WO2013145967A1 - 無段変速機及びその油圧制御方法 - Google Patents

無段変速機及びその油圧制御方法 Download PDF

Info

Publication number
WO2013145967A1
WO2013145967A1 PCT/JP2013/054374 JP2013054374W WO2013145967A1 WO 2013145967 A1 WO2013145967 A1 WO 2013145967A1 JP 2013054374 W JP2013054374 W JP 2013054374W WO 2013145967 A1 WO2013145967 A1 WO 2013145967A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
target
primary
value
line pressure
Prior art date
Application number
PCT/JP2013/054374
Other languages
English (en)
French (fr)
Inventor
高橋 誠一郎
岳 江口
智洋 歌川
知幸 水落
野武 久雄
榊原 健二
孝広 池田
昌之 志水
正己 酒井
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201380013860.2A priority Critical patent/CN104185751B/zh
Priority to KR1020147026553A priority patent/KR101586162B1/ko
Priority to JP2014507523A priority patent/JP5815121B2/ja
Priority to EP13769741.3A priority patent/EP2833027A4/en
Priority to US14/387,461 priority patent/US9212732B2/en
Publication of WO2013145967A1 publication Critical patent/WO2013145967A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/125Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members characterised by means for controlling the geometrical interrelationship of pulleys and the endless flexible member, e.g. belt alignment or position of the resulting axial pulley force in the plane perpendicular to the pulley axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66231Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed
    • F16H61/6624Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed using only hydraulical and mechanical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1288Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator

Definitions

  • the present invention relates to hydraulic control of a continuously variable transmission.
  • the continuously variable transmission includes a primary pulley, a secondary pulley, and a belt wound around these pulleys.
  • the speed change is performed by changing the oil pressure (primary pressure, secondary pressure) supplied to each pulley and changing the groove width of each pulley.
  • JP2001-99280A sets a target primary pressure and a target secondary pressure, and sets the target line pressure, which is the target value of the line pressure as the source pressure, to be equal to the higher of these target primary pressure and target secondary pressure.
  • the technology to set is disclosed.
  • the load of the oil pump can be reduced and the fuel consumption of the vehicle can be improved.
  • the target line pressure is set equal to the higher of the target primary pressure and the target secondary pressure
  • the target primary pressure or the target secondary pressure exceeds the target line pressure, and the primary pressure or the secondary pressure is poorly regulated.
  • hunting of the gear ratio occurs.
  • the mechanism that causes hunting of the gear ratio is as follows.
  • the case where the target secondary pressure exceeds the target line pressure will be described with reference to FIG.
  • the actual line pressure PL becomes lower than the target line pressure tPL due to the hydraulic pressure variation.
  • the target secondary pressure tPsec is the same value as the target line pressure tPL, but exceeds the actual line pressure PL.
  • the secondary pressure regulating valve that regulates the secondary pressure Psec using the actual line pressure PL as the original pressure strokes in a direction that increases the secondary pressure Psec, but the target secondary pressure tPsec cannot be realized, so the secondary pressure regulating valve does not perform normal control.
  • the actual line pressure PL supplied to the secondary pressure regulating valve is out of position and the secondary pressure Psec is used as it is, and the pressure regulation is poor.
  • the target primary pressure tPpri and the target secondary pressure tPsec are set with reference to the table shown in FIG.
  • the target line pressure tPL is set to the higher one of the target primary pressure tPpri and the target secondary pressure tPsec.
  • the target primary pressure tPpri is equal to the target secondary pressure tPsec (time ta), and when the target primary pressure tPpri exceeds the target secondary pressure tPsec, the target line pressure tPL becomes equal to the target primary pressure tPpri. As the pressure rises, the line pressure PL rises (time ta ⁇ ).
  • the primary pressure Ppri is further increased by increasing the target primary pressure tPpri by gear ratio feedback control that brings the gear ratio closer to the target gear ratio ( Time ta ⁇ ).
  • the target primary pressure tPpri is lowered in response to the gear ratio rapidly changing to the High side so as to follow the target gear ratio.
  • the target primary pressure tPpri decreases, the target line pressure tPL decreases and the line pressure PL decreases (time tc).
  • An object of the present invention is to prevent gear ratio hunting.
  • a primary pulley, a secondary pulley, a power transmission member wound around these pulleys, a primary pressure supplied to the primary pulley, and a secondary pressure supplied to the secondary pulley are line pressures.
  • a continuously variable transmission that changes speed by changing the primary pressure and the secondary pressure, and changing the groove width of each pulley, wherein the primary pressure is adjusted based on the gear ratio.
  • a target pulley pressure setting means for setting a target primary pressure that is a target value of the target pressure and a target secondary pressure that is a target value of the secondary pressure, and at least an absolute deviation obtained by subtracting the target primary pressure from the target secondary pressure
  • the target value of the line pressure is Target line pressure setting means for setting a target line pressure to a value obtained by adding a positive offset value to the higher one of the target primary pressure and the target secondary pressure
  • the shift control hydraulic circuit Provides a continuously variable transmission that controls the primary pressure, the secondary pressure, and the line pressure to the target primary pressure, the target secondary pressure, and the target line pressure, respectively.
  • a primary pulley, a secondary pulley, a power transmission member wound between these pulleys, a primary pressure supplied to the primary pulley, and a secondary pressure supplied to the secondary pulley are lined up.
  • a hydraulic control method for a continuously variable transmission that includes a transmission control hydraulic circuit that regulates pressure as a primary pressure, changes primary pressure and secondary pressure, and changes the groove width of each pulley.
  • the target primary pressure that is the target value of the primary pressure and the target secondary pressure that is the target value of the secondary pressure are set based on, and at least the absolute value of the deviation obtained by subtracting the target primary pressure from the target secondary pressure Is the target value of the line pressure in the cross-point region, which is a region where is smaller than the predetermined deviation
  • the target line pressure is set to a value obtained by adding a positive offset value to the higher one of the target primary pressure and the target secondary pressure, and the primary pressure, the secondary pressure, and the line pressure are
  • a hydraulic control method is provided that controls the target primary pressure, the target secondary pressure, and the target line pressure.
  • FIG. 1 is a schematic configuration diagram of a continuously variable transmission.
  • FIG. 2 is a schematic configuration diagram of a shift control hydraulic circuit.
  • FIG. 3 is a table for setting the target primary pressure and the target secondary pressure.
  • FIG. 4 is a flowchart showing a process for setting the target line pressure.
  • FIG. 5 is a table for setting the offset amount.
  • FIG. 6 shows the offset target line pressure.
  • FIG. 7 is a time chart for explaining the function and effect of the first embodiment.
  • FIG. 8 is a flowchart showing a process for setting the target line pressure in the second embodiment.
  • FIG. 9 is a flowchart showing a process for setting the target line pressure in the third embodiment.
  • FIG. 10 is a time chart of the comparative example.
  • FIG. 1 shows a schematic configuration of a continuously variable transmission (hereinafter referred to as “CVT”) 1.
  • CVT continuously variable transmission
  • the primary pulley 2 and the secondary pulley 3 are arranged so that the grooves of both are aligned, and the belt 4 is wound around the grooves of the pulleys 2 and 3.
  • An engine 5 is arranged coaxially with the primary pulley 2, and a torque converter 6 and a forward / reverse switching mechanism 7 are provided between the engine 5 and the primary pulley 2 in order from the engine 5 side.
  • the torque converter 6 includes a pump impeller 6a connected to the output shaft of the engine 5, a turbine runner 6b connected to the input shaft of the forward / reverse switching mechanism 7, a stator 6c, and a lock-up clutch 6d.
  • the forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, its sun gear is coupled to the turbine runner 6b of the torque converter 6, and the carrier is coupled to the primary pulley 2.
  • the forward / reverse switching mechanism 7 further includes a starting clutch 7b that directly connects the sun gear and the carrier of the double pinion planetary gear set 7a, and a reverse brake 7c that fixes the ring gear.
  • the starting clutch 7b When the starting clutch 7b is engaged, the input rotation via the torque converter 6 from the engine 5 is directly transmitted to the primary pulley 2, and when the reverse brake 7c is engaged, the input rotation via the torque converter 6 from the engine 5 is reversed. Is transmitted to the primary pulley 2.
  • the rotation of the primary pulley 2 is transmitted to the secondary pulley 3 via the belt 4, and the rotation of the secondary pulley 3 is transmitted to the driving wheel (not shown) via the output shaft 8, the gear set 9 and the differential gear device 10.
  • one of the conical plates forming the grooves of the primary pulley 2 and the secondary pulley 3 is a fixed conical plate 2a, 3a.
  • the other conical plates 2b and 3b are movable conical plates that can be displaced in the axial direction.
  • the speed change is performed by changing the groove width of the pulleys 2 and 3 by the differential pressure between the primary pressure Ppri and the secondary pressure Psec, and continuously changing the winding arc diameter of the belt 4 around the pulleys 2 and 3. .
  • the primary pressure Ppri and the secondary pressure Psec are controlled by the shift control hydraulic circuit 11 together with the hydraulic pressure supplied to the start clutch 7b that is engaged when the forward travel range is selected and the reverse brake 7c that is engaged when the reverse travel range is selected.
  • the shift control hydraulic circuit 11 performs control in response to a signal from the transmission controller 12.
  • the transmission controller 12 includes a signal from the input rotation speed sensor 13 that detects the actual input rotation speed Nin of the CVT 1, a signal from the vehicle speed sensor 14 that detects the output rotation speed of the CVT 1, that is, the vehicle speed VSP, and the primary pressure.
  • a signal from the primary pressure sensor 15p that detects Ppri, a signal from the secondary pressure sensor 15s that detects the secondary pressure Psec, a signal from the line pressure sensor 15l that detects the line pressure PL, and the accelerator opening APO are detected.
  • the operating state of the engine 5 from 19 (D Jin rotational speed Ne, engine torque, between the fuel injection time, signal are inputted to a cooling water temperature TMPe etc.).
  • FIG. 2 shows a schematic configuration of the shift control hydraulic circuit 11.
  • the shift control hydraulic circuit 11 includes an oil pump 40, a line pressure regulating valve 31, a primary pressure regulating valve 32, and a secondary pressure regulating valve 33.
  • the oil pump 40 is driven by the power of the engine 5 or a motor (not shown).
  • the line pressure regulating valve 31 is a pressure reducing valve that adjusts the line pressure PL to the target line pressure tPL by draining and reducing a part of the discharge pressure of the oil pump 40. A method for setting the target line pressure tPL will be described later.
  • the primary pressure regulating valve 32 and the secondary pressure regulating valve 33 drain and reduce a part of the line pressure PL using the line pressure PL as a source pressure, thereby reducing the primary pressure Ppri and the secondary pressure Psec to the target primary pressure tPpri and the target secondary pressure, respectively.
  • the pressure reducing valve is adjusted to tPsec. A method for setting the target primary pressure tPpri and the target secondary pressure tPsec will be described later.
  • the primary pressure regulating valve 32 In a situation where the target primary pressure tPpri exceeds the target line pressure, the primary pressure regulating valve 32 is out of the normal control position, and the pressure regulation is poor, in which the line pressure PL is directly output as the primary pressure Ppri. The same applies to the secondary pressure regulating valve 33.
  • FIG. 3 is a table for setting the target primary pressure tPpri and the target secondary pressure tPsec.
  • This table is created based on the primary pressure Ppri and the secondary pressure Psec necessary to maintain the transmission ratio of CVT1.
  • the target primary pressure tPpri and the target secondary pressure tPsec are set with reference to the table shown in FIG.
  • a point where the target primary pressure tPpri and the target secondary pressure tPsec are equal is expressed as a “cross point”.
  • FIG. 4 is a flowchart showing a process for setting the target line pressure tPL.
  • the execution subject of the process is the transmission controller 12.
  • the target primary pressure tPpri and the target secondary pressure tPsec are set with reference to the table shown in FIG. 3 (S11).
  • the higher one of the target primary pressure tPpri and the target secondary pressure tPsec is selected (S12).
  • an offset amount Poffset is set with reference to the table shown in FIG. 5 (S13). ).
  • the offset amount Poffset is set to zero when the absolute value of the target pulley pressure deviation is larger than Pdiff, but when the absolute value of the target pulley pressure deviation becomes smaller than the predetermined deviation Pdiff, the absolute value of the target pulley pressure deviation becomes small. The larger the value is set. When the target pulley pressure deviation is zero, the offset amount Poffset is set to the maximum value Poffsetmax.
  • a positive offset amount Poffset is set.
  • the target line pressure tPL is set to a value obtained by adding the offset amount Poffset set in S13 to the value selected in S12 (S14).
  • setting the target line pressure tPL higher than the value selected in S12 by adding the offset amount Poffset to the value selected in S12 is expressed as “offset the target line pressure tPL”.
  • FIG. 6 shows the target line pressure tPL set in this way.
  • the offset amount Poffset is set to zero, so the target line pressure tPL is set equal to the higher one of the target primary pressure tPpri and the target secondary pressure tPsec. That is, the target primary pressure tPpri and the target secondary pressure tPsec are not offset.
  • the target line pressure tPL is set to a value obtained by adding an offset amount Poffset which is a positive value to the higher one of the target primary pressure tPpri and the target secondary pressure tPsec.
  • the target line pressure tPL is set in this way, and the transmission controller 12 controls the line pressure regulating valve 31 so that the line pressure PL becomes the target line pressure tPL set in this way. .
  • the actual line pressure PL is lower than the target line pressure tPL due to hydraulic pressure variations, and the target primary pressure tPpri or the target secondary pressure tPsec. Even when the actual line pressure PL exceeds the primary pressure Ppri or the secondary pressure Psec, it is possible to suppress hunting of the gear ratio.
  • the actual line pressure PL increases by increasing the target line pressure tPL by entering the cross point region.
  • the target primary pressure tPpri rises and the primary pressure Ppri rises (time t1 to t2) to bring the gear ratio closer to the target gear ratio.
  • the target primary pressure tPpri is lowered in response to the gear ratio rapidly changing to the High side.
  • the target primary pressure tPpri decreases, but the actual line pressure PL is at a position higher than the primary pressure Ppri and the secondary pressure Psec by correction (from time t3).
  • the target primary pressure tPpri increases, the target secondary pressure tPsec decreases, and the actual line pressure PL changes at a value higher than the target primary pressure tPpri and the target secondary pressure tPsec, and then becomes equal to the target primary pressure tPpri (time). t4 ⁇ ).
  • the target line pressure tPL is offset in the vicinity of the cross point, and therefore, the three pressures of the primary pressure Ppri, the secondary pressure Psec, and the actual line pressure PL are the actual line pressure PL is the secondary pressure.
  • Psec the three pressures of the primary pressure Ppri, the secondary pressure Psec, and the actual line pressure PL are the actual line pressure PL is the secondary pressure.
  • the first embodiment it is possible to suppress the hydraulic control from becoming unstable due to the respective hydraulic pressures in the vicinity of the cross point fluctuating with the same tendency in the vicinity of the same value, and to suppress the hunting of the gear ratio. it can.
  • the gear ratio changes relatively quickly from the low side to the high side, and the target line pressure tPL is offset only in the cross point region.
  • the hunting of the gear ratio can be surely suppressed even at the time of an upshift where the offset of the line pressure PL is not in time and the gear ratio hunting may not be suppressed.
  • the target line pressure tPL is not offset in the region higher than the cross point region, it is possible to meet a high fuel efficiency requirement in the high gear ratio.
  • the target line pressure tPL is unconditionally offset in the cross-point region, whereas in the second embodiment, the operation state is during upshifting and coasting down (in the accelerator off state).
  • the target line pressure tPL is offset only when it is determined that it is one of the downshifts performed when the vehicle decelerates.
  • the offset of the target line pressure tPL is limited during the upshift because the gear ratio changes relatively slowly from the Low side to the High side as the vehicle speed increases during the upshift, so that the primary pressure Ppri, the secondary pressure This is because the time during which the three pressures of Psec and line pressure PL stay near the same value is long, and hunting of the gear ratio is more likely to occur.
  • the offset of the target line pressure tPL at the time of downshift is limited to the time of coast down because the gear ratio changes relatively slowly from High side to Low side as the vehicle speed decreases during coast down. This is because the time during which the three pressures of the pressure Ppri, the secondary pressure Psec, and the line pressure PL stay near the same value is long, and hunting of the gear ratio is more likely to occur.
  • FIG. 8 is a flowchart showing a process for setting the target line pressure tPL.
  • the target line pressure tPL is not offset when the operation state is neither upshift nor coastdown even in the cross point region, and therefore an unnecessary increase in the line pressure PL is not performed. Can be suppressed and fuel consumption can be improved.
  • the target line pressure tPL is unconditionally offset in the cross point region, whereas in the third embodiment, is there actually any pressure regulation failure in the primary pressure Ppri or the secondary pressure Psec? Judgment is made, and the target line pressure tPL is offset only when a pressure regulation failure actually occurs.
  • FIG. 9 is a flowchart showing a process for setting the target line pressure tPL. Compared to the process of the first embodiment (FIG. 4), the process of S31 for determining the occurrence of pressure regulation failure and the process of S32 for setting the offset amount to zero when it is determined that no pressure regulation fault has occurred. Processing has been added.
  • Whether or not the pressure regulation failure has occurred can be determined based on the magnitude relationship between the target primary pressure tPpri or the target secondary pressure Psec and the actual line pressure PL, specifically, the target primary pressure tPpri or the target secondary pressure Psec. Is higher than the actual line pressure PL, it can be determined that a pressure regulation failure has occurred.
  • the method for determining whether or not the pressure adjustment failure has occurred is not limited to this, and by determining whether the target primary pressure tPpri deviates from the primary pressure Ppri or the target secondary pressure tPsec deviates from the secondary pressure Psec. Alternatively, it may be determined whether a pressure regulation failure has occurred.
  • the target line pressure tPL is not offset, so that an unnecessary increase in the line pressure PL is suppressed. There is an effect that fuel consumption can be improved.
  • the embodiments described above can be implemented in combination as necessary.
  • the second embodiment and the third embodiment may be combined, and the target line pressure tPL may be offset at the time of upshifting or coasting down and when a pressure regulation failure occurs.
  • an offset value Poffset that takes a positive value in the crosspoint region is set, and this is applied to the higher one of the target primary pressure tPpri and the target secondary pressure tPsec, thereby offsetting the target line pressure tPL. ing. That is, the offset value Poffset is set and added regardless of whether or not the cross point region.
  • the target line pressure tPL may be offset by determining the cross-point region first and setting and adding the offset amount Poffset only when the cross-point region is determined.

Abstract

 変速比に基づき目標プライマリ圧と目標セカンダリ圧とを設定し、少なくとも、目標セカンダリ圧から目標プライマリ圧を引いて得られる偏差の絶対値が所定偏差よりも小さくなる領域であるクロスポイント領域において、ライン圧の目標値である目標ライン圧を、目標プライマリ圧及び目標セカンダリ圧のうちより高い方に正の値であるオフセット量を加えた値に設定し、プライマリ圧、セカンダリ圧及びライン圧を、それぞれ目標プライマリ圧、目標セカンダリ圧及び目標ライン圧に制御する。

Description

無段変速機及びその油圧制御方法
 本発明は、無段変速機の油圧制御に関する。
 無段変速機は、プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられるベルトとで構成される。変速は、各プーリに供給される油圧(プライマリ圧、セカンダリ圧)を変更し、各プーリの溝幅を変更することで行われる。
 JP2001-99280Aは、目標プライマリ圧及び目標セカンダリ圧を設定し、これらの元圧となるライン圧の目標値である目標ライン圧を、これら目標プライマリ圧及び目標セカンダリ圧のうちいずれか高い方に等しく設定する技術を開示している。
 本技術によれば、プライマリ圧及びセカンダリ圧に対してライン圧が必要以上に高くなることがなくなるので、オイルポンプの負荷を減らし、車両の燃費を向上させることができる。
 しかしながら、目標ライン圧を目標プライマリ圧及び目標セカンダリ圧のうちいずれか高い方に等しく設定する上記構成では、目標プライマリ圧又は目標セカンダリ圧が目標ライン圧を超え、プライマリ圧又はセカンダリ圧の調圧不良が発生している場合に、変速比のハンチングが起こる可能性があった。
 変速比のハンチングが発生するメカニズムは次の通りである。なお、ここでは、目標セカンダリ圧が目標ライン圧を超えた場合について、図10を参照しながら説明する。
 前提として、時刻taの時点で、
 ・目標ライン圧tPLより実ライン圧PLが油圧ばらつきによって、実ライン圧PLの方が低くなる。
 ・目標セカンダリ圧tPsecが目標ライン圧tPLと同値であるが、実ライン圧PLを超えている。
 ・その結果、実ライン圧PLを元圧としてセカンダリ圧Psecを調圧するセカンダリ調圧弁がセカンダリ圧Psecを増大させる方向にストロークするが、目標セカンダリ圧tPsecを実現できないので、セカンダリ調圧弁が通常の制御位置から外れ、セカンダリ調圧弁に供給される実ライン圧PLを、そのままセカンダリ圧Psecとする調圧不良の状態となっている。
 ・目標プライマリ圧tPpri及び目標セカンダリ圧tPsecは図3に示すテーブルを参照して設定される。目標ライン圧tPLは、目標プライマリ圧tPpri及び目標セカンダリ圧tPsecのうちいずれか高い方に設定される。
とする。
 この状態で目標プライマリ圧tPpriと目標セカンダリ圧tPsecとが等しくなるクロスポイントになり(時刻ta)、さらに、目標プライマリ圧tPpriが目標セカンダリ圧tPsecを超えると、目標ライン圧tPLが目標プライマリ圧tPpriの上昇に伴い上昇し、ライン圧PLが上昇する(時刻ta~)。
 ライン圧PLが上昇すると、セカンダリ調圧弁が調圧不良状態なので、セカンダリ調圧弁の調圧不良状態が解消するまでの間、セカンダリ圧Psecがつられて上昇する(時刻ta~)。
 この結果、変速比が目標変速比よりもLOW側になるので、変速比を目標変速比に近づける、変速比フィードバック制御によって、目標プライマリ圧tPpriを上昇させることで、プライマリ圧Ppriがさらに上昇する(時刻ta~)。
 時刻tbで、目標プライマリ圧tPriの上昇に伴い実ライン圧PLが上昇することで、セカンダリ調圧弁が通常の制御位置に戻り、セカンダリ調圧弁の調圧不良状態が解消すると、セカンダリ圧Psecが急減し、変速比が急激にHigh側に変化する。
 そして、変速比が目標変速比に追従するように急激にHigh側に変化したことを受けて、目標プライマリ圧tPpriが下げられる。目標プライマリ圧tPpriが下がると目標ライン圧tPLが下がり、ライン圧PLが下がる(時刻tc)。
 したがって、クロスポイントを通過した時刻ta以降、プライマリ圧Ppri、セカンダリ圧Psec及び実ライン圧PLの三つの圧が同じ値付近で同じ傾向で変動することになり、これが原因となって油圧制御が不安定になり、変速比のハンチングが発生する。
 本発明の目的は、変速比のハンチングを防止することである。
 本発明のある態様によれば、プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧をライン圧を元圧として調圧する変速制御油圧回路とを備え、プライマリ圧及びセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機であって、変速比に基づき前記プライマリ圧の目標値である目標プライマリ圧と前記セカンダリ圧の目標値である目標セカンダリ圧とを設定する目標プーリ圧設定手段と、少なくとも、前記目標セカンダリ圧から前記目標プライマリ圧を引いて得られる偏差の絶対値が所定偏差よりも小さくなる領域であるクロスポイント領域において、前記ライン圧の目標値である目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に正の値であるオフセット量を加えた値に設定する目標ライン圧設定手段と、を備え、前記変速制御油圧回路は、前記プライマリ圧、前記セカンダリ圧及び前記ライン圧を、それぞれ前記目標プライマリ圧、前記目標セカンダリ圧及び前記目標ライン圧に制御する、無段変速機が提供される。
 本発明の別の態様によれば、プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧をライン圧を元圧として調圧する変速制御油圧回路とを備え、プライマリ圧及びセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機における油圧制御方法であって、変速比に基づき前記プライマリ圧の目標値である目標プライマリ圧と前記セカンダリ圧の目標値である目標セカンダリ圧とを設定し、少なくとも、前記目標セカンダリ圧から前記目標プライマリ圧を引いて得られる偏差の絶対値が所定偏差よりも小さくなる領域であるクロスポイント領域において、前記ライン圧の目標値である目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に正の値であるオフセット量を加えた値に設定し、前記プライマリ圧、前記セカンダリ圧及び前記ライン圧を、それぞれ前記目標プライマリ圧、前記目標セカンダリ圧及び前記目標ライン圧に制御する、油圧制御方法が提供される。
 これらの態様によれば、プライマリ圧、セカンダリ圧及びライン圧の三つの圧が同じ値付近で変化するのを避けることができ、変速比のハンチングを抑えることができる。
 本発明の実施形態及び本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、無段変速機の概略構成図である。 図2は、変速制御油圧回路の概略構成図である。 図3は、目標プライマリ圧及び目標セカンダリ圧を設定するためのテーブルである。 図4は、目標ライン圧を設定するための処理を示したフローチャートである。 図5は、オフセット量を設定するためのテーブルである。 図6は、オフセットされた目標ライン圧を示した図である。 図7は、第1実施形態の作用効果を説明するためのタイムチャートである。 図8は、第2実施形態における、目標ライン圧を設定するための処理を示したフローチャートである。 図9は、第3実施形態における、目標ライン圧を設定するための処理を示したフローチャートである。 図10は、比較例のタイムチャートである。
 <第1実施形態>
 図1は、無段変速機(以下、「CVT」という。)1の概略構成を示している。プライマリプーリ2及びセカンダリプーリ3が両者の溝が整列するよう配置され、これらプーリ2、3の溝にはベルト4が巻き掛けられている。プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間には、エンジン5の側から順に、トルクコンバータ6、前後進切換え機構7が設けられている。
 トルクコンバータ6は、エンジン5の出力軸に連結されるポンプインペラ6a、前後進切換え機構7の入力軸に連結されるタービンランナ6b、ステータ6c及びロックアップクラッチ6dを備える。
 前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6のタービンランナ6bに結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤ及びキャリア間を直結する発進クラッチ7b、及びリングギヤを固定する後進ブレーキ7cを備える。そして、発進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転され、プライマリプーリ2へと伝達される。
 プライマリプーリ2の回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9及びディファレンシャルギヤ装置10を経て図示しない駆動輪へと伝達される。
 上記の動力伝達中にプライマリプーリ2及びセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2及びセカンダリプーリ3の溝を形成する円錐板のうち一方を固定円錐板2a、3aとし、他方の円錐板2b、3bを軸線方向へ変位可能な可動円錐板としている。
 これら可動円錐板2b、3bは、ライン圧PLを元圧として作り出したプライマリ圧Ppri及びセカンダリ圧Psecをプライマリプーリ室2c及びセカンダリプーリ室3cに供給することにより固定円錐板2a、3aに向けて付勢され、これによりベルト4を円錐板に摩擦接合させてプライマリプーリ2及びセカンダリプーリ3間での動力伝達が行われる。
 変速は、プライマリ圧Ppri及びセカンダリ圧Psec間の差圧により両プーリ2、3の溝の幅を変化させ、プーリ2、3に対するベルト4の巻き掛け円弧径を連続的に変化させることによって行われる。
 プライマリ圧Ppri及びセカンダリ圧Psecは、前進走行レンジの選択時に締結する発進クラッチ7b、及び後進走行レンジの選択時に締結する後進ブレーキ7cへの供給油圧と共に変速制御油圧回路11によって制御される。変速制御油圧回路11は変速機コントローラ12からの信号に応答して制御を行う。
 変速機コントローラ12には、CVT1の実入力回転速度Ninを検出する入力回転速度センサ13からの信号と、CVT1の出力回転速度、すなわち、車速VSPを検出する車速センサ14からの信号と、プライマリ圧Ppriを検出するプライマリ圧センサ15pからの信号と、セカンダリ圧Psecを検出するセカンダリ圧センサ15sからの信号と、ライン圧PLを検出するライン圧センサ15lからの信号と、アクセル開度APOを検出するアクセル開度センサ16からの信号と、セレクトレバー位置を検出するインヒビタスイッチ17からの選択レンジ信号と、ブレーキペダルの踏み込みの有無を検出するブレーキスイッチ18からの信号と、エンジン5を制御するエンジンコントローラ19からのエンジン5の運転状態(エンジン回転速度Ne、エンジントルク、燃料噴時間、冷却水温TMPe等)に関する信号とが入力される。
 図2は、変速制御油圧回路11の概略構成を示している。
 変速制御油圧回路11は、オイルポンプ40、ライン圧調圧弁31、プライマリ調圧弁32及びセカンダリ調圧弁33を備える。
 オイルポンプ40は、エンジン5の動力又は図示しないモータによって駆動される。
 ライン圧調圧弁31は、オイルポンプ40の吐出圧の一部をドレンして減圧することで、ライン圧PLを目標ライン圧tPLに調整する減圧弁である。目標ライン圧tPLの設定方法については後述する。
 プライマリ調圧弁32及びセカンダリ調圧弁33は、ライン圧PLを元圧として、ライン圧PLの一部をドレンして減圧することでプライマリ圧Ppri及びセカンダリ圧Psecをそれぞれ目標プライマリ圧tPpri及び目標セカンダリ圧tPsecに調整する減圧弁である。目標プライマリ圧tPpri及び目標セカンダリ圧tPsecの設定方法については後述する。
 目標プライマリ圧tPpriが目標ライン圧を超える状況では、プライマリ調圧弁32は通常の制御位置から外れ、ライン圧PLをそのままプライマリ圧Ppriとして出力する調圧不良状態となる。セカンダリ調圧弁33についても同じである。
 図3は、目標プライマリ圧tPpri及び目標セカンダリ圧tPsecを設定するためのテーブルである。
 本テーブルは、CVT1の変速比を保持するために必要なプライマリ圧Ppri及びセカンダリ圧Psecを元に作成される。目標プライマリ圧tPpri及び目標セカンダリ圧tPsecは、図3に示すテーブルを参照して設定される。
 以下の説明では、目標プライマリ圧tPpriと目標セカンダリ圧tPsecが等しくなる点を「クロスポイント」と表現する。
 図4は、目標ライン圧tPLを設定するための処理を示したフローチャートである。処理の実行主体は変速機コントローラ12である。
 これを参照しながら目標ライン圧tPLの設定方法について説明すると、まず、図3に示したテーブルを参照して目標プライマリ圧tPpri及び目標セカンダリ圧tPsecが設定される(S11)。
 次に、目標プライマリ圧tPpri及び目標セカンダリ圧tPsecのうち高い方が選択される(S12)。
 そして、目標セカンダリ圧tPsecから目標プライマリ圧tPpriを引いて得られる偏差(以下、「目標プーリ圧偏差」という。)に基づき、図5に示すテーブルを参照してオフセット量Poffsetが設定される(S13)。
 オフセット量Poffsetは、目標プーリ圧偏差の絶対値がPdiffよりも大きいとゼロに設定されるが、目標プーリ圧偏差の絶対値が所定偏差Pdiffよりも小さくなると、目標プーリ圧偏差の絶対値が小さくなるにつれて大きな値に設定される。そして、目標プーリ圧偏差がゼロのときに、オフセット量Poffsetは、最大値Poffsetmaxに設定される。
 これにより、目標プーリ圧偏差の絶対値が所定偏差Pdiffよりも小さくなる領域(以下、「クロスポイント領域」という。)では、正のオフセット量Poffsetが設定される。
 目標ライン圧tPLは、S12で選択された値にS13で設定されたオフセット量Poffsetを加えた値に設定される(S14)。
 以下の説明では、S12で選択された値にオフセット量Poffsetを加えることによってS12で選択された値よりも高い目標ライン圧tPLを設定することを、「目標ライン圧tPLをオフセットさせる」と表現する。
 図6はこのようにして設定される目標ライン圧tPLを示している。
 クロスポイント領域外では、オフセット量Poffsetがゼロに設定されるので、目標ライン圧tPLは、目標プライマリ圧tPpri及び目標セカンダリ圧tPsecのうち高い方に等しく設定される。すなわち、目標プライマリ圧tPpri及び目標セカンダリ圧tPsecのオフセットは行われない。
 これに対し、クロスポイント領域においては、目標ライン圧tPLは、目標プライマリ圧tPpri及び目標セカンダリ圧tPsecのうち高い方に対して、正の値であるオフセット量Poffsetを加えた値に設定される。
 第1実施形態においては、目標ライン圧tPLがこのように設定され、変速機コントローラ12は、ライン圧PLがこのように設定された目標ライン圧tPLになるようにライン圧調圧弁31を制御する。
 続いて、第1実施形態の作用効果について説明する。
 第1実施形態によれば、クロスポイント領域において目標ライン圧tPLを上記の通りオフセットさせたことにより、油圧ばらつきによって目標ライン圧tPLより実ライン圧PLが低く、目標プライマリ圧tPpri又は目標セカンダリ圧tPsecが実ライン圧PLを超え、プライマリ圧Ppri又はセカンダリ圧Psecに調圧不良が発生している場合であっても、変速比のハンチングを抑えることが可能である。
 変速比のハンチングが抑制されるメカニズムは次の通りである。なお、ここでは、目標セカンダリ圧tPsecが実ライン圧PLを超えた場合について、図7を参照しながら説明する。
 前提として、時刻t1の時点で、目標セカンダリ圧tPsecが実ライン圧PLを超えており、セカンダリ圧Psecの調圧不良が発生しているとする。
 時刻t1の時点では、クロスポイント領域に入ったことによって、目標ライン圧tPLを上昇させることで、実ライン圧PLが上昇する。
 実ライン圧PLが上昇すると、セカンダリ調圧弁33が調圧不良状態なので、調圧不良が解消するまでの間、セカンダリ圧Psecが実ライン圧PLにつられて上昇する(時刻t1~t2)。
 これに伴い、変速比が目標変速比よりもLOW側になるので、変速比を目標変速比に近づけるべく目標プライマリ圧tPpriが上昇し、プライマリ圧Ppriが上昇する(時刻t1~t2)。
 時刻t2で、目標ライン圧tPLの上昇によって、実ライン圧PLが上昇することで、セカンダリ調圧弁が通常の制御位置に戻り、セカンダリ調圧弁33の調圧不良状態が解消すると、セカンダリ圧Psecが急減し、変速比が急激にHigh側に変化する。
 そして、変速比が急激にHigh側に変化したことを受けて目標プライマリ圧tPpriが下げられる。目標プライマリ圧tPpriが下がるとプライマリ圧Ppriが下がるが、実ライン圧PLは補正によって、プライマリ圧Ppri及びセカンダリ圧Psecよりも高い位置にある(時刻t3~)。
 以後、目標プライマリ圧tPpriは上昇し、目標セカンダリ圧tPsecは下降し、実ライン圧PLは目標プライマリ圧tPpri及び目標セカンダリ圧tPsecよりも高い値で変動した後、目標プライマリ圧tPpriに等しくなる(時刻t4~)。
 このように、第1実施形態では、目標ライン圧tPLをクロスポイント付近でオフセットさせたことにより、プライマリ圧Ppri、セカンダリ圧Psec及び実ライン圧PLの三つの圧は、実ライン圧PLがセカンダリ圧Psecより低く、セカンダリ調圧弁の調圧不良が原因となって変動するものの、目標ライン圧tPLのオフセットによって、夫々の油圧が同じ値付近で同じ傾向で変動するのを避けることができる。
 したがって、第1実施形態によれば、クロスポイント付近での夫々の油圧が同じ値付近で同じ傾向で変動することで油圧制御が不安定になるのが抑えられ、変速比のハンチングを抑えることができる。
 また、クロスポイント領域よりもLow側の領域においても目標ライン圧tPLをオフセットさせることにより、変速比がLow側からHigh側に比較的速やかに変化してクロスポイント領域でのみ目標ライン圧tPLをオフセットさせる構成ではライン圧PLのオフセットが間に合わず変速比のハンチングを抑えきれない可能性のあるアップシフト時であっても、確実に変速比のハンチングを抑えることができる。また、クロスポイント領域よりもHigh側の領域では目標ライン圧tPLのオフセットを行わないので、High側変速比における高い燃費要求に応えることができる。
 <第2実施形態>
 続いて本発明の第2実施形態について説明する。
 第1実施形態では、クロスポイント領域において、無条件に目標ライン圧tPLをオフセットさせていたのに対し、第2実施形態では、運転状態が、アップシフト時及びコーストダウン時(アクセルオフの状態で車両が減速する際に行われるダウンシフト)のいずれかであると判断された場合にのみ、目標ライン圧tPLをオフセットさせるようにした。
 目標ライン圧tPLのオフセットを、アップシフト時に限定したのは、アップシフト時は車速の増加に応じて、変速比がLow側からHigh側に比較的緩やかに変化するため、プライマリ圧Ppri、セカンダリ圧Psec及びライン圧PLの三つの圧が同じ値の近くにとどまる時間が長く、変速比のハンチングがより起こりやすいからである。
 また、ダウンシフト時の目標ライン圧tPLのオフセットを、コーストダウン時に限定したのは、コーストダウン時は車速の減少に応じて変速比がHigh側からLow側に比較的緩やかに変化するため、プライマリ圧Ppri、セカンダリ圧Psec及びライン圧PLの三つの圧が同じ値の近くにとどまる時間が長く、変速比のハンチングがより起こりやすいからである。
 図8は、目標ライン圧tPLを設定するための処理を示したフローチャートである。第1実施形態の処理(図4)と比較して、アップシフト時かを判断するS21の処理と、コーストダウン時かを判断するS22の処理(ダウンシフト時かつアクセルオフの場合にコーストダウン時と判断)と、アップシフト時及びコーストダウン時のいずれでもないと判断された場合にオフセット量PoffsetをゼロにするS23の処理が追加されている。
 第2実施形態では、クロスポイント領域であっても、運転状態がアップシフト時及びコーストダウン時のいずれでもない場合には目標ライン圧tPLのオフセットを行わないので、不必要なライン圧PLの上昇を抑え、燃費を向上させることができる。
 <第3実施形態>
 続いて本発明の第3実施形態について説明する。
 第1実施形態では、クロスポイント領域において、無条件に目標ライン圧tPLをオフセットさせていたのに対し、第3実施形態では、プライマリ圧Ppri又はセカンダリ圧Psecに調圧不良が実際に生じているか判断し、調圧不良が実際に生じている場合にのみ、目標ライン圧tPLをオフセットさせるようにした。
 図9は、目標ライン圧tPLを設定するための処理を示したフローチャートである。第1実施形態の処理(図4)と比較して、調圧不良の発生を判断するS31の処理と、調圧不良が発生していないと判断された場合にオフセット量をゼロにするS32の処理が追加されている。
 調圧不良が発生しているかは、目標プライマリ圧tPpri又は目標セカンダリ圧Psecと実ライン圧PLとの大小関係に基づき判断することができ、具体的には、目標プライマリ圧tPpri又は目標セカンダリ圧Psecが実ライン圧PLよりも高くなった場合に、調圧不良が発生していると判断することができる。
 調圧不良が発生しているかの判断方法はこれに限定されず、目標プライマリ圧tPpriがプライマリ圧Ppriから乖離しているか又は目標セカンダリ圧tPsecがセカンダリ圧Psecから乖離しているかを判断することによって、調圧不良が発生しているか判断するようにしてもよい。
 このように、第3実施形態では、クロスポイント領域であっても、調圧不良が発生していない場合には目標ライン圧tPLのオフセットを行わないので、不必要なライン圧PLの上昇を抑え、燃費を向上させることができるという作用効果がある。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的に限定する趣旨ではない。
 例えば、上記実施形態は、必要に応じて組み合わせて実施することも可能である。例えば、第2実施形態と第3実施形態とを組み合わせ、アップシフト時又はコーストダウン時で、かつ、調圧不良発生時に目標ライン圧tPLのオフセットを行うようにしてもよい。
 また、第1実施形態では、クロスポイント領域において正の値をとるオフセット値Poffsetを設定し、これを目標プライマリ圧tPpri及び目標セカンダリ圧tPsecのうち高い方に加えることで目標ライン圧tPLをオフセットさせている。すなわち、オフセット値Poffsetは、クロスポイント領域か否かにかかわらず設定され、加算される。
 しかしながら、クロスポイント領域かを先に判断し、クロスポイント領域と判断された場合にのみオフセット量Poffsetを設定し、加算することで、目標ライン圧tPLをオフセットさせてもよい。
 本願は日本国特許庁に2012年3月28日に出願された特願2012-75020号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 

Claims (12)

  1.  プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧をライン圧を元圧として調圧する変速制御油圧回路とを備え、プライマリ圧及びセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機であって、
     変速比に基づき前記プライマリ圧の目標値である目標プライマリ圧と前記セカンダリ圧の目標値である目標セカンダリ圧とを設定する目標プーリ圧設定手段と、
     少なくとも、前記目標セカンダリ圧から前記目標プライマリ圧を引いて得られる偏差の絶対値が所定偏差よりも小さくなる領域であるクロスポイント領域において、前記ライン圧の目標値である目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に正の値であるオフセット量を加えた値に設定する目標ライン圧設定手段と、
    を備え、
     前記変速制御油圧回路は、前記プライマリ圧、前記セカンダリ圧及び前記ライン圧を、それぞれ前記目標プライマリ圧、前記目標セカンダリ圧及び前記目標ライン圧に制御する、
    無段変速機。
  2.  請求項1に記載の無段変速機であって、
     前記目標ライン圧設定手段は、前記クロスポイント領域に加え、前記偏差が正側に大きくなる領域においても、前記目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に前記正の値であるオフセット量を加えた値に設定する、
    無段変速機。
  3.  請求項1又は2に記載の無段変速機であって、
     運転状態がアップシフト時及びコーストダウン時のいずれかであることを判断する運転状態判断手段を備え、
     前記目標ライン圧設定手段は、運転状態がアップシフト時及びコーストダウン時のいずれかであると判断された場合にのみ、前記目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に前記正の値であるオフセット量を加えた値に設定する、
    無段変速機。
  4.  請求項1から3のいずれか一つに記載の無段変速機であって、
     前記プライマリ圧又は前記セカンダリ圧の調圧不良の発生を判断する調圧不良判断手段と、
     前記目標ライン圧設定手段は、前記調圧不良が発生していると判断された場合にのみ、前記目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に前記正の値であるオフセット量を加えた値に設定する、
    無段変速機。
  5.  請求項4に記載の無段変速機であって、
     前記調圧不良判断手段は、前記目標プライマリ圧又は前記目標セカンダリ圧が前記目標ライン圧よりも高い場合に前記調圧不良が発生していると判断する、
    無段変速機。
  6.  請求項4に記載の無段変速機であって、
     前記調圧不良判断手段は、前記目標プライマリ圧と前記プライマリ圧とが乖離した場合、又は、前記目標セカンダリ圧と前記セカンダリ圧とが乖離した場合に調圧不良が発生していると判断する、
    無段変速機。
  7.  プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧をライン圧を元圧として調圧する変速制御油圧回路とを備え、プライマリ圧及びセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機における油圧制御方法であって、
     変速比に基づき前記プライマリ圧の目標値である目標プライマリ圧と前記セカンダリ圧の目標値である目標セカンダリ圧とを設定し、
     少なくとも、前記目標セカンダリ圧から前記目標プライマリ圧を引いて得られる偏差の絶対値が所定偏差よりも小さくなる領域であるクロスポイント領域において、前記ライン圧の目標値である目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に正の値であるオフセット量を加えた値に設定し、
     前記プライマリ圧、前記セカンダリ圧及び前記ライン圧を、それぞれ前記目標プライマリ圧、前記目標セカンダリ圧及び前記目標ライン圧に制御する、
    ことを特徴とする油圧制御方法。
  8.  請求項7に記載の油圧制御方法であって、
     前記クロスポイント領域に加え、前記偏差が正側に大きくなる領域においても、前記目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に前記正の値であるオフセット量を加えた値に設定する、
    油圧制御方法。
  9.  請求項7又は8に記載の油圧制御方法であって、
     運転状態がアップシフト時及びコーストダウン時のいずれかであることを判断し、
     運転状態がアップシフト時及びコーストダウン時のいずれかであると判断された場合にのみ、前記目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に前記正の値であるオフセット量を加えた値に設定する、
    油圧制御方法。
  10.  請求項7から9のいずれか一つに記載の油圧制御方法であって、
     前記プライマリ圧又は前記セカンダリ圧の調圧不良の発生を判断し、
     前記調圧不良が発生していると判断された場合にのみ、前記目標ライン圧を、前記目標プライマリ圧及び前記目標セカンダリ圧のうちより高い方に前記正の値であるオフセット量を加えた値に設定する、
    油圧制御方法。
  11.  請求項10に記載の油圧制御方法であって、
     前記目標プライマリ圧又は前記目標セカンダリ圧が前記目標ライン圧よりも高い場合に前記調圧不良が発生していると判断する、
    油圧制御方法。
  12.  請求項10に記載の油圧制御方法であって、
     前記目標プライマリ圧と前記プライマリ圧とが乖離した場合、又は、前記目標セカンダリ圧と前記セカンダリ圧とが乖離した場合に調圧不良が発生していると判断する、
    油圧制御方法。
     
PCT/JP2013/054374 2012-03-28 2013-02-21 無段変速機及びその油圧制御方法 WO2013145967A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380013860.2A CN104185751B (zh) 2012-03-28 2013-02-21 无级变速器及其液压控制方法
KR1020147026553A KR101586162B1 (ko) 2012-03-28 2013-02-21 무단 변속기 및 그 유압 제어 방법
JP2014507523A JP5815121B2 (ja) 2012-03-28 2013-02-21 無段変速機及びその油圧制御方法
EP13769741.3A EP2833027A4 (en) 2012-03-28 2013-02-21 CONTINUOUSLY VARIATION TRANSMISSION AND HYDRAULIC PRESSURE CONTROL METHOD
US14/387,461 US9212732B2 (en) 2012-03-28 2013-02-21 Continuously variable transmission and its hydraulic pressure control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012075020 2012-03-28
JP2012-075020 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145967A1 true WO2013145967A1 (ja) 2013-10-03

Family

ID=49259247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054374 WO2013145967A1 (ja) 2012-03-28 2013-02-21 無段変速機及びその油圧制御方法

Country Status (6)

Country Link
US (1) US9212732B2 (ja)
EP (1) EP2833027A4 (ja)
JP (1) JP5815121B2 (ja)
KR (1) KR101586162B1 (ja)
CN (1) CN104185751B (ja)
WO (1) WO2013145967A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194597A1 (ja) * 2015-06-05 2016-12-08 ジヤトコ株式会社 無段変速機の制御装置
KR20180018709A (ko) * 2015-06-23 2018-02-21 쟈트코 가부시키가이샤 변속기 및 변속기의 제어 방법
EP3179139A4 (en) * 2014-08-05 2018-02-28 Jatco Ltd Controller for continuously variable transmission
WO2020044948A1 (ja) * 2018-08-30 2020-03-05 ジヤトコ株式会社 バルブ検査装置及びバルブ検査方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348875A4 (en) * 2015-09-11 2018-09-12 Nissan Motor Co., Ltd. Continuously variable transmission and malfunction determination method therefor
US10442423B2 (en) * 2016-02-24 2019-10-15 Allison Transmission, Inc. Transmission internal PTO clutch and method of control
JP6911711B2 (ja) * 2017-10-31 2021-07-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
KR102532321B1 (ko) * 2018-03-23 2023-05-15 현대자동차주식회사 무단변속기 차량의 풀리 제어방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432958U (ja) * 1987-08-21 1989-03-01
JPH0599302A (ja) * 1991-10-03 1993-04-20 Toyota Motor Corp 車両用ベルト式無段変速機の油圧制御装置
JP2001099280A (ja) 1999-09-30 2001-04-10 Nissan Motor Co Ltd 自動変速機のライン圧制御装置
JP2004116740A (ja) * 2002-09-27 2004-04-15 Jatco Ltd Vベルト式無段自動変速機の変速制御装置
JP2007278498A (ja) * 2006-03-17 2007-10-25 Jatco Ltd ベルト式無段変速機の油圧制御装置
JP2010043676A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 無段変速機および無段変速機の制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857034A (en) * 1986-02-22 1989-08-15 Toyota Jidosha Kabushiki Kaisha Hydraulic control system for continuously variable transmission for automotive vehicle
JP3745189B2 (ja) * 1999-07-21 2006-02-15 本田技研工業株式会社 アイドル運転停止車両における発進クラッチの制御装置
JP4372388B2 (ja) * 2002-02-20 2009-11-25 富士重工業株式会社 無段変速機の変速制御装置
NL1024918C2 (nl) * 2003-12-01 2005-06-02 Bosch Gmbh Robert Continu variabele transmissie.
CN101273223B (zh) * 2005-07-27 2012-07-04 罗伯特·博世有限公司 用于操作无级变速装置的方法
JP4404834B2 (ja) 2005-10-06 2010-01-27 ジヤトコ株式会社 ベルト式無段変速機のライン圧制御装置
JP4690255B2 (ja) * 2006-06-15 2011-06-01 トヨタ自動車株式会社 ベルト式無段変速機の制御装置
JP4613225B2 (ja) * 2008-05-30 2011-01-12 ジヤトコ株式会社 無段変速機の制御装置
JP5405863B2 (ja) 2009-03-23 2014-02-05 富士重工業株式会社 無段変速機の制御装置
JP4847567B2 (ja) * 2009-08-26 2011-12-28 ジヤトコ株式会社 無段変速機及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432958U (ja) * 1987-08-21 1989-03-01
JPH0599302A (ja) * 1991-10-03 1993-04-20 Toyota Motor Corp 車両用ベルト式無段変速機の油圧制御装置
JP2001099280A (ja) 1999-09-30 2001-04-10 Nissan Motor Co Ltd 自動変速機のライン圧制御装置
JP2004116740A (ja) * 2002-09-27 2004-04-15 Jatco Ltd Vベルト式無段自動変速機の変速制御装置
JP2007278498A (ja) * 2006-03-17 2007-10-25 Jatco Ltd ベルト式無段変速機の油圧制御装置
JP2010043676A (ja) * 2008-08-11 2010-02-25 Toyota Motor Corp 無段変速機および無段変速機の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833027A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179139A4 (en) * 2014-08-05 2018-02-28 Jatco Ltd Controller for continuously variable transmission
US10215277B2 (en) 2014-08-05 2019-02-26 Jatco Ltd Controller for continuously variable transmission
WO2016194597A1 (ja) * 2015-06-05 2016-12-08 ジヤトコ株式会社 無段変速機の制御装置
JPWO2016194597A1 (ja) * 2015-06-05 2018-03-22 ジヤトコ株式会社 無段変速機の制御装置
CN108027044A (zh) * 2015-06-05 2018-05-11 日产自动车株式会社 无级变速器的控制装置
KR20180018709A (ko) * 2015-06-23 2018-02-21 쟈트코 가부시키가이샤 변속기 및 변속기의 제어 방법
JPWO2016208438A1 (ja) * 2015-06-23 2018-04-05 ジヤトコ株式会社 変速機及び変速機の制御方法
EP3315823A4 (en) * 2015-06-23 2018-07-25 JATCO Ltd Transmission and transmission control method
KR101992069B1 (ko) 2015-06-23 2019-06-21 쟈트코 가부시키가이샤 변속기 및 변속기의 제어 방법
US10400893B2 (en) 2015-06-23 2019-09-03 Jatco Ltd Transmission and control method for transmission
WO2020044948A1 (ja) * 2018-08-30 2020-03-05 ジヤトコ株式会社 バルブ検査装置及びバルブ検査方法
JPWO2020044948A1 (ja) * 2018-08-30 2021-06-10 ジヤトコ株式会社 バルブ検査装置及びバルブ検査方法

Also Published As

Publication number Publication date
US20150080156A1 (en) 2015-03-19
JPWO2013145967A1 (ja) 2015-12-10
KR101586162B1 (ko) 2016-01-15
EP2833027A1 (en) 2015-02-04
US9212732B2 (en) 2015-12-15
EP2833027A4 (en) 2016-07-13
CN104185751B (zh) 2016-05-11
KR20140136461A (ko) 2014-11-28
CN104185751A (zh) 2014-12-03
JP5815121B2 (ja) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5815121B2 (ja) 無段変速機及びその油圧制御方法
US8403809B2 (en) Continuously variable transmission and control method thereof
JP4923080B2 (ja) 無段変速機及びその制御方法
KR101740048B1 (ko) 차량용 무단 변속기의 제어 장치
JP5903487B2 (ja) 無段変速機及びその油圧制御方法
JP5830167B2 (ja) 無段変速機及びその油圧制御方法
JP2008157404A (ja) 無段変速機の制御装置
JP2007100819A (ja) 無段変速機のライン圧制御装置
EP2865926B1 (en) Continuously variable transmission and method for controlling same
JP2010230115A (ja) 無段変速機及びその制御方法
JP5376054B2 (ja) 車両用変速制御装置
US9086144B2 (en) Continuously variable transmission and hydraulic pressure control method therefor
US10753467B2 (en) Transmission control device and transmission control method
WO2014050454A1 (ja) 無段変速機及びその制御方法
JP2012072801A (ja) 車両用無段変速機の変速制御装置
WO2022176673A1 (ja) 無段変速機、無段変速機の制御方法、及びプログラム
WO2020095742A1 (ja) 無段変速機の制御装置
JP2017078474A (ja) 自動変速機の制御装置、及び自動変速機の制御方法
JP5533616B2 (ja) Vベルト式無段変速機のライン圧制御装置
JP2017160976A (ja) 車両のクラッチ制御装置及び車両のクラッチ制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380013860.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507523

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013769741

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE