WO2013136451A1 - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
WO2013136451A1
WO2013136451A1 PCT/JP2012/056439 JP2012056439W WO2013136451A1 WO 2013136451 A1 WO2013136451 A1 WO 2013136451A1 JP 2012056439 W JP2012056439 W JP 2012056439W WO 2013136451 A1 WO2013136451 A1 WO 2013136451A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
guide end
continuously variable
variable transmission
end portion
Prior art date
Application number
PCT/JP2012/056439
Other languages
French (fr)
Japanese (ja)
Inventor
有希 荒津
村上 新
小川 裕之
晃 日比野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/056439 priority Critical patent/WO2013136451A1/en
Priority to JP2014504541A priority patent/JP5761445B2/en
Publication of WO2013136451A1 publication Critical patent/WO2013136451A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/26Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution
    • F16H15/28Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a spherical friction surface centered on its axis of revolution with external friction surface

Definitions

  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a continuously variable transmission that can improve durability.
  • the guide surface has a curved shape protruding outward in the radial direction with respect to the direction along the rolling center, and the guide portion is in contact with the guide end portion along the direction of movement of the guide end portion. It is characterized in that a part of the guide end portion is formed and has a groove portion that contacts the contact surface of the guide end portion.
  • the groove may be set within a range in which a contact angle between the plurality of surfaces and a contact surface of the guide end is larger than 0 degree and smaller than 60 degrees. .
  • the continuously variable transmission according to the present invention has an effect that durability can be improved.
  • FIG. 1 is a schematic cross-sectional view of a continuously variable transmission according to a first embodiment.
  • FIG. 2 is a partial cross-sectional view of the continuously variable transmission according to the first embodiment.
  • FIG. 3 is a plan view illustrating a fixed carrier of the continuously variable transmission according to the first embodiment.
  • FIG. 4 is a plan view illustrating the movable carrier of the continuously variable transmission according to the first embodiment.
  • FIG. 5 is a plan view for explaining a plate of the continuously variable transmission according to the first embodiment.
  • FIG. 6 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the first embodiment.
  • FIG. 7 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the second embodiment.
  • FIG. 8 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the third embodiment.
  • FIG. 9 is a diagram for comparing an example of contact surface pressure between the continuously variable transmission according to each embodiment and the continuously variable transmission according to the comparative example.
  • FIG. 1 is a schematic sectional view of a continuously variable transmission according to a first embodiment
  • FIG. 2 is a partial sectional view of the continuously variable transmission according to the first embodiment
  • FIG. 3 is a sectional view of the continuously variable transmission according to the first embodiment.
  • FIG. 4 is a plan view illustrating a movable carrier of the continuously variable transmission according to the first embodiment
  • FIG. 5 is a plan view illustrating a plate of the continuously variable transmission according to the first embodiment.
  • FIG. 6 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the first embodiment.
  • the continuously variable transmission of this embodiment is mounted on a vehicle and transmits power (torque) generated by a power source such as an internal combustion engine to drive wheels of the vehicle.
  • This continuously variable transmission is a so-called traction drive type continuously variable transmission that can transmit power between the rotating elements by a fluid such as traction oil (transmitted oil) interposed between the rotating elements in contact with each other.
  • the continuously variable transmission uses the resistance force (traction force, shear force of the traction oil film) generated when shearing the traction oil intervening on the contact surface between one rotating element and the other rotating element to provide power (torque).
  • the continuously variable transmission according to the present embodiment is a so-called ball planetary continuously variable transmission (CVP: Continuously Variable Planetary).
  • the direction along the first rotation center axis R1 and the second rotation center axis R2 is referred to as an axial direction, and the direction around the first rotation center axis R1 is referred to as a circumferential direction.
  • a direction orthogonal to the first rotation center axis R1 is referred to as a radial direction, and among these, a side facing inward is referred to as a radial inner side, and a side facing outward is referred to as a radial outer side.
  • torque is typically transmitted between the first rotating member 10, the second rotating member 20, the sun roller 30, and the carrier 40 via each planetary ball 50.
  • one of the first rotating member 10, the second rotating member 20, the sun roller 30, and the carrier 40 serves as a torque (power) input unit, and at least one of the remaining rotating elements is Torque output section.
  • the ratio of the rotation speed (the number of rotations) between any rotation element serving as an input unit and any rotation element serving as an output unit is a gear ratio.
  • the continuously variable transmission 1 will be described with respect to a case where the first rotating member 10 is an input unit and the second rotating member 20 is an output unit.
  • a plurality of planetary balls 50 are arranged radially about the center axis (first rotation center axis R1) of the transmission shaft 60.
  • the planetary ball 50 can rotate (spin) about the second rotation center axis R2 as the rotation center.
  • the planetary ball 50 is sandwiched between the first rotating member 10 and the second rotating member 20 that are disposed on the transmission shaft 60 so as to face the transmission shaft 60 in the axial direction.
  • the planetary ball 50 is supported by the carrier 40 so as to be able to rotate.
  • the continuously variable transmission 1 presses at least one of the first rotating member 10 and the second rotating member 20 against the planetary ball 50, whereby the first rotating member 10, the second rotating member 20, the sun roller 30 and the planetary ball 50.
  • the continuously variable transmission 1 includes the first rotating member 10, the second rotating member 20, the sun roller 30, and the carrier 40 that are all rotatable relative to the transmission shaft 60.
  • the transmission shaft 60 is formed in a columnar shape with the center axis coinciding with the first rotation center axis R1, and is fixed to a fixed portion of the continuously variable transmission 1 in a housing or a vehicle body (not shown). It is the fixed axis
  • the first rotating member 10 and the second rotating member 20 are a disk member (disk) or an annular member (ring) whose center axis coincides with the first rotation center axis R1, and the axial direction of the first rotation center axis R1
  • the planetary balls 50 are disposed so as to face each other. In this example, both are ring-shaped annular members.
  • the first rotating member 10 and the second rotating member 20 are relatively rotatable with the common first rotation center axis R1 as the rotation center.
  • the contact angle ⁇ is an angle from the reference to the contact portion between the planetary ball 50 and each contact surface 10a, 20a.
  • the radial direction is used as a reference.
  • Contact surfaces 10 a and 20 a of the first rotating member 10 and the second rotating member 20 with the planetary ball 50 are in point contact or surface contact with the outer peripheral curved surface of the planetary ball 50.
  • the contact surfaces 10 a and 20 a of the first rotating member 10 and the second rotating member 20 with the planetary ball 50 are subjected to an axial force from the first rotating member 10 and the second rotating member 20 toward the planetary ball 50.
  • a force normal force Fn
  • Fn normal force
  • the continuously variable transmission 1 causes the first rotating member 10 to function as a torque input unit (input ring) when the continuously variable transmission 1 is driven forward (when torque is input to a rotating element as an input unit).
  • the continuously variable transmission 1 causes the second rotating member 20 to function as a torque output unit (output ring) when the continuously variable transmission 1 is driven forward.
  • the input shaft 11 is connected to the first rotating member 10 via a torque cam 70.
  • the output shaft 21 is connected to the second rotating member 20 via a torque cam 71.
  • the input shaft 11 can rotate integrally with the first rotating member 10 via the torque cam 70, and transmits power to the first rotating member 10 during normal driving.
  • the input shaft 11 includes a cylindrical part 11a, a disk part 11b, and the like.
  • the input shaft 11 is connected to the first rotating member 10 via the torque cam 70 on the disk portion 11b side, and connected to the power source side of the vehicle on the cylindrical portion 11a side.
  • the output shaft 21 includes a first cylindrical portion 21a, a disk portion 21b, a second cylindrical portion 21c, and the like.
  • the output shaft 21 is connected to the second rotating member 20 through the annular member 72 and the torque cam 71 on the first cylindrical portion 21a side, and is connected to the drive wheel side of the vehicle on the second cylindrical portion 21c side.
  • the input shaft 11 and the output shaft 21 are provided so as to be rotatable relative to the transmission shaft 60 about the first rotation center axis R1.
  • the input shaft 11 and the output shaft 21 can be rotated relative to each other via the bearing B1 and the thrust bearing TB.
  • the torque cams 70 and 71 are torque axial force conversion mechanisms that convert rotational torque into axial force along the first rotation center axis R1, and are pressing force generation mechanisms.
  • the axial force generated by the torque cams 70 and 71 is a pressing force for pressing the first rotating member 10 and the second rotating member 20 against each planetary ball 50.
  • the torque cam 70 is disposed between the first rotating member 10 and the input shaft 11.
  • the torque cam 71 is disposed between the second rotating member 20 and the output shaft 21.
  • a thrust (axial force) toward the ball 50 is generated.
  • the torque cam 71 transmits the rotational torque between the output shaft 21 and the second rotating member 20, each planet along the axial direction with respect to the second rotating member 20 according to the magnitude of the transmitted torque.
  • a thrust (axial force) toward the ball 50 is generated.
  • the sun roller 30 is positioned with respect to the axial direction of the transmission shaft 60 by the outer ring of the bearing RB1, the outer ring of the bearing RB2, and the like, and is fixed so as not to move relative to the axial direction of the transmission shaft 60.
  • the sun roller 30 of the present embodiment includes a bearing RB1, a first divided structure 32 supported by the bearing RB2, a second divided structure 33 fixed to the outer peripheral surface of the first divided structure 32, and a first divided structure. It has a divided structure consisting of three parts of a third divided structure 34 supported on the outer peripheral surface of the body 32 via an angular bearing AB.
  • this continuously variable transmission 1 can reduce the spin loss between the sun roller 30 and the planetary ball 50, and can suppress the fall of power transmission efficiency.
  • the outer peripheral surface 31 of the sun roller 30 is constituted by the outer peripheral surface of the second divided structure 33 and the outer peripheral surface of the third divided structure 34.
  • the sun roller 30 may not have such a divided structure.
  • the carrier 40 is disposed on the transmission shaft 60 and is rotatable relative to the first rotating member 10, the second rotating member 20, the sun roller 30, etc. with the first rotation center axis R ⁇ b> 1 as the rotation center, and a support shaft ( A spindle or pinion pin) 51 is held in a state where the planetary ball 50 can be tilted.
  • the carrier 40 has a first guide portion 44 and a second guide portion as guide portions for holding the end portion of the support shaft 51 and holding the end portion of the support shaft 51 in a state in which the planetary ball 50 can be tilted. 45.
  • the first guide portion 44 and the second guide portion 45 are the first guide end portion 52 and the second guide end portion 53 as guide end portions that are ends of the support shaft 51 and are formed in a cylindrical shape or a columnar shape, respectively. Is inserted, and the first guide end 52 and the second guide end 53 are held in a state in which the planetary ball 50 can be tilted.
  • the planetary ball 50 is tiltably held by the carrier 40 via the support shaft 51.
  • the planetary ball 50 can change a gear ratio, which is a rotation speed ratio between the rotating elements, by a tilting operation.
  • the planetary ball 50 is a rolling member that rolls on the outer peripheral surface 31 of the sun roller 30.
  • the planetary ball 50 is preferably a perfect sphere, but may have a spherical shape at least in the rolling direction, for example, a rugby ball having an elliptical cross section.
  • the planetary ball 50 is rotatably supported by a support shaft 51 that passes through the center of the planetary ball 50.
  • the support shaft 51 supports the planetary ball 50 with the second rotation center axis R ⁇ b> 2 as the rotation center, and both end portions protrude from the planetary ball 50.
  • the planetary ball 50 can be rotated relative to the support shaft 51 with the second rotation center axis R2 as the rotation axis (that is, rotation) by the radial bearings RB3 and RB4 disposed between the outer periphery of the support shaft 51. I am doing so.
  • the planetary ball 50 has a through hole 50a.
  • the planetary ball 50 is rotatably supported by radial bearings RB3 and RB4 provided in the through hole 50a into which the support shaft 51 is inserted. Therefore, the planetary ball 50 can roll on the outer peripheral surface 31 of the sun roller 30 around the second rotation center axis R2 of the support shaft 51.
  • the carrier 40 supports the end of the support shaft 51 that supports the planetary balls 50 so as not to disturb the tilting motion of each planetary ball 50.
  • the carrier 40 of this embodiment includes a fixed carrier 41 as a fixed element, a movable carrier 42 as a movable element, and a plate 43.
  • Each of the fixed carrier 41, the movable carrier 42, and the plate 43 is an annular plate having a central axis that coincides with the first rotation central axis R1, and is provided on the transmission shaft 60.
  • the fixed carrier 41 is disposed on the radially inner side of the first rotating member 10, the torque cam 70, and the like, and the movable carrier 42 and the plate 43 are disposed on the radially inner side of the second rotating member 20, the torque cam 71, and the like. .
  • the fixed carrier 41 and the movable carrier 42 are disposed so as to face each other with the planetary ball 50 interposed therebetween in the axial direction of the first rotation center axis R1.
  • the movable carrier 42 is supported on the outer peripheral surface of the transmission shaft 60 via a bearing or the like on the inner peripheral surface side so as to be relatively rotatable about the first rotation center axis R1. Therefore, the movable carrier 42 and the fixed carrier 41 are relatively rotatable with the first rotation center axis R1 as the rotation center.
  • the plate 43 is disposed between the planetary ball 50 and the movable carrier 42 with respect to the axial direction of the first rotation center axis R1, and is provided so as not to rotate relative to the fixed carrier 41.
  • the plate 43 is fixed to the fixed carrier 41 via a plurality of connecting shafts along the axial direction of the first rotation center axis R1.
  • the fixed carrier 41 and the plate 43 have a bowl-like structure as a whole by being connected via a connecting shaft or the like. Therefore, the movable carrier 42 and the plate 43 can be rotated relative to each other about the first rotation center axis R1.
  • the fixed carrier 41 has a first guide part 44
  • the movable carrier 42 has a second guide part 45
  • the plate 43 has a slit part 46.
  • the support shaft 51 of the present embodiment has a divided structure of one of the first guide end portion 52 and the second guide end portion 53 and the intermediate portion 54 (the main body portion of the support shaft 51).
  • the support shaft 51 is formed in an overall cylindrical shape or a columnar shape including the first guide end portion 52, the second guide end portion 53, and the intermediate portion 54.
  • the support shaft 51 is formed such that the outer diameters of the first guide end portion 52 and the second guide end portion 53 are larger than the outer diameter of the intermediate portion 54.
  • the support shaft 51 has a second guide end portion 53 formed integrally with the intermediate portion 54, and a first guide end portion 52 formed separately from the intermediate portion 54 and assembled to the intermediate portion 54.
  • the continuously variable transmission 1 can improve the assemblability of the radial bearings RB3 and RB4 when the radial bearings RB3 and RB4 are provided between the planetary ball 50 and the support shaft 51.
  • the first guide portion 44 is formed on the fixed carrier 41 so as to extend in the radial direction perpendicular to the first rotation center axis R ⁇ b> 1 and open toward the planetary ball 50. Is done.
  • the first guide portion 44 is formed as a bottomed guide groove portion, that is, has a configuration that does not penetrate the fixed carrier 41 with respect to the axial direction of the first rotation center axis R1.
  • the first guide portion 44 is formed in a linear shape, and an end portion on the opposite side to the first rotation center axis R1 side, that is, an end portion on the radially outer side is opened.
  • a plurality (eight here) of first guide portions 44 are provided radially around the first rotation center axis R1 corresponding to the plurality of planetary balls 50 (eight here).
  • the plurality of first guide portions 44 are provided at equal intervals around the first rotation center axis R1.
  • the first guide end portion 52 of the support shaft 51 is inserted, and the movement of the first guide end portion 52 of the support shaft 51 can be guided.
  • the first guide end portion 52 of the support shaft 51 functions as a guide end portion that is guided by the first guide portion 44 in the radial direction.
  • the second guide portion 45 extends on the movable carrier 42 in a direction inclined with respect to the radial direction orthogonal to the first rotation center axis R ⁇ b> 1 and is connected to the planetary ball 50. An opening is formed.
  • the second guide portion 45 is formed as a bottomed guide groove portion, that is, has a configuration that does not penetrate the movable carrier 42 with respect to the axial direction of the first rotation center axis R1.
  • the second guide portion 45 is formed in a linear shape and at a position offset substantially parallel to a straight line along the radial direction passing through the first rotation center axis R1.
  • the second guide portion 45 is open at the radially outer end.
  • a plurality of (here, eight) second guide portions 45 are provided corresponding to a plurality of planetary balls 50 (here, eight).
  • Each second guide portion 45 partially overlaps the corresponding first guide portion 44 when viewed in the axial direction of the first rotation center axis R1 (when viewed in the direction of arrow A in FIG. 1). It is formed at a crossing position.
  • the intersection of the first guide portion 44 and the second guide portion 45 moves along the radial direction by the relative rotation of the fixed carrier 41 and the movable carrier 42 with the first rotation center axis R1 as the rotation center. It will be.
  • the second guide portion 45 can guide the movement of the second guide end portion 53 of the support shaft 51 by inserting the second guide end portion 53 of the support shaft 51.
  • the second guide end portion 53 of the support shaft 51 functions as a guide end portion whose movement is guided by the second guide portion 45.
  • the second guide portion 45 supports the second guide end portion 53 and is positioned at a predetermined radial position by abutting the inner wall surface with the outer peripheral surface of the second guide end portion 53.
  • the second guide portion 45 is formed in an arc shape extending in a direction inclined with respect to the radial direction orthogonal to the first rotation center axis R1, and when viewed in the axial direction of the first rotation center axis R1.
  • the first guide portion 44 may be formed at a position that partially overlaps the first guide portion 44.
  • the slit portion 46 extends in the radial direction perpendicular to the first rotation center axis R1 and penetrates the plate 43 in the axial direction of the first rotation center axis R1. It is formed. That is, the slit portion 46 is formed as a slit hole penetrating the plate 43 in the axial direction of the first rotation center axis R1. Here, the slit portion 46 is formed in a straight line, and the end portion on the radially outer side is opened. Similar to the first guide portion 44, the slit portion 46 is provided in a plurality (eight here) in a radial manner around the first rotation center axis R1 corresponding to the plurality of planetary balls 50 (eight here).
  • the plurality of slit portions 46 are provided at equal intervals around the first rotation center axis R1. Each slit portion 46 opposes the corresponding first guide portion 44 and the axial direction of the first rotation center axis R1 in a state where the fixed carrier 41 and the plate 43 are fixed. Accordingly, each slit portion 46 partially overlaps the corresponding second guide portion 45 when viewed in the axial direction of the first rotation center axis R1 (when viewed in the direction of arrow A in FIG. 1). It is formed at a crossing position.
  • intersection part of the slit part 46 and the second guide part 45 is the same as the intersection part of the first guide part 44 and the second guide part 45, and the fixed carrier 41 and the movable carrier 42 have the first rotation center axis R1. Is moved along the radial direction by relative rotation about the rotation center.
  • the slit portion 46 is inserted into both end portions of the support shaft 51, that is, the intermediate portion 54 between the first guide end portion 52 and the second guide end portion 53, and moves the intermediate portion 54 of the support shaft 51. Allow.
  • the carrier 40 configured as described above holds the support shaft 51 in a state in which the planetary ball 50 can be tilted by the first guide portion 44, the second guide portion 45, and the slit portion 46. Then, the carrier 40 tilts the planetary ball 50 together with the support shaft 51 by the relative displacement of the first guide portion 44 and the second guide portion 45 accompanying the relative rotation of the fixed carrier 41 and the movable carrier 42, and each rotating element.
  • the speed ratio which is the rotational speed ratio between, can be changed.
  • the first rotating member 10 and the second rotating member 20 have the same rotational speed (the same rotational speed). Rotate with. That is, at this time, the rotation ratio (ratio of rotation speed or rotation speed) between the first rotation member 10 and the second rotation member 20 is 1, and the speed ratio ⁇ is 1.
  • the rotation ratio ratio of rotation speed or rotation speed
  • the rotation ratio is “V1 / V2”.
  • the continuously variable transmission 1 rotates at a higher speed than when either the first rotating member 10 or the second rotating member 20 is at the reference position, and the other rotates at a lower speed.
  • the second rotating member 20 has a lower rotation (deceleration) than the first rotating member 10 when the planetary ball 50 is tilted in one direction, and the first rotating member is tilted in the other direction.
  • the rotation speed is higher than 10 (speed increase).
  • the rotation ratio (transmission ratio ⁇ ) between the rotating elements can be changed steplessly by changing the tilt angle.
  • ⁇ ⁇ 1 the upper planetary ball 50 in FIG. 1 is tilted counterclockwise on the paper surface and the lower planetary ball 50 is tilted clockwise on the paper surface.
  • ⁇ > 1 the upper planetary ball 50 in FIG. 1 is tilted in the clockwise direction on the paper, and the lower planetary ball 50 is tilted in the counterclockwise direction on the paper.
  • the continuously variable transmission 1 of the present embodiment functions as a mechanism in which the carrier 40 changes the speed ratio ⁇ .
  • the continuously variable transmission 1 tilts each planetary ball 50 by inclining the second rotation center axis R2 of each planetary ball 50 by the carrier 40, thereby changing the tilt angle of the planetary ball 50 and changing the gear ratio ⁇ . Is changed.
  • the carrier 40 tilts the planetary ball 50 together with the support shaft 51 by applying a tilting force to the support shaft 51 according to the relative rotation of the movable carrier 42 and the fixed carrier 41, that is, a tilting force. That is, the carrier 40 is transmitted to the movable carrier 42 via a transmission member such as a worm gear from a driving device such as a motor in accordance with control by an ECU (not shown), so that the movable carrier 42 is fixed to the fixed carrier 41. Rotates relative to.
  • the intersection part of the 2nd guide part 45, the 1st guide part 44, and the slit part 46 is because the phase shifts by the relative displacement of the 1st guide part 44, the slit part 46, and the 2nd guide part 45, It moves along the radial direction.
  • the support shaft 51 is pushed up while the second guide end portion 53 is guided along the second guide portion 45 by the tilting force generated according to the relative rotation of the movable carrier 42 and the fixed carrier 41.
  • the first guide end 52 is moved while being guided along the first guide portion 44. That is, in the support shaft 51, the first guide end 52 moves radially outward and the second guide end 53 moves radially inward, or the second guide end 53 is radially outward and the first guide end.
  • the second rotation center axis R2 swings with respect to the first rotation center axis R1.
  • the first guide end portion 52 and the second guide end portion 53 roll while being in contact with the first guide portion 44 and the second guide portion 45 during the tilting operation of the planetary ball 50, respectively.
  • the movement is guided by the guide portion 44 and the second guide portion 45.
  • the carrier 40 is in a state where the second rotation center axis R2 of each planetary ball 50 is located in a plane including the first rotation center axis R1 and is parallel to the first rotation center axis R1 in the plane. That is, it can be tilted between the state at the reference position and the state in which it is inclined from the parallel state.
  • the support shaft 51 moves the second rotation center axis R2 relative to the first rotation center axis R1 according to the deviation between the radial position of the first guide end 52 and the radial position of the second guide end 53.
  • the tilt angle which is the tilt angle, is changed, and the planetary ball 50 tilts accordingly.
  • the carrier 40 applies a tilting force to the support shaft 51, and tilts the support shaft 51, thereby tilting the second rotation center axis R2 and tilting the planetary ball 50. Accordingly, in the continuously variable transmission 1, the distance from the central axis of the support shaft 51 to the contact portion between the first rotating member 10 and the planetary ball 50 changes due to the tilt of the planetary ball 50, and the support shaft 51 The distance from the central axis to the contact portion between the planetary ball 50 and the second rotating member 20 changes, and the gear ratio is changed. At this time, the carrier 40 is allowed to swing in the radial direction of the intermediate portion 54 of the support shaft 51 by the slit portion 46 in the plate 43.
  • the second guide end portion 53 is moved to the center side (first rotation center axis R1) when the movable carrier 42 rotates counterclockwise in FIG.
  • the gear ratio is changed to the speed increasing side within a predetermined speed range.
  • the movable guide 42 rotates in the clockwise direction in FIG. 4 so that the second guide end 53 moves outward (opposite to the first rotation center axis R1).
  • the gear ratio is changed to the deceleration side within a predetermined speed range.
  • the continuously variable transmission 1 configured as described above, for example, when torque is transmitted to the input shaft 11, the torque is transmitted to the torque cam 70, the first rotating member 10, the planetary ball 50, the second rotating member 20, and the torque cam. It can be transmitted to the output shaft 21 via 71 or the like. At this time, for example, when the torque is transmitted from the input shaft 11 to the first rotating member 10, the continuously variable transmission 1 changes the first torque according to the magnitude of the torque transmitted by the action of the torque cam 70, the torque cam 71, and the like.
  • a pressing force pressing load
  • a pressing load is generated in a direction in which the first rotating member 10 and each planetary ball 50 and the second rotating member 20 and each planetary ball 50 are relatively approached and pressed against each other.
  • the continuously variable transmission 1 has a transmission torque capacity corresponding to the pressing force, and between the first rotating member 10 and each planetary ball 50 according to this transmission torque capacity, each planetary ball 50 and the second planetary ball 50.
  • a traction force (friction force) is generated between the rotating member 20 and the rotating member 20.
  • the continuously variable transmission 1 can transmit power (torque) between the first rotating member 10 and each planetary ball 50 and between each planetary ball 50 and the second rotating member 20. .
  • the pressing force by the torque cam 70 and the torque cam 71 is caused by the action according to the shape and positional relationship between the contact surfaces 10a and 20a of the first rotating member 10 and the second rotating member 20 and the outer surface of each planetary ball 50. It is also transmitted to the sun roller 30 via the ball 50.
  • the continuously variable transmission 1 generates a traction force (friction force) between each planetary ball 50 and the sun roller 30 according to the pressing force by the torque cam 70 and the torque cam 71, and each planetary ball 50 and the sun roller 30. Can transmit power (torque) to each other.
  • the continuously variable transmission 1 generates a frictional force (traction force) between the first rotating member 10 and each planetary ball 50 as the first rotating member 10 rotates, and each planetary ball 50 starts to rotate. .
  • the continuously variable transmission 1 generates a frictional force between each planetary ball 50 and the second rotating member 20 and between each planetary ball 50 and the sun roller 30 due to the rotation of each planetary ball 50.
  • the two-rotating member 20 and the sun roller 30 also start to rotate.
  • each planetary ball 50 starts rotating as the second rotating member 20 rotates, and the first rotating member 10 and the sun roller 30 also start rotating.
  • the carrier 40 tilts each planetary ball 50 and changes the tilt angle of each planetary ball 50 as described above by the power from the driving device, thereby changing the gear ratio ⁇ continuously. Can be changed.
  • the first guide end portion 52 and the second guide end portion 53 each have a curved shape, and the first guide portion 44 and the second guide portion 45 each have a predetermined shape. Groove portion 47 and groove portion 48.
  • the continuously variable transmission 1 realizes a surface pressure reducing structure at the first guide end portion 52 and the second guide end portion 53 of the support shaft 51 to improve durability.
  • first guide end 52 and the second guide end 53 have a barrel shape (so-called barrel shape) as shown in FIG.
  • barrel shape a barrel shape
  • first guide end portion 52 and the second guide end portion 53 and the first guide portion 44 and the second guide portion 45 have substantially the same configuration, and unless otherwise noted, as much as possible.
  • the overlapping description and illustration are omitted and the description is common.
  • the first guide end portion 52 and the second guide end portion 53 are radially outward with respect to the direction along which the contact surface 55 and the contact surface 56 contact the first guide portion 44 and the second guide portion 45, respectively. It has a curved shape protruding toward
  • the contact surface 55 and the contact surface 56 correspond to the outer peripheral surfaces of the first guide end portion 52 and the second guide end portion 53, and more specifically, the first guide end portion 52 and the second guide end portion 53.
  • the rolling centers of the first guide end 52 and the second guide end 53 are the central axes of the first guide end 52 and the second guide end 53, and typically the second center of rotation. This corresponds to the axis R2.
  • the direction along the rolling center is typically orthogonal to the direction in which the first guide end 52 and the second guide end 53 roll and move during the tilting operation of the planetary ball 50.
  • it is the axial direction of the second rotation center axis R2.
  • first guide end portion 52 and the second guide end portion 53 have the contact surface 55 and the contact surface 56 in a cross-sectional view along the rolling center, that is, in a cross-sectional view along the axial direction shown in FIG. It has a curved surface shape with a regular arc shape protruding outward in the radial direction. Furthermore, the first guide end portion 52 and the second guide end portion 53 have a circular shape in cross section perpendicular to the second rotation center axis R2, and the diameter (outer diameter) of the circular shape is the center in the axial direction. It is the largest at the part, and is formed into a shape that gradually decreases toward both ends.
  • the first guide end 52 and the second guide end 53 are the contact surface 55 having the curved surface as described above when the planetary ball 50 is tilted, and the contact surface 56 is the first guide 44 and the second guide. Rolling about the second rotation center axis R2 in the state of contact with the contact surface 44a of the portion 45 and the contact surface 45a. Accordingly, the movement of the first guide end portion 52 and the second guide end portion 53 is guided by the first guide portion 44 and the second guide portion 45.
  • the continuously variable transmission 1 is a CVP that performs so-called skew shifting, and the first guide end portion 52 and the second guide end portion 53 need to be responsible for tilting and rotation in the skew direction. is there. Further, the continuously variable transmission 1 is required to rotate in three axial directions with respect to the first guide end 52 and the second guide end 53 when a rolling motion for reducing the frictional force is applied.
  • the first guide end portion 52 and the second guide end portion 53 are formed in a spherical barrel shape (barrel shape) as described above. It is possible to smoothly perform the three-dimensional movement of direction rotation and rolling.
  • the contact surface 44a and the contact surface 45a of the first guide portion 44 and the second guide portion 45 are respectively located on the side of the first guide portion 44 and the second guide portion 45, as shown in FIGS. It is formed as a wall surface.
  • a pair of contact surfaces 44 a are provided for each first guide portion 44.
  • the pair of contact surfaces 44a are provided along the direction in which the first guide end portion 52 moves when the planetary ball 50 tilts in each first guide portion 44, and face each other.
  • the contact surfaces 45a are provided to be opposed to each second guide portion 45 as a pair.
  • the pair of contact surfaces 45a are provided along the direction in which the second guide end portion 53 moves during the tilting operation of the planetary ball 50 in each second guide portion 45, and face each other.
  • the contact surface 44a and the contact surface 45a correspond to rolling surfaces on which the first guide end portion 52 and the second guide end portion 53 come into contact and roll.
  • the first guide portion 44 and the second guide portion 45 are contact surfaces 44a and contact surfaces with the first guide end portion 52 and the second guide end portion 53, respectively.
  • 45 a has a groove 47 and a groove 48.
  • the groove portion 47 is formed along the direction of movement of the first guide end portion 52 on each contact surface 44a.
  • the groove portion 48 is formed along the direction of movement of the second guide end portion 53 on each contact surface 45a.
  • the groove portion 47 and the groove portion 48 are in contact with the contact surface 55 and the contact surface 56 of the first guide end portion 52 and the second guide end portion 53, respectively.
  • the groove portion 47 and the groove portion 48 accommodate a part of the first guide end portion 52 and the second guide end portion 53, and contact surfaces 55 of the first guide end portion 52 and the second guide end portion 53, contact with each other. Contact the surface 56.
  • the groove part 47 and the groove part 48 of this embodiment have a curved surface shape in which the bottom surface is recessed in the direction along the rolling center, that is, the axial direction of the second rotation center axis R2 (R groove). That is, the groove part 47 and the groove part 48 have a curved surface shape having a regular arc shape with a recessed bottom surface in a sectional view along the rolling center, that is, in a sectional view along the axial direction shown in FIG.
  • the groove 47 and the groove 48 are formed so that the curvature of the curved surface is equal to or less than the curvature of the curved surfaces of the first guide end 52 and the second guide end 53.
  • the curvature of the curved shape of the first guide end portion 52 and the second guide end portion 53 is the contact surface 55 in a sectional view along the rolling center, that is, in a sectional view along the axial direction shown in FIG.
  • the curvature of the contact surface 56 which can be expressed as [1 / Ra] using the contact surface 55 in the cross-sectional view and the radius Ra of the curved shape of the contact surface 56.
  • the curvature of the curved surface shape of the groove 47 and the groove 48 is a curvature of the bottom surface of the groove 47 and the groove 48 in a sectional view along the rolling center, that is, in a sectional view along the axial direction shown in FIG. [1 / Rb] can be expressed using the radius Rb of the curved surface shape of the bottom of the groove 47 and the groove 48 in FIG.
  • the curved surface shape of the bottom part of the groove part 47 and the groove part 48, and the curved surface shape of the contact surface 55 of the 1st guide end part 52 and the 2nd guide end part 53, and the contact surface 56 satisfy
  • the continuously variable transmission 1 configured as described above, when the planetary ball 50 is tilted, the first guide end 52 and the second guide end 53 having a predetermined curved surface shape are partly first. The rolling is performed while the guide part 44 and the groove part 47 and the groove part 48 of the second guide part 45 are fitted, and the movement is guided. Therefore, the continuously variable transmission 1 is tilted in accordance with the tilting operation of the planetary ball 50 at the first guide end 52 and the second guide end 53 formed in the spherical barrel shape, and rotated in the skew direction. The three-dimensional motion of rolling can be allowed, and the tilting motion can be performed smoothly.
  • the continuously variable transmission 1 does not have the groove portion 47 and the groove portion 48 after the first guide end portion 52 and the second guide end portion 53 are formed into a barrel shape by the action of the groove portion 47 and the groove portion 48, for example.
  • the contact surface 55 of the second guide end 53, the contact surface 56 and the first guide 44, the contact surface 44a of the second guide 45, and the contact surface 45a are in point contact.
  • the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portion 47 and the groove portion 48 can be suppressed.
  • the continuously variable transmission 1 can suppress the contact surface pressure at the contact portion between the contact surface 55, the contact surface 56 and the groove portion 47, and the groove portion 48, and thus the first guide portion 44 and the second guide portion 44 of the carrier 40.
  • the durability and wear resistance of the guide portion 45 and the first guide end portion 52 and the second guide end portion 53 of the support shaft 51 can be improved.
  • the continuously variable transmission 1 includes a groove portion 47 having a concave curved surface shape, a first guide end portion 52 having a convex curvature 1 / Rb of the groove portion 48, and a second guide end portion 53. It is formed with a curvature of 1 / Ra or less.
  • the continuously variable transmission 1 includes the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56, the first guide 44, the groove 47 of the second guide 45, and the groove 48.
  • the equivalent radius is relatively large, and the contact area can be relatively large.
  • the continuously variable transmission 1 can suppress the contact surface pressure per unit area at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 47 and 48 as described above, thereby improving durability. be able to.
  • the continuously variable transmission 1 has, for example, the first guide end portion 52 and the second guide end portion 53 not in a barrel shape but in a pure cylindrical (column) shape and without the groove portions 47 and 48 being provided in the first.
  • the continuously variable transmission 1 includes the first guide end portion 52, the second guide end portion 53, the first guide portion 44, and the contact portion between the second guide portion 45, that is, the contact surface 55 and the contact surface 56.
  • the continuously variable transmission 1 can achieve both improvement in durability and suppression of increase in transmission torque, and can realize a smooth speed change operation while improving durability.
  • the continuously variable transmission 1 includes the transmission shaft 60, the first rotating member 10 and the second rotating member 20, the planetary ball 50, the support shaft 51, and the carrier 40. .
  • the transmission shaft 60 is the center of rotation.
  • the first rotating member 10 and the second rotating member 20 are disposed so as to face the transmission shaft 60 in the axial direction, and can be relatively rotated about the common first rotation center axis R1.
  • the planetary ball 50 is rotatable about a second rotation center axis R2 different from the first rotation center axis R1.
  • the planetary ball 50 is sandwiched between the first rotating member 10 and the second rotating member 20 and can transmit torque between the first rotating member 10 and the second rotating member 20.
  • the planetary ball 50 can change a gear ratio, which is a rotation speed ratio between the rotating elements, by a tilting operation.
  • the support shaft 51 supports the planetary ball 50 with the second rotation center axis R ⁇ b> 2 as the rotation center, and both end portions protrude from the planetary ball 50.
  • the carrier 40 is disposed on the transmission shaft 60 so as to be rotatable relative to the first rotating member 10 and the second rotating member 20 around the first rotation center axis R1.
  • the carrier 40 is an end portion of a support shaft 51, and a first guide end portion 52 and a second guide end portion 53 that are formed in a cylindrical shape or a columnar shape are inserted into the first guide end portion 52 and the second guide end portion.
  • the first guide portion 44 and the second guide portion 45 that hold 53 in a state in which the planetary ball 50 can be tilted are provided.
  • the first guide end portion 52 and the second guide end portion 53 roll while in contact with the first guide portion 44 and the second guide portion 45 when the planetary ball 50 is tilted.
  • the movement is guided by the part 44 and the second guide part 45.
  • the first guide end portion 52 and the second guide end portion 53 are radially outward with respect to the direction along which the contact surface 55 and the contact surface 56 contact the first guide portion 44 and the second guide portion 45, respectively. It has a curved shape that protrudes toward it.
  • the first guide portion 44 and the second guide portion 45 have a contact surface 44a with the first guide end portion 52 and the second guide end portion 53, and the contact surface 45a with the first guide end portion 52 and the second guide end portion 53.
  • the first guide end portion 52 and the second guide end portion 53 are partly formed, and the contact surface 55 and the contact surface 56 of the first guide end portion 52 and the second guide end portion 53 are formed.
  • a groove portion 47 and a groove portion 48 in contact with each other.
  • the continuously variable transmission 1 when the planetary ball 50 is tilted, the first guide end portion 52 and the second guide end portion 53 having a predetermined curved surface shape are part of the first guide portion 44 and the second guide end portion 53. 2
  • the rolling is performed in a state of being fitted in the groove 47 and the groove 48 of the guide 45, and the movement is guided.
  • the continuously variable transmission 1 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 47 and 48, and can improve durability.
  • the continuously variable transmission 1 can improve, for example, the positioning performance of the support shaft 51 in the axial direction of the second rotation center axis R2, and simplify the finishing of the contact surface 44a, the contact surface 45a, and the like. (Limitation of finished surface), Simplification of surface treatment (reduction of required hardness), improvement of workability (reduction of required hardness), improvement of accuracy (reduction of thermal strain), cost reduction (material, workability), etc. be able to.
  • FIG. 7 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the second embodiment.
  • the continuously variable transmission according to the second embodiment is different from the first embodiment in the shape of the groove.
  • the overlapping description is abbreviate
  • the first guide portion 44 and the second guide portion 45 have a contact surface 44a, and the contact surface 45a has a groove portion 247 and a groove portion 248, respectively.
  • the groove portion 247 is formed along the direction of movement of the first guide end portion 52 on each contact surface 44a.
  • the groove portion 248 is formed along the direction of movement of the second guide end portion 53 on each contact surface 45a.
  • the groove part 247 of this embodiment and the groove part 248 are comprised by the some surface in the bottom face.
  • the bottom surface of the groove portion 247 and the groove portion 248 is constituted by two surfaces 249a and 249b.
  • the surfaces 249a and 249b are formed in a plane. That is, the groove portion 247 and the groove portion 248 have a V-shaped cross-sectional shape with a plurality of surfaces 249a and 249b in the cross-sectional view along the rolling center, that is, the cross-sectional view along the axial direction shown in FIG. Have (V-shaped groove).
  • the continuously variable transmission 201 configured as described above, when the planetary ball 50 is tilted, the first guide end portion 52 and the second guide end portion 53 having a predetermined curved surface shape are partly first. Rolling is guided in the state where the guide part 44 and the groove part 247 and the groove part 248 of the second guide part 45 are fitted, and the movement is guided. Therefore, the continuously variable transmission 201 is tilted in accordance with the tilting operation of the planetary ball 50 at the first guide end 52 and the second guide end 53 formed in the spherical barrel shape, and rotated in the skew direction. The three-dimensional motion of rolling can be allowed, and the tilting motion can be performed smoothly.
  • the continuously variable transmission 201 can suppress contact surface pressure at a contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248. Thereby, the continuously variable transmission 201 can suppress the contact surface pressure at the contact portion between the contact surface 55, the contact surface 56 and the groove portion 247, and the groove portion 248, and thus the first guide portion 44 and the second guide portion 44 of the carrier 40.
  • the durability and wear resistance of the guide portion 45 and the first guide end portion 52 and the second guide end portion 53 of the support shaft 51 can be improved.
  • the bottom surfaces of the groove portion 247 and the groove portion 248 are formed in a V shape by a plurality of surfaces 249a and 249b.
  • the continuously variable transmission 201 includes the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56, the first guide 44, the groove 247 of the second guide 45, and the groove 248. Come into contact at two points.
  • the continuously variable transmission 201 can suppress contact surface pressure per point at a contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248, and can improve durability. .
  • the continuously variable transmission 201 can suppress the contact area from becoming too large, the first guide end portion 52, the second guide end portion 53, the first guide portion 44, the second guide portion 45, The generation of a large frictional force at the contact portions of the contact surface 55, the contact surface 56, the contact portion 56 with the groove portion 247, and the groove portion 248 can be suppressed.
  • the continuously variable transmission 201 has a torque (shift torque) required for the tilting operation between the first guide end 52 and the second guide end 53 and the first guide 44 and the second guide 45. An increase can be suppressed.
  • the continuously variable transmission 201 can achieve both improvement in durability and suppression of increase in transmission torque, and can realize a smooth speed change operation while improving durability.
  • the normal force per point at the contact portion between the contact surface 55 and the contact surface 56 and the groove portion 247 and the groove portion 248 can be expressed by the following mathematical formula (2).
  • F 0 is the force acting on the groove portion 247 and the groove portion 248 from the first guide end portion 52 and the second guide end portion 53
  • F 1 is the contact surface 55, the contact surface 56 and the groove portion 247.
  • F 2 is a normal force acting on the contact point between the contact surface 55, the contact surface 56 and the groove portion 247, and the contact point between the groove portion 248 and the surface 249 b
  • F 2 ” “ ⁇ 1 ” is the contact surface 55, the contact angle between the contact surface 56 and the groove 247, and the contact point between the groove 248 and the surface 249 a
  • ⁇ 2 is the contact surface 55, the contact surface 56 and the groove 247, and the surface 249 b of the groove 248.
  • F 1 ⁇ cos ⁇ 1 + F 2 ⁇ cos ⁇ 2 F 0 (2)
  • Contact angles ⁇ 1 and ⁇ 2 between the plurality of surfaces 249 a and 249 b and the contact surface 55 of the first guide end portion 52 and the second guide end portion 53 and the contact surface 56 are the contact surface 55, the contact surface 56 and the groove portion 247, This is an angle formed by the normal line of the contact portion with the surfaces 249a and 249b of the groove portion 248 and the reference line.
  • the reference lines of the contact angles ⁇ 1 and ⁇ 2 are the rolling directions of the first guide end portion 52 and the second guide end portion 53, that is, the direction orthogonal to the rolling center (second rotation center axis R2). It is a line along
  • the contact angles ⁇ 1 and ⁇ 2 between the plurality of surfaces 249a and 249b and the first guide end portion 52, the contact surface 55 of the second guide end portion 53, and the contact surface 56 are 0. It is set within a range larger than 60 degrees and smaller than 60 degrees (0 ° ⁇ 1 , ⁇ 2 ⁇ 60 °).
  • the continuously variable transmission 201 increases the normal force per point at the contact portion between the contact surface 55, the contact surface 56 and the groove portion 247, and the groove portion 248 as the contact angles ⁇ 1 and ⁇ 2 approach 0 °.
  • the reduction effect can be increased. Therefore, the continuously variable transmission 201 can more reliably suppress the contact surface pressure per point at the contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248, and further improve the durability. be able to.
  • the continuously variable transmission 201 when the planetary ball 50 tilts, the first guide end portion 52 and the second guide end portion 53 having a predetermined curved surface shape are partly connected. Rolling is guided in the state where the first guide portion 44 and the groove portion 247 and the groove portion 248 of the second guide portion 45 are fitted. As a result, the continuously variable transmission 201 can suppress the contact surface pressure at the contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248, and can improve durability.
  • the continuously variable transmission 201 has a bottom surface of the groove portion 247 and the groove portion 248 that is formed into a V shape by a plurality of surfaces 249a and 249b.
  • the rolling resistance of the first guide end portion 52 and the second guide end portion 53 during the rolling operation can be further suppressed, and a further smooth speed change operation can be realized.
  • the groove portion 247 and the groove portion 248 have been described on the assumption that the bottom surface is constituted by the two surfaces 249a and 249b, but the present invention is not limited to this, and may be constituted by three or more surfaces.
  • FIG. 8 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the third embodiment.
  • the continuously variable transmission according to the third embodiment is different from the first and second embodiments in the shape of the groove.
  • the first guide portion 44 and the second guide portion 45 have a contact surface 44a, and the contact surface 45a has a groove portion 347 and a groove portion 348, respectively.
  • the groove portion 347 is formed along the direction of movement of the first guide end portion 52 on each contact surface 44a.
  • the groove portion 348 is formed along the direction of movement of the second guide end portion 53 on each contact surface 45a.
  • the groove part 347 of this embodiment and the groove part 348 are comprised by the some surface in the bottom face.
  • the bottom surface of the groove portion 347 and the groove portion 348 is constituted by two surfaces 349a and 349b.
  • the surfaces 349a and 349b of the present embodiment are formed in curved shapes similar to the bottom surfaces of the groove 47 and the groove 48 (see FIG. 6), respectively. That is, the groove portion 347 and the groove portion 348 are substantially V-shaped by a plurality of surfaces 349a and 349b as a whole in a cross-sectional view along the rolling center, that is, a cross-sectional view along the axial direction shown in FIG.
  • Each of the substantially V-shaped surfaces having a cross-sectional shape is formed into a curved surface shape (V-shaped R groove).
  • the groove portions 347 and 348 have curved surface shapes of the first guide end portion 52 and the second guide end portion 53 in the same manner as the bottom surfaces of the groove portions 47 and 48 (see FIG. 6). It is formed below the curvature.
  • the curvatures of the curved shapes of the first guide end portion 52 and the second guide end portion 53 are the cross-sectional view along the rolling center, that is, the cross-sectional view along the axial direction shown in FIG. [1 / Ra] can be expressed using the radius Ra of the curved surface shape of the contact surface 55 and the contact surface 56 in FIG.
  • the curvature of the curved surface shapes of the surfaces 349a and 349b is obtained by using the radius Rb of the curved surface shape of the surfaces 349a and 349b in the sectional view along the rolling center, that is, in the sectional view along the axial direction shown in FIG. Rb].
  • the curved surface shapes of the surfaces 349a and 349b of the groove portion 347 and the groove portion 348 and the curved surface shapes of the first guide end 52, the contact surface 55 of the second guide end 53, and the contact surface 56 are expressed by the above equation (1). It is formed to satisfy.
  • the groove portion 347 and the groove portion 348 of the present embodiment are the contact surfaces of the plurality of surfaces 349a and 349b, the first guide end portion 52, and the second guide end portion 53, similarly to the groove portion 247 and the groove portion 248 (see FIG. 7).
  • the contact angles ⁇ 1 and ⁇ 2 with the contact surface 56 are set within a range larger than 0 degree and smaller than 60 degrees (0 ° ⁇ 1 , ⁇ 2 ⁇ 60 °).
  • the continuously variable transmission 301 configured as described above, when the planetary ball 50 tilts, the first guide end 52 and the second guide end 53 having a predetermined curved surface shape are partly first. It rolls in a state of being fitted in the groove portions 347 and 348 of the guide portion 44 and the second guide portion 45 to guide the movement. Therefore, the continuously variable transmission 301 is tilted in accordance with the tilting operation of the planetary ball 50 at the first guide end 52 and the second guide end 53 formed in the spherical barrel shape, and rotated in the skew direction. The three-dimensional motion of rolling can be allowed, and the tilting motion can be performed smoothly.
  • the continuously variable transmission 301 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348. Thereby, the continuously variable transmission 301 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348, and thus the first guide portion 44 and the second guide of the carrier 40.
  • the durability and wear resistance of the first guide end 52 and the second guide end 53 of the portion 45 and the support shaft 51 can be improved.
  • the bottom surfaces of the groove portion 347 and the groove portion 348 are formed in a substantially V shape by a plurality of surfaces 349a and 349b.
  • the continuously variable transmission 301 includes the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56, the first guide 44, the groove 347 of the second guide 45, and the groove 348. Come into contact at two points.
  • the continuously variable transmission 301 can suppress the normal force per point at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348 and suppress the contact surface pressure. Can be improved.
  • the continuously variable transmission 301 further includes a groove portion 347 having a concave curved surface shape, a first guide end portion 52 having a convex curved surface shape in which the curvatures 1 / Rb of the surfaces 349a and 349b of the groove portion 348 are convex. 2
  • the curvature of the guide end portion 53 is 1 / Ra or less.
  • the continuously variable transmission 301 has a relative equivalent radius between the contact surface 55 of the first guide end 52 and the second guide end 53, the contact surface 56, the groove 347, and the surfaces 349a and 349b of the groove 348.
  • the contact area can be relatively increased.
  • the continuously variable transmission 1 can suppress the contact surface pressure per unit area at each contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348, and can further improve durability. it can.
  • the continuously variable transmission 301 when the planetary ball 50 is tilted, the first guide end 52 and the second guide end 53 having a predetermined curved surface shape are partly connected. The rolling is performed while being fitted in the groove portions 347 and 348 of the first guide portion 44 and the second guide portion 45, and the movement is guided. As a result, the continuously variable transmission 301 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348, and can improve durability.
  • FIG. 9 is a diagram for comparing an example of contact surface pressure between the continuously variable transmissions 1, 201, 301 according to each embodiment described above and the continuously variable transmission according to the comparative example.
  • the horizontal axis is a comparative example in order from the left, continuously variable transmission 1 (R groove), continuously variable transmission 301 (V-shaped R groove), continuously variable transmission 201 (V-shaped groove), and the vertical axis is The contact surface pressure at the contact portion between the first guide end portion 52 and the second guide end portion 53 and the first guide portion 44 and the second guide portion 45 is used.
  • the continuously variable transmission according to the comparative example does not include the groove portions 47, 48, 247, 248, 347, 348 after the first guide end portion 52 and the second guide end portion 53 have a barrel shape.
  • the continuously variable transmissions 1, 201, 301 are compared with the continuously variable transmission according to the comparative example in that the first guide end 52, the second guide end 53, and the first guide. It is possible to reduce the contact surface pressure at the contact portion with the portion 44 and the second guide portion 45. Especially, the contact surface pressure in the continuously variable transmission 301 having the groove portions 347 and 348 which are V-shaped R grooves is particularly large, and then the contact surface pressure in the continuously variable transmission 1 having the groove portions 47 and 48 which are R grooves. It can be understood that the decrease in the next is the largest.
  • continuously variable transmission according to the above-described embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims.
  • the continuously variable transmission according to the present embodiment may be configured by appropriately combining the components of the embodiments described above.
  • the groove described above is formed on the contact surface with the guide end along the direction of movement of the guide end, and a part of the guide end fits into contact with the contact surface of the guide end. What is necessary is just and it is not restricted to the above-mentioned R groove, V-shaped groove, and V-shaped R groove.

Abstract

In a continuously variable transmission (1), a support rotation element (40) is disposed on a transmission axle (60) so as to be rotatable relative to a first rotation element (10) and a second rotation element (20). The support rotation element (40) has guide portions (44, 45) that support the guide end sections (52, 53) of a support axle (51) so that oblique rotation of a rotating member (50) is possible. The guide end sections (52, 53) have a curved surface shape that protrudes towards the outside in the diameter direction in relation to the direction in which the contact surfaces (55, 56) of the guide portions (44, 45) follow the center of rotation. The guide portions (44, 45) have groove portions (47, 48) that are formed at surfaces (44a, 44b) that make contact with the guide end sections (52, 53), that are formed following the direction in which the guide end sections (52, 53) move, into which one part of the guide end sections (52, 53) fits, and that make contact with the contact surfaces (55, 56) of the guide end sections (52, 53). Therefore, the durability of the continuously variable transmission (1) can be improved.

Description

無段変速機Continuously variable transmission
 本発明は、無段変速機に関する。 The present invention relates to a continuously variable transmission.
 いわゆるトラクションドライブ方式の従来の変速機として、例えば、特許文献1にはトラクション遊星(遊星ボール)の遊星軸にスキュー角を付与することで、トラクション遊星を傾転し変速を行う変速機が開示されている。この変速機は、一対のキャリアが遊星軸の両端をそれぞれ支持し、一方のキャリアと変速機主軸との間にネジ構造が設けられ、他方のキャリアと変速機主軸との間にスプライン結合部が設けられる。そして、変速機は、例えば、トラクション太陽(サンローラ)が変速機主軸に沿って移動すると共に、一方のキャリアを変速機主軸に対して回転させることで、遊星軸にスキューが生じ、これに応じてトラクション遊星が傾転して変速を行う。この変速機は、キャリアによって支持される遊星軸端部に設けられたローラ表面が湾曲表面を構成している。 As a conventional transmission of a so-called traction drive system, for example, Patent Document 1 discloses a transmission that tilts a traction planet and shifts by giving a skew angle to a planetary axis of a traction planet (planetary ball). ing. In this transmission, a pair of carriers respectively support both ends of the planetary shaft, a screw structure is provided between one carrier and the transmission main shaft, and a spline coupling portion is provided between the other carrier and the transmission main shaft. Provided. In the transmission, for example, the traction sun (sun roller) moves along the transmission main shaft, and one carrier is rotated with respect to the transmission main shaft, thereby causing a skew in the planetary shaft. The traction planet tilts and shifts. In this transmission, the roller surface provided at the end of the planetary shaft supported by the carrier forms a curved surface.
特表2010-532454号公報Special table 2010-532454 gazette
 ところで、上述のような特許文献1に記載されている変速機は、例えば、キャリアと遊星軸のローラとが1点で点接触することとなり、これにより、接触面圧が増大し耐久性が低下するおそれがある。 By the way, in the transmission described in Patent Document 1 as described above, for example, the carrier and the roller of the planetary shaft are brought into point contact at one point, thereby increasing the contact surface pressure and reducing the durability. There is a risk.
 本発明は、上記の事情に鑑みてなされたものであって、耐久性を向上することができる無段変速機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a continuously variable transmission that can improve durability.
 上記目的を達成するために、回転中心となる変速機軸と、前記変速機軸に軸方向に対向して配置され、共通の第1回転中心軸線を回転中心として相対回転可能である第1回転要素及び第2回転要素と、前記第1回転中心軸線とは異なる第2回転中心軸線を回転中心として回転可能であり前記第1回転要素と前記第2回転要素とに挟持され当該第1回転要素及び当該第2回転要素との間でトルクを伝達可能であると共に、傾転動作によって各回転要素間の回転速度比である変速比を変更可能である転動部材と、前記第2回転中心軸線を回転中心として前記転動部材を支持し両端部が当該転動部材から突出した支持軸と、前記第1回転中心軸線を回転中心として前記第1回転要素、及び、前記第2回転要素と相対回転可能に前記変速機軸に配置されると共に、前記支持軸の端部であり円筒状又は円柱状に形成されるガイド端部が挿入され当該ガイド端部を前記転動部材の傾転動作が可能な状態で保持するガイド部を有する支持回転要素とを備え、前記ガイド端部は、前記転動部材の傾転動作の際に前記ガイド部と接触した状態で転動し当該ガイド部によって移動が案内され、前記ガイド部との接触面が転動中心に沿った方向に対して径方向外側に向けて突出した曲面形状を有し、前記ガイド部は、前記ガイド端部との接触面に当該ガイド端部の移動の方向に沿って形成され当該ガイド端部の一部がはまり当該ガイド端部の接触面と接触する溝部を有することを特徴とする。 In order to achieve the above object, a transmission shaft serving as a rotation center, a first rotation element that is disposed to face the transmission shaft in the axial direction and is relatively rotatable about a common first rotation center axis, and A second rotation element and a second rotation center axis different from the first rotation center axis can be rotated as a rotation center, and are sandwiched between the first rotation element and the second rotation element, and the first rotation element and the Torque can be transmitted to and from the second rotating element, and a rolling member that can change a speed ratio that is a rotation speed ratio between the rotating elements by tilting operation, and the second rotation center axis is rotated. A support shaft that supports the rolling member as a center and has both ends projecting from the rolling member, and the first rotating element and the second rotating element can be rotated relative to each other about the first rotation center axis. On the transmission shaft In addition, a guide end that is an end portion of the support shaft and is formed in a cylindrical shape or a columnar shape is inserted, and the guide end portion is held in a state in which the rolling member can be tilted. The guide end portion rolls in a state of being in contact with the guide portion during the tilting operation of the rolling member, and the movement is guided by the guide portion, and contact with the guide portion. The guide surface has a curved shape protruding outward in the radial direction with respect to the direction along the rolling center, and the guide portion is in contact with the guide end portion along the direction of movement of the guide end portion. It is characterized in that a part of the guide end portion is formed and has a groove portion that contacts the contact surface of the guide end portion.
 また、上記無段変速機では、前記溝部は、底面が複数の面により構成されるものとすることができる。 Further, in the continuously variable transmission, the groove portion may have a bottom surface composed of a plurality of surfaces.
 また、上記無段変速機では、前記溝部は、前記複数の面と前記ガイド端部の接触面との接触角が0度より大きく60度より小さい範囲内に設定されるものとすることができる。 In the continuously variable transmission, the groove may be set within a range in which a contact angle between the plurality of surfaces and a contact surface of the guide end is larger than 0 degree and smaller than 60 degrees. .
 また、上記無段変速機では、前記溝部は、底面が前記転動中心に沿った方向に対して窪んだ曲面形状を有し、当該曲面形状の曲率が前記ガイド端部の前記曲面形状の曲率以下であるものとすることができる。 In the continuously variable transmission, the groove portion has a curved surface shape whose bottom surface is recessed with respect to the direction along the rolling center, and the curvature of the curved surface shape is the curvature of the curved shape of the guide end portion. It can be:
 また、上記無段変速機では、前記溝部の前記曲面形状の曲率は、前記転動中心に沿った断面視における当該溝部の底面の曲率であり、前記ガイド端部の前記曲面形状の曲率は、前記転動中心に沿った断面視における当該ガイド端部の接触面の曲率であるものとすることができる。 Further, in the continuously variable transmission, the curvature of the curved surface shape of the groove portion is a curvature of the bottom surface of the groove portion in a sectional view along the rolling center, and the curvature of the curved surface shape of the guide end portion is It may be the curvature of the contact surface of the guide end in a cross-sectional view along the rolling center.
 本発明に係る無段変速機は、耐久性を向上することができる、という効果を奏する。 The continuously variable transmission according to the present invention has an effect that durability can be improved.
図1は、実施形態1に係る無段変速機の概略断面図である。FIG. 1 is a schematic cross-sectional view of a continuously variable transmission according to a first embodiment. 図2は、実施形態1に係る無段変速機の部分断面図である。FIG. 2 is a partial cross-sectional view of the continuously variable transmission according to the first embodiment. 図3は、実施形態1に係る無段変速機の固定キャリアについて説明する平面図である。FIG. 3 is a plan view illustrating a fixed carrier of the continuously variable transmission according to the first embodiment. 図4は、実施形態1に係る無段変速機の可動キャリアについて説明する平面図である。FIG. 4 is a plan view illustrating the movable carrier of the continuously variable transmission according to the first embodiment. 図5は、実施形態1に係る無段変速機のプレートについて説明する平面図である。FIG. 5 is a plan view for explaining a plate of the continuously variable transmission according to the first embodiment. 図6は、実施形態1に係る無段変速機の第1ガイド端部、第2ガイド端部の部分断面図である。FIG. 6 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the first embodiment. 図7は、実施形態2に係る無段変速機の第1ガイド端部、第2ガイド端部の部分断面図である。FIG. 7 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the second embodiment. 図8は、実施形態3に係る無段変速機の第1ガイド端部、第2ガイド端部の部分断面図である。FIG. 8 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the third embodiment. 図9は、各実施形態に係る無段変速機と比較例に係る無段変速機との接触面圧の一例を比較するための線図である。FIG. 9 is a diagram for comparing an example of contact surface pressure between the continuously variable transmission according to each embodiment and the continuously variable transmission according to the comparative example.
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[実施形態1]
 図1は、実施形態1に係る無段変速機の概略断面図、図2は、実施形態1に係る無段変速機の部分断面図、図3は、実施形態1に係る無段変速機の固定キャリアについて説明する平面図、図4は、実施形態1に係る無段変速機の可動キャリアについて説明する平面図、図5は、実施形態1に係る無段変速機のプレートについて説明する平面図、図6は、実施形態1に係る無段変速機の第1ガイド端部、第2ガイド端部の部分断面図である。
[Embodiment 1]
1 is a schematic sectional view of a continuously variable transmission according to a first embodiment, FIG. 2 is a partial sectional view of the continuously variable transmission according to the first embodiment, and FIG. 3 is a sectional view of the continuously variable transmission according to the first embodiment. FIG. 4 is a plan view illustrating a movable carrier of the continuously variable transmission according to the first embodiment, and FIG. 5 is a plan view illustrating a plate of the continuously variable transmission according to the first embodiment. FIG. 6 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the first embodiment.
 本実施形態の無段変速機は、車両に搭載され、内燃機関などの動力源が発生する動力(トルク)を車両の駆動輪に伝達するものである。この無段変速機は、接触させた回転要素間に介在させた流体例えばトラクション油(伝達油)によってこの回転要素間で動力を伝達可能ないわゆるトラクションドライブ方式の無段変速機である。無段変速機は、一方の回転要素と他方の回転要素との接触面に介在するトラクション油をせん断するときに生ずる抵抗力(トラクション力、トラクション油膜のせん断力)を利用して動力(トルク)を伝達する。本実施形態の無段変速機は、いわゆるボールプラネタリ式無段変速機(CVP:Continuously Variable Planetary)である。 The continuously variable transmission of this embodiment is mounted on a vehicle and transmits power (torque) generated by a power source such as an internal combustion engine to drive wheels of the vehicle. This continuously variable transmission is a so-called traction drive type continuously variable transmission that can transmit power between the rotating elements by a fluid such as traction oil (transmitted oil) interposed between the rotating elements in contact with each other. The continuously variable transmission uses the resistance force (traction force, shear force of the traction oil film) generated when shearing the traction oil intervening on the contact surface between one rotating element and the other rotating element to provide power (torque). To communicate. The continuously variable transmission according to the present embodiment is a so-called ball planetary continuously variable transmission (CVP: Continuously Variable Planetary).
 具体的には、図1、図2に示すように、本実施形態の無段変速機1の主要部を成す無段変速機構は、共通の第1回転中心軸線R1を有し相互間での相対回転が可能な第1回転要素としての第1回転部材10、第2回転要素としての第2回転部材20、第3回転要素としてのサンローラ30及び第4回転要素であり支持回転要素としてのキャリア40とを備える。さらに、無段変速機1は、第1回転中心軸線R1とは異なる第2回転中心軸線R2を各々有する複数の転動部材としての遊星ボール50と、第1回転部材10、第2回転部材20、サンローラ30等の回転中心となる変速機軸60とを備える。無段変速機1は、第2回転中心軸線R2を第1回転中心軸線R1に対して傾斜させ、キャリア40によって傾転自在に保持される遊星ボール50を傾転させることによって、入出力間の変速比を変えるものである。 Specifically, as shown in FIGS. 1 and 2, the continuously variable transmission mechanism that forms the main part of the continuously variable transmission 1 of the present embodiment has a common first rotation center axis R <b> 1. The first rotating member 10 as the first rotating element capable of relative rotation, the second rotating member 20 as the second rotating element, the sun roller 30 as the third rotating element, and the carrier as the fourth rotating element and the supporting rotating element 40. Further, the continuously variable transmission 1 includes a planetary ball 50 as a plurality of rolling members each having a second rotation center axis R2 different from the first rotation center axis R1, the first rotation member 10, and the second rotation member 20. And a transmission shaft 60 serving as a rotation center of the sun roller 30 or the like. The continuously variable transmission 1 tilts the second rotation center axis R2 with respect to the first rotation center axis R1 and tilts the planetary ball 50 that is tiltably held by the carrier 40, so The gear ratio is changed.
 なお、以下の説明では、特に断りのない限り、第1回転中心軸線R1や第2回転中心軸線R2に沿う方向を軸方向、第1回転中心軸線R1周りの方向を周方向という。また、第1回転中心軸線R1に直交する方向を径方向といい、その中でも、内方に向けた側を径方向内側、外方に向けた側を径方向外側という。 In the following description, unless otherwise specified, the direction along the first rotation center axis R1 and the second rotation center axis R2 is referred to as an axial direction, and the direction around the first rotation center axis R1 is referred to as a circumferential direction. Further, a direction orthogonal to the first rotation center axis R1 is referred to as a radial direction, and among these, a side facing inward is referred to as a radial inner side, and a side facing outward is referred to as a radial outer side.
 無段変速機1は、典型的には、第1回転部材10と第2回転部材20とサンローラ30とキャリア40との間で各遊星ボール50を介したトルクの伝達が行われる。例えば、無段変速機1は、第1回転部材10、第2回転部材20、サンローラ30及びキャリア40のうちの1つがトルク(動力)の入力部となり、残りの回転要素の内の少なくとも1つがトルクの出力部となる。そして、無段変速機1は、入力部となる何れかの回転要素と出力部となる何れかの回転要素との間の回転速度(回転数)の比が変速比となる。ここでは、無段変速機1は、第1回転部材10が入力部、第2回転部材20が出力部となる場合を説明する。 In the continuously variable transmission 1, torque is typically transmitted between the first rotating member 10, the second rotating member 20, the sun roller 30, and the carrier 40 via each planetary ball 50. For example, in the continuously variable transmission 1, one of the first rotating member 10, the second rotating member 20, the sun roller 30, and the carrier 40 serves as a torque (power) input unit, and at least one of the remaining rotating elements is Torque output section. In the continuously variable transmission 1, the ratio of the rotation speed (the number of rotations) between any rotation element serving as an input unit and any rotation element serving as an output unit is a gear ratio. Here, the continuously variable transmission 1 will be described with respect to a case where the first rotating member 10 is an input unit and the second rotating member 20 is an output unit.
 また、無段変速機1は、変速機軸60の中心軸(第1回転中心軸線R1)を中心にして放射状に複数個の遊星ボール50が配置される。遊星ボール50は、第2回転中心軸線R2を回転中心として回転(自転)可能である。遊星ボール50は、変速機軸60にこの変速機軸60の軸方向に対向して配置させた第1回転部材10と第2回転部材20とに挟持される。また、遊星ボール50は、キャリア40に自転可能に支持される。無段変速機1は、第1回転部材10、第2回転部材20のうちの少なくとも一方を遊星ボール50に押し付けることによって、第1回転部材10、第2回転部材20、サンローラ30と遊星ボール50との間に適切な摩擦力(トラクション力)を発生させ、その間におけるトルクの伝達を可能にする。また、無段変速機1は、遊星ボール50を第2回転中心軸線R2と第1回転中心軸線R1とを含む傾転平面上で傾転させ、第1回転部材10と第2回転部材20との間の回転速度(回転数)の比を変化させることによって、入出力間の回転速度(回転数)の比を変える。 In the continuously variable transmission 1, a plurality of planetary balls 50 are arranged radially about the center axis (first rotation center axis R1) of the transmission shaft 60. The planetary ball 50 can rotate (spin) about the second rotation center axis R2 as the rotation center. The planetary ball 50 is sandwiched between the first rotating member 10 and the second rotating member 20 that are disposed on the transmission shaft 60 so as to face the transmission shaft 60 in the axial direction. The planetary ball 50 is supported by the carrier 40 so as to be able to rotate. The continuously variable transmission 1 presses at least one of the first rotating member 10 and the second rotating member 20 against the planetary ball 50, whereby the first rotating member 10, the second rotating member 20, the sun roller 30 and the planetary ball 50. Appropriate frictional force (traction force) is generated between them and torque can be transmitted between them. The continuously variable transmission 1 tilts the planetary ball 50 on a tilt plane including the second rotation center axis R2 and the first rotation center axis R1, and the first rotation member 10 and the second rotation member 20 By changing the ratio of the rotational speed (rotational speed) between the input and output, the ratio of the rotational speed (rotational speed) between the input and output is changed.
 なお、無段変速機1は、第1回転部材10、第2回転部材20、サンローラ30、キャリア40の全てが変速機軸60に対して相対回転可能なものもあれば、第1回転部材10、第2回転部材20、サンローラ30、キャリア40のうちの何れか1つを変速機軸60に対して相対回転できない構成とするものもある。以下においては、キャリア40の一部が変速機軸60に対して固定される例について説明するがこれに限られない。ここでは、変速機軸60は、中心軸を第1回転中心軸線R1に一致させた円柱状に形成され、不図示の筐体や車体等における無段変速機1の固定部に固定し当該固定部に対して相対回転させぬよう構成した固定軸である。 Note that the continuously variable transmission 1 includes the first rotating member 10, the second rotating member 20, the sun roller 30, and the carrier 40 that are all rotatable relative to the transmission shaft 60. There is a configuration in which any one of the second rotating member 20, the sun roller 30, and the carrier 40 cannot be rotated relative to the transmission shaft 60. In the following, an example in which a part of the carrier 40 is fixed to the transmission shaft 60 will be described, but the present invention is not limited to this. Here, the transmission shaft 60 is formed in a columnar shape with the center axis coinciding with the first rotation center axis R1, and is fixed to a fixed portion of the continuously variable transmission 1 in a housing or a vehicle body (not shown). It is the fixed axis | shaft comprised so that it may not be rotated relative to.
 以下、無段変速機1の各構成について詳細に説明する。 Hereinafter, each component of the continuously variable transmission 1 will be described in detail.
 第1回転部材10、第2回転部材20は、中心軸を第1回転中心軸線R1に一致させた円盤部材(ディスク)や円環部材(リング)であり、第1回転中心軸線R1の軸方向で対向させて各遊星ボール50を挟み込むように配設する。この例示においては、双方ともリング状の円環部材とする。第1回転部材10、第2回転部材20は、共通の第1回転中心軸線R1を回転中心として相対回転可能である。 The first rotating member 10 and the second rotating member 20 are a disk member (disk) or an annular member (ring) whose center axis coincides with the first rotation center axis R1, and the axial direction of the first rotation center axis R1 The planetary balls 50 are disposed so as to face each other. In this example, both are ring-shaped annular members. The first rotating member 10 and the second rotating member 20 are relatively rotatable with the common first rotation center axis R1 as the rotation center.
 第1回転部材10と第2回転部材20とは、内周面に各遊星ボール50の径方向外側の外周曲面と接触する接触面10a、20aを有している。第1回転部材10、第2回転部材20の各接触面10a、20aは、例えば、遊星ボール50の外周曲面の曲率と同等の曲率の凹円弧面、外周曲面の曲率とは異なる曲率の凹円弧面、凸円弧面又は平面等の形状を成している。ここでは、各接触面10a、20aは、後述する基準位置の状態(第1回転中心軸線R1と第2回転中心軸線R2とが平行である状態)で、第1回転中心軸線R1から当該遊星ボール50との接触部分までの距離が同等の長さになるように形成され、第1回転部材10、第2回転部材20の各遊星ボール50に対する各接触角θが同等の角度になるようにしている。 The first rotating member 10 and the second rotating member 20 have contact surfaces 10a and 20a in contact with the outer peripheral curved surface on the radially outer side of each planetary ball 50 on the inner peripheral surface. The contact surfaces 10a and 20a of the first rotating member 10 and the second rotating member 20 are, for example, a concave arc surface having a curvature equivalent to the curvature of the outer peripheral curved surface of the planetary ball 50, and a concave arc having a curvature different from the curvature of the outer peripheral curved surface. It has a shape such as a surface, a convex arc surface, or a flat surface. Here, each contact surface 10a, 20a is in a state of a reference position described later (a state in which the first rotation center axis R1 and the second rotation center axis R2 are parallel), and the planetary ball from the first rotation center axis R1. 50 so that the distance to the contact portion is equal to each other, and the contact angles θ of the first rotating member 10 and the second rotating member 20 with respect to the planetary balls 50 are equal to each other. Yes.
 ここで、接触角θとは、基準から遊星ボール50と各接触面10a、20aとの接触部分までの角度のことである。ここでは、径方向を基準にしている。第1回転部材10、第2回転部材20の遊星ボール50との接触面10a、20aは、遊星ボール50の外周曲面に対して点接触又は面接触している。また、第1回転部材10、第2回転部材20の遊星ボール50との接触面10a、20aは、第1回転部材10、第2回転部材20から遊星ボール50に向けて軸方向の力が加わった際に、遊星ボール50に対して径方向内側でかつ斜め方向の力(法線力Fn)が加わるように形成されている。 Here, the contact angle θ is an angle from the reference to the contact portion between the planetary ball 50 and each contact surface 10a, 20a. Here, the radial direction is used as a reference. Contact surfaces 10 a and 20 a of the first rotating member 10 and the second rotating member 20 with the planetary ball 50 are in point contact or surface contact with the outer peripheral curved surface of the planetary ball 50. Further, the contact surfaces 10 a and 20 a of the first rotating member 10 and the second rotating member 20 with the planetary ball 50 are subjected to an axial force from the first rotating member 10 and the second rotating member 20 toward the planetary ball 50. In this case, a force (normal force Fn) is applied to the planetary ball 50 radially inward and in an oblique direction (normal force Fn).
 この無段変速機1は、第1回転部材10を無段変速機1の正駆動時(入力部としての回転要素にトルクが入力される場合)におけるトルク入力部(入力リング)として機能させる。また、無段変速機1は、第2回転部材20を無段変速機1の正駆動時におけるトルク出力部(出力リング)として機能させる。無段変速機1は、第1回転部材10にトルクカム70を介して入力軸11が連結される。また、無段変速機1は、第2回転部材20にトルクカム71を介して出力軸21が連結される。 The continuously variable transmission 1 causes the first rotating member 10 to function as a torque input unit (input ring) when the continuously variable transmission 1 is driven forward (when torque is input to a rotating element as an input unit). The continuously variable transmission 1 causes the second rotating member 20 to function as a torque output unit (output ring) when the continuously variable transmission 1 is driven forward. In the continuously variable transmission 1, the input shaft 11 is connected to the first rotating member 10 via a torque cam 70. In the continuously variable transmission 1, the output shaft 21 is connected to the second rotating member 20 via a torque cam 71.
 入力軸11は、トルクカム70を介して第1回転部材10と一体回転可能であり、正駆動時に第1回転部材10に動力を伝達する。入力軸11は、筒状部11a、円盤部11b等を含んで構成される。入力軸11は、円盤部11b側がトルクカム70を介して第1回転部材10に連結され、筒状部11a側が車両の動力源側に連結される。出力軸21は、第1筒状部21a、円盤部21b、第2筒状部21c等を含んで構成される。出力軸21は、第1筒状部21a側が円環部材72、トルクカム71を介して第2回転部材20に連結され、第2筒状部21c側が車両の駆動輪側に連結される。入力軸11、出力軸21は、第1回転中心軸線R1を回転中心として変速機軸60と相対回転可能に設けられる。入力軸11と出力軸21とは、その相互間においても軸受B1やスラスト軸受TBを介して相対回転可能である。 The input shaft 11 can rotate integrally with the first rotating member 10 via the torque cam 70, and transmits power to the first rotating member 10 during normal driving. The input shaft 11 includes a cylindrical part 11a, a disk part 11b, and the like. The input shaft 11 is connected to the first rotating member 10 via the torque cam 70 on the disk portion 11b side, and connected to the power source side of the vehicle on the cylindrical portion 11a side. The output shaft 21 includes a first cylindrical portion 21a, a disk portion 21b, a second cylindrical portion 21c, and the like. The output shaft 21 is connected to the second rotating member 20 through the annular member 72 and the torque cam 71 on the first cylindrical portion 21a side, and is connected to the drive wheel side of the vehicle on the second cylindrical portion 21c side. The input shaft 11 and the output shaft 21 are provided so as to be rotatable relative to the transmission shaft 60 about the first rotation center axis R1. The input shaft 11 and the output shaft 21 can be rotated relative to each other via the bearing B1 and the thrust bearing TB.
 トルクカム70、71は、回転トルクを第1回転中心軸線R1に沿った軸力に変換するトルク軸力変換機構であり、押圧力発生機構である。このトルクカム70、71が発生させる軸力とは、第1回転部材10、第2回転部材20を各遊星ボール50に押し付けるための押圧力である。トルクカム70は、第1回転部材10と入力軸11との間に配設される。トルクカム71は、第2回転部材20と出力軸21との間に配設される。トルクカム70は、入力軸11と第1回転部材10との間で回転トルクを伝達する際に、伝達されるトルクの大きさに応じて第1回転部材10に対して軸方向に沿った各遊星ボール50側への推力(軸力)を発生させる。トルクカム71は、出力軸21と第2回転部材20との間で回転トルクを伝達する際に、伝達されるトルクの大きさに応じて第2回転部材20に対して軸方向に沿った各遊星ボール50側への推力(軸力)を発生させる。 The torque cams 70 and 71 are torque axial force conversion mechanisms that convert rotational torque into axial force along the first rotation center axis R1, and are pressing force generation mechanisms. The axial force generated by the torque cams 70 and 71 is a pressing force for pressing the first rotating member 10 and the second rotating member 20 against each planetary ball 50. The torque cam 70 is disposed between the first rotating member 10 and the input shaft 11. The torque cam 71 is disposed between the second rotating member 20 and the output shaft 21. When the torque cam 70 transmits the rotational torque between the input shaft 11 and the first rotating member 10, each planet along the axial direction with respect to the first rotating member 10 according to the magnitude of the transmitted torque. A thrust (axial force) toward the ball 50 is generated. When the torque cam 71 transmits the rotational torque between the output shaft 21 and the second rotating member 20, each planet along the axial direction with respect to the second rotating member 20 according to the magnitude of the transmitted torque. A thrust (axial force) toward the ball 50 is generated.
 なお、この無段変速機1においては、第1回転部材10をトルク出力部とし、かつ、第2回転部材20をトルク入力部とすることも可能であり、その場合、入力軸11として設けているものを出力軸として利用し、出力軸21として設けているものを入力軸として利用する。また、無段変速機1においては、サンローラ30やキャリア40をトルク入力部やトルク出力部として用いる場合には、後述のサンローラ30やキャリア40に対して別途構成した入力軸や出力軸を連結する。 In the continuously variable transmission 1, the first rotating member 10 can be used as a torque output unit, and the second rotating member 20 can be used as a torque input unit. Is used as the output shaft, and the one provided as the output shaft 21 is used as the input shaft. In the continuously variable transmission 1, when the sun roller 30 or the carrier 40 is used as a torque input unit or a torque output unit, an input shaft or an output shaft that is separately configured is connected to the sun roller 30 or the carrier 40 described later. .
 サンローラ30は、中心軸を第1回転中心軸線R1に一致させた円筒状のものであり、軸受RB1、RB2によって変速機軸60に対する周方向への相対回転を行えるよう支持される。つまり、サンローラ30は、変速機軸60、第1回転部材10、第2回転部材20、後述のキャリア40に対して第1回転中心軸線R1を回転中心として相対回転可能に変速機軸60に配置される。さらに、サンローラ30は、変速機軸60の軸方向に対して、軸受RB1の外輪、軸受RB2の外輪等によって位置決めされており、変速機軸60の軸方向に対して相対移動不能に固定される。 The sun roller 30 has a cylindrical shape whose center axis coincides with the first rotation center axis R1, and is supported by the bearings RB1 and RB2 so as to be able to rotate relative to the transmission shaft 60 in the circumferential direction. That is, the sun roller 30 is disposed on the transmission shaft 60 so as to be relatively rotatable with respect to the transmission shaft 60, the first rotating member 10, the second rotating member 20, and the carrier 40 described later, with the first rotation center axis R1 as the rotation center. . Further, the sun roller 30 is positioned with respect to the axial direction of the transmission shaft 60 by the outer ring of the bearing RB1, the outer ring of the bearing RB2, and the like, and is fixed so as not to move relative to the axial direction of the transmission shaft 60.
 サンローラ30は、外周面31が複数個の遊星ボール50と接触する。サンローラ30の外周面31には、複数個の遊星ボール50が放射状に略等間隔で配置される。したがって、サンローラ30は、外周面31が遊星ボール50の自転の際の転動面となる。サンローラ30は、自らの回転動作によって各遊星ボール50を転動(自転)させることもできれば、各遊星ボール50の転動動作(自転動作)に伴って回転することもできる。 The outer surface 31 of the sun roller 30 comes into contact with a plurality of planetary balls 50. On the outer peripheral surface 31 of the sun roller 30, a plurality of planetary balls 50 are radially arranged at substantially equal intervals. Therefore, the outer surface 31 of the sun roller 30 becomes a rolling surface when the planetary ball 50 rotates. The sun roller 30 can roll (rotate) each planetary ball 50 by its own rotation, or it can rotate along with the rolling (rotational) movement of each planetary ball 50.
 なお、本実施形態のサンローラ30は、軸受RB1、軸受RB2によって支持される第1分割構造体32、第1分割構造体32の外周面に固定される第2分割構造体33、第1分割構造体32の外周面にアンギュラ軸受ABを介して支持される第3分割構造体34の3つの部位からなる分割構造となっている。これにより、この無段変速機1は、サンローラ30と遊星ボール50との間のスピン損失を低減させ、動力伝達効率の低下を抑えることができる。この場合、サンローラ30の外周面31は、第2分割構造体33の外周面、及び、第3分割構造体34の外周面によって構成される。なお、このサンローラ30は、このような分割構造でなくてもよい。 The sun roller 30 of the present embodiment includes a bearing RB1, a first divided structure 32 supported by the bearing RB2, a second divided structure 33 fixed to the outer peripheral surface of the first divided structure 32, and a first divided structure. It has a divided structure consisting of three parts of a third divided structure 34 supported on the outer peripheral surface of the body 32 via an angular bearing AB. Thereby, this continuously variable transmission 1 can reduce the spin loss between the sun roller 30 and the planetary ball 50, and can suppress the fall of power transmission efficiency. In this case, the outer peripheral surface 31 of the sun roller 30 is constituted by the outer peripheral surface of the second divided structure 33 and the outer peripheral surface of the third divided structure 34. The sun roller 30 may not have such a divided structure.
 キャリア40は、変速機軸60に配置され、第1回転中心軸線R1を回転中心として第1回転部材10、第2回転部材20、サンローラ30等と相対回転可能であり、遊星ボール50の支持軸(スピンドル、あるいはピニオンピンともいう。)51を遊星ボール50の傾転動作が可能な状態で保持するものである。キャリア40は、支持軸51の端部が挿入されこの支持軸51の端部を、遊星ボール50の傾転動作が可能な状態で保持するガイド部として、第1ガイド部44及び第2ガイド部45を有する。第1ガイド部44及び第2ガイド部45は、それぞれ、支持軸51の端部であり円筒状又は円柱状に形成されるガイド端部としての第1ガイド端部52、第2ガイド端部53が挿入され、この第1ガイド端部52、第2ガイド端部53を遊星ボール50の傾転動作が可能な状態で保持する。 The carrier 40 is disposed on the transmission shaft 60 and is rotatable relative to the first rotating member 10, the second rotating member 20, the sun roller 30, etc. with the first rotation center axis R <b> 1 as the rotation center, and a support shaft ( A spindle or pinion pin) 51 is held in a state where the planetary ball 50 can be tilted. The carrier 40 has a first guide portion 44 and a second guide portion as guide portions for holding the end portion of the support shaft 51 and holding the end portion of the support shaft 51 in a state in which the planetary ball 50 can be tilted. 45. The first guide portion 44 and the second guide portion 45 are the first guide end portion 52 and the second guide end portion 53 as guide end portions that are ends of the support shaft 51 and are formed in a cylindrical shape or a columnar shape, respectively. Is inserted, and the first guide end 52 and the second guide end 53 are held in a state in which the planetary ball 50 can be tilted.
 ここで、遊星ボール50は、支持軸51を介してキャリア40によって傾転自在に保持されるものである。遊星ボール50は、後述するように、傾転動作によって各回転要素間の回転速度比である変速比を変更可能である。遊星ボール50は、サンローラ30の外周面31上を転がる転動部材である。遊星ボール50は、完全な球状体であることが好ましいが、少なくとも転動方向にて球形を成すもの、例えばラグビーボールの様な断面が楕円形状のものであってもよい。遊星ボール50は、その中心を通って貫通させた支持軸51によって回転自在に支持される。支持軸51は、第2回転中心軸線R2を回転中心として遊星ボール50を支持し両端部が遊星ボール50から突出している。例えば、遊星ボール50は、支持軸51の外周面との間に配設したラジアル軸受RB3、RB4によって、第2回転中心軸線R2を回転軸とした支持軸51に対する相対回転(つまり自転)ができるようにしている。ここでは、遊星ボール50は、貫通孔50aが形成されている。遊星ボール50は、支持軸51が挿入される貫通孔50a内に設けられるラジアル軸受RB3、RB4によって回転可能に支持される。したがって、遊星ボール50は、支持軸51の第2回転中心軸線R2を中心にしてサンローラ30の外周面31上を転動することができる。 Here, the planetary ball 50 is tiltably held by the carrier 40 via the support shaft 51. As will be described later, the planetary ball 50 can change a gear ratio, which is a rotation speed ratio between the rotating elements, by a tilting operation. The planetary ball 50 is a rolling member that rolls on the outer peripheral surface 31 of the sun roller 30. The planetary ball 50 is preferably a perfect sphere, but may have a spherical shape at least in the rolling direction, for example, a rugby ball having an elliptical cross section. The planetary ball 50 is rotatably supported by a support shaft 51 that passes through the center of the planetary ball 50. The support shaft 51 supports the planetary ball 50 with the second rotation center axis R <b> 2 as the rotation center, and both end portions protrude from the planetary ball 50. For example, the planetary ball 50 can be rotated relative to the support shaft 51 with the second rotation center axis R2 as the rotation axis (that is, rotation) by the radial bearings RB3 and RB4 disposed between the outer periphery of the support shaft 51. I am doing so. Here, the planetary ball 50 has a through hole 50a. The planetary ball 50 is rotatably supported by radial bearings RB3 and RB4 provided in the through hole 50a into which the support shaft 51 is inserted. Therefore, the planetary ball 50 can roll on the outer peripheral surface 31 of the sun roller 30 around the second rotation center axis R2 of the support shaft 51.
 支持軸51の基準となる位置は、図1に示すように、第2回転中心軸線R2が第1回転中心軸線R1と平行になる位置である。支持軸51は、基準位置で形成される自身の回転中心軸(第2回転中心軸線R2)と第1回転中心軸線R1とを含む傾転平面内において、基準位置とそこから傾斜させた位置との間を遊星ボール50と共に揺動(傾転)することができる。この傾転は、傾転平面内で遊星ボール50の中心を支点にして行われる。そして、遊星ボール50から突出した支持軸51の両端は、次に説明するようにキャリア40に各遊星ボール50の傾転動作が可能な状態で保持される。 The reference position of the support shaft 51 is a position where the second rotation center axis R2 is parallel to the first rotation center axis R1, as shown in FIG. The support shaft 51 includes a reference position and a position inclined from the reference position in a tilt plane including the rotation center axis (second rotation center axis R2) and the first rotation center axis R1 formed at the reference position. Can be swung (tilted) together with the planetary ball 50. This tilt is performed with the center of the planetary ball 50 as a fulcrum in the tilt plane. Then, both ends of the support shaft 51 protruding from the planetary ball 50 are held in a state where the planetary balls 50 can be tilted by the carrier 40 as described below.
 キャリア40は、各遊星ボール50の傾転動作を妨げないように、遊星ボール50を支持する支持軸51の端部を支持する。本実施形態のキャリア40は、固定要素としての固定キャリア41と、可動要素としての可動キャリア42と、プレート43とを有する。固定キャリア41、可動キャリア42、プレート43は、いずれも中心軸を第1回転中心軸線R1に一致させた円環板状のものであり、変速機軸60上に設けられる。ここでは、固定キャリア41は、第1回転部材10、トルクカム70等の径方向内側に配置され、可動キャリア42、プレート43は、第2回転部材20、トルクカム71等の径方向内側に配置される。 The carrier 40 supports the end of the support shaft 51 that supports the planetary balls 50 so as not to disturb the tilting motion of each planetary ball 50. The carrier 40 of this embodiment includes a fixed carrier 41 as a fixed element, a movable carrier 42 as a movable element, and a plate 43. Each of the fixed carrier 41, the movable carrier 42, and the plate 43 is an annular plate having a central axis that coincides with the first rotation central axis R1, and is provided on the transmission shaft 60. Here, the fixed carrier 41 is disposed on the radially inner side of the first rotating member 10, the torque cam 70, and the like, and the movable carrier 42 and the plate 43 are disposed on the radially inner side of the second rotating member 20, the torque cam 71, and the like. .
 固定キャリア41は、支持軸51の一端部である第1ガイド端部52側に変速機軸60と相対回転不能に設けられる。固定キャリア41は、内周面側にてボルト等を介して変速機軸60のフランジ部に固定される。可動キャリア42は、支持軸51の他端部である第2ガイド端部53側に固定キャリア41と対向して配置され変速機軸60と相対回転可能に設けられる。可動キャリア42は、所定の回転角度の範囲で変速機軸60と相対回転可能である。すなわち、固定キャリア41と可動キャリア42とは、第1回転中心軸線R1の軸方向に対して、遊星ボール50を挟んで対向するようにして配置される。可動キャリア42は、内周面側にて軸受等を介して変速機軸60の外周面上に第1回転中心軸線R1を回転中心として相対回転可能に支持される。したがって、可動キャリア42と固定キャリア41とは、第1回転中心軸線R1を回転中心として相対回転可能である。プレート43は、第1回転中心軸線R1の軸方向に対して遊星ボール50と可動キャリア42との間に配置され固定キャリア41と相対回転不能に設けられる。プレート43は、第1回転中心軸線R1の軸方向に沿った複数の連結軸等を介して固定キャリア41に対して固定される。固定キャリア41とプレート43とは、連結軸等を介して連結されることで全体として籠状の構造となっている。したがって、可動キャリア42とプレート43とは、第1回転中心軸線R1を回転中心として相対回転可能である。そして、固定キャリア41は、第1ガイド部44を有し、可動キャリア42は、第2ガイド部45を有し、プレート43は、スリット部46を有する。 The fixed carrier 41 is provided on the first guide end 52 side which is one end of the support shaft 51 so as not to rotate relative to the transmission shaft 60. The fixed carrier 41 is fixed to the flange portion of the transmission shaft 60 via a bolt or the like on the inner peripheral surface side. The movable carrier 42 is disposed on the second guide end 53 side, which is the other end of the support shaft 51, so as to face the fixed carrier 41 and is provided so as to be rotatable relative to the transmission shaft 60. The movable carrier 42 can rotate relative to the transmission shaft 60 within a range of a predetermined rotation angle. That is, the fixed carrier 41 and the movable carrier 42 are disposed so as to face each other with the planetary ball 50 interposed therebetween in the axial direction of the first rotation center axis R1. The movable carrier 42 is supported on the outer peripheral surface of the transmission shaft 60 via a bearing or the like on the inner peripheral surface side so as to be relatively rotatable about the first rotation center axis R1. Therefore, the movable carrier 42 and the fixed carrier 41 are relatively rotatable with the first rotation center axis R1 as the rotation center. The plate 43 is disposed between the planetary ball 50 and the movable carrier 42 with respect to the axial direction of the first rotation center axis R1, and is provided so as not to rotate relative to the fixed carrier 41. The plate 43 is fixed to the fixed carrier 41 via a plurality of connecting shafts along the axial direction of the first rotation center axis R1. The fixed carrier 41 and the plate 43 have a bowl-like structure as a whole by being connected via a connecting shaft or the like. Therefore, the movable carrier 42 and the plate 43 can be rotated relative to each other about the first rotation center axis R1. The fixed carrier 41 has a first guide part 44, the movable carrier 42 has a second guide part 45, and the plate 43 has a slit part 46.
 ここで、本実施形態の支持軸51は、第1ガイド端部52、第2ガイド端部53のうちの一方と中間部54(支持軸51の本体部)とを分割構造としている。支持軸51は、第1ガイド端部52、第2ガイド端部53、中間部54を含む全体円筒状又は円柱状に形成される。この支持軸51は、第1ガイド端部52、第2ガイド端部53の外径が中間部54の外径より大きく形成されている。そして、支持軸51は、第2ガイド端部53が中間部54と一体に形成され、第1ガイド端部52が中間部54とは別体に形成されて中間部54に組み付けられる。これにより、無段変速機1は、遊星ボール50と支持軸51との間にラジアル軸受RB3、RB4等を設ける場合に、当該ラジアル軸受RB3、RB4の組み付け性を向上することができる。 Here, the support shaft 51 of the present embodiment has a divided structure of one of the first guide end portion 52 and the second guide end portion 53 and the intermediate portion 54 (the main body portion of the support shaft 51). The support shaft 51 is formed in an overall cylindrical shape or a columnar shape including the first guide end portion 52, the second guide end portion 53, and the intermediate portion 54. The support shaft 51 is formed such that the outer diameters of the first guide end portion 52 and the second guide end portion 53 are larger than the outer diameter of the intermediate portion 54. The support shaft 51 has a second guide end portion 53 formed integrally with the intermediate portion 54, and a first guide end portion 52 formed separately from the intermediate portion 54 and assembled to the intermediate portion 54. Thereby, the continuously variable transmission 1 can improve the assemblability of the radial bearings RB3 and RB4 when the radial bearings RB3 and RB4 are provided between the planetary ball 50 and the support shaft 51.
 第1ガイド部44は、図1、図2、図3に示すように、固定キャリア41に第1回転中心軸線R1と直交する径方向に延在しかつ遊星ボール50に向かって開口して形成される。第1ガイド部44は、有底のガイド溝部として形成され、すなわち、第1回転中心軸線R1の軸方向に対して固定キャリア41を貫通していない構成となっている。ここでは、第1ガイド部44は、直線状に形成され第1回転中心軸線R1側とは反対側の端部、すなわち、径方向外側の端部が開放されている。第1ガイド部44は、複数の遊星ボール50(ここでは8つ)に対応して、第1回転中心軸線R1を中心として放射状に複数(ここでは8つ)設けられる。複数の第1ガイド部44は、第1回転中心軸線R1周りに等間隔で設けられる。第1ガイド部44は、支持軸51の第1ガイド端部52が挿入されこの支持軸51の第1ガイド端部52の移動を案内可能である。ここでは、支持軸51の第1ガイド端部52は、第1ガイド部44によって径方向への移動が案内されるガイド端部として機能する。 As shown in FIGS. 1, 2, and 3, the first guide portion 44 is formed on the fixed carrier 41 so as to extend in the radial direction perpendicular to the first rotation center axis R <b> 1 and open toward the planetary ball 50. Is done. The first guide portion 44 is formed as a bottomed guide groove portion, that is, has a configuration that does not penetrate the fixed carrier 41 with respect to the axial direction of the first rotation center axis R1. Here, the first guide portion 44 is formed in a linear shape, and an end portion on the opposite side to the first rotation center axis R1 side, that is, an end portion on the radially outer side is opened. A plurality (eight here) of first guide portions 44 are provided radially around the first rotation center axis R1 corresponding to the plurality of planetary balls 50 (eight here). The plurality of first guide portions 44 are provided at equal intervals around the first rotation center axis R1. In the first guide portion 44, the first guide end portion 52 of the support shaft 51 is inserted, and the movement of the first guide end portion 52 of the support shaft 51 can be guided. Here, the first guide end portion 52 of the support shaft 51 functions as a guide end portion that is guided by the first guide portion 44 in the radial direction.
 第2ガイド部45は、図1、図2、図4に示すように、可動キャリア42に第1回転中心軸線R1と直交する径方向に対して傾斜した方向に延在しかつ遊星ボール50に向かって開口して形成される。第2ガイド部45は、有底のガイド溝部として形成され、すなわち、第1回転中心軸線R1の軸方向に対して可動キャリア42を貫通していない構成となっている。ここでは、第2ガイド部45は、直線状に形成されると共に、第1回転中心軸線R1を通る径方向に沿った直線に対して略平行にオフセットされた位置に形成される。また、第2ガイド部45は、径方向外側の端部が開放されている。第2ガイド部45は、第1ガイド部44と同様に、複数の遊星ボール50(ここでは8つ)に対応して複数(ここでは8つ)設けられる。各第2ガイド部45は、第1回転中心軸線R1の軸方向に見た場合(図1中、矢印A方向に見た場合)に、それぞれ対応する第1ガイド部44と一部が重なって交差する位置に形成される。この第1ガイド部44と第2ガイド部45との交差部位は、固定キャリア41と可動キャリア42とが第1回転中心軸線R1を回転中心として相対回転することで、径方向に沿って移動することとなる。そして、第2ガイド部45は、支持軸51の第2ガイド端部53が挿入されこの支持軸51の第2ガイド端部53の移動を案内可能である。ここでは、支持軸51の第2ガイド端部53は、第2ガイド部45によって移動が案内されるガイド端部として機能する。第2ガイド部45は、内側壁面と第2ガイド端部53の外周面とが当接することで、第2ガイド端部53を支持し所定の径方向位置で位置決めする。 As shown in FIGS. 1, 2, and 4, the second guide portion 45 extends on the movable carrier 42 in a direction inclined with respect to the radial direction orthogonal to the first rotation center axis R <b> 1 and is connected to the planetary ball 50. An opening is formed. The second guide portion 45 is formed as a bottomed guide groove portion, that is, has a configuration that does not penetrate the movable carrier 42 with respect to the axial direction of the first rotation center axis R1. Here, the second guide portion 45 is formed in a linear shape and at a position offset substantially parallel to a straight line along the radial direction passing through the first rotation center axis R1. In addition, the second guide portion 45 is open at the radially outer end. Similarly to the first guide portion 44, a plurality of (here, eight) second guide portions 45 are provided corresponding to a plurality of planetary balls 50 (here, eight). Each second guide portion 45 partially overlaps the corresponding first guide portion 44 when viewed in the axial direction of the first rotation center axis R1 (when viewed in the direction of arrow A in FIG. 1). It is formed at a crossing position. The intersection of the first guide portion 44 and the second guide portion 45 moves along the radial direction by the relative rotation of the fixed carrier 41 and the movable carrier 42 with the first rotation center axis R1 as the rotation center. It will be. The second guide portion 45 can guide the movement of the second guide end portion 53 of the support shaft 51 by inserting the second guide end portion 53 of the support shaft 51. Here, the second guide end portion 53 of the support shaft 51 functions as a guide end portion whose movement is guided by the second guide portion 45. The second guide portion 45 supports the second guide end portion 53 and is positioned at a predetermined radial position by abutting the inner wall surface with the outer peripheral surface of the second guide end portion 53.
 なお、第2ガイド部45は、第1回転中心軸線R1と直交する径方向に対して傾斜した方向に延在する円弧状に形成され、第1回転中心軸線R1の軸方向に見た場合に、第1ガイド部44と一部が重なって交差する位置に形成されてもよい。 The second guide portion 45 is formed in an arc shape extending in a direction inclined with respect to the radial direction orthogonal to the first rotation center axis R1, and when viewed in the axial direction of the first rotation center axis R1. The first guide portion 44 may be formed at a position that partially overlaps the first guide portion 44.
 スリット部46は、図1、図2、図5に示すように、プレート43に第1回転中心軸線R1と直交する径方向に延在しかつ第1回転中心軸線R1の軸方向に貫通して形成される。すなわち、スリット部46は、プレート43を第1回転中心軸線R1の軸方向に貫通したスリット孔として形成される。ここでは、スリット部46は、直線状に形成され径方向外側の端部が開放されている。スリット部46は、第1ガイド部44と同様に、複数の遊星ボール50(ここでは8つ)に対応して、第1回転中心軸線R1を中心として放射状に複数(ここでは8つ)設けられる。複数のスリット部46は、第1回転中心軸線R1周りに等間隔で設けられる。各スリット部46は、固定キャリア41とプレート43とが固定された状態で、対応する第1ガイド部44と第1回転中心軸線R1の軸方向に対して対向する。したがって、各スリット部46は、第1回転中心軸線R1の軸方向に見た場合(図1中、矢印A方向に見た場合)に、それぞれ対応する第2ガイド部45と一部が重なって交差する位置に形成される。このスリット部46と第2ガイド部45との交差部位は、第1ガイド部44と第2ガイド部45との交差部位と同様に、固定キャリア41と可動キャリア42とが第1回転中心軸線R1を回転中心として相対回転することで、径方向に沿って移動することとなる。そして、スリット部46は、支持軸51の両端部、すなわち、第1ガイド端部52、第2ガイド端部53との間の中間部54が挿入されこの支持軸51の中間部54の移動を許容する。 As shown in FIGS. 1, 2, and 5, the slit portion 46 extends in the radial direction perpendicular to the first rotation center axis R1 and penetrates the plate 43 in the axial direction of the first rotation center axis R1. It is formed. That is, the slit portion 46 is formed as a slit hole penetrating the plate 43 in the axial direction of the first rotation center axis R1. Here, the slit portion 46 is formed in a straight line, and the end portion on the radially outer side is opened. Similar to the first guide portion 44, the slit portion 46 is provided in a plurality (eight here) in a radial manner around the first rotation center axis R1 corresponding to the plurality of planetary balls 50 (eight here). . The plurality of slit portions 46 are provided at equal intervals around the first rotation center axis R1. Each slit portion 46 opposes the corresponding first guide portion 44 and the axial direction of the first rotation center axis R1 in a state where the fixed carrier 41 and the plate 43 are fixed. Accordingly, each slit portion 46 partially overlaps the corresponding second guide portion 45 when viewed in the axial direction of the first rotation center axis R1 (when viewed in the direction of arrow A in FIG. 1). It is formed at a crossing position. The intersection part of the slit part 46 and the second guide part 45 is the same as the intersection part of the first guide part 44 and the second guide part 45, and the fixed carrier 41 and the movable carrier 42 have the first rotation center axis R1. Is moved along the radial direction by relative rotation about the rotation center. The slit portion 46 is inserted into both end portions of the support shaft 51, that is, the intermediate portion 54 between the first guide end portion 52 and the second guide end portion 53, and moves the intermediate portion 54 of the support shaft 51. Allow.
 上記のように構成されるキャリア40は、第1ガイド部44と第2ガイド部45とスリット部46とによって、支持軸51を遊星ボール50の傾転動作が可能な状態で保持する。そして、キャリア40は、固定キャリア41と可動キャリア42との相対回転に伴った第1ガイド部44と第2ガイド部45との相対変位によって支持軸51と共に遊星ボール50を傾転させ各回転要素間の回転速度比である変速比を変更可能である。 The carrier 40 configured as described above holds the support shaft 51 in a state in which the planetary ball 50 can be tilted by the first guide portion 44, the second guide portion 45, and the slit portion 46. Then, the carrier 40 tilts the planetary ball 50 together with the support shaft 51 by the relative displacement of the first guide portion 44 and the second guide portion 45 accompanying the relative rotation of the fixed carrier 41 and the movable carrier 42, and each rotating element. The speed ratio, which is the rotational speed ratio between, can be changed.
 ここで、無段変速機1は、遊星ボール50の傾転角が基準位置、すなわち、0度のときに、第1回転部材10と第2回転部材20とが同一回転速度(同一回転数)で回転する。つまり、このときには、第1回転部材10と第2回転部材20との回転比(回転速度又は回転数の比)が1となり、変速比γが1になっている。例えば、第1回転部材10及び第2回転部材20の回転速度を各々「V1」、「V2」とすると、その回転比は、「V1/V2」になる。一方、図2に一点鎖線で示すように、支持軸51と共に遊星ボール50を基準位置から傾転させた際には、支持軸51の中心軸から第1回転部材10との接触部分までの距離が変化すると共に、支持軸51の中心軸から第2回転部材20との接触部分までの距離が変化する。これにより、無段変速機1は、第1回転部材10又は第2回転部材20のうちのいずれか一方が基準位置のときよりも高速で回転し、他方が低速で回転するようになる。例えば、第2回転部材20は、遊星ボール50を一方へと傾転させたときに第1回転部材10よりも低回転になり(減速)、他方へと傾転させたときに第1回転部材10よりも高回転になる(増速)。したがって、この無段変速機1においては、その傾転角を変えることによって、各回転要素間の回転比(変速比γ)を無段階に変化させることができる。なおここでの増速時(γ<1)には、図1における上側の遊星ボール50を紙面反時計回り方向に傾転させかつ下側の遊星ボール50を紙面時計回り方向に傾転させる。また、減速時(γ>1)には、図1における上側の遊星ボール50を紙面時計回り方向に傾転させかつ下側の遊星ボール50を紙面反時計回り方向に傾転させる。 Here, in the continuously variable transmission 1, when the tilt angle of the planetary ball 50 is the reference position, that is, 0 degrees, the first rotating member 10 and the second rotating member 20 have the same rotational speed (the same rotational speed). Rotate with. That is, at this time, the rotation ratio (ratio of rotation speed or rotation speed) between the first rotation member 10 and the second rotation member 20 is 1, and the speed ratio γ is 1. For example, if the rotation speeds of the first rotating member 10 and the second rotating member 20 are “V1” and “V2”, respectively, the rotation ratio is “V1 / V2”. On the other hand, as shown by a one-dot chain line in FIG. 2, when the planetary ball 50 is tilted together with the support shaft 51 from the reference position, the distance from the central axis of the support shaft 51 to the contact portion with the first rotating member 10. Changes, and the distance from the central axis of the support shaft 51 to the contact portion with the second rotating member 20 changes. As a result, the continuously variable transmission 1 rotates at a higher speed than when either the first rotating member 10 or the second rotating member 20 is at the reference position, and the other rotates at a lower speed. For example, the second rotating member 20 has a lower rotation (deceleration) than the first rotating member 10 when the planetary ball 50 is tilted in one direction, and the first rotating member is tilted in the other direction. The rotation speed is higher than 10 (speed increase). Therefore, in this continuously variable transmission 1, the rotation ratio (transmission ratio γ) between the rotating elements can be changed steplessly by changing the tilt angle. At the time of acceleration here (γ <1), the upper planetary ball 50 in FIG. 1 is tilted counterclockwise on the paper surface and the lower planetary ball 50 is tilted clockwise on the paper surface. Further, at the time of deceleration (γ> 1), the upper planetary ball 50 in FIG. 1 is tilted in the clockwise direction on the paper, and the lower planetary ball 50 is tilted in the counterclockwise direction on the paper.
 本実施形態の無段変速機1は、キャリア40が変速比γを変える機構として機能する。無段変速機1は、キャリア40によって各遊星ボール50の第2回転中心軸線R2を傾斜させて当該各遊星ボール50を傾転させることにより、遊星ボール50の傾転角が変わり、変速比γが変更される。 The continuously variable transmission 1 of the present embodiment functions as a mechanism in which the carrier 40 changes the speed ratio γ. The continuously variable transmission 1 tilts each planetary ball 50 by inclining the second rotation center axis R2 of each planetary ball 50 by the carrier 40, thereby changing the tilt angle of the planetary ball 50 and changing the gear ratio γ. Is changed.
 ここでは、キャリア40は、可動キャリア42と固定キャリア41との相対回転に応じて支持軸51に傾転させる力、すなわち、傾転力を付与し支持軸51と共に遊星ボール50を傾転させる。すなわち、キャリア40は、不図示のECU等の制御に応じてモータなどの駆動装置からウォームギア等の伝達部材を介して可動キャリア42に回転動力が伝達されることで、可動キャリア42が固定キャリア41に対して相対回転する。これにより、第2ガイド部45と第1ガイド部44、スリット部46との交差部位は、第1ガイド部44、スリット部46と第2ガイド部45とが相対変位によって位相がずれることで、径方向に沿って移動することとなる。このとき、支持軸51は、可動キャリア42と固定キャリア41との相対回転に応じて発生する傾転力によって、第2ガイド端部53が第2ガイド部45に沿って案内されながら押し上げられる又は押し下げられるように移動し、第1ガイド端部52が第1ガイド部44に沿って案内されながら移動する。つまり、支持軸51は、第1ガイド端部52が径方向外側、第2ガイド端部53が径方向内側に移動し、あるいは、第2ガイド端部53が径方向外側、第1ガイド端部52が径方向内側に移動することで、第2回転中心軸線R2が第1回転中心軸線R1に対して揺動する。このとき、第1ガイド端部52、第2ガイド端部53は、それぞれ遊星ボール50の傾転動作の際に第1ガイド部44、第2ガイド部45と接触した状態で転動し第1ガイド部44、第2ガイド部45によって移動が案内される。 Here, the carrier 40 tilts the planetary ball 50 together with the support shaft 51 by applying a tilting force to the support shaft 51 according to the relative rotation of the movable carrier 42 and the fixed carrier 41, that is, a tilting force. That is, the carrier 40 is transmitted to the movable carrier 42 via a transmission member such as a worm gear from a driving device such as a motor in accordance with control by an ECU (not shown), so that the movable carrier 42 is fixed to the fixed carrier 41. Rotates relative to. Thereby, the intersection part of the 2nd guide part 45, the 1st guide part 44, and the slit part 46 is because the phase shifts by the relative displacement of the 1st guide part 44, the slit part 46, and the 2nd guide part 45, It moves along the radial direction. At this time, the support shaft 51 is pushed up while the second guide end portion 53 is guided along the second guide portion 45 by the tilting force generated according to the relative rotation of the movable carrier 42 and the fixed carrier 41. The first guide end 52 is moved while being guided along the first guide portion 44. That is, in the support shaft 51, the first guide end 52 moves radially outward and the second guide end 53 moves radially inward, or the second guide end 53 is radially outward and the first guide end. When 52 moves radially inward, the second rotation center axis R2 swings with respect to the first rotation center axis R1. At this time, the first guide end portion 52 and the second guide end portion 53 roll while being in contact with the first guide portion 44 and the second guide portion 45 during the tilting operation of the planetary ball 50, respectively. The movement is guided by the guide portion 44 and the second guide portion 45.
 このようにして、キャリア40は、各遊星ボール50の第2回転中心軸線R2が第1回転中心軸線R1を含む平面内に位置し、かつその平面内で第1回転中心軸線R1と平行な状態、すなわち、基準位置にある状態と、その平行状態から傾斜する状態とに傾転させることができる。この結果、支持軸51は、第1ガイド端部52の径方向位置と第2ガイド端部53の径方向位置とのずれに応じて、第1回転中心軸線R1に対する第2回転中心軸線R2の傾斜角度である傾転角が変更され、これに伴って遊星ボール50が傾転する。キャリア40は、このようにして支持軸51に傾転力を付与し、この支持軸51を傾斜させることで第2回転中心軸線R2を傾斜させ、遊星ボール50を傾転させることができる。したがって、この無段変速機1は、遊星ボール50の傾転によって、支持軸51の中心軸から第1回転部材10と遊星ボール50との接触部分までの距離が変化すると共に、支持軸51の中心軸から遊星ボール50と第2回転部材20との接触部分までの距離が変化し、変速比が変更される。このとき、キャリア40は、プレート43においてスリット部46によって支持軸51の中間部54の径方向への揺動が許容される。なお、本実施形態の無段変速機1は、可動キャリア42が図4中の紙面反時計回り方向に回転することで、第2ガイド端部53が中心側(第1回転中心軸線R1)に移動し、変速比が所定の変速幅の範囲内で増速側に変更される。また、無段変速機1は、可動キャリア42が図4中の紙面時計回り方向に回転することで、第2ガイド端部53が外側(第1回転中心軸線R1とは反対側)に移動し、変速比が所定の変速幅の範囲内で減速側に変更される。 Thus, the carrier 40 is in a state where the second rotation center axis R2 of each planetary ball 50 is located in a plane including the first rotation center axis R1 and is parallel to the first rotation center axis R1 in the plane. That is, it can be tilted between the state at the reference position and the state in which it is inclined from the parallel state. As a result, the support shaft 51 moves the second rotation center axis R2 relative to the first rotation center axis R1 according to the deviation between the radial position of the first guide end 52 and the radial position of the second guide end 53. The tilt angle, which is the tilt angle, is changed, and the planetary ball 50 tilts accordingly. In this way, the carrier 40 applies a tilting force to the support shaft 51, and tilts the support shaft 51, thereby tilting the second rotation center axis R2 and tilting the planetary ball 50. Accordingly, in the continuously variable transmission 1, the distance from the central axis of the support shaft 51 to the contact portion between the first rotating member 10 and the planetary ball 50 changes due to the tilt of the planetary ball 50, and the support shaft 51 The distance from the central axis to the contact portion between the planetary ball 50 and the second rotating member 20 changes, and the gear ratio is changed. At this time, the carrier 40 is allowed to swing in the radial direction of the intermediate portion 54 of the support shaft 51 by the slit portion 46 in the plate 43. In the continuously variable transmission 1 of the present embodiment, the second guide end portion 53 is moved to the center side (first rotation center axis R1) when the movable carrier 42 rotates counterclockwise in FIG. The gear ratio is changed to the speed increasing side within a predetermined speed range. In the continuously variable transmission 1, the movable guide 42 rotates in the clockwise direction in FIG. 4 so that the second guide end 53 moves outward (opposite to the first rotation center axis R1). The gear ratio is changed to the deceleration side within a predetermined speed range.
 上記のように構成される無段変速機1は、例えば、入力軸11にトルクが伝達されると、当該トルクをトルクカム70、第1回転部材10、遊星ボール50、第2回転部材20、トルクカム71等を介して出力軸21に伝達することができる。このとき、無段変速機1は、例えば、入力軸11から第1回転部材10にトルクが伝達されると、トルクカム70、トルクカム71等の作用によって伝達されるトルクの大きさに応じて、第1回転部材10と各遊星ボール50、第2回転部材20と各遊星ボール50とを相対的に接近させ互いに押し付ける方向への押圧力(押圧荷重)が発生する。これにより、無段変速機1は、押圧力に応じた伝達トルク容量が確保され、この伝達トルク容量に応じて第1回転部材10と各遊星ボール50との間、各遊星ボール50と第2回転部材20との間にトラクション力(摩擦力)が発生する。この結果、無段変速機1は、第1回転部材10と各遊星ボール50との間、各遊星ボール50と第2回転部材20との間で相互に動力(トルク)を伝達することができる。 The continuously variable transmission 1 configured as described above, for example, when torque is transmitted to the input shaft 11, the torque is transmitted to the torque cam 70, the first rotating member 10, the planetary ball 50, the second rotating member 20, and the torque cam. It can be transmitted to the output shaft 21 via 71 or the like. At this time, for example, when the torque is transmitted from the input shaft 11 to the first rotating member 10, the continuously variable transmission 1 changes the first torque according to the magnitude of the torque transmitted by the action of the torque cam 70, the torque cam 71, and the like. A pressing force (pressing load) is generated in a direction in which the first rotating member 10 and each planetary ball 50 and the second rotating member 20 and each planetary ball 50 are relatively approached and pressed against each other. As a result, the continuously variable transmission 1 has a transmission torque capacity corresponding to the pressing force, and between the first rotating member 10 and each planetary ball 50 according to this transmission torque capacity, each planetary ball 50 and the second planetary ball 50. A traction force (friction force) is generated between the rotating member 20 and the rotating member 20. As a result, the continuously variable transmission 1 can transmit power (torque) between the first rotating member 10 and each planetary ball 50 and between each planetary ball 50 and the second rotating member 20. .
 また、このトルクカム70、トルクカム71による押圧力は、第1回転部材10、第2回転部材20の接触面10a、20aと各遊星ボール50の外面の形状及び位置関係に応じた作用によって、各遊星ボール50を介してサンローラ30にも伝わる。これにより、無段変速機1は、トルクカム70、トルクカム71による押圧力に応じて各遊星ボール50とサンローラ30との間にトラクション力(摩擦力)が発生して、各遊星ボール50とサンローラ30との間でも相互に動力(トルク)を伝達することができる。 Further, the pressing force by the torque cam 70 and the torque cam 71 is caused by the action according to the shape and positional relationship between the contact surfaces 10a and 20a of the first rotating member 10 and the second rotating member 20 and the outer surface of each planetary ball 50. It is also transmitted to the sun roller 30 via the ball 50. Thereby, the continuously variable transmission 1 generates a traction force (friction force) between each planetary ball 50 and the sun roller 30 according to the pressing force by the torque cam 70 and the torque cam 71, and each planetary ball 50 and the sun roller 30. Can transmit power (torque) to each other.
 したがって、無段変速機1は、第1回転部材10の回転に伴い第1回転部材10と各遊星ボール50との間に摩擦力(トラクション力)が発生し、各遊星ボール50が自転を始める。そして、無段変速機1は、各遊星ボール50の回転によって、各遊星ボール50と第2回転部材20との間、各遊星ボール50とサンローラ30との間にも摩擦力が発生し、第2回転部材20とサンローラ30も回転を始める。同様に、無段変速機1は、第2回転部材20の回転に伴い各遊星ボール50が自転を始め、第1回転部材10とサンローラ30も回転を始める。そして、無段変速機1は、駆動装置からの動力によってキャリア40が上記のようにして各遊星ボール50を傾転させ各遊星ボール50の傾転角を変更することで変速比γを無段階に変更することができる。 Therefore, the continuously variable transmission 1 generates a frictional force (traction force) between the first rotating member 10 and each planetary ball 50 as the first rotating member 10 rotates, and each planetary ball 50 starts to rotate. . The continuously variable transmission 1 generates a frictional force between each planetary ball 50 and the second rotating member 20 and between each planetary ball 50 and the sun roller 30 due to the rotation of each planetary ball 50. The two-rotating member 20 and the sun roller 30 also start to rotate. Similarly, in the continuously variable transmission 1, each planetary ball 50 starts rotating as the second rotating member 20 rotates, and the first rotating member 10 and the sun roller 30 also start rotating. In the continuously variable transmission 1, the carrier 40 tilts each planetary ball 50 and changes the tilt angle of each planetary ball 50 as described above by the power from the driving device, thereby changing the gear ratio γ continuously. Can be changed.
 ところで、本実施形態の無段変速機1は、第1ガイド端部52、第2ガイド端部53がそれぞれ曲面形状を有し、第1ガイド部44、第2ガイド部45がそれぞれ所定の形状の溝部47、溝部48を有する。これにより、無段変速機1は、支持軸51の第1ガイド端部52、第2ガイド端部53における面圧低減構造を実現し、耐久性の向上を図っている。 By the way, in the continuously variable transmission 1 of the present embodiment, the first guide end portion 52 and the second guide end portion 53 each have a curved shape, and the first guide portion 44 and the second guide portion 45 each have a predetermined shape. Groove portion 47 and groove portion 48. Thereby, the continuously variable transmission 1 realizes a surface pressure reducing structure at the first guide end portion 52 and the second guide end portion 53 of the support shaft 51 to improve durability.
 具体的には、第1ガイド端部52、第2ガイド端部53は、図6に示すように、樽型の形状(いわゆるバレル形状)をなしている。なお、以下の説明では、第1ガイド端部52と第2ガイド端部53、第1ガイド部44と第2ガイド部45とは、ほぼ同様の構成であるので、特に断りのない限り、できるだけ重複する説明、図示を省略し共通の説明とする。 Specifically, the first guide end 52 and the second guide end 53 have a barrel shape (so-called barrel shape) as shown in FIG. In the following description, the first guide end portion 52 and the second guide end portion 53 and the first guide portion 44 and the second guide portion 45 have substantially the same configuration, and unless otherwise noted, as much as possible. The overlapping description and illustration are omitted and the description is common.
 第1ガイド端部52、第2ガイド端部53は、それぞれ第1ガイド部44、第2ガイド部45との接触面55、接触面56が転動中心に沿った方向に対して径方向外側に向けて突出した曲面形状を有する。 The first guide end portion 52 and the second guide end portion 53 are radially outward with respect to the direction along which the contact surface 55 and the contact surface 56 contact the first guide portion 44 and the second guide portion 45, respectively. It has a curved shape protruding toward
 ここで、接触面55、接触面56は、第1ガイド端部52、第2ガイド端部53の外周面に相当し、さらに言えば、第1ガイド端部52、第2ガイド端部53の転動面に相当する。また、第1ガイド端部52、第2ガイド端部53の転動中心は、当該第1ガイド端部52、第2ガイド端部53の中心軸線であり、典型的には、第2回転中心軸線R2に相当する。さらに、転動中心に沿った方向とは、典型的には、遊星ボール50の傾転動作の際に第1ガイド端部52、第2ガイド端部53が転動し移動する方向と直交する方向であり、ここでは、第2回転中心軸線R2の軸方向である。 Here, the contact surface 55 and the contact surface 56 correspond to the outer peripheral surfaces of the first guide end portion 52 and the second guide end portion 53, and more specifically, the first guide end portion 52 and the second guide end portion 53. Corresponds to the rolling surface. The rolling centers of the first guide end 52 and the second guide end 53 are the central axes of the first guide end 52 and the second guide end 53, and typically the second center of rotation. This corresponds to the axis R2. Furthermore, the direction along the rolling center is typically orthogonal to the direction in which the first guide end 52 and the second guide end 53 roll and move during the tilting operation of the planetary ball 50. Here, it is the axial direction of the second rotation center axis R2.
 つまり、第1ガイド端部52、第2ガイド端部53は、転動中心に沿った断面視、すなわち、図6に示す軸方向に沿った断面視にて、接触面55、接触面56が径方向外側に向けて突出した正円弧状の曲面形状を有する。さらに言えば、第1ガイド端部52、第2ガイド端部53は、第2回転中心軸線R2と直交する断面が正円形状をなし、当該正円形状の直径(外径)が軸方向中心部で最大であり、両端に向うにしたがって徐々に小さくなる形状に形成される。 That is, the first guide end portion 52 and the second guide end portion 53 have the contact surface 55 and the contact surface 56 in a cross-sectional view along the rolling center, that is, in a cross-sectional view along the axial direction shown in FIG. It has a curved surface shape with a regular arc shape protruding outward in the radial direction. Furthermore, the first guide end portion 52 and the second guide end portion 53 have a circular shape in cross section perpendicular to the second rotation center axis R2, and the diameter (outer diameter) of the circular shape is the center in the axial direction. It is the largest at the part, and is formed into a shape that gradually decreases toward both ends.
 第1ガイド端部52、第2ガイド端部53は、遊星ボール50の傾転動作の際に上記のような曲面形状を有する接触面55、接触面56が第1ガイド部44、第2ガイド部45の接触面44a、接触面45aに接触した状態で第2回転中心軸線R2を回転中心として転動する。これにより、第1ガイド端部52、第2ガイド端部53は、第1ガイド部44、第2ガイド部45によって移動が案内される。 The first guide end 52 and the second guide end 53 are the contact surface 55 having the curved surface as described above when the planetary ball 50 is tilted, and the contact surface 56 is the first guide 44 and the second guide. Rolling about the second rotation center axis R2 in the state of contact with the contact surface 44a of the portion 45 and the contact surface 45a. Accordingly, the movement of the first guide end portion 52 and the second guide end portion 53 is guided by the first guide portion 44 and the second guide portion 45.
 この無段変速機1は、上記で説明したように、いわゆるスキュー変速を行うCVPであり、第1ガイド端部52、第2ガイド端部53は、傾転、スキュー方向の回転を担う必要がある。さらに、無段変速機1は、摩擦力低減のための転がり運動を加えると、第1ガイド端部52、第2ガイド端部53に対して3軸方向の回転が要求される。 As described above, the continuously variable transmission 1 is a CVP that performs so-called skew shifting, and the first guide end portion 52 and the second guide end portion 53 need to be responsible for tilting and rotation in the skew direction. is there. Further, the continuously variable transmission 1 is required to rotate in three axial directions with respect to the first guide end 52 and the second guide end 53 when a rolling motion for reducing the frictional force is applied.
 これに対して、無段変速機1は、上記のように第1ガイド端部52、第2ガイド端部53が球面樽型の形状(バレル形状)に形成されることで、傾転、スキュー方向の回転、転動の三次元の動作を円滑に行うことができる。 In contrast, in the continuously variable transmission 1, the first guide end portion 52 and the second guide end portion 53 are formed in a spherical barrel shape (barrel shape) as described above. It is possible to smoothly perform the three-dimensional movement of direction rotation and rolling.
 一方、第1ガイド部44、第2ガイド部45の接触面44a、接触面45aは、図3、図4、図6に示すように、それぞれ第1ガイド部44、第2ガイド部45の側壁面として形成される。接触面44aは、各第1ガイド部44に対して一対で設けられる。一対の接触面44aは、各第1ガイド部44において遊星ボール50の傾転動作の際に第1ガイド端部52が移動する方向に沿って設けられ、互いに対向している。接触面45aは、各第2ガイド部45に対して一対で対向して設けられる。一対の接触面45aは、各第2ガイド部45において遊星ボール50の傾転動作の際に第2ガイド端部53が移動する方向に沿って設けられ、互いに対向している。接触面44a、接触面45aは、第1ガイド端部52、第2ガイド端部53が接触して転動する転動面に相当する。 On the other hand, the contact surface 44a and the contact surface 45a of the first guide portion 44 and the second guide portion 45 are respectively located on the side of the first guide portion 44 and the second guide portion 45, as shown in FIGS. It is formed as a wall surface. A pair of contact surfaces 44 a are provided for each first guide portion 44. The pair of contact surfaces 44a are provided along the direction in which the first guide end portion 52 moves when the planetary ball 50 tilts in each first guide portion 44, and face each other. The contact surfaces 45a are provided to be opposed to each second guide portion 45 as a pair. The pair of contact surfaces 45a are provided along the direction in which the second guide end portion 53 moves during the tilting operation of the planetary ball 50 in each second guide portion 45, and face each other. The contact surface 44a and the contact surface 45a correspond to rolling surfaces on which the first guide end portion 52 and the second guide end portion 53 come into contact and roll.
 そして、第1ガイド部44、第2ガイド部45は、図1、図2、図6に示すように、それぞれ第1ガイド端部52、第2ガイド端部53との接触面44a、接触面45aに溝部47、溝部48を有する。溝部47は、各接触面44aにおいて、それぞれ第1ガイド端部52の移動の方向に沿って形成される。溝部48は、各接触面45aにおいて、それぞれ第2ガイド端部53の移動の方向に沿って形成される。溝部47、溝部48は、それぞれ第1ガイド端部52、第2ガイド端部53の一部がはまり当該第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と接触する。言い換えれば、溝部47、溝部48は、第1ガイド端部52、第2ガイド端部53の一部が収容され、当該第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と接触する。 As shown in FIGS. 1, 2, and 6, the first guide portion 44 and the second guide portion 45 are contact surfaces 44a and contact surfaces with the first guide end portion 52 and the second guide end portion 53, respectively. 45 a has a groove 47 and a groove 48. The groove portion 47 is formed along the direction of movement of the first guide end portion 52 on each contact surface 44a. The groove portion 48 is formed along the direction of movement of the second guide end portion 53 on each contact surface 45a. The groove portion 47 and the groove portion 48 are in contact with the contact surface 55 and the contact surface 56 of the first guide end portion 52 and the second guide end portion 53, respectively. To do. In other words, the groove portion 47 and the groove portion 48 accommodate a part of the first guide end portion 52 and the second guide end portion 53, and contact surfaces 55 of the first guide end portion 52 and the second guide end portion 53, contact with each other. Contact the surface 56.
 そして、本実施形態の溝部47、溝部48は、底面が転動中心に沿った方向、すなわち、第2回転中心軸線R2の軸方向に対して窪んだ曲面形状を有する(R溝)。つまり、溝部47、溝部48は、転動中心に沿った断面視、すなわち、図6に示す軸方向に沿った断面視にて、底面が窪んだ正円弧状の曲面形状を有する。 And the groove part 47 and the groove part 48 of this embodiment have a curved surface shape in which the bottom surface is recessed in the direction along the rolling center, that is, the axial direction of the second rotation center axis R2 (R groove). That is, the groove part 47 and the groove part 48 have a curved surface shape having a regular arc shape with a recessed bottom surface in a sectional view along the rolling center, that is, in a sectional view along the axial direction shown in FIG.
 そして、この溝部47、溝部48は、当該曲面形状の曲率が第1ガイド端部52、第2ガイド端部53の曲面形状の曲率以下に形成される。ここでは、第1ガイド端部52、第2ガイド端部53の曲面形状の曲率は、転動中心に沿った断面視、すなわち、図6に示す軸方向に沿った断面視における接触面55、接触面56の曲率であり、当該断面視における接触面55、接触面56の曲面形状の半径Raを用いて[1/Ra]と表すことができる。溝部47、溝部48の曲面形状の曲率は、転動中心に沿った断面視、すなわち、図6に示す軸方向に沿った断面視における溝部47、溝部48の底面の曲率であり、当該断面視における溝部47、溝部48の底部の曲面形状の半径Rbを用いて[1/Rb]と表すことができる。そして、溝部47、溝部48の底部の曲面形状と第1ガイド端部52、第2ガイド端部53の接触面55、接触面56の曲面形状とは、下記の数式(1)を満たすように形成される。

 1/Rb≦1/Ra ・・・ (1)
  (Rb≧Ra)
The groove 47 and the groove 48 are formed so that the curvature of the curved surface is equal to or less than the curvature of the curved surfaces of the first guide end 52 and the second guide end 53. Here, the curvature of the curved shape of the first guide end portion 52 and the second guide end portion 53 is the contact surface 55 in a sectional view along the rolling center, that is, in a sectional view along the axial direction shown in FIG. The curvature of the contact surface 56, which can be expressed as [1 / Ra] using the contact surface 55 in the cross-sectional view and the radius Ra of the curved shape of the contact surface 56. The curvature of the curved surface shape of the groove 47 and the groove 48 is a curvature of the bottom surface of the groove 47 and the groove 48 in a sectional view along the rolling center, that is, in a sectional view along the axial direction shown in FIG. [1 / Rb] can be expressed using the radius Rb of the curved surface shape of the bottom of the groove 47 and the groove 48 in FIG. And the curved surface shape of the bottom part of the groove part 47 and the groove part 48, and the curved surface shape of the contact surface 55 of the 1st guide end part 52 and the 2nd guide end part 53, and the contact surface 56 satisfy | fill following Numerical formula (1). It is formed.

1 / Rb ≦ 1 / Ra (1)
(Rb ≧ Ra)
 上記のように構成される無段変速機1は、遊星ボール50の傾転動作の際に、所定の曲面形状を有する第1ガイド端部52、第2ガイド端部53の一部が第1ガイド部44、第2ガイド部45の溝部47、溝部48にはまった状態で転動し移動が案内される。したがって、無段変速機1は、球面樽型の形状に形成された第1ガイド端部52、第2ガイド端部53にて遊星ボール50の傾転動作等に伴う傾転、スキュー方向の回転、転動の三次元の動作を許容することができ、傾転動作を円滑に行うことができる。 In the continuously variable transmission 1 configured as described above, when the planetary ball 50 is tilted, the first guide end 52 and the second guide end 53 having a predetermined curved surface shape are partly first. The rolling is performed while the guide part 44 and the groove part 47 and the groove part 48 of the second guide part 45 are fitted, and the movement is guided. Therefore, the continuously variable transmission 1 is tilted in accordance with the tilting operation of the planetary ball 50 at the first guide end 52 and the second guide end 53 formed in the spherical barrel shape, and rotated in the skew direction. The three-dimensional motion of rolling can be allowed, and the tilting motion can be performed smoothly.
 そして、無段変速機1は、溝部47、溝部48の作用により、例えば、第1ガイド端部52、第2ガイド端部53を樽型の形状とした上で溝部47、溝部48を設けずに第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と第1ガイド部44、第2ガイド部45の接触面44a、接触面45aとが点接触するような場合と比較して、接触面55、接触面56と溝部47、溝部48との接触部位における接触面圧を抑制することができる。これにより、無段変速機1は、接触面55、接触面56と溝部47、溝部48との接触部位における接触面圧を抑制することができるので、キャリア40の第1ガイド部44、第2ガイド部45や支持軸51の第1ガイド端部52、第2ガイド端部53の耐久性や耐摩耗性を向上することができる。 The continuously variable transmission 1 does not have the groove portion 47 and the groove portion 48 after the first guide end portion 52 and the second guide end portion 53 are formed into a barrel shape by the action of the groove portion 47 and the groove portion 48, for example. When the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56 and the first guide 44, the contact surface 44a of the second guide 45, and the contact surface 45a are in point contact. As compared with the contact surface 55, the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portion 47 and the groove portion 48 can be suppressed. Thereby, the continuously variable transmission 1 can suppress the contact surface pressure at the contact portion between the contact surface 55, the contact surface 56 and the groove portion 47, and the groove portion 48, and thus the first guide portion 44 and the second guide portion 44 of the carrier 40. The durability and wear resistance of the guide portion 45 and the first guide end portion 52 and the second guide end portion 53 of the support shaft 51 can be improved.
 より詳細には、無段変速機1は、凹状の曲面形状である溝部47、溝部48の曲率1/Rbが凸状の曲面形状である第1ガイド端部52、第2ガイド端部53の曲率1/Ra以下に形成される。これにより、無段変速機1は、第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と第1ガイド部44、第2ガイド部45の溝部47、溝部48との等価半径が相対的に大きくなり、接触面積を相対的に大きくすることができる。この結果、無段変速機1は、上記のように接触面55、接触面56と溝部47、48との接触部位における単位面積あたりの接触面圧を抑制することができ、耐久性を向上することができる。 More specifically, the continuously variable transmission 1 includes a groove portion 47 having a concave curved surface shape, a first guide end portion 52 having a convex curvature 1 / Rb of the groove portion 48, and a second guide end portion 53. It is formed with a curvature of 1 / Ra or less. Thus, the continuously variable transmission 1 includes the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56, the first guide 44, the groove 47 of the second guide 45, and the groove 48. The equivalent radius is relatively large, and the contact area can be relatively large. As a result, the continuously variable transmission 1 can suppress the contact surface pressure per unit area at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 47 and 48 as described above, thereby improving durability. be able to.
 一方、無段変速機1は、例えば、第1ガイド端部52、第2ガイド端部53を樽型の形状ではなく純粋な円筒(円柱)形状としかつ溝部47、48を設けずに第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45とが線接触するような場合と比較して、接触面積が大きくなりすぎることを抑制することができる。これにより、無段変速機1は、第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45との接触部位、すなわち、接触面55、接触面56と溝部47、溝部48との接触部位に大きな摩擦力が発生することを抑制することができるので、第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45との間で傾転動作に要するトルク(変速トルク)が増大することを抑制することができる。この結果、無段変速機1は、耐久性の向上と変速トルクの増大の抑制を両立することができ、耐久性を向上した上で円滑な変速動作を実現することができる。 On the other hand, the continuously variable transmission 1 has, for example, the first guide end portion 52 and the second guide end portion 53 not in a barrel shape but in a pure cylindrical (column) shape and without the groove portions 47 and 48 being provided in the first. Compared to the case where the guide end 52, the second guide end 53, the first guide 44, and the second guide 45 are in line contact, it is possible to suppress the contact area from becoming too large. Thereby, the continuously variable transmission 1 includes the first guide end portion 52, the second guide end portion 53, the first guide portion 44, and the contact portion between the second guide portion 45, that is, the contact surface 55 and the contact surface 56. Since generation of a large frictional force at the contact portion with the groove 47 and the groove 48 can be suppressed, the first guide end 52, the second guide end 53, the first guide 44, and the second guide 45 Increase in torque required for the tilting operation (shift torque) can be suppressed. As a result, the continuously variable transmission 1 can achieve both improvement in durability and suppression of increase in transmission torque, and can realize a smooth speed change operation while improving durability.
 以上で説明した実施形態に係る無段変速機1によれば、変速機軸60と、第1回転部材10及び第2回転部材20と、遊星ボール50と、支持軸51と、キャリア40とを備える。変速機軸60は、回転中心となる。第1回転部材10及び第2回転部材20は、変速機軸60に軸方向に対向して配置され、共通の第1回転中心軸線R1を回転中心として相対回転可能である。遊星ボール50は、第1回転中心軸線R1とは異なる第2回転中心軸線R2を回転中心として回転可能である。遊星ボール50は、第1回転部材10と第2回転部材20とに挟持され第1回転部材10及び第2回転部材20との間でトルクを伝達可能である。遊星ボール50は、傾転動作によって各回転要素間の回転速度比である変速比を変更可能である。支持軸51は、第2回転中心軸線R2を回転中心として遊星ボール50を支持し両端部が当該遊星ボール50から突出する。キャリア40は、第1回転中心軸線R1を回転中心として第1回転部材10、及び、第2回転部材20と相対回転可能に変速機軸60に配置される。キャリア40は、支持軸51の端部であり円筒状又は円柱状に形成される第1ガイド端部52、第2ガイド端部53が挿入され当該第1ガイド端部52、第2ガイド端部53を遊星ボール50の傾転動作が可能な状態で保持する第1ガイド部44、第2ガイド部45を有する。そして、第1ガイド端部52、第2ガイド端部53は、遊星ボール50の傾転動作の際に第1ガイド部44、第2ガイド部45と接触した状態で転動しこの第1ガイド部44、第2ガイド部45によって移動が案内される。第1ガイド端部52、第2ガイド端部53は、第1ガイド部44、第2ガイド部45との接触面55、接触面56が転動中心に沿った方向に対して径方向外側に向けて突出した曲面形状を有する。第1ガイド部44、第2ガイド部45は、第1ガイド端部52、第2ガイド端部53との接触面44a、接触面45aに当該第1ガイド端部52、第2ガイド端部53の移動の方向に沿って形成され当該第1ガイド端部52、第2ガイド端部53の一部がはまり当該第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と接触する溝部47、溝部48を有する。 The continuously variable transmission 1 according to the embodiment described above includes the transmission shaft 60, the first rotating member 10 and the second rotating member 20, the planetary ball 50, the support shaft 51, and the carrier 40. . The transmission shaft 60 is the center of rotation. The first rotating member 10 and the second rotating member 20 are disposed so as to face the transmission shaft 60 in the axial direction, and can be relatively rotated about the common first rotation center axis R1. The planetary ball 50 is rotatable about a second rotation center axis R2 different from the first rotation center axis R1. The planetary ball 50 is sandwiched between the first rotating member 10 and the second rotating member 20 and can transmit torque between the first rotating member 10 and the second rotating member 20. The planetary ball 50 can change a gear ratio, which is a rotation speed ratio between the rotating elements, by a tilting operation. The support shaft 51 supports the planetary ball 50 with the second rotation center axis R <b> 2 as the rotation center, and both end portions protrude from the planetary ball 50. The carrier 40 is disposed on the transmission shaft 60 so as to be rotatable relative to the first rotating member 10 and the second rotating member 20 around the first rotation center axis R1. The carrier 40 is an end portion of a support shaft 51, and a first guide end portion 52 and a second guide end portion 53 that are formed in a cylindrical shape or a columnar shape are inserted into the first guide end portion 52 and the second guide end portion. The first guide portion 44 and the second guide portion 45 that hold 53 in a state in which the planetary ball 50 can be tilted are provided. The first guide end portion 52 and the second guide end portion 53 roll while in contact with the first guide portion 44 and the second guide portion 45 when the planetary ball 50 is tilted. The movement is guided by the part 44 and the second guide part 45. The first guide end portion 52 and the second guide end portion 53 are radially outward with respect to the direction along which the contact surface 55 and the contact surface 56 contact the first guide portion 44 and the second guide portion 45, respectively. It has a curved shape that protrudes toward it. The first guide portion 44 and the second guide portion 45 have a contact surface 44a with the first guide end portion 52 and the second guide end portion 53, and the contact surface 45a with the first guide end portion 52 and the second guide end portion 53. The first guide end portion 52 and the second guide end portion 53 are partly formed, and the contact surface 55 and the contact surface 56 of the first guide end portion 52 and the second guide end portion 53 are formed. A groove portion 47 and a groove portion 48 in contact with each other.
 したがって、無段変速機1は、遊星ボール50の傾転動作の際に、所定の曲面形状を有する第1ガイド端部52、第2ガイド端部53の一部が第1ガイド部44、第2ガイド部45の溝部47、溝部48にはまった状態で転動し移動が案内される。この結果、無段変速機1は、接触面55、接触面56と溝部47、48との接触部位における接触面圧を抑制することができ、耐久性を向上することができる。またこれにより、無段変速機1は、例えば、支持軸51の第2回転中心軸線R2の軸方向に対する位置決め性能を向上することができると共に、接触面44a、接触面45a等の仕上げの簡易化(仕上げ面の限定)、表面処理の簡易化(必要硬さ低減)、加工性向上(必要硬さ低減)、精度向上(熱歪低減)、低コスト化(材料、加工性)等を実現することができる。 Therefore, in the continuously variable transmission 1, when the planetary ball 50 is tilted, the first guide end portion 52 and the second guide end portion 53 having a predetermined curved surface shape are part of the first guide portion 44 and the second guide end portion 53. 2 The rolling is performed in a state of being fitted in the groove 47 and the groove 48 of the guide 45, and the movement is guided. As a result, the continuously variable transmission 1 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 47 and 48, and can improve durability. Thereby, the continuously variable transmission 1 can improve, for example, the positioning performance of the support shaft 51 in the axial direction of the second rotation center axis R2, and simplify the finishing of the contact surface 44a, the contact surface 45a, and the like. (Limitation of finished surface), Simplification of surface treatment (reduction of required hardness), improvement of workability (reduction of required hardness), improvement of accuracy (reduction of thermal strain), cost reduction (material, workability), etc. be able to.
[実施形態2]
 図7は、実施形態2に係る無段変速機の第1ガイド端部、第2ガイド端部の部分断面図である。実施形態2に係る無段変速機は、溝部の形状が実施形態1とは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略する。なお、実施形態2に係る無段変速機の各構成の詳細については、適宜、図1乃至図5を参照する(以下の実施形態でも同様である。)。
[Embodiment 2]
FIG. 7 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the second embodiment. The continuously variable transmission according to the second embodiment is different from the first embodiment in the shape of the groove. In addition, about the structure, operation | movement, and effect which are common in embodiment mentioned above, the overlapping description is abbreviate | omitted as much as possible. For details of each configuration of the continuously variable transmission according to the second embodiment, refer to FIGS. 1 to 5 as appropriate (the same applies to the following embodiments).
 図7に示す本実施形態の無段変速機201は、第1ガイド部44、第2ガイド部45がそれぞれ接触面44a、接触面45aに溝部247、溝部248を有する。溝部247は、各接触面44aにおいて、それぞれ第1ガイド端部52の移動の方向に沿って形成される。溝部248は、各接触面45aにおいて、それぞれ第2ガイド端部53の移動の方向に沿って形成される。 In the continuously variable transmission 201 of the present embodiment shown in FIG. 7, the first guide portion 44 and the second guide portion 45 have a contact surface 44a, and the contact surface 45a has a groove portion 247 and a groove portion 248, respectively. The groove portion 247 is formed along the direction of movement of the first guide end portion 52 on each contact surface 44a. The groove portion 248 is formed along the direction of movement of the second guide end portion 53 on each contact surface 45a.
 そして、本実施形態の溝部247、溝部248は、底面が複数の面により構成される。ここでは、溝部247、溝部248は、底面が2つの面249a、249bによって構成される。面249a、249bは、平面に形成される。つまり、溝部247、溝部248は、転動中心に沿った断面視、すなわち、図7に示す軸方向に沿った断面視にて、底面が複数の面249a、249bによってV字型の断面形状を有する(V字溝)。 And the groove part 247 of this embodiment and the groove part 248 are comprised by the some surface in the bottom face. Here, the bottom surface of the groove portion 247 and the groove portion 248 is constituted by two surfaces 249a and 249b. The surfaces 249a and 249b are formed in a plane. That is, the groove portion 247 and the groove portion 248 have a V-shaped cross-sectional shape with a plurality of surfaces 249a and 249b in the cross-sectional view along the rolling center, that is, the cross-sectional view along the axial direction shown in FIG. Have (V-shaped groove).
 上記のように構成される無段変速機201は、遊星ボール50の傾転動作の際に、所定の曲面形状を有する第1ガイド端部52、第2ガイド端部53の一部が第1ガイド部44、第2ガイド部45の溝部247、溝部248にはまった状態で転動し移動が案内される。したがって、無段変速機201は、球面樽型の形状に形成された第1ガイド端部52、第2ガイド端部53にて遊星ボール50の傾転動作等に伴う傾転、スキュー方向の回転、転動の三次元の動作を許容することができ、傾転動作を円滑に行うことができる。そして、無段変速機201は、接触面55、接触面56と溝部247、溝部248との接触部位における接触面圧を抑制することができる。これにより、無段変速機201は、接触面55、接触面56と溝部247、溝部248との接触部位における接触面圧を抑制することができるので、キャリア40の第1ガイド部44、第2ガイド部45や支持軸51の第1ガイド端部52、第2ガイド端部53の耐久性や耐摩耗性を向上することができる。 In the continuously variable transmission 201 configured as described above, when the planetary ball 50 is tilted, the first guide end portion 52 and the second guide end portion 53 having a predetermined curved surface shape are partly first. Rolling is guided in the state where the guide part 44 and the groove part 247 and the groove part 248 of the second guide part 45 are fitted, and the movement is guided. Therefore, the continuously variable transmission 201 is tilted in accordance with the tilting operation of the planetary ball 50 at the first guide end 52 and the second guide end 53 formed in the spherical barrel shape, and rotated in the skew direction. The three-dimensional motion of rolling can be allowed, and the tilting motion can be performed smoothly. The continuously variable transmission 201 can suppress contact surface pressure at a contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248. Thereby, the continuously variable transmission 201 can suppress the contact surface pressure at the contact portion between the contact surface 55, the contact surface 56 and the groove portion 247, and the groove portion 248, and thus the first guide portion 44 and the second guide portion 44 of the carrier 40. The durability and wear resistance of the guide portion 45 and the first guide end portion 52 and the second guide end portion 53 of the support shaft 51 can be improved.
 より詳細には、無段変速機201は、溝部247、溝部248の底面が複数の面249a、249bによってV字型に形成される。これにより、無段変速機201は、第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と第1ガイド部44、第2ガイド部45の溝部247、溝部248とがそれぞれ2点で接触するようになる。この結果、無段変速機201は、接触面55、接触面56と溝部247、溝部248との接触部位における1点あたりの接触面圧を抑制することができ、耐久性を向上することができる。 More specifically, in the continuously variable transmission 201, the bottom surfaces of the groove portion 247 and the groove portion 248 are formed in a V shape by a plurality of surfaces 249a and 249b. Thereby, the continuously variable transmission 201 includes the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56, the first guide 44, the groove 247 of the second guide 45, and the groove 248. Come into contact at two points. As a result, the continuously variable transmission 201 can suppress contact surface pressure per point at a contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248, and can improve durability. .
 また、無段変速機201は、接触面積が大きくなりすぎることを抑制することができるので、第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45との接触部位、すなわち、接触面55、接触面56と溝部247、溝部248との接触部位に大きな摩擦力が発生することを抑制することができる。これにより、無段変速機201は、第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45との間で傾転動作に要するトルク(変速トルク)が増大することを抑制することができる。この結果、無段変速機201は、耐久性の向上と変速トルクの増大抑制を両立することができ、耐久性を向上した上で円滑な変速動作を実現することができる。 Since the continuously variable transmission 201 can suppress the contact area from becoming too large, the first guide end portion 52, the second guide end portion 53, the first guide portion 44, the second guide portion 45, The generation of a large frictional force at the contact portions of the contact surface 55, the contact surface 56, the contact portion 56 with the groove portion 247, and the groove portion 248 can be suppressed. Thereby, the continuously variable transmission 201 has a torque (shift torque) required for the tilting operation between the first guide end 52 and the second guide end 53 and the first guide 44 and the second guide 45. An increase can be suppressed. As a result, the continuously variable transmission 201 can achieve both improvement in durability and suppression of increase in transmission torque, and can realize a smooth speed change operation while improving durability.
 ここで、接触面55、接触面56と溝部247、溝部248との接触部位における1点あたりの法線力は、下記の数式(2)で表すことができる。数式(2)において、「F0」は第1ガイド端部52、第2ガイド端部53から溝部247、溝部248に作用する力、「F1」は接触面55、接触面56と溝部247、溝部248の面249aとの接触点に作用する法線力、「F2」は接触面55、接触面56と溝部247、溝部248の面249bとの接触点に作用する法線力、「θ1」は接触面55、接触面56と溝部247、溝部248の面249aとの接触点の接触角、「θ2」は接触面55、接触面56と溝部247、溝部248の面249bとの接触点の接触角を表している(図7参照)。

 F1・cosθ1+F2・cosθ2=F0 ・・・ (2)
Here, the normal force per point at the contact portion between the contact surface 55 and the contact surface 56 and the groove portion 247 and the groove portion 248 can be expressed by the following mathematical formula (2). In Formula (2), “F 0 ” is the force acting on the groove portion 247 and the groove portion 248 from the first guide end portion 52 and the second guide end portion 53, and “F 1 ” is the contact surface 55, the contact surface 56 and the groove portion 247. , “F 2 ” is a normal force acting on the contact point between the contact surface 55, the contact surface 56 and the groove portion 247, and the contact point between the groove portion 248 and the surface 249 b, “F 2 ” “θ 1 ” is the contact surface 55, the contact angle between the contact surface 56 and the groove 247, and the contact point between the groove 248 and the surface 249 a, and “θ 2 ” is the contact surface 55, the contact surface 56 and the groove 247, and the surface 249 b of the groove 248. Represents the contact angle of the contact point (see FIG. 7).

F 1 · cos θ 1 + F 2 · cos θ 2 = F 0 (2)
 複数の面249a、249bと第1ガイド端部52、第2ガイド端部53の接触面55、接触面56との接触角θ1、θ2は、接触面55、接触面56と溝部247、溝部248の面249a、249bとの接触部分の法線と、基準線とがなす角度のことである。ここでは、接触角θ1、θ2の基準線は、第1ガイド端部52、第2ガイド端部53の転動方向、すなわち、転動中心(第2回転中心軸線R2)と直交する方向に沿った線である。 Contact angles θ 1 and θ 2 between the plurality of surfaces 249 a and 249 b and the contact surface 55 of the first guide end portion 52 and the second guide end portion 53 and the contact surface 56 are the contact surface 55, the contact surface 56 and the groove portion 247, This is an angle formed by the normal line of the contact portion with the surfaces 249a and 249b of the groove portion 248 and the reference line. Here, the reference lines of the contact angles θ 1 and θ 2 are the rolling directions of the first guide end portion 52 and the second guide end portion 53, that is, the direction orthogonal to the rolling center (second rotation center axis R2). It is a line along
 本実施形態の無段変速機201は、[θ1=θ2]により、[F1=F2]となり、1つの接触点における法線力は、下記の数式(3)で表すように、接触角θ1、θ2によって定まることとなる(「i」=1、2)。

 Fi=F0/2cosθi ・・・ (3)
CVT 201 of this embodiment, by [θ 1 = θ 2], [F 1 = F 2] , and the normal force at the single contact point, as expressed by the following equation (3), It is determined by the contact angles θ 1 and θ 2 (“i” = 1, 2).

F i = F 0 / 2cosθ i ··· (3)
 本実施形態の溝部247、溝部248は、複数の面249a、249bと第1ガイド端部52、第2ガイド端部53の接触面55、接触面56との接触角θ1、θ2が0度より大きく60度より小さい範囲内に設定される(0°<θ1、θ2<60°)。この結果、無段変速機201は、接触角θ1、θ2を0°に近づけるほど、接触面55、接触面56と溝部247、溝部248との接触部位における1点あたりの法線力の低減効果を大きくすることができる。したがって、無段変速機201は、接触面55、接触面56と溝部247、溝部248との接触部位における1点あたりの接触面圧をより確実に抑制することができ、さらに耐久性を向上することができる。 In the groove portion 247 and the groove portion 248 of this embodiment, the contact angles θ 1 and θ 2 between the plurality of surfaces 249a and 249b and the first guide end portion 52, the contact surface 55 of the second guide end portion 53, and the contact surface 56 are 0. It is set within a range larger than 60 degrees and smaller than 60 degrees (0 ° <θ 1 , θ 2 <60 °). As a result, the continuously variable transmission 201 increases the normal force per point at the contact portion between the contact surface 55, the contact surface 56 and the groove portion 247, and the groove portion 248 as the contact angles θ 1 and θ 2 approach 0 °. The reduction effect can be increased. Therefore, the continuously variable transmission 201 can more reliably suppress the contact surface pressure per point at the contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248, and further improve the durability. be able to.
 以上で説明した実施形態に係る無段変速機201は、遊星ボール50の傾転動作の際に、所定の曲面形状を有する第1ガイド端部52、第2ガイド端部53の一部が第1ガイド部44、第2ガイド部45の溝部247、溝部248にはまった状態で転動し移動が案内される。この結果、無段変速機201は、接触面55、接触面56と溝部247、溝部248との接触部位における接触面圧を抑制することができ、耐久性を向上することができる。 In the continuously variable transmission 201 according to the embodiment described above, when the planetary ball 50 tilts, the first guide end portion 52 and the second guide end portion 53 having a predetermined curved surface shape are partly connected. Rolling is guided in the state where the first guide portion 44 and the groove portion 247 and the groove portion 248 of the second guide portion 45 are fitted. As a result, the continuously variable transmission 201 can suppress the contact surface pressure at the contact portion between the contact surface 55, the contact surface 56, the groove portion 247, and the groove portion 248, and can improve durability.
 そしてさらに、無段変速機201は、溝部247、溝部248の底面が複数の面249a、249bによってV字型に形成されることから、接触部位が2点接触になることで遊星ボール50の傾転動作の際の第1ガイド端部52、第2ガイド端部53の転がり抵抗をさらに抑制することができ、さらなる円滑な変速動作を実現することができる。 Further, the continuously variable transmission 201 has a bottom surface of the groove portion 247 and the groove portion 248 that is formed into a V shape by a plurality of surfaces 249a and 249b. The rolling resistance of the first guide end portion 52 and the second guide end portion 53 during the rolling operation can be further suppressed, and a further smooth speed change operation can be realized.
 なお、以上の説明では、溝部247、溝部248は、底面が2つの面249a、249bによって構成されるものとして説明したがこれに限らず、3つ以上の面で構成されてもよい。 In the above description, the groove portion 247 and the groove portion 248 have been described on the assumption that the bottom surface is constituted by the two surfaces 249a and 249b, but the present invention is not limited to this, and may be constituted by three or more surfaces.
[実施形態3]
 図8は、実施形態3に係る無段変速機の第1ガイド端部、第2ガイド端部の部分断面図である。実施形態3に係る無段変速機は、溝部の形状が実施形態1、2とは異なる。
[Embodiment 3]
FIG. 8 is a partial cross-sectional view of the first guide end and the second guide end of the continuously variable transmission according to the third embodiment. The continuously variable transmission according to the third embodiment is different from the first and second embodiments in the shape of the groove.
 図8に示す本実施形態の無段変速機301は、第1ガイド部44、第2ガイド部45がそれぞれ接触面44a、接触面45aに溝部347、溝部348を有する。溝部347は、各接触面44aにおいて、それぞれ第1ガイド端部52の移動の方向に沿って形成される。溝部348は、各接触面45aにおいて、それぞれ第2ガイド端部53の移動の方向に沿って形成される。 In the continuously variable transmission 301 of the present embodiment shown in FIG. 8, the first guide portion 44 and the second guide portion 45 have a contact surface 44a, and the contact surface 45a has a groove portion 347 and a groove portion 348, respectively. The groove portion 347 is formed along the direction of movement of the first guide end portion 52 on each contact surface 44a. The groove portion 348 is formed along the direction of movement of the second guide end portion 53 on each contact surface 45a.
 そして、本実施形態の溝部347、溝部348は、底面が複数の面により構成される。ここでは、溝部347、溝部348は、底面が2つの面349a、349bによって構成される。本実施形態の面349a、349bは、それぞれ溝部47、溝部48(図6参照)の底面と同様の曲面形状に形成される。つまり、溝部347、溝部348は、転動中心に沿った断面視、すなわち、図8に示す軸方向に沿った断面視にて、全体として底面が複数の面349a、349bによって略V字型の断面形状を有すると共に略V字型の各面が曲面形状に形成される(V字R溝)。 And the groove part 347 of this embodiment and the groove part 348 are comprised by the some surface in the bottom face. Here, the bottom surface of the groove portion 347 and the groove portion 348 is constituted by two surfaces 349a and 349b. The surfaces 349a and 349b of the present embodiment are formed in curved shapes similar to the bottom surfaces of the groove 47 and the groove 48 (see FIG. 6), respectively. That is, the groove portion 347 and the groove portion 348 are substantially V-shaped by a plurality of surfaces 349a and 349b as a whole in a cross-sectional view along the rolling center, that is, a cross-sectional view along the axial direction shown in FIG. Each of the substantially V-shaped surfaces having a cross-sectional shape is formed into a curved surface shape (V-shaped R groove).
 溝部347、溝部348は、面349a、349bの曲面形状の曲率が溝部47、溝部48(図6参照)の底面と同様に、第1ガイド端部52、第2ガイド端部53の曲面形状の曲率以下に形成される。ここでは、第1ガイド端部52、第2ガイド端部53の曲面形状の曲率は、上記と同様に、転動中心に沿った断面視、すなわち、図8に示す軸方向に沿った断面視における接触面55、接触面56の曲面形状の半径Raを用いて[1/Ra]と表すことができる。面349a、349bの曲面形状の曲率は、転動中心に沿った断面視、すなわち、図8に示す軸方向に沿った断面視における面349a、349bの曲面形状の半径Rbを用いて[1/Rb]と表すことができる。そして、溝部347、溝部348の面349a、349bの曲面形状と第1ガイド端部52、第2ガイド端部53の接触面55、接触面56の曲面形状とは、上記の数式(1)を満たすように形成される。 The groove portions 347 and 348 have curved surface shapes of the first guide end portion 52 and the second guide end portion 53 in the same manner as the bottom surfaces of the groove portions 47 and 48 (see FIG. 6). It is formed below the curvature. Here, the curvatures of the curved shapes of the first guide end portion 52 and the second guide end portion 53 are the cross-sectional view along the rolling center, that is, the cross-sectional view along the axial direction shown in FIG. [1 / Ra] can be expressed using the radius Ra of the curved surface shape of the contact surface 55 and the contact surface 56 in FIG. The curvature of the curved surface shapes of the surfaces 349a and 349b is obtained by using the radius Rb of the curved surface shape of the surfaces 349a and 349b in the sectional view along the rolling center, that is, in the sectional view along the axial direction shown in FIG. Rb]. The curved surface shapes of the surfaces 349a and 349b of the groove portion 347 and the groove portion 348 and the curved surface shapes of the first guide end 52, the contact surface 55 of the second guide end 53, and the contact surface 56 are expressed by the above equation (1). It is formed to satisfy.
 また、本実施形態の溝部347、溝部348は、溝部247、溝部248(図7参照)と同様に、複数の面349a、349bと第1ガイド端部52、第2ガイド端部53の接触面55、接触面56との接触角θ1、θ2が0度より大きく60度より小さい範囲内に設定される(0°<θ1、θ2<60°)。 Further, the groove portion 347 and the groove portion 348 of the present embodiment are the contact surfaces of the plurality of surfaces 349a and 349b, the first guide end portion 52, and the second guide end portion 53, similarly to the groove portion 247 and the groove portion 248 (see FIG. 7). 55, the contact angles θ 1 and θ 2 with the contact surface 56 are set within a range larger than 0 degree and smaller than 60 degrees (0 ° <θ 1 , θ 2 <60 °).
 上記のように構成される無段変速機301は、遊星ボール50の傾転動作の際に、所定の曲面形状を有する第1ガイド端部52、第2ガイド端部53の一部が第1ガイド部44、第2ガイド部45の溝部347、348にはまった状態で転動し移動が案内される。したがって、無段変速機301は、球面樽型の形状に形成された第1ガイド端部52、第2ガイド端部53にて遊星ボール50の傾転動作等に伴う傾転、スキュー方向の回転、転動の三次元の動作を許容することができ、傾転動作を円滑に行うことができる。そして、無段変速機301は、接触面55、接触面56と溝部347、348との接触部位における接触面圧を抑制することができる。これにより、無段変速機301は、接触面55、接触面56と溝部347、348との接触部位における接触面圧を抑制することができるので、キャリア40の第1ガイド部44、第2ガイド部45や支持軸51の第1ガイド端部52、第2ガイド端部53の耐久性や耐摩耗性を向上することができる。 In the continuously variable transmission 301 configured as described above, when the planetary ball 50 tilts, the first guide end 52 and the second guide end 53 having a predetermined curved surface shape are partly first. It rolls in a state of being fitted in the groove portions 347 and 348 of the guide portion 44 and the second guide portion 45 to guide the movement. Therefore, the continuously variable transmission 301 is tilted in accordance with the tilting operation of the planetary ball 50 at the first guide end 52 and the second guide end 53 formed in the spherical barrel shape, and rotated in the skew direction. The three-dimensional motion of rolling can be allowed, and the tilting motion can be performed smoothly. The continuously variable transmission 301 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348. Thereby, the continuously variable transmission 301 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348, and thus the first guide portion 44 and the second guide of the carrier 40. The durability and wear resistance of the first guide end 52 and the second guide end 53 of the portion 45 and the support shaft 51 can be improved.
 より詳細には、無段変速機301は、溝部347、溝部348の底面が複数の面349a、349bによって略V字型に形成される。これにより、無段変速機301は、第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と第1ガイド部44、第2ガイド部45の溝部347、溝部348とがそれぞれ2点で接触するようになる。この結果、無段変速機301は、接触面55、接触面56と溝部347、348との接触部位における1点あたりの法線力を抑制し接触面圧を抑制することができ、耐久性を向上することができる。 More specifically, in the continuously variable transmission 301, the bottom surfaces of the groove portion 347 and the groove portion 348 are formed in a substantially V shape by a plurality of surfaces 349a and 349b. Thereby, the continuously variable transmission 301 includes the first guide end 52, the contact surface 55 of the second guide end 53, the contact surface 56, the first guide 44, the groove 347 of the second guide 45, and the groove 348. Come into contact at two points. As a result, the continuously variable transmission 301 can suppress the normal force per point at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348 and suppress the contact surface pressure. Can be improved.
 その上で、無段変速機301は、さらに、凹状の曲面形状である溝部347、溝部348の面349a、349bの曲率1/Rbが凸状の曲面形状である第1ガイド端部52、第2ガイド端部53の曲率1/Ra以下に形成される。これにより、無段変速機301は、第1ガイド端部52、第2ガイド端部53の接触面55、接触面56と溝部347、溝部348の面349a、349bとの等価半径が相対的に大きくなり、接触面積を相対的に大きくすることができる。この結果、無段変速機1は、接触面55、接触面56と溝部347、348との各接触部位における単位面積あたりの接触面圧を抑制することができ、さらに耐久性を向上することができる。 In addition, the continuously variable transmission 301 further includes a groove portion 347 having a concave curved surface shape, a first guide end portion 52 having a convex curved surface shape in which the curvatures 1 / Rb of the surfaces 349a and 349b of the groove portion 348 are convex. 2 The curvature of the guide end portion 53 is 1 / Ra or less. As a result, the continuously variable transmission 301 has a relative equivalent radius between the contact surface 55 of the first guide end 52 and the second guide end 53, the contact surface 56, the groove 347, and the surfaces 349a and 349b of the groove 348. The contact area can be relatively increased. As a result, the continuously variable transmission 1 can suppress the contact surface pressure per unit area at each contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348, and can further improve durability. it can.
 以上で説明した実施形態に係る無段変速機301は、遊星ボール50の傾転動作の際に、所定の曲面形状を有する第1ガイド端部52、第2ガイド端部53の一部が第1ガイド部44、第2ガイド部45の溝部347、348にはまった状態で転動し移動が案内される。この結果、無段変速機301は、接触面55、接触面56と溝部347、348との接触部位における接触面圧を抑制することができ、耐久性を向上することができる。 In the continuously variable transmission 301 according to the embodiment described above, when the planetary ball 50 is tilted, the first guide end 52 and the second guide end 53 having a predetermined curved surface shape are partly connected. The rolling is performed while being fitted in the groove portions 347 and 348 of the first guide portion 44 and the second guide portion 45, and the movement is guided. As a result, the continuously variable transmission 301 can suppress the contact surface pressure at the contact portion between the contact surface 55 and the contact surface 56 and the groove portions 347 and 348, and can improve durability.
 なお、図9は、上記で説明した各実施形態に係る無段変速機1、201、301と比較例に係る無段変速機との接触面圧の一例を比較するための線図である。図9中、横軸を左から順に比較例、無段変速機1(R溝)、無段変速機301(V字R溝)、無段変速機201(V字溝)とし、縦軸を第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45との接触部位の接触面圧としている。比較例に係る無段変速機は、第1ガイド端部52、第2ガイド端部53を樽型の形状とした上で溝部47、48、247、248、347,348を備えないものである。本図からも明らかなように、無段変速機1、201、301は、比較例に係る無段変速機と比較して、第1ガイド端部52、第2ガイド端部53と第1ガイド部44、第2ガイド部45との接触部位の接触面圧を低減することができる。なかでも、V字R溝である溝部347、348を有する無段変速機301における接触面圧の低下が特に大きく、ついでR溝である溝部47、48を有する無段変速機1における接触面圧の低下が次に大きくなっていることが理解できる。 FIG. 9 is a diagram for comparing an example of contact surface pressure between the continuously variable transmissions 1, 201, 301 according to each embodiment described above and the continuously variable transmission according to the comparative example. In FIG. 9, the horizontal axis is a comparative example in order from the left, continuously variable transmission 1 (R groove), continuously variable transmission 301 (V-shaped R groove), continuously variable transmission 201 (V-shaped groove), and the vertical axis is The contact surface pressure at the contact portion between the first guide end portion 52 and the second guide end portion 53 and the first guide portion 44 and the second guide portion 45 is used. The continuously variable transmission according to the comparative example does not include the groove portions 47, 48, 247, 248, 347, 348 after the first guide end portion 52 and the second guide end portion 53 have a barrel shape. . As is clear from this figure, the continuously variable transmissions 1, 201, 301 are compared with the continuously variable transmission according to the comparative example in that the first guide end 52, the second guide end 53, and the first guide. It is possible to reduce the contact surface pressure at the contact portion with the portion 44 and the second guide portion 45. Especially, the contact surface pressure in the continuously variable transmission 301 having the groove portions 347 and 348 which are V-shaped R grooves is particularly large, and then the contact surface pressure in the continuously variable transmission 1 having the groove portions 47 and 48 which are R grooves. It can be understood that the decrease in the next is the largest.
 なお、上述した本発明の実施形態に係る無段変速機は、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。本実施形態に係る無段変速機は、以上で説明した各実施形態の構成要素を適宜組み合わせることで構成してもよい。 The continuously variable transmission according to the above-described embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims. The continuously variable transmission according to the present embodiment may be configured by appropriately combining the components of the embodiments described above.
 以上で説明した溝部は、ガイド端部との接触面に当該ガイド端部の移動の方向に沿って形成され当該ガイド端部の一部がはまり当該ガイド端部の接触面と接触するものであればよく、上述したようなR溝、V字溝、V字R溝に限られない。 The groove described above is formed on the contact surface with the guide end along the direction of movement of the guide end, and a part of the guide end fits into contact with the contact surface of the guide end. What is necessary is just and it is not restricted to the above-mentioned R groove, V-shaped groove, and V-shaped R groove.
 また、以上で説明した支持軸のガイド端部は、中間部と別体に構成され、当該中間部に組み付けられるローラ等によって構成されてもよい。 Further, the guide end portion of the support shaft described above may be configured separately from the intermediate portion, and may be configured by a roller or the like assembled to the intermediate portion.
1、201、301  無段変速機
10  第1回転部材(第1回転要素)
20  第2回転部材(第2回転要素)
30  サンローラ
40  キャリア(支持回転要素)
41  固定キャリア
42  可動キャリア
44  第1ガイド部(ガイド部)
44a、45a  接触面
45  第2ガイド部(ガイド部)
47、48、247、248、347、348  溝部
50  遊星ボール(転動部材)
51  支持軸
52  第1ガイド端部(ガイド端部)
53  第2ガイド端部(ガイド端部)
55、56  接触面
60  変速機軸
249a、249b、349a、349b  面
R1  第1回転中心軸線
R2  第2回転中心軸線
1, 201, 301 continuously variable transmission 10 first rotating member (first rotating element)
20 Second rotating member (second rotating element)
30 Sun Roller 40 Carrier (Support Rotating Element)
41 Fixed carrier 42 Movable carrier 44 1st guide part (guide part)
44a, 45a Contact surface 45 Second guide part (guide part)
47, 48, 247, 248, 347, 348 Groove 50 Planetary ball (rolling member)
51 Support shaft 52 First guide end (guide end)
53 Second guide end (guide end)
55, 56 Contact surface 60 Transmission shaft 249a, 249b, 349a, 349b Surface R1 First rotation center axis R2 Second rotation center axis

Claims (5)

  1.  回転中心となる変速機軸と、
     前記変速機軸に軸方向に対向して配置され、共通の第1回転中心軸線を回転中心として相対回転可能である第1回転要素及び第2回転要素と、
     前記第1回転中心軸線とは異なる第2回転中心軸線を回転中心として回転可能であり前記第1回転要素と前記第2回転要素とに挟持され当該第1回転要素及び当該第2回転要素との間でトルクを伝達可能であると共に、傾転動作によって各回転要素間の回転速度比である変速比を変更可能である転動部材と、
     前記第2回転中心軸線を回転中心として前記転動部材を支持し両端部が当該転動部材から突出した支持軸と、
     前記第1回転中心軸線を回転中心として前記第1回転要素、及び、前記第2回転要素と相対回転可能に前記変速機軸に配置されると共に、前記支持軸の端部であり円筒状又は円柱状に形成されるガイド端部が挿入され当該ガイド端部を前記転動部材の傾転動作が可能な状態で保持するガイド部を有する支持回転要素とを備え、
     前記ガイド端部は、前記転動部材の傾転動作の際に前記ガイド部と接触した状態で転動し当該ガイド部によって移動が案内され、前記ガイド部との接触面が転動中心に沿った方向に対して径方向外側に向けて突出した曲面形状を有し、
     前記ガイド部は、前記ガイド端部との接触面に当該ガイド端部の移動の方向に沿って形成され当該ガイド端部の一部がはまり当該ガイド端部の接触面と接触する溝部を有することを特徴とする、
     無段変速機。
    A transmission shaft as a center of rotation;
    A first rotation element and a second rotation element that are arranged opposite to the transmission shaft in the axial direction and are capable of relative rotation about a common first rotation center axis;
    The second rotation center axis that is different from the first rotation center axis is rotatable about the rotation center, and is sandwiched between the first rotation element and the second rotation element, and the first rotation element and the second rotation element A rolling member capable of transmitting a torque between them and changing a gear ratio which is a rotation speed ratio between the respective rotating elements by a tilting operation;
    A support shaft that supports the rolling member with the second rotation center axis as the center of rotation, and both ends project from the rolling member;
    The first rotation center axis is the center of rotation and the first rotation element and the second rotation element are disposed on the transmission shaft so as to be rotatable relative to each other. The end of the support shaft is cylindrical or columnar. A support rotation element having a guide portion that is inserted into the guide end portion and holds the guide end portion in a state in which the rolling member can be tilted.
    The guide end portion rolls in contact with the guide portion during the tilting operation of the rolling member, and the movement is guided by the guide portion, and the contact surface with the guide portion is along the rolling center. Having a curved shape protruding outward in the radial direction with respect to the direction,
    The guide portion has a groove portion that is formed on a contact surface with the guide end portion along a direction of movement of the guide end portion, and a part of the guide end portion is fitted and contacts with the contact surface of the guide end portion. Characterized by the
    Continuously variable transmission.
  2.  前記溝部は、底面が複数の面により構成される、
     請求項1に記載の無段変速機。
    The groove portion has a bottom surface composed of a plurality of surfaces.
    The continuously variable transmission according to claim 1.
  3.  前記溝部は、前記複数の面と前記ガイド端部の接触面との接触角が0度より大きく60度より小さい範囲内に設定される、
     請求項2に記載の無段変速機。
    The groove portion is set within a range in which a contact angle between the plurality of surfaces and a contact surface of the guide end portion is larger than 0 degree and smaller than 60 degrees.
    The continuously variable transmission according to claim 2.
  4.  前記溝部は、底面が前記転動中心に沿った方向に対して窪んだ曲面形状を有し、当該曲面形状の曲率が前記ガイド端部の前記曲面形状の曲率以下である、
     請求項1乃至請求項3のいずれか1項に記載の無段変速機。
    The groove portion has a curved surface shape whose bottom surface is recessed with respect to the direction along the rolling center, and the curvature of the curved surface shape is equal to or less than the curvature of the curved surface shape of the guide end portion.
    The continuously variable transmission according to any one of claims 1 to 3.
  5.  前記溝部の前記曲面形状の曲率は、前記転動中心に沿った断面視における当該溝部の底面の曲率であり、
     前記ガイド端部の前記曲面形状の曲率は、前記転動中心に沿った断面視における当該ガイド端部の接触面の曲率である、
     請求項4に記載の無段変速機。
    The curvature of the curved surface shape of the groove is a curvature of the bottom surface of the groove in a cross-sectional view along the rolling center,
    The curvature of the curved shape of the guide end is a curvature of the contact surface of the guide end in a cross-sectional view along the rolling center.
    The continuously variable transmission according to claim 4.
PCT/JP2012/056439 2012-03-13 2012-03-13 Continuously variable transmission WO2013136451A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/056439 WO2013136451A1 (en) 2012-03-13 2012-03-13 Continuously variable transmission
JP2014504541A JP5761445B2 (en) 2012-03-13 2012-03-13 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056439 WO2013136451A1 (en) 2012-03-13 2012-03-13 Continuously variable transmission

Publications (1)

Publication Number Publication Date
WO2013136451A1 true WO2013136451A1 (en) 2013-09-19

Family

ID=49160420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056439 WO2013136451A1 (en) 2012-03-13 2012-03-13 Continuously variable transmission

Country Status (2)

Country Link
JP (1) JP5761445B2 (en)
WO (1) WO2013136451A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528381A1 (en) * 1991-08-16 1993-02-24 Fichtel &amp; Sachs AG Hub, particularly for bicycles, with continuously-variable transmission
WO2010120933A1 (en) * 2009-04-16 2010-10-21 Fallbrook Technologies Inc. Stator assembly and shifting mechanism for a continuously variable transmission
WO2011114494A1 (en) * 2010-03-18 2011-09-22 トヨタ自動車株式会社 Continuously variable transmission
JP2012501418A (en) * 2008-08-26 2012-01-19 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528381A1 (en) * 1991-08-16 1993-02-24 Fichtel &amp; Sachs AG Hub, particularly for bicycles, with continuously-variable transmission
JP2012501418A (en) * 2008-08-26 2012-01-19 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
WO2010120933A1 (en) * 2009-04-16 2010-10-21 Fallbrook Technologies Inc. Stator assembly and shifting mechanism for a continuously variable transmission
WO2011114494A1 (en) * 2010-03-18 2011-09-22 トヨタ自動車株式会社 Continuously variable transmission

Also Published As

Publication number Publication date
JP5761445B2 (en) 2015-08-12
JPWO2013136451A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5146537B2 (en) Continuously variable transmission
JP5500118B2 (en) Continuously variable transmission
JP5201272B2 (en) Continuously variable transmission
WO2013125041A1 (en) Continuously variable transmission
CN102265063B (en) Continuously variable transmission
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP5803878B2 (en) Continuously variable transmission
JP5601420B2 (en) Continuously variable transmission
JP2011153645A (en) Continuously variable transmission and control device of continuously variable transmission
JP5761445B2 (en) Continuously variable transmission
JP6265061B2 (en) Planetary roller traction drive device
JP2014214838A (en) Continuously variable transmission
JP2014040892A (en) Frictional roller type transmission
JP2013190019A (en) Continuously variable transmission
JP2012197911A (en) Toroidal type continuously variable transmission
JP2011202699A (en) Continuously variable transmission
JP2011202701A (en) Continuously variable transmission
JP5621947B2 (en) Continuously variable transmission
JP2013167333A (en) Continuously variable transmission
JP5488492B2 (en) Continuously variable transmission
JP2012127457A (en) Continuously variable transmission
JP2013167332A (en) Continuously variable transmission
JP6015253B2 (en) Toroidal continuously variable transmission
JP2011202700A (en) Continuously variable transmission
JP2012122567A (en) Continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871110

Country of ref document: EP

Kind code of ref document: A1