WO2013146897A1 - Droplet generating module - Google Patents

Droplet generating module Download PDF

Info

Publication number
WO2013146897A1
WO2013146897A1 PCT/JP2013/059029 JP2013059029W WO2013146897A1 WO 2013146897 A1 WO2013146897 A1 WO 2013146897A1 JP 2013059029 W JP2013059029 W JP 2013059029W WO 2013146897 A1 WO2013146897 A1 WO 2013146897A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous phase
phase material
flow path
droplet
channel
Prior art date
Application number
PCT/JP2013/059029
Other languages
French (fr)
Japanese (ja)
Inventor
建次郎 竿本
紳介 杉浦
晋仁 菅原
絵梨子 阿部
雅央 中川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013146897A1 publication Critical patent/WO2013146897A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12181Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7182Feed mechanisms characterised by the means for feeding the components to the mixer with means for feeding the material with a fractal or tree-type distribution in a surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices

Definitions

  • the present invention relates to a droplet generation module including a plurality of droplet generators that generate droplets for generating gelatin particles and the like.
  • a dispersed phase material for example, an aqueous gelatin solution
  • a continuous phase material for example, oil
  • a droplet generator having a droplet generation flow channel is known (for example, Patent Document 1).
  • DDS Drop Delivery System
  • a droplet generation module in which a plurality of droplet generators are unitized may be used. That is, the droplet generation module has a channel structure in which a plurality of droplet generation channels are unitized.
  • the arrangement of the plurality of droplet generation channels in this channel structure is preferably compact while being able to form many droplet generation channels.
  • a plurality of flow path structures may be formed in the droplet generation module, and if it is compact, a larger number of flow path structures can be formed in the droplet generation module. This is because the drop productivity is improved. For this reason, the developer has developed an array of a plurality of droplet generation channels that can form a larger number of droplet generation channels and can save space by trial and error.
  • an object of the present invention is to provide a droplet generation module having a channel structure capable of forming more droplet generation channels and saving space. is there.
  • the droplet generating module is generated by circulating a base member, a liquid dispersed phase material and a liquid continuous phase material, and generating a droplet of the dispersed phase material by the shearing force of the continuous phase material.
  • a plurality of droplet generation flow paths provided with discharge ports for discharging liquid droplets, and a flow channel structure formed on the base member so that the direction of each discharge port faces one point.
  • the plurality of droplet generation flow paths are arranged in the base member so that the direction of each discharge port is directed to one point.
  • the direction of each discharge port is concentrated at one point, it becomes possible to concentrate each discharge port in a region around one point.
  • a configuration for discharging the droplets discharged from each discharge port to the outside of the droplet generation module (for example, the droplets are led out of the base member). , Etc.) can be simplified. For example, instead of providing a separate outlet for each outlet, the outlet for each outlet is shared by one outlet, etc., simplifying the configuration for discharging droplets to the outside can do.
  • a plurality of droplet generation channels may be arranged in an annular shape centering on one point. According to this configuration, since all the droplet generation channels can be arranged at an equal distance from one point where the directions of the respective discharge ports are concentrated, space saving of the droplet generation channel is made based on this one point. In addition to being able to easily perform the optimization design to form, droplets can be stably produced and discharged by uniform liquid distribution and pressure distribution. In addition, by arranging a plurality of droplet generation channels in an annular shape, more droplet generation channels can be arranged.
  • the liquid droplet generation module may be provided with a single outlet path for discharging the liquid droplets discharged from the discharge ports to the outside of the base member at a position corresponding to one point on the base member.
  • a single outlet path is shared by each outlet, it is possible to save the space for the droplet outlet structure by the amount that the outlet paths are not arranged for each outlet.
  • the single outlet path is formed at a position corresponding to one point where each outlet port faces, it is easy to have a configuration in which each outlet port and outlet path are in direct communication. It is possible to save the space for the drop outlet structure.
  • each droplet generation flow path may have the following configuration. That is, a continuous phase material is circulated, and a plurality of continuous phase channels provided with the discharge port on the most downstream side of the continuous phase material, a single dispersed phase channel for circulating the dispersed phase material, and a dispersed phase channel
  • Each continuous phase channel is connected to each other via a communication port, and the communication channel is formed to generate a droplet of the dispersed phase material by the shearing force of the continuous phase material at each communication port. Also good.
  • this configuration it is possible to realize further space saving by sharing a single dispersed phase channel for a plurality of communication channels.
  • the outlets of the plurality of droplet generation flow paths are concentrated at one point, so that the outlets can be concentrated in an area around one point.
  • a plurality of droplet generation flow paths are arranged in a space-saving manner corresponding to the concentration of the respective discharge ports. It becomes possible to do.
  • the direction of the discharge ports of the droplet generation flow path is concentrated at one point, a configuration for discharging the droplets discharged from each discharge port to the outside of the droplet generation module (for example, the droplet is a base member) It is possible to simplify the derivation path for derivation to the outside. For example, instead of providing a separate outlet for each outlet, the outlet for each outlet is shared by one outlet, etc., simplifying the configuration for discharging droplets to the outside can do.
  • FIG. 1 is a plan view of a droplet generation module according to the present embodiment, and (b) is a cross-sectional view of the droplet generation module taken along the line JJ in FIG. It is a perspective view of a droplet generator. It is a figure which shows schematic structure of the droplet generator at the time of planar view.
  • (A) is a diagram showing a droplet generator along the line AA in FIG. 3, and (b) is a diagram showing a droplet generator along the line BB in FIG. is there.
  • FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line CC in FIG. 3.
  • FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line DD in FIG. 3.
  • FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line EE in FIG. 3.
  • FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line FF in FIG. 3.
  • FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line GG in FIG. 3.
  • (A) is a top view of the droplet generator concerning the modification of this embodiment
  • (b) is a top view of the droplet generator concerning the modification of this embodiment. It is a top view of the droplet production
  • FIG. 1A is a plan view of a droplet generation module according to the present embodiment
  • FIG. 1B is a cross-sectional view of the droplet generation module taken along the line JJ in FIG.
  • the droplet generation module 1 includes a base member 2 and a flow channel structure 300 formed on the base member 2.
  • the channel structure 300 has a plurality of droplet generation channels 3, and each droplet generation channel 3 circulates a liquid dispersed phase material 200 (FIG. 2) and a liquid continuous phase material 100 (FIG. 2).
  • the droplets 201 (FIG. 2) of the dispersed phase material 200 are generated by the shearing force of the continuous phase material 100.
  • Each droplet generation flow path 3 includes discharge ports 112 and 122 for discharging the generated droplets 201.
  • the plurality of droplet generation flow paths 3 are arranged so that the discharge ports 112 and 122 are directed to a single point P.
  • the plurality of droplet generation flow paths 3 are arranged in the base member so that the direction of each discharge port 112, 122 is directed to one point P.
  • the discharge ports 112 and 122 are concentrated in a region around the point P.
  • the space of the base member 2 required for the discharge ports 112 and 122 can be saved as compared with the case where the directions of the discharge ports 112 and 122 are dispersed or the same. it can.
  • the configuration (for example, the lead-out path 2a for leading the droplet 201 to the outside of the base member 2) can be simplified.
  • the outlets 112 and 122 are not provided with separate outlets, but the outlets 112 and 122 share one outlet path 2a, so that the droplets 201 are discharged to the outside.
  • the configuration can be simplified.
  • the droplet generation module 1 includes one droplet generation channel 3 (in this embodiment, one dispersed phase channel 10, one communication channel 13, and three continuous phase channels 11, 12, and 14).
  • a plurality of droplet generators 4 (for example, 70) having a single flow path) are provided.
  • the droplet generation module 1 has a channel structure 300 having a plurality of droplet generation channels 3 such as 70 formed on the base member 2.
  • the base member 2 is made of a material such as a transparent acrylic resin, has a predetermined thickness, and is formed in a square shape when viewed from above.
  • an upper substrate 22 is laminated on a lower substrate 21.
  • the method of joining the lower substrate 21 and the upper substrate 22 is not limited, but it is preferable that the lower substrate 21 and the upper substrate 22 are detachably joined by bolting or the like.
  • the flow path structure 300 is formed on the upper surface of the lower substrate 21. Since the upper substrate 22 is transparent, as shown in FIG. 1A, the flow path structure 300 is made visible through the upper substrate 22 when the droplet generation module 1 is viewed in plan.
  • the channel structure 300 is formed by unitizing a plurality of droplet generation channels 3. Specifically, in the flow channel structure 300, the plurality of droplet generation flow channels 3 are arranged in an annular shape by being arranged on a circular line segment having a diameter of 50 mm or the like. The arrangement intervals of the droplet generation channels 3 in the channel structure 300 are set at equal intervals, but are not limited to the equal intervals.
  • Each droplet generation flow path 3 is arranged so that the flow path direction is directed to the center point (one point P) of the ring.
  • the plurality of droplet generation flow paths 3 are arranged in an annular shape centered on one point P.
  • One point P is set on the same horizontal plane as the flow path structure 300.
  • discharge ports 112 and 122 are formed so as to face one point P, and the droplet generation channel 3 generated from the discharge ports 112 and 122.
  • a droplet 201 is discharged.
  • the discharge ports 112 and 122 are concentrated in a region around the point P. Can be made. For this reason, a plurality of droplet generation flow paths 3 can be arranged in a space-saving manner by the amount where the discharge ports 112 and 122 are densely packed. Moreover, in this embodiment, since each discharge port 112,122 is arrange
  • a single lead-out path 2a for discharging the droplet 201 to the outside is formed at a position corresponding to one point P on the lower substrate 21, that is, at the center of the ring.
  • the lead-out path 2a is a through hole that penetrates the lower substrate 21, and has a substantially circular shape in plan view.
  • the outlets 112 and 122 of the channel structure 300 are communicated with the outlet channel 2a, whereby the droplets 201 generated in each droplet generation channel 3 are connected to the outside of the base member 2 to the outlet channel 2a. It is discharged through. In this way, the single outlet 2a is shared by the discharge ports 112 and 122.
  • the formation position of the lead-out path 2a is a position corresponding to one point P, it is easy to have a configuration in which the discharge ports 112 and 122 and the lead-out path 2a are in direct communication. As a result, it is possible to further reduce the space of the lead-out structure of the droplet 201.
  • the lower opening of the outlet path 2a is connected to a recovery pipe (not shown) so that the liquid droplets extracted from the outlet path 2a are collected and discharged to the next process through the recovery pipe. .
  • the discharged droplets 201 become microparticles 202 that are used for, for example, embolization or DDS, through a predetermined process. Details of the predetermined process will be described later.
  • FIG. 2 is a perspective view of the droplet generator shown in FIG.
  • FIG. 3 is a diagram illustrating a schematic configuration of the droplet generator in a plan view.
  • 4A is a diagram showing a droplet generator taken along the line AA in FIG. 3.
  • FIG. 4B is a diagram showing the droplet generator taken along the line BB in FIG.
  • FIG. 5 is a view showing a droplet generator according to a cross section taken along the line CC in FIG.
  • FIG. 6 is a view showing a droplet generator according to a cross section taken along line DD in FIG.
  • FIG. 7 is a view showing a droplet generator according to a cross section taken along line EE in FIG.
  • FIG. 8 is a diagram showing a droplet generator according to the cross section taken along the line FF in FIG.
  • FIG. 9 is a view showing a droplet generator according to the cross section taken along the line GG in FIG.
  • the outline of the configuration of the droplet generator 4 will be described with reference to FIG. 2, the X direction is the “width direction” of the droplet generator 4, the Z direction is the “depth direction” of the droplet generator 4, and the Y direction is the “height direction” of the droplet generator 4. To do.
  • the droplet generator 4 divides the flow direction of the dispersed phase material 200 into a plurality of directions, crosses the flow direction of the continuous phase material 100 with respect to the flow direction of the dispersed phase material 200 at the branch destination, and the continuous generated by the intersection
  • the droplets 201 of the dispersed phase material 200 are generated by the shearing force of the phase material 100.
  • the droplet generator 4 includes a plurality of continuous phase channels 11 and 12 through which the liquid continuous phase material 100 circulates, a single dispersed phase channel 10 through which the liquid dispersed phase material 200 circulates, and a dispersed phase flow.
  • the channel 10 is communicated with the continuous phase flow paths 11 and 12 through the communication ports 133 and 134, respectively, and the droplets 201 of the dispersed phase material 200 are generated by the shearing force of the continuous phase material 100 at the communication ports 133 and 134.
  • the communication channel 13 is formed as described above.
  • the dispersed phase material 200 flows from the single dispersed phase channel 10 into the plurality of continuous phase channels 11 and 12 through the communication ports 133 and 134 by the communicating channel 13.
  • the continuous phase material 100 is circulated through each continuous phase flow path 11, 12, and the dispersed phase material 200 flowing from the communication ports 133, 134 is dispersed into droplets 201 by the shearing force of the continuous phase material 100, thereby dispersing
  • a droplet 201 of the phase material 200 is generated in each continuous phase flow path 11, 12.
  • the dispersed phase material 200 is caused to flow into the plurality of continuous phase channels 11 and 12 from the single dispersed phase channel 10 to generate the droplets 201 of the dispersed phase material 200.
  • the single dispersion phase flow path 10 is shared with respect to the several continuous phase flow paths 11 and 12, several continuous phase flow paths 11 are conventionally used.
  • the number of dispersed phase flow paths 10 can be reduced while maintaining the number of droplets 201 generated. it can.
  • the space for disposing the dispersed phase channel 10 can be reduced, a large number of continuous phase channels 11 and 12 can be arranged in the channel structure 300, and per unit time of the droplet 201 of the dispersed phase material 200. Productivity can be improved.
  • the droplet generation flow path 3 has a continuous phase flow path 14 through which the continuous phase material 100 flows.
  • the communication channel 13 is continuous so that the continuous phase material 100 from the continuous phase channel 14 flows through the downstream side of the continuous phase material 100 flowing through the continuous phase channels 11 and 12 at the communication ports 133 and 134. It communicates with the phase flow path 14. Specifically, one end of the continuous phase flow path 14 is communicated with the communication flow path 13.
  • the communication position in the communication channel 13 is a position facing the communication position of the dispersed phase channel 10.
  • the continuous phase material 100 introduced from the continuous phase channel 14 and the dispersed phase material 200 introduced from the dispersed phase channel 10 collide with each other. Due to this collision, in the communication channel 13, the dispersed phase material 200 and the continuous phase material 100 are branched at the positions where they collide, and are directed to both the continuous phase channel 11 and the continuous phase channel 12.
  • the communication channel 13 passes through the communication ports 133 and 134. It flows into the continuous phase flow paths 11 and 12.
  • the flow form of the two-layer dispersed phase material 200 and the continuous phase material 100 is a form in which the continuous phase material 100 is circulated downstream of the continuous phase flow paths 11 and 12 at the communication ports 133 and 134. Therefore, even if the two-phase dispersed phase material 200 and the continuous phase material 100 are pressed against the communication ports 133 and 134 by the continuous phase material 100 flowing through the continuous phase flow channels 11 and 12, the two layers are formed. Thus, the continuous phase material 100 can effectively prevent the dispersed phase material 200 from adhering to the communication ports 133 and 134.
  • the dispersed phase flow channel 10 is formed as a long, substantially rectangular parallelepiped-shaped circulation space whose longitudinal section is substantially square (for example, a substantially square having a width and a height of 0.5 mm).
  • the dispersed phase channel 10 is formed to extend from one end side (left end side in FIG. 2) in the width direction of the lower substrate 21 to the vicinity of the center.
  • the dispersed phase flow path 10 has a dispersed phase material introducing portion 101 formed on the bottom surface of one end thereof (one left end in FIG. 2). As shown in FIG.
  • the dispersed phase material introducing portion 101 is a tubular through-hole formed in the lower substrate 21.
  • a supply device (not shown) for the dispersed phase material 200 is detachably connected to the lower end (opening) of the dispersed phase material introducing portion 101.
  • the supply device (not shown) includes a temperature controller and a flow rate regulator, and supplies the dispersed phase material 200 to the dispersed phase material introduction unit 101 at a desired temperature, flow rate, and flow rate.
  • the dispersed phase flow path 10 is in communication with the communication flow path 13 through the communication port 131 at the side portion on the other end side of the one end. As a result, the dispersed phase flow channel 10 allows the dispersed phase material 200 supplied from the dispersed phase material introduction unit 101 to flow into the communication flow channel 13 via the communication port 131.
  • the communication flow path 13 is formed as a substantially rectangular parallelepiped distribution space having a substantially square cross section (for example, a substantially square having a width and a height of 0.5 mm).
  • the communication flow path 13 is formed so as to extend in the depth direction at the center in the width direction of the lower substrate 21.
  • the communication channel 13 communicates with the dispersed phase channel 10 through the communication port 131 on one side surface (the left side surface in FIG. 2) on the width direction side as described above.
  • the communication port 131 is formed at the center in the depth direction on the one side surface.
  • the communication channel 13 has a communication port 132 formed at a position facing the communication port 131, and communicates with the continuous phase channel 14 via the communication port 132. As a result, the continuous phase material 100 flows into the communication flow path 13 from the continuous phase flow path 14 via the communication port 132.
  • the communication port 131 and the communication port 132 are formed so as to face each other. For this reason, the communication port is a region (collision region) between the communication port 131 and the communication port 132.
  • the dispersed phase material 200 introduced from 131 and the continuous phase material 100 introduced from the communication port 132 collide with each other.
  • the communication channel 13 divides the dispersed phase material 200 and the continuous phase material 100 into two layers in the collision region and circulates toward both ends of the communication channel 13. .
  • the communication channel 13 has a communication port 133 with the continuous phase channel 11 formed on one side (the front side in FIG. 2) in the depth direction.
  • the communication flow path 13 causes the dispersed phase material 200 and the continuous phase material 100 having two layers to flow into the continuous phase flow path 11 through the communication port 133.
  • the communication channel 13 is formed with a communication port 134 with the continuous phase channel 12 on the side opposite to the one side (the rear side in FIG. 2).
  • the communication flow path 13 causes the two-layered dispersed phase material 200 and the continuous phase material 100 to flow into the continuous phase flow path 12 through the communication port 134.
  • the continuous phase flow path 14 is formed as a long, substantially rectangular parallelepiped circulation space whose cross section is approximately square (for example, approximately square having a width and height of 0.5 mm). As shown in FIG. 4A, the continuous phase channel 14 is formed on the downstream side of the dispersed phase channel 10 so as to be adjacent to the dispersed phase channel 10 via the communication channel 13. Further, the continuous phase flow path 14 is formed to extend on the same straight line as the dispersed phase flow path 10. The continuous phase flow path 14 is connected to the communication flow path 13 through the communication port 132 as described above at one end on the dispersed phase flow path 10 side. Moreover, the continuous phase flow path 14 has a continuous phase material introducing portion 141 formed on the bottom surface at the other end.
  • the continuous phase material introducing portion 141 is a tubular through-hole formed in the lower substrate 21 as shown in FIG.
  • a supply device for the continuous phase material 100 (not shown) is detachably connected to the lower end (opening) of the continuous phase material introducing portion 141.
  • the supply device includes a temperature controller and a flow rate adjuster, and supplies the continuous phase material 100 to the continuous phase material introduction unit 141 at a desired temperature, flow rate, and flow rate.
  • the continuous phase flow path 14 causes the continuous phase material 100 supplied from the continuous phase material introducing portion 141 to flow toward the communication port 132 and to flow into the communication flow channel 13 via the communication port 132. Is formed.
  • Each of the continuous phase flow paths 11 and 12 is formed on the upper surface of the lower substrate 21 as a circulation space having a substantially square cross section (for example, a substantially square having a width and a height of 0.5 mm).
  • the continuous phase flow paths 11 and 12 are formed so as to extend from one end side (one left end in FIG. 2) in the width direction of the lower substrate 21 to the other end.
  • the droplet generator 4 is arranged so that the dispersed phase channel 10 is on the left side and the continuous phase channel 14 is on the right side (when arranged in the state of FIG. 2), the continuous phase channel 12
  • the continuous phase flow path 11 is formed on the front side of the dispersed phase flow path 10.
  • a continuous phase material introducing portion 111 is formed on the bottom surface of one end of the continuous phase flow channel 11 (left end in FIG. 2), and on the bottom surface of one end of the continuous phase flow channel 12 (left end in FIG. 2).
  • the continuous phase material introduction part 121 is formed.
  • the continuous phase material introducing portions 111 and 121 are tubular through holes formed in the lower substrate 21 as shown in FIG.
  • a supply device (not shown) for the continuous phase material 100 is detachably connected to the lower ends (openings) of the continuous phase material introducing portions 111 and 121, respectively.
  • the supply device includes a temperature controller and a flow rate regulator, and supplies the continuous phase material 100 to the continuous phase material introduction units 111 and 121 at a desired temperature, flow rate, and flow rate.
  • a supply device for supplying continuous phase material 100 to continuous phase material introduction units 111 and 121 supplies continuous phase material 100 to continuous phase material introduction unit 141.
  • These supply devices are prepared separately, and the supply of the continuous phase material 100 of these supply devices (not shown) is individually controlled.
  • the continuous phase flow paths 11 and 12 are formed with discharge ports 112 and 122 at the other end side, and the continuous phase material 100 supplied from the continuous phase material introduction portions 111 and 121 is supplied to the discharge ports 112 and 122. It is made to distribute
  • FIG. Moreover, the continuous phase flow path 11 is connected to the communication flow path 13 through the communication port 133 as described above on one side surface of the dispersed phase flow path 10 side (the back side in FIG. 2). As a result, as described above, the two-phase dispersed phase material 200 and the continuous phase material 100 are allowed to flow into the continuous phase flow channel 11 from the communication flow channel 13 through the communication port 133. .
  • the continuous phase flow path 12 is also connected to the communication flow path 13 through the communication port 134 as described above on one side of the dispersed phase flow path 10 side (front side in FIG. 2). Thereby, as described above, the two-phase dispersed phase material 200 and the continuous phase material 100 flow into the continuous phase flow channel 12 from the communication flow channel 13 through the communication port 134.
  • the continuous phase flow paths 11 and 12 are formed such that the two-layered dispersed phase material 200 and the continuous phase material 100 are introduced from the communication flow path 13 through the communication ports 133 and 134. Yes.
  • the continuous phase material 100 constituting the two layers flows through the downstream side of the continuous phase flow paths 11 and 12.
  • the dispersed phase material 200 is sheared from both sides by a shearing force between the continuous phase material 100 flowing through the continuous phase flow paths 11 and 12 and the continuous phase material 100 constituting two layers, and is formed into droplets. .
  • the droplets 201 of the dispersed phase material 200 generated in this way are discharged from the discharge ports 112 and 122 together with the continuous phase material 100.
  • the discharge ports 112 and 122 are connected to a mechanism or device used in a subsequent process such as a cooling process, and the droplet 201 is collected by these mechanism or device.
  • the dimensions of the dispersed phase channel 10, the continuous phase channels 11, 12, 14 and the communication channel 13 may be formed as follows. preferable. As shown in FIG. 3, in the depth direction of the droplet generator 4, the length of the communication channel 13 from the communication port 134 to the dispersed phase channel 10 and the communication channel from the communication port 133 to the dispersed phase channel 10. The length of 13 is preferably substantially the same.
  • the length from the continuous phase material introduction unit 111 to the communication port 133 in the width direction of the droplet generator 4 is the continuous phase material introduction. It is preferable that the length from the portion 121 to the communication port 134 is substantially the same.
  • the base member 2 has a substantially square lower substrate 21 having a lead-out path 2a in the center in plan view and a predetermined thickness, It is comprised with the substantially square upper side board
  • the base member 2 is not limited as long as the base member 2 is formed of a material having properties that are difficult to wet with respect to the dispersed phase material 200.
  • the lower substrate 21 is made of a resin material such as polycarbonate or the surface is hydrophobized. It consists of a treated metal material such as stainless steel or glass.
  • the upper substrate 22 can also be made of the same material as the lower substrate 21, but is preferably made of polycarbonate, acrylic resin, glass whose surface has been hydrophobized, or the like, and is formed transparently.
  • the lower substrate 21 has a bonding surface 21a (flow path forming region) on its upper surface
  • the upper substrate 22 has a bonding surface 22a on its lower surface.
  • a plurality of droplet generation channels 3 are formed radially on the bonding surface 21a of the lower substrate 21 around the outlet channel 2a by grooves or the like. Specifically, each dispersed phase flow path 10, each continuous phase flow path 11, 12, 14, and each communication flow path 13 are formed on the bonding surface 21a. Further, the continuous substrate introduction parts 111, 121, and 141 and the dispersed phase material introduction parts 101 are formed in the lower substrate 21 as through holes formed in the thickness direction. In the lower substrate 21, the terminal ends of the continuous phase flow paths 11 and 12 are penetrated with respect to the lead-out path 2 a, and the through portions serve as discharge ports 112 and 122.
  • the dispersed phase material 200 is not particularly limited as long as it is a liquid that becomes a dispersoid of the emulsion.
  • an aqueous gelatin solution is used as the dispersed phase material 200.
  • the kind of gelatin in the gelatin aqueous solution is not particularly limited. For example, gelatin derived from cow bone, cow skin, pork bone, pig skin, or the like can be used.
  • the dispersed phase material 200 may be a liquid containing a drug component. Since the fine particles 202 generated from the dispersed phase material 200 containing such a drug component have a sustained release property of the drug component, for example, it may be used in DDS or the like.
  • the temperature of the gelatin aqueous solution that is the liquid dispersed phase material 200 needs to be 20 ° C. or higher, which is the gelatinization temperature of gelatin.
  • the reason for this is that when the temperature of the gelatin aqueous solution is equal to or lower than the gelatin gelation temperature, the gelatin aqueous solution gels at the communication ports 131, 133, and 134, and the communication ports 131, 133, and 134 are likely to be blocked. This is because the gelatin aqueous solution cannot be quantified and the gelatin aqueous solution is not detached from the communication ports 131, 133, and 134, so that the particle size variation often occurs.
  • the concentration of the gelatin aqueous solution is preferably 2% by weight to 20% by weight, particularly preferably 5% by weight to 15% by weight.
  • the reason why the lower limit of the concentration is 2% by weight is that it is difficult to produce spherical particles in the case of an aqueous solution of less than 2% by weight.
  • the reason why the upper limit value of the concentration is set to 20% by weight is that when the concentration exceeds 20% by weight, the aqueous solution becomes highly viscous. This is because it is difficult for the aqueous solution to flow out of the ports 131, 133, and 134.
  • the shape of the gelatin particle from the droplet 201 to the microparticle 202 is preferably not spherical but spherical as much as possible.
  • the microparticle 202 when used as an embolic particle, when the microparticle 202 is injected into the blood vessel and embolized, the blood vessel can be embolized at a portion closer to the target site by making it spherical, Moreover, the pain given to the patient can be reduced.
  • the particle size of the fine particles 202 is suitably selected from three types of 40 to 100 ⁇ m, 150 to 300 ⁇ m, and 400 to 1000 ⁇ m.
  • the continuous phase material 100 is not particularly limited as long as it is a liquid that serves as a dispersion medium for the emulsion.
  • any pharmaceutically acceptable substance may be used, for example, vegetable oil such as olive oil, fatty acid such as oleic acid, and the like.
  • Fatty acid esters such as glyceryl tricaprylate, hydrocarbon solvents such as hexane, and the like can be used.
  • olive oil and glyceryl tricaprylate which is a medium-chain fatty acid ester that is difficult to oxidize, are preferred.
  • a lower substrate 21 and an upper substrate 22 are prepared.
  • 70 grooves serving as the droplet generation flow paths 3 are formed so as to be arranged in a substantially annular shape around the lead-out path 2 a.
  • grooves that become the dispersed phase channel 10 the continuous phase channels 11, 12, and 14 and the communication channel 13 are formed by cutting, etching, laser processing, or the like. .
  • the discharge ports 112 and 122 in the continuous phase flow paths 11 and 12 are formed so as to face the center of the circle (the outlet path 2a side). Furthermore, through-holes that become the dispersed phase material introducing portion 101 and the continuous phase material introducing portions 111, 121, and 141 are formed. Thereafter, the droplet generation module 1 is generated by bonding the bonding surface 21a of the lower substrate 21 and the bonding surface 22a of the upper substrate 22 in a liquid-tight state using an adhesive, screws, or the like.
  • FIG. 11 is an explanatory diagram showing a manufacturing process of microparticles using a droplet generator.
  • FIG. 12 is an explanatory diagram showing a droplet generation method by the droplet generator. For convenience, only one droplet generator 4 in the droplet generation module 1 is shown in FIGS. 11 and 12, but all the droplet generators 4 (droplet generation flow) of the droplet generation module 1 are shown. In the path 3), the microparticles 202 are generated by the method described below.
  • each dispersed phase material introduction section 101 is connected to a supply device (not shown) for dispersed phase material 200 via a tube.
  • each of the continuous phase material introducing portions 111 and 121 is connected to a supply device (not shown) for the continuous phase material 100 through a tube.
  • transducing part 141 is connected to the supply apparatus (illustration omitted) for the other continuous phase material 100 through a tube.
  • the lead-out path 2a is connected to a mechanism or equipment for a subsequent process (for example, the container 5) via a tube or the like.
  • the processing content of the post-process differs depending on the application, when the microparticles 202 used for embolization are manufactured, the cooling process is a post-process, and then the dehydration process, the cleaning process, and the cross-linking process are performed. Is called.
  • Method for generating microparticles 202 droplet generation step
  • the droplet generation module 1 When the droplet generation module 1 is connected to the supply device (not shown) and the mechanism or equipment for the post-process (for example, the container 5) as described above, the gelatin that is the dispersed phase material 200 is next. Is swollen in water at room temperature. Next, a stirrer, a stirring blade or a shaker is used, and the gelatin is completely dissolved in hot water of about 40 ° C. to 60 ° C. by stirring for about 0.5 hours to about 1.5 hours, An aqueous gelatin solution is produced.
  • the olive oil as the continuous phase material 100 is supplied to the continuous phase flow paths 11 and 12 through the continuous phase material introduction sections 111 and 121 by a supply device (not shown) for the continuous phase material 100.
  • a supply device not shown
  • olive oil is supplied to the continuous phase flow path 14 via the continuous phase material introduction part 141 by another supply device (not shown) for the continuous phase material 100.
  • the gelatin aqueous solution is supplied to the dispersed phase flow path 10 via the dispersed phase material introduction unit 101 by a supply device (not shown) for the dispersed phase material 200.
  • the continuous phase flow paths 11, 12, and 14 are supplied with liquid olive oil from a supply device (not shown) for the continuous phase material 100 and another supply device (not shown) for the continuous phase material 100. Temperature and flow rate.
  • the predetermined temperature is 40 ° C. and the predetermined flow rate is 1 ml / h.
  • the gelatin aqueous solution is supplied from the supply device for the dispersed phase material 200 to a predetermined temperature. And is supplied to the dispersed phase flow path 10 at a flow rate.
  • the temperature is 40 ° C.
  • the gelatin aqueous solution and the olive oil have the same temperature in terms of not changing the physical properties of the dispersed phase material 200 in the communication channel 13 and the continuous phase channels 11 and 12.
  • the gelatin aqueous solution flows from the dispersed phase material introducing portion 101 toward the communication port 131 as shown in FIG. 10B.
  • the aqueous gelatin solution flows into the communication channel 13 through the communication port 131.
  • olive oil introduced from the continuous phase material introducing portion 141 flows toward the communication port 132, and this olive oil communicates with a region (collision region) between the communication port 131 and the communication port 132. Inflow through the mouth 132.
  • the gelatin aqueous solution collides with the olive oil introduced from the communication port 132 in the collision area. As a result of this collision, the gelatin aqueous solution and olive oil become two-layered, and branch in two directions in the collision area toward the communication ports 133 and 134.
  • the two-layer gelatin aqueous solution and olive oil flow into the continuous phase flow paths 11 and 12 through the communication ports 133 and 134.
  • olive oil is supplied from the continuous phase material introduction sections 111 and 121 and flows toward the discharge ports 112 and 122.
  • the olive oil flows through the two-layer gelatin aqueous solution at the communication ports 133 and 134. And circulate so as to cross the flow of olive oil. Accordingly, the two-layer gelatin aqueous solution and olive oil that have flowed in from the communication ports 133 and 134 are caused to flow downstream by the olive oil flowing through the continuous phase flow paths 11 and 12.
  • the gelatin aqueous solution flows through the upstream side of the olive oil flowing through the continuous phase flow paths 11 and 12, and the olive oil flows through the downstream side. Therefore, at the communication ports 133 and 134, the gelatin aqueous solution is sandwiched from both sides by the olive oil constituting the two layers and the olive oil flowing through the continuous phase flow channels 11 and 12, and is sheared from both sides by these olive oils to form droplets. It becomes.
  • the droplet generator 4 causes the dispersed phase material 200 to flow from the single dispersed phase channel 10 into the two continuous phase channels 11 and 12, and thereby the single dispersed phase channel 10.
  • the droplets 201 of the dispersed phase material 200 are generated by the two continuous phase flow paths 11 and 12.
  • the droplet generation flow path 3 is a unit that is space-saving compared to a conventional liquid suitability flow path that must form the same number of dispersed phase flow paths for a plurality of continuous phase flow paths. It is possible to generate the same number of droplets 201 per hour. Thereby, the number of the continuous phase flow paths 11 and 12 formed in the joining surface 21a can be increased.
  • the droplet generator 4 circulates the two-layer gelatin aqueous solution and olive oil at the communication ports 133 and 134, and this olive oil circulates downstream of the olive oil that circulates in the continuous phase flow paths 11 and 12. I am letting.
  • the two-layer gelatin aqueous solution and olive oil are pushed to the downstream side of the olive oil by the olive oil flowing through the continuous phase flow paths 11 and 12.
  • the gelatin aqueous solution adheres to the communication ports 133 and 134 (the edge located on the downstream side of the continuous phase flow channels 11 and 12).
  • olive oil is circulated downstream of the continuous-phase flow paths 11 and 12 at the communication ports 133 and 134, so that the adhesion of the gelatin aqueous solution is prevented by the olive oil.
  • the hydrophilicity of the channel wall surface at the communication ports 133 and 134 is suppressed, and stable droplet generation can be realized over a long period of time.
  • the emulsion composed of the droplets 201 and the continuous phase material 100 generated as described above is discharged from the discharge ports 112 and 122 to the single lead-out path 2a.
  • the particle size of the droplet 201 is measured by a particle size distribution detector (not shown) or the like. Then, the flow rate (flow rate per unit time) and temperature of the dispersed phase material 200 and the continuous phase material 100 are adjusted manually or automatically by the operator, so that the droplets 201 are made uniform to a desired particle size.
  • the homogenized droplets 201 are put together with olive oil into olive oil stored in a container 5 having a temperature control mechanism and a stirring mechanism. At this time, the temperature of the olive oil in the container 5 is adjusted in the range of 0 ° C. to 60 ° C., that is, below the gelation temperature of the gelatin aqueous solution. Thereby, gelation of the droplet 201 is started immediately after the droplet 201 is put into the container 5, and the droplet 201 becomes the gel particle 203. Thereby, adhesion and aggregation of the droplets 201 are prevented, and deformation and separation of the gel particles 203 due to an external force such as collision between the gel particles 203 are suppressed.
  • the cleaning process is performed simultaneously with or before or after the dehydration process.
  • a poor solvent that does not dissolve gelatin is introduced into the container 5, and the dehydrated particles 204 are washed with this poor solvent.
  • the poor solvent is preferably used at a temperature below the gelation temperature of gelatin.
  • poor solvents that do not dissolve gelatin include ketone solvents such as acetone, alcohol solvents such as isopropyl alcohol, ester solvents such as ethyl acetate, hydrocarbon solvents such as toluene and hexane, and halogen solvents such as dichloroethane. Can be used.
  • the operation of washing about 2 to 15 grams of gel particles 203 (or dehydrated particles 204) with about 200 to 300 ml of solvent for 15 to 30 minutes is defined as one cycle, and this is repeated for 4 to 6 cycles. Preferably it is done.
  • the dehydrated particles 204 are taken out from the container 5, and the dehydrated particles 204 are dried at a temperature at which gelatin is not dissolved. By this drying, the cleaning solvent attached to the dehydrated particles 204 is removed, and the water in the dehydrated particles 204 is removed, whereby the dehydrated particles 204 are made into dry particles 205.
  • various methods such as ventilation drying, reduced pressure drying, and freeze drying can be used.
  • the dehydrated particles 204 are preferably dried, for example, at 5 ° C. to 25 ° C. for about 12 hours or more, and more preferably in a reduced pressure atmosphere.
  • the dried particles 205 are heated at a temperature of 80 to 250 ° C. for 0.5 to 120 hours.
  • this heating condition is the time required to completely decompose the microparticles 202 in the blood vessel, that is, after the blood vessel is embolized with the microparticles 202, It is determined according to the period required before resuming the flow. The heating time depends on the heating temperature. Generally, in order to necrotize a tumor (cancer), it is sufficient to embolize a blood vessel for 2 to 3 days.
  • the heating crosslinking conditions are 100 ° C. to 180 ° C., and the dry particles 205 are heated for 1 hour to 24 hours. Is preferred.
  • heating conditions are determined according to the period which releases a chemical
  • the base member 2 is formed such that the direction of each of the discharge ports 112 and 122 faces the single point P. In this way, by concentrating the directions of the discharge ports 112 and 122 at one point P, the discharge ports 112 and 122 can be concentrated. As a result, it is possible to arrange a large number of droplet generation flow paths 3 in a space-saving manner corresponding to the density of the discharge ports 112 and 122. As a result, it is possible to provide a droplet generation module including a channel structure 300 in which a plurality of droplet generation channels 3 can be formed and a plurality of droplet generation channels 3 are arranged in a space-saving manner. it can.
  • each discharge port 112,122 since the direction of each discharge port 112,122 concentrates on one point P, the structure for discharging the droplet 201 discharged
  • the path 2a and the like can be simplified.
  • the outlet 201 for each outlet 112, 122 is shared by one outlet 2a.
  • the structure for discharging can be simplified.
  • a base member, a liquid dispersed phase material and a liquid continuous phase material are circulated, and droplets of the dispersed phase material are generated by the shearing force of the continuous phase material.
  • the plurality of droplet generation flow paths 3 are arranged in an annular shape centered on one point P, as shown in FIGS. 12 (a) and 12 (b). It does not have to be arranged in an annular shape.
  • the plurality of droplet generation flow paths 3 may be arranged in any manner as long as the discharge ports 112 and 122 are arranged so as to face the single point P.
  • 12A and 12B are plan views of a droplet generation module according to a modification of the present embodiment.
  • the droplet generation module 1B has a droplet generation flow path in two places on the left side and the right side with respect to the lead-out path 2a when one side is arranged upward in plan view. 3 is formed.
  • many droplet generation channels 3 are not formed in a space-saving manner, but each discharge port 112, 122 shares a single outlet channel 2a. Therefore, there is an effect that the structure for leading out droplets can be simplified.
  • the number of flow path structures 300 formed in the droplet generation module 1 is not limited to one, and may be plural.
  • the plurality of flow path structures may be arranged in parallel or arranged side by side in the height direction.
  • the shape of the droplet generation flow path 3 may be any shape as long as the discharge ports 112 and 122 are directed to one point P, and is not limited to the configuration of the present embodiment.
  • the following shape can be adopted as the shape of the droplet generation flow path 3.
  • FIG. 13 is a plan view of a droplet generation flow path according to a modification of the present embodiment.
  • the droplet generation flow path 3 is a flow path formed so that the communication flow path 13 extends in a straight line, but is not limited to this configuration.
  • the communication flow path 13 may have a refracting part as in the modification shown in FIG.
  • FIG. 14 is a plan view of a droplet generation channel according to a modification of the present embodiment.
  • the communication channel 13 of the droplet generation channel according to the modified example is formed on the same straight line as the dispersed phase channel 10 and is connected to the end of the dispersed phase channel 10 and the first channel 13a.
  • the first flow path 13a is formed to bend from the start end, and the continuous flow path 12 and the dispersed phase flow path 10 are communicated with each other, and the second flow path 13b is formed to be bent from the end of the first flow path 13a. And a third flow path 13c that allows the continuous phase flow path 11 and the dispersed phase flow path 10 to communicate with each other.
  • the continuous phase flow paths 11 and 12 are substantially parallel to each other, but may not be substantially parallel as in the modification shown in FIG. 15, for example.
  • FIG. 15 is a plan view of a droplet generation channel according to a modification of the present embodiment.
  • the continuous phase flow path 11 is bent at an intermediate position, and the continuous phase flow path 11 and the continuous phase flow path 12 are not substantially parallel.
  • FIG. 16 is a perspective view of a droplet generation flow path according to a modification of the present embodiment.
  • the droplet generation channel according to this modification uses a single dispersed phase channel 10 with four continuous phase channels 11A (11A-1, 11A-2, 11A-3, 11A-4).
  • the continuous phase channel 11A-1 and the continuous phase channel 11A-2 are formed so as to sandwich the dispersed phase channel 10 on the same horizontal plane.
  • a continuous phase flow channel 11A-3 and a continuous phase flow channel 11A-4 are formed so as to sandwich the dispersed phase flow channel 10 on the same vertical plane.
  • the communication channel 13 connects the dispersed phase channel 10 to the continuous phase channels 11A-1, 11A-2, 11A-311A-4 via the communication port 133.
  • FIG. 17 is a perspective view of a droplet generation channel according to a modification of the present embodiment.
  • the continuous phase flow path 11, the dispersed phase flow path 10, and the continuous phase flow path 12 are formed on three different horizontal planes in this order from top to bottom.
  • the communication channel 13 is formed so as to extend in the height direction, and the dispersed phase channel 10 is communicated with the continuous phase channel 11 and the continuous phase channel 12.
  • the droplet generation flow path 3 may have only one of the continuous phase flow paths 11 and 12 as shown in FIG.
  • FIG. 18 is a plan view of a droplet generator 4A according to a modification of the present embodiment.
  • the droplet generation flow path 3 ⁇ / b> A according to the modified example does not have the continuous phase flow path 12 among the continuous phase flow paths 11 and 12, but has only the continuous phase flow path 11.
  • the communication channel 13A communicates the dispersed phase channel 10 and the continuous phase channel 11 via the communication port 133, but the opposite of the communication port 133 in the communication channel 13A.
  • the side surface on the side is formed to be flush with the side surface of the dispersed phase flow channel 10 (the side surface far from the continuous phase flow channel 11 in the depth direction).
  • Droplet generation module 2 Base member 2a Derivation path 21 Lower substrate 22 Upper substrate 3, 3A Droplet generation channel 4, 4A Droplet generator 5 Container 10 Dispersed phase channel 100 Continuous phase material 101 Dispersed phase material introduction part 11, 12, 14 Continuous phase flow path 111, 121, 141 Continuous phase material introduction part 112, 122 Discharge port 13 Communication flow path 131, 132, 133, 134 Communication port 200 Dispersed phase material 201 Liquid droplet 202 Microparticle 203 Gel particle 204 Dehydrated particles 205 Dry particles 300 Channel structure

Abstract

A droplet generating module (1) has a base member (2) and a flow path structure (300). The flow path structure (300) has a plurality of droplet generating flow paths (3). Each droplet generating flow path (3) has a liquid dispersed phase material and a liquid continuous phase material flowing through the same, generates droplets of the dispersed phase material by the shearing force of the continuous phase material, and is provided with discharge openings (112, 122) that discharge the droplets that have been generated. Furthermore, each droplet generating flow path (3) is formed on the base member (2) such that the orientations of the discharge openings (112, 122) are oriented towards a single point (P). Thus, by collecting the orientations of the discharge openings of the plurality of droplet generating flow paths (3) at a single point, the space required for the discharge openings (112, 122) can be reduced compared with the case in which the orientations of the discharge openings are dispersed.

Description

液滴生成モジュールDroplet generation module
 本発明は、ゼラチン粒子等の生成のために液滴を生成する液滴生成器を複数備えた液滴生成モジュールに関する。 The present invention relates to a droplet generation module including a plurality of droplet generators that generate droplets for generating gelatin particles and the like.
 従来、エマルジョンの分散相材(例えば、ゼラチン水溶液)と、エマルジョンの分散媒となる連続相材(例えば、油等)とを流通させ、連続相材の剪断力によって分散相材の液滴を生成する液滴生成流路を備えた液滴生成器が知られている(例えば、特許文献1)。
このように生成された液滴を用いて、例えば、塞栓治療や、DDS(Drag Delivery System)等に利用される微小粒子が生成される。
Conventionally, a dispersed phase material (for example, an aqueous gelatin solution) of emulsion and a continuous phase material (for example, oil) serving as a dispersion medium for the emulsion are circulated, and droplets of the dispersed phase material are generated by the shear force of the continuous phase material. A droplet generator having a droplet generation flow channel is known (for example, Patent Document 1).
Using the generated droplets, for example, microparticles used for embolization treatment, DDS (Drag Delivery System), and the like are generated.
特許第3746766号Japanese Patent No. 3746766
 分散相材の液滴の単位時間あたりの生産性を向上させるため、複数の液滴生成器がユニット化された液滴生成モジュールが使用されることがある。すなわち、液滴生成モジュールには、複数の液滴生成流路がユニット化された流路構造が形成されている。この流路構造における複数の液滴生成流路の配列は、多くの液滴生成流路を形成することができながら、コンパクトであることが好ましい。その理由の一つとしては、複数の流路構造を液滴生成モジュールに形成する場合もあり、コンパクトであれば、より多くの流路構造を液滴生成モジュールに形成することができるため、液滴の生産性が向上するからである。このために、開発者は、より多くの液滴生成流路を形成することができながら省スペース化可能な複数の液滴生成流路の配列を、試行錯誤により開発している。 In order to improve the productivity per unit time of the droplets of the dispersed phase material, a droplet generation module in which a plurality of droplet generators are unitized may be used. That is, the droplet generation module has a channel structure in which a plurality of droplet generation channels are unitized. The arrangement of the plurality of droplet generation channels in this channel structure is preferably compact while being able to form many droplet generation channels. One reason for this is that a plurality of flow path structures may be formed in the droplet generation module, and if it is compact, a larger number of flow path structures can be formed in the droplet generation module. This is because the drop productivity is improved. For this reason, the developer has developed an array of a plurality of droplet generation channels that can form a larger number of droplet generation channels and can save space by trial and error.
 上記課題を解決するために、本発明の目的は、より多くの液滴生成流路を形成することが可能でかつ省スペース化可能な流路構造を備えた液滴生成モジュールを提供することである。 In order to solve the above problems, an object of the present invention is to provide a droplet generation module having a channel structure capable of forming more droplet generation channels and saving space. is there.
 本発明にかかる液滴生成モジュールは、ベース部材と、液状の分散相材と液状の連続相材とを流通させ、連続相材の剪断力によって分散相材の液滴を生成し、生成された液滴を排出する排出口を備えた複数の液滴生成流路を有し、各排出口の向きが一点に向くようにベース部材に形成された流路構造と、を有する。 The droplet generating module according to the present invention is generated by circulating a base member, a liquid dispersed phase material and a liquid continuous phase material, and generating a droplet of the dispersed phase material by the shearing force of the continuous phase material. A plurality of droplet generation flow paths provided with discharge ports for discharging liquid droplets, and a flow channel structure formed on the base member so that the direction of each discharge port faces one point.
 上記構成によれば、各排出口の向きが一点に向かうように複数の液滴生成流路がベース部材に配置されている。この様に、各排出口の向きが一点に集中されることによって、各排出口を一点の周囲の領域に密集させることが可能になる。これによって、たとえば各排出口の向きが分散されている場合や、同じである場合と比較して、各排出口を密集させた分だけ省スペースにかつ多くの液滴生成流路を配列することが可能になる。また、各排出口の向きが一点に集中しているため、各排出口から排出された液滴を液滴生成モジュールの外部に排出させるための構成(例えば液滴をベース部材の外部に導出するための導出路等)を簡素化することができる。例えば、各排出口それぞれについて、別々に導出路を設けるのではなく、各排出口についての導出路を1つの導出路で共用すること等により、液滴を外部に排出するための構成を簡素化することができる。 According to the above configuration, the plurality of droplet generation flow paths are arranged in the base member so that the direction of each discharge port is directed to one point. In this way, by concentrating the direction of each discharge port at one point, it becomes possible to concentrate each discharge port in a region around one point. In this way, for example, as compared with the case where the directions of the respective outlets are dispersed or the same, it is possible to arrange a large number of droplet generation flow paths in a space-saving manner corresponding to the density of the respective outlets. Is possible. Further, since the direction of each discharge port is concentrated at one point, a configuration for discharging the droplets discharged from each discharge port to the outside of the droplet generation module (for example, the droplets are led out of the base member). , Etc.) can be simplified. For example, instead of providing a separate outlet for each outlet, the outlet for each outlet is shared by one outlet, etc., simplifying the configuration for discharging droplets to the outside can do.
 上記液滴生成モジュールには、複数の液滴生成流路が一点を中心とした円環状に配置されてもよい。この構成によれば、各排出口の向きが集中された一点から、全ての液滴生成流路を等距離に配置することができるため、この一点を基準にして液滴生成流路の省スペースに形成する最適化設計を容易に行うことができる他、均等な液分配、圧力分配により液滴を安定して作製・排出できる。また、円環状に複数の液滴生成流路を配置することで、より多くの液滴生成流路を配置することができる。 In the droplet generation module, a plurality of droplet generation channels may be arranged in an annular shape centering on one point. According to this configuration, since all the droplet generation channels can be arranged at an equal distance from one point where the directions of the respective discharge ports are concentrated, space saving of the droplet generation channel is made based on this one point. In addition to being able to easily perform the optimization design to form, droplets can be stably produced and discharged by uniform liquid distribution and pressure distribution. In addition, by arranging a plurality of droplet generation channels in an annular shape, more droplet generation channels can be arranged.
 上記液滴生成モジュールには、ベース部材における一点に対応する位置に、各排出口から排出された液滴をベース部材の外部に導出するための単一の導出路が形成されていてもよい。この構成によれば、各排出口によって単一の導出路が共用されるため、各排出口についてそれぞれの導出路を配列しない分だけ、液滴の導出構造の省スペース化を図ることができる。また、単一の導出路は、各排出口が向く一点に対応する位置に形成されるため、各排出口と導出路とを直接連通させる構成とすることが容易であり、これによって、更に液滴の導出構造の省スペース化を図ることができる。 The liquid droplet generation module may be provided with a single outlet path for discharging the liquid droplets discharged from the discharge ports to the outside of the base member at a position corresponding to one point on the base member. According to this configuration, since a single outlet path is shared by each outlet, it is possible to save the space for the droplet outlet structure by the amount that the outlet paths are not arranged for each outlet. Further, since the single outlet path is formed at a position corresponding to one point where each outlet port faces, it is easy to have a configuration in which each outlet port and outlet path are in direct communication. It is possible to save the space for the drop outlet structure.
 上記液滴生成モジュールでは、各液滴生成流路は、次の構成を有していてもよい。すなわち、連続相材を流通させ、この連続相材の最下流に前記排出口を備えた複数の連続相流路と、分散相材を流通させる単数の分散相流路と、分散相流路を各連続相流路にそれぞれ連通口を介して連通させ、各連通口における連続相材の剪断力により分散相材の液滴を生成させるように形成された連通流路と、を有していてもよい。この構成によれば、単数の分散相流路を複数の連通流路に共用することによって、一層の省スペース化を実現することができる。 In the droplet generation module, each droplet generation flow path may have the following configuration. That is, a continuous phase material is circulated, and a plurality of continuous phase channels provided with the discharge port on the most downstream side of the continuous phase material, a single dispersed phase channel for circulating the dispersed phase material, and a dispersed phase channel Each continuous phase channel is connected to each other via a communication port, and the communication channel is formed to generate a droplet of the dispersed phase material by the shearing force of the continuous phase material at each communication port. Also good. According to this configuration, it is possible to realize further space saving by sharing a single dispersed phase channel for a plurality of communication channels.
 上記構成によれば、複数の液滴生成流路の各排出口の向きが一点に集中されることによって、各排出口を一点の周囲の領域に密集させることが可能になる。これによって、例えば各排出口の向きが分散されている場合や、同じである場合と比較して、各排出口を密集させた分だけ省スペースにかつ多くの複数の液滴生成流路を配列することが可能になる。この結果、より多くの液滴生成流路を形成することが可能でかつ省スペース化可能な流路構造を備えた液滴生成モジュールを提供することができる。 According to the above configuration, the outlets of the plurality of droplet generation flow paths are concentrated at one point, so that the outlets can be concentrated in an area around one point. As a result, for example, as compared with the case where the directions of the respective discharge ports are dispersed or the same, a plurality of droplet generation flow paths are arranged in a space-saving manner corresponding to the concentration of the respective discharge ports. It becomes possible to do. As a result, it is possible to provide a droplet generation module having a channel structure capable of forming more droplet generation channels and saving space.
 更に、液滴生成流路の排出口の向きが一点に集中しているため、各排出口から排出された液滴を液滴生成モジュールの外部に排出させるための構成(例えば液滴をベース部材の外部に導出するための導出路等)を簡素化することが可能になる。例えば、各排出口それぞれについて、別々に導出路を設けるのではなく、各排出口についての導出路を1つの導出路で共用すること等により、液滴を外部に排出するための構成を簡素化することができる。 Further, since the direction of the discharge ports of the droplet generation flow path is concentrated at one point, a configuration for discharging the droplets discharged from each discharge port to the outside of the droplet generation module (for example, the droplet is a base member) It is possible to simplify the derivation path for derivation to the outside. For example, instead of providing a separate outlet for each outlet, the outlet for each outlet is shared by one outlet, etc., simplifying the configuration for discharging droplets to the outside can do.
(a)は、本実施形態に係る液滴生成モジュールの平面図であり、(b)は、(a)におけるJ-J線矢視断面による液滴生成モジュールの断面図である。(A) is a plan view of a droplet generation module according to the present embodiment, and (b) is a cross-sectional view of the droplet generation module taken along the line JJ in FIG. 液滴生成器の斜視図である。It is a perspective view of a droplet generator. 平面視した場合における液滴生成器の概略構成を示す図である。It is a figure which shows schematic structure of the droplet generator at the time of planar view. (a)は、図3におけるA-A線矢視断面による液滴生成器を示す図であり、(b)は、図3におけるB-B線矢視断面による液滴生成器を示す図である。(A) is a diagram showing a droplet generator along the line AA in FIG. 3, and (b) is a diagram showing a droplet generator along the line BB in FIG. is there. 図3におけるC-C線矢視断面による液滴生成器を示す図である。FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line CC in FIG. 3. 図3におけるD-D線矢視断面による液滴生成器を示す図である。FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line DD in FIG. 3. 図3におけるE-E線矢視断面による液滴生成器を示す図である。FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line EE in FIG. 3. 図3におけるF-F線矢視断面による液滴生成器を示す図である。FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line FF in FIG. 3. 図3におけるG-G線矢視断面による液滴生成器を示す図である。FIG. 4 is a diagram showing a droplet generator according to a cross section taken along line GG in FIG. 3. 液滴生成器を用いた微小粒子の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the microparticles using a droplet generator. 液滴生成器による液滴の生成方法を示す説明図である。It is explanatory drawing which shows the production | generation method of the droplet by a droplet generator. (a)は、本実施形態の変形例にかかる液滴生成器の平面図であり、(b)は、本実施形態の変形例にかかる液滴生成器の平面図である。(A) is a top view of the droplet generator concerning the modification of this embodiment, (b) is a top view of the droplet generator concerning the modification of this embodiment. 本実施形態の変形例にかかる液滴生成流路の平面図である。It is a top view of the droplet production | generation flow path concerning the modification of this embodiment. 本実施形態の変形例にかかる液滴生成流路の平面図である。It is a top view of the droplet production | generation flow path concerning the modification of this embodiment. 本実施形態の変形例にかかる液滴生成流路の平面図である。It is a top view of the droplet production | generation flow path concerning the modification of this embodiment. 本実施形態の変形例にかかる液滴生成流路の斜視図である。It is a perspective view of the droplet production | generation flow path concerning the modification of this embodiment. 本実施形態の変形例にかかる液滴生成流路の斜視図である。It is a perspective view of the droplet production | generation flow path concerning the modification of this embodiment. 本実施形態の変形例にかかる液滴生成器の平面図である。It is a top view of the droplet generator concerning the modification of this embodiment.
 以下、本発明の好適な実施形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(液滴生成モジュールの概要)
 まず、図1を用いて本実施形態にかかる液滴生成モジュールの概要を説明する。
 図1(a)は、本実施形態に係る液滴生成モジュールの平面図であり、(b)は、(a)におけるJ-J線矢視断面による液滴生成モジュールの断面図である。液滴生成モジュール1は、ベース部材2と、ベース部材2に形成された流路構造300とを有する。流路構造300は複数の液滴生成流路3を有し、各液滴生成流路3は、液状の分散相材200(図2)と液状の連続相材100(図2)とを流通させ、連続相材100の剪断力によって分散相材200の液滴201(図2)を生成する。また、各液滴生成流路3は、生成されたこの液滴201を排出する排出口112、122を備えている。そして、複数の液滴生成流路3は、各排出口112、122の向きが一点Pに向くように配置されている。
(Outline of droplet generation module)
First, the outline of the droplet generation module according to the present embodiment will be described with reference to FIG.
FIG. 1A is a plan view of a droplet generation module according to the present embodiment, and FIG. 1B is a cross-sectional view of the droplet generation module taken along the line JJ in FIG. The droplet generation module 1 includes a base member 2 and a flow channel structure 300 formed on the base member 2. The channel structure 300 has a plurality of droplet generation channels 3, and each droplet generation channel 3 circulates a liquid dispersed phase material 200 (FIG. 2) and a liquid continuous phase material 100 (FIG. 2). The droplets 201 (FIG. 2) of the dispersed phase material 200 are generated by the shearing force of the continuous phase material 100. Each droplet generation flow path 3 includes discharge ports 112 and 122 for discharging the generated droplets 201. The plurality of droplet generation flow paths 3 are arranged so that the discharge ports 112 and 122 are directed to a single point P.
 上記構成によれば、各排出口112、122の向きが一点Pに向かうように複数の液滴生成流路3がベース部材に配置されている。この様に、各排出口112、122の向きが一点Pに集中されることによって、各排出口を一点Pの周囲の領域に密集するように構成することが可能になる。これによって、例えば各排出口112、122の向きが分散されている場合や、同じである場合と比較して、これらの排出口112、122に要するベース部材2のスペースを省スペースにすることができる。 According to the above configuration, the plurality of droplet generation flow paths 3 are arranged in the base member so that the direction of each discharge port 112, 122 is directed to one point P. In this way, by concentrating the directions of the discharge ports 112 and 122 at one point P, it is possible to configure the discharge ports so as to be concentrated in a region around the point P. Thus, for example, the space of the base member 2 required for the discharge ports 112 and 122 can be saved as compared with the case where the directions of the discharge ports 112 and 122 are dispersed or the same. it can.
 また、液滴生成流路3の排出口112、122の向きが一点Pに集中しているため、各排出口112、122から排出された液滴201を液滴生成モジュール1の外部に排出させるための構成(例えば液滴201をベース部材2の外部に導出するための導出路2a等)を簡素化することができる。本実施形態では、各排出口112、122それぞれについて、別々に導出路を設けるのではなく、各排出口112、122について1つの導出路2aを共用するため、液滴201を外部に排出するための構成を簡素化することができる。 Further, since the directions of the discharge ports 112 and 122 of the droplet generation flow path 3 are concentrated at one point P, the droplets 201 discharged from the discharge ports 112 and 122 are discharged to the outside of the droplet generation module 1. Therefore, the configuration (for example, the lead-out path 2a for leading the droplet 201 to the outside of the base member 2) can be simplified. In the present embodiment, the outlets 112 and 122 are not provided with separate outlets, but the outlets 112 and 122 share one outlet path 2a, so that the droplets 201 are discharged to the outside. The configuration can be simplified.
(液滴生成モジュールの詳細説明)
 以下に、上記のように構成された液滴生成モジュール1についてより詳細に説明する。
(Detailed description of the droplet generation module)
Hereinafter, the droplet generation module 1 configured as described above will be described in more detail.
 まず、図1を参照して説明する。液滴生成モジュール1は、一つの液滴生成流路3(本実施形態では、一つの分散相流路10と、一つの連通流路13と、3つの連続相流路11、12、14とからなる一つの流路)が形成された液滴生成器4を複数(例えば70個等)備えてなる。言いかえれば、液滴生成モジュール1は、70個等の複数の液滴生成流路3を有する流路構造300がベース部材2に形成されてなる。ベース部材2は、透明なアクリル樹脂等の材質からなっており、所定の厚みを有しかつ上面視で正方形状に形成されている。ベース部材2は、下側基板21に上側基板22が積層されている。なお、下側基板21と上側基板22とを接合する方法は限定されないが、ボルト締め等により着脱可能に接合されていることが好ましい。 First, a description will be given with reference to FIG. The droplet generation module 1 includes one droplet generation channel 3 (in this embodiment, one dispersed phase channel 10, one communication channel 13, and three continuous phase channels 11, 12, and 14). A plurality of droplet generators 4 (for example, 70) having a single flow path) are provided. In other words, the droplet generation module 1 has a channel structure 300 having a plurality of droplet generation channels 3 such as 70 formed on the base member 2. The base member 2 is made of a material such as a transparent acrylic resin, has a predetermined thickness, and is formed in a square shape when viewed from above. In the base member 2, an upper substrate 22 is laminated on a lower substrate 21. The method of joining the lower substrate 21 and the upper substrate 22 is not limited, but it is preferable that the lower substrate 21 and the upper substrate 22 are detachably joined by bolting or the like.
 流路構造300は、下側基板21の上面に形成されている。上側基板22は、透明であるため、図1(a)で示すように、液滴生成モジュール1が平面視された場合に、上側基板22を通して流路構造300を視認可能にしている。流路構造300は、複数の液滴生成流路3がユニット化されてなる。具体的には、流路構造300において複数の液滴生成流路3は、50mm等の直径を有した円形状の線分上に配置されることによって、円環状に配置されている。流路構造300における液滴生成流路3の配置間隔は、等間隔に設定されているが、等間隔に限定されるものではない。 The flow path structure 300 is formed on the upper surface of the lower substrate 21. Since the upper substrate 22 is transparent, as shown in FIG. 1A, the flow path structure 300 is made visible through the upper substrate 22 when the droplet generation module 1 is viewed in plan. The channel structure 300 is formed by unitizing a plurality of droplet generation channels 3. Specifically, in the flow channel structure 300, the plurality of droplet generation flow channels 3 are arranged in an annular shape by being arranged on a circular line segment having a diameter of 50 mm or the like. The arrangement intervals of the droplet generation channels 3 in the channel structure 300 are set at equal intervals, but are not limited to the equal intervals.
 各液滴生成流路3は、流路方向が上記円環の中心点(一点P)に向かうように配置されている。言い換えれば、複数の液滴生成流路3が、一点Pを中心とした円環状に配置されている。なお、一点Pは、流路構造300と同一水平面上に設定される。各液滴生成流路3の終端(下流端)には、一点Pに向くように排出口112、122が形成されており、この排出口112、122から液滴生成流路3で生成された液滴201が排出される。この様に、各排出口112、122の向きが一点Pに集中するように複数の液滴生成流路3が配列されているため、各排出口112、122を一点Pの周囲の領域に密集させることができる。このため、各排出口112、122を密集させた分だけ、複数の液滴生成流路3を省スペースに配列することができる。また、本実施形態では、上記一点Pから等距離に各排出口112、122が配置されているため、排出口112、122に要するベース部材2のスペースが省スペースになる。この結果、多くの液滴生成流路3を有する場合でも流路構造300を省スペースに形成することが可能になる。 Each droplet generation flow path 3 is arranged so that the flow path direction is directed to the center point (one point P) of the ring. In other words, the plurality of droplet generation flow paths 3 are arranged in an annular shape centered on one point P. One point P is set on the same horizontal plane as the flow path structure 300. At the end (downstream end) of each droplet generation channel 3, discharge ports 112 and 122 are formed so as to face one point P, and the droplet generation channel 3 generated from the discharge ports 112 and 122. A droplet 201 is discharged. In this way, since the plurality of droplet generation flow paths 3 are arranged so that the directions of the discharge ports 112 and 122 are concentrated at one point P, the discharge ports 112 and 122 are concentrated in a region around the point P. Can be made. For this reason, a plurality of droplet generation flow paths 3 can be arranged in a space-saving manner by the amount where the discharge ports 112 and 122 are densely packed. Moreover, in this embodiment, since each discharge port 112,122 is arrange | positioned equidistantly from the said one point P, the space of the base member 2 required for the discharge port 112,122 becomes a space saving. As a result, the flow path structure 300 can be formed in a space-saving manner even when a large number of droplet generation flow paths 3 are provided.
 そして、下側基板21における一点Pに対応する位置、すなわち上記円環の中心部には、液滴201を外部に排出するための単一の導出路2aが形成されている。具体的には、導出路2aは、下側基板21を貫通する貫通孔であり、平面視で略円形の形状を有する。導出路2aには、流路構造300の各排出口112、122が連通されており、これによって、各液滴生成流路3で生成された液滴201がベース部材2の外部に導出路2aを介して排出される。この様に、各排出口112、122によって単一の導出路2aが共用される。このため、各排出口112、122についてそれぞれの導出路を配列しない分だけ、液滴の導出構造の省スペース化を図ることができる。また、導出路2aの形成位置が、一点Pに対応する位置であるため、各排出口112、122と導出路2aとを直接連通させる構成とすることが容易である。これによって、更に液滴201の導出構造の省スペース化を図ることが可能になる。 A single lead-out path 2a for discharging the droplet 201 to the outside is formed at a position corresponding to one point P on the lower substrate 21, that is, at the center of the ring. Specifically, the lead-out path 2a is a through hole that penetrates the lower substrate 21, and has a substantially circular shape in plan view. The outlets 112 and 122 of the channel structure 300 are communicated with the outlet channel 2a, whereby the droplets 201 generated in each droplet generation channel 3 are connected to the outside of the base member 2 to the outlet channel 2a. It is discharged through. In this way, the single outlet 2a is shared by the discharge ports 112 and 122. For this reason, it is possible to reduce the space for the droplet derivation structure by an amount that does not arrange the respective derivation paths for the discharge ports 112 and 122. In addition, since the formation position of the lead-out path 2a is a position corresponding to one point P, it is easy to have a configuration in which the discharge ports 112 and 122 and the lead-out path 2a are in direct communication. As a result, it is possible to further reduce the space of the lead-out structure of the droplet 201.
 なお、導出路2aの下側開口は、図示しない回収配管に接続されており、導出路2aから導出された液滴が収集されて回収配管を介して次工程に流出されるようになっている。排出された液滴201は、所定の工程を経て例えば塞栓やDDS等に使用される微小粒子202となる。この所定の工程についての詳細は後述する。 The lower opening of the outlet path 2a is connected to a recovery pipe (not shown) so that the liquid droplets extracted from the outlet path 2a are collected and discharged to the next process through the recovery pipe. . The discharged droplets 201 become microparticles 202 that are used for, for example, embolization or DDS, through a predetermined process. Details of the predetermined process will be described later.
 以下に図2から図9を用いて、液滴生成器4の構成をより詳細に説明する。図2は、図1で示す液滴生成器の斜視図である。図3は、平面視した場合における液滴生成器の概略構成を示す図である。図4(a)は、図3におけるA-A線矢視断面による液滴生成器を示す図であり、(b)は、図3におけるB-B線矢視断面による液滴生成器を示す図である。図5は、図3におけるC-C線矢視断面による液滴生成器を示す図である。図6は、図3におけるD-D線矢視断面による液滴生成器を示す図である。図7は、図3におけるE-E線矢視断面による液滴生成器を示す図である。図8は、図3におけるF-F線矢視断面による液滴生成器を示す図である。図9は、図3におけるG-G線矢視断面による液滴生成器を示す図である。 Hereinafter, the configuration of the droplet generator 4 will be described in more detail with reference to FIGS. FIG. 2 is a perspective view of the droplet generator shown in FIG. FIG. 3 is a diagram illustrating a schematic configuration of the droplet generator in a plan view. 4A is a diagram showing a droplet generator taken along the line AA in FIG. 3. FIG. 4B is a diagram showing the droplet generator taken along the line BB in FIG. FIG. FIG. 5 is a view showing a droplet generator according to a cross section taken along the line CC in FIG. FIG. 6 is a view showing a droplet generator according to a cross section taken along line DD in FIG. FIG. 7 is a view showing a droplet generator according to a cross section taken along line EE in FIG. FIG. 8 is a diagram showing a droplet generator according to the cross section taken along the line FF in FIG. FIG. 9 is a view showing a droplet generator according to the cross section taken along the line GG in FIG.
(液滴生成器の概要)
 まず、図2を用いて液滴生成器4の構成の概要を説明する。なお、図2におけるX方向を液滴生成器4の「幅方向」、Z方向を液滴生成器4の「奥行き方向」、Y方向を液滴生成器4の「高さ方向」として、説明する。
(Outline of droplet generator)
First, the outline of the configuration of the droplet generator 4 will be described with reference to FIG. 2, the X direction is the “width direction” of the droplet generator 4, the Z direction is the “depth direction” of the droplet generator 4, and the Y direction is the “height direction” of the droplet generator 4. To do.
 液滴生成器4は、分散相材200の流通方向を複数に分岐し、分岐先において分散相材200の流通方向に対して連続相材100の流通方向をそれぞれ交差させ、交差により生じた連続相材100の剪断力によって分散相材200の液滴201を生成するように構成されている。 The droplet generator 4 divides the flow direction of the dispersed phase material 200 into a plurality of directions, crosses the flow direction of the continuous phase material 100 with respect to the flow direction of the dispersed phase material 200 at the branch destination, and the continuous generated by the intersection The droplets 201 of the dispersed phase material 200 are generated by the shearing force of the phase material 100.
 即ち、液滴生成器4は、液状の連続相材100を流通させる複数の連続相流路11、12と、液状の分散相材200を流通させる単数の分散相流路10と、分散相流路10を各連続相流路11、12にそれぞれ連通口133、134を介して連通させ、各連通口133、134における連続相材100の剪断力により分散相材200の液滴201を生成させるように形成された連通流路13とを有している。 That is, the droplet generator 4 includes a plurality of continuous phase channels 11 and 12 through which the liquid continuous phase material 100 circulates, a single dispersed phase channel 10 through which the liquid dispersed phase material 200 circulates, and a dispersed phase flow. The channel 10 is communicated with the continuous phase flow paths 11 and 12 through the communication ports 133 and 134, respectively, and the droplets 201 of the dispersed phase material 200 are generated by the shearing force of the continuous phase material 100 at the communication ports 133 and 134. The communication channel 13 is formed as described above.
 上記の構成によれば、連通流路13によって、単数の分散相流路10から複数の連続相流路11、12に連通口133、134を介して分散相材200が流入される。各連続相流路11、12には、連続相材100が流通され、連通口133、134から流入される分散相材200を連続相材100の剪断力により液滴201化することで、分散相材200の液滴201が各連続相流路11、12で生成される。このように、複数の連続相流路11、12に対して単数の分散相流路10から分散相材200を流入させて分散相材200の液滴201が生成される。このため、上記構成によれば、複数の連続相流路11、12に対して単数の分散相流路10が共用された状態になっているため、従来のように複数の連続相流路11、12に対して同数の分散相流路10から分散相材200を流入させる構成に比較して、液滴201の生成数を維持しながら、分散相流路10の配置数を減少させることができる。この結果、分散相流路10を配置するスペースを削減できる分、流路構造300に多くの連続相流路11、12を配列することができ、分散相材200の液滴201の単位時間当たりの生産性を向上させることができる。 According to the above configuration, the dispersed phase material 200 flows from the single dispersed phase channel 10 into the plurality of continuous phase channels 11 and 12 through the communication ports 133 and 134 by the communicating channel 13. The continuous phase material 100 is circulated through each continuous phase flow path 11, 12, and the dispersed phase material 200 flowing from the communication ports 133, 134 is dispersed into droplets 201 by the shearing force of the continuous phase material 100, thereby dispersing A droplet 201 of the phase material 200 is generated in each continuous phase flow path 11, 12. As described above, the dispersed phase material 200 is caused to flow into the plurality of continuous phase channels 11 and 12 from the single dispersed phase channel 10 to generate the droplets 201 of the dispersed phase material 200. For this reason, according to the said structure, since the single dispersion phase flow path 10 is shared with respect to the several continuous phase flow paths 11 and 12, several continuous phase flow paths 11 are conventionally used. Compared to the configuration in which the dispersed phase material 200 is introduced from the same number of dispersed phase flow paths 10 with respect to 12, the number of dispersed phase flow paths 10 can be reduced while maintaining the number of droplets 201 generated. it can. As a result, since the space for disposing the dispersed phase channel 10 can be reduced, a large number of continuous phase channels 11 and 12 can be arranged in the channel structure 300, and per unit time of the droplet 201 of the dispersed phase material 200. Productivity can be improved.
 また、液滴生成流路3は、連続相材100を流通させる連続相流路14を有する。連通流路13は、各連通口133、134において、連続相流路14からの連続相材100が連続相流路11、12を流通する連続相材100の下流側を流通するように、連続相流路14に連通されている。具体的には、連続相流路14の一端が、連通流路13に連通されている。そして、この連通流路13における連通位置は、分散相流路10の連通位置に対向する位置である。 In addition, the droplet generation flow path 3 has a continuous phase flow path 14 through which the continuous phase material 100 flows. The communication channel 13 is continuous so that the continuous phase material 100 from the continuous phase channel 14 flows through the downstream side of the continuous phase material 100 flowing through the continuous phase channels 11 and 12 at the communication ports 133 and 134. It communicates with the phase flow path 14. Specifically, one end of the continuous phase flow path 14 is communicated with the communication flow path 13. The communication position in the communication channel 13 is a position facing the communication position of the dispersed phase channel 10.
 このため、連通流路13において、連続相流路14から流入された連続相材100と分散相流路10から流入された分散相材200とが衝突する。この衝突によって、連通流路13では、分散相材200と連続相材100とが、それぞれ衝突した位置で分岐して連続相流路11及び連続相流路12の双方に向かう。ここで、分散相材200と連続相材100との衝突により、分散相材200と連続相材100とが、2層状になった状態で、連通流路13から連通口133、134を介して連続相流路11、12に流入される。この2層状の分散相材200と連続相材100との流通形態は、連通口133、134において、連続相材100が連続相流路11、12の下流側に流通される形態である。このため、連続相流路11、12を流通する連続相材100によって、上記2層状の分散相材200と連続相材100とが連通口133、134に押し付けられても、上記2層を構成する連続相材100によって連通口133、134に分散相材200が付着することを効果的に防止することが可能になる。 For this reason, in the communication channel 13, the continuous phase material 100 introduced from the continuous phase channel 14 and the dispersed phase material 200 introduced from the dispersed phase channel 10 collide with each other. Due to this collision, in the communication channel 13, the dispersed phase material 200 and the continuous phase material 100 are branched at the positions where they collide, and are directed to both the continuous phase channel 11 and the continuous phase channel 12. Here, in a state where the dispersed phase material 200 and the continuous phase material 100 are formed into two layers due to the collision between the dispersed phase material 200 and the continuous phase material 100, the communication channel 13 passes through the communication ports 133 and 134. It flows into the continuous phase flow paths 11 and 12. The flow form of the two-layer dispersed phase material 200 and the continuous phase material 100 is a form in which the continuous phase material 100 is circulated downstream of the continuous phase flow paths 11 and 12 at the communication ports 133 and 134. Therefore, even if the two-phase dispersed phase material 200 and the continuous phase material 100 are pressed against the communication ports 133 and 134 by the continuous phase material 100 flowing through the continuous phase flow channels 11 and 12, the two layers are formed. Thus, the continuous phase material 100 can effectively prevent the dispersed phase material 200 from adhering to the communication ports 133 and 134.
 次に、図2から図9を用いて、液滴生成器4の液滴生成流路3を構成する流路を個別に説明する。
(液滴生成器4:分散相流路10)
 分散相流路10は、その縦断面が略正方形(例えば、幅及び高さが0.5mmの略正方形)である長尺な略直方体形状の流通空間として形成されている。分散相流路10は、下側基板21の幅方向における一端側(図2の左端側)から中央付近まで延びるように形成されている。また、分散相流路10は、その一端(図2の左側一端)の底面に分散相材導入部101が形成されている。分散相材導入部101は、図5で示すように、下側基板21に形成された管状の貫通口である。分散相材導入部101の下端(開口)には、分散相材200用の供給装置(図略)が着脱可能に接続されている。なお、供給装置(図略)は、温調器や流量調整器を備えており、所望の温度、流量及び流速で分散相材200を分散相材導入部101に供給するようになっている。
Next, the flow paths constituting the droplet generation flow path 3 of the droplet generator 4 will be described individually with reference to FIGS.
(Droplet generator 4: Dispersed phase channel 10)
The dispersed phase flow channel 10 is formed as a long, substantially rectangular parallelepiped-shaped circulation space whose longitudinal section is substantially square (for example, a substantially square having a width and a height of 0.5 mm). The dispersed phase channel 10 is formed to extend from one end side (left end side in FIG. 2) in the width direction of the lower substrate 21 to the vicinity of the center. Moreover, the dispersed phase flow path 10 has a dispersed phase material introducing portion 101 formed on the bottom surface of one end thereof (one left end in FIG. 2). As shown in FIG. 5, the dispersed phase material introducing portion 101 is a tubular through-hole formed in the lower substrate 21. A supply device (not shown) for the dispersed phase material 200 is detachably connected to the lower end (opening) of the dispersed phase material introducing portion 101. The supply device (not shown) includes a temperature controller and a flow rate regulator, and supplies the dispersed phase material 200 to the dispersed phase material introduction unit 101 at a desired temperature, flow rate, and flow rate.
 分散相流路10は、上記一端の他端側の側部で、連通流路13に連通口131を介して連通されている。これによって、分散相流路10は、分散相材導入部101から供給された分散相材200を連通流路13に連通口131を介して流入させるようになっている。 The dispersed phase flow path 10 is in communication with the communication flow path 13 through the communication port 131 at the side portion on the other end side of the one end. As a result, the dispersed phase flow channel 10 allows the dispersed phase material 200 supplied from the dispersed phase material introduction unit 101 to flow into the communication flow channel 13 via the communication port 131.
(液滴生成器4:連通流路13)
 連通流路13は、その断面が略正方形(例えば、幅及び高さが0.5mmの略正方形)の略直方体形状の流通空間として形成されている。連通流路13は、下側基板21の幅方向の中部において、奥行き方向に延びるように形成されている。そして、連通流路13は、その幅方向側の一側面(図2の左側の側面)で、上述したように連通口131を介して分散相流路10に連通されている。なお、連通口131は、上記一側面における奥行き方向の中央部に形成されている。また、連通流路13は、連通口131に対向する位置に連通口132が形成されており、この連通口132を介して連続相流路14に連通されている。これによって、連通流路13には、連通口132を介して連続相流路14から連続相材100が流入されるようになっている。
(Droplet generator 4: Communication channel 13)
The communication flow path 13 is formed as a substantially rectangular parallelepiped distribution space having a substantially square cross section (for example, a substantially square having a width and a height of 0.5 mm). The communication flow path 13 is formed so as to extend in the depth direction at the center in the width direction of the lower substrate 21. The communication channel 13 communicates with the dispersed phase channel 10 through the communication port 131 on one side surface (the left side surface in FIG. 2) on the width direction side as described above. The communication port 131 is formed at the center in the depth direction on the one side surface. In addition, the communication channel 13 has a communication port 132 formed at a position facing the communication port 131, and communicates with the continuous phase channel 14 via the communication port 132. As a result, the continuous phase material 100 flows into the communication flow path 13 from the continuous phase flow path 14 via the communication port 132.
 上述したように、連通流路13において、連通口131と連通口132は対向するように形成されており、このため、連通口131と連通口132の間の領域(衝突領域)で、連通口131から流入された分散相材200と連通口132から流入された連続相材100とが衝突する。これによって、連通流路13は、分散相材200と連続相材100とを、それぞれ衝突領域で分岐させて、かつ2層状にして連通流路13の両端に向かって流通させるようになっている。 As described above, in the communication flow path 13, the communication port 131 and the communication port 132 are formed so as to face each other. For this reason, the communication port is a region (collision region) between the communication port 131 and the communication port 132. The dispersed phase material 200 introduced from 131 and the continuous phase material 100 introduced from the communication port 132 collide with each other. As a result, the communication channel 13 divides the dispersed phase material 200 and the continuous phase material 100 into two layers in the collision region and circulates toward both ends of the communication channel 13. .
 また、連通流路13は、その奥行き方向側の一側部(図2の手前側側部)に、連続相流路11との連通口133が形成されている。これによって、連通流路13は、連通口133を介して、2層状になった分散相材200と連続相材100とを連続相流路11に流入させるようになっている。また、連通流路13は、上記一側部の反対側の側部(図2の奥側側部)に、連続相流路12との連通口134が形成されている。これによって、連通流路13は、連通口134を介して、2層状になった分散相材200と連続相材100とを連続相流路12に流入させるようになっている。 Further, the communication channel 13 has a communication port 133 with the continuous phase channel 11 formed on one side (the front side in FIG. 2) in the depth direction. As a result, the communication flow path 13 causes the dispersed phase material 200 and the continuous phase material 100 having two layers to flow into the continuous phase flow path 11 through the communication port 133. The communication channel 13 is formed with a communication port 134 with the continuous phase channel 12 on the side opposite to the one side (the rear side in FIG. 2). As a result, the communication flow path 13 causes the two-layered dispersed phase material 200 and the continuous phase material 100 to flow into the continuous phase flow path 12 through the communication port 134.
(液滴生成器4:連続相流路14)
 連続相流路14は、その断面が略正方形(例えば、幅及び高さが0.5mmの略正方形)である長尺な略直方体形状の流通空間として形成されている。連続相流路14は、図4(a)で示すように、分散相流路10の下流側に、連通流路13を介して分散相流路10に隣接するように形成されている。また、連続相流路14は、分散相流路10と同一直線上に延びるように形成されている。連続相流路14は、分散相流路10側の一端で、上述したように連通口132を介して連通流路13に連通されている。また、連続相流路14は、その他端の底面には、連続相材導入部141が形成されている。
(Droplet generator 4: Continuous phase flow path 14)
The continuous phase flow path 14 is formed as a long, substantially rectangular parallelepiped circulation space whose cross section is approximately square (for example, approximately square having a width and height of 0.5 mm). As shown in FIG. 4A, the continuous phase channel 14 is formed on the downstream side of the dispersed phase channel 10 so as to be adjacent to the dispersed phase channel 10 via the communication channel 13. Further, the continuous phase flow path 14 is formed to extend on the same straight line as the dispersed phase flow path 10. The continuous phase flow path 14 is connected to the communication flow path 13 through the communication port 132 as described above at one end on the dispersed phase flow path 10 side. Moreover, the continuous phase flow path 14 has a continuous phase material introducing portion 141 formed on the bottom surface at the other end.
 連続相材導入部141は、図8で示すように、下側基板21に形成された管状の貫通口である。連続相材導入部141の下端(開口)には、図示しない連続相材100用の供給装置が着脱可能に接続されている。なお、供給装置は、温調器や流量調整器を備えており、所望の温度、流量及び流速で連続相材100を連続相材導入部141に供給するようになっている。これによって、連続相流路14は、連続相材導入部141から供給された連続相材100を連通口132に向かって流通させて、連通口132を介して連通流路13に流入させるように形成されている。 The continuous phase material introducing portion 141 is a tubular through-hole formed in the lower substrate 21 as shown in FIG. A supply device for the continuous phase material 100 (not shown) is detachably connected to the lower end (opening) of the continuous phase material introducing portion 141. The supply device includes a temperature controller and a flow rate adjuster, and supplies the continuous phase material 100 to the continuous phase material introduction unit 141 at a desired temperature, flow rate, and flow rate. As a result, the continuous phase flow path 14 causes the continuous phase material 100 supplied from the continuous phase material introducing portion 141 to flow toward the communication port 132 and to flow into the communication flow channel 13 via the communication port 132. Is formed.
 (液滴生成器4:連続相流路11、12)
 連続相流路11、12は、それぞれその断面が略正方形(例えば、幅及び高さが0.5mmの略正方形)の流通空間として下側基板21の上面に形成されている。連続相流路11、12は、下側基板21の幅方向の一端側(図2における左側一端)から他端まで延びるように形成されている。分散相流路10が左側で連続相流路14が右側になるように液滴生成器4を配置したときに(図2の状態に配置したときに)、連続相流路12は分散相流路10の奥側に形成されており、連続相流路11は分散相流路10の手前側に形成されている。
(Droplet generator 4: Continuous phase flow path 11, 12)
Each of the continuous phase flow paths 11 and 12 is formed on the upper surface of the lower substrate 21 as a circulation space having a substantially square cross section (for example, a substantially square having a width and a height of 0.5 mm). The continuous phase flow paths 11 and 12 are formed so as to extend from one end side (one left end in FIG. 2) in the width direction of the lower substrate 21 to the other end. When the droplet generator 4 is arranged so that the dispersed phase channel 10 is on the left side and the continuous phase channel 14 is on the right side (when arranged in the state of FIG. 2), the continuous phase channel 12 The continuous phase flow path 11 is formed on the front side of the dispersed phase flow path 10.
 また、連続相流路11の一端(図2における左側一端)の底面には、連続相材導入部111が形成されており、連続相流路12の一端(図2における左側一端)の底面には、連続相材導入部121が形成されている。連続相材導入部111、121は、図6で示すように、下側基板21に形成された管状の貫通口である。連続相材導入部111、121の下端(開口)には、それぞれ連続相材100用の供給装置(図略)が着脱可能に接続されている。供給装置(図略)は、温調器や流量調整器を備えており、所望の温度、流量及び流速で連続相材100を連続相材導入部111、121に供給するようになっている。なお、第1実施形態においては、連続相材導入部111、121に連続相材100を供給するための供給装置(図略)は、連続相材導入部141に連続相材100を供給するための供給装置(図略)とは別に用意され、これらの供給装置(図略)の連続相材100の供給は個別に制御される。 In addition, a continuous phase material introducing portion 111 is formed on the bottom surface of one end of the continuous phase flow channel 11 (left end in FIG. 2), and on the bottom surface of one end of the continuous phase flow channel 12 (left end in FIG. 2). The continuous phase material introduction part 121 is formed. The continuous phase material introducing portions 111 and 121 are tubular through holes formed in the lower substrate 21 as shown in FIG. A supply device (not shown) for the continuous phase material 100 is detachably connected to the lower ends (openings) of the continuous phase material introducing portions 111 and 121, respectively. The supply device (not shown) includes a temperature controller and a flow rate regulator, and supplies the continuous phase material 100 to the continuous phase material introduction units 111 and 121 at a desired temperature, flow rate, and flow rate. In the first embodiment, a supply device (not shown) for supplying continuous phase material 100 to continuous phase material introduction units 111 and 121 supplies continuous phase material 100 to continuous phase material introduction unit 141. These supply devices (not shown) are prepared separately, and the supply of the continuous phase material 100 of these supply devices (not shown) is individually controlled.
 連続相流路11、12は、その他端側の側部に排出口112、122が形成されており、連続相材導入部111、121から供給された連続相材100を排出口112、122に向かって流通させ、排出口112、122から排出させるようになっている。また、連続相流路11は、分散相流路10側(図2の奥側)の一側面において、上述したように連通口133を介して連通流路13に連通されている。これによって、上述したように、連続相流路11には、連通流路13から連通口133を介して、2層状の分散相材200と連続相材100とが流入されるようになっている。 The continuous phase flow paths 11 and 12 are formed with discharge ports 112 and 122 at the other end side, and the continuous phase material 100 supplied from the continuous phase material introduction portions 111 and 121 is supplied to the discharge ports 112 and 122. It is made to distribute | circulate toward and it is made to discharge from the discharge ports 112 and 122. FIG. Moreover, the continuous phase flow path 11 is connected to the communication flow path 13 through the communication port 133 as described above on one side surface of the dispersed phase flow path 10 side (the back side in FIG. 2). As a result, as described above, the two-phase dispersed phase material 200 and the continuous phase material 100 are allowed to flow into the continuous phase flow channel 11 from the communication flow channel 13 through the communication port 133. .
 また、連続相流路12も、分散相流路10側(図2の手前側)の一側面において、上述したように連通口134を介して連通流路13に連通されている。これによって、上述したように、連続相流路12は、連通流路13から連通口134を介して、2層状の分散相材200と連続相材100とが流入されるようになっている。 Further, the continuous phase flow path 12 is also connected to the communication flow path 13 through the communication port 134 as described above on one side of the dispersed phase flow path 10 side (front side in FIG. 2). Thereby, as described above, the two-phase dispersed phase material 200 and the continuous phase material 100 flow into the continuous phase flow channel 12 from the communication flow channel 13 through the communication port 134.
 上述したように、連続相流路11、12は、連通流路13から連通口133、134を介して、2層状の分散相材200と連続相材100とが流入されるように形成されている。ここで、連通口133、134において、上記2層を構成する連続相材100は、連続相流路11、12の下流側を流通する。このため、分散相材200は、連続相流路11、12を流通する連続相材100と、2層を構成する連続相材100との剪断力によって両側から剪断されて、液滴化される。このように生成された分散相材200の液滴201は、連続相材100とともに排出口112、122から排出される。排出口112、122は、冷却工程等の後工程に用いられる機構又は機器に接続されており、これらの機構又は機器によって液滴201が収集される。 As described above, the continuous phase flow paths 11 and 12 are formed such that the two-layered dispersed phase material 200 and the continuous phase material 100 are introduced from the communication flow path 13 through the communication ports 133 and 134. Yes. Here, in the communication ports 133 and 134, the continuous phase material 100 constituting the two layers flows through the downstream side of the continuous phase flow paths 11 and 12. For this reason, the dispersed phase material 200 is sheared from both sides by a shearing force between the continuous phase material 100 flowing through the continuous phase flow paths 11 and 12 and the continuous phase material 100 constituting two layers, and is formed into droplets. . The droplets 201 of the dispersed phase material 200 generated in this way are discharged from the discharge ports 112 and 122 together with the continuous phase material 100. The discharge ports 112 and 122 are connected to a mechanism or device used in a subsequent process such as a cooling process, and the droplet 201 is collected by these mechanism or device.
 なお、分散相材200の液滴を好適に生成するためには、分散相流路10、連続相流路11、12、14、及び連通流路13の寸法を以下のように形成することが好ましい。図3で示すように、液滴生成器4の奥行き方向において、連通口134から分散相流路10までの連通流路13の長さと、連通口133から分散相流路10までの連通流路13の長さとは、略同一であることが好ましい。 In order to suitably generate the droplets of the dispersed phase material 200, the dimensions of the dispersed phase channel 10, the continuous phase channels 11, 12, 14 and the communication channel 13 may be formed as follows. preferable. As shown in FIG. 3, in the depth direction of the droplet generator 4, the length of the communication channel 13 from the communication port 134 to the dispersed phase channel 10 and the communication channel from the communication port 133 to the dispersed phase channel 10. The length of 13 is preferably substantially the same.
 また、そして、図4(a)及び図4(b)で示すように、液滴生成器4の幅方向において、連続相材導入部111から連通口133までの長さが、連続相材導入部121から連通口134までの長さと略同一になるように形成されることが好ましい。 Further, as shown in FIGS. 4A and 4B, the length from the continuous phase material introduction unit 111 to the communication port 133 in the width direction of the droplet generator 4 is the continuous phase material introduction. It is preferable that the length from the portion 121 to the communication port 134 is substantially the same.
(液滴生成モジュール1:ベース部材2)
 以下、図1(a)(b)及び図2を参照して液滴生成モジュール1のベース部材2の構成を説明する。
 ベース部材2は、図1(a)(b)及び図2に示すように、平面視で中央に導出路2aを有し、かつ所定の厚みを有する略正方形の下側基板21と、所定の厚みを有する略正方形の上側基板22とで構成されている。ベース部材2は、分散相材200に対して濡れ難い性状を有した材料により形成されていれば限定されないが、具体的には、下側基板21は、ポリカーボネート等の樹脂材料又は表面を疎水化処理したステンレス等の金属材料又はガラス等からなる。また、上側基板22も、下側基材21と同様の素材を用いる事ができるが、特にポリカーボネートやアクリル樹脂又は表面を疎水化処理したガラス等からなり、透明に形成されてことが好ましい。下側基板21は、その上面に接合面21a(流路形成領域)を有し、上側基板22はその下面に接合面22aを有している。下側基板21の接合面21aと上側基板22の接合面22aとを対向させて接合することにより、下側基板21と上側基板22とは一体化されている。
(Droplet generation module 1: base member 2)
Hereinafter, the configuration of the base member 2 of the droplet generation module 1 will be described with reference to FIGS.
As shown in FIGS. 1A, 1B, and 2, the base member 2 has a substantially square lower substrate 21 having a lead-out path 2a in the center in plan view and a predetermined thickness, It is comprised with the substantially square upper side board | substrate 22 which has thickness. The base member 2 is not limited as long as the base member 2 is formed of a material having properties that are difficult to wet with respect to the dispersed phase material 200. Specifically, the lower substrate 21 is made of a resin material such as polycarbonate or the surface is hydrophobized. It consists of a treated metal material such as stainless steel or glass. The upper substrate 22 can also be made of the same material as the lower substrate 21, but is preferably made of polycarbonate, acrylic resin, glass whose surface has been hydrophobized, or the like, and is formed transparently. The lower substrate 21 has a bonding surface 21a (flow path forming region) on its upper surface, and the upper substrate 22 has a bonding surface 22a on its lower surface. By bonding the bonding surface 21a of the lower substrate 21 and the bonding surface 22a of the upper substrate 22 to face each other, the lower substrate 21 and the upper substrate 22 are integrated.
 下側基板21の接合面21aには、複数の液滴生成流路3が溝等により導出路2aを中心として放射状に形成されている。具体的には、接合面21aには、各分散相流路10、各連続相流路11、12、14、及び各連通流路13が形成されている。また、下側基板21には、厚み方向に形成された貫通孔として、各連続相材導入部111、121、141と各分散相材導入部101とが形成されている。そして、下側基板21には、各連続相流路11、12の終端が導出路2aに対して貫通されており、この貫通部が排出口112、122となっている。 A plurality of droplet generation channels 3 are formed radially on the bonding surface 21a of the lower substrate 21 around the outlet channel 2a by grooves or the like. Specifically, each dispersed phase flow path 10, each continuous phase flow path 11, 12, 14, and each communication flow path 13 are formed on the bonding surface 21a. Further, the continuous substrate introduction parts 111, 121, and 141 and the dispersed phase material introduction parts 101 are formed in the lower substrate 21 as through holes formed in the thickness direction. In the lower substrate 21, the terminal ends of the continuous phase flow paths 11 and 12 are penetrated with respect to the lead-out path 2 a, and the through portions serve as discharge ports 112 and 122.
(分散相材200)
 次に、液滴生成モジュール1で使用される分散相材200及び連続相材100について説明する。分散相材200は、エマルジョンの分散質となる液体であれば、特に限定されるものではない。例えば、微小粒子202が肝臓癌や子宮筋腫、腎癌、腎臓癌などの治療法における動脈塞栓治療法で用いられる場合には、分散相材200としてゼラチン水溶液が用いられる。ゼラチン水溶液におけるゼラチンの種類は、特に限定されない。例えば、牛骨由来、牛皮由来、豚骨由来、豚皮由来などのゼラチンを使用することができる。また、分散相材200は、薬成分を含む液体であってもよい。このような薬成分を含む分散相材200から生成された微小粒子202は、薬成分の徐放性を有するため、例えば、DDS等で使用されてもよい。
(Dispersed phase material 200)
Next, the dispersed phase material 200 and the continuous phase material 100 used in the droplet generation module 1 will be described. The dispersed phase material 200 is not particularly limited as long as it is a liquid that becomes a dispersoid of the emulsion. For example, when the microparticles 202 are used in an arterial embolization treatment method for treating liver cancer, uterine fibroids, kidney cancer, kidney cancer, etc., an aqueous gelatin solution is used as the dispersed phase material 200. The kind of gelatin in the gelatin aqueous solution is not particularly limited. For example, gelatin derived from cow bone, cow skin, pork bone, pig skin, or the like can be used. Further, the dispersed phase material 200 may be a liquid containing a drug component. Since the fine particles 202 generated from the dispersed phase material 200 containing such a drug component have a sustained release property of the drug component, for example, it may be used in DDS or the like.
 液状の分散相材200であるゼラチン水溶液の温度は、ゼラチンのゲル化温度である20℃以上であることが必要である。この理由は、ゼラチン水溶液の温度がゼラチンのゲル化温度以下になると、連通口131、133、134でゼラチン水溶液がゲル化してしまい、連通口131、133、134が閉塞するという問題が生じ易く、ゼラチン水溶液の定量流出ができなくなると共に、ゼラチン水溶液が連通口131、133、134から離脱されないため粒径ばらつきが起きてしまうことが多いからである。 The temperature of the gelatin aqueous solution that is the liquid dispersed phase material 200 needs to be 20 ° C. or higher, which is the gelatinization temperature of gelatin. The reason for this is that when the temperature of the gelatin aqueous solution is equal to or lower than the gelatin gelation temperature, the gelatin aqueous solution gels at the communication ports 131, 133, and 134, and the communication ports 131, 133, and 134 are likely to be blocked. This is because the gelatin aqueous solution cannot be quantified and the gelatin aqueous solution is not detached from the communication ports 131, 133, and 134, so that the particle size variation often occurs.
 ゼラチン水溶液の濃度は、2重量%~20重量%が好ましく、5重量%~15重量%が特に好ましい。なお、濃度の下限値を2重量%とした理由は、2重量%未満の水溶液の場合には球形の粒子を作製することが困難であるからである。一方、濃度の上限値を20重量%とした理由は、20重量%を超えると、水溶液が高粘度となり、閉塞等の理由により、分散相流路10、連通流路13における水溶液の流動及び連通口131、133、134からの水溶液の流出が困難となるからである。 The concentration of the gelatin aqueous solution is preferably 2% by weight to 20% by weight, particularly preferably 5% by weight to 15% by weight. The reason why the lower limit of the concentration is 2% by weight is that it is difficult to produce spherical particles in the case of an aqueous solution of less than 2% by weight. On the other hand, the reason why the upper limit value of the concentration is set to 20% by weight is that when the concentration exceeds 20% by weight, the aqueous solution becomes highly viscous. This is because it is difficult for the aqueous solution to flow out of the ports 131, 133, and 134.
 液滴201から微小粒子202に至るまでのゼラチン粒子の形状は、不定形ではなく、できる限り球形であることが好ましい。特に、微小粒子202を塞栓粒子として使用する場合には、血管内に微小粒子202を注入して塞栓したとき、球形にすることで、より標的部位に近い部分で血管を塞栓することができ、且つ患者に与える痛みも軽減できる。また、微小粒子202の粒径は、40~100μm、150~300μm、および400~1000μmの3種類が適している。好適な粒径が3種類ある理由は、標的部位にできるだけ近い部分で血管を塞栓するという目的に加えて、健常な部分に悪影響を与えないように血管の大きさに応じて使い分けができるという目的からである。なお、40μm未満の小径粒子は目的とする部位以外の血管を塞栓するので好ましくない。 The shape of the gelatin particle from the droplet 201 to the microparticle 202 is preferably not spherical but spherical as much as possible. In particular, when the microparticle 202 is used as an embolic particle, when the microparticle 202 is injected into the blood vessel and embolized, the blood vessel can be embolized at a portion closer to the target site by making it spherical, Moreover, the pain given to the patient can be reduced. In addition, the particle size of the fine particles 202 is suitably selected from three types of 40 to 100 μm, 150 to 300 μm, and 400 to 1000 μm. The reason why there are three types of suitable particle diameters is that in addition to the purpose of embolizing the blood vessel as close as possible to the target site, it is possible to use properly according to the size of the blood vessel so as not to adversely affect the healthy part Because. Note that small-diameter particles of less than 40 μm are not preferable because they embolize blood vessels other than the target site.
(連続相材100)
 連続相材100は、エマルジョンの分散媒となる液体であれば、特に限定されるものではない。連続相材100が、塞栓粒子である微小粒子202に用いられる疎水性溶媒である場合には、製薬学的に許容される物質であればよく、例えば、オリーブ油などの植物油、オレイン酸などの脂肪酸、トリカプリル酸グリセリルなどの脂肪酸エステル類、ヘキサンなどの炭化水素系溶剤などを用いることができる。特に、オリーブ油や、酸化し難い中鎖脂肪酸エステルであるトリカプリル酸グリセリルが好ましい。
(Continuous phase material 100)
The continuous phase material 100 is not particularly limited as long as it is a liquid that serves as a dispersion medium for the emulsion. When the continuous phase material 100 is a hydrophobic solvent used for the microparticles 202 that are embolic particles, any pharmaceutically acceptable substance may be used, for example, vegetable oil such as olive oil, fatty acid such as oleic acid, and the like. , Fatty acid esters such as glyceryl tricaprylate, hydrocarbon solvents such as hexane, and the like can be used. In particular, olive oil and glyceryl tricaprylate, which is a medium-chain fatty acid ester that is difficult to oxidize, are preferred.
 (液滴生成モジュール1の作成方法)
 以下、図1(a)(b)及び図2を用いて液滴生成モジュール1の生成方法を説明する。図1から図9に示すように、下側基板21と、上側基板22とが準備される。下側基板21の接合面21aに対して、70個の液滴生成流路3となる溝が、導出路2aを中心として略環状に並ぶように形成される。具体的には、各液滴生成流路3について、分散相流路10、連続相流路11、12、14及び連通流路13となる溝が切削加工、エッチング、レーザ加工等により形成される。なお、連続相流路11、12における排出口112、122が円の中央(導出路2a側)に向くように形成される。更に、分散相材導入部101、連続相材導入部111、121、141となる貫通孔が形成される。この後、下側基板21の接合面21aと上側基板22の接合面22aとが液密状態に接着剤やネジ等を用いて接合されることによって、液滴生成モジュール1が生成される。
(Method for creating droplet generation module 1)
Hereinafter, the generation method of the droplet generation module 1 will be described with reference to FIGS. As shown in FIGS. 1 to 9, a lower substrate 21 and an upper substrate 22 are prepared. On the bonding surface 21 a of the lower substrate 21, 70 grooves serving as the droplet generation flow paths 3 are formed so as to be arranged in a substantially annular shape around the lead-out path 2 a. Specifically, for each droplet generation channel 3, grooves that become the dispersed phase channel 10, the continuous phase channels 11, 12, and 14 and the communication channel 13 are formed by cutting, etching, laser processing, or the like. . In addition, the discharge ports 112 and 122 in the continuous phase flow paths 11 and 12 are formed so as to face the center of the circle (the outlet path 2a side). Furthermore, through-holes that become the dispersed phase material introducing portion 101 and the continuous phase material introducing portions 111, 121, and 141 are formed. Thereafter, the droplet generation module 1 is generated by bonding the bonding surface 21a of the lower substrate 21 and the bonding surface 22a of the upper substrate 22 in a liquid-tight state using an adhesive, screws, or the like.
 以下、図11及び図12を用いて微小粒子202の生成方法を説明する。図11は、液滴生成器を用いた微小粒子の製造工程を示す説明図である。図12は、液滴生成器による液滴の生成方法を示す説明図である。なお、便宜上、図11及び図12では液滴生成モジュール1における一つの液滴生成器4についてのみ図示しているが、液滴生成モジュール1の有する全ての液滴生成器4(液滴生成流路3)において、以下に説明する方法で微小粒子202の生成が行われる。 Hereinafter, a method for generating the microparticles 202 will be described with reference to FIGS. 11 and 12. FIG. 11 is an explanatory diagram showing a manufacturing process of microparticles using a droplet generator. FIG. 12 is an explanatory diagram showing a droplet generation method by the droplet generator. For convenience, only one droplet generator 4 in the droplet generation module 1 is shown in FIGS. 11 and 12, but all the droplet generators 4 (droplet generation flow) of the droplet generation module 1 are shown. In the path 3), the microparticles 202 are generated by the method described below.
(微小粒子202の生成方法)
 まず、図11を参照して、各分散相材導入部101がチューブを介して分散相材200用の供給装置(図略)に接続される。これと共に、各連続相材導入部111、121がチューブを介して連続相材100用の供給装置(図略)に接続される。また、連続相材導入部141がチューブを介して他の連続相材100用の供給装置(図略)に接続される。そして、導出路2aが、チューブ等を介して後工程のための機構又は機器等(例えば、容器5)に接続される。なお、後工程は、用途により処理内容が異なるが、塞栓に利用される微小粒子202を製造する場合は、冷却工程が後工程とされ、その後に、脱水工程、洗浄工程、及び架橋工程が行われる。
(Method for generating microparticles 202)
First, referring to FIG. 11, each dispersed phase material introduction section 101 is connected to a supply device (not shown) for dispersed phase material 200 via a tube. At the same time, each of the continuous phase material introducing portions 111 and 121 is connected to a supply device (not shown) for the continuous phase material 100 through a tube. Moreover, the continuous phase material introducing | transducing part 141 is connected to the supply apparatus (illustration omitted) for the other continuous phase material 100 through a tube. Then, the lead-out path 2a is connected to a mechanism or equipment for a subsequent process (for example, the container 5) via a tube or the like. In addition, although the processing content of the post-process differs depending on the application, when the microparticles 202 used for embolization are manufactured, the cooling process is a post-process, and then the dehydration process, the cleaning process, and the cross-linking process are performed. Is called.
 (微小粒子202の生成方法:液滴生成工程)
 上記のようにして液滴生成モジュール1が上記供給装置(図略)及び後工程のための機構又は機器等(例えば、容器5)に接続されると、次に、分散相材200であるゼラチンが室温の水中で膨潤される。次に、スターラー、攪拌翼または振とう器などが用いられ、約0.5時間~約1.5時間攪拌されることで、約40℃~60℃の温水にゼラチンが完全に溶解されて、ゼラチン水溶液が生成される。この後、連続相材100であるオリーブ油が、連続相材100用の供給装置(図略)によって連続相材導入部111、121を介して連続相流路11、12に供給される。これとともに、オリーブ油が、連続相材100用の他の供給装置(図略)によって連続相材導入部141を介して連続相流路14に供給される。この後、ゼラチン水溶液が、分散相材200用の供給装置(図略)によって分散相材導入部101を介して分散相流路10に供給される。
(Method for generating microparticles 202: droplet generation step)
When the droplet generation module 1 is connected to the supply device (not shown) and the mechanism or equipment for the post-process (for example, the container 5) as described above, the gelatin that is the dispersed phase material 200 is next. Is swollen in water at room temperature. Next, a stirrer, a stirring blade or a shaker is used, and the gelatin is completely dissolved in hot water of about 40 ° C. to 60 ° C. by stirring for about 0.5 hours to about 1.5 hours, An aqueous gelatin solution is produced. Thereafter, the olive oil as the continuous phase material 100 is supplied to the continuous phase flow paths 11 and 12 through the continuous phase material introduction sections 111 and 121 by a supply device (not shown) for the continuous phase material 100. At the same time, olive oil is supplied to the continuous phase flow path 14 via the continuous phase material introduction part 141 by another supply device (not shown) for the continuous phase material 100. Thereafter, the gelatin aqueous solution is supplied to the dispersed phase flow path 10 via the dispersed phase material introduction unit 101 by a supply device (not shown) for the dispersed phase material 200.
 詳細に説明すると、連続相流路11、12、14は、連続相材100用の供給装置(図略)及び連続相材100用の他の供給装置(図略)から、液状のオリーブ油を所定の温度及び流速で供給される。例えば、所定の温度が40℃、所定の流量が1ml/hとされる。そして、オリーブ油が連続相流路11、12、14において満たされ、排出口112、122から安定した排出量で排出されたタイミングで、分散相材200用の供給装置から、ゼラチン水溶液が所定の温度及び流速で分散相流路10に供給される。例えば、温度が40℃、流量が1ml/hとされる。なお、ゼラチン水溶液及びオリーブオイルの温度は、同一の温度であることが、連通流路13、及び連続相流路11、12において分散相材200の物性を変化させない点で好ましい。 More specifically, the continuous phase flow paths 11, 12, and 14 are supplied with liquid olive oil from a supply device (not shown) for the continuous phase material 100 and another supply device (not shown) for the continuous phase material 100. Temperature and flow rate. For example, the predetermined temperature is 40 ° C. and the predetermined flow rate is 1 ml / h. Then, at a timing when the olive oil is filled in the continuous phase flow paths 11, 12, and 14 and is discharged from the discharge ports 112 and 122 with a stable discharge amount, the gelatin aqueous solution is supplied from the supply device for the dispersed phase material 200 to a predetermined temperature. And is supplied to the dispersed phase flow path 10 at a flow rate. For example, the temperature is 40 ° C. and the flow rate is 1 ml / h. In addition, it is preferable that the gelatin aqueous solution and the olive oil have the same temperature in terms of not changing the physical properties of the dispersed phase material 200 in the communication channel 13 and the continuous phase channels 11 and 12.
 上述したようにゼラチン水溶液及びオリーブ油が供給されると、図10Bに示すように、ゼラチン水溶液は、分散相材導入部101から連通口131に向かって流通する。ゼラチン水溶液は、連通口131を介して連通流路13に流入する。なお、連続相流路14において、連続相材導入部141から導入されたオリーブ油が連通口132に向かって流通し、このオリーブ油が連通口131と連通口132の間の領域(衝突領域)に連通口132を介して流入する。ゼラチン水溶液は、この連通口132から流入されたオリーブ油と衝突領域で衝突する。この衝突によって、ゼラチン水溶液とオリーブ油とが、2層状になるとともに、衝突領域で2方向に分岐して連通口133、134に向かう。 When the gelatin aqueous solution and the olive oil are supplied as described above, the gelatin aqueous solution flows from the dispersed phase material introducing portion 101 toward the communication port 131 as shown in FIG. 10B. The aqueous gelatin solution flows into the communication channel 13 through the communication port 131. In the continuous phase flow path 14, olive oil introduced from the continuous phase material introducing portion 141 flows toward the communication port 132, and this olive oil communicates with a region (collision region) between the communication port 131 and the communication port 132. Inflow through the mouth 132. The gelatin aqueous solution collides with the olive oil introduced from the communication port 132 in the collision area. As a result of this collision, the gelatin aqueous solution and olive oil become two-layered, and branch in two directions in the collision area toward the communication ports 133 and 134.
 上記2層状のゼラチン水溶液とオリーブ油とは、連通口133、134を介して連続相流路11、12に流入する。連続相流路11、12では、オリーブ油が連続相材導入部111、121から供給されて排出口112、122に向かって流通するが、このオリーブ油は連通口133、134において上記2層状のゼラチン水溶液とオリーブ油の流れに交わるように流通する。従って、連通口133、134から流入した2層状のゼラチン水溶液とオリーブ油とは、連続相流路11、12を流通するオリーブ油によってこのオリーブ油の下流側へと流される。ここで、連通口133、134では、上記2層において、ゼラチン水溶液が連続相流路11、12を流通するオリーブ油の上流側を流通し、オリーブ油がその下流側を流通する。従って、連通口133、134では、ゼラチン水溶液が、上記2層を構成するオリーブ油と連続相流路11、12を流通するオリーブ油に両側から挟まれて、これらのオリーブ油によって両側から剪断されて液滴化される。 The two-layer gelatin aqueous solution and olive oil flow into the continuous phase flow paths 11 and 12 through the communication ports 133 and 134. In the continuous phase channels 11 and 12, olive oil is supplied from the continuous phase material introduction sections 111 and 121 and flows toward the discharge ports 112 and 122. The olive oil flows through the two-layer gelatin aqueous solution at the communication ports 133 and 134. And circulate so as to cross the flow of olive oil. Accordingly, the two-layer gelatin aqueous solution and olive oil that have flowed in from the communication ports 133 and 134 are caused to flow downstream by the olive oil flowing through the continuous phase flow paths 11 and 12. Here, in the communication ports 133 and 134, in the above two layers, the gelatin aqueous solution flows through the upstream side of the olive oil flowing through the continuous phase flow paths 11 and 12, and the olive oil flows through the downstream side. Therefore, at the communication ports 133 and 134, the gelatin aqueous solution is sandwiched from both sides by the olive oil constituting the two layers and the olive oil flowing through the continuous phase flow channels 11 and 12, and is sheared from both sides by these olive oils to form droplets. It becomes.
 上述したように液滴生成器4は、単一の分散相流路10から2つの連続相流路11、12に分散相材200を流入させ、これによって、単一の分散相流路10について2つの連続相流路11、12で分散相材200の液滴201を生成する。これによって、液滴生成流路3は、複数の連続相流路に対して同数の分散相流路を形成しなければならない従来の液適正性流路に比較して、省スペースでありながら単位時間当たりで同数の液滴201を生成することが可能できる。これによって、接合面21aに形成される連続相流路11、12の個数を多くすることができる。 As described above, the droplet generator 4 causes the dispersed phase material 200 to flow from the single dispersed phase channel 10 into the two continuous phase channels 11 and 12, and thereby the single dispersed phase channel 10. The droplets 201 of the dispersed phase material 200 are generated by the two continuous phase flow paths 11 and 12. As a result, the droplet generation flow path 3 is a unit that is space-saving compared to a conventional liquid suitability flow path that must form the same number of dispersed phase flow paths for a plurality of continuous phase flow paths. It is possible to generate the same number of droplets 201 per hour. Thereby, the number of the continuous phase flow paths 11 and 12 formed in the joining surface 21a can be increased.
 また、液滴生成器4は、連通口133、134において、2層状のゼラチン水溶液とオリーブ油とを流通させ、かつ、このオリーブ油が連続相流路11、12内を流通するオリーブ油の下流側に流通させている。2層状のゼラチン水溶液とオリーブ油とは、上述したように、連続相流路11、12内を流通するオリーブ油によってこのオリーブ油の下流側に押される。ここで、2層状でゼラチン水溶液とともにオリーブ油が流通されていなければ、連通口133、134(連続相流路11、12の下流側に位置する方の縁)にゼラチン水溶液が付着する。第1実施形態では、連通口133、134における、この連続相流路11、12の下流側にはオリーブ油が流通されているため、このオリーブ油によってゼラチン水溶液の付着が防止される。これによって、連通口133、134での流路壁面の親水化が抑制され、長時間にわたり、安定した液滴生成を実現できる。 Further, the droplet generator 4 circulates the two-layer gelatin aqueous solution and olive oil at the communication ports 133 and 134, and this olive oil circulates downstream of the olive oil that circulates in the continuous phase flow paths 11 and 12. I am letting. As described above, the two-layer gelatin aqueous solution and olive oil are pushed to the downstream side of the olive oil by the olive oil flowing through the continuous phase flow paths 11 and 12. Here, if olive oil is not distributed along with the gelatin aqueous solution in two layers, the gelatin aqueous solution adheres to the communication ports 133 and 134 (the edge located on the downstream side of the continuous phase flow channels 11 and 12). In the first embodiment, olive oil is circulated downstream of the continuous- phase flow paths 11 and 12 at the communication ports 133 and 134, so that the adhesion of the gelatin aqueous solution is prevented by the olive oil. As a result, the hydrophilicity of the channel wall surface at the communication ports 133 and 134 is suppressed, and stable droplet generation can be realized over a long period of time.
 上述した様に生成された液滴201と連続相材100とからなるエマルジョンが各排出口112、122から単一の導出路2aに排出される。なお、このようにして液滴生成器4から液滴201が排出されると、この液滴201の粒径が図略の粒度分布検知装置等によって測定される。そして、分散相材200及び連続相材100の流速(単位時間当たりの流量)や温度がオペレータによって手動で又は自動で調整されることによって、液滴201が所望の粒径に均一化される。 The emulsion composed of the droplets 201 and the continuous phase material 100 generated as described above is discharged from the discharge ports 112 and 122 to the single lead-out path 2a. When the droplet 201 is discharged from the droplet generator 4 in this way, the particle size of the droplet 201 is measured by a particle size distribution detector (not shown) or the like. Then, the flow rate (flow rate per unit time) and temperature of the dispersed phase material 200 and the continuous phase material 100 are adjusted manually or automatically by the operator, so that the droplets 201 are made uniform to a desired particle size.
(冷却工程)
 均一化された液滴201は、オリーブ油と共に、温調機構及び撹拌機構付きの容器5に貯留されたオリーブ油中に投入される。この際、容器5中のオリーブ油の温度は、0℃~60℃の範囲、即ち、ゼラチン水溶液のゲル化温度以下に調整されている。これにより、液滴201が容器5に投入された直後から、液滴201のゲル化が開始されて、液滴201がゲル粒子203となる。これによって、液滴201同士の癒着や凝集が防止されると共に、ゲル粒子203同士の衝突等の外力によるゲル粒子203の変形や分離が抑制される。なお、液滴201の生成後、ゲル化させる際の冷却工程において、オリーブ油(オイル)の凝固点以下の冷却が必要な場合には、脱水溶媒(溶媒の凝固点が低いため)を予め液滴生成時(液滴生成工程)に容器5内のオリーブ油に加えておく(混合しておく)ことが好ましい。この場合には、容器5内の混合液の凝固点を下げ、乳化液(エマルジョン)の凝固を防ぐことができる。
(Cooling process)
The homogenized droplets 201 are put together with olive oil into olive oil stored in a container 5 having a temperature control mechanism and a stirring mechanism. At this time, the temperature of the olive oil in the container 5 is adjusted in the range of 0 ° C. to 60 ° C., that is, below the gelation temperature of the gelatin aqueous solution. Thereby, gelation of the droplet 201 is started immediately after the droplet 201 is put into the container 5, and the droplet 201 becomes the gel particle 203. Thereby, adhesion and aggregation of the droplets 201 are prevented, and deformation and separation of the gel particles 203 due to an external force such as collision between the gel particles 203 are suppressed. In addition, when cooling below the freezing point of olive oil (oil) is required in the cooling step for gelation after the generation of the droplet 201, a dehydrated solvent (because the freezing point of the solvent is low) is previously generated when the droplet is generated. It is preferable to add (mix) the olive oil in the container 5 to the (droplet producing step). In this case, the freezing point of the mixed liquid in the container 5 can be lowered to prevent the emulsion liquid (emulsion) from solidifying.
(脱水工程)
 所定数や所定量以上のゲル粒子203が容器5内で生成されると、続いて、ゲル化温度以下の脱水溶媒が容器5内に投入されて容器5内のオリーブ油と混合される。そして、15分間以上の撹拌混合が行われることによって、ゲル粒子203中の水分が十分に脱水される。更に、これによって、ゲル粒子203の凝集が防止されると共に、ゲル粒子203は後工程において均一な架橋が可能な脱水粒子204となる。なお、脱水溶媒としては、例えば、アセトンなどのケトン系溶剤、イソプロピルアルコールなどのアルコール系溶剤、を用いることができる。
(Dehydration process)
When a predetermined number or a predetermined amount or more of gel particles 203 are generated in the container 5, subsequently, a dehydrated solvent having a gelation temperature or lower is introduced into the container 5 and mixed with the olive oil in the container 5. And the water | moisture content in the gel particle 203 is fully dehydrated by stirring and mixing for 15 minutes or more. Further, this prevents aggregation of the gel particles 203, and the gel particles 203 become dehydrated particles 204 that can be uniformly crosslinked in a subsequent process. As the dehydrating solvent, for example, a ketone solvent such as acetone or an alcohol solvent such as isopropyl alcohol can be used.
(洗浄工程)
 また、脱水処理と同時、又は前後して洗浄処理が行われる。この洗浄処理では、ゼラチンを溶解させない貧溶媒が容器5内に投入され、この貧溶媒で脱水粒子204が洗浄される。貧溶媒は、ゼラチンのゲル化温度以下で用いることが好ましい。ゼラチンを溶解させない貧溶媒として、例えば、アセトンなどのケトン系溶剤、イソプロピルアルコールなどのアルコール系溶剤、酢酸エチルなどのエステル系溶剤、トルエン、ヘキサンなどの炭化水素系溶剤、ジクロルエタンなどのハロゲン系溶剤を用いることができる。なお、洗浄処理では、約2~15グラムのゲル粒子203(又は脱水粒子204)を約200~300mlの溶剤を用いて15~30分洗浄する操作を1サイクルとし、これを4~6サイクル繰り返し行うことが好ましい。
(Washing process)
Further, the cleaning process is performed simultaneously with or before or after the dehydration process. In this cleaning process, a poor solvent that does not dissolve gelatin is introduced into the container 5, and the dehydrated particles 204 are washed with this poor solvent. The poor solvent is preferably used at a temperature below the gelation temperature of gelatin. Examples of poor solvents that do not dissolve gelatin include ketone solvents such as acetone, alcohol solvents such as isopropyl alcohol, ester solvents such as ethyl acetate, hydrocarbon solvents such as toluene and hexane, and halogen solvents such as dichloroethane. Can be used. In the washing process, the operation of washing about 2 to 15 grams of gel particles 203 (or dehydrated particles 204) with about 200 to 300 ml of solvent for 15 to 30 minutes is defined as one cycle, and this is repeated for 4 to 6 cycles. Preferably it is done.
(乾燥工程)
 次に、容器5から脱水粒子204が取り出され、脱水粒子204が、ゼラチンを溶解させない温度で乾燥される。この乾燥によって、脱水粒子204に付着した洗浄溶媒が除去されると共に、脱水粒子204中の水分が除去されることによって、脱水粒子204が乾燥粒子205とされる。なお、乾燥方法として、通風乾燥、減圧乾燥、凍結乾燥などの種々の方法を用いることができる。乾燥工程では、脱水粒子204を例えば5℃~25℃で約12時間以上乾燥することが好ましく、減圧雰囲気で乾燥することがより好ましい。
(Drying process)
Next, the dehydrated particles 204 are taken out from the container 5, and the dehydrated particles 204 are dried at a temperature at which gelatin is not dissolved. By this drying, the cleaning solvent attached to the dehydrated particles 204 is removed, and the water in the dehydrated particles 204 is removed, whereby the dehydrated particles 204 are made into dry particles 205. As a drying method, various methods such as ventilation drying, reduced pressure drying, and freeze drying can be used. In the drying step, the dehydrated particles 204 are preferably dried, for example, at 5 ° C. to 25 ° C. for about 12 hours or more, and more preferably in a reduced pressure atmosphere.
(架橋工程)
 次に、乾燥粒子205が温度80℃~250℃で、0.5時間~120時間加熱される。この加熱条件は、例えば、微小粒子202を塞栓粒子として使用するならば、血管内で微小粒子202を完全に分解するのに要する時間、すなわち、血管内を微小粒子202で塞栓してから、血流を再開通させるまでに必要とされる期間に応じて決定される。また、加熱時間は加熱温度に依存する。一般に、腫瘍(癌)を壊死させるためには、2~3日間、血管を塞栓すればよい。したがって、例えば、微小粒子202の分解期間を3~7日間に設定する場合、加熱架橋の条件としては、100℃~180℃であって、1時間以上24時間以下で乾燥粒子205を加熱することが好ましい。なお、微小粒子202を、DDSで使用する場合には、加熱条件は、体内において薬成分を徐放する期間に応じて決定されることが好ましい。乾燥粒子205の酸化等の不具合を避けるためには、減圧下または不活性ガス雰囲気下で行うことが好ましい。
(Crosslinking process)
Next, the dried particles 205 are heated at a temperature of 80 to 250 ° C. for 0.5 to 120 hours. For example, if the microparticles 202 are used as embolic particles, this heating condition is the time required to completely decompose the microparticles 202 in the blood vessel, that is, after the blood vessel is embolized with the microparticles 202, It is determined according to the period required before resuming the flow. The heating time depends on the heating temperature. Generally, in order to necrotize a tumor (cancer), it is sufficient to embolize a blood vessel for 2 to 3 days. Therefore, for example, when the decomposition period of the microparticles 202 is set to 3 to 7 days, the heating crosslinking conditions are 100 ° C. to 180 ° C., and the dry particles 205 are heated for 1 hour to 24 hours. Is preferred. In addition, when using the microparticle 202 by DDS, it is preferable that heating conditions are determined according to the period which releases a chemical | medical component in a body. In order to avoid problems such as oxidation of the dry particles 205, it is preferable to carry out under reduced pressure or in an inert gas atmosphere.
 上述したように、上記本実施形態によれば、各排出口112、122の向きが一点Pに向くようにベース部材2に形成されている。この様に、各排出口112、122の向きが一点Pに集中されることによって、各排出口112、122を密集させることが可能になる。これによって、各排出口112、122を密集させた分だけ省スペースにかつ多くの液滴生成流路3を配列することが可能になる。この結果、より多くの液滴生成流路3が形成可能でありかつ省スペースに、複数の液滴生成流路3が配列された流路構造300を備えた液滴生成モジュールを提供することができる。 As described above, according to the present embodiment, the base member 2 is formed such that the direction of each of the discharge ports 112 and 122 faces the single point P. In this way, by concentrating the directions of the discharge ports 112 and 122 at one point P, the discharge ports 112 and 122 can be concentrated. As a result, it is possible to arrange a large number of droplet generation flow paths 3 in a space-saving manner corresponding to the density of the discharge ports 112 and 122. As a result, it is possible to provide a droplet generation module including a channel structure 300 in which a plurality of droplet generation channels 3 can be formed and a plurality of droplet generation channels 3 are arranged in a space-saving manner. it can.
 また、各排出口112、122の向きが一点Pに集中しているため、各排出口112、122から排出された液滴201を液滴生成モジュール1の外部に排出させるための構成(例えば導出路2a等)を簡素化することができる。例えば、各排出口112、122それぞれについて、別々に導出路を設けるのではなく、各排出口112、122についての導出路を1つの導出路2aで共用すること等により、液滴201を外部に排出するための構成を簡素化することができる。 Moreover, since the direction of each discharge port 112,122 concentrates on one point P, the structure for discharging the droplet 201 discharged | emitted from each discharge port 112,122 to the exterior of the droplet generation module 1 (for example, derivation | leading-out) The path 2a and the like can be simplified. For example, instead of providing a separate outlet for each outlet 112, 122, the outlet 201 for each outlet 112, 122 is shared by one outlet 2a. The structure for discharging can be simplified.
 以上、本実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、本実施形態に記載された、作用および効果は、本発明から生じる最も好適な作用および効果を列挙したに過ぎず、本発明による作用および効果は、本発明の実施形態に記載されたものに限定されるものではない。 Although the present embodiment has been described above, it is merely a specific example, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. In addition, the actions and effects described in the present embodiment are merely a list of the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are those described in the embodiments of the present invention. It is not limited to.
 本実施形態に関する本発明に係る液滴生成モジュールでは、ベース部材と、液状の分散相材と液状の連続相材とを流通させ、前記連続相材の剪断力によって前記分散相材の液滴を生成し、生成されたこの液滴を排出する排出口を備えた複数の液滴生成流路を有し、前記各排出口の向きが一点に向くように前記ベース部材に形成された流路構造と、を有する構成であれば如何なる構成を採用してもよい。 In the droplet generation module according to the present invention relating to the present embodiment, a base member, a liquid dispersed phase material and a liquid continuous phase material are circulated, and droplets of the dispersed phase material are generated by the shearing force of the continuous phase material. A flow path structure formed on the base member so as to have a plurality of liquid droplet generation flow paths provided with discharge ports for generating and discharging the generated liquid droplets, and each discharge port is directed to one point Any configuration may be adopted as long as the configuration includes
(本実施形態の変形例)
 以下に本実施形態の変形例を説明する。
(1)本実施形態にかかる液滴生成モジュール1では、複数の液滴生成流路3が一点Pを中心とした円環状に配置されているが、図12(a)(b)で示すように円環状に配列されていなくてもよい。各排出口112、122の向きが一点Pに向くように配列されていれば、複数の液滴生成流路3がどのように配列されていてもよい。図12(a)(b)は、本実施形態の変形例に係る液滴生成モジュールの平面図である。図12(a)で示す変形例に係る液滴生成モジュール1Aは、平面視で一辺を上方に配置したときに、導出路2aを中心として真上、真下、左側、右側の4箇所に液滴生成流路3が形成されている。また、図12(b)で示す変形例に係る液滴生成モジュール1Bは、平面視で一辺を上方に配置したときに、導出路2aを中心として左側、右側の2箇所に液滴生成流路3が形成されている。なお、図12(b)で示す変形例では、多くの液滴生成流路3が省スペースに形成されている構成ではないが、各排出口112、122で単一の導出路2aを共有しているため、液滴の導出構造を簡素化することができるという作用効果がある。
(Modification of this embodiment)
Hereinafter, modifications of the present embodiment will be described.
(1) In the droplet generation module 1 according to the present embodiment, the plurality of droplet generation flow paths 3 are arranged in an annular shape centered on one point P, as shown in FIGS. 12 (a) and 12 (b). It does not have to be arranged in an annular shape. The plurality of droplet generation flow paths 3 may be arranged in any manner as long as the discharge ports 112 and 122 are arranged so as to face the single point P. 12A and 12B are plan views of a droplet generation module according to a modification of the present embodiment. The droplet generation module 1A according to the modification shown in FIG. 12A has droplets at four locations, directly above, directly below, left side, and right side, with the lead-out path 2a as the center when one side is arranged upward in plan view. A generation flow path 3 is formed. In addition, the droplet generation module 1B according to the modification shown in FIG. 12B has a droplet generation flow path in two places on the left side and the right side with respect to the lead-out path 2a when one side is arranged upward in plan view. 3 is formed. In the modified example shown in FIG. 12B, many droplet generation channels 3 are not formed in a space-saving manner, but each discharge port 112, 122 shares a single outlet channel 2a. Therefore, there is an effect that the structure for leading out droplets can be simplified.
(2)液滴生成モジュール1に形成される流路構造300の個数は、一つに限定されず、複数であってもよい。複数の流路構造は、並列に配置されても、高さ方向に並べて配置されてもよい。 (2) The number of flow path structures 300 formed in the droplet generation module 1 is not limited to one, and may be plural. The plurality of flow path structures may be arranged in parallel or arranged side by side in the height direction.
(3)また、液滴生成流路3の形状は、排出口112、122が一点Pに向けばいかなる形状を採用してもよく、上記本実施形態の構成に限定されない。例えば、液滴生成流路3の形状として、以下のような形状を採用することができる。 (3) The shape of the droplet generation flow path 3 may be any shape as long as the discharge ports 112 and 122 are directed to one point P, and is not limited to the configuration of the present embodiment. For example, the following shape can be adopted as the shape of the droplet generation flow path 3.
(i)例えば、図13で示す変形例のように、連続相流路14は必ずしも形成される必要はない。なお、図13は、本実施形態の変形例にかかる液滴生成流路の平面図である。 (I) For example, as in the modification shown in FIG. 13, the continuous phase flow path 14 does not necessarily have to be formed. FIG. 13 is a plan view of a droplet generation flow path according to a modification of the present embodiment.
(ii)また、本実施形態にかかる液滴生成流路3では、連通流路13が一直線上に延びるように形成された流路であるがこの構成に限定されない。例えば、図14で示す変形例のように、連通流路13が屈折部を有していてもよい。図14は、本実施形態の変形例にかかる液滴生成流路の平面図である。変形例にかかる液滴生成流路の連通流路13は、分散相流路10と同一直線上に形成され、かつ分散相流路10の終端に連通された第1流路13aと、この第1流路13aの始端から屈曲するように形成され、かつ連続相流路12と分散相流路10とを連通させる第2流路13bと、第1流路13aの終端から屈曲するように形成され、かつ連続相流路11と分散相流路10とを連通させる第3流路13cとを有する。 (Ii) Further, the droplet generation flow path 3 according to the present embodiment is a flow path formed so that the communication flow path 13 extends in a straight line, but is not limited to this configuration. For example, the communication flow path 13 may have a refracting part as in the modification shown in FIG. FIG. 14 is a plan view of a droplet generation channel according to a modification of the present embodiment. The communication channel 13 of the droplet generation channel according to the modified example is formed on the same straight line as the dispersed phase channel 10 and is connected to the end of the dispersed phase channel 10 and the first channel 13a. The first flow path 13a is formed to bend from the start end, and the continuous flow path 12 and the dispersed phase flow path 10 are communicated with each other, and the second flow path 13b is formed to be bent from the end of the first flow path 13a. And a third flow path 13c that allows the continuous phase flow path 11 and the dispersed phase flow path 10 to communicate with each other.
(iii)また、本実施形態では、連続相流路11、12は、互いに略平行であるが、例えば図15で示す変形例のように略平行でなくてもよい。図15は、本実施形態の変形例にかかる液滴生成流路の平面図である。変形例にかかる液滴生成流路では、連続相流路11が中途位置で屈曲しており、連続相流路11と連続相流路12とは略平行ではない。 (Iii) In the present embodiment, the continuous phase flow paths 11 and 12 are substantially parallel to each other, but may not be substantially parallel as in the modification shown in FIG. 15, for example. FIG. 15 is a plan view of a droplet generation channel according to a modification of the present embodiment. In the droplet generation flow path according to the modification, the continuous phase flow path 11 is bent at an intermediate position, and the continuous phase flow path 11 and the continuous phase flow path 12 are not substantially parallel.
(iv)また、本実施形態に係る液滴生成器4では、2つの連続相流路11、12が単一の分散相流路10を共通で使用しているが、図16で示す変形例のように、3つ以上の連続相流路11Aで単一の分散相流路10を共通で使用してもよい。図16は、本実施形態の変形例にかかる液滴生成流路の斜視図である。この変形例に係る液滴生成流路は、4つの連続相流路11A(11A-1、11A-2、11A-3、11A-4)で単一の分散相流路10を使用する。具体的には、変形例に係る液滴生成流路では、同一水平面上に分散相流路10を挟むように連続相流路11A-1及び連続相流路11A-2が形成される。更に、同一垂直面上に分散相流路10を挟むように連続相流路11A-3及び連続相流路11A-4が形成される。変形例に係る液滴生成器では、連通流路13が、分散相流路10を連続相流路11A-1、11A-2、11A-311A-4に連通口133を介して連通させる。 (Iv) Further, in the droplet generator 4 according to the present embodiment, the two continuous- phase channels 11 and 12 commonly use the single dispersed-phase channel 10, but the modification shown in FIG. As described above, a single dispersed-phase channel 10 may be commonly used by three or more continuous-phase channels 11A. FIG. 16 is a perspective view of a droplet generation flow path according to a modification of the present embodiment. The droplet generation channel according to this modification uses a single dispersed phase channel 10 with four continuous phase channels 11A (11A-1, 11A-2, 11A-3, 11A-4). Specifically, in the droplet generation channel according to the modification, the continuous phase channel 11A-1 and the continuous phase channel 11A-2 are formed so as to sandwich the dispersed phase channel 10 on the same horizontal plane. Furthermore, a continuous phase flow channel 11A-3 and a continuous phase flow channel 11A-4 are formed so as to sandwich the dispersed phase flow channel 10 on the same vertical plane. In the droplet generator according to the modified example, the communication channel 13 connects the dispersed phase channel 10 to the continuous phase channels 11A-1, 11A-2, 11A-311A-4 via the communication port 133.
(v)また、本実施形態に係る液滴生成器4では、2つの連続相流路11、12と、分散相流路10とを同一水平面上に形成しているが、図17で示す変形例のように、これらを異なった水平面上に形成してもよい。図17は、本実施形態の変形例にかかる液滴生成流路の斜視図である。図17では、異なった3つの水平面上に、連続相流路11、分散相流路10、及び連続相流路12がこの順番で上から順番に上下方向に並べて形成されている。そして、連通流路13が、高さ方向に延びるように形成され、分散相流路10を連続相流路11と連続相流路12とに連通させている。 (V) In the droplet generator 4 according to the present embodiment, the two continuous phase channels 11 and 12 and the dispersed phase channel 10 are formed on the same horizontal plane, but the deformation shown in FIG. As an example, they may be formed on different horizontal planes. FIG. 17 is a perspective view of a droplet generation channel according to a modification of the present embodiment. In FIG. 17, the continuous phase flow path 11, the dispersed phase flow path 10, and the continuous phase flow path 12 are formed on three different horizontal planes in this order from top to bottom. The communication channel 13 is formed so as to extend in the height direction, and the dispersed phase channel 10 is communicated with the continuous phase channel 11 and the continuous phase channel 12.
(vi)また、液滴生成流路3は、図18で示すように、連続相流路11、12のうち片方のみを有してもよい。図18は、本実施形態の変形例に係る液滴生成器4Aの平面図である。変形例に係る液滴生成流路3Aは、連続相流路11、12のうち連続相流路12を有さず、連続相流路11のみを有する。また、液滴生成流路3Aでは、連通流路13Aが分散相流路10と連続相流路11とを連通口133を介して連通させているが、連通流路13Aにおける連通口133の反対側の側面が、分散相流路10の側面(奥行き方向で連続相流路11に遠い側の側面)と面一になるように形成されている。 (Vi) Moreover, the droplet generation flow path 3 may have only one of the continuous phase flow paths 11 and 12 as shown in FIG. FIG. 18 is a plan view of a droplet generator 4A according to a modification of the present embodiment. The droplet generation flow path 3 </ b> A according to the modified example does not have the continuous phase flow path 12 among the continuous phase flow paths 11 and 12, but has only the continuous phase flow path 11. In the droplet generation channel 3A, the communication channel 13A communicates the dispersed phase channel 10 and the continuous phase channel 11 via the communication port 133, but the opposite of the communication port 133 in the communication channel 13A. The side surface on the side is formed to be flush with the side surface of the dispersed phase flow channel 10 (the side surface far from the continuous phase flow channel 11 in the depth direction).
1 液滴生成モジュール
2 ベース部材
2a 導出路
21 下側基板
22 上側基板
3、3A 液滴生成流路
4、4A 液滴生成器
5 容器
10 分散相流路
100 連続相材
101 分散相材導入部
11、12、14 連続相流路
111、121、141 連続相材導入部
112、122 排出口
13 連通流路
131、132、133、134 連通口
200 分散相材
201 液滴
202 微小粒子
203 ゲル粒子
204 脱水粒子
205 乾燥粒子
300 流路構造
DESCRIPTION OF SYMBOLS 1 Droplet generation module 2 Base member 2a Derivation path 21 Lower substrate 22 Upper substrate 3, 3A Droplet generation channel 4, 4A Droplet generator 5 Container 10 Dispersed phase channel 100 Continuous phase material 101 Dispersed phase material introduction part 11, 12, 14 Continuous phase flow path 111, 121, 141 Continuous phase material introduction part 112, 122 Discharge port 13 Communication flow path 131, 132, 133, 134 Communication port 200 Dispersed phase material 201 Liquid droplet 202 Microparticle 203 Gel particle 204 Dehydrated particles 205 Dry particles 300 Channel structure

Claims (4)

  1.  ベース部材と、
     液状の分散相材と液状の連続相材とを流通させ、前記連続相材の剪断力によって前記分散相材の液滴を生成し、生成されたこの液滴を排出する排出口を備えた複数の液滴生成流路を有し、前記各排出口の向きが一点に向くように前記ベース部材に形成された流路構造と、
     を有する、ことを特徴とする液滴生成モジュール。
    A base member;
    A plurality of liquid phase-dispersed materials and liquid continuous-phase materials are circulated, droplets of the dispersed-phase material are generated by the shearing force of the continuous-phase materials, and a plurality of discharge ports are provided for discharging the generated droplets. A flow path structure formed in the base member so that the direction of each discharge port is directed to one point,
    A droplet generating module comprising:
  2.  前記複数の液滴生成流路が前記一点を中心とした円環状に配置されている、
     ことを特徴とする請求項1に記載の液滴生成モジュール。
    The plurality of droplet generation channels are arranged in an annular shape centered on the one point,
    The droplet generation module according to claim 1.
  3.  前記ベース部材における前記一点に対応する位置に、前記各排出口から排出された前記液滴を前記ベース部材の外部に導出するための単一の導出路が形成されている、
     ことを特徴とする請求項1に記載の液滴生成モジュール。
    A single outlet path for leading the droplets discharged from the outlets to the outside of the base member is formed at a position corresponding to the one point on the base member.
    The droplet generation module according to claim 1.
  4.  各前記液滴生成流路は、
      前記連続相材を流通させ、この連続相材の最下流に前記排出口を備えた複数の連続相流路と、
      前記分散相材を流通させる単数の分散相流路と、
      前記分散相流路を前記各連続相流路にそれぞれ連通口を介して連通させ、各前記連通口における前記連続相材の剪断力により前記分散相材の液滴を生成させるように形成された連通流路と、
     を有することを特徴とする請求項1に記載の液滴生成モジュール。
    Each of the droplet generation flow paths
    A plurality of continuous phase passages that circulate the continuous phase material and have the outlet at the most downstream of the continuous phase material;
    A single dispersed phase flow path for circulating the dispersed phase material;
    The dispersed phase flow path is communicated with each continuous phase flow path via a communication port, and the dispersed phase material droplets are generated by the shearing force of the continuous phase material at each communication port. A communication channel;
    The droplet generation module according to claim 1, comprising:
PCT/JP2013/059029 2012-03-29 2013-03-27 Droplet generating module WO2013146897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012076095A JP2013202555A (en) 2012-03-29 2012-03-29 Liquid droplet generation module
JP2012-076095 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013146897A1 true WO2013146897A1 (en) 2013-10-03

Family

ID=49260146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059029 WO2013146897A1 (en) 2012-03-29 2013-03-27 Droplet generating module

Country Status (2)

Country Link
JP (1) JP2013202555A (en)
WO (1) WO2013146897A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078340A1 (en) 2014-11-17 2016-05-26 中国科学院微生物研究所 Apparatus, system, and method for dispensing/mixing a small quantity of liquid
CN104324769B (en) * 2014-11-17 2016-06-22 中国科学院微生物研究所 Generation method based on the drop of microchannel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026564A1 (en) * 2005-08-31 2007-03-08 The University Of Tokyo Microdroplet production apparatus making use of microchannel
JP2012024313A (en) * 2010-07-23 2012-02-09 Nitto Denko Corp Device for forming droplets, and method for forming droplets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032128B2 (en) * 2002-08-01 2008-01-16 東ソー株式会社 Microchannel structure, desk-size chemical plant constructed, and fine particle production apparatus using them
JP4186637B2 (en) * 2002-11-06 2008-11-26 東ソー株式会社 Particle manufacturing method and microchannel structure therefor
JP2012020217A (en) * 2010-07-13 2012-02-02 Tokyo Institute Of Technology Method for producing dichroic micro liquid droplet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026564A1 (en) * 2005-08-31 2007-03-08 The University Of Tokyo Microdroplet production apparatus making use of microchannel
JP2012024313A (en) * 2010-07-23 2012-02-09 Nitto Denko Corp Device for forming droplets, and method for forming droplets

Also Published As

Publication number Publication date
JP2013202555A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
WO2012011313A1 (en) Device for forming droplets and method for forming droplets
CN104271059B (en) Bubble-spraying member and method for producing same, gas-liquid-spraying member and method for producing same, local ablation device and local ablation method, injection device and injection method.
Davoodi et al. Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications
CN108721684A (en) Hud typed prepackage chemotherapeutics embolism microball of one kind and preparation method thereof
Chong et al. Advances in fabricating double-emulsion droplets and their biomedical applications
Tian et al. Microfluidic technologies for nanoparticle formation
KR101065807B1 (en) Preparation method for micro-capsule using a microfluidic chip system
CN112569878B (en) Equipment for preparing polyvinyl alcohol embolism microsphere with uniform grain diameter and production process thereof
Spyropoulos et al. Advances in membrane emulsification. Part A: recent developments in processing aspects and microstructural design approaches
JP7320852B2 (en) Devices, systems, and methods for continuous production of nanomaterials and high-purity chemicals
WO2013146897A1 (en) Droplet generating module
Das et al. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging
Lin et al. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation
JP6207007B2 (en) Liposomes and production methods thereof
Ahmed et al. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach
CN110560186B (en) Method for synthesizing biological membrane nano particles by using micro-fluidic chip and micro-fluidic chip
Yan et al. Coaxial electrohydrodynamic atomization toward large scale production of core‐shell structured microparticles
WO2013146912A1 (en) Droplet generating device
Chen et al. Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles
Wischke Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics
Liu et al. Microfluidic ultrasonic cavitation enables versatile and scalable synthesis of monodisperse nanoparticles for biomedical application
JP2013173132A (en) Droplet forming device and microcapsule forming device
CN107349880B (en) Method for preparing core-shell type microspheres and coaxial microfluid device applied to method
CN109529096A (en) A kind of uniform grading gelatin embolism agent and preparation method thereof
WO2011024959A1 (en) Method for preparing microcapsules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769382

Country of ref document: EP

Kind code of ref document: A1