WO2013143698A1 - Artificial nucleic acid molecules - Google Patents
Artificial nucleic acid molecules Download PDFInfo
- Publication number
- WO2013143698A1 WO2013143698A1 PCT/EP2013/000936 EP2013000936W WO2013143698A1 WO 2013143698 A1 WO2013143698 A1 WO 2013143698A1 EP 2013000936 W EP2013000936 W EP 2013000936W WO 2013143698 A1 WO2013143698 A1 WO 2013143698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- utr
- nucleic acid
- seq
- acid molecule
- sequence
- Prior art date
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 419
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 348
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 348
- 108020005345 3' Untranslated Regions Proteins 0.000 claims abstract description 510
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 213
- 108700026244 Open Reading Frames Proteins 0.000 claims abstract description 194
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 184
- 108010088751 Albumins Proteins 0.000 claims abstract description 170
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 83
- 238000001415 gene therapy Methods 0.000 claims abstract description 23
- 108020004999 messenger RNA Proteins 0.000 claims description 309
- 210000004027 cell Anatomy 0.000 claims description 164
- 239000013598 vector Substances 0.000 claims description 152
- 239000002773 nucleotide Substances 0.000 claims description 118
- 125000003729 nucleotide group Chemical group 0.000 claims description 117
- 108060001084 Luciferase Proteins 0.000 claims description 109
- 239000012634 fragment Substances 0.000 claims description 89
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 85
- 238000001890 transfection Methods 0.000 claims description 85
- 102000009027 Albumins Human genes 0.000 claims description 78
- 108091034057 RNA (poly(A)) Proteins 0.000 claims description 65
- 230000014616 translation Effects 0.000 claims description 65
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 56
- 108020004414 DNA Proteins 0.000 claims description 55
- 239000008194 pharmaceutical composition Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 45
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 44
- 230000008488 polyadenylation Effects 0.000 claims description 35
- 238000000338 in vitro Methods 0.000 claims description 29
- 230000001965 increasing effect Effects 0.000 claims description 25
- 230000000087 stabilizing effect Effects 0.000 claims description 25
- 108020003589 5' Untranslated Regions Proteins 0.000 claims description 24
- 241000282516 Papio anubis Species 0.000 claims description 24
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical class N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 22
- 210000004962 mammalian cell Anatomy 0.000 claims description 22
- 108010033040 Histones Proteins 0.000 claims description 20
- 239000002671 adjuvant Substances 0.000 claims description 19
- 108091036066 Three prime untranslated region Proteins 0.000 claims description 18
- 229960005486 vaccine Drugs 0.000 claims description 18
- 241000288906 Primates Species 0.000 claims description 17
- 238000010367 cloning Methods 0.000 claims description 14
- 238000002255 vaccination Methods 0.000 claims description 14
- 102100021519 Hemoglobin subunit beta Human genes 0.000 claims description 11
- 108091005904 Hemoglobin subunit beta Proteins 0.000 claims description 11
- 239000003814 drug Substances 0.000 claims description 11
- 101000930477 Mus musculus Albumin Proteins 0.000 claims description 10
- 229960000027 human factor ix Drugs 0.000 claims description 10
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 8
- 102000018146 globin Human genes 0.000 claims description 8
- 108060003196 globin Proteins 0.000 claims description 8
- 239000013600 plasmid vector Substances 0.000 claims description 8
- 108091035707 Consensus sequence Proteins 0.000 claims description 7
- 101000930457 Rattus norvegicus Albumin Proteins 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 239000013603 viral vector Substances 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 108091033380 Coding strand Proteins 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 163
- 238000011239 genetic vaccination Methods 0.000 abstract description 21
- 230000006641 stabilisation Effects 0.000 abstract description 12
- 238000011105 stabilization Methods 0.000 abstract description 11
- 235000018102 proteins Nutrition 0.000 description 119
- 239000005089 Luciferase Substances 0.000 description 104
- 108090000765 processed proteins & peptides Proteins 0.000 description 72
- 108020004705 Codon Proteins 0.000 description 50
- 108091007433 antigens Proteins 0.000 description 47
- 102000036639 antigens Human genes 0.000 description 47
- 150000001413 amino acids Chemical group 0.000 description 46
- 239000000427 antigen Substances 0.000 description 46
- 238000013518 transcription Methods 0.000 description 44
- 230000035897 transcription Effects 0.000 description 44
- 102000004196 processed proteins & peptides Human genes 0.000 description 36
- 235000001014 amino acid Nutrition 0.000 description 31
- 230000000694 effects Effects 0.000 description 30
- -1 RNA or DNA Chemical class 0.000 description 28
- 230000006870 function Effects 0.000 description 26
- 125000002091 cationic group Chemical group 0.000 description 25
- 238000012986 modification Methods 0.000 description 23
- 244000052769 pathogen Species 0.000 description 23
- 230000004048 modification Effects 0.000 description 21
- 108091026890 Coding region Proteins 0.000 description 20
- 102000053602 DNA Human genes 0.000 description 20
- 230000028993 immune response Effects 0.000 description 19
- 230000000977 initiatory effect Effects 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 17
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 17
- 230000003308 immunostimulating effect Effects 0.000 description 16
- 230000035772 mutation Effects 0.000 description 15
- 238000013519 translation Methods 0.000 description 15
- 230000002163 immunogen Effects 0.000 description 14
- 230000001717 pathogenic effect Effects 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 108091027974 Mature messenger RNA Proteins 0.000 description 13
- 206010028980 Neoplasm Diseases 0.000 description 13
- 201000010099 disease Diseases 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 108020004566 Transfer RNA Proteins 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 210000001744 T-lymphocyte Anatomy 0.000 description 11
- 230000033289 adaptive immune response Effects 0.000 description 11
- 230000002068 genetic effect Effects 0.000 description 11
- 210000000987 immune system Anatomy 0.000 description 11
- 238000001727 in vivo Methods 0.000 description 11
- 230000015788 innate immune response Effects 0.000 description 11
- 229920001184 polypeptide Polymers 0.000 description 11
- 210000005006 adaptive immune system Anatomy 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 230000002028 premature Effects 0.000 description 10
- 230000002035 prolonged effect Effects 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 239000001226 triphosphate Substances 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 210000005007 innate immune system Anatomy 0.000 description 9
- 108091008146 restriction endonucleases Proteins 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 108010076504 Protein Sorting Signals Proteins 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 235000000346 sugar Nutrition 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- 101710150200 Albumin-8 Proteins 0.000 description 7
- 108010039224 Amidophosphoribosyltransferase Proteins 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 102100040870 Glycine amidinotransferase, mitochondrial Human genes 0.000 description 6
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 6
- 101000893303 Homo sapiens Glycine amidinotransferase, mitochondrial Proteins 0.000 description 6
- 101000763579 Homo sapiens Toll-like receptor 1 Proteins 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 229920002873 Polyethylenimine Polymers 0.000 description 6
- 102100027010 Toll-like receptor 1 Human genes 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- 210000005260 human cell Anatomy 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 239000006166 lysate Substances 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 5
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 5
- 101000933465 Homo sapiens Beta-glucuronidase Proteins 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 102000002689 Toll-like receptor Human genes 0.000 description 5
- 108020000411 Toll-like receptor Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 229920006317 cationic polymer Polymers 0.000 description 5
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical class O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 5
- 210000004443 dendritic cell Anatomy 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 210000002950 fibroblast Anatomy 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000001638 lipofection Methods 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 230000035800 maturation Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 108700010070 Codon Usage Proteins 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 4
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 4
- 102000053187 Glucuronidase Human genes 0.000 description 4
- 108010060309 Glucuronidase Proteins 0.000 description 4
- 101000763537 Homo sapiens Toll-like receptor 10 Proteins 0.000 description 4
- 101000831567 Homo sapiens Toll-like receptor 2 Proteins 0.000 description 4
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 4
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 4
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 4
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 description 4
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 4
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 4
- 108010002352 Interleukin-1 Proteins 0.000 description 4
- 102000000589 Interleukin-1 Human genes 0.000 description 4
- 108091036407 Polyadenylation Proteins 0.000 description 4
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 4
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 4
- 102100027009 Toll-like receptor 10 Human genes 0.000 description 4
- 102100024333 Toll-like receptor 2 Human genes 0.000 description 4
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 4
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 4
- 102100039357 Toll-like receptor 5 Human genes 0.000 description 4
- 102100039387 Toll-like receptor 6 Human genes 0.000 description 4
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 4
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 4
- 108091023045 Untranslated Region Proteins 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000010668 complexation reaction Methods 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 229940029575 guanosine Drugs 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 239000012139 lysis buffer Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 208000035657 Abasia Diseases 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 3
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 3
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 3
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 3
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 108060002716 Exonuclease Proteins 0.000 description 3
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010051696 Growth Hormone Proteins 0.000 description 3
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 3
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108010038807 Oligopeptides Proteins 0.000 description 3
- 102000015636 Oligopeptides Human genes 0.000 description 3
- 239000012124 Opti-MEM Substances 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 102100038803 Somatotropin Human genes 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 108010020764 Transposases Proteins 0.000 description 3
- 102000008579 Transposases Human genes 0.000 description 3
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 3
- 241000269370 Xenopus <genus> Species 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000003172 anti-dna Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000007969 cellular immunity Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 3
- 239000000412 dendrimer Substances 0.000 description 3
- 229920000736 dendritic polymer Polymers 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 102000013165 exonuclease Human genes 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000000122 growth hormone Substances 0.000 description 3
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 3
- 230000028996 humoral immune response Effects 0.000 description 3
- 230000004727 humoral immunity Effects 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000012261 overproduction Methods 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 229920000962 poly(amidoamine) Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- JTTIOYHBNXDJOD-UHFFFAOYSA-N 2,4,6-triaminopyrimidine Chemical compound NC1=CC(N)=NC(N)=N1 JTTIOYHBNXDJOD-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- 101710150350 Albumin-2 Proteins 0.000 description 2
- 108010083359 Antigen Receptors Proteins 0.000 description 2
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 2
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 2
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102100031780 Endonuclease Human genes 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 101710166362 Globin-3 Proteins 0.000 description 2
- 101710166347 Globin-5 Proteins 0.000 description 2
- 101150001754 Gusb gene Proteins 0.000 description 2
- 101000724418 Homo sapiens Neutral amino acid transporter B(0) Proteins 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 102100030703 Interleukin-22 Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 2
- 244000137850 Marrubium vulgare Species 0.000 description 2
- 101100368144 Mus musculus Synb gene Proteins 0.000 description 2
- 101100481579 Mus musculus Tlr11 gene Proteins 0.000 description 2
- 101100481580 Mus musculus Tlr12 gene Proteins 0.000 description 2
- 101100481581 Mus musculus Tlr13 gene Proteins 0.000 description 2
- 102000006746 NADH Dehydrogenase Human genes 0.000 description 2
- 108010086428 NADH Dehydrogenase Proteins 0.000 description 2
- 102100028267 Neutral amino acid transporter B(0) Human genes 0.000 description 2
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 2
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- 241000254064 Photinus pyralis Species 0.000 description 2
- 229920001212 Poly(beta amino esters) Polymers 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Chemical compound OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 241000242743 Renilla reniformis Species 0.000 description 2
- 108091081021 Sense strand Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 101710192266 Tegument protein VP22 Proteins 0.000 description 2
- 108020005038 Terminator Codon Proteins 0.000 description 2
- 210000000447 Th1 cell Anatomy 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical class O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- DBFUQOZREOHGAV-UAKXSSHOSA-N [[(2r,3s,4r,5r)-5-(4-amino-5-bromo-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=C(Br)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 DBFUQOZREOHGAV-UAKXSSHOSA-N 0.000 description 2
- YIJVOACVHQZMKI-JXOAFFINSA-N [[(2r,3s,4r,5r)-5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 YIJVOACVHQZMKI-JXOAFFINSA-N 0.000 description 2
- VEWJOCYCKIZKKV-GBNDHIKLSA-N [[(2r,3s,4r,5s)-5-(2,4-dioxo-1h-pyrimidin-5-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1C1=CNC(=O)NC1=O VEWJOCYCKIZKKV-GBNDHIKLSA-N 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 235000017471 coenzyme Q10 Nutrition 0.000 description 2
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 2
- 230000024203 complement activation Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 210000003162 effector t lymphocyte Anatomy 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000001808 exosome Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000012678 infectious agent Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007919 intrasynovial administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000002751 lymph Anatomy 0.000 description 2
- 210000003563 lymphoid tissue Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- DAZSWUUAFHBCGE-KRWDZBQOSA-N n-[(2s)-3-methyl-1-oxo-1-pyrrolidin-1-ylbutan-2-yl]-3-phenylpropanamide Chemical compound N([C@@H](C(C)C)C(=O)N1CCCC1)C(=O)CCC1=CC=CC=C1 DAZSWUUAFHBCGE-KRWDZBQOSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229960003104 ornithine Drugs 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000037425 regulation of transcription Effects 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000009712 regulation of translation Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 230000003019 stabilising effect Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 229940035936 ubiquinone Drugs 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- CPCWCRHPTDMVFU-UHFFFAOYSA-N (2-hydroxy-4,5-dioctadecoxypentyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCOCC(CC(O)C[NH+](C)C)OCCCCCCCCCCCCCCCCCC CPCWCRHPTDMVFU-UHFFFAOYSA-N 0.000 description 1
- OFMQLVRLOGHAJI-FGHAYEPSSA-N (4r,7s,10s,13r,16s,19r)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-10-[3-(diaminomethylideneamino)propyl]-7-[(1r)-1-hydroxyethyl]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-3,3-dimethyl-6,9,12,15,18 Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(=O)N[C@@H](C(SSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=CC=CC=1)(C)C)C(=O)N[C@@H]([C@H](O)C)C(N)=O)[C@@H](C)O)C1=CC=C(O)C=C1 OFMQLVRLOGHAJI-FGHAYEPSSA-N 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- MPCAJMNYNOGXPB-UHFFFAOYSA-N 1,5-anhydrohexitol Chemical class OCC1OCC(O)C(O)C1O MPCAJMNYNOGXPB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- KHWCHTKSEGGWEX-RRKCRQDMSA-N 2'-deoxyadenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 KHWCHTKSEGGWEX-RRKCRQDMSA-N 0.000 description 1
- NCMVOABPESMRCP-SHYZEUOFSA-N 2'-deoxycytosine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 NCMVOABPESMRCP-SHYZEUOFSA-N 0.000 description 1
- LTFMZDNNPPEQNG-KVQBGUIXSA-N 2'-deoxyguanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 LTFMZDNNPPEQNG-KVQBGUIXSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 description 1
- WALUVDCNGPQPOD-UHFFFAOYSA-M 2,3-di(tetradecoxy)propyl-(2-hydroxyethyl)-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCOCC(C[N+](C)(C)CCO)OCCCCCCCCCCCCCC WALUVDCNGPQPOD-UHFFFAOYSA-M 0.000 description 1
- GVDKLYIMIVTKOA-UHFFFAOYSA-N 2-(2,3-dihexadecoxypropoxymethoxy)ethyl-trimethylazanium Chemical compound CCCCCCCCCCCCCCCCOCC(COCOCC[N+](C)(C)C)OCCCCCCCCCCCCCCCC GVDKLYIMIVTKOA-UHFFFAOYSA-N 0.000 description 1
- OULMZHKWILMJEK-UHFFFAOYSA-N 2-[4-(2,3-dihexadecoxypropoxy)-4-oxobutanoyl]oxyethyl-trimethylazanium Chemical compound CCCCCCCCCCCCCCCCOCC(COC(=O)CCC(=O)OCC[N+](C)(C)C)OCCCCCCCCCCCCCCCC OULMZHKWILMJEK-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- ASJSAQIRZKANQN-UHFFFAOYSA-N 2-deoxypentose Chemical compound OCC(O)C(O)CC=O ASJSAQIRZKANQN-UHFFFAOYSA-N 0.000 description 1
- HYRQVGHJHUTCJL-UHFFFAOYSA-M 3,3-di(tetradecoxy)propyl-(2-hydroxyethyl)-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCOC(CC[N+](C)(C)CCO)OCCCCCCCCCCCCCC HYRQVGHJHUTCJL-UHFFFAOYSA-M 0.000 description 1
- LZINOQJQXIEBNN-UHFFFAOYSA-N 4-hydroxybutyl dihydrogen phosphate Chemical compound OCCCCOP(O)(O)=O LZINOQJQXIEBNN-UHFFFAOYSA-N 0.000 description 1
- IWFHOSULCAJGRM-UAKXSSHOSA-N 5-bromouridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@@H](O)[C@@H]1N1C(=O)NC(=O)C(Br)=C1 IWFHOSULCAJGRM-UAKXSSHOSA-N 0.000 description 1
- XYVLZAYJHCECPN-UHFFFAOYSA-L 6-aminohexyl phosphate Chemical compound NCCCCCCOP([O-])([O-])=O XYVLZAYJHCECPN-UHFFFAOYSA-L 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 1
- 102000006306 Antigen Receptors Human genes 0.000 description 1
- 102100024003 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 Human genes 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000537222 Betabaculovirus Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102100028737 CAP-Gly domain-containing linker protein 1 Human genes 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 241000824799 Canis lupus dingo Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000122205 Chamaeleonidae Species 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000005221 Cleavage Stimulation Factor Human genes 0.000 description 1
- 108010081236 Cleavage Stimulation Factor Proteins 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- 102100035431 Complement factor I Human genes 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- XULFJDKZVHTRLG-JDVCJPALSA-N DOSPA trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)CCNC(=O)C(CCCNCCCN)NCCCN)OCCCCCCCC\C=C/CCCCCCCC XULFJDKZVHTRLG-JDVCJPALSA-N 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 108700006830 Drosophila Antp Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 239000004150 EU approved colour Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101000767052 Homo sapiens CAP-Gly domain-containing linker protein 1 Proteins 0.000 description 1
- 101001002470 Homo sapiens Interferon lambda-1 Proteins 0.000 description 1
- 101000853002 Homo sapiens Interleukin-25 Proteins 0.000 description 1
- 101000853000 Homo sapiens Interleukin-26 Proteins 0.000 description 1
- 101000998139 Homo sapiens Interleukin-32 Proteins 0.000 description 1
- 101001128431 Homo sapiens Myeloid-derived growth factor Proteins 0.000 description 1
- 101000609211 Homo sapiens Polyadenylate-binding protein 2 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 108010065637 Interleukin-23 Proteins 0.000 description 1
- 108010066979 Interleukin-27 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 101710181613 Interleukin-31 Proteins 0.000 description 1
- 108010067003 Interleukin-33 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102100032241 Lactotransferrin Human genes 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 1
- 102100026894 Lymphotoxin-beta Human genes 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 108010047702 MPG peptide Proteins 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 102000013967 Monokines Human genes 0.000 description 1
- 108010050619 Monokines Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- NSTPXGARCQOSAU-VIFPVBQESA-N N-formyl-L-phenylalanine Chemical compound O=CN[C@H](C(=O)O)CC1=CC=CC=C1 NSTPXGARCQOSAU-VIFPVBQESA-N 0.000 description 1
- 102000012064 NLR Proteins Human genes 0.000 description 1
- 108091005686 NOD-like receptors Proteins 0.000 description 1
- 241000737052 Naso hexacanthus Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 108700022034 Opsonin Proteins Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282576 Pan paniscus Species 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 108010088535 Pep-1 peptide Proteins 0.000 description 1
- 101000622060 Photinus pyralis Luciferin 4-monooxygenase Proteins 0.000 description 1
- 102100039427 Polyadenylate-binding protein 2 Human genes 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000282405 Pongo abelii Species 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 206010037075 Protozoal infections Diseases 0.000 description 1
- 108091005685 RIG-I-like receptors Proteins 0.000 description 1
- 230000021839 RNA stabilization Effects 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 239000008156 Ringer's lactate solution Substances 0.000 description 1
- 102100027720 SH2 domain-containing protein 1A Human genes 0.000 description 1
- 108010045517 Serum Amyloid P-Component Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- RZCIEJXAILMSQK-JXOAFFINSA-N TTP Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 RZCIEJXAILMSQK-JXOAFFINSA-N 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- 108010012306 Tn5 transposase Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical class O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 1
- DJJCXFVJDGTHFX-UHFFFAOYSA-N Uridinemonophosphate Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- CAEFEWVYEZABLA-UUOKFMHZSA-N XTP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(NC(=O)NC2=O)=C2N=C1 CAEFEWVYEZABLA-UUOKFMHZSA-N 0.000 description 1
- JCAQMQLAHNGVPY-UUOKFMHZSA-N [(2r,3s,4r,5r)-3,4-dihydroxy-5-(2,2,4-trioxo-1h-imidazo[4,5-c][1,2,6]thiadiazin-7-yl)oxolan-2-yl]methyl dihydrogen phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NS(=O)(=O)NC2=O)=C2N=C1 JCAQMQLAHNGVPY-UUOKFMHZSA-N 0.000 description 1
- HIHOWBSBBDRPDW-PTHRTHQKSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate Chemical compound C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HIHOWBSBBDRPDW-PTHRTHQKSA-N 0.000 description 1
- NYDLOCKCVISJKK-WRBBJXAJSA-N [3-(dimethylamino)-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC NYDLOCKCVISJKK-WRBBJXAJSA-N 0.000 description 1
- GKVHYBAWZAYQDO-XVFCMESISA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-(2-oxo-4-sulfanylidenepyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@@H](O)[C@@H]1N1C(=O)NC(=S)C=C1 GKVHYBAWZAYQDO-XVFCMESISA-N 0.000 description 1
- KHYOUGAATNYCAZ-XVFCMESISA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-(4-oxo-2-sulfanylidenepyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@@H](O)[C@@H]1N1C(=S)NC(=O)C=C1 KHYOUGAATNYCAZ-XVFCMESISA-N 0.000 description 1
- ABOQIBZHFFLOGM-UAKXSSHOSA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-(5-iodo-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@@H](O)[C@@H]1N1C(=O)NC(=O)C(I)=C1 ABOQIBZHFFLOGM-UAKXSSHOSA-N 0.000 description 1
- QTWNSBVFPSAMPO-IOSLPCCCSA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-(6-imino-1-methylpurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=NC=2C(=N)N(C)C=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O QTWNSBVFPSAMPO-IOSLPCCCSA-N 0.000 description 1
- LCQWKKZWHQFOAH-IOSLPCCCSA-N [[(2r,3s,4r,5r)-3,4-dihydroxy-5-[6-(methylamino)purin-9-yl]oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O LCQWKKZWHQFOAH-IOSLPCCCSA-N 0.000 description 1
- CABDYDUZLRXGTB-UUOKFMHZSA-N [[(2r,3s,4r,5r)-5-(2,6-diaminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O CABDYDUZLRXGTB-UUOKFMHZSA-N 0.000 description 1
- YWHNPOKVSACYOQ-KQYNXXCUSA-N [[(2r,3s,4r,5r)-5-(2-amino-1-methyl-6-oxopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=NC=2C(=O)N(C)C(N)=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O YWHNPOKVSACYOQ-KQYNXXCUSA-N 0.000 description 1
- NCKFQXVRKKNRBB-SHUUEZRQSA-N [[(2r,3s,4r,5r)-5-(3,5-dioxo-1,2,4-triazin-2-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=N1 NCKFQXVRKKNRBB-SHUUEZRQSA-N 0.000 description 1
- WJUFDWJKJXOYSB-XVFCMESISA-N [[(2r,3s,4r,5r)-5-(4-amino-2-sulfanylidenepyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 WJUFDWJKJXOYSB-XVFCMESISA-N 0.000 description 1
- ZPZGYYNOHSQDQC-UAKXSSHOSA-N [[(2r,3s,4r,5r)-5-(4-amino-5-iodo-2-oxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=C(I)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 ZPZGYYNOHSQDQC-UAKXSSHOSA-N 0.000 description 1
- GVVRDIINMFAFEO-KCGFPETGSA-N [[(2r,3s,4r,5r)-5-(4-aminopyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O GVVRDIINMFAFEO-KCGFPETGSA-N 0.000 description 1
- UOVXAGVICVPZQP-SHUUEZRQSA-N [[(2r,3s,4r,5r)-5-(5-amino-3-oxo-1,2,4-triazin-2-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1N=C(N)C=NN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 UOVXAGVICVPZQP-SHUUEZRQSA-N 0.000 description 1
- PQISXOFEOCLOCT-UUOKFMHZSA-N [[(2r,3s,4r,5r)-5-(6-amino-8-azidopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound [N-]=[N+]=NC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O PQISXOFEOCLOCT-UUOKFMHZSA-N 0.000 description 1
- WDPOFPOWJQWIPX-UUOKFMHZSA-N [[(2r,3s,4r,5r)-5-(7-aminotriazolo[4,5-d]pyrimidin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound N1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O WDPOFPOWJQWIPX-UUOKFMHZSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 229960003190 adenosine monophosphate Drugs 0.000 description 1
- LNQVTSROQXJCDD-UHFFFAOYSA-N adenosine monophosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)C(OP(O)(O)=O)C1O LNQVTSROQXJCDD-UHFFFAOYSA-N 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229940031567 attenuated vaccine Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 108010025307 buforin II Proteins 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical class OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 108010059385 chemotactic factor inactivator Proteins 0.000 description 1
- 231100000005 chromosome aberration Toxicity 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- IERHLVCPSMICTF-XVFCMESISA-N cytidine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 IERHLVCPSMICTF-XVFCMESISA-N 0.000 description 1
- IERHLVCPSMICTF-UHFFFAOYSA-N cytidine monophosphate Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(COP(O)(O)=O)O1 IERHLVCPSMICTF-UHFFFAOYSA-N 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- GYOZYWVXFNDGLU-XLPZGREQSA-N dTMP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 GYOZYWVXFNDGLU-XLPZGREQSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000001516 effect on protein Effects 0.000 description 1
- 230000000463 effect on translation Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 230000012178 germinal center formation Effects 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 1
- 235000013928 guanylic acid Nutrition 0.000 description 1
- PHNWGDTYCJFUGZ-UHFFFAOYSA-L hexyl phosphate Chemical compound CCCCCCOP([O-])([O-])=O PHNWGDTYCJFUGZ-UHFFFAOYSA-L 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 229940124541 immunological agent Drugs 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 108010074108 interleukin-21 Proteins 0.000 description 1
- 108010074109 interleukin-22 Proteins 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 102000004356 mRNA Cleavage and Polyadenylation Factors Human genes 0.000 description 1
- 108010042176 mRNA Cleavage and Polyadenylation Factors Proteins 0.000 description 1
- 230000034701 macropinocytosis Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 210000001806 memory b lymphocyte Anatomy 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical group CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 108010043655 penetratin Proteins 0.000 description 1
- MCYTYTUNNNZWOK-LCLOTLQISA-N penetratin Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCCNC(N)=N)[C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(N)=O)C1=CC=CC=C1 MCYTYTUNNNZWOK-LCLOTLQISA-N 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001559 poly(2-methyloxazoline)-block-poly(dimethylsiloxane) Polymers 0.000 description 1
- 108091023021 poly(A) binding Proteins 0.000 description 1
- 102000028499 poly(A) binding Human genes 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920002246 poly[2-(dimethylamino)ethyl methacrylate] polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920002851 polycationic polymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 description 1
- 210000002729 polyribosome Anatomy 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940070376 protein Drugs 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 102200133100 rs17173509 Human genes 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000005451 thionucleotide Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 108010062760 transportan Proteins 0.000 description 1
- PBKWZFANFUTEPS-CWUSWOHSSA-N transportan Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(N)=O)[C@@H](C)CC)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CC=C(O)C=C1 PBKWZFANFUTEPS-CWUSWOHSSA-N 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- DJJCXFVJDGTHFX-XVFCMESISA-N uridine 5'-monophosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-XVFCMESISA-N 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/50—Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
Definitions
- the invention relates to artificial nucleic acid molecules comprising an open reading frame, a 3'-UTR element and optionally a poly(A) sequence and/or a polyadenylation-signal.
- the invention relates further to a vector comprising a 3'-UTR element, to a pharmaceutical composition comprising an artificial nucleic acid molecule and to a kit comprising an artificial nucleic acid molecule, a vector and/or a pharmaceutical composition comprising an artificial nucleic acid molecule, preferably for use in the field of gene therapy and/or genetic vaccination.
- Gene therapy and genetic vaccination belong to the most promising and quickly developing methods of modern medicine. They may provide highly specific and individual options for therapy of a large variety of diseases. Particularly, inherited genetic diseases but also autoimmune diseases, cancerous or tumour-related diseases as well as inflammatory diseases may be the subject of such treatment approaches. Also, it is envisaged to prevent (early) onset of such diseases by these approaches.
- the main conceptual rational behind gene therapy is appropriate modulation of impaired gene expression associated with pathological conditions of specific diseases. Pathologically altered gene expression may result in lack or overproduction of essential gene products, for example, signalling factors such as hormones, housekeeping factors, metabolic enzymes, structural proteins or the like.
- Altered gene expression may not only be due to mis- regulation of transcription and/or translation, but also due to mutations within the ORF coding for a particular protein.
- Pathological mutations may be caused by e.g. chromosomal aberration, or by more specific mutations, such as point or frame-shift-mutations, all of them resulting in limited functionality and, potentially, total loss of function of the gene product.
- misregulation of transcription or translation may also occur, if mutations affect genes encoding proteins which are involved in the transcriptional or translational machinery of the cell. Such mutations may lead to pathological up- or down-regulation of genes which are - as such - functional.
- Genes encoding gene products which exert such regulating functions may be, e.g., transcription factors, signal receptors, messenger proteins or the like. However, loss of function of such genes encoding regulatory proteins may, under certain circumstances, be reversed by artificial introduction of other factors acting further downstream of the impaired gene product. Such gene defects may also be compensated by gene therapy via substitution of the affected gene itself. Genetic vaccination allows to evoke a desired immune response to selected antigens, such as characteristic components of bacterial surfaces, viral particles, tumour antigens or the like. Generally, vaccination is one of the pivotal achievements of modern medicine. However, effective vaccines are currently available only for a smaller number of diseases. Accordingly, infections that are not preventable by vaccination still affect millions of people every year.
- vaccines may be subdivided into “first”, “second” and “third” generation vaccines.
- First generation vaccines are, typically, whole-organism vaccines. They are based on either live and attenuated or killed pathogens, e.g. viruses, bacteria or the like.
- live and attenuated vaccines The major drawback of live and attenuated vaccines is the risk for a reversion to life- threatening variants.
- pathogens may still intrinsically bear unpredictable risks.
- Killed pathogens may not be as effective as desired for generating a specific immune response. In order to minimize these risks, "second generation” vaccines were developed.
- Genetic vaccines i.e. vaccines for genetic vaccination, are usually understood as "third generation” vaccines. They are typically composed of genetically engineered nucleic acid molecules which allow expression of peptide or protein (antigen) fragments characteristic for a pathogen or a tumor antigen in vivo. Genetic vaccines are expressed upon administration to a patient an uptake by competent cells. Expression of the administered nucleic acids results in production of the encoded proteins. In the event these proteins are recognized as foreign by the patient's immune system, an immune response is triggered.
- both methods, gene therapy and genetic vaccination are essentially based on the administration of nucleic acid molecules to a patient and subsequent transcription and/or translation of the encoded genetic information.
- genetic vaccination or gene therapy may also comprise methods which include isolation of specific body cells from a patient to be treated, subsequent in vitro transfection of such cells, and re-administration of the treated cells to the patient.
- DNA as well as RNA may be used as nucleic acid molecules for administration in the context of gene therapy or genetic vaccination.
- DNA is known to be relatively stable and easy to handle.
- the use of DNA bears the risk of undesired insertion of the administered DNA-fragments into the patient's genome potentially resulting in loss of function of the impaired genes.
- the undesired generation of anti-DNA antibodies has emerged.
- Another drawback is the limited expression level of the encoded peptide or protein that is achievable upon DNA administration and its transcription/translation.
- the expression level of the administered DNA will be dependent on the presence of specific transcription factors which regulate DNA transcription. In the absence of such factors, DNA transcription will not yield satisfying amounts of RNA. As a result, the level of translated peptide or protein obtained is limited.
- RNA is considered to be a rather unstable molecular species which may readily be degraded by ubiquitous RNAses.
- RNA-degradation contributes to the regulation of the RNA half-life time. That effect was considered and proven to fine tune the regulation of eukaryotic gene expression (Friedel et a/., conserveed principles of mammalian transcriptional regulation revealed by RNA half-life, Nucleic Acid Research, 2009, 1 -12). Accordingly, each naturally occurring mRNA has its individual half-life depending on the gene from which the mRNA is derived. It contributes to the regulation of the expression level of this gene. Unstable RNAs are important to realize transient gene expression at distinct points in time. However, long-lived RNAs may be associated with accumulation of distinct proteins or continuous expression of genes.
- mRNAs may also be dependent on environmental factors, such as hormonal treatment, as has been shown, e.g., for insulin-like growth factor I, actin, and albumin mRNA (Johnson et a/., Newly synthesized RNA: Simultaneous measurement in intact cells of transcription rates and RNA stability of insulin-like growth factor I, actin, and albumin in growth hormone-stimulated hepatocytes, Proc. Natl. Acad. Sci., Vol. 88, pp. 5287-5291 , 1 991 ).
- RNA For gene therapy and genetic vaccination, usually stable RNA is desired. This is, on the one hand, due to the fact that the product encoded by the RNA-sequence shall accumulate in vivo. On the other hand, the RNA has to maintain its structural and functional integrity when prepared for a suitable dosage form, in the course of its storage, and when administered. Thus, considerable attention was dedicated to provide stable RNA molecules for gene therapy or genetic vaccination in order to prevent them from being subject to early degradation or decay.
- nucleic acids comprising an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides.
- WO02/098443 provides a pharmaceutical composition containing an mRNA that is stabilised by sequence modifications in the translated region. Such a sequence modification takes advantage of the degeneracy of the genetic code.
- RNA stabilization is limited by the provisions of the specific nucleotide sequence of each single RNA molecule which is not allowed to leave the space of the desired amino acid sequence. Also, that approach is restricted to coding regions of the RNA.
- mRNA stabilisation As an alternative option for mRNA stabilisation, it has been found that naturally occurring eukaryotic mRNA molecules contain characteristic stabilising elements. For example, they may comprise so-called untranslated regions (UTR) at their 5'-end (5'-UTR) and/or at their 3'-end (3'-UTR) as well as other structural features, such as a 5'-cap structure or a 3'- poly(A) tail. Both, 5'-UTR and 3'-UTR are typically transcribed from the genomic DNA and are, thus, an element of the premature mRNA.
- UTR untranslated regions
- Characteristic structural features of mature mRNA such as the 5'-cap and the 3'-poly(A) tail (also called poly(A) tail or poly(A) sequence) are usually added to the transcribed (premature) mRNA during mRNA processing.
- a 3'-poly(A) tail is typically a monotonous sequence stretch of adenine nucleotides added to the 3 '-end of the transcribed mRNA. It may comprise up to about 400 adenine nucleotides. It was found that the length of such a 3'-poly(A) tail is a potentially critical element for the stability of the individual mRNA.
- RNA, 8, pp. 1526-1537, 2002 may be an important factor for the well-known stability of a-globin mRNA.
- Rodgers et a/., Regulated a-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping, RNA, 8, pp. 1526-1537, 2002).
- ⁇ -globin mRNA The 3'UTR of ⁇ -globin mRNA is obviously involved in the formation of a specific ribonucleoprotein-complex, the a-complex, whose presence correlates with mRNA stability in vitro (Wang et a/., An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro, Molecular and Cellular biology, Vol 19, No. 7, July 1999, p. 4552-4560).
- nucleic acid molecules which may be suitable for application in gene therapy and/or genetic vaccination.
- Another object of the present invention is to provide nucleic acid molecules coding for such a superior mRNA species which may be amenable for use in gene therapy and/or genetic vaccination.
- It is a further object of the present invention to provide a pharmaceutical composition for use in gene therapy and/or genetic vaccination.
- the adaptive immune response is typically understood to be an antigen-specific response of the immune system. Antigen specificity allows for the generation of responses that are tailored to specific pathogens or pathogen-infected cells. The ability to mount these tailored responses is usually maintained in the body by "memory cells". Should a pathogen infect the body more than once, these specific memory cells are used to quickly eliminate it.
- the first step of an adaptive immune response is the activation of naive antigen-specific T cells or different immune cells able to induce an antigen-specific immune response by antigen-presenting cells. This occurs in the lymphoid tissues and organs through which na ' i ' ve T cells are constantly passing.
- dendritic cells The three cell types that may serve as antigen-presenting cells are dendritic cells, macrophages, and B cells. Each of these cells has a distinct function in eliciting immune responses.
- Dendritic cells may take up antigens by phagocytosis and macropinocytosis and may become stimulated by contact with e.g. a foreign antigen to migrate to the local lymphoid tissue, where they differentiate into mature dendritic cells.
- Macrophages ingest particulate antigens such as bacteria and are induced by infectious agents or other appropriate stimuli to express MHC molecules.
- the unique ability of B cells to bind and internalize soluble protein antigens via their receptors may also be important to induce T cells.
- MHC-molecules are, typically, responsible for presentation of an antigen to T-cells. Therein, presenting the antigen on MHC molecules leads to activation of T cells which induces their proliferation and differentiation into armed effector T cells.
- effector T cells The most important function of effector T cells is the killing of infected cells by CD8+ cytotoxic T cells and the activation of macrophages by Th1 cells which together make up cell-mediated immunity, and the activation of B cells by both Th2 and Th1 cells to produce different classes of antibody, thus driving the humoral immune response.
- T cells recognize an antigen by their T cell receptors which do not recognize and bind the antigen directly, but instead recognize short peptide fragments e.g. of pathogen-derived protein antigens, e.g. so-called epitopes, which are bound to MHC molecules on the surfaces of other cells.
- the adaptive immune system is essentially dedicated to eliminate or prevent pathogenic growth. It typically regulates the adaptive immune response by providing the vertebrate immune system with the ability to recognize and remember specific pathogens (to generate immunity), and to mount stronger attacks each time the pathogen is encountered.
- the system is highly adaptable because of somatic hypermutation (a process of accelerated somatic mutations), and V(D)J recombination (an irreversible genetic recombination of antigen receptor gene segments). This mechanism allows a small number of genes to generate a vast number of different antigen receptors, which are then uniquely expressed on each individual lymphocyte.
- Adjuvant/adjuvant component in the broadest sense is typically a pharmacological and/or immunological agent that may modify, e.g. enhance, the effect of other agents, such as a drug or vaccine. It is to be interpreted in a broad sense and refers to a broad spectrum of substances. Typically, these substances are able to increase the immunogenicity of antigens.
- adjuvants may be recognized by the innate immune systems and, e.g., may elicit an innate immune response. "Adjuvants" typically do not elicit an adaptive immune response. Insofar, "adjuvants" do not qualify as antigens.
- Antigen refers typically to a substance which may be recognized by the immune system, preferably by the adaptive immune system, and is capable of triggering an antigen-specific immune response, e.g. by formation of antibodies and/or antigen-specific T cells as part of an adaptive immune response.
- an antigen may be or may comprise a peptide or protein which may be presented by the MHC to T-cells.
- Artificial nucleic acid molecule An artificial nucleic acid molecule may typically be understood to be a nucleic acid molecule, e.g. a DNA or an RNA, that does not occur naturally.
- an artificial nucleic acid molecule may be understood as a non- natural nucleic acid molecule. Such nucleic acid molecule may be non-natural due to its individual sequence (which does not occur naturally) and/or due other modifications, e.g. structural modifications of nucleotides which do not occur naturally.
- An artificial nucleic acid molecule may be a DNA molecule, an RNA molecule or a hybrid-molecule comprising DNA and RNA portions.
- artificial nucleic acid molecules may be designed and/or generated by genetic engineering methods to correspond to a desired artificial sequence of nucleotides (heterologous sequence). In this context an artificial sequence is usually a sequence that may not occur naturally, i.e.
- wild type may be understood as a sequence occurring in nature.
- artificial nucleic acid molecule is not restricted to mean “one single molecule” but is, typically, understood to comprise an ensemble of identical molecules. Accordingly, it may relate to a plurality of identical molecules contained in an aliquot.
- Bicistronic RNA, multicistronic RNA A bicistronic or multicistronic RNA is typically an RNA, preferably an mRNA, that typically may have two (bicistronic) or more (multicistronic) open reading frames (ORF).
- An open reading frame in this context is a sequence of codons that is translatable into a peptide or protein.
- Carrier / polymeric carrier A carrier in the context of the invention may typically be a compound that facilitates transport and/or complexation of another compound (cargo).
- a polymeric carrier is typically a carrier that is formed of a polymer.
- a carrier may be associated to its cargo by covalent or non-covalent interaction.
- a carrier may transport nucleic acids, e.g. RNA or DNA, to the target cells.
- the carrier may - for some embodiments - be a cationic component.
- Cationic component typically refers to a charged molecule, which is positively charged (cation) at a pH value typically from 1 to 9, preferably at a pH value of or below 9 (e.g. from 5 to 9), of or below 8 (e.g. from 5 to 8), of or below 7 (e.g. from 5 to 7), most preferably at a physiological pH, e.g. from 7.3 to 7.4.
- a cationic component may be any positively charged compound or polymer, preferably a cationic peptide or protein which is positively charged under physiological conditions, particularly under physiological conditions in vivo.
- a "cationic peptide or protein” may contain at least one positively charged amino acid, or more than one positively charged amino acid, e.g. selected from Arg, His, Lys or Orn. Accordingly, "polycationic" components are also within the scope exhibiting more than one positive charge under the conditions given.
- a 5 '-cap is an entity, typically a modified nucleotide entity, which generally
- a 5'-cap may typically be formed by a modified nucleotide, particularly by a derivative of a guanine nucleotide.
- the 5'-cap is linked to the 5'-terminus via a 5'-5'-triphosphate linkage.
- a 5'-cap may be methylated, e.g. m7GpppN, wherein N is the terminal 5' nucleotide of the nucleic acid carrying the 5'-cap, typically the 5'-end of an RNA. .
- 5'cap structures include glyceryl, inverted deoxy abasic residue (moiety), 4',5' methylene nucleotide, 1 -(beta-D- erythrofuranosyl) nucleotide, 4'-thio nucleotide, carbocyclic nucleotide, 1 ,5-anhydrohexitol nucleotide, L-nucleotides, alpha-nucleotide, modified base nucleotide, threo-pentofuranosyl nucleotide, acyclic 3',4'-seco nucleotide, acyclic 3,4-dihydroxybutyl nucleotide, acyclic 3,5 dihydroxypentyl nucleotide, 3 '-3 '-inverted nucleotide moiety, 3'-3'-inverted abasic moiety, 3 '-2 '-inverted nucleotide moiety, 3
- Cellular immunity relates typically to the activation of macrophages, natural killer cells (NK), antigen-specific cytotoxic T- lymphocytes, and the release of various cytokines in response to an antigen.
- cellular immunity is not based on antibodies, but on the activation of cells of the immune system.
- a cellular immune response may be characterized e.g. by activating antigen-specific cytotoxic T-lymphocytes that are able to induce apoptosis in cells, e.g. specific immune cells like dendritic cells or other cells, displaying epitopes of foreign antigens on their surface.
- Such cells may be virus-infected or infected with intracellular bacteria, or cancer cells displaying tumor antigens. Further characteristics may be activation of macrophages and natural killer cells, enabling them to destroy pathogens and stimulation of cells to secrete a variety of cytokines that influence the function of other cells involved in adaptive immune responses and innate immune responses.
- DNA is the usual abbreviation for deoxy-ribonucleic-acid. It is a nucleic acid molecule, i.e. a polymer consisting of nucleotides. These nucleotides are usually deoxy- adenosine-monophosphate, deoxy-thymidine-monophosphate, deoxy-guanosine- monophosphate and deoxy-cytidine-monophosphate monomers which are - by themselves - composed of a sugar moiety (deoxyribose), a base moiety and a phosphate moiety, and polymerise by a characteristic backbone structure.
- the backbone structure is, typically, formed by phosphodiester bonds between the sugar moiety of the nucleotide, i.e. deoxyribose, of a first and a phosphate moiety of a second, adjacent monomer.
- the specific order of the monomers i.e. the order of the bases linked to the sugar/phosphate-backbone, is called the DNA-sequence.
- DNA may be single stranded or double stranded. In the double stranded form, the nucleotides of the first strand typically hybridize with the nucleotides of the second strand, e.g. by A/T-base-pairing and G/C-base-pairing.
- T cell epitopes or parts of the proteins in the context of the present invention may comprise fragments preferably having a length of about 6 to about 20 or even more amino acids, e.g. fragments as processed and presented by MHC class I molecules, preferably having a length of about 8 to about 10 amino acids, e.g. 8, 9, or 10, (or even 1 1 , or 12 amino acids), or fragments as processed and presented by MHC class II molecules, preferably having a length of about 13 or more amino acids, e.g. 13, 14, 15, 1 6, 1 7, 18, 19, 20 or even more amino acids, wherein these fragments may be selected from any part of the amino acid sequence.
- B cell epitopes are typically fragments located on the outer surface of (native) protein or peptide antigens as defined herein, preferably having 5 to 15 amino acids, more preferably having 5 to 12 amino acids, even more preferably having 6 to 9 amino acids, which may be recognized by antibodies, i.e. in their native form.
- Such epitopes of proteins or peptides may furthermore be selected from any of the herein mentioned variants of such proteins or peptides.
- antigenic determinants can be conformational or discontinuous epitopes which are composed of segments of the pro- teins or peptides as defined herein that are discontinuous in the amino acid sequence of the proteins or peptides as defined herein but are brought together in the three-dimensional structure or continuous or linear epitopes which are composed of a single polypeptide chain.
- Fragment of a sequence A fragment of a sequence may typically be a shorter portion of a full-length sequence of e.g. a nucleic acid molecule or an amino acid sequence.
- a fragment typically, consists of a sequence that is identical to the corresponding stretch within the full-length sequence.
- a preferred fragment of a sequence in the context of the present invention consists of a continuous stretch of entities, such as nucleotides or amino acids corresponding to a continuous stretch of entities in the molecule the fragment is derived from, which represents at least 20%, preferably at least 30%, more preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, even more preferably at least 70%, and most preferably at least 80% of the total (i.e. full- length) molecule from which the fragment is derived.
- a G/C-modified nucleic acid may typically be a nucleic acid, preferably an artificial nucleic acid molecule as defined herein, based on a modified wild- type sequence comprising a preferably increased number of guanosine and/or cytosine nucleotides as compared to the wild-type sequence. Such an increased number may be generated by substitution of codons containing adenosine or thymidine nucleotides by codons containing guanosine or cytosine nucleotides. If the enriched G/C content occurs in a coding region of DNA or RNA, it makes use of the degeneracy of the genetic code. Accordingly, the codon substitutions preferably do not alter the encoded amino acid residues, but exclusively increase the G/C content of the nucleic acid molecule.
- Gene therapy may typically be understood to mean a treatment of a patient's body or isolated elements of a patient's body, for example isolated tissues/cells, by nucleic acids encoding a peptide or protein. It typically may comprise at least one of the steps of a) administration of a nucleic acid, preferably an artificial nucleic acid molecule as defined herein, directly to the patient - by whatever administration route - or in vitro to isolated cells/tissues of the patient, which results in transfection of the patient's cells either in vivo/ ex vivo or in vitro, b) transcription and/or translation of the introduced nucleic acid molecule; and optionally c) re-administration of isolated, transfected cells to the patient, if the nucleic acid has not been administered directly to the patient.
- a nucleic acid preferably an artificial nucleic acid molecule as defined herein
- Genetic vaccination may typically be understood to be vaccination by administration of a nucleic acid molecule encoding an antigen or an immunogen or fragments thereof.
- the nucleic acid molecule may be administered to a subject's body or to isolated cells of a subject. Upon transfection of certain cells of the body or upon transfection of the isolated cells, the antigen or immunogen may be expressed by those cells and subsequently presented to the immune system, eliciting an adaptive, i.e. antigen- specific immune response.
- genetic vaccination typically comprises at least one of the steps of a) administration of a nucleic acid, preferably an artificial nucleic acid molecule as defined herein, to a subject, preferably a patient, or to isolated cells of a subject, preferably a patient, which usually results in transfection of the subject's cells either in vivo or in vitro, b) transcription and/or translation of the introduced nucleic acid molecule; and optionally c) re-administration of isolated, transfected cells to the subject, preferably the patient, if the nucleic acid has not been administered directly to the patient.
- a nucleic acid preferably an artificial nucleic acid molecule as defined herein
- Heterologous sequence Two sequences are typically understood to be 'heterologous' if they are not derivable from the same gene. I.e., although heterologous sequences may be derivable from the same organism, they naturally (in nature) do not occur in the same nucleic acid molecule, such as in the same mRNA.
- Humoral immunity/humoral immune response Humoral immunity refers typically to antibody production and optionally to accessory processes accompanying antibody production.
- a humoral immune response may be typically characterized, e.g., by Th2 activation and cytokine production, germinal center formation and isotype switching, affinity maturation and memory cell generation.
- Humoral immunity also typically may refer to the effector functions of antibodies, which include pathogen and toxin neutralization, classical complement activation, and opsonin promotion of phagocytosis and pathogen elimination.
- an immunogen may be typically understood to be a compound that is able to stimulate an immune response.
- an immunogen is a peptide, polypeptide, or protein.
- an immunogen in the sense of the present invention is the product of translation of a provided nucleic acid molecule, preferably an artificial nucleic acid molecule as defined herein.
- an immunogen elicits at least an adaptive immune response.
- an immunostimulatory composition may be typically understood to be a composition containing at least one component which is able to induce an immune response or from which a component which is able to induce an immune response is derivable. Such immune response may be preferably an innate immune response or a combination of an adaptive and an innate immune response.
- an immunostimulatory composition in the context of the invention contains at least one artificial nucleic acid molecule, more preferably an RNA, for example an mRNA molecule.
- the immunostimulatory component, such as the mRNA may be complexed with a suitable carrier.
- the immunostimulatory composition may comprise an mRN A/carrier-complex.
- the immunostimulatory composition may comprise an adjuvant and/or a suitable vehicle for the immunostimulatory component, such as the mRNA.
- Immune response An immune response may typically be a specific reaction of the adaptive immune system to a particular antigen (so called specific or adaptive immune response) or an unspecific reaction of the innate immune system (so called unspecific or innate immune response), or a combination thereof.
- the immune system may protect organisms from infection. If a pathogen succeeds in passing a physical barrier of an organism and enters this organism, the innate immune system provides an immediate, but non-specific response. If pathogens evade this innate response, vertebrates possess a second layer of protection, the adaptive immune system.
- the immune system adapts its response during an infection to improve its recognition of the pathogen. This improved response is then retained after the pathogen has been eliminated, in the form of an immunological memory, and allows the adaptive immune system to mount faster and stronger attacks each time this pathogen is encountered.
- the immune system comprises the innate and the adaptive immune system. Each of these two parts typically contains so called humoral and cellular components.
- Immunostimulatory RNA in the context of the invention may typically be an RNA that is able to induce an innate immune response. It usually does not have an open reading frame and thus does not provide a peptide-antigen or immunogen but elicits an immune response e.g. by binding to a specific kind of Toll-like- receptor (TLR) or other suitable receptors.
- TLR Toll-like- receptor
- mRNAs having an open reading frame and coding for a peptide/protein may induce an innate immune response and, thus, may be immunostimulatory RNAs.
- the innate immune system also known as non-specific (or unspecific) immune system, typically comprises the cells and mechanisms that defend the host from infection by other organisms in a non-specific manner. This means that the cells of the innate system may recognize and respond to pathogens in a generic way, but unlike the adaptive immune system, it does not confer long-lasting or protective immunity to the host.
- the innate immune system may be, e.g., activated by ligands of Toll-like receptors (TLRs) or other auxiliary substances such as lipopolysaccharides, TNF-alpha, CD40 ligand, or cytokines, monokines, lymphokines, interleukins or chemokines, IL-1 , lL-2, IL-3, IL-4, IL- 5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-1 1 , IL-12, IL-13, IL-14, IL-15, IL-1 6, IL-1 7, IL-18, IL-19, IL- 20, IL-21 , IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31 , IL-32, IL-33, IFN- alpha, IFN-beta, IFN-gamma, GM-
- the pharmaceutical composition according to the present invention may comprise one or more such substances.
- a response of the innate immune system includes recruiting immune cells to sites of infection, through the production of chemical factors, including specialized chemical mediators, called cytokines; activation of the complement cascade; identification and removal of foreign substances present in organs, tissues, the blood and lymph, by specialized white blood cells; activation of the adaptive immune system; and/or acting as a physical and chemical barrier to infectious agents.
- a cloning site is typically understood to be a segment of a nucleic acid molecule, which is suitable for insertion of a nucleic acid sequence, e.g., a nucleic acid sequence comprising an open reading frame. Insertion may be performed by any molecular biological method known to the one skilled in the art, e.g. by restriction and ligation.
- a cloning site typically comprises one or more restriction enzyme recognition sites (restriction sites). These one or more restrictions sites may be recognized by restriction enzymes which cleave the DNA at these sites.
- a cloning site which comprises more than one restriction site may also be termed a multiple cloning site (MCS) or a polylinker.
- MCS multiple cloning site
- Nucleic acid molecule is a molecule comprising, preferably consisting of nucleic acid components.
- the term nucleic acid molecule preferably refers to DNA or RNA molecules. It is preferably used synonymous with the term "polynucleotide".
- a nucleic acid molecule is a polymer comprising or consisting of nucleotide monomers which are covalently linked to each other by phosphodiester-bonds of a sugar/phosphate-backbone.
- the term "nucleic acid molecule” also encompasses modified nucleic acid molecules, such as base-modified, sugar-modified or backbone-modified etc. DNA or RNA molecules.
- Open reading frame An open reading frame (ORF) in the context of the invention may typically be a sequence of several nucleotide triplets which may be translated into a peptide or protein.
- An open reading frame preferably contains a start codon, i.e. a combination of three subsequent nucleotides coding usually for the amino acid methionine (ATG), at its 5'- end and a subsequent region which usually exhibits a length which is a multiple of 3 nucleotides.
- An ORF is preferably terminated by a stop-codon (e.g., TAA, TAG, TGA). Typically, this is the only stop-codon of the open reading frame.
- an open reading frame in the context of the present invention is preferably a nucleotide sequence, consisting of a number of nucleotides that may be divided by three, which starts with a start codon (e.g. ATG) and which preferably terminates with a stop codon (e.g., TAA, TGA, or TAG).
- the open reading frame may be isolated or it may be incorporated in a longer nucleic acid sequence, for example in a vector or an mRNA.
- An open reading frame may also be termed "protein coding region”.
- a peptide or polypeptide is typically a polymer of amino acid monomers, linked by peptide bonds. It typically contains less than 50 monomer units. Nevertheless, the term peptide is not a disclaimer for molecules having more than 50 monomer units. Long peptides are also called polypeptides, typically having between 50 and 600 monomeric units.
- Pharmaceutically effective amount A pharmaceutically effective amount in the context of the invention is typically understood to be an amount that is sufficient to induce a pharmaceutical effect, such as an immune response, altering a pathological level of an expressed peptide or protein, or substituting a lacking gene product, e.g., in case of a pathological situation.
- Protein A protein typically comprises one or more peptides or polypeptides.
- a protein is typically folded into 3-dimensional form, which may be required for to protein to exert its biological function.
- a poly(A) sequence also called poly(A) tail or 3'-poly(A) tail, is typically understood to be a sequence of adenine nucleotides, e.g., of up to about 400 adenine nucleotides, e.g. from about 20 to about 400, preferably from about 50 to about 400, more preferably from about 50 to about 300, even more preferably from about 50 to about 250, most preferably from about 60 to about 250 adenine nucleotides.
- a poly(A) sequence is typically located at the 3'end of an mRNA.
- a poly(A) sequence may be located within an mRNA or any other nucleic acid molecule, such as, e.g., in a vector, for example, in a vector serving as template for the generation of an RNA, preferably an mRNA, e.g., by transcription of the vector.
- Polyadenylation is typically understood to be the addition of a poly(A) sequence to a nucleic acid molecule, such as an RNA molecule, e.g. to a premature mRNA. Polyadenylation may be induced by a so called polyadenylation signal. This signal is preferably located within a stretch of nucleotides at the 3'-end of a nucleic acid molecule, such as an RNA molecule, to be polyadenylated.
- a polyadenylation signal typically comprises a hexamer consisting of adenine and uracil/thymine nucleotides, preferably the hexamer sequence AAUAAA.
- RNA maturation from pre-mRNA to mature mRNA comprises the step of polyadenylation.
- restriction site also termed restriction enzyme recognition site, is a nucleotide sequence recognized by a restriction enzyme.
- a restriction site is typically a short, preferably palindromic nucleotide sequence, e.g. a sequence comprising 4 to 8 nucleotides.
- a restriction site is preferably specifically recognized by a restriction enzyme.
- the restriction enzyme typically cleaves a nucleotide sequence comprising a restriction site at this site.
- the restriction enzyme typically cuts both strands of the nucleotide sequence.
- RNA is the usual abbreviation for ribonucleic-acid. It is a nucleic acid molecule, i.e. a polymer consisting of nucleotides. These nucleotides are usually adenosine- monophosphate, uridine-monophosphate, guanosine-monophosphate and cytidine- monophosphate monomers which are connected to each other along a so-called backbone.
- the backbone is formed by phosphodiester bonds between the sugar, i.e. ribose, of a first and a phosphate moiety of a second, adjacent monomer.
- the specific succession of the monomers is called the RNA-sequence.
- RNA may be obtainable by transcription of a DNA-sequence, e.g., inside a cell.
- transcription is typically performed inside the nucleus or the mitochondria.
- transcription of DNA usually results in the so-called premature RNA which has to be processed into so-called messenger-RNA, usually abbreviated as mRNA.
- Processing of the premature RNA e.g. in eukaryotic organisms, comprises a variety of different posttranscriptional-modifications such as splicing, 5'- capping, polyadenylation, export from the nucleus or the mitochondria and the like. The sum of these processes is also called maturation of RNA.
- the mature messenger RNA usually provides the nucleotide sequence that may be translated into an ami no-acid sequence of a particular peptide or protein.
- a mature mRNA comprises a 5'-cap, a 5'UTR, an open reading frame, a 3'UTR and a poly(A) sequence.
- messenger RNA several non-coding types of RNA exist which may be involved in regulation of transcription and/or translation.
- Sequence of a nucleic acid molecule The sequence of a nucleic acid molecule is typically understood to be the particular and individual order, i.e. the succession of its nucleotides.
- sequence of a protein or peptide is typically understood to be the order, i.e. the succession of its amino acids.
- Sequence identity Two or more sequences are identical if they exhibit the same length and order of nucleotides or amino acids.
- the percentage of identity typically describes the extent to which two sequences are identical, i.e. it typically describes the percentage of nucleotides that correspond in their sequence position with identical nucleotides of a reference-sequence.
- the sequences to be compared are considered to exhibit the same length, i.e. the length of the longest sequence of the sequences to be compared. This means that a first sequence consisting of 8 nucleotides is 80% identical to a second sequence consisting of 10 nucleotides comprising the first sequence.
- identity of sequences preferably relates to the percentage of nucleotides of a sequence which have the same position in two or more sequences having the same length. Gaps are usually regarded as non-identical positions, irrespective of their actual position in an alignment.
- a stabilized nucleic acid molecule is a nucleic acid molecule, preferably a DNA or RNA molecule that is modified such, that it is more stable to disintegration or degradation, e.g., by environmental factors or enzymatic digest, such as by an exo- or endonuclease degradation, than the nucleic acid molecule without the modification.
- a stabilized nucleic acid molecule in the context of the present invention is stabilized in a cell, such as a prokaryotic or eukaryotic cell, preferably in a mammalian cell, such as a human cell.
- the stabilization effect may also be exerted outside of cells, e.g. in a buffer solution etc., for example, in a manufacturing process for a pharmaceutical composition comprising the stabilized nucleic acid molecule.
- Transfection refers to the introduction of nucleic acid molecules, such as DNA or RNA (e.g. mRNA) molecules, into cells, preferably into eukaryotic cells.
- nucleic acid molecules such as DNA or RNA (e.g. mRNA) molecules
- transfection encompasses any method known to the skilled person for introducing nucleic acid molecules into cells, preferably into eukaryotic cells, such as into mammalian cells. Such methods encompass, for example, electroporation, lipofection, e.g.
- the introduction is non-viral.
- a vaccine is typically understood to be a prophylactic or therapeutic material providing at least one antigen, preferably an immunogen.
- the antigen or immunogen may be derived from any material that is suitable for vaccination.
- the antigen or immunogen may be derived from a pathogen, such as from bacteria or virus particles etc., or from a tumor or cancerous tissue.
- the antigen or immunogen stimulates the body's adaptive immune system to provide an adaptive immune response.
- Vector refers to a nucleic acid molecule, preferably to an artificial nucleic acid molecule.
- a vector in the context of the present invention is suitable for incorporating or harboring a desired nucleic acid sequence, such as a nucleic acid sequence comprising an open reading frame.
- Such vectors may be storage vectors, expression vectors, cloning vectors, transfer vectors etc.
- a storage vector is a vector which allows the convenient storage of a nucleic acid molecule, for example, of an mRNA molecule.
- the vector may comprise a sequence corresponding, e.g., to a desired mRNA sequence or a part thereof, such as a sequence corresponding to the open reading frame and the 3'UTR of an mRNA.
- An expression vector may be used for production of expression products such as RNA, e.g. mRNA, or peptides, polypeptides or proteins.
- an expression vector may comprise sequences needed for transcription of a sequence stretch of the vector, such as a promoter sequence, e.g.
- a cloning vector is typically a vector that contains a cloning site, which may be used to incorporate nucleic acid sequences into the vector.
- a cloning vector may be, e.g., a plasmid vector or a bacteriophage vector.
- a transfer vector may be a vector which is suitable for transferring nucleic acid molecules into cells or organisms, for example, viral vectors.
- a vector in the context of the present invention may be, e.g., an RNA vector or a DNA vector.
- a vector is a DNA molecule.
- a vector in the sense of the present application comprises a cloning site, a selection marker, such as an antibiotic resistance factor, and a sequence suitable for multiplication of the vector, such as an origin of replication.
- a vector in the context of the present application is a plasmid vector.
- a vehicle is typically understood to be a material that is suitable for storing, transporting, and/or administering a compound, such as a pharmaceutically active compound.
- a compound such as a pharmaceutically active compound.
- it may be a physiologically acceptable liquid which is suitable for storing, transporting, and/or administering a pharmaceutically active compound.
- a 3'UTR is typically the part of an mRNA which is located between the protein coding region (open reading frame (ORF) or coding sequence (CDS)) and the poly(A) sequence of the mRNA.
- a 3'UTR of the mRNA is not translated into an amino acid sequence.
- the 3'UTR sequence is generally encoded by the gene which is transcribed into the respective mRNA during the gene expression process.
- the genomic sequence is first transcribed into pre-mature mRNA, which comprises optional introns.
- the pre-mature mRNA is then further processed into mature mRNA in a maturation process.
- This maturation process comprises the steps of 5'capping, splicing the pre-mature mRNA to excize optional introns and modifications of the 3'-end, such as polyadenylation of the 3'- end of the pre-mature mRNA and optional endo-/ or exonuclease cleavages etc..
- a 3'UTR corresponds to the sequence of a mature mRNA which is located 3' to the stop codon of the protein coding region, preferably immediately 3' to the stop codon of the protein coding region, and which extends to the 5'-side of the poly(A) sequence, preferably to the nucleotide immediately 5' to the poly(A) sequence.
- the 3'UTR sequence may be an RNA sequence, such as in the mRNA sequence used for defining the 3'UTR sequence, or a DNA sequence which corresponds to such RNA sequence.
- a 3'UTR of a gene such as "a 3'UTR of an albumin gene” is the sequence which corresponds to the 3'UTR of the mature mRNA derived from this gene, i.e. the mRNA obtained by transcription of the gene and maturation of the pre-mature mRNA.
- the term "3'UTR of a gene” encompasses the DNA sequence and the RNA sequence of the 3'UTR.
- the present invention relates to an artificial nucleic acid molecule comprising
- ORF open reading frame
- 3'-untranslated region element comprising or consisting of a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the 3'UTR of an albumin gene.
- 3'UTR element refers to a nucleic acid sequence which comprises or consists of a nucleic acid sequence that is derived from a 3'UTR or from a variant of a 3'UTR.
- a '3'- UTR element' preferably refers to a nucleic acid sequence which represents a 3'UTR of an artificial nucleic acid sequence, such as an artificial mRNA, or which codes for a 3'UTR of an artificial nucleic acid molecule.
- a 3'UTR element may be the 3'UTR of an mRNA, preferably of an artificial mRNA, or it may be the transcription template for a 3'UTR of an mRNA.
- a 3'UTR element preferably is a nucleic acid sequence which corresponds to the 3'UTR of an mRNA, preferably to the 3'UTR of an artificial mRNA, such as an mRNA obtained by transcription of a genetically engineered vector construct.
- a 3'UTR element in the sense of the present invention functions as a 3'UTR or codes for a nucleotide sequence that fulfils the function of a 3'UTR.
- the at least one open reading frame and the at least one 3'UTR element are heterologous.
- heterologous in this context means that the open reading frame and the 3'UTR element are not occurring naturally (in nature) in this combination.
- the 3'UTR element is derived from a different gene than the open reading frame.
- the ORF may be derived from a different gene than the 3'UTR element, e.g. encoding a different protein or the same protein but of a different species etc.
- the open reading frame does not code for human albumin, preferably the open reading frame does not code for albumin.
- the open reading frame does not code for a reporter protein, e.g., selected from the group consisting of globin proteins (particularly beta-globin), luciferase protein, GFP proteins or variants thereof, for example, variants exhibiting at least 70% sequence identity to a globin protein, a luciferase protein, or a GFP protein.
- a reporter protein e.g., selected from the group consisting of globin proteins (particularly beta-globin), luciferase protein, GFP proteins or variants thereof, for example, variants exhibiting at least 70% sequence identity to a globin protein, a luciferase protein, or a GFP protein.
- the open reading frame does not code for beta-globin, or ,more specifically, for rabbit beta-globin, or variants thereof, in particular in case the 3'UTR element is derived from the rat albumin 3'UTR or variants thereof.
- the artificial nucleic acid molecule of the invention does not code for a signal sequence (and therefore does not contain a segment coding for such a signal sequence), which is synonymously also designated a localization signal or targeting signal, Such a signal sequence is typically provided at the 5' terminus of the encoded amino acid sequence.
- the artificial nucleic acid of the invention does not code for a protein which (artificially or naturally) contains a "signal amino acid sequence", in particular not a signal sequence directing the encoded protein to polysomes bound to the membrane of the endoplasmic reticulum and/or translocating the protein of interest encoded by the inventive nucleic acid across the membrane of the endoplasmic reticulum.
- the encoded protein of the inventive nucleic acid molecule does not contain an albumin signal sequence, more specifically not the rat albumin signal sequence.
- the protein encoded by the inventive artificial nucleic acid molecule does also not contain a milk protein or growth hormone signal sequence, in particular if the coding region codes for globin, more specifically for beta-globin, even more specifically for rabbit beta-globin.
- the artificial nucleic acid sequence of the invention does not contain a globin 5'-UTR sequence, in particular not a 5'-UTR sequence from beta-globin or, more particularly, not a rabbit globin 5'-UTR sequence, in particular if the coding region codes for a globin sequence, more specifically for beta-globin or variants thereof.
- the artificial nucleic acid molecule contains a 5'-UTR sequence
- that 5'-UTR sequence may be selected such that it is not the 5'-UTR-sequence from an albumin gene, in particular not from the rat albumin gene.
- the other 3'-UTR(s) is/are preferably not selected from the group consisting of a globin 3'-UTR and a c-myc 3'- UTR.
- the 3'UTR of the inventive nucleic acid molecule does not correspond to the rat albumin 3'-UTR, in particular if the coding region codes for a globin, more specifically a beta-globin.
- the open reading frame does not code for human factor IX or variants thereof, for example, variants exhibiting at least 70% sequence identity to human factor IX.
- the nucleic acid molecule does not contain an albumin promoter, in particular an albumin promoter with a point mutation, more specifically with a G52A point mutation, in particular if the coding region of the inventive nucleic acid molecule codes for human factor IX or variants thereof as described above.
- the artificial nucleic acid molecule of the invention does not correspond to a transposon element, e.g. a transposon plasmid, or does not contain a transposon (in particular not a Tn5 transposon or does not contain TN5 mosaic elements), in particular if the coding region codes for a resistance gene, in particular a neomycin resistance gene.
- the nucleic acid molecule of the invention cannot functionally interact with a transposase, in particular not with a Tn5 transposase, under such circumstances.
- the inventive nucleic acid molecule shall typically not form a complex between the nucleic acid (as the inventive artificial nucleic acid does not contain a transposon) and a transposase specific for whatever transposon.
- the coding region (ORF) of the nucleic acid molecule of the invention does not code for an siRNA, in particular if the nucleic acid molecule of the invention functionally interacts with a transposase.
- the open reading frame does not contain an intron, particularly in case the open reading frame codes for human factor IX or variants thereof. Furthermore, it is preferred in this context that in a specific embodiment the open reading frame does not code for human factor IX or variants thereof, in particular in case the 3'UTR element is derived from the human albumin 3'UTR or variants thereof.
- the inventive artificial nucleic acid molecule is - as a specific embodiment of the invention - not an expression cassette. Accordingly, the inventive nucleic acid molecule does e.g. not contain a 3' promoter or a promoter 3' end.
- the inventive nucleic acid molecule is also not a "secretion cassette", as it does not contain a signal sequence and, preferably, does not contain 3' promoter.
- the inventive nucleic acid molecule is composed of one single nucleic acid molecule comprising the ORF and the 3'UTR region and optionally a 5' UTR region.
- the inventive nucleic acid molecule does not correspond to a secretion cassette which is composed of more than one separate genetic elements, in particular does not correspond to a first genetic element representing the region upstream of the coding region (ORF) and a separate second genetic element representing the region downstream of the ORF, which are provided independently, e.g. as parts of a kit.
- the at least one 3'UTR element is functionally linked to the ORF.
- the 3'UTR element is associated with the ORF such that it may exert a function, such as a stabilizing function on the expression of the ORF or a stabilizing function on the artificial nucleic acid molecule.
- the ORF and the 3'UTR element are associated in 5'- 3' direction.
- the artificial nucleic acid molecule comprises the structure 5'-ORF-(optional)linker-3'UTR element-3', wherein the linker may be present or absent.
- the linker may be one or more nucleotides, such as a stretch of 1 -50 or 1 -20 nucleotides, e.g., comprising or consisting of one or more restriction enzyme recognition sites (restriction sites).
- the at least one 3'UTR element comprises or consists of a nucleic acid sequence which is derived from the 3'UTR of a vertebrate albumin gene or from a variant thereof, preferably from the 3'UTR of a mammalian albumin gene such as e.g. the 3'UTR of the mouse albumin gene, the albumin gene of Olive baboon or the human albumin gene or from a variant thereof.
- a mammalian albumin gene such as e.g. the 3'UTR of the mouse albumin gene, the albumin gene of Olive baboon or the human albumin gene or from a variant thereof.
- the at least one 3'UTR element comprises or consists of a nucleic acid sequence derived from the 3'UTR of a primate albumin gene, particularly of a human albumin gene or of an albumin gene of Olive baboon or from a variant thereof, even more preferably from the 3'UTR of the human albumin gene according to GenBank Accession number NM_000477.5 or from a variant thereof.
- the 3'UTR element is not derived from the 3'UTR of a Xenopus albumin gene.
- the 3'UTR element does not comprise a poly(A) limiting element B (PLEB) of a 3'UTR from a Xenopus albumin gene.
- the 3'UTR element does not consist of a PLEB of a 3'UTR from a Xenopus albumin gene.
- a nucleic acid sequence which is derived from the 3'UTR of an enclosure albumin gene preferably refers to a nucleic acid sequence which is based on the 3'UTR sequence of an albumin gene or on a fragment or part thereof. This term includes sequences corresponding to the entire 3'UTR sequence, i.e. the full length 3'UTR sequence of an albumin gene, and sequences corresponding to a fragment of the 3'UTR sequence of an albumin gene.
- a fragment of a 3'UTR of an albumin gene consists of a continuous stretch of nucleotides corresponding to a continuous stretch of nucleotides in the full-length 3'UTR of an albumin gene, which represents at least 20%, preferably at least 30%, more preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, and most preferably at least 90% of the full-length 3'UTR of an albumin gene.
- a fragment in the sense of the present invention, is preferably a functional fragment as described herein.
- the term "3'UTR of an albumin gene" preferably refers to the 3'UTR of a naturally occurring albumin gene.
- variant of the 3'UTR of an albumin gene refers to a variant of the 3'UTR of a naturally occurring albumin gene, preferably to a variant of the 3'UTR of a vertebrate albumin gene, more preferably to a variant of the 3'UTR of a mammalian albumin gene such as the 3'UTR of a mouse albumin gene, even more preferably to a variant of the 3'UTR of a primate albumin gene, particular a human albumin gene or an albumin gene of Olive baboon as described above.
- Such variant may be a modified 3'UTR of an albumin gene.
- a variant 3'UTR may exhibit one or more nucleotide deletions, insertions, additions and/or substitutions compared to the naturally occurring 3'UTR from which the variant is derived.
- a variant of a 3'UTR of an albumin gene is at least 40%, preferably at least 50%, more preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% identical to the naturally occurring 3'UTR the variant is derived from.
- the variant is a functional variant as described herein.
- a nucleic acid sequence which is derived from a variant of the 3'UTR of an albumin gene preferably refers to a nucleic acid sequence which is based on a variant of the 3'UTR sequence of an albumin gene or on a fragment or part thereof as described above. This term includes sequences corresponding to the entire sequence of the variant of the 3'UTR of an albumin gene, i.e. the full length variant 3'UTR sequence of an albumin gene, and sequences corresponding to a fragment of the variant 3'UTR sequence of an albumin gene.
- a fragment of a variant of the 3'UTR of an albumin gene consists of a continuous stretch of nucleotides corresponding to a continuous stretch of nucleotides in the full-length variant of the 3'UTR of an albumin gene, which represents at least 20%, preferably at least 30%, more preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, and most preferably at least 90% of the full-length variant of the 3'UTR of an albumin gene.
- Such a fragment of a variant in the sense of the present invention, is preferably a functional fragment of a variant as described herein.
- the terms “functional variant”, “functional fragment”, and “functional fragment of a variant” in the context of the present invention, mean that the fragment of the 3'UTR, the variant of the 3'UTR, or the fragment of a variant of the 3'UTR of an albumin gene fulfils at least one, preferably more than one function of the naturally occurring 3'UTR of an albumin gene of which the variant, the fragment, or the fragment of a variant is derived.
- Such function may be, for example, stabilizing mRNA and/or stabilizing and/or prolonging protein production from an mRNA and/or increasing protein expression or total protein production from an mRNA, preferably in a mammalian cell, such as in a human cell.
- the variant, the fragment, and the variant fragment in the context of the present invention fulfil the function of stabilizing an mRNA, preferably in a mammalian cell, such as a human cell, compared to an mRNA comprising a reference 3'UTR or lacking a 3'UTR, and/or the function of stabilizing and/or prolonging protein production from an mRNA, preferably in a mammalian cell, such as in a human cell, compared to an mRNA comprising a reference 3'UTR or lacking a 3'UTR, and/or the function of increasing protein production from an mRNA, preferably in a mammalian cell, such as in a human cell, compared to an mRNA comprising a reference 3'UTR or lacking a 3'UTR.
- a reference 3'UTR may be, for example, a 3'UTR naturally occurring in combination with the ORF.
- a functional variant, a functional fragment, or a functional variant fragment of a 3'UTR of an albumin gene preferably does not have a substantially diminishing effect on the efficiency of translation of the mRNA which comprises such variant, fragment, or variant fragment of a 3'UTR compared to the wild type 3'UTR from which the variant, the fragment, or the variant fragment is derived.
- a particularly preferred function of a "functional fragment", a “functional variant” or a “functional fragment of a variant” of the 3'UTR of an albumin gene in the context of the present invention is the stabilization and/or prolongation of protein production by expression of an mRNA carrying the functional fragment, functional variant or functional fragment of a variant as described above.
- the efficiency of the one or more functions exerted by the functional variant, the functional fragment, or the functional variant fragment is at least 40%, more preferably at least 50%, more preferably at least 60%, even more preferably at least 70%, even more preferably at least 80%, most preferably at least 90% of the mRNA and/or protein production stabilizing efficiency and/or the protein production increasing efficiency exhibited by the naturally occurring 3'UTR of an albumin gene from which the variant, the fragment or the variant fragment is derived.
- a fragment of the 3'UTR of an albumin gene or of a variant of the 3'UTR of an albumin gene preferably exhibits a length of at least about 50 nucleotides, preferably of at least about 75 nucleotides, more preferably of at least about 100 nucleotides, even more preferably of at least about 125 nucleotides, most preferably of at least about 150 nucleotides.
- such fragment of the 3'UTR of an albumin gene or of a variant of the 3'UTR of an albumin gene is a functional fragment as described above.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention comprises or consists of a "functional fragment", a "functional variant” or a "functional fragment of a variant” of the 3'UTR of an albumin gene.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention increases the stability of the artificial nucleic acid molecule, e.g. increases the stability of an mRNA according to the present invention, compared to a respective mRNA (reference mRNA) lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring in combination with the ORF.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention increases the stability of protein production from the artificial nucleic acid molecule according to the present invention, e.g. from an mRNA according to the present invention, compared to a respective mRNA lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring in combination with the ORF.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention prolongs protein production from the artificial nucleic acid molecule according to the present invention, e.g.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention increases the protein expression and/or total protein production from the artificial nucleic acid molecule according to the present invention, e.g. from an mRNA according to the present invention, compared to a respective mRNA lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring in combination with the ORF.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention does not negatively influence translational efficiency of an mRNA compared to the translational efficiency of a respective mRNA lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring in combination with the ORF.
- the term "respective mRNA” in this context means that - apart from the different 3'UTRs - the reference mRNA is comparable, preferably identical, to the mRNA comprising the inventive 3'UTR element.
- stabilizing and/or prolonging protein production from an artificial nucleic acid molecule such as an artificial mRNA preferably means that the protein production from the artificial nucleic acid molecule such as the artificial mRNA is stabilized and/or prolonged compared to the protein production from a reference nucleic acid molecule such as a reference mRNA, e.g. comprising a reference 3'UTR or lacking a 3'UTR, preferably in a mammalian expression system, such as in HeLa or HDF cells.
- a reference nucleic acid molecule such as a reference mRNA, e.g. comprising a reference 3'UTR or lacking a 3'UTR, preferably in a mammalian expression system, such as in HeLa or HDF cells.
- the amount of protein produced from the artificial nucleic acid molecule such as the artificial mRNA measured over time undercuts a threshold value at a later time point than the amount of protein produced from a reference nucleic acid molecule such as a reference mRNA measured over time.
- a threshold value may be, for example, the amount of protein measured in the initial phase of expression, such as 1 , 2, 3, 4, 5, or 6 hours post initiation of expression, such as post transfection of the nucleic acid molecule ( Figure 1 7).
- the protein production from the artificial nucleic acid molecule such as the artificial mRNA - in an amount which is at least the amount observed in the initial phase of expression, such as 1 , 2, 3, 4, 5, or 6 hours post initiation of expression, such as post transfection of the nucleic acid molecule - is prolonged by at least about 5 hours, preferably by at least about 10 hours, more preferably by at least about 24 hours compared to the protein production from a reference nucleic acid molecule, such as a reference mRNA, in a mammalian expression system, such as in mammalian cells, e.g. in HeLa or HDF cells.
- the artificial nucleic acid molecule according to the present invention preferably allows for prolonged protein production in an amount which is at least the amount observed in the initial phase of expression, such as 1 , 2, 3, 4, 5, or 6 hours post initiation of expression, such as post transfection, by at least about 5 hours, preferably by at least about 10 hours, more preferably by at least about 24 hours compared to a reference nucleic acid molecule lacking a 3'UTR or comprising a reference 3'UTR.
- the protein production from the artificial nucleic acid molecule according to the present invention is prolonged at least 1 .5 fold, preferably at least 2 fold, more preferably at least 2.5 fold compared to the protein production from a reference nucleic acid molecule lacking a 3'UTR or comprising a reference 3'UTR.
- This effect of prolonging protein production may be determined by (i) measuring protein amounts, e.g. obtained by expression of an ORF encoding a reporter protein such as luciferase, preferably in a mammalian expression system such as in HeLa or HDF cells, over time, (ii) determining the time point at which the protein amount undercuts the amount of protein observed, e.g., at 1 , 2, 3, 4, 5, or 6 hours post initiation of expression, e.g.
- this stabilizing and/or prolonging effect on protein production is achieved, while the total amount of protein produced from the artificial nucleic acid molecule according to the present invention, e.g. within a time span of 48 or 72 hours, is at least the amount of protein produced from a reference nucleic acid molecule lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring with the ORF of the artificial nucleic acid molecule.
- the present invention provides an artificial nucleic acid molecule which allows for prolonged and/or stabilized protein production in a mammalian expression system, such as in mammalian cells, e.g.
- the total amount of protein produced from said artificial nucleic acid molecule e.g. within a time span of 48 or 72 hours, is at least the total amount of protein produced, e.g. within said time span, from a reference nucleic acid molecule lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring with the ORF of the artificial nucleic acid molecule.
- stabilized protein expression preferably means that there is more uniform protein production from the artificial nucleic acid molecule according to the present invention over a predetermined period of time, such as over 24 hours, more preferably over 48 hours, even more preferably over 72 hours, when compared to a reference nucleic acid molecule, for example, an mRNA comprising a reference 3'UTR or lacking a 3'UTR.
- a reference nucleic acid molecule for example, an mRNA comprising a reference 3'UTR or lacking a 3'UTR.
- the level of protein production e.g. in a mammalian system, from the artificial nucleic acid molecule comprising a 3'UTR element according to the present invention, e.g.
- the amount of a protein (encoded by the ORF) observed 6 hours after initiation of expression, e.g. 6 hours post transfection of the artificial nucleic acid molecule according to the present invention into a cell, such as a mammalian cell may be comparable to the amount of protein observed 48 hours after initiation of expression, e.g. 48 hours post transfection.
- the ratio of the amount of protein encoded by the ORF, such as of a reporter protein, e.g., luciferase, observed at 48 hours post initiation of expression e.g.
- the ratio is between about 0.4 and about 4, preferably between about 0.65 and about 3, more preferably between about 0.7 and 2 for a nucleic acid molecule according to the present invention.
- a respective reference nucleic acid molecule e.g. an mRNA comprising a reference 3'UTR or lacking a 3'UTR
- said ratio may be, e.g. between about 0.05 and about 0.3.
- the present invention provides an artificial nucleic acid molecule comprising an ORF and a 3'UTR element as described above, wherein the ratio of the (reporter) protein amount, e.g. the amount of luciferase, observed 48 hours after initiation of expression to the (reporter) protein amount observed 6 hours after initiation of expression, preferably in a mammalian expression system, such as in mammalian cells, e.g. in HeLa cells, is preferably above about 0.4, more preferably above about 0.5, more preferably above about 0.6, even more preferably above about 0.7, e.g.
- the present invention provides an artificial nucleic acid molecule comprising an ORF and a 3'UTR element as described above, wherein the ratio of the (reporter) protein amount, e.g.
- the amount of luciferase, observed 72 hours after initiation of expression to the (reporter) protein amount observed 6 hours after initiation of expression is preferably above about 0.4, more preferably above about 0.5, more preferably above about 0.6, even more preferably above about 0.7, e.g. between about 0.4 and 1 .5, preferably between about 0.65 and about 1 .15, more preferably between about 0.7 and 1 .0, wherein preferably the total amount of protein produced from said artificial nucleic acid molecule, e.g. within a time span of 72 hours, is at least the total amount of protein produced, e.g. within said time span, from a reference nucleic acid molecule lacking a 3'UTR or comprising a reference 3'UTR, such as a 3'UTR naturally occurring with the ORF of the artificial nucleic acid molecule.
- “Increased protein expression” in the context of the present invention preferably means an increased protein expression at one time point after initiation of expression compared to a reference molecule.
- the protein level observed at a certain time point after initiation of expression, e.g. after transfection, of the artificial nucleic acid molecule according to the present invention e.g. after transfection of an mRNA according to the present invention, for example, 48 or 72 hours post transfection, is preferably higher than the protein level observed at the same time point after initiation of expression, e.g. after transfection, of a reference nucleic acid molecule, such as a reference mRNA comprising a reference 3'UTR or lacking a 3'UTR.
- “Increased total protein production” from an artificial nucleic acid molecule refers to an increased protein production over the time span, in which protein is produced from an artificial nucleic acid molecule, preferably in a mammalian expression system, such as in mammalian cells, e.g. in HeLa or HDF cells.
- total protein production preferably refers to the area under the curve (AUC) representing protein production over time.
- Said increase in stability of the artificial nucleic acid molecule, said increase in stability of protein production, said prolongation of protein production and/or said increase in protein expression and/or total protein production is preferably determined by comparison with a respective reference nucleic acid molecule lacking a 3'UTR, e.g. an mRNA lacking a 3'UTR, or a reference nucleic acid molecule comprising a reference 3'UTR, such as a 3'UTR naturally occurring with the ORF as describe above.
- the mRNA and/or protein production stabilizing effect and efficiency and/or the protein production increasing effect and efficiency of the variants, fragments and/or variant fragments of the 3'UTR of an albumin gene as well as the mRNA and/or protein production stabilizing effect and efficiency and/or the protein production increasing effect and efficiency of the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention may be determined by any method suitable for this purpose known to skilled person.
- artificial mRNA molecules may be generated comprising a coding sequence for a reporter protein, such as luciferase, and no 3'UTR, a 3'UTR derived from a naturally occurring albumin gene, a 3'UTR derived from a reference gene (i.e., a reference 3'UTR, such as a 3'UTR naturally occurring with the ORF), as 3'UTR a variant of a 3'UTR of an albumin gene, as 3'UTR a fragment of a naturally occurring albumin gene, or as 3'UTR a fragment of a variant of a 3'UTR of an albumin gene.
- a reporter protein such as luciferase
- Such mRNAs may be generated, for example, by in vitro transcription of respective vectors such as plasmid vectors, e.g. comprising a T7 promoter and a sequence encoding the respective mRNA sequences.
- the generated mRNA molecules may be transfected into cells by any transfection method suitable for transfecting mRNA, for example they may be electroporated into mammalian cells, such as HELA cells, and samples may be analyzed certain time points after transfection, for example, 6 hours, 24 hours, 48 hours, and 72 hours post transfection. Said samples may be analyzed for mRNA quantities and/or protein quantities by methods well known to the skilled person.
- the quantities of reporter mRNA present in the cells at the sample time points may be determined by quantitative PCR methods.
- the quantities of reporter protein encoded by the respective mRNAs may be determined, e.g., by ELISA assays or reporter assays such as luciferase assays depending on the reporter protein used.
- the effect of stabilizing protein expression and/or prolonging protein expression may be, for example, analyzed by determining the ratio of the protein level observed 48 hours post transfection and the protein level observed 6 hours post transfection. The closer said value is to 1 , the more stable the protein expression is within this time period.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention comprises or consists of a nucleic acid sequence which has an identity of at least about 40%, preferably of at least about 50%, preferably of at least about 60%, preferably of at least about 70%, more preferably of at least about 80%, more preferably of at least about 90%, even more preferably of at least about 95%, even more preferably of at least about 99%, most preferably of 100% to the nucleic acid sequence of a 3'UTR of an albumin gene, such as to the nucleic acid sequence according to SEQ ID No.
- variants of the sequences are preferably functional variants as described above:
- CAUCACAUUU AAAAGGAUCU CAGCCUACCA UGAGAAUAAG AGAAAGAAAA UGAAGAUCAA
- AAGCUUAUUC AUCUGUUUUU CUUUUUCGUU GGUGUAAAGC CAACACCCUG UCUAAAAAAC AUAAAUUUCU UUAAUCAUUU UGCCUCUUUU CUCUGUGCUU CAAUUAAUAA AAAAUGGAAA GAAUCU (SEQ ID No. 2).
- AAAA (SEQ ID No. 33) AC AC AT C AC A ACCACAACCT TCTCAGGCTA CCCTGAGAAA AAAAGACATG AAGACTCAGG ACTCATCTTT TCTGTTGGTG TAAAATCAAC ACCCTAAGGA ACACAAATTT CTTTAAACAT TTGACTTCTT GTCTCTGTGC TGCAATTAAT AAAAAATGGA AAGAATCTAC AGATCTAAAA AAAA (SEQ ID No. 34)
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention may also comprise or consist of a fragment of a nucleic acid sequence which has an identity of at least about 40%, preferably of at least about 50%, preferably of at least about 60%, preferably of at least about 70%, more preferably of at least about 80%, more preferably of at least about 90%, even more preferably of at least about 95%, even more preferably of at least about 99%, most preferably of 100% to the nucleic acid sequence of the 3'UTR of an albumin gene, such as to the nucleic acid sequence according to SEQ ID No. 1 , SEQ ID No. 2, SEQ ID No. 32, SEQ ID No. 33, SEQ ID No. 34 or SEQ ID No.
- fragment is preferably a functional fragment or a functional variant fragment as described above.
- Such fragment preferably exhibits a length of at least about 50 nucleotides, preferably of at least about 75 nucleotides, more preferably of at least about 100 nucleotides, even more preferably of at least about 125 nucleotides, most preferably of at least about 150 nucleotides.
- such fragment may exhibit a nucleic acid sequence according to SEQ ID Nos. 18-30, such as
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention may comprise of consist of a nucleic acid fragment as described above.
- the thymidine nucleotides comprised in the fragments according to SEQ ID No. 1 8-30 can be replaced by uridine nucleotides.
- said variants, fragments or variant fragments are functional variants, functional fragments, or functional variant fragments as described above, exhibiting at least one function of the nucleic acid sequence according to SEQ ID No. 1 ,SEQ ID No. 2, SEQ ID No. 32, SEQ ID No. 33, SEQ ID No. 34 or SEQ ID No.
- stabilization of the artificial nucleic acid molecule according to the invention such as stabilization of the artificial nucleic acid molecule according to the invention, stabilizing and/or prolonging protein expression from the artificial nucleic acid molecule according to the invention, and/or increasing protein production, preferably with an efficiency of at least 40%, more preferably of at least 50%, more preferably of at least 60%, even more preferably of at least 70%, even more preferably of at least 80%, most preferably of at least 90% of the stabilizing efficiency and/or protein production increasing efficiency exhibited by the nucleic acid sequence according to SEQ ID No. 1 ,SEQ ID NO. 2, SEQ ID No. 32, SEQ ID No. 33, SEQ ID No. 34 or SEQ ID No. 35.
- the at least one 3'UTR element of the artificial nucleic acid molecule according to the present invention exhibits a length of at least about 50 nucleotides, preferably of at least about 75 nucleotides, more preferably of at least about 100 nucleotides, even more preferably of at least about 125 nucleotides, most preferably of at least about 150 nucleotides.
- the 3'UTR element may exhibit a length of about 50 to about 300 nucleotides, preferably of about 100 to about 250 nucleotides, more preferably of about 150 to about 200 nucleotides.
- the artificial nucleic acid molecule according to the present invention may comprise more than one 3'UTR elements as described above.
- the artificial nucleic acid molecule according to the present invention may comprise one, two, three, four or more 3'UTR elements, wherein the individual 3'UTR elements may be the same or they may be different.
- the artificial nucleic acid molecule according to the present invention may comprise two essentially identical 3'UTR elements as described above, e.g. two 3'UTR elements comprising or consisting of a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the 3'UTR of an albumin gene, such as a nucleic acid sequence according to SEQ ID No. 1 ,2, 32, 33, 34 or 35 functional variants thereof, functional fragments thereof, or functional variant fragments thereof as described above.
- an artificial nucleic acid molecule comprising a 3'UTR as described above may represent or may provide an mRNA molecule which allows for prolonged and/or stabilized protein production.
- a 3'UTR as described herein may improve stability of protein expression from an mRNA molecule and/or improve translational efficiency.
- the artificial nucleic acid molecule according to the present invention may be RNA, such as mRNA, DNA, such as a DNA vector, or may be a modified RNA or DNA molecule. It may be provided as a double-stranded molecule having a sense strand and an anti-sense strand, for example, as a DNA molecule having a sense strand and an anti-sense strand.
- the artificial nucleic acid according to the present invention may further comprise optionally a 5'UTR and/or a 5'-cap.
- the optional 5'-cap and/or the 5'UTR are preferably located 5' to the ORF within the artificial nucleic acid molecule according to the present invention.
- the artificial nucleic acid molecule according to the present invention further comprises a poly(A) sequence and/or a polyadenylation signal.
- the optional poly(A) sequence is located 3' to the at least one 3'UTR element, preferably is connected to the 3'-end of the 3'UTR element.
- the connection may be direct or indirect, for example, via a stretch of 2, 4, 6, 8, 10, 20 etc. nucleotides, such as via a linker of 1 -50, preferably of 1 - 20 nucleotides, e.g. comprising or consisting of one or more restriction sites.
- the optional polyadenylation signal is located within the 3'UTR element.
- consensus sequence may be recognised by most animal and bacterial cell-systems, for example by the polyadenylation-factors, such as cleavage/polyadenylation specificity factor (CPSF) cooperating with CstF, PAP, PAB2, CFI and/or CFII.
- CPSF cleavage/polyadenylation specificity factor
- the polyadenylation signal preferably the consensus sequence NNUANA
- the polyadenylation signal is located less than about 50 nucleotides, more preferably less than about 30 bases, most preferably less than about 25 bases, for example 21 bases, upstream of the 3'-end of the 3'UTR element.
- an artificial nucleic acid molecule according to the present invention e.g. of an artificial DNA molecule, comprising a polyadenylation signal within the 3'UTR element will result in a premature-RNA containing the polyadenylation signal in its 3'UTR element.
- transcription of a DNA molecule comprising a 3'UTR element according to SEQ ID No. 1 CATCACATTT AAAAGCATCT CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA
- RNA having a 3'UTR element will result in an RNA having a 3'UTR element according to the sequence
- CAUCACAUUU AAAAGCAUCU CAGCCUACCA UGAGAAUAAG AGAAAGAAAA UGAAGAUCAA
- AAGCUUAUUC AUCUGUUUUU CUUUUUCGUU GGUGUAAAGC CAACACCCUG UCUAAAAAAC AUAAAUUUCU UUAAUCAUUU UGCCUCUUUU CUCUGUGCUU CAAUUAAUAA AAAAUGGAAA GAAUCU (SEQ ID No. 2).
- the inventive artificial nucleic acid molecule may be a DNA molecule comprising a 3'UTR element as described above and a polyadenylation signal, which may result in polyadenylation of an RNA upon transcription of this DNA molecule.
- a resulting RNA may comprise a combination of the inventive 3'UTR element followed by a poly(A) sequence.
- transcription of an artificial nucleic acid molecule according to the invention e.g. transcription of an artificial nucleic acid molecule comprising an open reading frame, a 3'UTR element and a polyadenylation-signal, may result in an mRNA molecule comprising an open reading frame, a 3'UTR element and a poly(A) sequence.
- the invention also provides an artificial nucleic acid molecule which is an mRNA molecule comprising an open reading frame, a 3'UTR element as described above and a poly(A) sequence.
- the invention provides an artificial nucleic acid molecule which is an artificial DNA molecule comprising an open reading frame and a sequence according to SEQ ID No. 1 or a sequence having an identity of at least about 40% or more to SEQ ID No. 1 or a fragment thereof as described above. Furthermore, the invention provides an artificial nucleic acid molecule which is an artificial RNA molecule comprising an open reading frame and a sequence according to SEQ ID NO. 2 or a sequence having an identity of at least about 40 % or more to SEQ ID No. 2 or a fragment thereof as described above. In one further embodiment, the invention provides an artificial nucleic acid molecule which is an artificial DNA molecule comprising an open reading frame and a sequence according to SEQ ID No.
- the invention provides an artificial nucleic acid molecule which is an artificial RNA molecule comprising an open reading frame and a sequence according to SEQ ID NO. 33 or a sequence having an identity of at least about 40 % or more to SEQ ID No. 33 or a fragment thereof as described above. Furthermore, the invention provides an artificial nucleic acid molecule which is an artificial DNA molecule comprising an open reading frame and a sequence according to SEQ ID No. 34 or a sequence having an identity of at least about 40% or more to SEQ ID No. 34 or a fragment thereof as described above.
- the invention provides an artificial nucleic acid molecule which is an artificial RNA molecule comprising an open reading frame and a sequence according to SEQ ID NO. 35 or a sequence having an identity of at least about 40 % or more to SEQ ID No. 35 or a fragment thereof as described above.
- the invention provides an artificial nucleic acid molecule which may be a template for an RNA molecule, preferably for an mRNA molecule, which is stabilised and optimized with respect to translation efficiency.
- the artificial nucleic acid molecule may be a DNA or RNA which may be used for production of an mRNA.
- the obtainable mRNA may, in turn, be translated for production of a desired peptide or protein encoded by the open reading frame.
- the artificial nucleic acid molecule is a DNA, it may, for example, be used as a double-stranded storage form for continued and repetitive in vitro or in vivo production of mRNA.
- the artificial nucleic acid molecule according to the present invention further comprises a poly(A) sequence.
- the length of the poly(A) sequence may vary.
- the poly(A) sequence may have a length of about 20 adenine nucleotides up to about 300 adenine nucleotides, preferably of about 40 to about 200 adenine nucleotides, more preferably from about 50 to about 100 adenine nucleotides, such as about 60, 70, 80, 90 or 100 adenine nucleotides.
- the artificial nucleic acid molecule according to the present invention may comprise a nucleic acid sequence corresponding to the DNA-sequences
- AAC A AAAT TTCTTTAATC ATTTTGCCTC TTTTCTCTGT GCTTCAATTA ATAAAAAATG
- CAUCACAUUU AAAAGCAUCU CAGCCUACCA UGAGAAUAAG AGAAAGAAAA UGAAGAUCAA AAGCUUAUUC AUCUGUUUUU CUUUUUCGUU GGUGUAAAGC CAACACCCUG UCUAAAAAAC AUAAAUUUCU UUAAUCAUUU UGCCUCUUUU CUCUGUGCUU CAAUUAAUAA AAAAUGGAAA GAAUCUAGAU CUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (SEQ ID No. 4),
- Such artificial RNA-molecules i.e. artificial nucleic acid molecules comprising a sequence according to SEQ ID No. 4, 37 or 39 may also be obtainable />7 wfro by common methods of chemical-synthesis without being necessarily transcribed from a DNA-progenitor.
- the artificial nucleic acid molecule according to the present invention is an RNA molecule, preferably an mRNA molecule comprising in 5'-to- 3'-direction an open reading frame, a 3'UTR element as described above and a poly(A) sequence.
- the open reading frame does not code for albumin, particularly not for human albumin, mouse albumin or albumin from Olive baboon, provided that the 3'UTR element is identical to the 3'UTR of human albumin, mouse albumin or albumin from Olive baboon, respectively.. In some further embodiments, it may be preferred if the open reading frame does not code for human albumin according to GenBank Accession number NM_000477.5 provided that the 3'UTR element is identical to the 3'UTR of human albumin. In some further embodiments, it may be preferred if the open reading frame does not code for albumin or variants thereof that the 3'UTR element is a sequence which is identical to SEQ ID No. 1 ,SEQ ID No. 2, SEQ ID No.
- the open reading frame does not code for human factor IX or a reporter protein, e.g., selected from the group consisting of globin proteins, (particularly beta-globin), luciferase proteins, GFP proteins or variants thereof, for example, variants exhibiting at least 70% sequence identity to a globin protein, a luciferase protein, or a GFP protein.
- a reporter protein e.g., selected from the group consisting of globin proteins, (particularly beta-globin), luciferase proteins, GFP proteins or variants thereof, for example, variants exhibiting at least 70% sequence identity to a globin protein, a luciferase protein, or a GFP protein.
- the open reading frame does not contain an intron, particularly in case the open reading frame codes for human factor IX.
- the invention provides an artificial DNA molecule comprising an open reading frame, preferably an open reading frame which encodes a peptide or protein other than albumin; a 3'UTR element comprising or consisting of a sequence which has at least about 60%, preferably at least about 70%, more preferably at least about 80%, more preferably at least about 90%, even more preferably at least about 95%; even more preferably at least 99%; even more preferably 100% sequence identity to SEQ ID No. 1 , 32 or 34; and a polyadenylation signal and/or a poly(A) sequence.
- an open reading frame preferably an open reading frame which encodes a peptide or protein other than albumin
- a 3'UTR element comprising or consisting of a sequence which has at least about 60%, preferably at least about 70%, more preferably at least about 80%, more preferably at least about 90%, even more preferably at least about 95%; even more preferably at least 99%; even more preferably 100% sequence identity to SEQ ID No. 1 , 32 or
- the invention provides an artificial DNA molecule comprising an open reading frame, preferably an open reading frame which encodes any peptide or protein other than albumin; a 3'UTR element comprising or consisting of a sequence which has at least about 60%, preferably at least about 70%, more preferably at least about 80%, more preferably at least about 90%, even more preferably at least about 95%; even more preferably at least 99%; even more preferably 100% sequence identity to SEQ ID No. 3, 36 or 38.
- an artificial RNA molecule preferably an artificial mRNA molecule or an artificial viral RNA molecule, comprising an open reading frame, preferably an open reading frame which encodes a peptide or protein other than albumin; a 3'UTR element comprising or consisting of a sequence which has at least about 60%, preferably at least about 70%, more preferably at least about 80%, more preferably at least about 90%, even more preferably at least about 95%; even more preferably at least 99%; even more preferably 100% sequence identity to SEQ ID No. 2, 33 or 35; and a polyadenylation signal and/or a poly(A) sequence.
- the invention provides an artificial RNA molecule, preferably an artificial mRNA molecule or an artificial viral RNA molecule, comprising an open reading frame, preferably an open reading frame which encodes a peptide or protein other than albumin; a 3'UTR element comprising or consisting of a sequence which has at least about 60%, preferably at least about 70%, more preferably at least about 80%, more preferably at least about 90%, even more preferably at least about 95%; even more preferably at least 99%; even more preferably 100% sequence identity to SEQ ID No. 4, 37 or 39.
- the invention provides an artificial nucleic acid molecule, preferably an artificial mRNA, which may be characterized by enhanced stability and prolonged expression of the encoded peptide or protein.
- enhanced stability of protein expression and thus prolonged protein expression may result from reduction in degradation of the artificial nucleic acid molecule, such as an artificial mRNA molecule according to the present invention. Accordingly, the inventive 3'UTR element may prevent the artificial nucleic acid from degradation and decay.
- the 3'UTR element does not consist of a histone stem-loop, preferably does not comprise a histone stem-loop.
- the artificial nucleic acid molecule according to the present invention does not comprise a histone stem-loop.
- the artificial nucleic acid molecule may comprise a histone stem-loop in addition to the nucleic acid sequence derived from the 3'UTR of an albumin gene.
- Such artificial nucleic acid molecule according to the present invention may comprise in 5'-to-3'-direction an ORF, an inventive 3'UTR element, preferably comprising a polyadenylation signal, an optional histone stem- loop and an optional poly(A) sequence. It may also comprise in 5'-to-3'-direction an ORF, an inventive 3'UTR element, e.g. comprising a polyadenylation-signal, a poly(A) sequence and an optional histone stem-loop.
- such a histone stem-loop is typically derived from a histone gene and comprises an intramolecular base pairing of two neighbored entirely or partially reverse complementary sequences, thereby forming a stem-loop.
- a stem-loop can occur in single-stranded DNA or, more commonly, in RNA.
- the structure is also known as a hairpin or hairpin loop and usually consists of a stem and a (terminal) loop within a consecutive sequence, wherein the stem is formed by two neighbored entirely or partially reverse complementary sequences separated by a short sequence as sort of spacer, which builds the loop of the stem-loop structure.
- the two neighbored entirely or partially reverse complementary sequences may be defined as e.g. stem-loop elements steml and stem2.
- the stem loop is formed when these two neighbored entirely or partially reverse complementary sequences, e.g. stem-loop elements steml and stem2, form base-pairs with each other, leading to a double stranded nucleic acid sequence comprising an unpaired loop at its terminal ending formed by the short sequence located between stem-loop elements steml and stem2 on the consecutive sequence.
- the unpaired loop thereby typically represents a region of the nucleic acid which is not capable of base pairing with either of these stem-loop elements.
- the resulting lollipop-shaped structure is a key building block of many RNA secondary structures.
- a stem-loop structure is thus dependent on the stability of the resulting stem and loop regions, wherein the first prerequisite is typically the presence of a sequence that can fold back on itself to form a paired double strand.
- the stability of paired stem-loop elements is determined by the length, the number of mismatches or bulges it contains (a small number of mismatches is typically tolerable, especially in a long double strand), and the base composition of the paired region.
- optimal loop length is 3-10 bases, more preferably 3 to 8, 3 to 7, 3 to 6 or even more preferably 4 to 5 bases, and most preferably 4 bases.
- histone stem-loop sequence is the sequence according to SEQ ID NO: 31 (CAAAGGCTC l I I I CAGAGCCACCA) or the corresponding RNA sequence.
- the artificial nucleic acid molecule according to the present invention comprises (a.) at least one open reading frame; (b.) at least one 3'UTR element as described herein, and (d.) at least one histone-stem loop which may, for example, comprise or consist of a sequence having a sequence identity of at least about 75%, preferably of at least about 80%, preferably at least about 85%, more preferably at least about 90%, even more preferably at least about 95% to the sequence according to SEQ ID NO.
- RNA sequence wherein preferably positions 6, 13 and 20 of the sequence having a sequence identity of at least about 75%, preferably of at least about 80%, preferably at least about 85%, more preferably at least about 90%, even more preferably at least about 95% to the sequence according to SEQ ID NO. 31 or the corresponding RNA sequence are conserved, i.e. are identical to the nucleotides at positions 6, 13 and 20 of SEQ ID NO. 31 .
- the artificial nucleic acid molecule comprises further elements such as a 5'-cap, a poly(C) sequence and/or an IRES-motif.
- a 5'-cap may be added post- transcriptionally to the 5'end of an RNA.
- the inventive artificial nucleic acid molecule particularly if the nucleic acid is in the form of an mRNA or codes for an mRNA, may be modified by a sequence of at least 10 cytidines, preferably at least 20 cytidines, more preferably at least 30 cytidines (so-called "poly(C) sequence").
- the inventive nucleic acid molecule may contain, especially if the nucleic acid is in the form of an (m)RNA or codes for an mRNA, a poly(C) sequence of typically about 10 to 200 cytidine nucleotides, preferably about 10 to 100 cytidine nucleotides, more preferably about 10 to 70 cytidine nucleotides or even more preferably about 20 to 50 or even 20 to 30 cytidine nucleotides.
- the artificial nucleic acid molecule according to the present invention comprises, preferably in 5'-to-3' direction, an ORF, at least one 3'UTR element as described above, a poly(A) sequence or a polyadenylation signal, and a poly(C) sequence.
- An internal ribosome entry side (IRES) sequence or IRES-motif may separate several open reading frames, for example if the artificial nucleic acid molecule encodes for two or more peptides or proteins.
- An IRES-sequence may be particularly helpful if the mRNA is a bi- or multicistronic RNA.
- the artificial nucleic acid molecule may comprise additional 5'-elements, preferably a 5'UTR, a promoter, or a 5'-UTR and a promoter containing-sequence.
- the promoter may drive and or regulate transcription of the artificial nucleic acid molecule according to the present invention, for example of an artificial DNA-molecule according to the present invention.
- the 5'UTR may interact with the inventive 3'UTR element and thus may support the stabilising effect of the inventive 3'UTR element. Such elements may further support stability and translational efficiency.
- the invention provides artificial nucleic acid molecules, preferably mRNA- molecules, comprising in 5'-to-3'-direction at least one of the following structures
- the artificial nucleic acid molecule according to the present invention is at least partially G/C modified.
- the inventive artificial nucleic acid molecule may be thermodynamically stabilized by modifying the G (guanosine)/C (cytidine) content of the molecule.
- the G/C content of the open reading frame of an artificial nucleic acid molecule according to the present invention may be increased compared to the G/C content of the open reading frame of a corresponding wild type sequence, preferably by using the degeneration of the genetic code.
- the encoded amino acid sequence of the nucleic acid molecule is preferably not modified by the G/C modification compared to the coded amino acid sequence of the particular wild type sequence.
- the codons of a coding sequence or a whole nucleic acid molecule may therefore be varied compared to the wild type coding sequence, such that they include an increased amount of G/C nucleotides while the translated amino acid sequence is maintained.
- the most favourable codons for the stability can be determined (so-called alternative codon usage).
- nucleic acid sequence e.g. the open reading frame
- codons which contain exclusively G or C nucleotides
- no modification of the codon is necessary.
- the codons for Pro (CCC or CCG), Arg (CGC or CGG), Ala (GCC or GCG) and Gly (GGC or GGG) require no modifica- tion, since no A or U/T is present.
- codons which contain A and/or U/T nucleotides may be modified by substitution of other codons which code for the same amino acids but contain no A and/or U/T.
- codons for Pro can be modified from CC(U T) or CCA to CCC or CCG;
- the codons for Arg can be modified from CG(U/T) or CGA or AGA or AGG to CGC or CGG; the codons for Ala can be modified from GC(U/T) or GCA to GCC or GCG;
- the codons for Gly can be modified from GG(U/T) or GGA to GGC or GGG.
- the codons for Phe can be modified from (U/T)(U/D(U/T) to (U/T) (U T)C;
- the codons for Leu can be modified from (U T) (U T)A, (U/T) (U/T)G, C(U T) (U T) or
- the codons for Ser can be modified from (U/T)C(U/T) or (U T)CA or AG(U T) to (U/DCC, (U/DCG or AGC;
- the codon for Tyr can be modified from (U/T)A(U/T) to (U/T) AC;
- the codon for Cys can be modified from (U/T)G(U/T) to (U/T)GC;
- the codon for His can be modified from CA(U/T) to CAC;
- the codon for Gin can be modified from CAA to CAG;
- the codons for lie can be modified from A(U/T)(U/T) or A(U T)A to A(U/T)C;
- codons for Thr can be modified from AQU/T) or ACA to ACC or ACG;
- the codon for Asn can be modified from AA(U/T) to AAC;
- the codon for Lys can be modified from AAA to AAG;
- the codons for Val can be modified from G(U/T)(U/T) or G(U A to G(U T)C or G(U/T)G; the codon for Asp can be modified from GA(U/T) to GAC;
- the codon for Glu can be modified from GAA to GAG;
- the stop codon (U/T) A A can be modified to (U T) AG or (U/T)GA.
- the codons for Met (A(U/T)G) and Trp ((U/T)GG) on the other hand, there is no possibility of sequence modification without altering the encoded amino acid sequence.
- substitutions listed above can be used either individually or in all possible combina- tions to increase the G/C content of the open reading frame of the inventive nucleic acid sequence as defined herein, compared to its particular wild type open reading frame (i.e. the original sequence).
- all codons for Thr occurring in the wild type sequence can be modified to ACC (or ACG).
- the G/C content of the open reading frame of the inventive artificial nucleic acid molecule as defined herein is increased by at least 7%, more preferably by at least 15%, particularly preferably by at least 20%, compared to the G/C content of the wild type coding region without altering the encoded amino acid sequence, i.e. using the degeneracy of the genetic code.
- the open reading frame is preferably at least partially codon-optimized. Codon-optimization is based on the finding that the translation efficiency may be determined by a different frequency in the occurrence of transfer RNAs (tRNAs) in cells. Thus, if so-called "rare codons" are present in the coding region of the inventive artificial nucleic acid molecule as defined herein, to an increased extent, the translation of the corresponding modified nucleic acid sequence is less efficient than in the case where codons coding for relatively "frequent" tRNAs are present.
- tRNAs transfer RNAs
- the open reading frame of the inventive nucleic acid sequence is preferably modified compared to the corresponding wild type coding region such that at least one codon of the wild type sequence which codes for a tRNA which is relatively rare in the cell is exchanged for a codon which codes for a tRNA which is comparably frequent in the cell and carries the same amino acid as the relatively rare tRNA.
- the open reading frame of the inventive artificial nucleic acid molecule as defined herein is modified such that codons for which frequently occurring tRNAs are available may replace codons which correspond to rare tRNAs.
- all codons of the wild type open reading frame which code for a rare tRNA may be exchanged for a codon which codes for a tRNA which is more frequent in the cell and which carries the same amino acid as the rare tRNA.
- Which tRNAs occur relatively frequently in the cell and which, in contrast, occur relatively rarely is known to a person skilled in the art; cf. e.g. Akashi, Curr. Opin. Genet. Dev. 2001 , 1 1 (6): 660-666.
- the open reading frame is codon-optimized, preferably with respect to the system in which the nucleic acid molecule according to the present invention is to be expressed, preferably with respect to the system in which the nucleic acid molecule according to the present invention is to be translated.
- the codon usage of the open reading frame is codon-optimized according to mammalian codon usage, more preferably according to human codon usage.
- the open reading frame is codon-optimized and G/C-content modified.
- the artificial nucleic acid molecule may further comprise modifications, such as backbone modifications, sugar modifications and/or base modifications, e.g., lipid-modifications or the like.
- modifications such as backbone modifications, sugar modifications and/or base modifications, e.g., lipid-modifications or the like.
- the transcription and/or the translation of the artificial nucleic acid molecule according to the present invention is not significantly impaired by said modifications.
- Nucleotide analogues/modifications that may be used in the context of the present invention may be selected, for example, from 2-amino-6-chloropurineriboside-5 '-triphosphate, 2- aminoadenosine-5'-triphosphate, .
- nucleotides for base modifications selected from the group of base-modified nucleotides consisting of 5-methylcytidine-5'-triphosphate, 7-deazaguanosine-5'- triphosphate, 5-bromocytidine-5'-triphosphate, and pseudouridine-5'-triphosphate.
- lipid-modified artificial nucleic acid molecules may typically comprise at least one linker which is covalently linked with the artificial nucleic acid molecule, and at least one lipid which is covalently linked with this linker.
- a lipid-modified artificial nucleic acid molecule may comprise at least one artificial nucleic acid molecule as defined herein and at least one, preferably Afunctional lipid which is covalently linked, preferably without a linker, with that artificial nucleic acid molecule.
- a lipid-modified artificial nucleic acid molecule may comprise an artificial nucleic acid molecule as defined herein, at least one linker which is covalently linked with that artificial nucleic acid molecule, at least one lipid which is covalently linked with this linker, and additionally at least one, preferably bifunctional lipid which is covalently linked, preferably without a linker, with the artificial nucleic acid molecule.
- the present invention provides a vector comprising
- an open reading frame ORF
- a cloning site e.g. for insertion of an open reading frame or a sequence comprising an open reading frame
- 3'-untranslated region element comprising a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the
- the at least one 3'UTR element and the ORF are as described above for the artificial nucleic acid molecule according to the present invention.
- the cloning site may be any sequence that is suitable for introducing an open reading frame or a sequence comprising an open reading frame, such as one or more restriction sites.
- the vector comprising a cloning site is preferably suitable for inserting an open reading frame into the vector, preferably for inserting an open reading frame 5' to the 3'UTR element.
- the cloning site or the ORF is located 5' to the 3'UTR element, preferably in close proximity to the 5'-end of the 3'UTR element.
- the cloning site or the ORF may be directly connected to the 5'-end of the 3'UTR element or they may be connected via a stretch of nucleotides, such as by a stretch of 2, 4, 6, 8, 10, 20 etc. nucleotides as described above for the artificial nucleic acid molecule according to the present invention.
- the vector according to the present invention is suitable for producing the artificial nucleic acid molecule according to the present invention, preferably for producing an artificial mRNA according to the present invention, for example, by optionally inserting an open reading frame or a sequence comprising an open reading frame into the vector and transcribing the vector.
- the vector comprises elements needed for transcription, such as a promoter, e.g. an RNA polymerase promoter.
- the vector is suitable for transcription using eukaryotic, prokaryotic, viral or phage transcription systems, such as eukaryotic cells, prokaryotic cells, or eukaryotic, prokaryotic, viral or phage in vitro transcription systems.
- the vector may comprise a promoter sequence, which is recognizes by a polymerase, such as by an RNA polymerase, e.g. by a eukaryotic, prokaryotic, viral, or phage RNA polymerase.
- a polymerase such as by an RNA polymerase, e.g. by a eukaryotic, prokaryotic, viral, or phage RNA polymerase.
- the vector comprises a phage RNA polymerase promoter such as an SP6 or T7, preferably a T7 promoter.
- the vector is suitable for in vitro transcription using a phage based in vitro transcription system, such as a T7 RNA polymerase based in vitro transcription system.
- the vector may further comprise a poly(A) sequence and/or a polyadenylation signal as described above for the artificial nucleic acid molecule according to the present invention.
- the vector may be an RNA vector or a DNA vector.
- the vector is a DNA vector.
- the vector may be any vector known to the skilled person, such as a viral vector or a plasmid vector.
- the vector is a plasmid vector, preferably a DNA plasmid vector.
- the vector according to the present invention comprises the artificial nucleic acid molecule according to the present invention.
- a DNA vector according to the present invention comprises a sequence according to SEQ ID No. 1 ,SEQ ID No. 3, SEQ ID No. 32, SEQ ID No. 34, SEQ ID No. 36 or SEQ ID No. 38,or a sequence having an identity of at least about 40%, preferably of at least about 50%, preferably of at least about 60%, preferably of at least about 70%, more preferably of at least about 80%, more preferably of at least about 90%, even more preferably of at least about 95%; even more preferably of at least about 99% sequence identity to the nucleic acid sequence according to SEQ ID No. 1 ,SEQ ID No. 3, SEQ ID No. 32, SEQ ID No. 34, SEQ ID No. 36 or SEQ ID No. 38,or a fragment thereof as described above, preferably a functional fragment thereof.
- an RNA vector according to the present invention comprises a sequence according to SEQ ID No. 2, SEQ ID No. 4, SEQ ID No. 33, SEQ ID No. 35, SEQ ID No. 37 or SEQ ID No. 39 or a sequence having an identity of at least about 40%, preferably of at least about 50%, preferably of at least about 60%, preferably of at least about 70%, more preferably of at least about 80%, more preferably of at least about 90%, even more preferably of at least about 95%; even more preferably of at least about 99% sequence identity to the nucleic acid sequence according to SEQ ID No. 2, SEQ ID No. 4, SEQ ID No. 33, SEQ ID No. 35, SEQ ID No. 37 or SEQ ID No. 39 or a fragment thereof, preferably a functional fragment thereof.
- the vector is a circular molecule.
- the vector is a double-stranded molecule, such as a double stranded DNA molecule.
- Such circular, preferably double stranded DNA molecule may be used conveniently as a storage form for the inventive artificial nucleic acid molecule.
- it may be used for transfection of cells, for example, cultured cells. Also it may be used for in vitro transcription for obtaining an artificial RNA molecule according to the invention.
- the vector preferably the circular vector, is linearizable, for example, by restriction enzyme digestion.
- the vector comprises a cleavage site, such as a restriction site, preferably a unique cleavage site, located immediately 3' to the 3'UTR element, or - if present - located 3' to the poly(A) sequence or polyadenylation signal, or - if present - located 3' to the poly(C) sequence, or - if present located 3' to the histone stem-loop.
- a cleavage site such as a restriction site, preferably a unique cleavage site, located immediately 3' to the 3'UTR element, or - if present - located 3' to the poly(A) sequence or polyadenylation signal, or - if present - located 3' to the poly(C) sequence, or - if present located 3' to the histone stem-loop.
- the product obtained by linearizing the vector terminates at the 3'end with the 3'-end of the 3'UTR element, or - if present - with the 3'- end of the poly(A) sequence or polyadenylation signal, or - if present - with the 3'-end of the poly(C) sequence.
- a restriction site preferably a unique restriction site, is preferably located immediately 3' to the 3'-end of the artificial nucleic acid molecule.
- the present invention relates to a cell comprising the artificial nucleic acid molecule according to the present invention or the vector according to present invention.
- the cell may be any cell, such as a bacterial cell, insect cell, plant cell, vertebrate cell, e.g. a mammalian cell. Such cell may be, e.g., used for replication of the vector of the present invention, for example, in a bacterial cell.
- the cell may be used for transcribing the artificial nucleic acid molecule or the vector according to the present invention and/or translating the open reading frame of the artificial nucleic acid molecule or the vector according to the present invention.
- the cell may be used for recombinant protein production.
- the cells according to the present invention are, for example, obtainable by standard nucleic acid transfer methods, such as standard transfection, transduction or transformation methods.
- the artificial nucleic acid molecule or the vector according to the present invention may be transferred into the cell by electroporation, lipofection, e.g. based on cationic lipids and/or liposomes, calcium phosphate precipitation, nanoparticle based transfection, virus based transfection, or based on cationic polymers, such as DEAE-dextran or polyethylenimine etc.
- the cell is a mammalian cell, such as a cell of human subject, a domestic animal, a laboratory animal, such as a mouse or rat cell.
- the cell is a human cell.
- the cell may be a cell of an established cell line, such as a CHO, BHK, 293T, COS-7, HELA, HEK, etc. or the cell may be a primary cell, such as a HDF cell etc., preferably a cell isolated from an organism.
- the cell is an isolated cell of a mammalian subject, preferably of a human subject.
- the cell may be an immune cell, such as a dendritic cell, a cancer or tumor cell, or any somatic cell etc., preferably of a mammalian subject, preferably of a human subject.
- the present invention provides a pharmaceutical composition comprising the artificial nucleic acid molecule according to the present invention, the vector according the present invention, or the cell according to the present invention.
- the pharmaceutical composition according to the invention may be used, e.g., as a vaccine, for example, for genetic vaccination.
- the ORF may, e.g., encode an antigen to be administered to a patient for vaccination.
- the pharmaceutical composition according to the present invention is a vaccine.
- the pharmaceutical composition according to the present invention may be used, e.g., for gene therapy.
- the pharmaceutical composition further comprises one or more pharmaceutically acceptable excipients, vehicles, fillers and/or diluents.
- a pharmaceutically acceptable vehicle typically includes a liquid or non-liquid basis for the inventive pharmaceutical composition.
- the pharmaceutical composition is provided in liquid form.
- the vehicle is based on water, such as pyrogen-free water, isotonic saline or buffered (aqueous) solutions, e.g phosphate, citrate etc. buffered solutions.
- the buffer may be hypertonic, isotonic or hypotonic with reference to the specific reference medium, i.e.
- the buffer may have a higher, identical or lower salt content with reference to the specific reference medium, wherein preferably such concentrations of the afore mentioned salts may be used, which do not lead to damage of mammalian cells due to osmosis or other concentration effects.
- Reference media are e.g. liquids occurring in "in vivd' methods, such as blood, lymph, cytosolic liquids, or other body liquids, or e.g. liquids, which may be used as reference media in "in vitrd' methods, such as common buffers or liquids. Such common buffers or liquids are known to a skilled person. Ringer-Lactate solution is particularly preferred as a liquid basis.
- compatible solid or liquid fillers or diluents or encapsulating compounds suitable for administration to a patient may be used as well for the inventive pharmaceutical composition.
- the term "compatible” as used herein preferably means that these components of the inventive pharmaceutical composition are capable of being mixed with the inventive nucleic acid, vector or cells as defined herein in such a manner that no interaction occurs which would substantially reduce the pharmaceutical effectiveness of the inventive pharmaceutical composition under typical use conditions.
- the pharmaceutical composition according to the present invention may optionally further comprise one or more additional pharmaceutically active components.
- a pharmaceutically active component in this context is a compound that exhibits a therapeutic effect to heal, ameliorate or prevent a particular indication or disease.
- Such compounds include, without implying any limitation, peptides or proteins, nucleic acids, (therapeutically active) low molecular weight organic or inorganic compounds (molecular weight less than 5000, preferably less than 1000), sugars, antigens or antibodies, therapeutic agents already known in the prior art, antigenic cells, antigenic cellular fragments, cellular fractions, cell wall components (e.g. polysaccharides), modified, attenuated or de-activated (e.g. chemically or by irradiation) pathogens (virus, bacteria etc.).
- the inventive pharmaceutical composition may comprise a carrier for the artificial nucleic acid molecule or the vector.
- a carrier may be suitable for mediating dissolution in physiological acceptable liquids, transport and cellular uptake of the pharmaceutical active artificial nucleic acid molecule or the vector.
- a carrier may be a component which may be suitable for depot and delivery of an artificial nucleic acid molecule or vector according to the invention.
- Such components may be, for example, cationic or polycationic carriers or compounds which may serve as transfection or com- plexation agent.
- transfection or complexation agents are cationic or polycationic compounds, including protamine, nucleoline, spermine or spermidine, or other cationic peptides or proteins, such as poly-L-lysine (PLL), poly-arginine, basic polypeptides, cell penetrating peptides (CPPs), including HIV-binding peptides, HIV-1 Tat (HIV), Tat-derived peptides, Penetratin, VP22 derived or analog peptides, HSV VP22 (Herpes sim- plex), MAP, KALA or protein transduction domains (PTDs), PpT620, prolin-rich peptides, arginine-rich peptides, lysine-rich peptides, MPG-peptide(s), Pep-1 , L-oligomers, Calcitonin peptide(s), Antennapedia-derived peptides (particularly from Drosophila antennapedia), p
- cationic or polycationic compounds or carriers may be cationic or polycationic peptides or proteins, which preferably comprise or are additionally modified to comprise at least one -SH moiety.
- a cationic or polycationic carrier is selected from cationic peptides having the following sum formula (I):
- the cationic or polycationic peptide or protein when defined according to formula ⁇ (Arg)i;(Lys) m ;(His) n ;(Orn) 0 ;(Xaa) x ⁇ (formula (I)) as shown above and which comprise or are additionally modified to comprise at least one -SH moeity, may be, without being restricted thereto, selected from subformula (la):
- cationic or polycationic compounds which can be used as transfection or complexation agent may include cationic polysaccharides, for example chitosan, poly- brene, cationic polymers, e.g. polyethyleneimine (PEI), cationic lipids, e.g.
- cationic polysaccharides for example chitosan, poly- brene
- cationic polymers e.g. polyethyleneimine (PEI)
- PEI polyethyleneimine
- cationic lipids e.g.
- DOTMA [1 - (2,3-sioleyloxy)propyl)]-N,N,N-trimethylammonium chloride, DMRIE, di-C14-amidine, DOTIM, SAINT, DC-Chol, BGTC, CTAP, DOPC, DODAP, DOPE: Dioleyl phosphati- dylethanol-amine, DOSPA, DODAB, DOIC, DMEPC, DOGS: Dioctadecylamidoglicylspermin, DIMRI: Dimyristo-oxypropyl dimethyl hydroxyethyl ammonium bromide, DOTAP: dioleoyloxy-3-(trimethylammonio)propane, DC-6-14: O,O- ditetradecanoyl-N-(a-trimethylammonioacetyl)diethanolamine chloride, CLIP1 : rac-[(2,3- dioctadecyloxypropyl)(2-hydroxyethyl)]-d
- modified polyaminoacids such as ⁇ -aminoacid- polymers or reversed polyamides, etc.
- modified polyethylenes such as PVP (poly(N-ethyl- 4-vinylpyridinium bromide)), etc.
- modified acrylates such as pDMAEMA (poly(dimethylaminoethyl methylacrylate)), etc.
- modified Amidoamines such as pAMAM (poly(amidoamine)), etc., modified polybetaaminoester (PBAE), such as diamine end modified 1 ,4 butanediol diacrylate-co-5-amino-1 -pentanol polymers, etc.
- dendrimers such as polypropylamine dendrimers or pAMAM based dendrimers, etc.
- polyimine(s) such as PEI: poly(ethyleneimine), poly(propyleneimine), etc., polyallylamine, sugar backbone based poly
- inventive artificial nucleic acid molecule or the inventive vector is complexed at least partially with a cationic or polycationic compound, preferably cationic proteins or peptides.
- a cationic or polycationic compound preferably cationic proteins or peptides.
- the ratio of complexed nucleic acid to: free nucleic acid is selected from a range, of about 5:1 (w/w) to about 1 :10 (w/w), more preferably from a range of about 4:1 (w/w) to about 1 :8 (w/w), even more preferably from a range of about 3:1 (w/w) to about 1 :5 (w/w) or 1 :3 (w/w), and most preferably the ratio of complexed nucleic acid to free nucleic acid is selected from a ratio of about 1 :1 (w/w).
- the pharmaceutical composition according to the present invention may optionally further comprise one or more adjuvants, for example, adjuvants for stimulating the innate immune system or for enhancing cellular uptake of the artificial nucleic acid molecule or vector.
- an adjuvant may be understood as any compound, which is suitable to initiate or increase an immune response of the innate immune system, i.e. a non-specific immune response.
- the inventive pharmaceutical composition when administered, preferably elicits an innate immune response due to the adjuvant, optionally contained therein.
- such an adjuvant may be an adjuvant supporting the induction of an innate immune response in a mammal.
- Such an adjuvant may be, for example, an immunostimulatory nucleic acid, i.e. a nucleic acid that may bind to a Toll-like-receptor or the like, preferably an immunostimulatory RNA.
- Such adjuvants preferably such immunostimulatory nucleic acids, may induce an innate, i.e. unspecific, immune response which may support a specific, i.e. adaptive, immune response to the peptide or protein, i.e. the antigen, encoded by the artificial nucleic acid molecule of the pharmaceutical composition, preferably the vaccine.
- the inventive pharmaceutical composition may also additionally comprise any further compound, which is known to be immunostimulating due to its binding affinity (as ligands) to human Toll-like receptors TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, or due to its binding affinity (as ligands) to murine Toll-like receptors TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR1 1 , TLR12 or TLR13.
- any further compound which is known to be immunostimulating due to its binding affinity (as ligands) to human Toll-like receptors TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR1 1 , TLR12 or TLR13.
- emulsifiers such as, for example, Tween ®
- wetting agents such as, for example, sodium lauryl sulfate
- colouring agents such as, for example, sodium lauryl sulfate
- taste-imparting agents pharmaceutical carriers
- tablet- forming agents such as, for example, stabilizers; antioxidants; preservatives etc.
- the pharmaceutical composition according to the present invention preferably comprises a "safe and effective amount" of the components of the pharmaceutical composition, particularly of the inventive nucleic acid sequence, the vector and/or the cells as defined herein.
- a "safe and effective amount” means an amount sufficient to significantly induce a positive modification of a disease or disorder as defined herein.
- a "safe and effective amount” preferably avoids serious side-effects and permits a sensible relationship between advantage and risk. The determination of these limits typically lies within the scope of sensible medical judgment.
- the present invention provides the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention for use as a medicament, for example, as vaccine (in genetic vaccination) or in gene therapy.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention are particularly suitable for any medical application which makes use of the therapeutic action or effect of peptides, polypeptides or proteins, or where supplementation of a particular peptide or protein is needed.
- the present invention provides the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention for use in the treatment or prevention of diseases or disorders amenable to treatment by the therapeutic action or effect of peptides, polypeptides or proteins or amenable to treatment by supplementation of a particular peptide, polypeptide or protein.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention may be used for the treatment or prevention of genetic diseases, autoimmune diseases, cancerous or tumour-related diseases, infectious diseases, chronic diseases or the like, e.g., by genetic vaccination or gene therapy.
- Such therapeutic treatments which benefit from a stable and prolonged presence of therapeutic peptides, polypeptides or proteins in a subject to be treated are especially suitable as medical application in the context of the present invention, since the inventive 3'UTR element provides for a stable and prolonged expression of the ORF of the inventive nucleic acid molecule.
- a particularly suitable medical application for the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention is vaccination.
- the present invention provides the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention for vaccination of a subject, preferably a mammalian subject, more preferably a human subject.
- Preferred vaccination treatments are vaccination against infectious diseases, such as bacterial, protozoal or viral infections, and anti-tumour-vaccination. Such vaccination treatments may be prophylactic or therapeutic.
- the ORF may be selected.
- the open reading frame may code for a protein that has to be supplied to a patient suffering from total lack or at least partial loss of function of a protein, such as a patient suffering from a genetic disease.
- the open reading frame may be chosen from an ORF coding for a peptide or protein which beneficially influences a disease or the condition of a subject.
- the open reading frame may code for a peptide or protein which effects down-regulation of a pathological overproduction of a natural peptide or protein or elimination of cells expressing pathologically a protein or peptide.
- the artificial nucleic acid molecule or the vector according to the present invention comprises an O F encoding an amino acid sequence comprising or consisting of an antigen or immunogen, e.g. an epitope of a pathogen or a tumour-associated antigen, a 3'UTR element as described above, and optional further components, such as a poly(A) sequence etc.
- the artificial nucleic acid molecule according to the present invention is RNA, preferably mRNA, since DNA harbours the risk of eliciting an anti-DNA immune response and tends to insert into genomic DNA.
- a viral delivery vehicle such as an adenoviral delivery vehicle
- the artificial nucleic acid molecule or the vector is a DNA molecule.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, and sublingual injection or infusion techniques.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention is administered parenterally, e.g. by parenteral injection, more preferably by subcutaneous, intravenous, intramuscular, intra- articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional, intracranial, transdermal, intradermal, intrapulmonal, intraperitoneal, intracardial, intraarterial, sublingual injection or via infusion techniques. Particularly preferred is intradermal and intramuscular injection.
- Sterile injectable forms of the inventive pharmaceutical composition may be aqueous or oleaginous suspension.
- suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention may also be administered orally in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention may also be administered topically, especially when-the target of treatment includes areas or organs readily accessible by topical application, e.g. including diseases of the skin or of any other accessible epithelial tissue. Suitable topical formulations are readily prepared for each of these areas or organs.
- the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention may be formulated in a suitable ointment suspended or dissolved in one or more carriers.
- the use as a medicament comprises the step of transfection of mammalian cells, preferably in vitro transfection of mammalian cells, more preferably in vitro transfection of isolated cells of a subject to be treated by the medicament. If the use comprises the in vitro transfection of isolated cells, the use as a medicament may further comprise the (re)administration of the transfected cells to the patient.
- the use of the inventive artificial nucleic acid molecules or the vector as a medicament may further comprise the step of selection of successfully transfected isolated cells. Thus, it may be beneficial if the vector further comprises a selection marker.
- the use as a medicament may comprise in vitro transfection of isolated cells and purification of an expression- product, i.e. the encoded peptide or protein from these cells.
- This purified peptide or protein may subsequently be administered to a subject in need thereof.
- the present invention also provides a method for treating or preventing a disease or disorder as described above comprising administering the artificial nucleic acid molecule according to the present invention, the vector according to the present invention, the cell according to the present invention, or the pharmaceutical composition according to the present invention to a subject in need thereof.
- the present invention provides a method for treating or preventing a disease or disorder comprising transfection of a cell with an artificial nucleic acid molecule according to the present invention or with the vector according to the present invention.
- Said transfection may be performed in vitro or in vivo.
- transfection of a cell is performed in vitro and the transfected cell is administered to a subject in need thereof, preferably to a human patient.
- the cell which is to be transfected in vitro is an isolated cell of the subject, preferably of the human patient.
- the present invention provides a method of treatment comprising the steps of isolating a cell from a subject, preferably from a human patient, transfecting the isolated cell with the artificial nucleic acid according to the present invention or the vector according to the present invention, and administering the transfected cell to the subject, preferably the human patient.
- the method of treating or preventing a disorder according to the present invention is preferably a vaccination method and/or a gene therapy method as described above.
- the inventive 3'UTR element is capable of stabilizing an mRNA molecule and/or of stabilizing and/or prolonging the protein production from an mRNA molecule.
- the present invention relates to a method for stabilizing an RNA molecule, preferably an mRNA molecule, comprising the step of associating the RNA molecule, preferably the mRNA molecule, or a vector encoding the RNA molecule, with a 3'UTR element comprising or consisting of a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the 3'UTR of an albumin gene, preferably with the 3'UTR element as described above.
- the present invention relates to a method for increasing protein production from an artificial nucleic acid molecule or from a vector, preferably from an mRNA molecule, and/or for stabilizing and/or prolonging protein production from an artificial nucleic acid molecule or from a vector, preferably from an mRNA molecule, the method comprising the step of associating the artificial nucleic acid molecule or the vector, preferably the mRNA molecule, with a 3'UTR element which comprises or consists of a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the 3'UTR of an albumin gene, preferably with the 3'UTR element as described above.
- association the artificial nucleic acid molecule or the vector with a 3'UTR element in the context of the present invention preferably means functionally associating or functionally combining the artificial nucleic acid molecule or the vector with the 3'UTR element.
- the artificial nucleic acid molecule or the vector and the 3'UTR element preferably the 3'UTR element as described above, are associated or coupled such that the function of the 3'UTR element, e.g., the RNA and/or protein production stabilizing function, is exerted.
- the 3'UTR element is integrated into the artificial nucleic acid molecule or the vector, preferably the mRNA molecule, 3' to an open reading frame, preferably immediately 3' to an open reading frame, preferably between the open reading frame and a poly(A) sequence or a polyadenylation signal.
- the 3'UTR element is integrated into the artificial nucleic acid molecule or the vector, preferably the mRNA, as 3'UTR, i.e.
- the 3'UTR element is the 3'UTR of the artificial nucleic acid molecule or the vector, preferably the mRNA, i.e., such that it extends from the 3'-side of the open reading frame to the 5'-side of a poly(A) sequence or a polyadenylation signal, optionally connected via short linker, such as a sequence comprising or consisting of one or more restriction sites.
- the term "associating the artificial nucleic acid molecule or the vector with a 3'UTR element” means functionally associating the 3'UTR element with an open reading frame located within the artificial nucleic acid molecule or the vector, preferably within the mRNA molecule.
- the 3'UTR and the ORF are as described above for the artificial nucleic acid molecule according to the present invention, for example, preferably the ORF and the 3'UTR are heterologous, e.g. derived from different genes, as described above.
- the present invention provides the use of a 3'UTR element, preferably the 3'UTR element as described above, for increasing the stability of an RNA molecule, preferably of an mRNA molecule, wherein the 3'UTR element comprises or consists of a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the 3'UTR of an albumin gene.
- the present invention provides the use of a 3'UTR element, preferably the 3'UTR element as described above, for increasing protein production from an artificial nucleic acid molecule or a vector, preferably from an mRNA molecule, and/or for stabilizing and/or prolonging protein production from an artificial nucleic acid molecule or a vector molecule, preferably from an mRNA molecule, wherein the 3'UTR element comprises or consists of a nucleic acid sequence which is derived from the 3'UTR of an albumin gene or from a variant of the 3'UTR of an albumin gene as described above.
- the uses according to the present invention preferably comprise associating the artificial nucleic acid molecule, the vector, or the RNA with the 3'UTR element as described above.
- kits or kit of parts comprising an artificial nucleic acid molecule according to the invention, an vector according the invention, a cell according to the invention, and/or a pharmaceutical composition according to the invention.
- kit or kits of parts may, additionally, comprise instructions for use, cells for transfection, an adjuvant, a means for administration of the pharmaceutical composition, a pharmaceutically acceptable carrier and/or an pharmaceutically acceptable solution for dissolution or dilution of the artificial nucleic acid molecule, the vector, the cells or the pharmaceutical composition.
- Fig. 1 shows the effect of the human cc-globin 3'UTR, of the human albumin 3'UTR and of the human ⁇ -glucuronidase 3'UTR on luciferase expression from an artificial mRNA.
- the mRNA comprising the human albumin 3'UTR is an mRNA according to the present invention. It comprises an open reading frame encoding Luciferase of Photinus pyralis, followed in 5'-to-3'-direction by a 3'UTR element according to SEQ ID No. 2 and by a poly(A) sequence having a length of 64 adenines. A markedly extended protein expression from the artificial mRNA containing the human albumin 3'UTR corresponding to SEQ ID No. 2 is observable.
- the effect of the human a-globin 3'-UTR, of the human albumin 3'-UTR, or of the human ⁇ -glucuronidase 3'-UTR on luciferase expression from mRNA was examined, compared to Luciferase expression from mRNA lacking a 3'-UTR. Therefore, different mRNAs were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after transfection. The luciferase level from mRNA lacking a 3'-UTR drops from 6 hours to 48 hours, 10% of the 6-hours-signal remaining at 48 hours. The ⁇ -globin 3'-UTR stabilizes luciferase expression from mRNA moderately.
- the inventive human albumin 3'-UTR further markedly extends Luciferase expression from mRNA.
- the 3'-UTR of the stable ⁇ -glucuronidase mRNA does not extend Luciferase expression to the extent observed for the albumin 3'-UTR, confirming that the albumin 3'-UTR is particularly efficient at extending protein expression from mRNA.
- Data are graphed as mean RLU ⁇ SD (relative light units ⁇ standard deviation) for triplicate transfections. RLU are summarized in Example 5.1 .
- Fig. 2 shows the effect of the human albumin 3'-UTR on luciferase expression from mRNA, compared to luciferase expression from mRNA containing the human a- globin 3'-UTR or the 3'-UTR each of several different stable mRNAs. Therefore, different mRNAs were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after transfection. The luciferase level from mRNA lacking a 3'-UTR drops from 6 hours to 48 hours, 14% of the 6-hours- signal remaining at 48 hours. The ⁇ -globin 3'-UTR stabilizes luciferase expression from mRNA moderately.
- the inventive human albumin 3'-UTR further markedly extends luciferase expression from mRNA.
- the 3'-UTRs of several different stable mRNAs do affect luciferase expression from mRNA in a much less favourable manner:
- the atp5o and atp5l 3'-UTRs stabilize luciferase expression much less than the albumin 3'-UTR.
- atp5o and atp5l 3'-UTRs reduce luciferase levels substantially compared to the albumin 3'-UTR.
- the 3'-UTR of the stable ndufal mRNA does stabilize luciferase expression markedly.
- the albumin 3'-UTR is unique at extending protein expression while maintaining total protein expression. Data are graphed as mean RLU + SD (relative light units ⁇ standard deviation) for triplicate transfections. RLU are summarized in Example 5.2. shows the effect of point mutations to remove either a Hindlll and/or an Xbal restriction site and/or a T7 termination signal from the human albumin 3'-UTR on luciferase expression from mRNA containing the human albumin 3'-UTR. Therefore, different mRNAs were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection.
- the PpLuc Signal was corrected for transfection efficiency by the signal of cotransfected RrLuc.
- the a-globin 3'-UTR stabilizes luciferase expression from mRNA only very moderately.
- all variants of the albumin 3'-UTR markedly extend luciferase expression from mRNA.
- Data are graphed as mean RLU + SD (relative light units ⁇ standard deviation) for triplicate transfections.
- RLU are summarized in Example 5.4. shows the mRNA sequence of PpLuc(GC) - A64 lacking a 3'-UTR.
- Fig. 5 shows the mRNA sequence of PpLuc(GC) - albumin - A64.
- the 3'-UTR of human albumin was inserted between ORF and poly(A).
- the sequence was taken from Dugaiczyk et al. 1982; Proc Natl Acad Sci U S A. Jan;79(1 ):71 -5. shows the mRNA sequence of PpLuc(GC) - albumin2 - A64.
- the 3'-UTR of human albumin, with the T7 termination signal removed by a single point mutation, was inserted between ORF and poly(A).
- the 3'-UTR of human albumin, with the T7 termination signal removed by a single point mutation was inserted between ORF and poly(A).
- FIG. 1 shows the mRNA sequence of PpLuc(GC) - albumin7 - A64.
- the center, a-complex- binding portion of the 3'-UTR of human a-globin was inserted between ORF and poly(A).
- the 3'-UTR of human ⁇ -glucuronidase was inserted between ORF and poly(A).
- FIG. 1 shows the mRNA sequence of PpLuc(GC) - atp5o - A64.
- the 3'-UTR of human ATP synthase subunit O was inserted between ORF and poly(A).
- the 3'-UTR of human NADH dehydrogenase [ubiquinone] 1 a subcomplex subunit 1 was inserted between ORF and poly(A).
- the 3'-UTR of human ATP synthase subunit g was inserted between ORF and poly(A).
- the curves represent the amount of protein produced from nucleic acid molecules, e.g. in mammalian cells, measured over time.
- the continuous line represents protein production from the artificial nucleic acid molecule according to the present invention, e.g. an artificial mRNA
- the dashed line represents the protein production from a reference nucleic acid molecule, e.g. lacking a 3'UTR or comprising a reference 3'UTR such as a 3'UTR naturally occurring with the ORF encoding the reporter protein.
- the continuous horizontal bold line represents a threshold value.
- the protein amount measured 1 , 2, 3, 4, 5, or 6 hours post initiation of expression, such as post transfection of the nucleic acid molecule may be, for example, the protein amount measured 1 , 2, 3, 4, 5, or 6 hours post initiation of expression, such as post transfection of the nucleic acid molecule. It can be seen that the protein amount produced from a reference nucleic acid molecule undercuts the threshold value at about 32 hours post initiation of expression, such as post transfection, whereas the protein amount produced from the artificial nucleic acid molecule according to the present invention undercuts the threshold value at about 68 hours post initiation of expression, such as post transfection.
- the total amount of protein produced equals the area under the curve (AUC).
- the total amount of protein produced from the artificial nucleic acid molecule according to the present invention is at least the total amount of protein produced from a reference nucleic acid molecule lacking a 3'UTR.
- Fig. 18 shows the effect of different albumin 3'-UTRs from primates on luciferase expression from artificial mRNA, compared to luciferase expression from mRNA lacking a 3'-UTR.
- the mRNA comprising the human albumin 3'UTR (albumin) and the mRNA comprising the 3'UTR of albumin from Olive baboon (albumin8) are mRNAs according to the present invention. They comprise an open reading frame encoding Luciferase of Photinus pyralis, followed in 5'-to-3'- direction by a 3'UTR element according to SEQ ID No. 2 or SEQ ID No. 33 and by a poly(A) sequence having a length of 64 adenines. A markedly extended protein expression from the artificial mRNAs containing the albumin 3'UTRs corresponding to SEQ ID No. 2 or SEQ ID No. 33 is observable.
- the effect of the human albumin 3'-UTR and the 3'UTR of albumin from Olive baboon on luciferase expression from mRNA was examined, compared to Luciferase expression from mRNA lacking a 3'-UTR.
- the different mRNAs were electroporated into human dermal fibroblasts (HDF). Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection. The luciferase level from mRNA lacking a 3'-UTR drops from 6 hours to 72 hours, 5% of the 6-hours-signal remaining at 72 hours.
- the inventive human albumin 3'-UTR markedly extends luciferase expression from mRNA.
- the albumin 3'-UTR from Olive baboon extends luciferase expression from mRNA to the same extent as the human albumin 3'UTR sequence.
- Albumin 3'-UTRs from primates are thus particularly suitable for extending protein expression from mRNA.
- Data are graphed as mean RLU + SD (relative light units + standard deviation) for triplicate transfections. RLU are summarized in Example 5.4, table 7.
- Fig. 19 shows the effect of different albumin 3'-UTRs from primates on luciferase expression from mRNA, compared to luciferase expression from mRNA lacking a 3'-UTR, using a different method of transfection. Therefore, different mRNAs were lipofected into human dermal fibroblasts (HDF). Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection. The luciferase level from mRNA lacking a 3'-UTR drops from 6 hours to 48 hours to 82% of the 6-hours- signal. Again, the human albumin 3'-UTR markedly extends luciferase expression from mRNA, the 48-hours signal being higher than the 6-hours signal.
- HDF human dermal fibroblasts
- the albumin 3'-UTR from Olive baboon extends luciferase expression from mRNA to a similar extent as the human albumin 3'UTR sequence.
- Albumin 3'-UTRs from primates are thus particularly suitable for extending protein expression from mRNA.
- Data are graphed as mean RLU ⁇ SD (relative light units ⁇ standard deviation) for triplicate transfections. RLU are summarized in Example 5.4, table 9.
- Fig. 20 shows the effect of different albumin 3'-UTRs from primates on luciferase expression from mRNA in mouse cells, compared to luciferase expression from mRNA lacking a 3'-UTR. Therefore, different mRNAs were lipofected into L-929 cells, a murine fibroblast cell line. Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection. The luciferase level from mRNA lacking a 3'- UTR drops from 6 hours to 48 hours, 23% of the 6-hours-signal remaining at 48 hours. Even in the murine cells does the human albumin 3'-UTR markedly extend luciferase expression from mRNA.
- the albumin 3'-UTR from Olive baboon extends luciferase expression from mRNA similarly.
- Albumin 3'-UTRs from primates are thus particularly suitable for extending protein expression from mRNA in mammalian cell types.
- Data are graphed as mean RLU + SD (relative light units ⁇ standard deviation) for triplicate transfections.
- RLU are summarized in Example 5.5, table 1 1 . shows the effect of different albumin 3'-UTRs from mammals on luciferase expression from mRNA, compared to luciferase expression from mRNA lacking a 3'-UTR. Therefore, different mRNAs were lipofected into HeLa cells.
- Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection.
- the luciferase level from mRNA lacking a 3'-UTR drops from 6 hours to 48 hours, 49% of the 6-hours-signal remaining at 48 hours.
- the human albumin 3'-UTR and the albumin 3'-UTR from Olive baboon markedly extend luciferase expression from mRNA, the 48-hours signal being higher than the 6-hours signal.
- albumin 3'-UTR from mouse albumin9 extends luciferase expression from mRNA similarly.
- Albumin 3'-UTRs from mammals are thus particularly suitable for extending protein expression from mRNA. Data are graphed as mean RLU + SD (relative light units + standard deviation) for triplicate transfections. RLU are summarized in Example 5.6, table 13.
- Fig. 22 shows the mRNA sequence of PpLuc(GC) - albumin8 - A64.
- Olive baboon albumin was inserted between ORF and poly(A). The sequence was taken from the NCBI Reference Sequence XM_003898783.1 .
- Fig. 23 shows the mRNA sequence of PpLuc(GC) - albumin9 - A64.
- the 3'-UTR of mouse albumin was inserted between ORF and poly(A).
- the sequence was taken from the NCBI Reference Sequence NM_009654.3.
- a vector for in vitro transcription was constructed containing a T7 promoter followed by a GC-enriched sequence coding for Photinus pyralis luciferase (PpLuc(GQ) and an A64 poly(A) sequence.
- the poly(A) sequence was immediately followed by a restriction site used for linearization of the vector before in vitro transcription in order to obtain mRNA ending in an A64 poly(A) sequence.
- mRNA obtained from this vector accordingly by in vitro transcription is designated as graspPpLuc(GC) - A64".
- This vector was modified to include untranslated sequences 3' of the open reading frame (3'-UTR).
- Vectors comprising the following mRNA encoding sequences have been generated ( Figures 4 to 16 and Figures 22 and 23):
- SEQ ID NO. 8 (Fig. 7): PpLuc(GC) - albumin3 - A64
- SEQ ID NO. 1 1 (Fig. 10): PpLuc(GC) - albumin6 - A64
- mRNAs used in the examples have been obtained by in vitro transcription of said vectors.
- the DNA-template according to Example 1 was linearized and transcribed in vitro using T7- Polymerase. The DNA-template was then digested by DNase-treatment. mRNA transcripts contained a 5'-CAP structure obtained by adding an excess of N7-Methyl-Guanosine-5'- Triphosphate-5'-Guanosine to the transcription reaction. mRNA thus obtained was purified and resuspended in water.
- Opti-MEM Cells were trypsinized and washed in opti-MEM. 5x10 4 or 1 x10 5 cells in 200 ⁇ of opti-MEM each were electroporated with 0.3 or 1 g of PpLuc-encoding mRNA. As a control, mRNA not coding for PpLuc was electroporated separately. In some experiments, mRNA coding for Renilla reniformis luciferase (RrLuc) was electroporated together with PpLuc mRNA to control for transfection efficiency (0.1 pg of RrLuc mRNA). Electroporated cells were seeded in 24-well plates in 1 ml of medium.
- Renilla reniformis luciferase Renilla reniformis luciferase
- lysis buffer 25 mM Tris, pH 7.5 (HCI), 2 mM EDTA, 10% glycerol, 1 % Triton X-100, 2 mM DTT, 1 mM PMSF or alternatively Passive Lysis Buffer, Promega. Lysates were stored at -20°C until luciferase activity was measured.
- 3.2 mRNA lipofection Cells were seeded in 96 well plates three days before transfection (2500 or 5000 cells per well). Immediately before lipofection, cells were washed in opti-MEM. Cells were lipofected with 25 ng of PpLuc-encoding mRNA per well complexed with Lipofectamine2000. mRNA coding for Renilla reniformis luciferase (RrLuc) was cotransfected together with PpLuc mRNA to control for transfection efficiency (2.5 ng of RrLuc mRNA per well). 6, 24, 48, or 72 hours after transfection, medium was aspirated and cells were lysed in 100 ⁇ of lysis buffer (Passive Lysis Buffer, Promega). Lysates were stored at -80°C until luciferase activity was measured.
- Renilla reniformis luciferase Renilla reniformis luciferase
- Luciferase activity was measured as relative light units (RLU) in a BioTek SynergyHT plate reader. PpLuc activity was measured at 5 seconds measuring time using 50 ⁇ of lysate and 200 ⁇ of luciferin buffer (75 ⁇ luciferin, 25 mM Glycylglycin, pH 7.8 (NaOH), 1 5 mM MgS04, 2 mM ATP).
- RLU relative light units
- RrLuc activity was measured at 5 seconds measuring time using 50 ⁇ of lysate and 200 ⁇ of coelenterazin buffer (40 ⁇ coelenterazin, 2.2 mM EDTA, 220 mM KH 2 P04/K 2 HP04 pH 5.0, 1 .1 M NaCI, 1 .3 mM NaN 3 , 0.44 g/l BSA).
- luciferase activity was measured as relative light units (RLU) in a Hidex Chameleon plate reader.
- PpLuc activity was measured at 2 seconds measuring time using 20 ⁇ of lysate and 100 ⁇ of luciferin buffer (Beetle-Juice, PJK GmbH).
- RrLuc activity was measured at 2 seconds measuring time using 20 ⁇ of lysate and 100 ⁇ of coelenterazin buffer (Renilla-Juice, PJK GmbH).
- Albumin 3'-UTR extends protein expression from mRNA markedly more than the well- known o-globin 3'-UTR
- mRNAs with different 3'-UTRs were synthesized according to Examples 1 -2: mRNA contained either the center, a-complex-binding portion of the 3'-UTR of human a-globin (PpLuc(GC)-ag-A64 according to SEQ ID No. 13), since the a-globin 3'-UTR has been reported to stabilize mRNA independent of coding region sequence (Rodgers, N.D., Wang, Z. & Kiledjian, M., 2002. Regulated alpha-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping.
- RNA RNA, 8(12), S.1526 -1537.
- mRNA contained the 3'-UTR of human albumin (PpLuc(GC)-albumin-A64 according to SEQ ID No. 6).
- Human albumin mRNA has been reported to be stable Qohnson, T.R. et al., 1 991 .
- Newly synthesized RNA simultaneous measurement in intact cells of transcription rates and RNA stability of insulin-like growth factor I, actin, and albumin in growth hormone-stimulated hepatocytes. Proceedings of the National Academy of Sciences, 88(12), S.5287-5291 ).
- mRNA containing the 3'-UTR of human ⁇ -glucuronidase (PpLuc(GC)-gusb-A64 according to SEQ ID No. 14) was used.
- This human ⁇ -glucuronidase mRNA has also been reported to be stable (Watson, G. & Paigen, K., 1987. Genetic variations in kinetic constants that describe beta-glucuronidase mRNA induction in androgen- treated mice. Molecular and Cellular Biology, 7(3), S.1085 -1090.).
- mRNA lacking a 3'-UTR was also used (PpLuc(GC)-A64 according to SEQ ID No. 5).
- Luciferase- encoding mRNAs were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after transfection (see following Table 1 and Figure 1 ).
- the luciferase level from mRNA lacking a 3'-UTR dropped from 6 hours to 48 hours, 10% of the 6-hours-signal remaining at 48 hours.
- the a-globin 3'-UTR stabilized luciferase expression from mRNA only moderately. Strikingly however, the human albumin 3'-UTR further markedly extended luciferase expression from mRNA. In contrast, the 3'-UTR of ⁇ - glucuronidase did not extend luciferase expression to the extent observed for the albumin 3'-UTR.
- albumin 3'-UTR stabilized protein expression much more than the well-known a-globin 3'-UTR and more than the 3'-UTR of stable ⁇ -glucuronidase mRNA. This result demonstrates that the albumin 3'-UTR is particularly efficient at extending protein expression from mRNA.
- Albumin 3'-UTR is unique at extending protein expression while maintaining total protein expression Extension of protein expression by the albumin 3'-UTR might manifest a generic effect of 3'- UTRs of stable mRNAs (even though the very limited effect of the ⁇ -globin 3'-UTR observed in Example 5.1 does not attest to this argument).
- mRNAs were synthesized containing the 3'-UTR of the stable mRNAs (Friedel, C.C. et el., 2009. conserveed principles of mammalian transcriptional regulation revealed by RNA half-life.
- Luciferase-encoding mRNAs were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, and 48 hours after transfection (see following Table 3 and Figure 2).
- the luciferase level from mRNA lacking a 3'-UTR dropped from 6 hours to 48 hours, 14% of the 6-hours-signal remaining at 48 hours.
- the a-globin 3'-UTR stabilized luciferase expression from mRNA moderately. Strikingly however, the human albumin 3'-UTR further markedly extended luciferase expression from mRNA.
- the 3'-UTRs of several different stable mRNAs affect luciferase expression from mRNA in a much less favourable manner:
- the atp5o and atp5l 3'-UTRs stabilized luciferase expression much less than the albumin 3'-UTR.
- the atp5o and the atp5l 3'-UTRs luciferase levels substantially compared to the albumin 3'-UTR.
- the 3'-UTR of the stable ndufal mRNA did stabilize luciferase expression markedly.
- the ndufal 3'-UTR also reduced luciferase levels substantially.
- the albumin 3'-UTR was unique at extending protein expression while maintaining total protein expression.
- the albumin 3'-UTR gave rise to substantially higher protein expression at the latest time point compared to the well-known a-globin 3'-UTR and 3'-UTRs of several different stable mRNAs. This result demonstrates that the albumin 3'-UTR is particularly suitable for extending protein expression from mRNA.
- the human albumin 3'-UTR contains a Hindlll restriction site, an Xbal restriction site, and a T7 termination signal.
- mRNA was synthesized containing variants of the human albumin 3'-UTR with the Hindlll and/or the Xbal restriction site and/or the T7 termination signal removed by point mutation(s) (PpLuc(GC)-albumin2-7 according to SEQ ID Nos. 1 7- 12).
- Luciferase-encoding mRNAs were electroporated into HeLa cells. Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection. The PpLuc Signal was corrected for transfection efficiency by the signal of cotransfected RrLuc (see following Table 5 and Figure 3).
- the luciferase level from mRNA lacking a 3'-UTR dropped from 6 hours to 72 hours, 5% of the 6-hours-signal remaining at 72 hours.
- the a-globin 3'-UTR stabilized luciferase expression from mRNA only very moderately.
- all variants of the albumin 3'-UTR markedly extended luciferase expression from mRNA.
- the albumin 3'-UTR was least homologous to the human albumin 3'-UTR (Common chimpanzee: 99% identity, Pygmy chimpanzee. 99% identity, Sumatran orang-utan: 99% identity, Olive baboon. 96% identity).
- mRNA was synthesized containing the 3'-UTR of the Olive baboon albumin gene (PpLuc(GC)-albumin8-A64 according to SEQ ID No. 40). Luciferase-encoding mRNAs were electroporated into human dermal fibroblasts (HDF). Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection. The PpLuc signal was corrected for transfection efficiency by the signal of cotransfected RrLuc (see following Table 7 and Figurel 8).
- PpLuc(GC)-albumin8-A64 71463 123361 51361 18373 The ratio of the luciferase level at 72 hours and 6 hours, higher figures indicating stabilization of protein expression, was calculated. These data, indicating how much any 3'- UTR stabilized the time course of protein expression, are summarized in Table 8.
- the luciferase level from mRNA lacking a 3'-UTR dropped from 6 hours to 72 hours, 5% of the 6-hours-signal remaining at 72 hours.
- the human albumin 3'-UTR markedly extended luciferase expression from mRNA.
- albumin 3'-UTR Upon lipofection rather than electroporation, again both human albumin 3'-UTR and the albumin 3'-UTR from Olive baboon extended luciferase expression from mRNA markedly. This result confirms that albumin 3'-UTRs from primates are particularly suitable for extending protein expression from mRNA.
- the luciferase level from mRNA lacking a 3'-UTR dropped from 6 hours to 48 hours, 23% of the 6-hours-signal remaining at 48 hours.
- the human albumin 3'-UTR markedly extended luciferase expression from mRNA in the mouse cell line.
- the albumin 3'-UTR from Olive baboon also extended luciferase expression from mRNA in the mouse cell line. This result demonstrates that albumin 3'-UTRs from primates are particularly suitable for extending protein expression from mRNA in mammalian cell types.
- Albumin 3'-UTRs of mammals extend protein expression from mRNA Extension of protein expression by the albumin 3'-UTR might be species-specific. Comparing albumin 3'-UTRs from different mammals, the mouse albumin 3'-UTR was least homologous to the human albumin 3'-UTR (Horse: 86% identity, Domestic dog: 84% identity, Cattle: 74% identity, Rat: 73% identity, Mouse: 72% identity).
- mRNA was synthesized containing the 3'-UTR of the mouse albumin gene (PpLuc(GC)-albumin9-A64 according to SEQ ID No. 41 ). Luciferase-encoding mRNAs were lipofected into HeLa cells. Luciferase levels were measured at 6, 24, 48, and 72 hours after transfection. The PpLuc signal was corrected for transfection efficiency by the signal of cotransfected RrLuc (see following Table 13 and Figure 21 ).
- the luciferase level from mRNA lacking a 3'-UTR dropped from 6 hours to 48 hours, 49% of the 6-hours-signal remai ning at 48 hours.
- the human albumi n 3'-UTR and the albumin 3'-UTR from Olive baboon markedly extended luciferase expression from mRNA.
- the albumi n 3'-UTR from mouse simi larly extended luciferase expression from mRNA i n the human HeLa cel l line. This result demonstrates that albumin 3'-UTRs from mammals are particularly suitable for extending protein expression from mRNA.
- CAUCACAUUU AAAAGCAUCU CAGCCUACCA UGAGAAUAAG AGAAAGAAAA UGAAGAUCAA
- AAGCUUAUUC AUCUGUUUUU CUUUUUCGUU GGUGUAAAGC CAACACCCUG UCUAAAAAAC AUAAAUUUCU UUAAUCAUUU UGCCUCUUUU CUCUGUGCUU CAAUUAAUAA AAAAUGGAAA GAAUCU
- CAUCACAUUU AAAAGCAUCU CAGCCUACCA UGAGAAUAAG AGAAAGAAAA UGAAGAUCAA
- AAGCUUAUUC AUCUGUUUUU CUUUUUCGUU GGUGUAAAGC CAACACCCUG UCUAAAAAAC AUAAAUUUCU UUAAUCAUUU UGCCUCUUUU CUCUGUGCUU CAAUUAAUAA AAAAUGGAAA GAAUCUAGAU CUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
- SEQ ID No. 21 CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA AAGCTTATTC ATCTGTTTTT CTTTTTCGTT GGTGTAAAGC CAACACCCTG TCTAAAAAAC ATAAATTTCT
- CAGCCTACCA TGAGAATAAG AGAAAGAAAA TGAAGATCAA AAGCTTATTC ATCTGTTTTT CTTTTTCGTT GGTGTAAAGC CAACACCCTG TCTAAAAAAC ATAAATTTCT TTAATCATTT TGCCTCTTTT CTCTGTGCTT CAATTAATAA
- CTTTTTCGTT GGTGTAAAGC CAACACCCTG TCTAAAAAAC ATAAATTTCT TTAATCATTT TGCCTCTTTT CTCTGTGCTT CAATTAATAA
- CTGTCTAAAA AACTATAAAT TTCTTTAATC ATTTTGCCTC TTTTCTCTGT GCTTCAATTA
- GACCGACTAC CAGGGCTTCC AGTCGATGTA CACGTTCGTG ACCAGCCACC TCCCGCCGGG
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Epidemiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015502141A JP6298039B2 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecule |
SG11201405542UA SG11201405542UA (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
US14/388,220 US9890391B2 (en) | 2012-03-27 | 2013-03-27 | RNA vector with an open reading frame, an albumin 3′-UTR, and a histone stem loop |
EP13712694.2A EP2831239B1 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
KR1020147030132A KR102186497B1 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
CN201380016594.9A CN104220599A (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
BR112014023800A BR112014023800A2 (en) | 2012-03-27 | 2013-03-27 | artificial nucleic acid molecules |
ES13712694.2T ES2660459T3 (en) | 2012-03-27 | 2013-03-27 | Artificial Nucleic Acid Molecules |
CA2866955A CA2866955A1 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
RU2014142994A RU2651498C2 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
AU2013242403A AU2013242403B2 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
MX2014011620A MX357803B (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPPCT/EP2012/001337 | 2012-03-27 | ||
EP2012001337 | 2012-03-27 | ||
EPPCT/EP2012/002446 | 2012-06-08 | ||
EP2012002446 | 2012-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013143698A1 true WO2013143698A1 (en) | 2013-10-03 |
Family
ID=48013920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/000936 WO2013143698A1 (en) | 2012-03-27 | 2013-03-27 | Artificial nucleic acid molecules |
Country Status (13)
Country | Link |
---|---|
US (1) | US9890391B2 (en) |
EP (1) | EP2831239B1 (en) |
JP (1) | JP6298039B2 (en) |
KR (1) | KR102186497B1 (en) |
CN (1) | CN104220599A (en) |
AU (1) | AU2013242403B2 (en) |
BR (1) | BR112014023800A2 (en) |
CA (1) | CA2866955A1 (en) |
ES (1) | ES2660459T3 (en) |
MX (1) | MX357803B (en) |
RU (1) | RU2651498C2 (en) |
SG (2) | SG10201607962RA (en) |
WO (1) | WO2013143698A1 (en) |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
WO2015024667A1 (en) * | 2013-08-21 | 2015-02-26 | Curevac Gmbh | Method for increasing expression of rna-encoded proteins |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
WO2015101414A2 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Artificial nucleic acid molecules |
WO2015101415A1 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Artificial nucleic acid molecules |
CN104789527A (en) * | 2015-05-15 | 2015-07-22 | 江苏杰晟生物科技有限公司 | Method for preparing autologous natural killer cell in cocktail culture and and kit product |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
WO2016091391A1 (en) * | 2014-12-12 | 2016-06-16 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
WO2016107877A1 (en) * | 2014-12-30 | 2016-07-07 | Curevac Ag | Artificial nucleic acid molecules |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
WO2017049245A2 (en) | 2015-09-17 | 2017-03-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2017059902A1 (en) * | 2015-10-07 | 2017-04-13 | Biontech Rna Pharmaceuticals Gmbh | 3' utr sequences for stabilization of rna |
WO2017066781A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs with modified phosphate linkage |
WO2017066791A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Sugar substituted mrna cap analogs |
WO2017066793A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs and methods of mrna capping |
WO2017066782A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Hydrophobic mrna cap analogs |
WO2017066789A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs with modified sugar |
WO2017112865A1 (en) | 2015-12-22 | 2017-06-29 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2017162461A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
WO2017218704A1 (en) | 2016-06-14 | 2017-12-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2018089540A1 (en) | 2016-11-08 | 2018-05-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2018170306A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2018170336A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
EP3415629A1 (en) * | 2013-12-30 | 2018-12-19 | CureVac AG | Artificial nucleic acid molecules |
WO2018232120A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2019036638A1 (en) | 2017-08-18 | 2019-02-21 | Modernatx, Inc. | Methods of preparing modified rna |
WO2019046809A1 (en) | 2017-08-31 | 2019-03-07 | Modernatx, Inc. | Methods of making lipid nanoparticles |
EP3495486A1 (en) | 2013-12-30 | 2019-06-12 | CureVac AG | Artificial nucleic acid molecules |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
WO2020061367A1 (en) | 2018-09-19 | 2020-03-26 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2020160397A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
WO2020160430A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Vortex mixers and associated methods, systems, and apparatuses thereof |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
EP3808380A1 (en) * | 2016-12-08 | 2021-04-21 | CureVac AG | Rna for treatment or prophylaxis of a liver disease |
EP3610035A4 (en) * | 2017-04-14 | 2021-06-09 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for transient gene therapy with enhanced stability |
WO2021204175A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
WO2021204179A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
WO2022002040A1 (en) | 2020-06-30 | 2022-01-06 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
US11254951B2 (en) | 2014-12-30 | 2022-02-22 | Curevac Ag | Artificial nucleic acid molecules |
WO2022037652A1 (en) | 2020-08-20 | 2022-02-24 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2022152141A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Polymer conjugated lipid compounds and lipid nanoparticle compositions |
WO2022152109A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
EP4035659A1 (en) | 2016-11-29 | 2022-08-03 | PureTech LYT, Inc. | Exosomes for delivery of therapeutic agents |
WO2022247755A1 (en) | 2021-05-24 | 2022-12-01 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2023044343A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Acyclic lipids and methods of use thereof |
WO2023044333A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Cyclic lipids and methods of use thereof |
EP4162950A1 (en) | 2021-10-08 | 2023-04-12 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
WO2023056917A1 (en) | 2021-10-08 | 2023-04-13 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2023056914A1 (en) | 2021-10-08 | 2023-04-13 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
US11661634B2 (en) | 2015-05-08 | 2023-05-30 | CureVac Manufacturing GmbH | Method for producing RNA |
US20230167456A2 (en) * | 2015-08-10 | 2023-06-01 | CureVac Manufacturing GmbH | Method of increasing the replication of a circular dna molecule |
US11667910B2 (en) | 2015-05-29 | 2023-06-06 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
WO2023116804A1 (en) | 2021-12-23 | 2023-06-29 | 苏州艾博生物科技有限公司 | Lipid compound and lipid nanoparticle composition |
WO2023122752A1 (en) | 2021-12-23 | 2023-06-29 | Renagade Therapeutics Management Inc. | Constrained lipids and methods of use thereof |
US11739125B2 (en) | 2013-08-21 | 2023-08-29 | Cure Vac SE | Respiratory syncytial virus (RSV) vaccine |
WO2023196931A1 (en) | 2022-04-07 | 2023-10-12 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
US11786590B2 (en) | 2015-11-09 | 2023-10-17 | CureVac SE | Rotavirus vaccines |
US11866754B2 (en) | 2015-10-16 | 2024-01-09 | Modernatx, Inc. | Trinucleotide mRNA cap analogs |
WO2024037578A1 (en) | 2022-08-18 | 2024-02-22 | Suzhou Abogen Biosciences Co., Ltd. | Composition of lipid nanoparticles |
EP4353257A2 (en) | 2015-04-13 | 2024-04-17 | CureVac Manufacturing GmbH | Method for producing rna compositions |
US12083190B2 (en) | 2013-08-21 | 2024-09-10 | CureVac SE | Rabies vaccine |
WO2024192277A2 (en) | 2023-03-15 | 2024-09-19 | Renagade Therapeutics Management Inc. | Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents |
WO2024192291A1 (en) | 2023-03-15 | 2024-09-19 | Renagade Therapeutics Management Inc. | Delivery of gene editing systems and methods of use thereof |
US12109275B2 (en) | 2010-08-13 | 2024-10-08 | CureVac SE | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012116714A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in elderly patients |
WO2013120500A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
WO2013120498A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
WO2013120497A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
WO2013120499A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
BR112014023800A2 (en) | 2012-03-27 | 2017-07-18 | Curevac Gmbh | artificial nucleic acid molecules |
CA2866945C (en) | 2012-03-27 | 2021-05-04 | Curevac Gmbh | Artificial nucleic acid molecules comprising a 5'top utr |
RU2658490C2 (en) | 2012-03-27 | 2018-06-21 | Кьюрвак Аг | Artificial nucleic acid molecules for improved protein or peptide expression |
SG10201710473VA (en) | 2013-02-22 | 2018-02-27 | Curevac Ag | Combination of vaccination and inhibition of the pd-1 pathway |
CN105473157A (en) | 2013-08-21 | 2016-04-06 | 库瑞瓦格股份公司 | Combination vaccine |
CA2925021A1 (en) | 2013-11-01 | 2015-05-07 | Curevac Ag | Modified rna with decreased immunostimulatory properties |
SG10201805660WA (en) | 2013-12-30 | 2018-08-30 | Curevac Ag | Methods for rna analysis |
ES2754239T3 (en) | 2014-03-12 | 2020-04-16 | Curevac Ag | Combination of vaccination and OX40 agonists |
EP3129050A2 (en) | 2014-04-01 | 2017-02-15 | CureVac AG | Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant |
BR112016024644A2 (en) | 2014-04-23 | 2017-10-10 | Modernatx Inc | nucleic acid vaccines |
AU2015273933B2 (en) | 2014-06-10 | 2021-02-11 | CureVac Manufacturing GmbH | Methods and means for enhancing RNA production |
SI3766916T1 (en) | 2014-06-25 | 2023-01-31 | Acuitas Therapeutics Inc. | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
WO2016165831A1 (en) | 2015-04-17 | 2016-10-20 | Curevac Ag | Lyophilization of rna |
EP3603661A3 (en) | 2015-04-22 | 2020-04-01 | CureVac AG | Rna containing composition for treatment of tumor diseases |
EP3289101B1 (en) | 2015-04-30 | 2021-06-23 | CureVac AG | Immobilized poly(n)polymerase |
SG11201708652YA (en) | 2015-05-15 | 2017-11-29 | Curevac Ag | Prime-boost regimens involving administration of at least one mrna construct |
EP3916091A3 (en) | 2015-05-20 | 2022-03-30 | CureVac AG | Dry powder composition comprising long-chain rna |
SG11201708541QA (en) | 2015-05-20 | 2017-12-28 | Curevac Ag | Dry powder composition comprising long-chain rna |
US11608513B2 (en) | 2015-05-29 | 2023-03-21 | CureVac SE | Method for adding cap structures to RNA using immobilized enzymes |
SI3313829T1 (en) | 2015-06-29 | 2024-09-30 | Acuitas Therapeutics Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
CN107849574B (en) * | 2015-06-30 | 2021-11-05 | 埃泽瑞斯公司 | UTR for increasing translation efficiency of RNA molecules |
WO2017001058A1 (en) * | 2015-07-01 | 2017-01-05 | Curevac Ag | Method for analysis of an rna molecule |
US10501768B2 (en) | 2015-07-13 | 2019-12-10 | Curevac Ag | Method of producing RNA from circular DNA and corresponding template DNA |
CA2992801A1 (en) * | 2015-08-28 | 2017-03-09 | Curevac Ag | Artificial nucleic acid molecules |
WO2017064146A1 (en) | 2015-10-12 | 2017-04-20 | Curevac Ag | Automated method for isolation, selection and/or detection of microorganisms or cells comprised in a solution |
CA3003055C (en) | 2015-10-28 | 2023-08-01 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
AU2016375021B2 (en) | 2015-12-22 | 2022-02-03 | CureVac SE | Method for producing RNA molecule compositions |
WO2017109161A1 (en) | 2015-12-23 | 2017-06-29 | Curevac Ag | Method of rna in vitro transcription using a buffer containing a dicarboxylic acid or tricarboxylic acid or a salt thereof |
WO2017140905A1 (en) | 2016-02-17 | 2017-08-24 | Curevac Ag | Zika virus vaccine |
EP3423595A1 (en) | 2016-03-03 | 2019-01-09 | CureVac AG | Rna analysis by total hydrolysis |
EP3448427A1 (en) | 2016-04-29 | 2019-03-06 | CureVac AG | Rna encoding an antibody |
WO2017191274A2 (en) | 2016-05-04 | 2017-11-09 | Curevac Ag | Rna encoding a therapeutic protein |
WO2017191264A1 (en) | 2016-05-04 | 2017-11-09 | Curevac Ag | Nucleic acid molecules and uses thereof |
AU2017277731B2 (en) | 2016-06-09 | 2021-02-18 | CureVac SE | Hybrid carriers for nucleic acid cargo |
WO2018013525A1 (en) | 2016-07-11 | 2018-01-18 | Translate Bio Ma, Inc. | Nucleic acid conjugates and uses thereof |
WO2018096179A1 (en) | 2016-11-28 | 2018-05-31 | Curevac Ag | Method for purifying rna |
WO2018104540A1 (en) | 2016-12-08 | 2018-06-14 | Curevac Ag | Rnas for wound healing |
US11141476B2 (en) | 2016-12-23 | 2021-10-12 | Curevac Ag | MERS coronavirus vaccine |
EP3558354A1 (en) | 2016-12-23 | 2019-10-30 | CureVac AG | Lassa virus vaccine |
WO2018115507A2 (en) | 2016-12-23 | 2018-06-28 | Curevac Ag | Henipavirus vaccine |
BR112019015244A2 (en) | 2017-03-24 | 2020-04-14 | Curevac Ag | nucleic acids encoding proteins associated with crispr and uses thereof |
US11357856B2 (en) | 2017-04-13 | 2022-06-14 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
CA3061326A1 (en) | 2017-04-27 | 2018-11-01 | The Trustees Of The University Of Pennsylvania | Nucleoside-modified mrna-lipid nanoparticle lineage vaccine for hepatitis c virus |
IL301115A (en) | 2017-04-28 | 2023-05-01 | Acuitas Therapeutics Inc | Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
RU2020103379A (en) | 2017-07-04 | 2021-08-04 | Куревак Аг | NEW NUCLEIC ACID MOLECULES |
WO2019036008A1 (en) | 2017-08-16 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11524932B2 (en) | 2017-08-17 | 2022-12-13 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
CA3073018A1 (en) | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11542225B2 (en) | 2017-08-17 | 2023-01-03 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11602557B2 (en) | 2017-08-22 | 2023-03-14 | Cure Vac SE | Bunyavirales vaccine |
US11692002B2 (en) | 2017-11-08 | 2023-07-04 | CureVac SE | RNA sequence adaptation |
WO2019115635A1 (en) | 2017-12-13 | 2019-06-20 | Curevac Ag | Flavivirus vaccine |
US11525158B2 (en) | 2017-12-21 | 2022-12-13 | CureVac SE | Linear double stranded DNA coupled to a single support or a tag and methods for producing said linear double stranded DNA |
BR112020020933A2 (en) | 2018-04-17 | 2021-04-06 | Curevac Ag | INNOVATIVE RSV RNA MOLECULES AND VACCINATION COMPOSITIONS |
US20240277830A1 (en) | 2020-02-04 | 2024-08-22 | CureVac SE | Coronavirus vaccine |
US11241493B2 (en) | 2020-02-04 | 2022-02-08 | Curevac Ag | Coronavirus vaccine |
AU2021308681A1 (en) | 2020-07-16 | 2023-03-09 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
KR20230164648A (en) | 2020-12-22 | 2023-12-04 | 큐어백 에스이 | RNA vaccines against SARS-CoV-2 variants |
CN114717229B (en) * | 2021-01-05 | 2024-09-10 | 麦塞拿治疗(香港)有限公司 | Cell-free and vector-free in vitro RNA transcription of therapeutic mRNA and nucleic acid molecules |
CN116004696B (en) * | 2023-02-01 | 2024-03-29 | 郑州贝贝生物科技有限公司 | 3' -UTR (UTR) stem-loop added structure gene capable of being combined with IRES (IRES), application thereof and mRNA (messenger ribonucleic acid) expression system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999013090A1 (en) * | 1997-09-05 | 1999-03-18 | Rowett Research Services Limited | Regulation of protein secretion |
WO2002098443A2 (en) | 2001-06-05 | 2002-12-12 | Curevac Gmbh | Stabilised mrna with an increased g/c content and optimised codon for use in gene therapy |
US20030143740A1 (en) * | 2001-10-15 | 2003-07-31 | Christine Wooddell | Processes for transposase mediated integration into mammalian cells |
WO2010038145A2 (en) * | 2008-10-02 | 2010-04-08 | Unitargeting Research As | Kit for the optimisation of protein synthesis/secretion |
US20100120152A1 (en) * | 2001-08-27 | 2010-05-13 | Wooddell Christine I | Methods for expression of transgenes |
WO2012019630A1 (en) * | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
WO2012170531A1 (en) * | 2011-06-07 | 2012-12-13 | Wisconsin Alumni Research Foundation | Hepatocyte based insulin gene therapy for diabetes |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4624926A (en) * | 1981-01-02 | 1986-11-25 | The Research Foundation Of State University Of New York | Novel cloning vehicles for polypeptide expression in microbial hosts |
US5591601A (en) * | 1993-05-14 | 1997-01-07 | Ohio University Edison Animal Biotechnology Institute | DNA polymerase gene expression system utilizing an RNA polymerase co-delivered with the gene expression vector system |
US5908779A (en) * | 1993-12-01 | 1999-06-01 | University Of Connecticut | Targeted RNA degradation using nuclear antisense RNA |
FR2726277B1 (en) * | 1994-10-28 | 1996-12-27 | Bio Merieux | OLIGONUCLEOTIDE FOR USE AS PRIMER IN AN AMPLIFICATION METHOD BASED ON REPLICATION WITH MOVEMENT OF STRAND |
US6355415B1 (en) * | 1997-09-29 | 2002-03-12 | Ohio University | Compositions and methods for the use of ribozymes to determine gene function |
DE69813302T2 (en) * | 1997-12-22 | 2003-12-11 | Genset, Paris | Prostate cancer gene |
AU771619B2 (en) * | 1998-06-30 | 2004-04-01 | Genset S.A. | A nucleic acid encoding a retinoblastoma binding protein (RBP-7) and polymorphic markers associated with said nucleic acid |
US6476208B1 (en) * | 1998-10-13 | 2002-11-05 | Genset | Schizophrenia associated genes, proteins and biallelic markers |
US6787647B1 (en) * | 1998-12-22 | 2004-09-07 | Genset S.A. | Carnitine carrier related protein-1 |
US6969763B1 (en) * | 1999-05-12 | 2005-11-29 | Isis Pharmaceuticals, Inc. | Molecular interaction sites of interleukin-2 RNA and methods of modulating the same |
US6555316B1 (en) * | 1999-10-12 | 2003-04-29 | Genset S.A. | Schizophrenia associated gene, proteins and biallelic markers |
DE10162480A1 (en) | 2001-12-19 | 2003-08-07 | Ingmar Hoerr | The application of mRNA for use as a therapeutic agent against tumor diseases |
DE10229872A1 (en) | 2002-07-03 | 2004-01-29 | Curevac Gmbh | Immune stimulation through chemically modified RNA |
DE10335833A1 (en) | 2003-08-05 | 2005-03-03 | Curevac Gmbh | Transfection of blood cells with mRNA for immune stimulation and gene therapy |
AU2004279991B2 (en) * | 2003-10-10 | 2010-11-25 | Powderject Vaccines, Inc. | Nucleic acid constructs |
DE102004042546A1 (en) | 2004-09-02 | 2006-03-09 | Curevac Gmbh | Combination therapy for immune stimulation |
DE102005023170A1 (en) | 2005-05-19 | 2006-11-23 | Curevac Gmbh | Optimized formulation for mRNA |
DE102006035618A1 (en) | 2006-07-31 | 2008-02-07 | Curevac Gmbh | New nucleic acid useful as immuno-stimulating adjuvant for manufacture of a composition for treatment of cancer diseases e.g. colon carcinomas and infectious diseases e.g. influenza and malaria |
EP2046954A2 (en) | 2006-07-31 | 2009-04-15 | Curevac GmbH | NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT |
DE102006061015A1 (en) | 2006-12-22 | 2008-06-26 | Curevac Gmbh | Process for the purification of RNA on a preparative scale by HPLC |
DE102007001370A1 (en) | 2007-01-09 | 2008-07-10 | Curevac Gmbh | RNA-encoded antibodies |
WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
WO2009046739A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating prostate cancer (pca) |
WO2009046738A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating lung cancer, particularly of non-small lung cancers (nsclc) |
WO2009095226A2 (en) | 2008-01-31 | 2009-08-06 | Curevac Gmbh | Nucleic acids of formula (i) (nuglxmgnnv)a and derivatives thereof as an immunostimulating agent/adjuvant |
WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
WO2011069529A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
US8968746B2 (en) | 2010-07-30 | 2015-03-03 | Curevac Gmbh | Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation |
WO2012089225A1 (en) | 2010-12-29 | 2012-07-05 | Curevac Gmbh | Combination of vaccination and inhibition of mhc class i restricted antigen presentation |
WO2012116715A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in newborns and infants |
WO2012113413A1 (en) | 2011-02-21 | 2012-08-30 | Curevac Gmbh | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
WO2012116714A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in elderly patients |
WO2013113326A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
WO2013113325A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Negatively charged nucleic acid comprising complexes for immunostimulation |
WO2013120499A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
WO2013120498A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
WO2013120497A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
RU2658490C2 (en) | 2012-03-27 | 2018-06-21 | Кьюрвак Аг | Artificial nucleic acid molecules for improved protein or peptide expression |
CA2866945C (en) | 2012-03-27 | 2021-05-04 | Curevac Gmbh | Artificial nucleic acid molecules comprising a 5'top utr |
BR112014023800A2 (en) | 2012-03-27 | 2017-07-18 | Curevac Gmbh | artificial nucleic acid molecules |
ES2719598T3 (en) | 2012-05-25 | 2019-07-11 | Curevac Ag | Reversible immobilization and / or controlled release of nucleic acids contained in nanoparticles by polymeric coatings (biodegradable) |
-
2013
- 2013-03-27 BR BR112014023800A patent/BR112014023800A2/en not_active Application Discontinuation
- 2013-03-27 JP JP2015502141A patent/JP6298039B2/en not_active Expired - Fee Related
- 2013-03-27 ES ES13712694.2T patent/ES2660459T3/en active Active
- 2013-03-27 CA CA2866955A patent/CA2866955A1/en not_active Abandoned
- 2013-03-27 US US14/388,220 patent/US9890391B2/en not_active Expired - Fee Related
- 2013-03-27 RU RU2014142994A patent/RU2651498C2/en active
- 2013-03-27 EP EP13712694.2A patent/EP2831239B1/en active Active
- 2013-03-27 KR KR1020147030132A patent/KR102186497B1/en active IP Right Grant
- 2013-03-27 SG SG10201607962RA patent/SG10201607962RA/en unknown
- 2013-03-27 SG SG11201405542UA patent/SG11201405542UA/en unknown
- 2013-03-27 MX MX2014011620A patent/MX357803B/en active IP Right Grant
- 2013-03-27 CN CN201380016594.9A patent/CN104220599A/en active Pending
- 2013-03-27 AU AU2013242403A patent/AU2013242403B2/en not_active Ceased
- 2013-03-27 WO PCT/EP2013/000936 patent/WO2013143698A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999013090A1 (en) * | 1997-09-05 | 1999-03-18 | Rowett Research Services Limited | Regulation of protein secretion |
WO2002098443A2 (en) | 2001-06-05 | 2002-12-12 | Curevac Gmbh | Stabilised mrna with an increased g/c content and optimised codon for use in gene therapy |
US20100120152A1 (en) * | 2001-08-27 | 2010-05-13 | Wooddell Christine I | Methods for expression of transgenes |
US20030143740A1 (en) * | 2001-10-15 | 2003-07-31 | Christine Wooddell | Processes for transposase mediated integration into mammalian cells |
WO2010038145A2 (en) * | 2008-10-02 | 2010-04-08 | Unitargeting Research As | Kit for the optimisation of protein synthesis/secretion |
WO2012019630A1 (en) * | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
WO2012019780A1 (en) * | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
WO2012170531A1 (en) * | 2011-06-07 | 2012-12-13 | Wisconsin Alumni Research Foundation | Hepatocyte based insulin gene therapy for diabetes |
Non-Patent Citations (16)
Title |
---|
AKASHI, CURR. OPIN. GENET. DEV., vol. 11, no. 6, 2001, pages 660 - 666 |
CHRISTINE I. WOODDELL ET AL: "Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery", THE JOURNAL OF GENE MEDICINE, vol. 10, no. 5, 1 May 2008 (2008-05-01), pages 551 - 563, XP055041510, ISSN: 1099-498X, DOI: 10.1002/jgm.1179 * |
DATABASE EMBL [Online] 20 January 1997 (1997-01-20), M. Marra et al.: "mt79h01.r1 Soares mouse lymph node NbMLN Mus musculus cDNA clone IMAGE:636145 5' similar to gb:A06977 SERUM ALBUMIN PRECURSOR (HUMAN);, mRNA sequence.", XP002699162, Database accession no. AA189340 * |
DATABASE EMBL [online] 28 July 2005 (2005-07-28), C.L. MAGNESS ET AL.: "ILLUMIGEN_MCQ_54257 Katze_MNLV Macaca nemestrina cDNA clone IBIUW:37544 5' similar to Bases 5 to 513 highly similar to human ALB (Hs.418167), mRNA sequence.", XP002699160, Database accession no. DR772399 * |
DUGAICZYK ET AL., PROC NATL ACAD SCI USA., vol. 79, no. 1, January 1982 (1982-01-01), pages 71 - 5 |
FRIEDEL, C.C.: "Conserved principles of mammalian transcriptional regulation revealed by RNA half-life", NUCLEIC ACIDS RESEARCH, vol. 37, no. 17, 2009, pages 115 |
JOHNSON: "Newly synthesized RNA: Simultaneous measurement in intact cells of transcription rates and RNA stability of insulin-like growth factor I, actin, and albumin in growth hormone-stimulated hepatocytes", PROC. NATL. ACAD. SCI., vol. 88, 1991, pages 5287 - 5291, XP002332485, DOI: doi:10.1073/pnas.88.12.5287 |
KRISTINE A PARTRIDGE ET AL: "Competition between the signal sequence and a 3'UTR localisation signal during redirection of beta-globin mRNA to the endoplasmic reticulum: implications for biotechnology", CYTOTECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 30, no. 1-3, 1 May 1999 (1999-05-01), pages 37 - 47, XP019236605, ISSN: 1573-0778, DOI: 10.1023/A:1008079901508 * |
MAGNESS CHARLES L ET AL: "Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.", GENOME BIOLOGY 2005, vol. 6, no. 7, 2005, pages R60, XP002699161, ISSN: 1465-6914 * |
PENG JING ET AL: "The poly(A)-limiting element enhances mRNA accumulation by increasing the efficiency of pre-mRNA 3' processing.", RNA (NEW YORK, N.Y.) JUN 2005 LNKD- PUBMED:15872182, vol. 11, no. 6, June 2005 (2005-06-01), pages 958 - 965, XP002684871, ISSN: 1355-8382 * |
QOHNSON, T.R. ET AL.: "Newly synthesized RNA: simultaneous measurement in intact cells of transcription rates and RNA stability of insulin-like growth factor I, actin, and albumin in growth hormone-stimulated hepatocytes", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 88, no. 12, 1991, pages 5287 - 5291, XP002332485, DOI: doi:10.1073/pnas.88.12.5287 |
RODGERS, N.D.; WANG, Z.; KILEDJIAN, M.: "Regulated alpha-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping", RNA, vol. 8, no. 12, 2002, pages 1526 - 1537 |
RODGERS: "Regulated a-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping", RNA, vol. 8, 2002, pages 1526 - 1537 |
TAKAHASHI HIDEHIRO ET AL: "Dicer and positive charge of proteins decrease the stability of RNA containing the AU-rich element of GM-CSF.", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 17 FEB 2006 LNKD- PUBMED:16380083, vol. 340, no. 3, 17 February 2006 (2006-02-17), pages 807 - 814, XP024924118, ISSN: 0006-291X * |
WANG ET AL.: "An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro", MOLECULAR AND CELLULAR BIOLOGY, vol. 19, no. 7, July 1999 (1999-07-01), pages 4552 - 4560 |
WATSON, G.; PAIGEN, K.: "Genetic variations in kinetic constants that describe beta-glucuronidase mRNA induction in androgen- treated mice", MOLECULAR AND CELLULAR BIOLOGY, vol. 7, no. 3, 1987, pages 1085 - 1090 |
Cited By (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US12109275B2 (en) | 2010-08-13 | 2024-10-08 | CureVac SE | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US10293060B2 (en) | 2013-08-21 | 2019-05-21 | Curevac Ag | Method for increasing expression of RNA-encoded proteins |
WO2015024667A1 (en) * | 2013-08-21 | 2015-02-26 | Curevac Gmbh | Method for increasing expression of rna-encoded proteins |
US12083190B2 (en) | 2013-08-21 | 2024-09-10 | CureVac SE | Rabies vaccine |
US11965000B2 (en) | 2013-08-21 | 2024-04-23 | CureVac SE | Respiratory syncytial virus (RSV) vaccine |
US10799602B2 (en) | 2013-08-21 | 2020-10-13 | Curevac Ag | Method for increasing expression of RNA-encoded proteins |
US11739125B2 (en) | 2013-08-21 | 2023-08-29 | Cure Vac SE | Respiratory syncytial virus (RSV) vaccine |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
EP3495486A1 (en) | 2013-12-30 | 2019-06-12 | CureVac AG | Artificial nucleic acid molecules |
US10047375B2 (en) | 2013-12-30 | 2018-08-14 | Curevac Ag | Artificial nucleic acid molecules |
JP2017502669A (en) * | 2013-12-30 | 2017-01-26 | キュアバック アーゲー | Artificial nucleic acid molecule |
JP2017502670A (en) * | 2013-12-30 | 2017-01-26 | キュアバック アーゲー | Artificial nucleic acid molecule |
WO2015101414A2 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Artificial nucleic acid molecules |
WO2015101415A1 (en) | 2013-12-30 | 2015-07-09 | Curevac Gmbh | Artificial nucleic acid molecules |
JP2020184995A (en) * | 2013-12-30 | 2020-11-19 | キュアバック アーゲー | Artificial nucleic acid molecules |
EP3842537A1 (en) | 2013-12-30 | 2021-06-30 | CureVac AG | Artificial nucleic acid molecules |
JP6997251B2 (en) | 2013-12-30 | 2022-01-17 | キュアバック アーゲー | Artificial nucleic acid molecule |
EP3415629A1 (en) * | 2013-12-30 | 2018-12-19 | CureVac AG | Artificial nucleic acid molecules |
CN111304231A (en) * | 2013-12-30 | 2020-06-19 | 库瑞瓦格股份公司 | Artificial nucleic acid molecules |
WO2015101414A3 (en) * | 2013-12-30 | 2015-10-08 | Curevac Gmbh | Artificial nucleic acid molecules |
US11697816B2 (en) | 2013-12-30 | 2023-07-11 | CureVac SE | Artificial nucleic acid molecules |
EP3708668B1 (en) | 2014-12-12 | 2022-07-27 | CureVac AG | Artificial nucleic acid molecules for improved protein expression |
WO2016091391A1 (en) * | 2014-12-12 | 2016-06-16 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
EP3708668A1 (en) * | 2014-12-12 | 2020-09-16 | CureVac AG | Artificial nucleic acid molecules for improved protein expression |
EP4023755A1 (en) * | 2014-12-12 | 2022-07-06 | CureVac AG | Artificial nucleic acid molecules for improved protein expression |
US11345920B2 (en) | 2014-12-12 | 2022-05-31 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
US11761009B2 (en) | 2014-12-12 | 2023-09-19 | CureVac SE | Artificial nucleic acid molecules for improved protein expression |
US11286492B2 (en) | 2014-12-12 | 2022-03-29 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
EP3230458B1 (en) * | 2014-12-12 | 2020-02-19 | CureVac AG | Artificial nucleic acid molecules for improved protein expression |
EP4241784A3 (en) * | 2014-12-12 | 2023-11-15 | CureVac SE | Artificial nucleic acid molecules for improved protein expression |
EP4023755B1 (en) | 2014-12-12 | 2023-04-26 | CureVac SE | Artificial nucleic acid molecules for improved protein expression |
US11149278B2 (en) | 2014-12-12 | 2021-10-19 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
RU2757675C2 (en) * | 2014-12-30 | 2021-10-20 | Куревак Аг | Molecules of new artificial nucleic acids |
JP2018501802A (en) * | 2014-12-30 | 2018-01-25 | キュアバック アーゲー | Artificial nucleic acid molecule |
CN107124889A (en) * | 2014-12-30 | 2017-09-01 | 库瑞瓦格股份公司 | Artificial nucleic acid molecule |
US11254951B2 (en) | 2014-12-30 | 2022-02-22 | Curevac Ag | Artificial nucleic acid molecules |
WO2016107877A1 (en) * | 2014-12-30 | 2016-07-07 | Curevac Ag | Artificial nucleic acid molecules |
KR102580696B1 (en) | 2014-12-30 | 2023-09-19 | 큐어백 에스이 | Novel artificial nucleic acid molecules |
KR20170100660A (en) * | 2014-12-30 | 2017-09-04 | 큐어백 아게 | New artificial nucleic acid molecule |
EP4353257A2 (en) | 2015-04-13 | 2024-04-17 | CureVac Manufacturing GmbH | Method for producing rna compositions |
US11661634B2 (en) | 2015-05-08 | 2023-05-30 | CureVac Manufacturing GmbH | Method for producing RNA |
CN104789527B (en) * | 2015-05-15 | 2018-05-29 | 江苏杰晟生物科技有限公司 | A kind of preparation method and its reagent kit product of self natural killer cells cocktail type culture |
CN104789527A (en) * | 2015-05-15 | 2015-07-22 | 江苏杰晟生物科技有限公司 | Method for preparing autologous natural killer cell in cocktail culture and and kit product |
US11667910B2 (en) | 2015-05-29 | 2023-06-06 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11834651B2 (en) | 2015-05-29 | 2023-12-05 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US11760992B2 (en) | 2015-05-29 | 2023-09-19 | CureVac Manufacturing GmbH | Method for producing and purifying RNA, comprising at least one step of tangential flow filtration |
US20230167456A2 (en) * | 2015-08-10 | 2023-06-01 | CureVac Manufacturing GmbH | Method of increasing the replication of a circular dna molecule |
WO2017049245A2 (en) | 2015-09-17 | 2017-03-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
EP3736261A1 (en) | 2015-09-17 | 2020-11-11 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
EP4286012A2 (en) | 2015-09-17 | 2023-12-06 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
KR20180057647A (en) * | 2015-10-07 | 2018-05-30 | 비온테크 알엔에이 파마슈티컬스 게엠베하 | 3 ' UTR sequence for stabilization of RNA |
JP2021048847A (en) * | 2015-10-07 | 2021-04-01 | バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh | 3'utr sequences for stabilization of rna |
WO2017060314A3 (en) * | 2015-10-07 | 2017-05-18 | Biontech Rna Pharmaceuticals Gmbh | 3' utr sequences for stabilization of rna |
KR102363368B1 (en) | 2015-10-07 | 2022-02-16 | 비온테크 에스이 | 3' UTR sequence for stabilization of RNA |
EP3868885A1 (en) * | 2015-10-07 | 2021-08-25 | BioNTech RNA Pharmaceuticals GmbH | 3' utr sequences for stabilization of rna |
EP3636764A1 (en) * | 2015-10-07 | 2020-04-15 | BioNTech RNA Pharmaceuticals GmbH | 3' utr sequences for stabilization of rna |
US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
WO2017059902A1 (en) * | 2015-10-07 | 2017-04-13 | Biontech Rna Pharmaceuticals Gmbh | 3' utr sequences for stabilization of rna |
JP7084565B2 (en) | 2015-10-07 | 2022-06-15 | バイオエヌテック エスエー | 3'UTR sequence for RNA stabilization |
EP4086269A1 (en) | 2015-10-16 | 2022-11-09 | ModernaTX, Inc. | Mrna cap analogs with modified phosphate linkage |
WO2017066791A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Sugar substituted mrna cap analogs |
US11866754B2 (en) | 2015-10-16 | 2024-01-09 | Modernatx, Inc. | Trinucleotide mRNA cap analogs |
WO2017066789A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs with modified sugar |
US10570388B2 (en) | 2015-10-16 | 2020-02-25 | Modernatx, Inc. | Phosphate replacement MRNA cap analogs |
WO2017066782A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Hydrophobic mrna cap analogs |
US10563195B2 (en) | 2015-10-16 | 2020-02-18 | Modernatx, Inc. | Phosphate replacement mRNA cap analogs |
WO2017066781A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs with modified phosphate linkage |
US10428106B2 (en) | 2015-10-16 | 2019-10-01 | Modernatx, Inc. | Phosphate replacement mRNA cap analogs |
WO2017066793A1 (en) | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs and methods of mrna capping |
US11786590B2 (en) | 2015-11-09 | 2023-10-17 | CureVac SE | Rotavirus vaccines |
EP4036079A2 (en) | 2015-12-22 | 2022-08-03 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2017112865A1 (en) | 2015-12-22 | 2017-06-29 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2017162461A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
EP3964584A1 (en) | 2016-03-21 | 2022-03-09 | BioNTech SE | Trans-replicating rna |
WO2017218704A1 (en) | 2016-06-14 | 2017-12-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2018089540A1 (en) | 2016-11-08 | 2018-05-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
EP4035659A1 (en) | 2016-11-29 | 2022-08-03 | PureTech LYT, Inc. | Exosomes for delivery of therapeutic agents |
US11464836B2 (en) | 2016-12-08 | 2022-10-11 | Curevac Ag | RNA for treatment or prophylaxis of a liver disease |
EP3808380A1 (en) * | 2016-12-08 | 2021-04-21 | CureVac AG | Rna for treatment or prophylaxis of a liver disease |
WO2018170336A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Lipid nanoparticle formulation |
WO2018170306A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
EP4186888A1 (en) | 2017-03-15 | 2023-05-31 | ModernaTX, Inc. | Compound and compositions for intracellular delivery of therapeutic agents |
US11753434B2 (en) | 2017-04-14 | 2023-09-12 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for transient gene therapy with enhanced stability |
EP3610035A4 (en) * | 2017-04-14 | 2021-06-09 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for transient gene therapy with enhanced stability |
WO2018232120A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
WO2019036638A1 (en) | 2017-08-18 | 2019-02-21 | Modernatx, Inc. | Methods of preparing modified rna |
WO2019046809A1 (en) | 2017-08-31 | 2019-03-07 | Modernatx, Inc. | Methods of making lipid nanoparticles |
WO2020061367A1 (en) | 2018-09-19 | 2020-03-26 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
EP4427739A2 (en) | 2019-01-31 | 2024-09-11 | ModernaTX, Inc. | Methods of preparing lipid nanoparticles |
WO2020160397A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
WO2020160430A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Vortex mixers and associated methods, systems, and apparatuses thereof |
WO2021204175A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
WO2021204179A1 (en) | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
WO2022002040A1 (en) | 2020-06-30 | 2022-01-06 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2022037652A1 (en) | 2020-08-20 | 2022-02-24 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2022152141A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Polymer conjugated lipid compounds and lipid nanoparticle compositions |
WO2022152109A2 (en) | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2022247755A1 (en) | 2021-05-24 | 2022-12-01 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2023044343A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Acyclic lipids and methods of use thereof |
WO2023044333A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Cyclic lipids and methods of use thereof |
EP4162950A1 (en) | 2021-10-08 | 2023-04-12 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
WO2023056914A1 (en) | 2021-10-08 | 2023-04-13 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2023056917A1 (en) | 2021-10-08 | 2023-04-13 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2023122752A1 (en) | 2021-12-23 | 2023-06-29 | Renagade Therapeutics Management Inc. | Constrained lipids and methods of use thereof |
WO2023116804A1 (en) | 2021-12-23 | 2023-06-29 | 苏州艾博生物科技有限公司 | Lipid compound and lipid nanoparticle composition |
WO2023196931A1 (en) | 2022-04-07 | 2023-10-12 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
WO2024037578A1 (en) | 2022-08-18 | 2024-02-22 | Suzhou Abogen Biosciences Co., Ltd. | Composition of lipid nanoparticles |
WO2024192277A2 (en) | 2023-03-15 | 2024-09-19 | Renagade Therapeutics Management Inc. | Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents |
WO2024192291A1 (en) | 2023-03-15 | 2024-09-19 | Renagade Therapeutics Management Inc. | Delivery of gene editing systems and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104220599A (en) | 2014-12-17 |
KR102186497B1 (en) | 2020-12-04 |
RU2651498C2 (en) | 2018-04-19 |
KR20140137455A (en) | 2014-12-02 |
AU2013242403B2 (en) | 2018-10-18 |
SG10201607962RA (en) | 2016-11-29 |
CA2866955A1 (en) | 2013-10-03 |
AU2013242403A1 (en) | 2014-09-25 |
EP2831239B1 (en) | 2017-11-22 |
US20150184195A1 (en) | 2015-07-02 |
MX357803B (en) | 2018-07-24 |
JP6298039B2 (en) | 2018-03-20 |
EP2831239A1 (en) | 2015-02-04 |
RU2014142994A (en) | 2016-05-20 |
SG11201405542UA (en) | 2014-10-30 |
US9890391B2 (en) | 2018-02-13 |
ES2660459T3 (en) | 2018-03-22 |
BR112014023800A2 (en) | 2017-07-18 |
MX2014011620A (en) | 2014-10-17 |
JP2015513897A (en) | 2015-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2831239B1 (en) | Artificial nucleic acid molecules | |
US20200332293A1 (en) | Artificial nucleic acid molecules for improved protein or peptide expression | |
JP6301906B2 (en) | Artificial nucleic acid molecule containing 5 'TOPUTR | |
US12109275B2 (en) | Nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal for increasing the expression of an encoded protein | |
Tavernier et al. | mRNA as gene therapeutic: how to control protein expression | |
JP6377349B2 (en) | DNA expression constructs | |
EP2814964B1 (en) | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13712694 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013712694 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013712694 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2866955 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013242403 Country of ref document: AU Date of ref document: 20130327 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14388220 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015502141 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/011620 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014023800 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20147030132 Country of ref document: KR Kind code of ref document: A Ref document number: 2014142994 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112014023800 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140925 |