes.
4. The glass jar was removed from the oil bath and allowed to cool for approximately 5 minutes. The blended material was then slowly added to 10 ml of diethyl ether while stirring. This mixture was then stirred for a further 20 minutes at room temperature (~20.0°C).
5. Once stirred, the benzoxazine-ether mixture was washed 3 times with 2.0M NaOH solution in water, in 100 ml portions, in a separating funnel.
6. A further water wash was carried out to neutralise the pH (pH7) after the addition of the NaOH.
7. This mixture was left overnight and then magnesium sulphate drying agent added to mixture and dried for 4 hours.
8. Residual ether was removed on a rotary evaporated under vacuum for 15 minutes at 50 <€.
9. The final product was dried under vacuum at 60 ^ in a vacuum oven for 2 hours.
Table 1 discloses five substituted monofunctional benzoxazines that were prepared by this method using phenol and amine reactants.
TABLE 1
Figure imgf000015_0001
Figure imgf000016_0001
Cured samples were prepared by blending liquid monofunctional benzoxazine with Bisphenol-A benzoxazine (a di-functional benzoxazine) from Huntsman Specialty Chemicals at various weight ratios of Bisphenol-A benzoxazine: monofunctional benzoxazine. The following experimental method was carried out:
1 . Monofunctional benzoxazine and Bisphenol-A benzoxazine were degassed separately in a vacuum oven at 1 "l O'C for 90 minutes.
2. 1 .5g of the degassed benzoxazine and 18.5 g of the degassed Bisphenol-A benzoxazine were added to a 250 ml glass jar
3. The jar was immersed in an oil bath heated at 90^ for 30 minutes and then the blend of materials was stirred at 90^ for 45 minutes 4. The blend was removed from the oil bath and poured into aluminum dishes.
5. The dishes of blended benzoxazines were degassed in a vacuum oven at 1 l O'C for 90 minutes.
The degassed benzoxazine blends were cured using the following cure cycle: 25 C to 180 C at 1 C/min, held for 2 hours, 180 C to 200 C at 1 C/min, held for 2 hours, 200 C to 25 C at 2 C/min.
It was found that when the substituted monofunctional benzoxazines (disclosed in Table 1 ) were blended with Bisphenol-A benzoxazine, the cured samples were stable with increasing concentration of substituted monofunctional benzoxazine. As illustration, FIG. 1 shows cured samples based on blends of Bisphenol A-benzoxazine and 3-fluorophenol, m- toluidine benzoxazine (Structure 2 in Table 1 ) at different weight ratios of Bisphenol-A benzoxazine:fluorinated benzoxazine.
An investigation was carried out to analyze the reactivity of the prepared halogenated monofunctional benzoxazine compounds disclosed in Table 1 and compare them to the standard Bisphenol-A benzoxazine using the Model Free Kinetics (MFK)-Differential Scanning Calorimetry (DSC) method. This MFK method is based on the assumption that the activation energy, Ea, is dependent on the conversion (a). At a particular conversion, the activation energy, Ea, is independent of the heating rate. FIG. 2 shows the DSC curve for Bisphenol-A benzoxazine. FIG. 3A shows the DSC curves for fluorinated benzoxazines and FIG. 3Bshows the DSC curves for chlorinated benzoxazines. It can be seen from FIGS. 2, 3A, and 3B that the effect of the halogen group on reactivity is greatest when it is in the meta position relative to the oxygen.
Example 2
Comparison
For comparison, an alkylated liquid benzoxazine, which does not contain an electron- withdrawing group, was formed from m-cresol, m-toluidine and paraformaldehyde using the method described in Example 1 . The alkylated liquid benzoxazine has the following structure:
Figure imgf000018_0001
FIG. 4 shows the DSC activation energy curve and reactivity table generated for this alkylated liquid benzoxazine. From FIG. 4, a higher activation energy and a lower conversion rate are seen as compared to the data shown in FIGS. 3A-3B for the halogenated liquid benzoxazines.
Blends of alkylated liquid benzoxazine and Bisphenol-A benzoxazine were formed based on Bisphenol-A benzoxazine:alkylated liquid benzoxazine weight ratio of 95:5, 90:10, 80:20, and 50:50. The blends were then cured according the curing cycle described in Example 1 . The cured blends are shown in FIG. 5. FIG. 5 shows that the level of stability of the alkylated liquid benzoxazine when cured with Bisphenol-A benzoxazine is decreased with increasing amount of alkylated benzoxazine.
Also for comparison, a commercially available liquid benzoxazine, Huntsman RD2009-008, having the following structure:
Figure imgf000018_0002
was analysed using the MFK-DSC method. FIG. 6 shows the DSC activation energy curve and reactivity table for RD2009-008. From FIG. 6, again a higher activation energy and lower conversion rate are seen as compared to the data shown in FIGS. 3A-3B for the halogenated liquid benzoxazines.
A blend of 68% Bisphenol-A benzoxazine and 32% RD2009-008 was prepared and cured according to the curing cycle described in Example 1 . An image of the cured resin is shown in FIG. 7. FIG. 7 shows that the level of stability of the RD2009-008 material when cured with Bisphenol-A benzoxazine was also decreased.
FIG. 8 shows Thermal Gravimetric Analysis (TGA) curves for RD2009-008, alkylated liquid benzoxazine and fluorinated liquid benzoxazine (Example 1 , Structure 2). From FIG. 8, it can be seen that the stability of both the commercial RD2009-008 benzoxazine and the alkylated liquid benzoxazine show greater weight loss in TGA than that for the fluorinated liquid benzoxazine. This corresponds well with the greater stability shown in the optical images of FIG. 1 for fluorinated benzoxazine blends.
When cured, the halogenated liquid benzoxazines also showed higher performance (Tg, torsional modulus) than the RD2009-008 benzoxazine blended with Bisphenol-A benzoxazine, see Table 2.
TABLE 2
Figure imgf000019_0001
Example 3
Tack Test
Samples based on Bis-A Benzoxazine/ Epoxy blend, Bis-A benzoxazine/ Fluorinated liquid benzoxazine blend, Bis-A benzoxazine /Chlorinated liquid benzoxazine blend were prepared and degassed in a vacuum oven at 1 10°C. On removal, they were allowed to cool to 80 °C, at which time a thumb tack test (thumb placed onto sample) was conducted as the material cooled to 25 'Ό. As a control, pure Bisphenol-A benzoxazine was also subjected to the same degassing conditions and thumb tack test. Table 3 shows the data collected for the tested samples. TABLE 3
Figure imgf000020_0001
As can be seen from Table 3, the uncured Tg of the halogenated benzoxazine systems is lower than that of pure Bisphenol-A benzoxazine and that of the Bisphenol-A Benzoxazine/Epoxy blend. This reduction in uncured Tg relates to the malleability of the uncured sample. For an uncured benzoxazine-based material to possess good drape characteristics, the uncured Tg should be approximately at or below room temperature.
Tack testing on the halogenated benzoxazine systems has shown an increase in tack when halogenated liquid benzoxazines were blended with Bisphenol-A benzoxazine as compared to pure Bisphenol-A benzoxazine or to the commercial Bisphenol-A benzoxazine/epoxy blend from Huntsman. The increase in tack and malleability exhibited by the fluorinated and chlorinated benzoxazine blends should allow for easier processability.
Example 4
Three samples were prepared based on 100% Bisphenol-A benzoxazine, a blend of Bisphenol-A benzoxazine and 3-fluoro benzoxazine at a weight ratio of 80:20, and the same blend at a weight ratio of 50:50. The samples were then heated to 300 'Ό. FIG. 9 shows that there is an increase in thermal stability at high temperature as the result of adding the fluorinated liquid benzoxazine. In FIG. 9, the top image (a) is the image for 100% Bisphenol- A benzoxazine, the middle image (b) is for 80:20 Bisphenol-A:3-fluoro benzoxazine, and the bottom image (c) is for 50:50 Bisphenol-A:3-fluoro benzoxazine.
The benefits described above have been observed with no compromise to the thermo-mechanical performance of the benzoxazine system. Cured samples based on pure Bisphenol-A benzoxazine and blends of Bisphenol-A benzoxazine and 3-fluoro benzoxazine (fluorinated liquid benzoxazine) at different proportions were prepared.
TABLE 4
Figure imgf000021_0001
Table 4 shows that the cured samples of Bisphenol-A /3-fluoro benzoxazine blends retain similar Tg and similar torsional modulus as compared to pure Bisphenol-A benzoxazine. The 68%/32% blend also shows a flexural modulus that is comparable to that of pure Bisphenol A benzoxazine.
In the above Examples, flexural modulus measurements were performed by Intertek MSG in accordance with ASTM method 790-01 (procedure A) and the following conditions:
• Instron 5544 (T21 )
• Load cell 2kN serial 53033
• Test speed 0.01 mm/mm/min
• Extensometer Serial B
• Micrometer R97
• Conditions 23°C ± 2<C r/h 50% ± 5%
• Load cell check weight nos. 1 &2 (20N) = 40.03N
Glass transition temperature (Tg) and torsional modulus of the cured resin samples were measured by Dynamic Mechanical Thermal Analysis (DMTA). Experiments were run on an ARES LS 2K/2K FRT apparatus in torsion rectangular solicitation mode and Dynamic Temperature Ramp Test method, complying with the following experimental conditions: Dynamic Mechanical Thermal Analysis (DMTA) measurements of glass transation temperature (Tg) and torsional modulus of the cured resin system were obtained on an ARES LS 2K/2K FRT apparatus in torsional rectangular solicitation mode and dynamic temperature ramp test method, complying with the following experimental conditions: • frequency = 0.1 Hz
• strain = 0.1 %
• heating ramp =
Figure imgf000022_0001
Test samples were in the form of rectangular bars (40 x 1 .4 x 4 mm), dried prior to analysis. Tg measurements were recorded at peak tan delta while modulus values were recorded at 30 °C and Tg + 40 °C.
Ranges disclosed herein are inclusive and independently combinable, and is inclusive of the endpoints and all intermediate values within the ranges. For example, the range of "1 % to 10%" includes 1 %, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% as well as intermediate values such as 1 .1 %, 1 .2%, 1 .3%, etc.
While various embodiments are described herein, it will be appreciated from the specification that various combinations of elements, variations of embodiments disclosed herein may be made by those skilled in the art, and are within the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the embodiments disclosed herein without departing from essential scope thereof. Therefore, it is intended that the claimed invention not be limited to the particular embodiments disclosed herein, but that the claimed invention will include all embodiments falling within the scope of the appended claims.

Claims

CLAIMS What is claimed is:
1 . A benzoxazine blend comprising:
(a) at least one substituted monofunctional benzoxazine compound represented by the following Formula I:
Figure imgf000023_0001
wherein at least one of Xi, X2, X3, X4 is an electron-withdrawing group selected from the group consisting of: F, CI, Br, I, -COH, -COCH3, -COOCH3, -S03H, N02, CF3 and CCI3, and the others are independently selected from hydrogen (H), alkyl , cycloalkyi and aryl,
wherein R1 ; R2, R3, R4, R5 are independently selected from H, alkyl , cycloalkyi , aryl, alkoxy, -CH3, phenyl, -NHCOR, OCOR, NH2, and OH; and
(b) at least one multifunctional benzoxazine compound.
2. The benzoxazine blend of claim 1 , wherein, with reference to Formula I and Ri , R2, R3, R4, R5, said alkyl is Ci-8 alkyl, said cycloalkyi is C5-7 cycloalkyi, and said cycloalkyi and aryl groups are optionally substituted by Ci-8 alkyl, halogen or amine groups.
3. The benzoxazine blend of claim 1 or 2, wherein, with reference to Formula I and Xi , X2, X3, X4, said alkyl is Ci-8 alkyl, said cycloalkyi is C5-7 cycloalkyi, and wherein the cycloalkyi and aryl groups are optionally substituted by Ci-8 alkyl, halogen or amine groups.
4. The benzoxazine blend of claim 1 , wherein the substituted monofunctional benzoxazine compound is selected from the following structures:
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0003
Figure imgf000024_0004
wherein X is F or CI.
5. A benzoxazine blend comprising:
(a) at least one substituted monofunctional benzoxazine compound represented by the following structure:
Figure imgf000025_0001
wherein X is a halogen, and Y is an electron-donating group selected from a group consisting of: alkoxy, -CH3, phenyl, -NHCOR, OCOR, NH2, and OH; and
(b) at least one multifunctional benzoxazine compound.
6. The benzoxazine blend of claim 5, wherein X is F or CI, and Y is OCH3.
7. The benzoxazine blend of any one of claims 1 -6, wherein the weight ratio of multifunctional benzoxazine to substituted monofunctional benzoxazine is within the range of 99.9:0.1 to 50:50.
8. The benzoxazine blend of any one of claims 1 -7, wherein the multifunctional benzoxazine compound is a di-functional benzoxazine.
9. The benzoxazine blend of any one of claims 1 -7, wherein the multifunctional benzoxazine compound is a compound of Formula (II):
Figure imgf000025_0002
w ere
Z is selected from a direct bond, -C(R3)(R4)-, -C(R3)(aryl)-, -C(O)-, -S-, -0-, -S(O)-,
-S(0)2-, a divalent heterocycle and -[C(R3)(R4)]x-arylene-[C(R5)(R6)]y-, or the two benzyl rings of the benzoxazine moieties may be fused;
R and R2 are independently selected from alkyl, cycloalkyl and aryl.
10. The benzoxazine blend of claim 9, wherein Z is selected from -[C(R3)(R4)]x-arylene- [C(R5)(R6)]y-, and the chain linking the two benzoxazine groups further comprises, or is interrupted by, one or more arylene group(s) or one or more -C(R7)(R8)- group(s).
1 1 . The benzoxazine blend of claim 9, wherein Z is selected from -C(CH3)2-, -CH2- and 3,3-isobenzofuran-1 (3H)-one.
12. The benzoxazine blend of any one of claims 9 to 1 1 , wherein R and R2 are independently selected from aryl.
13. A curable resin composition comprising:
the benzoxazine blend of any one of claims 1 -1 1 ;
at least one thermoplastic or elastomeric toughening agent;
wherein the resin composition is curable at a temperature within the range of 180°C- 200°C without degradation.
14. The curable resin composition of claim 13 further comprising:
a catalyst for activating the curing of the benzoxazine blend.
15. A cured resin formed from curing the resin composition of claim 13 within the range of 180°C-200°C.
16. A liquid, substituted monofunctional benzoxazine which is a reaction product of a halogenated phenol represented by Formula III, an aromatic amine represented by Formula IV, and an aldeh de
Figure imgf000026_0001
Formula III Formula IV wherein at least one of Xi, X2, X3, X4 is an electron-withdrawing group selected from a group consisting of: F, CI, Br, I , -COH, -COCH3, -COOCH3, -S03H, N02, CF3 and CCI3, and the others are independently selected from hydrogen (H), alkyl , cycloalkyl and aryl,
wherein Ri, R2, R3, R4, R5 are independently selected from H, alkyl , cycloalkyl and aryl, and
wherein said monfunctional benzoxazine compound does not substantially degrade upon curing within the temperature of 180°C-200°C.
17. The liquid, substituted monofunctional benzoxazine of claim 16, wherein, with reference to Ri , R2, R3, R4, R5, the cycloalkyl and aryl groups are substituted by d-8 alkyl, halogen and amine groups, wherein Ci-8 alkyl includes linear and branched alkyl chains.
18. A composite material comprising reinforcement fibers impregnated with a resin composition comprising the benzoxazine blend of any one of claims 1 -12.
19. A prepreg comprising a layer of unilaterally aligned reinforcement fibers impregnated with the resin composition of claim 13 or 14.
20. A composite part formed by infusing a dry fiber preform having a three-dimensional shape with the resin composition of claim 13 or 14, followed by curing.
21 . A method for fabricating a composite part comprising:
providing a dry fiber preform comprised of a plurality of layers of reinforcement fibers; infusing said dry fiber preform with a thermoset resin composition comprising the benzoxazine blend of any one of claims 1 -12; and
curing the infused fiber preform.
22. A method for fabricating a prepreg comprising:
providing a layer of reinforcing fibers; and
impregnating said layer with a thermoset resin composition comprising the benzoxazine blend of any one claims 1 -12.
PCT/US2013/032897 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same WO2013148408A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX2014010321A MX349687B (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same.
BR112014019823A BR112014019823B1 (en) 2012-03-29 2013-03-19 curable resin composition, cured resin, composite material, and methods for making a composite part and for making a prepreg
KR1020147024424A KR102043742B1 (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same
JP2015503366A JP6153234B2 (en) 2012-03-29 2013-03-19 Benzoxazine and compositions containing the same
RU2014135227A RU2014135227A (en) 2012-03-29 2013-03-19 PETROXOZASINS AND PETROXOZASIN-CONTAINING COMPOSITIONS
CA2868786A CA2868786C (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same
ES13713697.4T ES2639856T3 (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing them
AU2013240174A AU2013240174B2 (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same
CN201380009038.9A CN104105693B (en) 2012-03-29 2013-03-19 Benzoxazine and the compositions containing benzoxazine
EP13713697.4A EP2831052B1 (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1205574.5A GB201205574D0 (en) 2012-03-29 2012-03-29 Benzoxazines and compositions containing the same
GB1205574.5 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013148408A1 true WO2013148408A1 (en) 2013-10-03

Family

ID=46159926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/032897 WO2013148408A1 (en) 2012-03-29 2013-03-19 Benzoxazines and compositions containing the same

Country Status (15)

Country Link
US (1) US9499666B2 (en)
EP (1) EP2831052B1 (en)
JP (1) JP6153234B2 (en)
KR (1) KR102043742B1 (en)
CN (1) CN104105693B (en)
AU (1) AU2013240174B2 (en)
BR (1) BR112014019823B1 (en)
CA (1) CA2868786C (en)
ES (1) ES2639856T3 (en)
GB (1) GB201205574D0 (en)
MX (1) MX349687B (en)
MY (1) MY169339A (en)
RU (1) RU2014135227A (en)
TW (1) TW201348218A (en)
WO (1) WO2013148408A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109406A1 (en) * 2014-12-29 2016-07-07 Cytec Industries Inc. Trifunctional benzoxazine and use thereof in curable resin compositions and composite materials
JP2016533417A (en) * 2013-10-16 2016-10-27 スリーエム イノベイティブ プロパティズ カンパニー Benzoxazine polymerization
WO2016200617A1 (en) * 2015-06-12 2016-12-15 Cytec Industries Inc. Curable compositions containing benzoxazine epoxy blend and use thereof
CN106661208A (en) * 2014-06-30 2017-05-10 可隆工业株式会社 Polybenzoxazine precursor and method for preparing same
FR3057802A1 (en) * 2016-10-26 2018-04-27 Compagnie Generale Des Etablissements Michelin METALLIC OR METALLIC REINFORCEMENT WITH SURFACE COVERED WITH POLYBENZOXAZINE
WO2018078227A1 (en) 2016-10-26 2018-05-03 Compagnie Generale Des Etablissements Michelin Polybenzoxazine that can be used for coating metal and for the bonding of same to rubber
WO2018215701A1 (en) 2017-05-24 2018-11-29 Compagnie Generale Des Etablissements Michelin Halogenated benzoxazine for use in the synthesis of polybenzoxazine
WO2018215700A1 (en) 2017-05-24 2018-11-29 Compagnie Generale Des Etablissements Michelin Halogenated benzoxazine for use in the synthesis of polybenzoxazine
WO2018219882A1 (en) 2017-05-31 2018-12-06 Compagnie Generale Des Etablissements Michelin Borated benzoxazine for use in the synthesis of polybenzoxazine
WO2018229417A1 (en) 2017-06-14 2018-12-20 Compagnie Generale Des Etablissements Michelin Metal or metal-plated reinforcement with sulphur polybenzoxazine-coated surface
WO2018229415A1 (en) 2017-06-14 2018-12-20 Compagnie Generale Des Etablissements Michelin Sulphurised benzoxazine for use in the synthesis of a polybenzoxazine
WO2018229416A1 (en) 2017-06-14 2018-12-20 Compagnie Generale Des Etablissements Michelin Sulphurised polybenzoxazine that can be used for coating metal and for the bonding of same to rubber
US10487077B1 (en) 2018-06-14 2019-11-26 Sabic Global Technologies B.V. Bis(benzoxazinyl)phthalimidine and associated curable composition and composite
US10549580B2 (en) 2015-12-16 2020-02-04 Compagnie Generale Des Establissements Michelin Polybenzoxazine that can be used for coating metal and bonding of same to rubber
WO2020109723A1 (en) 2018-11-30 2020-06-04 Compagnie Generale Des Etablissements Michelin Bonding a glass-resin composite monofilament to a thermoplastic matrix
WO2020109721A1 (en) 2018-11-30 2020-06-04 Compagnie Generale Des Etablissements Michelin Glass-resin composite-based multi-composite material
WO2020109722A1 (en) 2018-11-30 2020-06-04 Compagnie Generale Des Etablissements Michelin Glass-resin composite-based multi-composite material
FR3089216A1 (en) 2018-11-30 2020-06-05 Compagnie Generale Des Etablissements Michelin MULTI-COMPOSITE MATERIAL BASED ON GLASS-RESIN COMPOSITE
FR3089219A1 (en) 2018-11-30 2020-06-05 Compagnie Generale Des Etablissements Michelin MULTI-COMPOSITE MATERIAL BASED ON GLASS-RESIN COMPOSITE
FR3089229A1 (en) 2018-11-30 2020-06-05 Compagnie Generale Des Etablissements Michelin BONDING OF A GLASS-RESIN COMPOSITE SINGLE STRAND TO A THERMOPLASTIC MATRIX
WO2020182277A1 (en) * 2019-03-08 2020-09-17 Polymer Competence Center Leoben Gmbh Novel expanding copolymers
US11247510B2 (en) 2015-12-16 2022-02-15 Compagnie Generale Des Etablissements Michelin Metallic or metallized reinforcement, 1HE surface of which is coated with a polybenzoxazine
RU2785346C1 (en) * 2019-03-08 2022-12-06 Полимер Компетенс Сентр Леобен Гмбх New expandable copolymers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201322758D0 (en) * 2013-12-20 2014-02-05 Cytec Ind Inc Multifunctional benzoxazines and composite materials incorporating then same
CN104312471A (en) * 2014-11-10 2015-01-28 深圳市飞世尔实业有限公司 Anisotropic conductive film containing benzoxazine and preparation method of anisotropic conductive film
EP3240829B1 (en) * 2014-12-29 2019-08-21 Cytec Industries Inc. Benzoxazines and compositions containing the same
CN109728245B (en) * 2017-10-30 2020-10-02 宁德时代新能源科技股份有限公司 Positive pole piece and electrochemical energy storage device
JP7142771B2 (en) * 2018-09-19 2022-09-27 ヒルティ アクチエンゲゼルシャフト Hardener compositions for epoxy resin compounds, epoxy resin compounds, and multi-component epoxy resin systems
CN112143170B (en) * 2020-10-14 2023-11-10 安徽宏翔农业机械有限公司 Preparation method of high-strength toughened grain piling and winnowing plastic shovel
KR102600705B1 (en) * 2021-01-05 2023-11-09 단국대학교 산학협력단 Benzoxazine resin composition with improved char yield
TWI800386B (en) * 2021-12-16 2023-04-21 元鴻應用材料股份有限公司 A kind of benzoxazine resin, its composition and copper foil substrate made of it
TWI798102B (en) * 2021-12-16 2023-04-01 元鴻應用材料股份有限公司 A kind of benzoxazine resin, its composition and copper foil substrate made of it
CN114573879A (en) * 2022-04-01 2022-06-03 扬州超峰汽车内饰件有限公司 Bio-based fiber composite material resin and preparation method thereof
CN117087208B (en) * 2023-07-21 2024-08-20 江门建滔积层板有限公司 Heat-resistant flexible copper-clad plate and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204400A1 (en) * 2007-12-06 2010-08-12 Henkel Ag & Co. Kgaa Curable compositions containing isocyanate-based tougheners
WO2012015604A1 (en) * 2010-07-28 2012-02-02 Huntsman Advanced Materials Americas Llc Solvent-free benzoxazine based thermosetting resin composition

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543516A (en) 1994-05-18 1996-08-06 Edison Polymer Innovation Corporation Process for preparation of benzoxazine compounds in solventless systems
JPH0959333A (en) * 1995-08-21 1997-03-04 Hitachi Chem Co Ltd Phenol compound and its production and thermosetting resin composition
US6225440B1 (en) 1998-06-26 2001-05-01 Edison Polymer Innovation Corporation Cationic ring-opening polymerization of benzoxazines
WO2000061650A1 (en) 1999-04-14 2000-10-19 Edison Polymer Innovation Corporation Development of low viscosity benzoxazine resins
JP2002226536A (en) * 2001-01-31 2002-08-14 Sumitomo Bakelite Co Ltd Thermosetting resin composition
US6620905B1 (en) * 2002-02-23 2003-09-16 National Starch And Chemical Investment Holding Corporation Curable compositions containing benzoxazine
US7157509B2 (en) * 2003-06-27 2007-01-02 Henkel Corporation Curable compositions
US7649060B2 (en) 2005-12-02 2010-01-19 Henkel Corporation Curable compositions
KR100818255B1 (en) 2006-05-29 2008-04-02 삼성에스디아이 주식회사 Polybenzoxazines, an electrolyte membrane comprising the same and fuel cell employing the electrolyte membrane
TWI295288B (en) 2006-08-17 2008-04-01 Univ Nat Chunghsing New route for the synthesis of benzoxazine
WO2008066855A1 (en) 2006-11-29 2008-06-05 Henkel Corporation Method of preparing benzoxazines
US7537827B1 (en) * 2006-12-13 2009-05-26 Henkel Corporation Prepreg laminates
KR100893523B1 (en) * 2006-12-15 2009-04-17 삼성에스디아이 주식회사 Electrode for fuel cell, preparing method thereof, and fuel cell employing the same
WO2008156443A1 (en) * 2007-06-18 2008-12-24 Henkel Corporation Benzoxazine containing compositions of matter and curable compositions made therewith
US7947802B2 (en) 2007-09-06 2011-05-24 Case Western Reserve University Benzoxazine monomers, polymers and compositions
KR101537311B1 (en) * 2007-11-02 2015-07-17 삼성전자주식회사 Electrolyte Membrane for fuel cell and fuel cell using the same
EP2062891B1 (en) * 2007-11-06 2012-08-08 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
CN101952262B (en) 2008-02-21 2012-07-18 亨斯迈先进材料美国有限责任公司 Halogen-free benzoxazine based curable compositions for high TG applications
ATE545679T1 (en) 2008-09-19 2012-03-15 Henkel Ag & Co Kgaa BENZOXAZINE-BASED COMPOSITIONS WITH ISOCYANATE-BASED STRENGTHENING AGENTS
GB0823403D0 (en) * 2008-12-23 2009-01-28 Advanced Composites Group Ltd Curative fibre components
US20120077402A1 (en) * 2010-03-25 2012-03-29 Benteler Sgl Gmbh & Co. Kg Semi-finished textile product, particularly prepreg, manufactured from non-woven fiber fabric
TWI400292B (en) * 2010-06-14 2013-07-01 Nanya Plastics Corp Used in glass fiber laminates high glass transition temperature resin varnish composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204400A1 (en) * 2007-12-06 2010-08-12 Henkel Ag & Co. Kgaa Curable compositions containing isocyanate-based tougheners
WO2012015604A1 (en) * 2010-07-28 2012-02-02 Huntsman Advanced Materials Americas Llc Solvent-free benzoxazine based thermosetting resin composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. ANDREU ET AL: "Studies on the thermal polymerization of substituted benzoxazine monomers: Electronic effects", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 46, no. 10, 14 April 2008 (2008-04-14), pages 3353 - 3366, XP055063546, ISSN: 0887-624X, DOI: 10.1002/pola.22677 *
SHENGFANG LI ET AL: "Synthesis, characterization, and polymerization of brominated benzoxazine monomers and thermal stability/flame retardance of the polymers generated", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 21, no. 4, 17 March 2009 (2009-03-17), pages 229 - 234, XP055063536, ISSN: 1042-7147, DOI: 10.1002/pat.1418 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040905B2 (en) 2013-10-16 2018-08-07 3M Innovative Properties Company Benzoxazine polymerization
JP2016533417A (en) * 2013-10-16 2016-10-27 スリーエム イノベイティブ プロパティズ カンパニー Benzoxazine polymerization
CN106661208B (en) * 2014-06-30 2020-02-21 可隆工业株式会社 Polybenzoxazine precursors and methods of making same
CN106661208A (en) * 2014-06-30 2017-05-10 可隆工业株式会社 Polybenzoxazine precursor and method for preparing same
US9714322B2 (en) 2014-12-29 2017-07-25 Cytec Industries Inc. Trifunctional benzoxazine
AU2015374292B2 (en) * 2014-12-29 2019-11-14 Cytec Industries Inc. Trifunctional benzoxazine and use thereof in curable resin compositions and composite materials
WO2016109406A1 (en) * 2014-12-29 2016-07-07 Cytec Industries Inc. Trifunctional benzoxazine and use thereof in curable resin compositions and composite materials
WO2016200617A1 (en) * 2015-06-12 2016-12-15 Cytec Industries Inc. Curable compositions containing benzoxazine epoxy blend and use thereof
US10221313B2 (en) 2015-06-12 2019-03-05 Cytec Industries Inc. Curable compositions containing benzoxazine epoxy blend and use thereof
RU2749037C2 (en) * 2015-06-12 2021-06-03 Сайтек Индастриз Инк. Curable compositions containing benzoxazine-epoxy mixture and their application
US11247510B2 (en) 2015-12-16 2022-02-15 Compagnie Generale Des Etablissements Michelin Metallic or metallized reinforcement, 1HE surface of which is coated with a polybenzoxazine
US10549580B2 (en) 2015-12-16 2020-02-04 Compagnie Generale Des Establissements Michelin Polybenzoxazine that can be used for coating metal and bonding of same to rubber
US11306229B2 (en) 2016-10-26 2022-04-19 Compagnie Generale Des Etablissements Michelin Polybenzoxazine that can be used for coating metal and for the bonding of same to rubber
FR3057802A1 (en) * 2016-10-26 2018-04-27 Compagnie Generale Des Etablissements Michelin METALLIC OR METALLIC REINFORCEMENT WITH SURFACE COVERED WITH POLYBENZOXAZINE
CN109890628B (en) * 2016-10-26 2020-11-20 米其林集团总公司 Metallic or metallized reinforcement with polybenzoxazine coated surface
US11370935B2 (en) 2016-10-26 2022-06-28 Compagnie Generale Des Etablissements Michelin Metal or metallized reinforcement with polybenzoxazine-coated surface
CN109890628A (en) * 2016-10-26 2019-06-14 米其林集团总公司 Metallic or metallized reinforcement with polybenzoxazine coated surface
WO2018078227A1 (en) 2016-10-26 2018-05-03 Compagnie Generale Des Etablissements Michelin Polybenzoxazine that can be used for coating metal and for the bonding of same to rubber
WO2018078228A1 (en) 2016-10-26 2018-05-03 Compagnie Generale Des Etablissements Michelin Metal or metallised reinforcement with polybenzoxazine-coated surface
WO2018215700A1 (en) 2017-05-24 2018-11-29 Compagnie Generale Des Etablissements Michelin Halogenated benzoxazine for use in the synthesis of polybenzoxazine
WO2018215701A1 (en) 2017-05-24 2018-11-29 Compagnie Generale Des Etablissements Michelin Halogenated benzoxazine for use in the synthesis of polybenzoxazine
US10995076B2 (en) 2017-05-24 2021-05-04 Compagnie Generale Des Etablissements Michelin Halogenated benzoxazine for use in the synthesis of polybenzoxazine
US10975044B2 (en) 2017-05-24 2021-04-13 Compagnie Generale Des Etablissements Michelin Halogenated benzoxazine for use in the synthesis of polybenzoxazine
US10800795B2 (en) 2017-05-31 2020-10-13 Compagnie Generale Des Etablissements Michelin Borated benzoxazine for use in the synthesis of polybenzoxazine
WO2018219882A1 (en) 2017-05-31 2018-12-06 Compagnie Generale Des Etablissements Michelin Borated benzoxazine for use in the synthesis of polybenzoxazine
WO2018229417A1 (en) 2017-06-14 2018-12-20 Compagnie Generale Des Etablissements Michelin Metal or metal-plated reinforcement with sulphur polybenzoxazine-coated surface
WO2018229415A1 (en) 2017-06-14 2018-12-20 Compagnie Generale Des Etablissements Michelin Sulphurised benzoxazine for use in the synthesis of a polybenzoxazine
US11701922B2 (en) 2017-06-14 2023-07-18 Compagnie Generale Des Etablissements Michelin Metal or metal-plated reinforcement with sulfur polybenzoxazine-coated surface
US11155540B2 (en) 2017-06-14 2021-10-26 Compagnie Generale Des Etablissements Michelin Sulfurized benzoxazine for use in the synthesis of a polybenzoxazine
WO2018229416A1 (en) 2017-06-14 2018-12-20 Compagnie Generale Des Etablissements Michelin Sulphurised polybenzoxazine that can be used for coating metal and for the bonding of same to rubber
US11624002B2 (en) 2017-06-14 2023-04-11 Compagnie Generale Des Etablissements Michelin Sulfurized polybenzoxazine that can be used for coating metal and for the bonding of same to rubber
US10487077B1 (en) 2018-06-14 2019-11-26 Sabic Global Technologies B.V. Bis(benzoxazinyl)phthalimidine and associated curable composition and composite
WO2020109722A1 (en) 2018-11-30 2020-06-04 Compagnie Generale Des Etablissements Michelin Glass-resin composite-based multi-composite material
FR3089216A1 (en) 2018-11-30 2020-06-05 Compagnie Generale Des Etablissements Michelin MULTI-COMPOSITE MATERIAL BASED ON GLASS-RESIN COMPOSITE
FR3089219A1 (en) 2018-11-30 2020-06-05 Compagnie Generale Des Etablissements Michelin MULTI-COMPOSITE MATERIAL BASED ON GLASS-RESIN COMPOSITE
FR3089229A1 (en) 2018-11-30 2020-06-05 Compagnie Generale Des Etablissements Michelin BONDING OF A GLASS-RESIN COMPOSITE SINGLE STRAND TO A THERMOPLASTIC MATRIX
WO2020109721A1 (en) 2018-11-30 2020-06-04 Compagnie Generale Des Etablissements Michelin Glass-resin composite-based multi-composite material
WO2020109723A1 (en) 2018-11-30 2020-06-04 Compagnie Generale Des Etablissements Michelin Bonding a glass-resin composite monofilament to a thermoplastic matrix
US11780772B2 (en) 2018-11-30 2023-10-10 Compagnie Generale Des Etablissements Michelin Glass-resin composite-based multi-composite material
KR20210141487A (en) * 2019-03-08 2021-11-23 폴리머 컴페턴스 센터 레오벤 게엠베하 new expandable copolymer
RU2785346C1 (en) * 2019-03-08 2022-12-06 Полимер Компетенс Сентр Леобен Гмбх New expandable copolymers
KR102574623B1 (en) 2019-03-08 2023-09-06 폴리머 컴페턴스 센터 레오벤 게엠베하 New expandable copolymer
WO2020182277A1 (en) * 2019-03-08 2020-09-17 Polymer Competence Center Leoben Gmbh Novel expanding copolymers

Also Published As

Publication number Publication date
RU2014135227A (en) 2016-05-27
CA2868786C (en) 2018-11-27
ES2639856T3 (en) 2017-10-30
GB201205574D0 (en) 2012-05-16
KR20140138146A (en) 2014-12-03
BR112014019823A8 (en) 2017-07-11
JP2015512459A (en) 2015-04-27
MX2014010321A (en) 2015-03-10
EP2831052A1 (en) 2015-02-04
TW201348218A (en) 2013-12-01
CN104105693B (en) 2016-06-22
AU2013240174A1 (en) 2014-08-14
EP2831052B1 (en) 2017-06-14
BR112014019823B1 (en) 2020-01-28
CA2868786A1 (en) 2013-10-03
KR102043742B1 (en) 2019-11-12
JP6153234B2 (en) 2017-06-28
US20130267659A1 (en) 2013-10-10
CN104105693A (en) 2014-10-15
MX349687B (en) 2017-08-09
BR112014019823A2 (en) 2017-06-20
US9499666B2 (en) 2016-11-22
AU2013240174B2 (en) 2017-05-04
MY169339A (en) 2019-03-21

Similar Documents

Publication Publication Date Title
AU2013240174B2 (en) Benzoxazines and compositions containing the same
US9732225B2 (en) Benzoxazine resins
US11566106B2 (en) Composite materials containing benzoxazines and method for making the same
US9714322B2 (en) Trifunctional benzoxazine
US9822219B2 (en) Multifunctional benzoxazines and composite materials incorporating the same
CA2987755A1 (en) Curable compositions containing benzoxazine epoxy blend and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13713697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P808/2014

Country of ref document: AE

ENP Entry into the national phase

Ref document number: 2015503366

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013240174

Country of ref document: AU

Date of ref document: 20130319

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010321

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20147024424

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2868786

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013713697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013713697

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014019823

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014135227

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014019823

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140811