WO2013133339A1 - 測定プローブ - Google Patents

測定プローブ Download PDF

Info

Publication number
WO2013133339A1
WO2013133339A1 PCT/JP2013/056185 JP2013056185W WO2013133339A1 WO 2013133339 A1 WO2013133339 A1 WO 2013133339A1 JP 2013056185 W JP2013056185 W JP 2013056185W WO 2013133339 A1 WO2013133339 A1 WO 2013133339A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement probe
illumination
light
measurement
fiber
Prior art date
Application number
PCT/JP2013/056185
Other languages
English (en)
French (fr)
Inventor
遼佑 伊藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2014503521A priority Critical patent/JP6028015B2/ja
Priority to CN201380013210.8A priority patent/CN104203066B/zh
Priority to EP13757769.8A priority patent/EP2823747A4/en
Publication of WO2013133339A1 publication Critical patent/WO2013133339A1/ja
Priority to US14/478,660 priority patent/US9883802B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/042Force radial
    • F04C2270/0421Controlled or regulated

Definitions

  • the present invention relates to a measurement probe that is connected to an optical measurement device that estimates a property of a biological tissue based on a measurement value of a return light of the measurement light that is reflected and / or scattered by the biological tissue. About.
  • the diameter of the measurement probe is set in accordance with the illumination area on the living tissue where the illumination fiber irradiates the illumination light, and thus there is a limit to reducing the diameter of the measurement probe. For this reason, the amount of light that can be irradiated onto the living tissue is limited by the diameter of the measurement probe, and it has been difficult to obtain more information from more living tissues and perform more accurate measurement.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a measurement probe capable of performing a more accurate measurement while reducing the diameter.
  • a measurement probe is a measurement probe that is detachably connected to an optical measurement device that performs optical measurement of biological tissue, An illumination fiber that illuminates the illumination light, and a plurality of light-receiving fibers that receive the illumination light irradiated by the illumination fiber and that are reflected and / or scattered by the living tissue at different positions.
  • An illumination fiber that illuminates the illumination light
  • a plurality of light-receiving fibers that receive the illumination light irradiated by the illumination fiber and that are reflected and / or scattered by the living tissue at different positions.
  • a substantially cylindrical support portion that allows a constant distance between the tip of each of the illumination fiber and the plurality of light receiving fibers and the living tissue, and allows the illumination light to pass through at least part of the side surface.
  • the illumination area on the living tissue of the illumination light irradiated by the fiber is larger than the area of the tip of the support portion.
  • the support portion has a cylindrical shape, and relays illumination light emitted from the illumination fiber to irradiate the living tissue, and the optical member.
  • a reinforcing member formed of a material that absorbs the illumination light and is in contact with the side wall and at least a part of the side wall of the optical member is smaller than the length in the longitudinal direction of the optical member.
  • the measurement probe according to the present invention is characterized in that, in the above-described invention, the central axis of the illumination fiber coincides with the central axis of the measurement probe.
  • the center axis of the illumination fiber is arranged at a position shifted from the center axis of the measurement probe.
  • the optical member has a cylindrical shape.
  • an injection tube that injects liquid supplied from the outside into the internal space of the optical member, and a suction tube that sucks at least the liquid from the internal space of the optical member; , Further provided.
  • the support portion is a member that absorbs the illumination light and has a substantially cylindrical shape having the same outer diameter as that of the measurement probe and a hollow cylindrical shape inside.
  • the measurement probe according to the present invention is characterized in that, in the above invention, the support portion further includes a flat plate portion that transmits light to a part of the tip.
  • the measurement probe according to the present invention is characterized in that, in the above invention, the illumination limiting portion has a plurality of side portions protruding toward the center of the measurement probe when viewed from a cross section orthogonal to the longitudinal direction.
  • the measurement probe according to the present invention is characterized in that in the above-mentioned invention, an air supply tube through which air is supplied from the outside is further provided.
  • the tip of the support portion is inclined with respect to the longitudinal direction.
  • the measurement probe according to the present invention is characterized in that, in the above invention, the support portion is detachable with respect to a tip portion of the measurement probe.
  • the measurement probe according to the present invention has an effect that a highly accurate measurement can be performed while reducing the diameter.
  • FIG. 1 is a block diagram schematically showing the configuration of the optical measurement apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the configuration of the distal end portion of the measurement probe including the support portion according to the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a perspective view schematically showing the configuration of the distal end portion of the measurement probe including the support portion according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing the distal end portion of the measurement probe including the support portion according to the first modification of the first embodiment of the present invention.
  • FIG. 6 is a perspective view schematically showing the distal end portion of the measurement probe including the support portion according to the second modification of the first embodiment of the present invention.
  • FIG. 7 is a perspective view schematically showing a distal end portion of a measurement probe including a support portion according to the third modification of the first embodiment of the present invention.
  • FIG. 8 is a perspective view schematically showing a distal end portion of a measurement probe including a support portion according to the second embodiment of the present invention.
  • FIG. 9 is a perspective view schematically showing a distal end portion of a measurement probe including a support portion according to the first modification of the second embodiment of the present invention.
  • FIG. 10 is a side view of the distal end of the measurement probe including the support portion according to the second modification of the second embodiment of the present invention.
  • FIG. 11 is a front view of the arrow B in FIG. 12 is a cross-sectional view taken along the line CC of FIG. 13 is a cross-sectional view taken along line EE of FIG.
  • FIG. 14 is a block diagram schematically showing the configuration of the optical measuring apparatus according to the third embodiment of the present invention.
  • FIG. 15 is a perspective view schematically showing a distal end portion of a measurement probe including a support portion according to the third embodiment of the present invention.
  • FIG. 16 is a block diagram schematically showing the configuration of the optical measuring apparatus according to the fourth embodiment of the present invention.
  • FIG. 17 is a perspective view schematically showing a distal end portion of a measurement probe including a support portion according to the fourth embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing the configuration of the optical measurement apparatus according to the first embodiment of the present invention.
  • An optical measurement apparatus 1 shown in FIG. 1 is detachably attached to a main body 2 that performs optical measurement on a measurement object such as a biological tissue that is a scatterer to measure optical characteristics of the measurement object.
  • a measurement probe 3 that is connected and inserted into the subject via the treatment instrument channel of the endoscope.
  • the main body unit 2 includes a power source 21, a light source unit 22, a connection unit 23, a detection unit 24, an input unit 25, an output unit 26, a recording unit 27, and a control unit 28.
  • the power source 21 supplies power to each component of the main body 2.
  • the light source unit 22 emits light having at least one spectral component irradiated to the measurement object via the connection unit 23 to the measurement probe 3 as illumination light.
  • the light source unit 22 uses a light source such as an LED (Light Emitting Diode), a xenon lamp, a tungsten lamp and a halogen lamp, a laser, and an optical system including a plurality of lenses, for example, a condensing lens, a collimating lens, and a light source driver. Composed.
  • the light source unit 22 emits illumination light toward the measurement probe 3 under the control of the control unit 28. For example, the light source unit 22 switches on / off the illumination light under the control of the control unit 28.
  • the light source unit 22 condenses the light emitted from the light source on the measurement probe 3 by the optical system, thereby increasing the light beam coupling efficiency between the light source and the measurement probe and increasing the amount of illumination light. The measurement quality can be improved.
  • connection part 23 removably connects the base end part 31 (connector part) of the measurement probe 3 to the main body part 2.
  • the connection unit 23 propagates the illumination light emitted from the light source unit 22 to the measurement probe 3 and propagates the return light of the illumination light reflected and / or scattered by the measurement object emitted from the measurement probe 3 to the detection unit 24. .
  • the detection unit 24 detects the return light of the illumination light irradiated from the measurement probe 3 through the connection unit 23 and reflected and / or scattered by the measurement object through the measurement probe 3.
  • the detection unit 24 includes a plurality of spectroscopic elements and / or light receiving sensors such as a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), and a PD (Photo Detector).
  • the detection unit 24 is provided with a spectroscopic measuring device corresponding to the number of light receiving fibers of the measurement probe 3 described later. Further, the detection unit 24 detects the intensity for each wavelength by measuring the spectrum and / or the intensity distribution of the scattered light incident from the measurement probe 3, and outputs the detection result to the control unit 28.
  • the input unit 25 receives an input of an instruction signal for instructing activation of the main body unit 2 or an instruction signal for instructing other various operations, and outputs it to the control unit 28.
  • the input unit 25 is configured using an input device such as a bush type switch, a touch panel, a keyboard, or a mouse.
  • the output unit 26 outputs information on various processes in the optical measurement apparatus 1 and measurement results of the measurement object.
  • the output unit 26 is configured using a display such as liquid crystal or organic EL (Electro Luminescence) and a speaker.
  • the recording unit 27 records various programs for operating the optical measurement apparatus 1, various data used for optical measurement processing, and various parameters.
  • the recording unit 27 temporarily records information being processed by the optical measurement device 1.
  • the recording unit 27 records the measurement result of the measurement object.
  • the recording unit 27 is configured using a volatile memory, a nonvolatile memory, or the like. Note that the recording unit 27 may be configured using a memory card or the like attached from the outside of the main body unit 2.
  • the control unit 28 controls the processing operation of each unit of the main body unit 2.
  • the control unit 28 comprehensively controls the operation of the main unit 2 by transferring instruction information and data to each unit of the main unit 2.
  • the control unit 28 is configured using a CPU (Central Processing Unit) or the like.
  • the control unit 28 includes a calculation unit 28a.
  • the calculation unit 28a performs a plurality of calculation processes based on the detection results detected by the detection unit 24, and calculates characteristic values related to the optical characteristics and properties of the measurement object.
  • the type of the characteristic value is set according to an instruction signal received by the input unit 25 or various programs recorded in the recording unit 27, for example.
  • the measurement probe 3 is configured by arranging a plurality of optical fibers therein.
  • the measurement probe 3 is an illumination fiber that irradiates the measurement object with illumination light, and illumination light that the illumination fiber irradiates the measurement object, and is reflected and / or scattered by the measurement object.
  • the plurality of light receiving fibers that receive the return light of the illumination light at different angles, and a support portion that keeps the distance between the tip of each of the illumination fibers and the plurality of light receiving fibers and the living tissue constant.
  • the measurement probe 3 irradiates illumination light supplied from the base end portion 31 (connector) connected to the connection portion 23 of the main body 2, the flexible portion 32 having flexibility, and the light source portion 22, A tip portion 33 that receives return light from the measurement object, and a support portion 34 that is detachable from the tip portion 33 and maintains a constant distance from the measurement object.
  • FIG. 2 is a side view schematically showing the configuration of the distal end portion 33 of the measurement probe 3 including the support portion 34.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2 and shows an end surface 33 a of the distal end portion 33 of the measurement probe 3.
  • FIG. 4 is a perspective view schematically showing the configuration of the distal end portion 33 of the measurement probe 3 including the support portion 34.
  • the measurement probe 3 receives an illumination fiber 311 that irradiates the measurement object S1 with illumination light, and three pieces that receive return light of the illumination light reflected and / or scattered by the measurement object S1.
  • a support portion 34 that keeps the distance between the end surfaces of the distal ends of the illumination fiber 311 and the light receiving fiber 312 and the measurement object S1 constant.
  • the measurement probe 3 is disposed on the end surface 33a of the distal end portion 33 in a state where the illumination fiber 311 and the three light receiving fibers 312 are adjacent in a straight line.
  • the illumination fiber 311 is configured using an optical fiber.
  • the illumination fiber 311 propagates the illumination light emitted from the light source unit 22 and irradiates the measurement object from the end surface 33a of the distal end portion 33 via the support unit 34.
  • the central axis P2 of the luminous flux L1 of the illumination light irradiated by the illumination fiber 311 coincides with the central axis P1 of the measurement probe 3.
  • the light receiving fiber 312 is configured using an optical fiber.
  • the light receiving fiber 312 receives the return light of the illumination light reflected and / or scattered by the measurement object incident from the respective tips via the support portions 34 at different positions, and propagates the return light to the detection portion 24.
  • the number of the light receiving fibers 312 can be appropriately changed according to the inspection item or the type of the measurement object, for example, blood flow or site, and it is sufficient that at least two or more.
  • the holding unit 313 holds the illumination fiber 311 and the light receiving fiber 312.
  • the holding part 313 holds the end of each of the illumination fiber 311 and the three light receiving fibers 312 on the end surface 33a of the tip part 33 in a state of being adjacent to each other in a straight line.
  • the holding portion 313 is configured using a glass material, resin, brass, or the like. Further, the holding unit 313 holds the central axis P2 of the illumination fiber 311 and the central axis of the measurement probe 3 so as to coincide with each other.
  • the covering portion 314 holds the illumination fiber 311, the light receiving fiber 312, and the holding portion 313 from an external force.
  • the covering portion 314 is configured using a resin or the like.
  • the support part 34 is provided at the tip part 33 of the measurement probe 3, makes the distance between the tip of each of the illumination fiber 311 and the three light receiving fibers 312 and the measurement object S ⁇ b> 1 constant, and at least a part of the side face of the support part 34. It forms a cylindrical shape that can pass illumination light irradiated by 311.
  • the support part 34 includes an optical member 341 having a predetermined refractive index and a reinforcing member 342 that protects the optical member 341.
  • the optical member 341 has a cylindrical shape and relays the illumination light emitted from the illumination fiber 311 to irradiate the measurement object S1.
  • the optical member 341 is configured using a transmissive glass material or plastic having a predetermined refractive index, and transmits the light beam L1 of the illumination light irradiated by the illumination fiber 311. Further, the optical member 341 flattens the surface of the measuring object S1 at the end face of the optical member 341. Thereby, the optical measuring device 1 can measure the measuring object S1 without being affected by the uneven shape of the surface of the measuring object S1.
  • the reinforcing member 342 is formed using a material that is in contact with the side wall of the optical member 341 and at least a part of the side surface is smaller than the length in the longitudinal direction of the optical member 341 and absorbs the illumination light irradiated by the illumination fiber 311. .
  • the reinforcing member 342 is formed using a material that hardly reflects light, such as metal or resin.
  • the reinforcing member 342 prevents the optical member 341 from being bent or scratched by relaxing the external force applied to the optical member 341.
  • the optical member 341 and the reinforcing member 342 may be integrally formed.
  • the illumination area D1 (the diameter R2 of the illumination area D1) on the measurement object S1 irradiated by the illumination fiber 311 is the area of the tip of the support section 34 (the outer diameter R1 of the support section 34). ).
  • a part of the luminous flux L1 of the illumination light irradiated from the illumination fiber 311 passes through the side surface of the support portion 34.
  • the reinforcing member 342 is formed so as to cover the side surface of the optical member 341 through which the luminous flux L1 of the illumination light does not pass.
  • the side surface of the reinforcing member 342 is formed so as to have a region that is substantially half the length of the optical member 341 in the longitudinal direction.
  • the amount of information from a larger number of measurement objects S1 can be acquired while reducing the diameter, so that more accurate measurement can be performed. .
  • the illumination light irradiated by the illumination fiber 311 passes (transmits) through the side surface of the support portion 34, so that stray light (noise) detected by the light receiving fiber 312 is suppressed.
  • the diameter of the measurement probe can be reduced.
  • the reinforcing member 342 is provided on the base end side of the side surface of the optical member 341, it is possible to prevent the support portion 34 from being damaged or dropped off due to an external force.
  • a non-transparent portion that absorbs light is provided on the side surface of the optical member 341 by applying a light shielding member such as black on the base end side of the optical member 341. It may be formed.
  • the tip of the tip of the optical member 341 may be inclined with respect to the longitudinal direction (the central axis P1 of the measurement probe 3).
  • FIG. 5 is a perspective view schematically showing the distal end portion of the measurement probe including the support portion according to the first modification of the first embodiment of the present invention.
  • symbol is attached
  • the measurement probe 4 includes an illumination fiber 311, a light receiving fiber 312, a holding unit 313, a covering unit 314, the end surfaces of the front ends of the illumination fiber 311 and the light receiving fiber 312, and the measurement object S ⁇ b> 1. And a support portion 40 that keeps the distance constant.
  • the support unit 40 includes an optical member 341 and a reinforcing member 401 that reinforces the optical member 341.
  • the reinforcing member 401 prevents the optical member 341 from being bent or scratched by an external force.
  • the reinforcing member 401 includes a cylindrical tube portion 401a and a plurality of side portions 401b provided extending from the edge of the tube portion 401a toward the tip at predetermined intervals.
  • the cylinder part 401a and the side part 401b are integrally formed.
  • the cylindrical portion 401a and the side portion 401b are formed using a material that hardly reflects light, such as metal or resin.
  • the measurement probe 4 configured in this manner is formed such that the diameter R2 of the illumination region D1 on the measurement object S1 irradiated by the illumination fiber 311 is larger than the outer diameter R1 of the measurement probe 4 (see FIG. 5).
  • a part of the luminous flux L1 of the illumination light irradiated from the illumination fiber 311 passes through the side surface of the support portion 40.
  • the reinforcing member 401 be 50% or less of a region where the light flux L1 of the illumination light is not shielded at all.
  • the stray light incident from the outside is suppressed to the maximum while the diameter is reduced, and the strength of the distal end portion of the measurement probe 4 is further strengthened. be able to.
  • FIG. 6 is a perspective view schematically showing the distal end portion of the measurement probe including the support portion according to the second modification of the first embodiment of the present invention.
  • the measurement probe 5 includes an illumination fiber 311, a light receiving fiber 312, a holding part 51, a covering part 314, and a support part 52. And a support portion 52 that keeps the distance between the end face of the tip of the illumination fiber 311 and the light receiving fiber 312 and the measurement object S1 constant.
  • the holding unit 51 holds the illumination fiber 311 and the three light receiving fibers 312 on the end surface 33a of the tip portion 33 in a state where the tips of the illumination fiber 311 and the three light receiving fibers 312 are arranged in a straight line.
  • the holding unit 51 holds the illumination fiber 311 so that the center axis P2 of the light beam L1 of the illumination light irradiated by the illumination fiber 311 coincides with the position away from the center axis P1 of the measurement probe 5 by a predetermined distance d.
  • the holding unit 51 holds the illumination fiber 311 so that the central axis P1 of the measurement probe 5 and the central axis P2 of the luminous flux L1 of the illumination light irradiated by the illumination fiber 311 are parallel on the same plane.
  • the illumination area D1 on the measurement object S1 irradiated by the illumination fiber 311 is formed at a position eccentric from the central axis P1 of the measurement probe 5, and the diameter R2 of the illumination area D1 on the measurement object S1 is measured.
  • the probe 5 is formed larger than the outer diameter R1.
  • the support part 52 keeps the distance between the end surfaces of the distal ends of the illumination fiber 311 and the light receiving fiber 312 and the measurement object S1 constant.
  • the support part 52 includes an optical member 341 and a reinforcing member 521 that reinforces the optical member 341.
  • the reinforcing member 521 prevents the optical member 341 from being broken or having a scratch on the surface when an external force is applied thereto.
  • the reinforcing member 521 includes a cylindrical tube portion 521a and a side portion 521b that extends from the edge of the tube portion 521a toward the tip and has an arcuate cross section.
  • the cylinder part 521a and the side part 521b are integrally formed.
  • the cylindrical portion 521a and the side portion 521b are formed using a material that hardly reflects light, such as metal or resin.
  • the reinforcing member 521 is formed so that the area that shields the light beam L1 of the illumination light irradiated by the illumination fiber 311 is 50% or less of the area that does not shield at all.
  • the stray light incident from the outside is suppressed to the maximum while the diameter is reduced, and the strength of the distal end portion 33 of the measurement probe 5 is further strengthened. be able to.
  • FIG. 7 is a perspective view schematically showing a distal end portion of a measurement probe including a support portion according to the third modification of the first embodiment of the present invention.
  • the measurement probe 6 includes an illumination fiber 311, a light receiving fiber 312, a holding part 61, a covering part 314, and a support part 62.
  • the holding portion 61 holds the illumination fiber 311 and the three light receiving fibers 312 in a state where the tips of the illumination fiber 311 and the three light receiving fibers 312 are arranged in a straight line.
  • the holding unit 61 tilts and holds the illumination fiber 311 so that the angle formed by the center axis P2 of the illumination light beam L1 irradiated by the illumination fiber 311 and the center axis P1 of the measurement probe 6 is a predetermined angle ⁇ . To do.
  • the illumination region D1 on the measurement object S1 irradiated by the illumination fiber 311 is formed at a position eccentric from the central axis P1 of the measurement probe 6, and the diameter R2 of the illumination region D1 on the measurement object S1 is measured.
  • the probe 6 is formed larger than the outer diameter R1.
  • the support part 62 includes an optical member 341 and a reinforcing member 621 that reinforces the optical member 341.
  • the reinforcing member 621 prevents the optical member 341 from being bent or scratched by an external force.
  • the reinforcing member 621 includes a cylindrical tube portion 621a, and a side portion 621b that extends from the edge of the tube portion 621a toward the tip and has an arcuate cross section.
  • the cylinder part 621a and the side part 621b are integrally formed.
  • the cylindrical portion 621a and the side portion 621b are formed using a material that hardly reflects light, such as metal or resin.
  • the reinforcing member 621 configured in this way is formed such that the region that blocks the light beam L1 of the illumination light irradiated by the illumination fiber 311 is larger than the region that transmits the light beam L1 of the illumination light.
  • the stray light incident from the outside can be suppressed to the maximum while the diameter is reduced, and the strength of the support portion 62 can be further strengthened.
  • the measurement probe according to the second embodiment has a hollow inside instead of the optical member of the support portion. Therefore, the configuration of the measurement probe according to the second embodiment will be described below.
  • symbol is attached
  • FIG. 8 is a perspective view schematically showing the distal end portion of the measurement probe including the support portion according to the second embodiment of the present invention.
  • the support portion 70 is provided on the end surface 33 a of the distal end portion 33 of the measurement probe 7.
  • the support portion 70 has the same diameter as the outer diameter of the measurement probe 7 and is formed of a member that absorbs illumination light.
  • the support portion 70 has a substantially cylindrical shape and a hollow cylindrical shape, and a distal end of the cylindrical portion 701.
  • an annular portion 703 having an annular shape.
  • the cylindrical portion 701, the illumination limiting portion 702, and the annular portion 703 are integrally formed.
  • the cylindrical portion 701, the illumination limiting portion 702, and the annular portion 703 are formed of a material that hardly reflects light, such as metal or resin.
  • the illumination limiting portion 702 forms a window portion 702a with side portions 702b formed at predetermined intervals along the edge of the cylindrical portion 701. Thereby, there is no refracting surface in the side part 702b, and the influence by irregular reflection of the reflected light reflected by the side part 702b can be prevented.
  • the measurement probe 7 configured in this way is formed such that the diameter R2 of the illumination region D1 of the measurement object S1 irradiated by the illumination fiber 311 is larger than the outer diameter R1 of the measurement probe 7.
  • a part of the luminous flux L1 of the illumination light emitted from the illumination fiber 311 passes through the side surface of the support unit 70.
  • a part of the light flux L1 is applied to the measurement object S1 through a gap (opening) between the illumination restriction unit 702 and the illumination restriction unit 702.
  • the stray light incident from the outside can be suppressed to the maximum while the diameter is reduced, and the strength of the distal end portion 33 of the measurement probe 7 can be further strengthened.
  • the support portion 70 may be formed using a metal or resin having flexibility or elasticity. Therefore, when the measurement probe 7 is inserted into the treatment instrument channel of the endoscope, the outer diameter of the support portion 70 is reduced to a size corresponding to the inner diameter of the treatment instrument channel by being pressed by the treatment instrument channel. Can be easily inserted. Furthermore, it is possible to prevent the inside of the treatment instrument channel of the endoscope from being damaged.
  • FIG. 9 is a perspective view schematically showing a distal end portion including a support portion according to the first modification of the second embodiment.
  • the measurement probe 7 may be provided with a flat plate portion 71 on the support portion 70 inside the annular portion 703.
  • the flat plate portion 71 is formed using a transparent member such as a glass material or plastic. Thereby, the flat plate part 71 makes the surface of the measuring object S1 flat.
  • the distance from the distal end surfaces of the illumination fiber 311 and the light receiving fiber 312 to the measurement object S1 can be kept constant, so that accurate optical measurement is possible. It can be performed.
  • FIG. 10 is a diagram showing a side view of the distal end of the measurement probe including the support portion according to the second modification of the second embodiment of the present invention.
  • FIG. 11 is a front view of the arrow B in FIG. 12 is a cross-sectional view taken along the line CC of FIG. 13 is a cross-sectional view taken along line EE of FIG.
  • the side portion 702b of the illumination limiting portion 702 when viewed from a cross section orthogonal to the longitudinal direction of the measurement probe 7B, it is formed to protrude toward the center of the measurement probe 7B. Further, the annular portion 703a is formed to be inclined toward the outer edge.
  • the measurement probe 7B configured in this manner can prevent the light beam L1 of the illumination light emitted from the illumination fiber 311 from being received by the light receiving fiber 312 as a disturbance in the support unit 70.
  • the disturbance (noise) of the illumination light irradiated by the illumination fiber 311 on the side portion 702b and the annular portion 703a is reflected from the light receiving region of the light receiving fiber 312. Therefore, more accurate optical measurement can be performed.
  • the optical measurement apparatus includes an air pump, and sends air from the tip of the measurement probe to the measurement object.
  • symbol is attached
  • FIG. 14 is a block diagram schematically showing the configuration of the optical measurement apparatus according to the third embodiment of the present invention.
  • the main body unit 101 includes a power source 21, a light source unit 22, a connection unit 23, a detection unit 24, an input unit 25, an output unit 26, a recording unit 27, a control unit 28, and an air pump 102. .
  • the air pump 102 sends air toward the measurement object S1 through the measurement probe 8 under the control of the control unit 28.
  • FIG. 15 is a perspective view schematically showing the distal end portion of the measurement probe 8 including the support portion 70.
  • the 15 includes an illumination fiber 311, a light receiving fiber 312, a covering portion 314, an air supply tube 102 a, a holding portion 81, and a support portion 70.
  • the air supply pipe 102a is fed from air from the air pump 102 of the main body 101, and blows air from the end face of the tip toward the measurement object S1.
  • the holding unit 81 holds the illumination fiber 311, the three light receiving fibers 312, and the air supply tube 102 a on the end surface 33 a of the tip 33 in a state where the tips of the illumination fiber 311 and the air feeding tube 102 a are adjacent to each other in a straight line.
  • the optical measurement apparatus includes a water injection pump that sends out a liquid and a suction pump that sucks the liquid.
  • the liquid supplied from the water injection pump is sent out from the tip of the measurement probe, and the liquid is supplied.
  • symbol is attached
  • FIG. 16 is a block diagram schematically showing the configuration of the optical measuring apparatus according to the fourth embodiment of the present invention.
  • the optical measurement device 200 includes a main body portion 201 and a measurement probe 9.
  • the main body unit 201 includes a power source 21, a light source unit 22, a connection unit 23, a detection unit 24, an input unit 25, an output unit 26, a recording unit 27, a control unit 28, a water injection pump 202, and a suction unit. And a pump 203.
  • the water injection pump 202 supplies liquid to the measurement probe 9 under the control of the control unit 28.
  • the liquid is water, physiological saline, or the like.
  • the suction pump 203 sucks the liquid stored at the tip of the measurement probe 9 under the control of the control unit 28.
  • FIG. 17 is a perspective view schematically showing the distal end portion of the measurement probe 9 including the support portion.
  • the measurement probe 9 includes an illumination fiber 311, a light receiving fiber 312, a covering part 314, an injection pipe 202 a, a suction pipe 203 a, a holding part 91, and a support part 92.
  • the injection pipe 202a supplies the liquid fed from the water injection pump 202 of the main body 201 to the support part 92 described later.
  • the diameter of the injection tube 202 a is formed larger than the diameters of the illumination fiber 311 and the light receiving fiber 312.
  • the suction tube 203a sucks the liquid stored in the support portion 92 described later.
  • the suction tube 203 a is formed larger than the diameters of the illumination fiber 311 and the light receiving fiber 312.
  • the holding unit 91 holds the illumination fiber 311, the three light receiving fibers 312, the injection tube 202 a, and the suction tube 203 a on the end surface 33 a of the tip 33 in a state where the tips are arranged in a straight line.
  • the support portion 92 includes a cylindrical optical member 921 and a cylindrical reinforcing member 922 that is provided on the outer edge side of the optical member 921 and protects the optical member 921 from external force.
  • the optical member 921 is attached to the end surface of the distal end portion 33, and makes the measurement object S1 and the distal ends of the illumination fiber 311 and the light receiving fiber 312 have a constant distance.
  • the optical member 921 is configured using a glass material, plastic, or the like, and transmits the light beam L1 of the illumination light irradiated by the illumination fiber 311.
  • the reinforcing member 922 is configured using a member that hardly reflects light such as metal or resin that blocks illumination light.
  • the reinforcing member 922 prevents the optical member 921 from being bent or scratched by relaxing the external force applied to the optical member 921.
  • the reinforcing member 922 is formed so as to cover the side surface from the proximal end side to the distal end side of the optical member 921.
  • the reinforcing member 922 may be formed integrally with the optical member 921.
  • the water injection pump 202 supplies the liquid via the injection pipe 202a of the measurement probe 9 under the control of the control unit 28.
  • the liquid Wa is delivered into the internal space K of the support portion 92 created by the support portion 92 coming into contact with the measurement object S1.
  • the suction pump 203 sucks the liquid Wa from the inner space K through the suction pipe 203a.
  • the liquid Wa in the internal space K circulates.
  • the optical measurement can be performed in a state where the interior space K is filled with the liquid Wa while the surface of the measurement object S1 is cleaned.
  • optical measurement can be performed in a state where mucus, foreign matter, and the like on the surface of the measuring object S1 are removed.
  • the refractive index of the luminous flux L1 of the illumination light can be changed by adjusting the amount of the liquid in the internal space K.
  • the optical characteristic as a spatial coherence length can be changed.
  • the support portion may be detachable from the tip portion of the measurement probe.
  • the optical measurement which set the distance of a measurement object and the front-end
  • the support portion may be attached and detached by providing a male screw and a female screw at the coupling portion (not shown).
  • a groove may be provided on one side, and a claw may be provided on the other side so as to be detachable.
  • the light emitted from the light source unit is assumed to be visible to near-infrared light mainly for information acquisition of living tissue, but for living tissue and other application destinations. However, it is not limited to visible light or near infrared light.
  • the wavelength range of illumination light should be optimized for information acquisition of living tissue, can be arbitrarily set depending on the application destination, and the wavelength range when spectral information is useful Can be set by covering a wide range, setting a plurality of bands discretely, or limiting the bands to some extent if unnecessary.
  • the end surfaces of the illumination fiber and the light receiving fiber on the probe tip side are arranged in approximately the same plane at a certain distance from the probe tip, and this surface position is referred to as a tip portion.
  • the probe described in Patent Document 1 described above is a probe optimized for measuring an interference component of backscattered light called LEBS.
  • LEBS an interference component of backscattered light
  • it is desirable that the illumination fiber and the light receiving fiber at the tip are close to each other.
  • the relative distance between the end faces of the tip portions of the illumination fiber and the light receiving fiber is important.
  • Such a configuration is desirable for LEBS applications because if a plurality of intervals are set or a plurality of fibers having the same interval are set, the amount of signal information and the signal SN increase.
  • the present invention has been described with an emphasis on LEBS measurement, it is not specialized in measuring the interference component of backscattered light as in LEBS, and measurement and diffusion of diffused light from a measurement object that is not limited to interference. It can also be applied to light-based imaging. In this case, the arrangement of the illumination fiber and the light receiving fiber at the end face of the distal end portion need not be close to each other, and may be arranged in a desired layout.
  • the present invention can include various embodiments not described herein, and various design changes and the like can be made within the scope of the technical idea specified by the claims. Is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

 細径化を図りつつ、より精度の高い測定を行うことができる測定プローブを提供する。測定プローブ3は、生体組織S1に対して照明光を照射する照明ファイバ311と、照明ファイバ311が照射した照明光であって、生体組織S1で反射および/散乱した照明光の戻り光を異なる位置で受光する複数の受光ファイバ312と、照明ファイバ311および複数の受光ファイバ312それぞれの先端と生体組織S1との距離を一定にし、少なくとも側面の一部を照明光が通過可能な円柱状の支持部34と、を備え、照明ファイバ311が照射する照明光の生体組織S1上における照明領域D1が支持部34の先端の断面の面積より大きい。

Description

測定プローブ
 本発明は、生体組織に測定光を照射し、生体組織で反射および/または散乱した測定光の戻り光の測定値に基づいて、生体組織の性状を推定する光学測定装置に接続される測定プローブに関する。
 従来、生体組織等の比較的弱い散乱媒質からの後方への散乱戻り光は、その照明光の空間的可干渉度(空間コヒーレンス)に応じて干渉増強光として観察されることが知られている(非特許文献1参照)。この現象を利用した分光情報計測技術はLEBS(Low-Enhanced Backscattering Spectroscopy)と呼ばれ、散乱媒質内の散乱平均自由行程(散乱係数の逆数)に対する干渉パターンの特性が良く研究されている(非特許文献2参照)。この散乱平均自由行程は、散乱媒質の内部構造変化と相関があり、早期の癌に見られるような微小な組織構造変化の検出に用いられる。たとえば、散乱戻り光の干渉パターンを用いて大腸癌の判別が可能であることが知られている(非特許文献3参照)。
 上述したLEBSにおいて、内視鏡に挿入される測定プローブを通して体内での非侵襲計測に適用する技術が知られている(特許文献1参照)。この技術では、干渉パターンを取得するために、測定プローブの照明ファイバ先端から生体組織に照明光を照射し、複数の角度の散乱光の強度分布を複数の受光ファイバを用いて測定することによって、生体組織の性状を検出する。
米国特許出願公開第2009/0009759号明細書
Young L. Kim, et.al, "Low-coherence enhanced backscattering; review of principles and applications for colon cancer screening" Journal of Biomedical Optics, 11(4), 041125 2006年 V, Turzhitsky, et.al, "Characterization of Light transport in Scattering Media at Subdiffusion Length Scales with Low-Coherence Enhanced Backscattering" IEEE journal of selected topics in quantum electronics, Vol.16, No.3, 619 (2010) Hemant K. Roy, et.al, "Association between Rectal Optical Signatures and Colonic Neoplasia: Potential Applications for Screening" Cancer Research, 69(10), 4476 (2009)
 しかしながら、上述した技術では、照明ファイバが照明光を照射する生体組織上の照明領域に応じて測定プローブの径が設定されるため、測定プローブの細径化に限界があった。このため、生体組織に照射できる光量が測定プローブの径によって制限され、より多くの生体組織からの情報量を取得して、より精度の高い測定を行うことが難しかった。
 本発明は、上記に鑑みてなされたものであって、細径化を図りつつ、より精度の高い測定を行うことができる測定プローブを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる測定プローブは、生体組織の光学測定を行う光学測定装置に着脱自在に接続される測定プローブであって、前記生体組織に対して照明光を照射する照明ファイバと、前記照明ファイバが照射した前記照明光であって、前記生体組織で反射および/散乱した前記照明光の戻り光を、異なる位置で受光する複数の受光ファイバと、前記照明ファイバおよび前記複数の受光ファイバそれぞれの先端と前記生体組織との距離を一定にし、少なくとも側面の一部を前記照明光が通過可能な略円柱状の支持部と、を備え、前記照明ファイバが照射する前記照明光の前記生体組織上における照明領域が前記支持部の先端の面積よりも大きいことを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記支持部は、円柱状をなし、前記照明ファイバが照射する照明光を中継して前記生体組織に照射する光学部材と、前記光学部材の側壁に接し、かつ、少なくとも前記光学部材の側壁の一部を前記光学部材の長手方向の長さより小さく、前記照明光を吸収する材質で形成された補強部材と、を有することを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記照明ファイバの中心軸は、当該測定プローブの中心軸と一致することを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記照明ファイバの中心軸は、当該測定プローブの中心軸からずれた位置に配置されていることを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記光学部材は、筒状をなすことを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、外部から供給される液体を前記光学部材の内部空間に注入する注入管と、前記光学部材の内部空間から少なくとも前記液体を吸引する吸引管と、をさらに備えたことを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記支持部は、当該測定プローブと外径を同じくした略円柱状で内部が空洞の筒状を成し、前記照明光を吸収する部材で形成され、前記照明光を遮らない筒部と、前記照明光を遮る照明制限部と、前記照明制限部に設けられ、少なくとも前記照明光の一部が通過可能な窓部と、を有することを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記支持部は、先端の一部に光を透過する平板部さらに有することを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記照明制限部は、長手方向と直交する断面から見たとき、当該測定プローブの中心に向けて突起した複数の側部を有することを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、外部から空気が送気される送気管をさらに備えことを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記支持部の先端は、長手方向に対して傾斜していることを特徴とする。
 また、本発明にかかる測定プローブは、上記発明において、前記支持部は、当該測定プローブの先端部に対して着脱自在であることを特徴とする。
 本発明にかかる測定プローブによれば、細径化を図りつつ、より精度の高い測定を行うことができるという効果を奏する。
図1は、本発明の実施の形態1にかかる光学測定装置の構成を模式的に示すブロック図である。 図2は、本発明の実施の形態1にかかる支持部を含む測定プローブの先端部の構成を模式的に示す側面図である。 図3は、図2のA-A線断面図である。 図4は、本発明の実施の形態1にかかる支持部を含む測定プローブの先端部の構成を模式的に示す斜視図である。 図5は、本発明の実施の形態1の変形例1にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。 図6は、本発明の実施の形態1の変形例2にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。 図7は、本発明の実施の形態1の変形例3にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。 図8は、本発明の実施の形態2にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。 図9は、本発明の実施の形態2の変形例1にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。 図10は、本発明の実施の形態2の変形例2にかかる支持部を含む測定プローブの先端の側面図である。 図11は、図10の矢視Bの正面図である。 図12は、図10のC-C線断面図である。 図13は、図11のE-E線断面図である。 図14は、本発明の実施の形態3にかかる光学測定装置の構成を模式的に示すブロック図である。 図15は、本発明の実施の形態3にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。 図16は、本発明の実施の形態4にかかる光学測定装置の構成を模式的に示すブロック図である。 図17は、本発明の実施の形態4にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。
 以下、図面を参照して、本発明にかかる光学測定装置および内視鏡システムの好適な実施の形態として、LEBS技術を用いた光学測定装置を例に詳細に説明する。また、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付して説明する。また、図面は、模式的なものであり、各部材の厚みと幅との関係および各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれる。
(実施の形態1)
 図1は、本発明の実施の形態1にかかる光学測定装置の構成を模式的に示すブロック図である。図1に示す光学測定装置1は、散乱体である生体組織等の測定対象物に対して光学測定を行って測定対象物の光学特性を測定する本体部2と、本体部2に着脱自在に接続され、内視鏡の処置具チャンネルを介して被検体内に挿入される測定プローブ3と、を備える。
 まず、本体部2について説明する。本体部2は、電源21と、光源部22と、接続部23と、検出部24と、入力部25と、出力部26と、記録部27と、制御部28と、を備える。電源21は、本体部2の各構成部に電力を供給する。
 光源部22は、接続部23を介して測定対象物へ照射する少なくとも一つのスペクトル成分を有する光を照明光として測定プローブ3に出射する。光源部22は、LED(Light Emitting Diode)、キセノンランプ、タングステンランプおよびハロゲンランプ、レーザーなどの光源と、複数のレンズを含む光学系、たとえば集光レンズやコリメートレンズと、光源ドライバ等を用いて構成される。光源部22は、制御部28の制御のもと、照明光を測定プローブ3に向けて出射する。たとえば、光源部22は、制御部28の制御のもと、照明光の点灯や消灯を切り替える。光源部22は、光源が発した光を光学系により測定プローブ3に集光させることにより、光源と測定プローブとの光束結合効率が増大し、照明光の光量が増加するので、測定対象物S1の測定品質を向上させることができる。
 接続部23は、測定プローブ3の基端部31(コネクタ部)を本体部2に着脱自在に接続する。接続部23は、光源部22が出射する照明光を測定プローブ3に伝播するとともに、測定プローブ3から出射された測定対象物で反射および/散乱した照明光の戻り光を検出部24へ伝播する。
 検出部24は、接続部23を介して測定プローブ3から照射された照明光であって、測定プローブ3を介して測定対象物で反射および/または散乱した照明光の戻り光を検出する。検出部24は、複数の分光素子および/またはCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)、PD(Photo Detector)等の受光センサ等を用いて構成される。具体的には、検出部24は、後述する測定プローブ3の受光ファイバの数に応じた分光測定器が設けられる。また、検出部24は、測定プローブ3から入射した散乱光のスペクトルおよび/または強度分布を測定して波長毎の強度を検出し、この検出結果を制御部28に出力する。
 入力部25は、本体部2の起動を指示する指示信号または他の各種の動作を指示する指示信号の入力を受け付けて制御部28に出力する。入力部25は、ブッシュ式のスイッチ、タッチパネル、キーボードやマウス等の入力デバイスを用いて構成される。
 出力部26は、光学測定装置1における各種処理に関する情報、測定対象物の測定結果を出力する。出力部26は、液晶または有機EL(Electro Luminescence)等の表示ディスプレイおよびスピーカ等を用いて構成される。
 記録部27は、光学測定装置1を動作させるための各種プログラム、光学測定処理に使用される各種データや各種パラメータを記録する。記録部27は、光学測定装置1の処理中の情報を一時的に記録する。また、記録部27は、測定対象物の測定結果を記録する。記録部27は、揮発性メモリや不揮発性メモリ等を用いて構成される。なお、記録部27は、本体部2の外部から装着されるメモリカード等を用いて構成されてもよい。
 制御部28は、本体部2の各部の処理動作を制御する。制御部28は、本体部2の各部に対する指示情報やデータの転送等を行うことによって、本体部2の動作を統括的に制御する。制御部28は、CPU(Central Processing Unit)等を用いて構成される。また、制御部28は、演算部28aを有する。
 演算部28aは、検出部24が検出した検出結果に基づいて、複数の演算処理を行い、測定対象物の光学特性や性状に関する特性値を演算する。この特性値の種別は、たとえば入力部25が受け付けた指示信号または記録部27に記録された各種プログラムに従って設定される。
 つぎに、測定プローブ3について説明する、測定プローブ3は、複数の光ファイバを内部に配設して構成される。具体的には、測定プローブ3は、測定対象物に照明光を照射する照明ファイバと、照明ファイバが測定対象物に向けて照射した照明光であって、測定対象物で反射および/または散乱した照明光の戻り光を異なる角度で受光する複数の受光ファイバと、照明ファイバおよび複数の受光ファイバそれぞれの先端と前記生体組織との距離を一定に保つ支持部と、を用いて構成される。測定プローブ3は、本体部2の接続部23に接続される基端部31(コネクタ)と、可撓性を有する可撓部32と、光源部22から供給される照明光を照射するとともに、測定対象物からの戻り光を受光する先端部33と、先端部33に対して着脱自在であり、測定対象物との距離を一定に保つ支持部34と、を備える。
 ここで、支持部34を含む測定プローブ3の先端部33の構成について詳細に説明する。図2は、支持部34を含む測定プローブ3の先端部33の構成を模式的に示す側面図である。図3は、図2のA-A線断面図であって、測定プローブ3の先端部33の端面33aを示す図である。図4は、支持部34を含む測定プローブ3の先端部33の構成を模式的に示す斜視図である。
 図2~図4に示すように、測定プローブ3は、測定対象物S1に照明光を照射する照明ファイバ311と、測定対象物S1で反射および/散乱した照明光の戻り光を受光する3本の受光ファイバ312と、照明ファイバ311および3本の受光ファイバ312を保持する保持部313と、照明ファイバ311、受光ファイバ312および保持部313それぞれの傷防止や位置を固定する樹脂等の被覆部314と、照明ファイバ311および受光ファイバ312の先端の端面と測定対象物S1との距離を一定に保つ支持部34と、を備える。測定プローブ3は、照明ファイバ311および3本の受光ファイバ312が一直線状に隣接した状態で先端部33の端面33aに配設される。
 照明ファイバ311は、光ファイバを用いて構成される。照明ファイバ311は、光源部22から出射された照明光を伝播し、支持部34を介して先端部33の端面33aから測定対象物に照明光を照射する。照明ファイバ311が照射する照明光の光束L1の中心軸P2は、測定プローブ3の中心軸P1と一致する。
 受光ファイバ312は、光ファイバを用いて構成される。受光ファイバ312は、支持部34を介してそれぞれの先端から入射した測定対象物で反射および/散乱した照明光の戻り光を異なる位置で受光し、この戻り光を検出部24に伝播する。なお、受光ファイバ312の数は、検査項目または測定対象物の種類、たとえば血流や部位に応じて適宜変更することができ、少なくとも2本以上あればよい。
 保持部313は、照明ファイバ311、受光ファイバ312を保持する。保持部313は、照明ファイバ311および3本の受光ファイバ312それぞれの先端を一直線に隣接した状態で先端部33の端面33aで保持する。保持部313は、硝材、樹脂および真鍮等を用いて構成される。さらに、保持部313は、照明ファイバ311の中心軸P2と測定プローブ3の中心軸とを一致させて保持する。
 被覆部314は、照明ファイバ311、受光ファイバ312および保持部313それぞれを外力から保持する。被覆部314は、樹脂等を用いて構成される。
 支持部34は、測定プローブ3の先端部33に設けられ、照明ファイバ311および3本の受光ファイバ312それぞれの先端と測定対象物S1との距離を一定にし、少なくとも側面の一部を、照明ファイバ311が照射する照明光を通過可能な円柱状をなす。支持部34は、所定の屈折率を有する光学部材341と、光学部材341を保護する補強部材342と、を有する。
 光学部材341は、円柱状をなし、照明ファイバ311が出射する照明光を中継して測定対象物S1に照射する。光学部材341は、所定の屈折率を有する透過性の硝材やプラスチック等を用いて構成され、照明ファイバ311が照射する照明光の光束L1を透過させる。さらに、光学部材341は、光学部材341の端面で測定対象物S1の表面を平坦化させる。これにより、光学測定装置1は、測定対象物S1の表面の凹凸形状の影響を受けずに測定対象物S1の測定を行うことができる。
 補強部材342は、光学部材341の側壁に接し、かつ、少なくとも側面の一部を光学部材341の長手方向の長さより小さく、照明ファイバ311が照射する照明光を吸収する材質で用いて形成される。たとえば、補強部材342は、金属や樹脂等の光が反射しにくい材質を用いて形成される。補強部材342は、光学部材341にかかる外力を緩和することによって、光学部材341の折れや傷を防止する。なお、光学部材341および補強部材342は、一体的に形成されてもよい。
 このように構成された測定プローブ3は、照明ファイバ311が照射する測定対象物S1上の照明領域D1(照明領域D1の径R2)が支持部34の先端の面積(支持部34の外径R1)よりも大きく形成される。この場合、照明ファイバ311から照射される照明光の光束L1の一部は、支持部34の側面を通過する。補強部材342は、照明光の光束L1が通過しない光学部材341の側面を覆うように形成される。具体的には、補強部材342は、光学部材341の側面を覆う場合、照明光の光束L1を遮光(マスク)する領域が遮光しない領域に比して50%以下にすることが望ましい。たとえば、補強部材342は、光学部材341の長手方向の長さの略半分の領域を有するように側面が形成される。
 以上説明した本発明の実施の形態1によれば、細径化を図りつつ、より多くの測定対象物S1からの情報量を取得することができるので、より精度の高い測定を行うことができる。
 さらに、本発明の実施の形態1によれば、照明ファイバ311が照射する照明光が支持部34の側面を通過(透過)するので、受光ファイバ312で検出される迷光(ノイズ)を抑制しつつ、測定プローブの細径化を行うことができる。
 また、本発明の実施の形態1によれば、光学部材341の側面の基端側に補強部材342を設けたので、外力による支持部34の破損や脱落を防止することができる。
 なお、本発明の実施の形態1では、補強部材342に換えて、光学部材341の基端側を黒等の遮光部材を施すことによって、光を吸収する不透過部を光学部材341の側面に形成してもよい。
 また、本発明の実施の形態1では、光学部材341の先端部の先端を、長手方向(測定プローブ3の中心軸P1)に対して傾斜させてもよい。
(実施の形態1の変形例1)
 本発明の実施の形態1では、支持部の形状を変更することもできる。図5は、本発明の実施の形態1の変形例1にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。なお、上述した実施の形態1にかかる光学測定装置の構成と同一の部分には同一の符号を付して説明を省略する。
 図5に示すように、測定プローブ4は、照明ファイバ311と、受光ファイバ312と、保持部313と、被覆部314と、照明ファイバ311および受光ファイバ312の先端の端面と測定対象物S1との距離を一定に保つ支持部40と、を備える。
 支持部40は、光学部材341と、光学部材341を補強する補強部材401と、を有する。
 補強部材401は、光学部材341に外力が加わることによって折れや傷が付くことを防止する。補強部材401は、筒状をなす筒部401aと、筒部401aの縁から先端に向けて所定の間隔で延在して設けられた複数の側部401bと、を有する。筒部401aおよび側部401bは、一体的に形成される。筒部401aおよび側部401bは、金属や樹脂等の光が反射しにくい材質を用いて形成される。
 このように構成された測定プローブ4は、照明ファイバ311が照射する測定対象物S1上の照明領域D1の径R2が測定プローブ4の外径R1より大きく形成される(図5を参照)。この場合、照明ファイバ311から照射される照明光の光束L1の一部は、支持部40の側面を通過する。このとき、補強部材401は、照明光の光束L1を遮光する領域を全く遮光しない際の50%以下にすることが望ましい。
 以上説明した本発明の実施の形態1の変形例1によれば、細径化を図りつつ、外部から入射する迷光を最大限抑制するとともに、測定プローブ4の先端部の強度をより強固にすることができる。
(実施の形態1の変形例2)
 図6は、本発明の実施の形態1の変形例2にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。
 図6に示すように、測定プローブ5は、照明ファイバ311と、受光ファイバ312と、保持部51と、被覆部314と、支持部52と、を備える。照明ファイバ311および受光ファイバ312の先端の端面と測定対象物S1との距離を一定に保つ支持部52と、を備える。
 保持部51は、照明ファイバ311と3本の受光ファイバ312それぞれの先端を一直線上に配置した状態で先端部33の端面33aで保持する。また、保持部51は、測定プローブ5の中心軸P1から所定の距離d離れた位置に照明ファイバ311が照射する照明光の光束L1の中心軸P2が一致するように照明ファイバ311を保持する。さらに、保持部51は、測定プローブ5の中心軸P1と照明ファイバ311が照射する照明光の光束L1の中心軸P2とが同一面上で平行になるように照明ファイバ311を保持する。これにより、照明ファイバ311が照射する測定対象物S1上の照明領域D1が測定プローブ5の中心軸P1から偏心した位置に形成されるとともに、測定対象物S1上の照明領域D1の径R2が測定プローブ5の外径R1より大きく形成される。
 支持部52は、照明ファイバ311および受光ファイバ312の先端の端面と測定対象物S1との距離を一定に保つ。支持部52は、光学部材341と、光学部材341を補強する補強部材521と、を有する。
 補強部材521は、光学部材341に外力が加わることによって折れることや表面に傷が付くことを防止する。補強部材521は、筒状をなす筒部521aと、筒部521aの縁から先端に向けて延在して設けられ、断面が円弧状の側部521bと、を有する。筒部521aおよび側部521bは、一体的に形成される。筒部521aおよび側部521bは、金属や樹脂等の光が反射しにくい材質を用いて形成される。補強部材521は、照明ファイバ311が照射する照明光の光束L1を遮光する領域を全く遮光しない領域の50%以下になるように形成される。
 以上説明した本発明の実施の形態1の変形例2によれば、細径化を図りつつ、外部から入射する迷光を最大限抑制するとともに、測定プローブ5の先端部33の強度をより強化することができる。
(実施の形態1の変形例3)
 図7は、本発明の実施の形態1の変形例3にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。
 図7に示すように、測定プローブ6は、照明ファイバ311と、受光ファイバ312と、保持部61と、被覆部314と、支持部62と、を備える。
 保持部61は、照明ファイバ311と3本の受光ファイバ312それぞれの先端を一直線上に配置した状態で保持する。また、保持部61は、照明ファイバ311が照射する照明の光束L1の中心軸P2と測定プローブ6の中心軸P1とがなす角度が所定の角度θになるように照明ファイバ311を傾斜して保持する。これにより、照明ファイバ311が照射する測定対象物S1上の照明領域D1が測定プローブ6の中心軸P1から偏心した位置に形成されるとともに、測定対象物S1上の照明領域D1の径R2が測定プローブ6の外径R1より大きく形成される。
 支持部62は、光学部材341と、光学部材341を補強する補強部材621と、を有する。
 補強部材621は、光学部材341に外力が加わることによって折れることや表面に傷が付くことを防止する。補強部材621は、筒状をなす筒部621aと、筒部621aの縁から先端に向けて延在して設けられ、断面が円弧状の側部621bと、を有する。筒部621aおよび側部621bは、一体的に形成される。筒部621aおよび側部621bは、金属や樹脂等の光が反射しにくい材質を用いて形成される。このように構成された補強部材621は、照明ファイバ311が照射する照明光の光束L1を遮光する領域が照明光の光束L1が透過する領域よりも大きく形成される。
 以上説明した本発明の実施の形態1の変形例3によれば、細径化を図りつつ、外部から入射する迷光を最大限抑制するとともに、支持部62の強度をより強化することができる。
(実施の形態2)
 つぎに、本発明の実施の形態2について説明する。本実施の形態2にかかる測定プローブは、支持部の光学部材に換えて、内部を空洞にする。このため、以下において、本実施の形態2にかかる測定プローブの構成について説明する。なお、上述した実施の形態1にかかる光学測定装置と同一の構成には同一の符号を付して説明を省略する。
 図8は、本発明の実施の形態2にかかる支持部を含む測定プローブの先端部を模式的に示す斜視図である。
 図8に示す測定プローブ7は、照明ファイバ311と、受光ファイバ312と、保持部313と、被覆部314と、支持部70と、を備える。
 支持部70は、測定プローブ7の先端部33の端面33aに設けられる。支持部70は、測定プローブ7の外径と同じ径を有し、照明光を吸収する部材で形成され、略円柱状で内部が空洞の筒状をなす筒部701と、筒部701の先端に設けられ、少なくとも照明ファイバ311が照射する照明光の一部が通過可能な窓部702aが設けられ、照明光を吸収する部材で形成された照明制限部702と、照明制限部702の先端に設けられ、円環状をなす円環部703と、を有する。筒部701、照明制限部702および円環部703は、一体的に形成される。また、筒部701、照明制限部702および円環部703は、金属や樹脂等の光が反射しにくい材質によって形成される。照明制限部702は、筒部701の縁に沿って所定の間隔で形成された側部702bによって窓部702aを形成している。これにより、側部702bに屈折面がなく、側部702bで反射された反射光の乱反射による影響を防止することができる。
 このように構成された測定プローブ7は、照明ファイバ311が照射する測定対象物S1の照明領域D1の径R2が測定プローブ7の外径R1より大きく形成される。この場合、照明ファイバ311から照射される照明光の光束L1の一部は、支持部70の側面を通過する。具体的には、光束L1の一部は、照明制限部702と照明制限部702との間の隙間(開口)から測定対象物S1に照射される。
 以上説明した本発明の実施の形態2によれば、細径化を図りつつ、外部から入射する迷光を最大限抑制するとともに、測定プローブ7の先端部33の強度をより強化することができる。
 なお、本発明の実施の形態2では、屈曲性や弾性を有する金属や樹脂等を用いて支持部70を形成してもよい。これにより、測定プローブ7を内視鏡の処置具チャンネルに挿入する際に処理具チャンネルに押圧されることにより、支持部70の外径が処置具チャンネルの内径に応じた大きさに縮むことで、容易に挿入することができる。さらに、内視鏡の処置具チャンネル内が傷つくことを防止することができる。
(実施の形態2の変形例1)
 本発明の実施の形態2では、円環部703の内側に、光を透過する平板状の平板部を設けてもよい。図9は、本実施の形態2の変形例1にかかる支持部を含む先端部を模式的に示す斜視図である。
 図9に示すように、測定プローブ7は、円環部703の内側に平板状の平板部71を支持部70に設けてもよい。平板部71は、硝材やプラスチック等の透明な部材を用いて形成される。これにより、平板部71が測定対象物S1の表面を平らな状態にする。
 以上説明した本発明の実施の形態2の変形例1によれば、照明ファイバ311および受光ファイバ312それぞれの先端面から測定対象物S1までの距離を一定に保つことができるので、正確な光学測定を行うことができる。
(実施の形態2の変形例2)
 また、本発明の実施の形態2では、照明制限部702および円環部703の形状を変更することができる。図10は、本発明の実施の形態2の変形例2の支持部を含む測定プローブの先端の側面図を示す図である。図11は、図10の矢視Bの正面図である。図12は、図10のC-C線断面図である。図13は、図11のE-E線断面図である。
 図10~図13に示すように、照明制限部702の側部702bが測定プローブ7Bの長手方向と直交する断面から見たとき、測定プローブ7Bの中心に向けて突起して形成されている。また、円環部703aが外縁に向けて傾斜するように形成されている。このように構成された測定プローブ7Bは、照明ファイバ311が照射する照明光の光束L1が支持部70内で外乱として受光ファイバ312に受光されることを防止することができる。
 以上説明した本発明の実施の形態2の変形例2によれば、側部702bおよび円環部703aが照明ファイバ311によって照射された照明光の外乱(ノイズ)を受光ファイバ312の受光領域から反射させるので、より正確な光学測定を行うことができる。
(実施の形態3)
 つぎに、本発明の実施の形態3について説明する。本実施の形態3にかかる光学測定装置は、エアポンプを備え、このエアポンプから空気を測定プローブの先端から測定対象物に送出する。なお、上述した実施の形態1,2にかかる光学測定装置および測定プローブの構成と同一の部分には同一の符号を付して説明を省略する。
 図14は、本発明の実施の形態3にかかる光学測定装置の構成を模式的に示すブロック図である。
 図14に示す光学測定装置100は、本体部101と測定プローブ8と、を備える。本体部101は、電源21と、光源部22と、接続部23と、検出部24と、入力部25と、出力部26と、記録部27と、制御部28と、エアポンプ102と、を備える。
 エアポンプ102は、制御部28の制御のもと、測定プローブ8を介して測定対象物S1に向けて空気を送出する。
 つぎに、測定プローブ8について説明する。図15は、支持部70を含む測定プローブ8の先端部を模式的に示す斜視図である。
 図15に示す測定プローブ8は、照明ファイバ311と、受光ファイバ312と、被覆部314と、送気管102aと、保持部81と、支持部70と、を備える。
 送気管102aは、本体部101のエアポンプ102から空気から送入され、先端の端面から空気を測定対象物S1に向けて吹き付ける。
 保持部81は、照明ファイバ311、3本の受光ファイバ312および送気管102aそれぞれの先端を一直線上に隣接させた状態で先端部33の端面33aで保持する。
 以上説明した本発明の実施の形態3によれば、送気管102aが空気を測定対象物S1に向けて吹き付けるので、測定対象物S1表面の粘液や水等の異物を測定時に除去することができる。
(実施の形態4)
 つぎに、本発明の実施の形態4について説明する。本実施の形態4にかかる光学測定装置は、液体を送出する注水ポンプおよび液体を吸引する吸引ポンプを備え、この注水ポンプから送入された液体を測定プローブの先端から送出するとともに、この液体を測定プローブの先端から吸引する。なお、上述した実施の形態1,2にかかる光学測定装置および測定プローブの構成と同一の部分には同一の符号を付して説明を省略する。
 図16は、本発明の実施の形態4にかかる光学測定装置の構成を模式的に示すブロック図である。図16に示すように、光学測定装置200は、本体部201と、測定プローブ9と、を備える。
 本体部201は、電源21と、光源部22と、接続部23と、検出部24と、入力部25と、出力部26と、記録部27と、制御部28と、注水ポンプ202と、吸引ポンプ203と、を備える。
 注水ポンプ202は、制御部28の制御のもと、測定プローブ9に液体を供給する。ここで、液体とは、水や生理食塩水等である。
 吸引ポンプ203は、制御部28の制御のもと、測定プローブ9の先端部に貯留された液体を吸引する。
 つぎに、測定プローブ9について説明する。図17は、支持部を含む測定プローブ9の先端部を模式的に示す斜視図である。
 測定プローブ9は、照明ファイバ311と、受光ファイバ312と、被覆部314と、注入管202aと、吸引管203aと、保持部91と、支持部92と、を備える。
 注入管202aは、本体部201の注水ポンプ202から送水される液体を後述する支持部92に供給する。注入管202aの径は、照明ファイバ311および受光ファイバ312の径よりも大きく形成される。
 吸引管203aは、後述する支持部92に貯留された液体を吸引する。吸引管203aは、照明ファイバ311および受光ファイバ312の径より大きく形成される。
 保持部91は、照明ファイバ311、3本の受光ファイバ312、注入管202aおよび吸引管203aそれぞれの先端を一直線上に配置した状態で先端部33の端面33aで保持する。
 支持部92は、筒状をなす光学部材921と、光学部材921の外縁側に設けられ、光学部材921を外力から保護する筒状の補強部材922と、を有する。
 光学部材921は、先端部33の端面に取り付けられ、測定対象物S1と照明ファイバ311および受光ファイバ312の先端とを一定の距離にする。光学部材921は、硝材やプラスチック等を用いて構成され、照明ファイバ311が照射する照明光の光束L1を透過させる。
 補強部材922は、照明光を遮光する金属や樹脂等の光が反射しにくい部材を用いて構成される。補強部材922は、光学部材921にかかる外力を緩和することによって、光学部材921の折れや傷を防止する。補強部材922は、光学部材921の基端側から先端側の側面を覆うように形成される。なお、補強部材922は、光学部材921と一体的に形成されもよい。
 このように構成された光学測定装置200は、制御部28の制御のもと、注水ポンプ202が測定プローブ9の注入管202aを介して液体を供給する。この場合、支持部92が測定対象物S1と接触することで作り出された支持部92の内部空間K内に液体Waが送出される。その後、吸引ポンプ203が吸引管203aを介して内部空間K内から液体Waを吸引する。これにより、内部空間K内の液体Waは、循環する。この結果、測定対象物S1の表面を洗浄しながら内部空間K内を液体Waで充填した状態で光学測定を行うことができる。
 以上説明した本発明の実施の形態4によれば、測定対象物S1表面の粘液や異物等を除去した状態で光学測定を行うことができる。
 なお、本発明の実施の形態4によれば、内部空間K内の液体の量を調整することにより、照明光の光束L1の屈折率を変更することができる。これにより、LEBSの場合、空間コヒーレンス長としての光学特性を変更することができる。
(その他の実施の形態)
 本発明では、支持部が測定プローブの先端部に対して着脱自在であってもよい。これにより、測定対象物によって測定対象物と測定プローブの先端との距離を設定した光学測定を行うことができる。この場合、支持部の着脱は、結合部(図示せず)にそれぞれ雄ネジおよび雌ネジを設けることにより着脱自在に構成してもよい。もちろん、一方に溝を設け、他方に爪を設けて着脱自在に構成してもよい。
 本発明では、光源部が発する光は、主に生体組織の情報取得に対して、可視から近赤外の光を想定しているが、生体組織に対しても、その他の適用先に対しても可視光、近赤外光に限定するものではない。
 また、本発明では、照明光の波長範囲は、生体組織の情報取得のために最適化されるべきもので、適用先によって任意に設定可能であり、分光情報が有用である場合はその波長範囲をカバーして広めに設定したり、離散的に複数帯域を設定したり、不要な場合はある程度帯域を限定したりすることで設定することができる。
 また、本発明では、照明ファイバおよび受光ファイバのプローブ先端側の端面は、プローブ先端から一定距離はなれたおよそ同一面内に配置されており、この面位置を先端部と呼ぶ。上述した特許文献1にあるプローブは、LEBSと呼ばれる後方散乱光の干渉成分測定に最適化されたプローブである。本発明のLEBS測定の場合、先端部での照明ファイバおよび受光ファイバは、それぞれ近接していることが望ましい。また、本発明のLEBS測定においては照明ファイバと受光ファイバの先端部の端面内での相対的な間隔が重要である。その間隔が複数設定されていたり、同一間隔のファイバが複数設定されていたりすると、それぞれ、信号の情報量、信号のSNが増すため、このような構成がLEBS応用に対しては望ましい。なお、本発明では、LEBS測定に重点を置いて説明したが、LEBSのように後方散乱光の干渉成分の計測に特化されず、干渉に限らない測定対象物からの拡散光の計測、拡散光に基づくイメージングに対しても適用することができる。この場合の、照明ファイバおよび受光ファイバの先端部の端面での配置は、近接している必要は無く、所望のレイアウトで配置してもよい。
 このように、本発明は、ここでは記載していない様々な実施の形態を含みうるものであり、特許請求の範囲によって特定される技術的思想の範囲内で種々の設計変更等を行うことが可能である。
 1,100,200 光学測定装置
 2,101,201 本体部
 3,4,5,6,7,7B,8,9 測定プローブ
 21 電源
 22 光源部
 23 接続部
 24 検出部
 25 入力部
 26 出力部
 27 記録部
 28 制御部
 28a 演算部
 31 基端部
 32 可撓部
 33 先端部
 33a 端面
 34,40,52,62,70,92 支持部
 51,61,81,91,313 保持部
 71 平板部
 102 エアポンプ
 102a 送気管
 202 注水ポンプ
 202a 注水管
 203 吸引ポンプ
 203a 吸引管
 311 照明ファイバ
 312 受光ファイバ
 314 被覆部
 341,921 光学部材
 342,401,521,621,922 補強部材
 401a,521a,621a,701 筒部
 401b,521b,621b,702b,702d 側部
 702 照明制限部
 702a 窓部
 703 円環部
 703a 円環部
 D1 照明領域
 K 内部空間
 L1 光束
 S1 測定対象物

Claims (12)

  1.  生体組織の光学測定を行う光学測定装置に着脱自在に接続される測定プローブであって、
     前記生体組織に対して照明光を照射する照明ファイバと、
     前記照明ファイバが照射した前記照明光であって、前記生体組織で反射および/散乱した前記照明光の戻り光を、異なる位置で受光する複数の受光ファイバと、
     前記照明ファイバおよび前記複数の受光ファイバそれぞれの先端と前記生体組織との距離を一定にし、少なくとも側面の一部を前記照明光が通過可能な略円柱状の支持部と、
     を備え、
     前記照明ファイバが照射する前記照明光の前記生体組織上における照明領域が前記支持部の先端の面積よりも大きいことを特徴とする測定プローブ。
  2.  前記支持部は、
     円柱状をなし、前記照明ファイバが照射する照明光を中継して前記生体組織に照射する光学部材と、
     前記光学部材の側壁に接し、かつ、少なくとも前記光学部材の側壁の一部を前記光学部材の長手方向の長さより小さく、前記照明光を吸収する材質で形成された補強部材と、
     を有することを特徴とする請求項1に記載の測定プローブ。
  3.  前記照明ファイバの中心軸は、当該測定プローブの中心軸と一致することを特徴とする請求項1または2に記載の測定プローブ。
  4.  前記照明ファイバの中心軸は、当該測定プローブの中心軸からずれた位置に配置されていることを特徴とする請求項1または2に記載の測定プローブ。
  5.  前記光学部材は、筒状をなすことを特徴とする請求項2~4のいずれか一つに記載の測定プローブ。
  6.  外部から供給される液体を前記光学部材の内部空間に注入する注入管と、
     前記光学部材の内部空間から少なくとも前記液体を吸引する吸引管と、
     をさらに備えたことを特徴とする請求項5に記載の測定プローブ。
  7.  前記支持部は、
     当該測定プローブと外径を同じくした略円柱状で内部が空洞の筒状を成し、前記照明光を吸収する部材で形成され、前記照明光を遮らない筒部と、
     前記照明光を遮る照明制限部と、
     前記照明制限部に設けられ、少なくとも前記照明光の一部が通過可能な窓部と、
     を有することを特徴とする請求項1に記載の測定プローブ。
  8.  前記支持部は、先端の一部に光を透過する平板部さらに有することを特徴とする請求項7に記載の測定プローブ。
  9.  前記照明制限部は、長手方向と直交する断面から見たとき、当該測定プローブの中心に向けて突起した複数の側部を有することを特徴とする請求項7または8に記載の測定プローブ。
  10.  外部から空気が送気される送気管をさらに備えことを特徴とする請求項5~9のいずれか一つに記載の測定プローブ。
  11.  前記支持部の先端は、長手方向に対して傾斜していることを特徴とする請求項1~10のいずれか一つに記載の測定プローブ。
  12.  前記支持部は、当該測定プローブの先端部に対して着脱自在であることを特徴とする請求項1~11のいずれか一つに記載の測定プローブ。
PCT/JP2013/056185 2012-03-07 2013-03-06 測定プローブ WO2013133339A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014503521A JP6028015B2 (ja) 2012-03-07 2013-03-06 測定プローブ
CN201380013210.8A CN104203066B (zh) 2012-03-07 2013-03-06 测量探头
EP13757769.8A EP2823747A4 (en) 2012-03-07 2013-03-06 PROBE
US14/478,660 US9883802B2 (en) 2012-03-07 2014-09-05 Measurement probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261607715P 2012-03-07 2012-03-07
US61/607,715 2012-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/478,660 Continuation US9883802B2 (en) 2012-03-07 2014-09-05 Measurement probe

Publications (1)

Publication Number Publication Date
WO2013133339A1 true WO2013133339A1 (ja) 2013-09-12

Family

ID=49116812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056185 WO2013133339A1 (ja) 2012-03-07 2013-03-06 測定プローブ

Country Status (5)

Country Link
US (1) US9883802B2 (ja)
EP (1) EP2823747A4 (ja)
JP (1) JP6028015B2 (ja)
CN (1) CN104203066B (ja)
WO (1) WO2013133339A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042156A1 (ja) * 2012-09-13 2014-03-20 オリンパス株式会社 測定プローブおよび生体光学測定システム
JP2021081239A (ja) * 2019-11-15 2021-05-27 国立大学法人東北大学 プローブ型センサー

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492107B2 (ja) * 2014-12-12 2019-03-27 オリンパス株式会社 測定プローブおよび生体光学測定システム
US10983000B2 (en) * 2017-10-06 2021-04-20 Heraeus Noblelight America Llc Light measuring probes, light measuring systems, and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535645A (ja) * 1999-01-25 2002-10-22 ニユートン・ラボラトリーズ・インコーポレーテツド 偏光を使用する組織の画像形成
JP2005515473A (ja) * 2002-01-18 2005-05-26 ニユートン・ラボラトリーズ・インコーポレーテツド 分光診断方法とシステム
US20090009759A1 (en) 2006-05-12 2009-01-08 Vadim Backman Systems, methods and apparatuses of elastic light scattering spectroscopy and low coherence enhanced backscattering spectroscopy
JP2009537285A (ja) * 2006-05-19 2009-10-29 ノースショア・ユニバーシティー・ヘルス・システム 微小血管の血液含有量における早期の増加の検出を用いて異常な組織を認識するための方法および装置
WO2010081048A1 (en) * 2009-01-08 2010-07-15 American Biooptics Llc Probe apparatus for recognizing abnormal tissue

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803166B2 (ja) * 1997-05-27 2006-08-02 ペンタックス株式会社 内視鏡の先端部
WO2006011571A1 (ja) * 2004-07-28 2006-02-02 Kyocera Corporation 光源装置および該光源装置を備える内視鏡
US20070129615A1 (en) 2005-10-27 2007-06-07 Northwestern University Apparatus for recognizing abnormal tissue using the detection of early increase in microvascular blood content
DE602006018772D1 (de) * 2005-10-31 2011-01-20 Alcon Inc Chirurgischer weitwinkelbeleuchter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535645A (ja) * 1999-01-25 2002-10-22 ニユートン・ラボラトリーズ・インコーポレーテツド 偏光を使用する組織の画像形成
JP2005515473A (ja) * 2002-01-18 2005-05-26 ニユートン・ラボラトリーズ・インコーポレーテツド 分光診断方法とシステム
US20090009759A1 (en) 2006-05-12 2009-01-08 Vadim Backman Systems, methods and apparatuses of elastic light scattering spectroscopy and low coherence enhanced backscattering spectroscopy
JP2009537285A (ja) * 2006-05-19 2009-10-29 ノースショア・ユニバーシティー・ヘルス・システム 微小血管の血液含有量における早期の増加の検出を用いて異常な組織を認識するための方法および装置
WO2010081048A1 (en) * 2009-01-08 2010-07-15 American Biooptics Llc Probe apparatus for recognizing abnormal tissue

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HEMANT K. ROY: "Association between Rectal Optical Signatures and Colonic Neoplasia: Potential Applications for Screening", CANCER RESEARCH, vol. 69, no. 10, 2009, pages 4476
See also references of EP2823747A4
V, TURZHITSKY: "Characterization of Light transport in Scattering Media at Subdiffusion Length Scales with Low-Coherence Enhanced Backscattering", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 16, no. 3, 2010, pages 619
YOUNG L. KIM: "Low-coherence enhanced backscattering; review of principles and applications for colon cancer screening", JOURNAL OF BIOMEDICAL OPTICS, vol. 11, no. 4, 2006, pages 041125

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042156A1 (ja) * 2012-09-13 2014-03-20 オリンパス株式会社 測定プローブおよび生体光学測定システム
US10149619B2 (en) 2012-09-13 2018-12-11 Olympus Corporation Measurement probe and biological optical measurement system
JP2021081239A (ja) * 2019-11-15 2021-05-27 国立大学法人東北大学 プローブ型センサー
JP7384390B2 (ja) 2019-11-15 2023-11-21 国立大学法人東北大学 プローブ型センサー

Also Published As

Publication number Publication date
JP6028015B2 (ja) 2016-11-16
US20140378847A1 (en) 2014-12-25
US9883802B2 (en) 2018-02-06
EP2823747A1 (en) 2015-01-14
JPWO2013133339A1 (ja) 2015-07-30
CN104203066A (zh) 2014-12-10
CN104203066B (zh) 2016-08-24
EP2823747A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP6205346B2 (ja) 光学測定装置およびファイババンドルの対応付け方法
US9329124B2 (en) Scattered light measurement apparatus
JP2012239669A (ja) プローブ及び診断システム
JP6173325B2 (ja) 測定プローブおよび生体光学測定システム
US10684417B2 (en) Probe apparatus for measuring depth-limited properties with low-coherence enhanced backscattering
JP6028015B2 (ja) 測定プローブ
JP2016073687A (ja) 光学測定装置およびプローブ
EP3689220A3 (en) Window assembly for endoscopic probe
JP6000957B2 (ja) 光学測定装置および校正方法
JP5988983B2 (ja) 校正装置および校正方法
US20130209034A1 (en) Probe
JP6237648B2 (ja) プローブ、分光測定装置、および、診断システム
JP6357285B2 (ja) 光ファイバ及び連続する較正を有するシステム
JP5790190B2 (ja) 内視鏡
EP2813171B1 (en) Bio-optical measurement device and measurement probe
US10921212B2 (en) Automated calibration system for a fiber optic probe
JP5596870B2 (ja) 測定プローブ
US20150366453A1 (en) Optical measurement apparatus
JP5811049B2 (ja) プローブ
WO2013140690A1 (ja) 測定プローブおよび生体光学測定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013757769

Country of ref document: EP