WO2013132975A1 - 光ピックアップ装置 - Google Patents

光ピックアップ装置 Download PDF

Info

Publication number
WO2013132975A1
WO2013132975A1 PCT/JP2013/053337 JP2013053337W WO2013132975A1 WO 2013132975 A1 WO2013132975 A1 WO 2013132975A1 JP 2013053337 W JP2013053337 W JP 2013053337W WO 2013132975 A1 WO2013132975 A1 WO 2013132975A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
laser light
sensor
pickup device
Prior art date
Application number
PCT/JP2013/053337
Other languages
English (en)
French (fr)
Inventor
有希 古清水
Original Assignee
三洋電機株式会社
三洋オプテックデザイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三洋オプテックデザイン株式会社 filed Critical 三洋電機株式会社
Publication of WO2013132975A1 publication Critical patent/WO2013132975A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths

Definitions

  • the present invention relates to an optical pickup device compatible with a plurality of recording media.
  • the light receiving units corresponding to the respective wavelengths are arranged on the photodetector so that they are arranged in a line in the same order as the light emitting units.
  • the light receiving area of each light receiving unit is limited according to the interval between the light receiving units. Considering the positional deviation of each optical component constituting the light receiving unit and the optical pickup device due to secular change or the like, it is desirable that the spot diameter on the light receiving unit is as large as possible.
  • the present invention has been made in view of the above problems, and when three laser beams having different wavelengths are emitted from one semiconductor laser, the spot of the laser beam having each wavelength on the light receiving surface of the photodetector.
  • An object of the present invention is to provide an optical pickup device capable of increasing the diameter.
  • the main aspect of the present invention relates to an optical pickup device.
  • the optical pickup device includes a first laser emitting unit that emits a first laser beam, a second laser emitting unit that emits a second laser beam, and a third laser beam that emits a third laser beam.
  • a laser light source for accommodating three laser light emitting units in the same package and emitting the laser light in the same direction from the first, second and third laser light emitting units; and the first, second and third The first, second, and third laser beams respectively emitted from the laser light emitting units are converged on the corresponding disks by the first, second, and third numerical apertures, and reflected by the disks.
  • An optical system that guides each of the laser beams to a photodetector, and an optical system that is disposed in the optical system and that matches the optical axes of the first laser beam and the second laser beam on the light receiving surface of the photodetector.
  • An optical axis adjusting element Provided. Of the first, second, and third numerical apertures, the first numerical aperture is the largest and the third numerical aperture is the smallest, and the optical axis of the photodetector coincides with the optical axis adjusting element.
  • a first sensor unit that receives the first and second laser beams and a second sensor unit that receives the third laser beam.
  • the light capable of increasing the spot diameter of the laser beam having each wavelength on the light receiving surface of the photodetector.
  • a pickup device can be provided.
  • FIG. 1 is a diagram illustrating an optical system of an optical pickup device according to a first embodiment. It is a figure explaining the irradiation position on the light-receiving surface which concerns on Example 1, and a figure which shows the 4-part dividing sensor distribute
  • the present invention is applied to an optical pickup device that irradiates a BD (Blu-ray Disc), DVD (Digital Versatile Disc), and CD (Compact Disc) with laser light.
  • BD Blu-ray Disc
  • DVD Digital Versatile Disc
  • CD Compact Disc
  • FIG. 1A and 1B show an optical system of an optical pickup device 1 according to the first embodiment.
  • 1A is a plan view when the optical system is viewed from above the optical pickup device 1 (in the positive y-axis direction)
  • FIG. 1B is a view of the peripheral portion of the objective lens actuator 122 viewed from the side surface.
  • FIG. 1C is a perspective view showing the arrangement of the light emitting units in the semiconductor laser 101.
  • an optical pickup device 1 includes a semiconductor laser 101, a diffraction grating 102, a polarization beam splitter (PBS) 103, a quarter wavelength plate 104, a collimator lens 105, and a lens actuator. 106, a rising mirror 107, an objective lens 108, a diffractive optical element (DOE) 109, an astigmatism plate 110, and a photodetector 111.
  • PBS polarization beam splitter
  • DOE diffractive optical element
  • the semiconductor laser 101 includes a laser beam with a wavelength of about 400 nm (hereinafter referred to as “BD light”), a laser beam with a wavelength of about 650 nm (hereinafter referred to as “DVD light”), and a laser beam with a wavelength of about 780 nm (hereinafter referred to as “CD light”). Light)) in the same direction.
  • BD light laser beam with a wavelength of about 400 nm
  • DVD light laser beam with a wavelength of about 650 nm
  • CD light laser beam with a wavelength of about 780 nm
  • the semiconductor laser 101 includes light emitting units 101a, 101b, and 101c that emit BD light, DVD light, and CD light, respectively, in one package.
  • the light emitting units 101b and 101c are integrally formed on the substrate 101e so that the interval is b.
  • the light emitting unit 101a is formed on a substrate 101d different from the substrate 101e so that the distance between the light emitting units 101a and 101b is a.
  • the substrates 101d and 101e are installed on the submount 101f.
  • the light emitting portions 101a to 101c are formed so as to be aligned on a straight line.
  • the optical system after the semiconductor laser 101 is adjusted so that its optical axis is aligned with any one of BD light, DVD light, and CD light.
  • both a and b are designed to be 90 ⁇ m (0.09 mm).
  • the diffraction grating 102 splits only the BD light out of the BD light, DVD light, and CD light emitted from the semiconductor laser 101 into a main beam and two sub beams.
  • diffraction grating 102 diffraction grooves are formed so that the three beams of BD light follow the track of the disk. Note that DVD light and CD light are also diffracted by the diffraction grating 102, but the intensity of the sub-beams of these lights is extremely small.
  • the quarter-wave plate 104 converts the laser light reflected by the PBS 103 into circularly polarized light, and converts the reflected light from the disk into linearly polarized light that is orthogonal to the polarization direction when traveling toward the disk. As a result, the laser light reflected by the disk passes through the PBS 103 and is guided to the photodetector 111.
  • the collimator lens 105 converts the laser light reflected by the PBS 103 into parallel light.
  • the lens actuator 106 drives the quarter wavelength plate 104 and the collimator lens 105 in the optical axis direction of the collimator lens 105. By moving the collimator lens 105, the aberration generated in the laser light is corrected.
  • the rising mirror 107 reflects the laser beam incident from the collimator lens 105 side in the direction toward the objective lens 108 (negative y-axis direction).
  • the objective lens 108 is held by a holder 121, and the holder 121 is driven by an objective lens actuator 122 in a focus direction (y-axis direction) and a tracking direction (radial direction of the disc). Thereby, the objective lens 108 is driven in the focus direction and the tracking direction.
  • the optical axis of the laser beam incident on the rising mirror 107 from the collimator lens 105 side is perpendicular to the tangential direction of the disk. Further, the alignment direction of the main beam and the two sub beams of the BD light traveling from the rising mirror 107 toward the disk coincides with the tangential direction of the disk.
  • Reflected light from the disk is converted by the quarter wavelength plate 104 into linearly polarized light that becomes P-polarized light with respect to the PBS 103.
  • the reflected light from the disk passes through the PBS 103.
  • the PBS 103 is disposed so as to be inclined by 45 degrees with respect to the optical axes of the BD light, the DVD light, and the CD light. For this reason, when BD light, DVD light, and CD light are transmitted through the PBS 103 in a converged state as shown in FIG. 1A, astigmatism is introduced into these lights.
  • the DOE 109 is designed so that the + 1st order diffraction efficiency is high for BD light and the 0th order diffraction efficiency is high for DVD light and CD light. That is, the DOE 109 is a wavelength-selective diffraction grating that mainly changes the traveling direction of the BD light by the diffraction action. The diffraction angle at each diffraction order is adjusted by changing the pitch of the diffraction structure, and the diffraction efficiency at each diffraction order is adjusted by changing the height of the diffraction structure.
  • the + 1st order diffracted light of the BD light is bent by the DOE 109 in a direction approaching the optical axis of the DVD light (y-axis positive direction). As a result, the optical axis of the main beam of the BD light coincides with the optical axis of the DVD light on the light receiving surface of the photodetector 111.
  • the astigmatism plate 110 is a parallel plate and is disposed so as to be inclined with respect to the optical axes of BD light, DVD light, and CD light. Astigmatism plate 110 is tilted in this way, astigmatism is also introduced into BD light, DVD light, and CD light by astigmatism plate 110.
  • the spot shape of the laser light is circular on the light receiving surface of the photodetector 111 during on-focus, and the spot shape of the laser light is the light receiving surface of the photodetector 111 during off-focus.
  • the optical action (refractive index, thickness, etc.) and inclination are adjusted so that the major axis has an elliptical shape with an inclination of 45 ° with respect to the x-axis and the y-axis.
  • the light receiving surface of the photodetector 111 is parallel to the xy plane, and a four-divided sensor is disposed on the light receiving surface at a position where BD light, DVD light, and CD light are irradiated.
  • the quadrant sensor disposed on the light receiving surface of the photodetector 111 will be described later with reference to FIG.
  • magnification of the forward path from the semiconductor laser 101 to the disk and the magnification of the return path from the disk to the photodetector 111 are adjusted to be approximately the same magnification.
  • FIG. 2A is a diagram for explaining the irradiation position of BD light, DVD light, and CD light on the light receiving surface of the photodetector 111.
  • the illustration of the astigmatism plate 110 disposed between the DOE 109 and the light receiving surface of the photodetector 111 is omitted for the sake of convenience, and the contours of the entrance surface and the exit surface of the DOE 109 are omitted. Is square for convenience.
  • BD light, DVD light, and CD light are incident on the DOE 109 in this order in the y-axis positive direction.
  • the BD light incident on the DOE 109 is divided into a main beam and a sub beam by the diffraction grating 102.
  • the alignment direction of these three beams is a direction corresponding to the tangential direction of the disk.
  • the three beams of BD light incident on the DOE 109 are bent in the positive y-axis direction by the diffraction action of the DOE 109. Note that the diffracted light other than the + 1st order of the BD light and the diffracted light other than the 0th order of the DVD light and the CD light are not shown for convenience in FIG.
  • the + 1st order diffracted light of the three beams of BD light generated by the diffraction action of the DOE 109 travels in a direction in which a component in the y-axis positive direction is added to the z-axis positive direction. Further, the 0th-order diffracted light of DVD light and CD light travels in the positive z-axis direction. As described above, due to the diffraction action of the DOE 109, the optical axis of the main beam of the BD light and the optical axis of the DVD light coincide with each other on the light receiving surface of the photodetector 111.
  • FIG. 2 (b) is a diagram showing the four-divided sensors S1 to S4 arranged on the light receiving surface of the photodetector 111.
  • FIG. FIG. 2B shows the four-divided sensors S1 to S4 when the photodetector 111 is viewed from the front (in the positive z-axis direction).
  • FIG. 2C is a diagram showing, as a comparative example, four-divided sensors SB, SD, and SC when the optical axis of the BD light is not diffracted by the DOE 109. In the case of FIG. 2C, the sub-beam quadrant sensor is not shown.
  • the 4-split sensor S1 receives the main beam of BD light and the DVD light, and the 4-split sensors S2, S3 receive two sub-beams of BD light, and receives the 4-split sensor S4. Receives CD light.
  • the four-divided sensors S1 to S3 are arranged such that the arrangement direction of these three four-divided sensors is the same direction (x-axis direction) as the arrangement direction of the three beams of BD light shown in FIG. Yes.
  • the quadrant sensor S4 is disposed adjacent to the quadrant sensor S1 in the same direction (y-axis direction) as the arrangement direction of the light emitting units 101a to 101c.
  • the quadrant sensors S1 and S4 have a square shape, and the quadrant sensors S2 and S3 have a shape in which square corners are notched.
  • a reproduction RF signal, a focus error signal, and a tracking error signal are generated by outputs from the sensors constituting the four-divided sensors S1 to S4.
  • the four-divided sensor SB that receives the main beam of the BD light
  • the four-divided sensor SD that receives the DVD light
  • the four-divided sensors SC that receive CD light are arranged in a straight line in the y-axis direction.
  • the distance a ′ between the light receiving center of the BD light and the light receiving center of the DVD light is The distance a between the light emitting units 101a and 101b is substantially the same.
  • the distance b 'between the light receiving center of the DVD light and the light receiving center of the CD light is substantially the same as the distance b between the light emitting units 101b and 101c.
  • the intervals a and b between the light emitting units 101a to 101c, the interval a ′ between the BD light and the DVD light, and the interval b ′ between the DVD light and the CD light are expressed by the following equations (1) and (2). Indicated.
  • the distances a ′ and b ′ between the light receiving centers of the respective laser beams are fixed to distances corresponding to the distances a and b between the light emitting units. For this reason, the size of the light receiving area of the four-divided sensors SB, SD, SC is limited by the distances a ′ and b ′. Therefore, the spot diameter of the laser beam on the four-divided sensors SB, SD, SC is also It is limited by the distances a ′ and b ′.
  • the spot diameter of the laser beam on the light receiving surface is as large as possible. If the spot diameter of the laser beam is small, when a positional deviation occurs in the photodetector 111 due to secular change or the like, a fluctuation (error) of a detection signal output from the photodetector 111 becomes large, and a focus error due to the positional deviation occurs. Signals and tracking error signals are likely to deteriorate significantly. For this reason, it is preferable to increase the spot diameter of each laser beam on the light receiving surface by increasing the size of the quadrant sensor that receives the laser beam as much as possible.
  • the spot diameter of the laser beam on the light receiving surface can be changed by adjusting the lens action (thickness, refractive index, inclination, etc.) by the astigmatism plate 110.
  • the BD light is diffracted by the DOE 109, and the BD light is guided to the four-divided sensor that receives the DVD light, thereby improving the light receiving area and the spot diameter. Is planned.
  • the optical axis of the BD light is not adjusted as in the comparative example of FIG. 2C, and when the optical axis of the BD light coincides with the optical axis of the DVD light or the CD light on the light receiving surface.
  • the four-segment sensor light receiving area and the maximum designable spot diameter are compared.
  • FIG. 3A is a diagram showing a convergence state of the laser light (laser light reflected by the disk) irradiated to the quadrant sensor S of the photodetector 111.
  • FIG. FIG. 3B is a diagram schematically showing the size of the quadrant sensor S, the size and shape of the spot on the quadrant sensor SB.
  • the laser light reflected by the disk passes through the collimator lens 105 and then passes through the quarter-wave plate 104, the PBS 103, the DOE 109, and the astigmatism plate 110.
  • illustration is omitted for convenience.
  • the laser light passes through the collimator lens 105 with an effective diameter ⁇ 0, and then astigmatism is introduced by the PBS 103 and the astigmatism plate 110 (see FIG. 1A).
  • the laser beam forms a focal line at different positions P1 and P3, and the laser beam becomes a minimum circle of confusion at the convergence position P2 between the focal line position P1 and the focal line position P3.
  • the spot on the light receiving surface becomes a substantially perfect circle shape, and the spot diameter ⁇ is minimized.
  • the spot on the light receiving surface has a substantially elliptical shape extending on the diagonal line Sa-Sb of the quadrant sensor S1
  • the quadrant sensor is located at the rear focal line position P3.
  • the spot on the light receiving surface has a substantially elliptical shape extending on the other diagonal line Sc-Sd of the quadrant sensor S1.
  • the minimum spot diameter ⁇ on the quadrant sensor S is expressed by the following formula (3).
  • ⁇ 0 is the effective diameter of the collimator lens 105.
  • ⁇ P is the distance (astigmatic difference) between the front focal line position P1 and the rear focal line position P3.
  • Fc is the distance (focal length) from the position P0 of the collimator lens 105 to the position P2 of the minimum circle of confusion.
  • the minimum dimension L0 of the diagonal line of the quadrant sensor S is expressed by the following formula (4).
  • the quadrant sensor S has a square shape as described above, the minimum and vertical dimensions L of the quadrant sensor S are represented by L ⁇ L0 / ⁇ 2. Therefore, from the above formulas (3) and (4), the vertical and horizontal minimum dimensions L of the quadrant sensor S are expressed by the following formula (5) using the minimum spot diameter ⁇ .
  • the spot diameter ⁇ B of the BD light, the spot diameter ⁇ D of the DVD light, and the spot diameter ⁇ C of the CD light are the spots of the BD light having the largest numerical aperture in accordance with the effective diameter of the objective lens 108 for each laser light.
  • the spot diameter ⁇ C of the CD light having the largest diameter ⁇ B and the smallest numerical aperture is the smallest.
  • the objective lens 108 is designed so that the relationship between the respective spot diameters satisfies the following formula (6) based on the numerical aperture required for each laser beam.
  • FIG. 4 is a diagram showing the relationship between the light receiving areas of the four-divided sensors SB, SD, and SC and the spot diameter in the case of Comparative Example 1 in which the optical axis of the BD light is not aligned.
  • the unit of length is mm (millimeter).
  • the relationship between the vertical length LB of the four-divided sensor SB for BD light, the vertical length LD of the four-divided sensor SD for DVD light, and the light receiving interval a ′ between the BD light and the DVD light is expressed by the following formula ( 7).
  • the spot diameter ⁇ B of the BD light is ⁇ B ⁇ 0.069
  • the spot diameter ⁇ D of the DVD light is ⁇ D ⁇ 0.057.
  • the maximum value of the vertical length of the 4-split sensor SC that receives CD light is the same as the maximum value of the 4-split sensor SB that receives BD light. Since the spot diameter ⁇ C of the CD is limited by the spot diameter ⁇ B of the BD light, the maximum value of the spot diameter ⁇ C of the CD light remains 0.044.
  • FIG. 5A is a diagram showing the relationship between the light receiving area of the four-divided sensors SB / SC and SD and the size of the spot diameter in the case of Comparative Example 2 in which the optical axis of the BD light coincides with the optical axis of the CD light. It is.
  • the quadrant sensor SB / SC receives both BD light and CD light.
  • the vertical length needs to satisfy LD ⁇ 0.082, LB ⁇ 0.098, and LC ⁇ 0.098.
  • the spot diameter ⁇ D of DVD light is ⁇ D ⁇ 0.058, and the spot diameter ⁇ B of BD light is ⁇ B ⁇ 0.069.
  • the spot diameter ⁇ C of the CD light is ⁇ C ⁇ 0.044.
  • the maximum vertical length of the quadrant sensor SC that receives CD light is the same as the maximum value of the quadrant sensor SB that receives BD light. Since the spot diameter ⁇ C of the CD is limited by the spot diameter ⁇ B of the BD light, the maximum value of the spot diameter ⁇ C of the CD light remains 0.044.
  • FIG. 5B is a diagram showing the relationship between the light receiving area of the four-divided sensors SB / SD and SC and the size of the spot diameter in the case of Example 1 in which the optical axis of BD light coincides with the optical axis of DVD light. It is.
  • the quadrant sensor SB / SD receives both BD light and DVD light.
  • the quadrant sensor SB / SD corresponds to the quadrant sensor S1 in FIG. 2B
  • the quadrant sensor SC corresponds to the quadrant sensor S4 in FIG.
  • the vertical length needs to satisfy LB ⁇ 0.110, LD ⁇ 0.110, and LC ⁇ 0.070.
  • the spot diameter ⁇ B of the BD light is ⁇ B ⁇ 0.078
  • the spot diameter ⁇ C of the CD light is ⁇ C ⁇ 0.049.
  • the spot diameter ⁇ D of the DVD light is ⁇ D ⁇ 0.065.
  • the relationship between the vertical length of the designable quadrant sensors SB / SD and SC and the maximum value of the spot diameter is as follows. It becomes like 3.
  • the maximum value of the spot diameter is larger in Example 1 than in Comparative Example 1. Therefore, when the optical axis of the BD light coincides with the optical axis of the DVD light as in the present embodiment, the spot diameter of each laser beam on the light receiving surface can be made larger than that in the first comparative example.
  • the spot diameter of each laser beam could be enlarged for the following reason.
  • the spot diameter of each laser beam is subject to the restriction of the above formula (6). For this reason, if the spot diameter ⁇ B of the largest BD light can be enlarged, the spot diameters of other laser lights can also be enlarged.
  • the spot diameter of each laser beam varies according to the vertical length of the four-divided sensor that receives each laser beam from the above equation (5). Therefore, if the vertical length of the four-divided sensor that receives the BD light can be increased, the spot diameter ⁇ B of the BD light is increased, and as a result, the spot diameters of the other laser lights can be increased.
  • the quadrant sensor SB requiring the largest size and the quadrant sensor SD requiring the next largest size are adjacent to each other.
  • the size of the four-divided sensors SB, SD is limited because the two large-sized four-divided sensors SB, SD must be accommodated within the interval a ′. For this reason, the vertical length LB of the four-divided sensor SB cannot be enlarged, and therefore the spot diameter of the BD light cannot be increased.
  • the BD light is irradiated to the quadrant sensor SB / SC together with the CD light.
  • the quadrant sensor SB / SC receives BD light as well as CD light, a size corresponding to the BD light is required. Therefore, as in Comparative Example 1, the largest quadrant sensor SB / SC is adjacent to the next largest quadrant sensor SD for DVD light. For this reason, also in the comparative example 2, it is necessary to fit two large four-divided sensors SB / SC and four-divided sensors SD within the interval b ′. For this reason, the size of the four-divided sensors SB / SC, SD Is limited. Therefore, as in Comparative Example 1, the vertical length of the four-divided sensor that receives BD light cannot be increased, and therefore the spot diameter of BD light cannot be increased.
  • the BD light is irradiated onto the quadrant sensor SB / SD together with the DVD light.
  • the quadrant sensor SB / SD since the quadrant sensor SB / SD receives BD light as well as DVD light, a size corresponding to the BD light is required.
  • the quadrant sensor SB / SD since the quadrant sensor SB / SD is adjacent to the quadrant sensor SC for CD light that requires the smallest size, the size may be set based on the relationship with the small quadrant sensor SC. .
  • the size of the four-divided sensor SB / SD can be increased as compared to the first and second comparative examples because the size of the four-divided sensor SC is small even if the limitation by the interval b ′ is imposed. Accordingly, in the first embodiment, the vertical length of the four-divided sensor that receives BD light can be increased, and the spot diameter of the BD light can be increased.
  • the BD light is positioned on the four-divided sensor SD of the DVD light by the DOE 109, the spot diameter of each laser beam on the corresponding four-divided sensor can be increased as described above. Therefore, even if the light receiving position of the laser beam is shifted, fluctuations in the detection signal output from the photodetector 111 can be suppressed, and deterioration of the focus error signal and tracking error signal can be suppressed.
  • the sensor layout can be simplified as shown in FIG.
  • the detector 111 can be reduced in size.
  • the optical axis of the laser beam incident on the rising mirror 107 from the collimator lens 105 side is perpendicular to the tangential direction of the disk in FIG.
  • the inclination angle of the optical axis of the laser beam incident on the rising mirror 107 from the collimator lens 105 side with respect to the tangential direction is 67.5 degrees.
  • FIG. 6A and 6B show an optical system of the optical pickup device 1 according to the second embodiment.
  • 6A is a plan view when the optical system is viewed from above the optical pickup device 1 (in the positive y-axis direction)
  • FIG. 6B is an internal perspective view of the peripheral portion of the objective lens actuator 122 viewed from the side.
  • FIG. 6C shows the four-divided sensors S1 to S4 when the photodetector 111 is viewed from the front (in the positive z-axis direction).
  • symbol as each Example 1 is attached
  • the optical axis of the laser light incident on the rising mirror 107 from the collimator lens 105 side is inclined by 67.5 degrees with respect to the tangential direction of the disk. Accordingly, the diffraction grating 102 is adjusted in position in the rotational direction about the optical axis so that the main beam and the two sub beams of the BD light are parallel to the tangential direction, and also shown in FIG. As described above, the four-divided sensors S1 to S3 are inclined so as to be aligned in the alignment direction of the three beams of BD light.
  • the quadrant sensor S4 is disposed adjacent to the quadrant sensor S1 in the y-axis direction.
  • Each of the four-divided sensors S1 to S4 is arranged so that one of the dividing lines is parallel to a direction corresponding to the tangential direction. Therefore, the one dividing line has an angle of 67.5 degrees with respect to the arrangement direction of the four-divided sensors S1 and S4.
  • FIG. 7A shows the relationship between the light receiving areas of the four-divided sensors SB, SD, and SC and the size of the spot diameter in Comparative Example 3 in which the optical axis alignment of BD light is not performed in the layout of Example 2.
  • FIG. 7A shows the relationship between the light receiving areas of the four-divided sensors SB, SD, and SC and the size of the spot diameter in Comparative Example 3 in which the optical axis alignment of BD light is not performed in the layout of Example 2.
  • the relationship between the vertical length LB of the four-divided sensor SB for BD light, the vertical length LD of the four-divided sensor SD for DVD light, and the light receiving interval A ′ between the BD light and the DVD light is expressed by the following formula ( 11) and (12).
  • the spot diameter ⁇ B of the BD light is ⁇ B ⁇ 0.064
  • the spot diameter ⁇ D of the DVD light is ⁇ D ⁇ 0.053.
  • FIG. 7B is a diagram showing the relationship between the light receiving area of the four-divided sensors SB / SD, SC and the size of the spot diameter in the case of Example 2 in which the optical axis of BD light coincides with the optical axis of DVD light. It is.
  • the quadrant sensor SB / SD receives both BD light and DVD light.
  • the spot diameter ⁇ B of the BD light is ⁇ B ⁇ 0.071
  • the spot diameter ⁇ C of the CD light is ⁇ C ⁇ 0.046.
  • the relationship between the vertical length of the designable quadrant sensors SB / SD and SC and the maximum value of the spot diameter is as follows. It becomes like 5.
  • the maximum value of the size of the four-divided sensor is calculated without considering the physically necessary gap between the four-divided sensors.
  • a gap of several ⁇ m (for example, about 4 ⁇ m) is required between the sensors.
  • the intervals a and b of the light emitting units 101a to 101c and the intervals a ′ and b ′ of the light receiving positions on the quadrant sensor are both 0.09. It is also assumed that the intervals a and b and the intervals a ′ and b ′ vary from 0.09, and that the intervals a and b are not the same, and the intervals a ′ and b ′ are not the same. obtain.
  • the vertical length of the four-divided sensor SB / SD for BD light / DVD light in the case of Example 2 in FIG.
  • the relationship between the vertical length LC of the four-divided sensor SC for CD light and the light receiving interval B ′ between the BD light and the CD light is expressed by the following equation (17).
  • the spot diameter ⁇ B of the BD light is ⁇ B ⁇ 0.066
  • the spot diameter ⁇ C of the CD light is ⁇ C ⁇ 0.043.
  • the spot diameter ⁇ D of the DVD light is ⁇ D ⁇ 0.056.
  • the maximum value of the size (vertical length) of the four divided sensors and the laser light on the light receiving surface is as shown in Table 6.
  • the size (vertical length) of the four-divided sensor and the spot diameter of the laser beam on the light receiving surface are set in consideration of physical dimensions (gap between the four-divided sensors).
  • the Rukoto For example, the vertical length (LB, LD) of the quadrant sensor SB / SD is set to 0.090, and the vertical length (LC) of the quadrant sensor SC is set to 0.060.
  • the spot diameters ⁇ B, ⁇ D, and ⁇ C of BD light, DVD light, and CD light are set to 0.063, 0.052, and 0.040, respectively.
  • the light emitting units 101a to 101c are arranged in the semiconductor laser 101 so that the light emitting units 101a and 101c that emit BD light and CD light sandwich the light emitting unit 101b that emits DVD light.
  • the arrangement order of the light emitting units 101a to 101c is not limited to this.
  • the light emitting units 101a to 101c may be arranged in the semiconductor laser 101 so that the light emitting units 101a and 101b that emit BD light and DVD light sandwich the light emitting unit 101c that emits CD light.
  • FIGS. 8A and 8B show the light receiving areas and spot diameters of the four-divided sensors SB, SC, and SD in the comparative example 4 and the modified example, respectively, when the semiconductor laser 101 is changed as described above. It is a figure which shows the relationship.
  • Comparative Example 4 in FIG. 8A the optical axis of the BD light coincides with the optical axis of the CD light
  • the modified example in FIG. 8B the optical axis of the BD light coincides with the optical axis of the DVD light. ing.
  • the spot diameter of each laser beam can be increased by making the optical axis of the BD light coincide with the optical axis of the DVD light, rather than making it coincide with the optical axis of the CD light.
  • the maximum vertical length and the maximum spot diameter of the four-divided sensors SB / SD and SC shown in Table 8 are the vertical values of the four-divided sensors SB / SD and SC in Table 3 in the first embodiment. Is the same as the maximum value of the spot length and the maximum spot diameter.
  • the spot diameter of each laser beam can be increased by making the optical axis of the BD light coincide with the optical axis of the DVD light. it can.
  • the BD light is diffracted by the DOE 109, but the present invention is not limited to this.
  • the DVD light may be diffracted so that the optical axis of the DVD light coincides with the optical axis of the BD light.
  • the ratio of ⁇ B, ⁇ D, and ⁇ C is not limited to this. Based on the design of the optical system, it can be appropriately changed.
  • the quadrant sensor is a square sensor, but may be other shapes such as a rectangle or a circle.
  • Optical pick-up apparatus 101 ... Semiconductor laser (laser light source) 101a ... Light emitting part (first laser light emitting part) 101b... Light emitting part (second laser light emitting part) 101c ... Light emitting part (third laser light emitting part) 101f ... Submount (package) 109 ... DOE (optical axis adjustment element) 111 ... Photodetector S1, SB / SD ... Quadrant sensor (first sensor unit, first quadrant sensor) S4, SC: 4-part sensor (second sensor unit, second 4-part sensor)

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】異なる波長の3つのレーザ光が一つの半導体レーザから出射される場合に、光検出器の受光面上において、各波長のレーザ光のスポット径を大きくすることが可能な光ピックアップ装置を提供する。 【解決手段】半導体レーザ101は、発光部101a、101b、101cを同一パッケージ内に収容するとともに、BD光、DVD光およびCD光を同一方向に出射する。DOE109は、開口数が最も大きいBD光とその次に開口数が大きいDVD光が光検出器111上において重なるようにBD光の光軸をDVD光の光軸に一致させる。これにより、光検出器111のセンサのサイズを大きくすることができ、各レーザ光のスポット径を大きくすることができる。

Description

光ピックアップ装置
 本発明は、複数の記録媒体に対応した光ピックアップ装置に関する。
 従来、複数の記録媒体に対応した互換型の光ピックアップ装置が開発されている。かかる光ピックアップ装置では、異なる波長のレーザ光を用いて情報の読み書きが行われる。この種の光ピックアップ装置で用いられる半導体レーザとして、異なる波長の3つのレーザ光を出射する3波長レーザが知られている。かかる3波長レーザでは、たとえば、同一パッケージに設置された異なる2つの基板上に、それぞれ、2つの発光部と1つの発光部が形成される(たとえば、特許文献1)。
特開2011-141937号公報
 上記3波長レーザを用いる場合、たとえば、各波長に対応する受光部が、発光部と同じ順番で1列に並ぶように、光検出器上に配置される。この場合、各波長の受光部は、受光部間の間隔に応じて、受光面積が制限される。経年変化等による受光部や光ピックアップ装置を構成する各光学部品の位置ずれ等を考慮すると、受光部上のスポット径は、なるべく大きい方が望ましい。
 本発明は、かかる課題に鑑みてなされたものであり、異なる波長の3つのレーザ光が一つの半導体レーザから出射される場合に、光検出器の受光面上において、各波長のレーザ光のスポット径を大きくすることが可能な光ピックアップ装置を提供することを目的とする。
 本発明の主たる態様は、光ピックアップ装置に関する。この態様に係る光ピックアップ装置は、第1のレーザ光を出射する第1のレーザ発光部と、第2のレーザ光を出射する第2のレーザ発光部と、第3のレーザ光を出射する第3のレーザ発光部を同一パッケージ内に収容するとともに、前記第1、第2および第3のレーザ発光部から同一方向に前記レーザ光を出射するレーザ光源と、前記第1、第2および第3のレーザ発光部からそれぞれ出射された前記第1、第2および第3のレーザ光を第1、第2および第3の開口数でそれぞれに対応するディスク上に収束させるとともに、前記ディスクによって反射された前記各レーザ光を光検出器に導く光学系と、前記光学系に配置され、前記光検出器の受光面上において前記第1のレーザ光と前記第2のレーザ光の光軸を一致させる光軸調整素子と、を備える。前記第1、第2および第3の開口数のうち、前記第1の開口数が最も大きく前記第3の開口数が最も小さく、前記光検出器は、前記光軸調整素子によって光軸が一致された第1および第2のレーザ光を受光する第1のセンサ部と、前記第3のレーザ光を受光する第2センサ部とを有する。
 本発明によれば、異なる波長の3つのレーザ光が一つの半導体レーザから出射される場合に、光検出器の受光面上において、各波長のレーザ光のスポット径を大きくすることが可能な光ピックアップ装置を提供することができる。
 本発明の特徴は、以下に示す実施の形態により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも本発明の一つの実施形態であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態により何ら制限されるものではない。
実施例1係る光ピックアップ装置の光学系を示す図である。 実施例1に係る受光面上における照射位置を説明する図および受光面上に配される4分割センサを示す図である。 実施例に係るレーザ光の収束状態および受光面状のスポットの形状を示す図である。 比較例1に係る4分割センサの受光面積とスポット径の大きさの関係を示す図である。 比較例2および実施例1に係る4分割センサの受光面積とスポット径の大きさの関係を示す図である。 実施例2係る光ピックアップ装置の光学系および受光面状に配される4分割センサを示す図である。 比較例3および実施例2に係る4分割センサの受光面積とスポット径の大きさの関係を示す図である。 比較例4および変更例に係る4分割センサの受光面積とスポット径の大きさの関係を示す図である。
 本実施の形態は、BD(Blu-ray Disc)、DVD(Digital Versatile Disc)およびCD(Compact Disc)にレーザ光を照射する光ピックアップ装置に本発明を適用したものである。
 <実施例1>
 図1(a)、(b)に、実施例1に係る光ピックアップ装置1の光学系を示す。図1(a)は、光学系を光ピックアップ装置1の上側から(y軸正方向に)見た場合の平面図、図1(b)は、対物レンズアクチュエータ122周辺部分を側面側から見た内部透視図、図1(c)は、半導体レーザ101における発光部の配置状態を示す図である。
 図1(a)を参照して、光ピックアップ装置1は、半導体レーザ101と、回折格子102と、偏光ビームスプリッタ(PBS)103と、1/4波長板104と、コリメータレンズ105と、レンズアクチュエータ106と、立ち上げミラー107と、対物レンズ108と、回折光学素子(DOE)109と、非点収差板110と、光検出器111を備える。
 半導体レーザ101は、波長400nm程度のレーザ光(以下、「BD光」という)と、波長650nm程度のレーザ光(以下、「DVD光」という)と、波長780nm程度のレーザ光(以下、「CD光」という)を同一方向に出射する。
 図1(c)に示すように、半導体レーザ101は、一つのパッケージに、BD光、DVD光、CD光をそれぞれ出射する発光部101a、101b、101cを備える。発光部101b、101cは、基板101e上に、間隔がbとなるように一体的に形成されている。発光部101aは、基板101eとは異なる基板101d上に、発光部101a、101bの間隔がaとなるように形成されている。基板101d、101eは、サブマウント101f上に設置されている。発光部101a~101cは、一直線上に並ぶように形成されている。半導体レーザ101以降の光学系は、その光軸が、BD光、DVD光、CD光の何れか一つの光軸に整合するように調整されている。また、本実施例では、a、bは何れも90μm(0.09mm)に設計されている。
 回折格子102は、半導体レーザ101から出射されたBD光、DVD光、CD光のうちBD光のみをメインビームと2つのサブビームに分割する。回折格子102には、BD光の3つのビームがディスクのトラックに沿うよう回折溝が形成されている。なお、DVD光とCD光も回折格子102による回折作用を受けるが、これら光のサブビームの強度は、極めて小さくなっている。
 PBS103は、半導体レーザ101の出射光軸に対して45°傾くように配置され、回折格子102側から入射されたレーザ光を反射する。PBS103は、入射面と出射面が正方形の輪郭を有する薄板状の平行平板となっており、その入射面に、偏光膜が形成されている。半導体レーザ101は、BD光、DVD光、CD光の偏光方向がPBS103に対してS偏光となるように配置されている。
 1/4波長板104は、PBS103によって反射されたレーザ光を円偏光に変換するとともに、ディスクからの反射光を、ディスクへ向かうときの偏光方向に直交する直線偏光に変換する。これにより、ディスクによって反射されたレーザ光はPBS103を透過して光検出器111へと導かれる。
 コリメータレンズ105は、PBS103によって反射されたレーザ光を平行光に変換する。レンズアクチュエータ106は、1/4波長板104とコリメータレンズ105を、コリメータレンズ105の光軸方向に駆動する。コリメータレンズ105が移動されることにより、レーザ光に生じる収差が補正される。
 立ち上げミラー107は、コリメータレンズ105側から入射されたレーザ光を対物レンズ108に向かう方向(y軸負方向)に反射する。対物レンズ108は、ホルダ121に保持され、ホルダ121は、対物レンズアクチュエータ122によって、フォーカス方向(y軸方向)およびトラッキング方向(ディスクのラジアル方向)に駆動される。これにより、対物レンズ108が、フォーカス方向およびトラッキング方向に駆動される。
 なお、コリメータレンズ105側から立ち上げミラー107に入射するレーザ光の光軸は、ディスクのタンジェンシャル方向に対して垂直となっている。また、立ち上げミラー107からディスクに向かうBD光のメインビームと2つのサブビームの並び方向は、ディスクのタンジェンシャル方向と一致している。
 ディスクからの反射光は、1/4波長板104によりPBS103に対してP偏光となる直線偏光に変換される。これにより、ディスクからの反射光は、PBS103を透過する。上記のように、PBS103は、BD光、DVD光、CD光の光軸に対して45度傾くように配置されている。このため、BD光、DVD光、CD光が図1(a)のように収束状態でPBS103を透過すると、これらの光に非点収差が導入される。
 DOE109は、BD光に対しては+1次の回折効率が高く、DVD光、CD光に対しては0次の回折効率が高くなるよう設計されている。すなわち、DOE109は、回折作用により、主としてBD光の進行方向を変化させる、波長選択性の回折格子である。各回折次数における回折角は、回折構造のピッチを変えることにより調整され、各回折次数における回折効率は、回折構造の高さを変えることにより調整される。BD光の+1次回折光は、DOE109によってDVD光の光軸に近づく方向(y軸正方向)に曲げられる。これにより、BD光のメインビームの光軸は、光検出器111の受光面上において、DVD光の光軸と一致することになる。
 非点収差板110は、平行平板であり、BD光、DVD光、CD光の光軸に対して傾くように配置されている。このように非点収差板110が傾けられることにより、非点収差板110によっても、BD光、DVD光、CD光に非点収差が導入される。ここで、非点収差板110は、オンフォーカス時に、レーザ光のスポット形状が光検出器111の受光面上において円形となり、オフフォーカス時に、レーザ光のスポット形状が、光検出器111の受光面上において、長軸がx軸とy軸に対して45°の傾きを持つ楕円形状となるよう、光学作用(屈折率、厚み等)と傾きが調整されている。
 光検出器111の受光面は、xy平面に平行であり、かかる受光面上には、BD光、DVD光、CD光が照射される位置に、4分割センサが配置されている。光検出器111の受光面上に配置される4分割センサについては、追って図2(b)を参照して説明する。
 図1(a)、(b)に示す光学系は、半導体レーザ101からディスクまでの往路の倍率とディスクから光検出器111までの復路の倍率が、略同倍率となるよう調整されている。
 図2(a)は、光検出器111の受光面上におけるBD光、DVD光、CD光の照射位置を説明する図である。なお、図2(a)では、DOE109と光検出器111の受光面との間に配される非点収差板110の図示が、便宜上、省略されており、DOE109の入射面と出射面の輪郭は、便宜上、正方形となっている。
 BD光、DVD光、CD光は、この順に、y軸正方向に並んだ状態でDOE109に入射する。DOE109に入射するBD光は、回折格子102によってメインビームとサブビームに分割されている。これら3つのビームの並び方向は、ディスクのタンジェンシャル方向に対応する方向となっている。
 DOE109に入射するBD光の3つのビームは、DOE109の回折作用によりy軸正方向に曲げられる。なお、BD光の+1次以外の回折光と、DVD光とCD光の0次以外の回折光の光量は小さいため、図2(a)では便宜上図示されていない。
 DOE109の回折作用により生じるBD光の3つのビームの+1次回折光は、z軸正方向にy軸正方向の成分が加えられた方向に進む。また、DVD光とCD光の0次回折光はz軸正方向に進む。このように、DOE109の回折作用により、光検出器111の受光面上において、BD光のメインビームの光軸と、DVD光の光軸が一致する。
 図2(b)は、光検出器111の受光面上に配される4分割センサS1~S4を示す図である。なお、図2(b)は、光検出器111を正面から(z軸正方向に)見た場合の4分割センサS1~S4を示している。また、図2(c)は、比較例として、BD光の光軸が、DOE109により回折されない場合の4分割センサSB、SD、SCを示す図である。なお、図2(c)の場合、サブビーム用の4分割センサは、図示省略されている。
 図2(b)を参照して、4分割センサS1は、BD光のメインビームとDVD光を受光し、4分割センサS2、S3は、BD光の2つのサブビームを受光し、4分割センサS4は、CD光を受光する。4分割センサS1~S3は、これら3つの4分割センサの並び方向が、図2(a)に示すBD光の3つのビームの並び方向と同じ方向(x軸方向)となるように配されている。4分割センサS4は、発光部101a~101cの並び方向と同じ方向(y軸方向)に、4分割センサS1と隣り合うように配される。4分割センサS1、S4は、正方形状であり、4分割センサS2、S3は、正方形の角が切り欠かれた形状である。BD光が用いられる場合、4分割センサS1~S4を構成する各センサからの出力により、再生RF信号、フォーカスエラー信号、トラッキングエラー信号が生成される。
 図2(c)に示す比較例の場合、BD光の光軸が回折により曲げられないため、BD光のメインビームを受光する4分割センサSBと、DVD光を受光する4分割センサSDと、CD光を受光する4分割センサSCは、y軸方向に一直線上に並んで配されている。
 ここで、上述の如く、本実施例では、光学系の往路と復路の倍率が同倍率となるように構成されているため、BD光の受光中心とDVD光の受光中心との間隔a’は、発光部101a、101bとの間隔aと略同程度となる。同様に、DVD光の受光中心とCD光の受光中心との間隔b’は、発光部101b、101cとの間隔bと略同程度となる。すなわち、本実施例では、発光部101a~101cの間隔a、bとBD光とDVD光の間隔a’、DVD光とCD光の間隔b’は、以下の式(1)、(2)で示される。
 a’≒a=0.09 (mm)…(1)
 b’≒b=0.09 (mm)…(2)
 このように、各レーザ光の受光中心の間隔a’、b’は、発光部間の間隔a、bに応じた距離に固定される。このため、4分割センサSB、SD、SCの受光面積の大きさは、間隔a’、b’によって制限され、このため、4分割センサSB、SD、SC上におけるレーザ光のスポット径もまた、間隔a’、b’によって制限される。
 受光面上におけるレーザ光のスポット径は、なるべく大きい方が望ましい。レーザ光のスポット径が小さいと、経年変化等によって光検出器111に位置ずれが生じた場合に、光検出器111から出力される検出信号の変動(誤差)が大きくなり、位置ずれによるフォーカスエラー信号およびトラッキングエラー信号の劣化が大きくなり易い。このため、レーザ光を受光する4分割センサの大きさをなるべく大きくして、受光面上における各レーザ光のスポット径を大きくするのが望ましい。なお、受光面上におけるレーザ光のスポット径は、非点収差板110によるレンズ作用(厚みや屈折率、傾き等)を調整することにより変化させることができる。
 そこで、本実施例では、上述のように、DOE109によって、BD光を回折させて、BD光を、DVD光を受光する4分割センサに導くことで、受光面積、およびスポット径の大きさの向上が図られている。以下、図2(c)の比較例のようにBD光の光軸が調整されない場合と、受光面上においてBD光の光軸をDVD光の光軸またはCD光の光軸に一致させた場合とに分けて、4分割センサの受光面積とスポット径の設計可能な最大値を比較検討する。
 図3(a)は、光検出器111の4分割センサSに照射されるレーザ光(ディスクによって反射されたレーザ光)の収束状態を示す図である。図3(b)は、4分割センサSの大きさと、4分割センサSB上のスポットの大きさ、および形状を模式的に示す図である。なお、ディスクによって反射されたレーザ光は、コリメータレンズ105を透過した後、1/4波長板104、PBS103、DOE109および非点収差板110を透過するが、図3(a)では、これらの部材が、便宜上、図示省略されている。
 図3(a)を参照して、レーザ光は、有効径φ0でコリメータレンズ105を透過し、その後、PBS103および非点収差板110(図1(a)参照)により、非点収差が導入される。これにより、レーザ光は、互いに異なる位置P1、P3において焦線を結び、焦線位置P1と焦線位置P3の間の収束位置P2において、レーザ光のビームが最小錯乱円となる。
 したがって、図3(b)に示すように、収束位置P2に4分割センサSを位置付けると、受光面上のスポットは、略真円形状となり、スポット径φは、最小となる。また、前側焦線位置P1に4分割センサSを位置付けると、受光面上のスポットは、4分割センサS1の対角線Sa‐Sb上に延びる略楕円形状となり、後側焦線位置P3に4分割センサSを位置付けると、受光面上のスポットは、4分割センサS1の他方の対角線Sc‐Sd上に延びる略楕円形状となる。
 ここで、4分割センサS上の最小スポット径φは、以下の式(3)で示される。
 φ≒φ0×(ΔP/2)/Fc …(3)
 上記式(3)において、φ0は、コリメータレンズ105の有効径である。ΔPは、前側焦線位置P1と後側焦線位置P3の距離(非点隔差)である。Fcは、コリメータレンズ105の位置P0から最小錯乱円の位置P2までの距離(焦点距離)である。
 また、4分割センサSの対角線の最小寸法L0は、以下の式(4)で示される。
 L0≒φ0×ΔP/Fc …(4)
 さらに、4分割センサSは、上述と同様、正方形状であるため、4分割センサSの縦横の最小寸法Lは、L≒L0/√2で示される。したがって、上記式(3)、(4)より、4分割センサSの縦横の最小寸法Lは、最小スポット径φを利用して、以下の式(5)で示される。
 L=2φ/√2 …(5)
 また、BD光のスポット径φBと、DVD光のスポット径φDおよびCD光のスポット径φCは、各レーザ光に対する対物レンズ108の有効径の大きさにしたがい、開口数が最も大きいBD光のスポット径φBが最も大きく、開口数が最も小さいCD光のスポット径φCが最も小さくなる。本実施例では、対物レンズ108は、それぞれのスポット径の関係が、各レーザ光に必要な開口数に基づき、以下の式(6)を満たすように設計されている。
 φB:φD:φC=1.00:0.84:0.64 …(6)
 図4は、BD光の光軸合わせをしなかった比較例1の場合の4分割センサSB、SD、SCの受光面積とスポット径の大きさの関係を示す図である。なお、以下において、長さの単位は、mm(ミリメートル)である。
 BD光用の4分割センサSBの縦の長さLB、DVD光用の4分割センサSDの縦の長さLDと、BD光とDVD光の受光間隔a’との関係は、以下の式(7)で示される。
 a’≧LB/2+LD/2 …(7)
 ここで、式(1)より、a’=0.09であり、また、式(5)、(6)より、LD=0.84×LBであるため、4分割センサSB、SDの縦の長さは、LB≦0.098、LD≦0.082を満たす必要がある。
 また、式(5)より、BD光のスポット径φBは、φB≦0.069、DVD光のスポット径φDは、φD≦0.057となる。
 次に、DVD光用の4分割センサSDの縦の長さLD、CD光用の4分割センサSCの縦の長さLCと、DVD光とCD光の受光間隔b’の関係は、以下の式(8)で示される。
 b’≧LD/2+LC/2 …(8)
 ここで、式(2)より、b’=0.09であるため、4分割センサSCの縦の長さは、LC≦0.098を満たす必要がある。
 また、式(6)より、φC=0.64×φBのため、CD光のスポット径φCは、φC≦0.044となる。
 以上をまとめると、BD光の光軸合わせをしなかった場合、設計可能な4分割センサSB、SD、SCの縦の長さとスポット径の最大値の関係は、以下の表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 表1において、CD光を受光する4分割センサSCの縦の長さの最大値は、BD光を受光する4分割センサSBの最大値と同じであるが、上記式(6)により、CD光のスポット径φCの大きさがBD光のスポット径φBによって制限されるため、CD光のスポット径φCの大きさの最大値は、0.044に留まっている。
 図5(a)は、BD光の光軸をCD光の光軸に一致させた比較例2の場合の4分割センサSB/SC、SDの受光面積とスポット径の大きさの関係を示す図である。4分割センサSB/SCは、BD光とCD光の両方を受光する。
 BD光の光軸をCD光の光軸に一致させた場合、BD光/CD光用の4分割センサSB/SCの縦の長さは、LB=LCとなる。したがって、BD光/CD光用の4分割センサSB/SCの縦の長さと、DVD光用の4分割センサSDの縦の長さLDと、BD光/CD光とDVD光の受光間隔b’の関係は、以下の式(9)で示される。
 b’≧LD/2+LB/2 …(9)
 ここで、式(2)より、b’=0.09であり、また、式(5)、(6)より、LD=0.84×LBであるため、4分割センサSB/SC、SDの縦の長さは、LD≦0.082、LB≦0.098、LC≦0.098を満たす必要がある。
 また、式(5)より、DVD光のスポット径φDは、φD≦0.058、BD光のスポット径φBは、φB≦0.069となる。
 さらに、式(6)より、φC=0.64×φBのため、CD光のスポット径φCは、φC≦0.044となる。
 以上をまとめると、BD光の光軸をCD光の光軸に一致させた場合、設計可能な4分割センサSB/SC、SDの縦の長さとスポット径の最大値の関係は、以下の表2のようになる。
Figure JPOXMLDOC01-appb-T000002
  表2において、CD光を受光する4分割センサSCの縦の長さの最大値は、BD光を受光する4分割センサSBの最大値と同じであるが、上記式(6)により、CD光のスポット径φCの大きさがBD光のスポット径φBによって制限されるため、CD光のスポット径φCの大きさの最大値は、0.044に留まっている。
 図5(b)は、BD光の光軸をDVD光の光軸に一致させた実施例1の場合の4分割センサSB/SD、SCの受光面積とスポット径の大きさの関係を示す図である。4分割センサSB/SDは、BD光とDVD光の両方を受光する。また、4分割センサSB/SDは、図2(b)の4分割センサS1に対応し、4分割センサSCは、図2(b)の4分割センサS4に対応する。
 BD光の光軸をDVD光の光軸に一致させた場合、BD光/DVD光用の4分割センサSB/SDの縦の長さは、LB=LDとなる。したがって、BD光/DVD光用の4分割センサSB/SDの縦の長さと、CD光用の4分割センサSCの縦の長さLCと、BD光とCD光の受光間隔b’の関係は、以下の式(10)で示される。
 b’≧LB/2+LC/2 …(10)
 ここで、式(2)より、b’=0.09であり、また、式(5)、(6)より、LC=0.64×LBであるため、4分割センサSB/SD、SCの縦の長さは、LB≦0.110、LD≦0.110、LC≦0.070を満たす必要がある。
 また、式(5)より、BD光のスポット径φBは、φB≦0.078、CD光のスポット径φCは、φC≦0.049となる。
 さらに、式(6)より、φD=0.84×φBのため、DVD光のスポット径φDは、φD≦0.065となる。
 以上をまとめると、BD光の光軸をDVD光の光軸に一致させた場合、設計可能な4分割センサSB/SD、SCの縦の長さとスポット径の最大値の関係は、以下の表3のようになる。
Figure JPOXMLDOC01-appb-T000003
 表1と表2とを比較すると、設計可能な4分割センサの縦の長さの最大値とスポット径の最大値は、比較例1と比較例2とで同じである。したがって、BD光の光軸をCD光の光軸に一致させても、受光面上における各レーザ光のスポット径は、比較例1に比べて拡大されない。
 これに対し、表1と表3とを比較すると、スポット径の最大値は、比較例1よりも実施例1の方が大きくなっている。したがって、本実施例のように、BD光の光軸をDVD光の光軸に一致させると、受光面上における各レーザ光のスポット径を、比較例1よりも拡大させることができる。
 このように、実施例において、各レーザ光のスポット径を拡大できたのは、以下の理由による。
 各レーザ光のスポット径は、上記式(6)の制限を受ける。このため、最も大きいBD光のスポット径φBを拡大できれば、その他のレーザ光のスポット径も拡大することができる。他方、各レーザ光のスポット径は、上記式(5)から、各レーザ光を受光する4分割センサの縦の長さに応じて変化する。よって、BD光を受光する4分割センサの縦の長さを拡大できれば、BD光のスポット径φBが拡大され、その結果、他のレーザ光のスポット径も拡大できる。
 比較例1の場合、図4に示すように、最も大きいサイズを要する4分割センサSBと、その次に大きいサイズを要する4分割センサSDとが隣り合っている。比較例1では、このように、サイズの大きい2つの4分割センサSB、SDを間隔a’内に収めなくてはならないため、4分割センサSB、SDのサイズが制限される。このため、4分割センサSBの縦の長さLBを拡大できず、よって、BD光のスポット径を大きくすることができない。
 比較例2の場合、図5(b)のように、BD光は、CD光とともに4分割センサSB/SCに照射される。この場合、4分割センサSB/SCは、CD光とともにBD光も受光するため、BD光に応じたサイズが要求される。したがって、比較例1と同様、最もサイズが大きい4分割センサSB/SCと、次にサイズが大きいDVD光用の4分割センサSDとが隣り合うこととなる。このため、比較例2においても、サイズの大きい2つの4分割センサSB/SCと4分割センサSDを間隔b’内に収めなければならず、このため、4分割センサSB/SC、SDのサイズが制限される。したがって、比較例1と同様、BD光を受光する4分割センサの縦の長さを拡大できず、よって、BD光のスポット径を大きくすることができない。
 これに対し、実施例1の場合には、図5(b)のように、BD光が、DVD光とともに、4分割センサSB/SDに照射される。この場合、4分割センサSB/SDは、DVD光とともにBD光も受光するため、BD光に応じたサイズが要求される。しかしながら、この場合、4分割センサSB/SDは、最も小さいサイズを要するCD光用の4分割センサSCと隣り合うため、サイズが小さい4分割センサSCとの関係から、サイズが設定されれば良い。このため、間隔b’による制限を受けても、4分割センサSCのサイズが小さいため、比較例1、2に比べて、4分割センサSB/SDの大きさを拡大することができる。したがって、実施例1では、BD光を受光する4分割センサの縦の長さを拡大でき、BD光のスポット径を大きくすることができる。
 <実施例1の効果>
 実施例1によれば、以下の効果が奏され得る。
 DOE109によって、BD光が、DVD光の4分割センサSDに位置付けられるため、上記のように、対応する4分割センサ上における各レーザ光のスポット径を大きくすることができる。したがって、レーザ光の受光位置がずれても、光検出器111から出力される検出信号の変動を抑制でき、フォーカスエラー信号およびトラッキングエラー信号の劣化を抑制することができる。
 また、本実施例によれば、BD光のメインビームとDVD光が共通の4分割センサS1で受光されるため、図2(b)に示すようにセンサレイアウトを簡略化することができ、光検出器111を小型化することができる。
 <実施例2>
 上記実施例1には、コリメータレンズ105側から立ち上げミラー107に入射するレーザ光の光軸が、図2(a)のディスクのタンジェンシャル方向に対して垂直であったが、実施例2では、コリメータレンズ105側から立ち上げミラー107に入射するレーザ光の光軸のタンジェンシャル方向に対する傾き角が67.5度となっている。
 図6(a)、(b)に、実施例2に係る光ピックアップ装置1の光学系を示す。図6(a)は光学系を光ピックアップ装置1の上側から(y軸正方向に)見た場合の平面図、図6(b)は対物レンズアクチュエータ122周辺部分を側面側から見た内部透視図、図6(c)は光検出器111を正面から(z軸正方向に)見た場合の4分割センサS1~S4を示している。なお、各部材は、実施例1と同じ符号が付されており、実施例1と同様のもので構成されているため、詳細な説明は省略する。
 図6(a)に示すように、コリメータレンズ105側から立ち上げミラー107に入射するレーザ光の光軸は、ディスクのタンジェンシャル方向に対して67.5度傾いている。それに伴い、回折格子102は、BD光のメインビームと2つのサブビームがタンジェンシャル方向に平行となるよう、光軸を軸とする回転方向の位置が調整され、また、図6(c)に示すように、4分割センサS1~S3は、BD光の3つのビームの並び方向に並ぶよう傾いて配されている。4分割センサS4は、y軸方向に、4分割センサS1と隣り合うように配されている。これら4分割センサS1~S4は、それぞれ、一方の分割線が、タンジェンシャル方向に対応する方向に平行となるように配置されている。したがって、当該一方の分割線は、4分割センサS1、S4の並び方向に対して67.5度の角度をもっている。
 図7(a)は、実施例2のレイアウトにおいて、BD光の光軸合わせをしなかった比較例3の場合の4分割センサSB、SD、SCの受光面積とスポット径の大きさの関係を示す図である。
 BD光用の4分割センサSBの縦の長さLB、DVD光用の4分割センサSDの縦の長さLDと、BD光とDVD光の受光間隔A’との関係は、以下の式(11)、(12)で示される。
 A’≧LB/2+LD/2 …(11)
 A’=a’×sinθ …(12)
 ここで、式(1)より、a’=0.09であり、4分割センサSB、SDの並び方向に垂直な方向からの傾きθは、67.5度のため、A’=0.083となる。また、式(5)、(6)より、LD=0.84×LBであるため、4分割センサSB、SDの縦の長さ(4分割センサSB、SDの並び方向に垂直な方向からの傾き方向に垂直な方向の長さ)は、LB≦0.090、LD≦0.076を満たす必要がある。
 また、式(5)より、BD光のスポット径φBは、φB≦0.064、DVD光のスポット径φDは、φD≦0.053となる。
 次に、DVD光用の4分割センサSDの縦の長さLD、CD光用の4分割センサSCの縦の長さLCと、DVD光とCD光の受光間隔B’の関係は、以下の式(13)、(14)で示される。
 B’≧LD/2+LC/2 …(13)
 B’=b’×sinθ …(14)
 ここで、式(2)より、b’=0.09であり、4分割センサSD、SCの並び方向に垂直な方向からの傾きθは、67.5度のため、B’=0.083となる。したがって、式(13)より、4分割センサSCの縦の長さ(4分割センサSCの傾き方向に垂直な方向の長さ)は、LC≦0.090を満たす必要がある。
 また、式(6)より、φC=0.64×φBのため、CD光のスポット径φCは、φC≦0.041となる。
 以上をまとめると、BD光の光軸合わせをしなかった場合、設計可能な4分割センサSB、SD、SCの縦の長さとスポット径の最大値の関係は、以下の表4のようになる。
Figure JPOXMLDOC01-appb-T000004
 図7(b)は、BD光の光軸をDVD光の光軸に一致させた実施例2の場合の4分割センサSB/SD、SCの受光面積とスポット径の大きさの関係を示す図である。4分割センサSB/SDは、BD光とDVD光の両方を受光する。
 BD光の光軸をDVD光の光軸に一致させた場合、BD光/DVD光用の4分割センサSB/SDの縦の長さは、LB=LDとなる。したがって、BD光/DVD光用の4分割センサSB/SDの縦の長さと、CD光用の4分割センサSCの縦の長さLCと、BD光とCD光の受光間隔B’の関係は、以下の式(15)、(16)で示される。
 B’≧LB/2+LC/2 …(15)
 B’=b’×sinθ …(16)
 ここで、式(2)より、b’=0.09であり、4分割センサSB/SD、SCの並び方向に垂直な方向からの傾きθは、67.5度のため、B’=0.083となる。また、式(5)、(6)より、LC=0.64×LBであるため、4分割センサSB/SD、SCの縦の長さは、LB≦0.101、LD≦0.101、LC≦0.065を満たす必要がある。
 また、式(5)より、BD光のスポット径φBは、φB≦0.071、CD光のスポット径φCは、φC≦0.046となる。
 さらに、式(6)より、φD=0.84×φBのため、DVD光のスポット径φDは、φD≦0.060となる。
 以上をまとめると、BD光の光軸をDVD光の光軸に一致させた場合、設計可能な4分割センサSB/SD、SCの縦の長さとスポット径の最大値の関係は、以下の表5のようになる。
Figure JPOXMLDOC01-appb-T000005
 表4、表5を比較すると、上記実施例1の場合と同様、実施例2の方が、比較例3よりも4分割センサの縦の長さおよびスポット径を大きくすることができることがわかる。
 なお、上記実施例1および実施例2では、物理的に必要な4分割センサ間の隙間を考慮せずに、4分割センサの大きさの最大値を計算したが、実際には、各4分割センサの間には、数μm(たとえば、4μm程度)の隙間が必要となる。また、上記実施例1および実施例2では、発光部101a~101cの間隔a、bと、4分割センサ上の受光位置の間隔a’、b’が、ともに、0.09であったが、間隔a、bと間隔a’、b’が0.09から変動する場合も想定され、また、間隔a、bが同一でなく、また、間隔a’、b’とが同一でない場合も想定され得る。
 4分割センサ間に必要な隙間が4μm(0.004mm)であるとすると、図7(b)の実施例2の場合において、BD光/DVD光用の4分割センサSB/SDの縦の長さと、CD光用の4分割センサSCの縦の長さLCと、BD光とCD光の受光間隔B’の関係は、以下の式(17)で示される。
 B’≧LB/2+LC/2+0.004 …(17)
 ここで、BD光の受光中心とDVD光の受光中心の間隔b’が、上記実施例2とは異なり、b’=0.088であるとすると、4分割センサSB、SCの傾きθは、67.5度のため、B’=0.081となる。また、式(5)、(6)より、LC=0.64×LBであるため、4分割センサSB/SD、SCの縦の長さは、LB≦0.094、LD≦0.094、LC≦0.060を満たす必要がある。
 また、式(5)より、BD光のスポット径φBは、φB≦0.066、CD光のスポット径φCは、φC≦0.043となる。
 さらに、式(6)より、φD=0.84×φBのため、DVD光のスポット径φDは、φD≦0.056となる。
 以上をまとめると、BD光の光軸をDVD光の光軸に一致させた場合において、物理的寸法を考慮すると、設計可能な4分割センサSB/SD、SCの縦の長さとスポット径の最大値の関係は、以下の表7のようになる。
Figure JPOXMLDOC01-appb-T000006
 発光点間隔bが0.088である場合、物理的寸法(4分割センサ間の隙間)を考慮すると、4分割センサのサイズ(縦の長さ)の最大値と、受光面上におけるレーザ光のスポット径の最大値は、表6のようになる。このように、実際の設計においては、物理的寸法(4分割センサ間の隙間)を考慮して、4分割センサのサイズ(縦の長さ)と受光面上におけるレーザ光のスポット径が設定されることとなる。たとえば、4分割センサSB/SDの縦の長さ(LB、LD)が0.090に設定され、4分割センサSCの縦の長さ(LC)が0.060に設定される。この場合、BD光、DVD光、CD光のスポット径φB、φD、φCは、それぞれ、0.063、0.052、0.040に設定される。
 以上、本発明の実施の形態について説明したが、本発明は、上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記以外に種々の変更が可能である。
 上記実施例1および実施例2では、BD光とCD光を出射する発光部101a、101cが、DVD光を出射する発光部101bを挟むように、半導体レーザ101に発光部101a~101cが配置されたが、発光部101a~101cの配列順はこれに限られるものではない。たとえば、BD光とDVD光を出射する発光部101a、101bが、CD光を出射する発光部101cを挟むように、発光部101a~101cが半導体レーザ101に配置されても良い。
 図8(a)、(b)は、それぞれ、上記のように半導体レーザ101が変更された場合の、比較例4と変更例における4分割センサSB、SC、SDの受光面積とスポット径の大きさの関係を示す図である。図8(a)の比較例4では、BD光の光軸がCD光の光軸に一致され、図8(b)の変更例では、BD光の光軸がDVD光の光軸に一致されている。
 図8(a)の比較例4において、上記比較例2と同様の算出過程に基づいて、4分割センサSB/SC、SDの縦の長さの最大値とスポット径の最大値を計算すると、以下の表9のようになる。
Figure JPOXMLDOC01-appb-T000007
 図8(b)の変更例において、上記実施例1と同様の算出過程に基づいて、4分割センサSB/SD、SCの縦の長さの最大値とスポット径の最大値を計算すると、以下の表10のようになる。
Figure JPOXMLDOC01-appb-T000008
 表7と表8とを比較すると、BD光の光軸をDVD光の光軸に一致させた方が、CD光の光軸に一致させるよりも、各レーザ光のスポット径を拡大できることが分かる。また、表8に示された4分割センサSB/SD、SCの縦の長さの最大値とスポット径の最大値は、上記実施例1における表3における4分割センサSB/SD、SCの縦の長さの最大値とスポット径の最大値と同じである。
 このように、半導体レーザ101における発光部101a~101cの配列が変更された場合も、BD光の光軸をDVD光の光軸に一致させることにより、各レーザ光のスポット径を拡大することができる。
 なお、図8(b)の変更例では、図5(b)の実施例1に比べて、BD光の光軸を光検出器111の受光面上において大きく移動させる必要がある。このため、変更例において、実施例1と同様の特性を有するDOE109が用いられる場合には、光検出器111とDOE109との距離を広げる必要があり、光検出器111とPBS103との間の距離が小さい場合には、DOE109の配置が困難になる場合がある。この点を考慮すると、BD光の発光部101aとDVD光の発光部101bは、図1のように、隣り合っているのが望ましい。
 また、上記実施例1、2では、DOE109によりBD光を回折させたがこれに限られるものではない。たとえば、図8(b)の変更例において、DVD光を回折させてDVD光の光軸をBD光の光軸に一致させても良い。
 また、上記実施例1、2では、φB:φD:φC=1.00:0.84:0.64に設定されたが、φB、φD、φCの比は、これに限定されるものではなく、光学系の設計に基づいて、適宜、変更され得る。
 また、上記実施例1、2では、4分割センサは、正方形状のものが用いられたが、長方形状や、円形状等、その他の形状であっても良い。
 さらに、上記実施例1、2では、発光部が略等間隔の半導体レーザが用いられたが、等間隔でないものが用いられても良い。
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
  1 … 光ピックアップ装置
  101 … 半導体レーザ(レーザ光源)
  101a … 発光部(第1のレーザ発光部)
  101b … 発光部(第2のレーザ発光部)
  101c … 発光部(第3のレーザ発光部)
  101f … サブマウント(パッケージ)
  109 … DOE(光軸調整素子)
  111 … 光検出器
  S1、SB/SD … 4分割センサ(第1のセンサ部、第1の4分割センサ)
  S4、SC … 4分割センサ(第2のセンサ部、第2の4分割センサ)

Claims (6)

  1.  第1のレーザ光を出射する第1のレーザ発光部と、第2のレーザ光を出射する第2のレーザ発光部と、第3のレーザ光を出射する第3のレーザ発光部を同一パッケージ内に収容するとともに、前記第1、第2および第3のレーザ発光部から同一方向に前記レーザ光を出射するレーザ光源と、
     前記第1、第2および第3のレーザ発光部からそれぞれ出射された前記第1、第2および第3のレーザ光を第1、第2および第3の開口数でそれぞれに対応するディスク上に収束させるとともに、前記ディスクによって反射された前記各レーザ光を光検出器に導く光学系と、
     前記光学系に配置され、前記光検出器の受光面上において前記第1のレーザ光と前記第2のレーザ光の光軸を一致させる光軸調整素子と、を備え、
     前記第1、第2および第3の開口数のうち、前記第1の開口数が最も大きく前記第3の開口数が最も小さく、
     前記光検出器は、前記光軸調整素子によって光軸が一致された第1および第2のレーザ光を受光する第1のセンサ部と、前記第3のレーザ光を受光する第2センサ部とを有する、
    ことを特徴とする光ピックアップ装置。
  2.  請求項1に記載の光ピックアップ装置において、
     前記各レーザ発光部は、前記第1のレーザ発光部、前記第2のレーザ発光部、前記第3のレーザ発光部の順で、直線状に並んで配置されている、
    ことを特徴とする光ピックアップ装置。
  3.  請求項1または2に記載の光ピックアップ装置において、
     前記第1および第2のセンサ部は、それぞれ、方形状の輪郭を有する第1および第2の4分割センサである、
    ことを特徴とする光ピックアップ装置。
  4.  請求項3に記載の光ピックアップ装置において、
     前記第1、第2の4分割センサの大きさと前記第1、第2および第3のレーザ光のスポット径が、以下に規定される条件が満たされるように設計されている、
    ことを特徴とする光ピックアップ装置。
     B’≧LB/2+LC/2
     B’=b’×Sinθ
     φB:φD:φC=α:β:γ
     LB=2φB/√2
     LC=2φC/√2
     ただし、上記式において、b’は、前記光検出器上における前記第2レーザ光の受光中心から前記第3レーザ光の受光中心までの距離である。θは、前記第1、第2の4分割センサのディスクタンジェンシャル方向に対応する方向に平行な分割線と前記第1、第2の4分割センサの並び方向との間の角度である。また、φBは、前記第1のレーザ光の受光面上におけるスポット径であり、φDは、前記第2のレーザ光の受光面上におけるスポット径であり、φCは、前記第3のレーザ光の受光面上におけるスポット径である。また、α、β、γは、第1、第2および第3のレーザ光の受光面上におけるスポット径の比である。さらに、LBは、前記第1の4分割センサのディスクタンジェンシャル方向に対応する方向に垂直な方向の長さであり、LCは、前記第2の4分割センサのディスクタンジェンシャル方向に対応する方向に垂直な方向の長さである。
  5.  請求項1ないし4の何れか一項に記載の光ピックアップ装置において、
     前記光軸調整素子は、波長選択性の回折格子からなっている、
    ことを特徴とする光ピックアップ装置。
  6.  請求項1ないし5の何れか一項に記載の光ピックアップ装置において、
     前記第1、第2および第3のレーザ光のうち、前記第1のレーザ光は、波長が最も短く、前記第3のレーザ光は、波長が最も長い、
    ことを特徴とする光ピックアップ装置。
PCT/JP2013/053337 2012-03-07 2013-02-13 光ピックアップ装置 WO2013132975A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050900 2012-03-07
JP2012050900A JP2015109117A (ja) 2012-03-07 2012-03-07 光ピックアップ装置

Publications (1)

Publication Number Publication Date
WO2013132975A1 true WO2013132975A1 (ja) 2013-09-12

Family

ID=49116459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053337 WO2013132975A1 (ja) 2012-03-07 2013-02-13 光ピックアップ装置

Country Status (2)

Country Link
JP (1) JP2015109117A (ja)
WO (1) WO2013132975A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175690A (ja) * 2010-02-23 2011-09-08 Sanyo Electric Co Ltd 光ピックアップ装置およびその製造方法
JP2011204336A (ja) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd レーザー装置、光ピックアップ装置およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175690A (ja) * 2010-02-23 2011-09-08 Sanyo Electric Co Ltd 光ピックアップ装置およびその製造方法
JP2011204336A (ja) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd レーザー装置、光ピックアップ装置およびその製造方法

Also Published As

Publication number Publication date
JP2015109117A (ja) 2015-06-11

Similar Documents

Publication Publication Date Title
JP2010040072A (ja) 光ピックアップ装置および焦点調整方法
JP2006079798A (ja) 光ピックアップ装置
JP2011008852A (ja) 光ピックアップ装置
KR101175007B1 (ko) 광 픽업 장치
JP2011204336A (ja) レーザー装置、光ピックアップ装置およびその製造方法
JP2010211903A (ja) 光ピックアップ装置
US8345528B2 (en) Optical pickup device
US8045443B2 (en) Optical pickup apparatus
WO2013132975A1 (ja) 光ピックアップ装置
US8559289B2 (en) Optical pickup apparatus
JP2011175690A (ja) 光ピックアップ装置およびその製造方法
JP2008047195A (ja) 光ピックアップ装置
WO2014013719A1 (ja) 光ピックアップ装置
JP2011141937A (ja) 発光装置、光ピックアップ装置およびその製造方法
JP2001028145A (ja) 光学ヘッド装置及びディスク録再装置
JP5306541B2 (ja) 光ピックアップ装置および光ピックアップ支持装置
JP2006079797A (ja) 光ピックアップ装置
US8264937B2 (en) Optical pickup device
JP2013222484A (ja) 光検出器の位置調整方法および光ピックアップ装置
JP2011028831A (ja) 光ピックアップ装置
JP2008140502A (ja) 光ピックアップ装置および光ディスク装置
US20130194906A1 (en) Optical pickup and optical system including the same
US20120106312A1 (en) Optical pickup device
US20120099414A1 (en) Optical pickup device
JP2010049758A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP