WO2013132960A1 - Tire condition monitor device - Google Patents

Tire condition monitor device Download PDF

Info

Publication number
WO2013132960A1
WO2013132960A1 PCT/JP2013/053102 JP2013053102W WO2013132960A1 WO 2013132960 A1 WO2013132960 A1 WO 2013132960A1 JP 2013053102 W JP2013053102 W JP 2013053102W WO 2013132960 A1 WO2013132960 A1 WO 2013132960A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
sensor
signal
vehicle body
body side
Prior art date
Application number
PCT/JP2013/053102
Other languages
French (fr)
Japanese (ja)
Inventor
勝宏 清野
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2013132960A1 publication Critical patent/WO2013132960A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0438Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver
    • B60C23/044Near field triggers, e.g. magnets or triggers with 125 KHz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0461Transmission control of wireless signals externally triggered, e.g. by wireless request signal, magnet or manual switch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force

Definitions

  • the present invention relates to a tire condition monitoring device that monitors tire information through wireless communication between a plurality of sensor units provided on a front wheel and a rear wheel of a vehicle and a vehicle body side device.
  • TPMS Transire Pressure Monitoring System
  • a sensor unit having a sensing function for detecting a tire condition and a wireless communication function is directly attached to each wheel, and a vehicle body side device that wirelessly communicates with the sensor unit of each wheel is provided on the vehicle body side.
  • the vehicle body side device monitors the tire condition of each wheel based on the sensor signal received from the sensor unit of each wheel, detects an abnormality in the tire condition, and notifies the user.
  • the TPMS performs wheel determination that associates the sensor unit with the wheel to which the sensor unit is attached. For example, at the timing when the ignition switch for starting the engine is turned on from OFF, wheel determination processing is performed to associate sensor identification information for identifying the sensor unit with the position of the wheel on which the sensor unit is provided (for example, Patent Document 1).
  • the tire condition monitoring device of Patent Document 1 includes a first transmission antenna that is provided at the front of the vehicle body and used for determining the front wheel, and a second transmission antenna that is provided at the rear of the vehicle body and used for determining the wheel of the rear wheel.
  • the side device receives a sensor signal from the front wheel sensor unit or a sensor signal from the rear wheel sensor unit. Based on the RSSI (Received Signal Strength Strength Indication) of the received sensor signal, the control device of the vehicle body side device identifies the position of the wheel to which the sensor unit that transmitted the signal is attached.
  • the first transmission antenna and the second transmission antenna are respectively installed at eccentric positions in the axle direction (left-right direction).
  • the sensor unit which received the LF signal from the 1st antenna with the front wheel sensor unit received with the receiving antenna on the vehicle body side, and transmitted the sensor signal based on the RSSI of the received sensor signal Is attached to the left or right front wheel.
  • the sensor unit that receives the LF signal from the second antenna by the rear wheel sensor unit receives the sensor signal at the receiving antenna, and transmits the sensor signal based on the RSSI of the received sensor signal. Determine whether it is attached to the left or right rear wheel.
  • the control device stores the identified wheel position and the identification information of the sensor unit in the storage unit in association with each other.
  • the tire condition monitoring device of Patent Document 1 is provided with the first antenna corresponding to the front wheel sensor unit and the second antenna corresponding to the rear wheel sensor unit, the four wheels on the front, rear, left and right are provided.
  • the present invention has been made in view of the above points, and can reduce the number of antennas that transmit response request signals for requesting responses to the wheel sensor units, thereby reducing costs and freeing the layout of the vehicle body. It is an object to provide a tire condition monitoring device capable of improving the degree.
  • a tire condition monitoring device includes a plurality of sensor units provided respectively on front wheels and rear wheels constituting a vehicle wheel, and a vehicle body side antenna that transmits a response request signal for requesting a response to the sensor unit.
  • a vehicle body side device that wirelessly communicates with each sensor unit, and the vehicle body side antenna receives the response request signal from a front wheel or a rear wheel closer to the vehicle body side antenna, and the vehicle body side The front wheel or the rear wheel on the side far from the antenna is arranged so as not to receive the response request signal, and each of the sensor units transmits the sensor signal including the sensor identification information by the vehicle body side antenna.
  • the signal is transmitted to the vehicle body side device, and if the response request signal is received, a sensor signal including sensor identification information is used as the response request signal.
  • the sensor units are arranged so that rotational direction information indicating the rotational directions of the left and right wheels of the front wheel and the rear wheel is different from each other, and detects the rotational direction of the wheels.
  • a sensor signal including rotation direction information indicating the detected wheel rotation direction and sensor identification information is transmitted to the vehicle body side device, and the vehicle body side device is included in the sensor signal received in synchronization with the response request signal.
  • the wheel closer to the vehicle body side antenna is determined, and from the sensor identification information included in the sensor signal received asynchronously to the response request signal, the wheel far from the vehicle body side antenna is determined.
  • the left and right wheels are determined from the rotational direction information included in the sensor signal.
  • the communication area is set so that the wheel group closer to the antenna transmitting the response request signal enters the communication area and the wheel group far from the antenna does not enter the communication area.
  • the distance between the wheel and the vehicle body side antenna is determined, and the left and right are determined by the wheel rotation direction.
  • the number can be reduced to one, and the cost can be reduced and the degree of freedom of the layout of the vehicle body can be improved.
  • synchronization described in the present specification means that a plurality of signals have the same period and the same phase.
  • Each sensor unit transmits a sensor signal asynchronously with the response request signal in a first cycle, and the vehicle body side antenna requests a response in a second cycle shorter than the first cycle until the wheel is determined. It is desirable to transmit a signal. According to this configuration, since the second period is shorter than the first period, the wheel can be determined in a short time. Further, the vehicle body side antenna may be installed at a front portion of the vehicle. According to this configuration, the distance difference between the wheel group on the side closer to the vehicle body side antenna and the wheel group on the side far from the vehicle body side antenna can be increased compared with the case where the vehicle body side antenna is arranged in the center of the vehicle. A wheel group that cannot communicate with a wheel group that cannot communicate with each other can be reliably identified.
  • the present invention it is possible to reduce the number of vehicle body side antennas that transmit a response request signal for requesting a response to the wheel sensor unit, thereby reducing the cost and improving the degree of freedom of the vehicle body layout.
  • FIG. 1 is an overall configuration diagram of a tire condition monitoring device according to the present embodiment. It is a detailed functional block diagram of the tire condition monitoring apparatus which concerns on this Embodiment. It is a figure for demonstrating the example of a detection of the rotation direction of the wheel which concerns on this Embodiment. It is a figure for demonstrating the relationship between reception of the UHF signal which concerns on this Embodiment, and transmission of LF signal. It is a figure which shows the memory content of the memory
  • FIG. 1 is an overall configuration diagram of a tire condition monitoring apparatus according to the present embodiment. 1 shows a configuration in which the tire condition monitoring device of the present embodiment is applied to a four-wheel vehicle 10.
  • the vehicle 10 includes a vehicle body 11 and four wheels 12A to 12D attached to the vehicle body 11.
  • the direction of the arrow FR is the front of the vehicle 10
  • the direction of the arrow BK opposite to the arrow FR is the rear of the vehicle 10.
  • the wheels 12A and 12B attached to the front of the vehicle body 11 are referred to as front wheels 12A and 12B
  • the wheels 12C and 12D attached to the rear of the vehicle body 11 are referred to as rear wheels 12C and 12D.
  • the tire condition monitoring device includes sensor units 13A to 13D attached to the wheels 12A to 12D, a control device 14 as a vehicle body side device provided at a predetermined position (for example, near the center) of the vehicle body 11, and an LF communication area described later. And an LF antenna 15 provided in front of the vehicle body 11 so that R is set.
  • the sensor units 13A to 13D are fixed inside the tires (for example, wheels) of the wheels 12A to 12D, respectively, and rotate integrally with the wheels 12A to 12D.
  • the control device 14 receives sensor signals from the sensor units 13A to 13D in a predetermined cycle, and detects the state (whether there is an abnormality, etc.) of the wheels 12A to 12D to which the sensor units 13A to 13D are attached based on the received sensor signals.
  • the sensor signal is a signal for notifying the tire condition of the wheels 12A to 12D to which the sensor units 13A to 13D are attached, and includes sensor identification information for identifying the sensor units 13A to 13D.
  • a UHF signal of 433.92 MHz and 9.6 kbps is used as the sensor signal.
  • the sensor signal is a signal that can be distinguished from an LF (Low Frequency) signal used for a request signal described later, such as an RF signal, and a signal with a different specification can be used as long as communication quality can be ensured. Good.
  • LF Low Frequency
  • the LF antenna 15 is disposed relatively close to one of the front wheel group and the rear wheel group.
  • the front wheel group is a wheel group to which the front wheels 12A and 12B belong
  • the rear wheel group is a wheel group to which the rear wheels 12C and 12D belong.
  • the LF antenna 15 is disposed on the front bumper of the vehicle body 11.
  • the LF antenna 15 receives a request from the control device 14 and transmits a response request signal for requesting a response from the sensor unit.
  • the response request signal is a signal that requests the sensor units 13A to 13D to transmit a sensor signal, and for example, an LF signal of 125 kHz and 3.9 Kbps is used.
  • the range in which the sensor unit can detect the response request signal transmitted from the LF antenna 15 is the LF communication area R.
  • the size of the LF communication area R is determined by the relationship between the signal strength of the response request signal that is an LF signal and the reception sensitivity of the sensor unit.
  • the sensor units 13A and 13B attached to the front wheels 12A and 12B are included in the LF communication area R, while the sensor units 13C and 13D attached to the rear wheels 12C and 12D are The arrangement position of the LF antenna 15 is determined so as not to be included in the LF communication area R.
  • the sensor units 13A and 13B of the front wheel group included in the LF communication area R respond to (synchronize) the response request signal and return the sensor signal, but the rear wheel group of the rear wheel group not included in the LF communication area R.
  • the sensor units 13C and 13D do not respond (synchronize) with the response request signal.
  • the installation position of the LF antenna 15 is set so that the sensor units 13C and 13D of the rear wheel group are included in the LF communication area R and the sensor units 13A and 13B of the front wheel group are not included in the LF communication area R. Then, the sensor units 13C and 13D in the rear wheel group send back notification signals in synchronization with the response request signal, but the sensor units 13A and 13B in the front wheel group do not respond to the response request signal.
  • the LF antenna 15 is disposed behind the vehicle body 11.
  • FIG. 1 an example in which the LF antenna 15 is disposed in front of the vehicle body 11 will be described.
  • FIG. 2 is a functional configuration diagram of the tire condition detection device of the present embodiment.
  • the wheels 12A to 12D and the sensor units 13A to 13D are not distinguished, they are collectively referred to as the wheels 12 and the sensor unit 13.
  • a UHF signal is used as a sensor signal
  • an LF signal is used as a response request signal.
  • the sensor unit 13 attached to each wheel 12 includes a reception unit 132 that receives an LF signal as a response request signal via the reception antenna 131, and a UHF as a sensor signal via the transmission antenna 133.
  • the transmission unit 134 that transmits a signal
  • the tire state acquisition unit 135 that acquires the tire state such as air pressure and temperature
  • the rotation direction acquisition unit 136 that acquires the rotation direction of the wheel 12, and the sensor unit 13 are individually assigned.
  • a storage unit 137 for storing the unit identifier.
  • the tire state acquisition unit 135 acquires tire state information indicating the tire state such as air pressure and temperature, and outputs the acquired tire state information to the transmission unit 134.
  • the tire state acquisition unit 135 may be configured by an air pressure sensor or a temperature sensor, or may be an interface connected thereto.
  • the rotation direction acquisition unit 136 is arranged so that the rotation direction information indicating the rotation direction of the left and right wheels 12 is different from each other on the front wheel and the rear wheel to which the sensor unit 13 is attached, and the acquired rotation direction information is transmitted to the transmission unit 134. Output to.
  • the rotation direction acquisition unit 136 may be configured from a sensor that detects the rotation direction of the wheel 12, or may be an interface connected to the sensor. The rotation direction of the wheel 12 is determined based on the phase difference between the outputs of the two acceleration sensors provided on the wheel 12.
  • the wheel 12 includes an acceleration sensor X (not shown) having a detection direction A1 perpendicular to the tangential direction of the wheel 12 and detection parallel to the tangential direction of the wheel 12.
  • An acceleration sensor Y (not shown) having a direction A2 is provided at a predetermined position A of the wheel 12.
  • the output of the acceleration sensor X at the predetermined position A is the centrifugal force of the wheel rotation.
  • the output is increased as the wheel 12 rotates to B, and the output increases at the position C.
  • the output is maximized because it receives the influence of gravity according to the centrifugal force of the wheel rotation. As a result, the output decreases.
  • the output of the acceleration sensor Y increases as it rotates from A to B, reaches a maximum at B, then decreases as it rotates to C, and reaches a minimum at D. Therefore, when the outputs of the acceleration sensor X and the acceleration sensor Y are compared, the phase of the sensor Y is 90 degrees earlier than the sensor X, and the phase difference is ⁇ 90 degrees. Conversely, when the acceleration sensor rotates right together with the wheel 12, the phase of the sensor X is 90 degrees earlier than the sensor Y, and the phase difference is +90 degrees. Thus, the rotation direction of the wheel 12 is determined by the positive / negative of the phase difference.
  • the transmission unit 134 transmits a UHF signal via the transmission antenna 133.
  • the transmission unit 134 includes UHF including sensor identification information stored in the storage unit 137, tire state information acquired by the tire state acquisition unit 135, and rotation direction information acquired by the rotation direction acquisition unit 136. Generate and send a signal.
  • the transmission unit 134 when receiving the LF signal (response request signal) from the LF antenna 15, the transmission unit 134 transmits a UHF signal in a cycle C2 in synchronization with the LF signal.
  • the transmission unit 134 when the LF signal is not received, the transmission unit 134 transmits the UHF signal in a predetermined cycle C1 asynchronously with the LF signal from the LF antenna 15.
  • the transmitter 134 of the sensor units 13B and 13D is not shown for convenience of explanation.
  • the control device 14 provided in the vehicle body 11 includes a transmission unit 141 that transmits an LF signal via the LF antenna 15, a reception unit 143 that receives a UHF signal via the reception antenna 142, and a sensor unit that transmits the UHF signal.
  • 13 includes a wheel determination unit 144 that specifies the position of the wheel 12 to which the wheel 13 is attached, and a storage unit 145 that stores the position specified by the wheel determination unit 144 in association with the unit identifier.
  • the transmission unit 141 transmits an LF signal via the LF antenna 15. Specifically, as illustrated in FIG. 4, the transmission unit 141 transmits the LF signal asynchronously with a predetermined period C1 at which the reception unit 143 receives the UHF signal. Moreover, the transmission part 141 transmits an LF signal with the period C2 shorter than the predetermined period C1 by which a UHF signal is received.
  • the transmission unit 141 transmits an LF signal with transmission power that maintains a predetermined signal strength in a predetermined LF communication area.
  • the predetermined LF communication area is set so as to include a wheel group on the side closer to the LF antenna 15 and not include a wheel group on the far side.
  • transmission section 141 transmits an LF signal with transmission power that maintains a predetermined signal strength in LF communication area R that includes a front wheel group and does not include a rear wheel group.
  • the wheel determination unit 144 determines the wheel of the wheel 12 according to whether the UHF signal received by the reception unit 143 is synchronized with the LF signal transmitted from the LF antenna 15.
  • the wheel determination of the wheel 12 refers to specifying the position of the wheel 12 to which the sensor unit 13 that has transmitted the UHF signal received by the receiving unit 143 is attached.
  • the wheel determination unit 144 determines that the sensor unit (wheel) that has transmitted the UHF signal is It is determined that the wheel group is close to the LF antenna 15. For example, when the LF communication area R shown in FIG. 1 is set, if the UHF signal received by the receiving unit 143 is synchronized with the LF signal transmitted via the LF antenna 15, It is determined that the UHF signal is from the wheels 12A and 12B (sensor units 13A and 13B) belonging to the group.
  • the wheel determination unit 144 determines which one of the left and right wheels 12A and 12B of the front wheel group is the UHF signal based on the rotation direction information included in the UHF signal. As shown in FIG. 5, if the correspondence between the sensor unit 13 and the wheel 12 is confirmed, the wheel determination unit 144 includes the determined wheel identification information (here, 12A and 12B) and the UHF signal. Sensor identification information (in this case, 13A, 13B) is stored in the storage unit 145 in association with each other.
  • the wheel determining unit 144 determines whether the sensor identification information included in the UHF signal has been determined. Determine whether or not. The wheel determination unit 144 determines that the wheel group is far from the LF antenna 15 when the wheel has not been determined. For example, when the LF communication area R shown in FIG. 1 is set, the wheel determination unit 144, when the sensor identification information included in the received UHF signal is not wheel determination, wheels 12C and 12D (sensors belonging to the rear wheel group) It is determined that the signal is a UHF signal from the units 13C and 13D).
  • the wheel determination unit 144 determines one of the left and right wheels 12C and 12D of the rear wheel group based on the rotation direction information included in the UHF signal. As shown in FIG. 5, the wheel determination unit 144 associates the determined wheel identification information (here, 12C, 12D) with the sensor identification information (here, 13C, 13D) included in the UHF signal. The data is stored in the storage unit 145.
  • the sensor unit 13A (13B) front wheel group
  • the sensor unit 13C (13D) rear wheel group
  • the predetermined period until the LF antenna 15 determines the wheel.
  • the LF signal is transmitted in a cycle C2 that is sufficiently shorter than the UHF signal transmission cycle C1.
  • the front wheel group sensor unit 13A (13B) existing in the LF communication area R transmits a UHF signal having a predetermined period C2 in synchronization with the received LF signal.
  • the sensor unit 13C (13D) in the rear wheel group outside the LF communication area R does not respond because it cannot receive the LF signal, and therefore does not transmit the UHF signal of the cycle C2 synchronized with the LF signal and transmits the UHF signal of the cycle C1. Keep sending.
  • the receiving unit 143 of the control device 14 receives a UHF signal having a predetermined period C1 from the sensor unit 13A (13B) of the front wheel group and the sensor unit 13C (13D) of the rear wheel group, and transmits an LF signal from the antenna 15. Then, the UHF signal having the period C2 synchronized with the LF signal is received only from the sensor unit 13A (13B) of the front wheel group.
  • the wheel determination unit 144 of the control device 14 executes the following wheel determination process from the UHF signal received at the cycle C1 and the UHF signal received at the cycle C2.
  • FIG. 6 is a flowchart showing the wheel determination operation in the present embodiment.
  • the transmission unit 141 of the control device 14 transmits an LF signal that can be detected within the LF communication area R as a response request signal via the LF antenna 15 (step S101).
  • the wheel determination unit 144 of the control device 14 determines whether or not a UHF signal as a sensor signal has been received from the sensor unit 13 (step S102). When no UHF signal is received from the sensor unit 13 (step S102; No), the process returns to step S101.
  • step S102 when the receiving unit 143 receives a UHF signal from the sensor unit 13 (step S102; Yes), the wheel determination unit 144 determines whether the UHF signal is synchronized with the LF signal transmitted in step S101. Is determined (step S103).
  • the wheel determination unit 144 When the UHF signal received by the reception unit 143 is activated by the LF signal transmitted in step S101 and transmitted (step S103; Yes), the wheel determination unit 144 includes a wheel group in the LF communication area R ( The wheel determination process of the front wheel group close to the LF antenna 15 is performed. That is, it is determined whether the UHF signal is transmitted from the sensor unit 13A or 13B provided on any of the left and right wheels 12A and 12B constituting the front wheel group. For this reason, the wheel determination unit 144 extracts the rotation direction information included in the UHF signal received by the reception unit 143, and determines which of the front wheel group is the left or right wheel 12 based on the rotation direction information. (Steps S104 to S107).
  • the rotation direction information is information indicating the rotation direction of the wheel 12 detected by a rotation direction sensor provided on the wheel 12.
  • the wheels 12B and 12D attached to the right side of the traveling direction of the vehicle body 11 are recognized as rotating right and attached to the left side of the traveling direction of the vehicle body 11.
  • the observation reference positions are determined so that the wheels 12A and 12C are recognized as rotating left.
  • the observation reference position is set at the axial center of the axle to which the left and right wheels are attached, and the vehicle body 11 is moving forward, the wheels 12B and 12D attached on the right side from the observation reference position are moved in the axle direction.
  • the position where the rotation direction is observed is defined as the observation reference position.
  • the wheel determination unit 144 determines that the wheel determination unit 144 has the right wheel in the determined wheel group. It determines with it being the wheel 12, and determines the wheel position of the said UHF signal transmission origin. In the example illustrated in FIG. 1, the wheel determination unit 144 determines that the UHF signal transmission source wheel is the right front wheel 12B from the rotation direction information (right rotation) included in the UHF signal (step S105).
  • step S106 determines whether or not the rotation direction of the wheel 12 is left rotation.
  • step S106 determines that the wheel of the UHF signal transmission source is the left front wheel 12A (step S107).
  • step S106 determines that the wheel of the UHF signal transmission source is the left front wheel 12A (step S107).
  • the wheel determination unit 144 transmits the UHF signal to the sensor unit.
  • the wheel 12 to which 13 is attached is determined to be the wheel group outside the LF communication area R, that is, the left rear wheel 12C or the right rear wheel 12D included in the rear wheel group.
  • the wheel determination unit 144 determines whether the sensor unit 13 that has transmitted the UHF signal is attached to the left rear wheel 12C or the right rear wheel 12D based on the rotation direction information included in the received UHF signal. Determine.
  • the wheel determination unit 144 determines whether or not the rotation direction of the wheel 12 to which the sensor unit 13 that has transmitted the UHF signal is attached is a right rotation ( Step S108).
  • the wheel determination unit 144 determines that the UHF signal is transmitted from the sensor unit 13D attached to the right rear wheel 12D (step S109).
  • step S110 determines whether or not the rotation direction of the wheel 12 is left rotation.
  • step S110 determines that the UHF signal is transmitted from the sensor unit 13C attached to the left rear wheel 12C (step S111).
  • step S110; No the process returns to step S101.
  • the wheel determination unit 144 determines whether the sensor unit 13 that transmitted the UHF signal is attached to the left front wheel 12A, the right front wheel 12B, the left rear wheel 12C, or the right rear wheel 12D. Determine. When determining the wheel 12 to which the sensor unit 13 is attached, the wheel determination unit 144 determines whether the received UHF signal includes identification information of the sensor unit 13 (steps S112 to S115).
  • the wheel determination unit 144 stores the determined position of the wheel 12 and the identification information of the sensor unit 13 in association with each other.
  • the data is stored in the unit 145 (step S116).
  • the wheel determination unit 144 outputs the determined position of the wheel 12 and the identification information of the sensor unit 13 to a vehicle-mounted device (not shown) via a communication unit (not shown) (step S117).
  • the LF antenna 15 is disposed on the front bumper of the vehicle body 11, only the front wheel group is set to enter the LF communication area R, and the UHF signal synchronized with the LF signal is transmitted to the front wheel. Since it is determined as a signal from the sensor units 13A and 13B provided on the wheels 12 of the group, and the UHF signal that is asynchronous with the LF signal and the wheels excluding the wheels 12 of the front wheel group are determined as the rear wheel group, The number of antennas can be reduced to one, so that the cost can be reduced and the flexibility of the layout of the vehicle body can be improved.
  • the conventional method of determining the wheel using the RSSI value of the UHF signal may reduce the wheel determination accuracy due to factors such as a positional shift of the LF antenna and a change in radio wave intensity.
  • the wheel group is determined synchronously / asynchronously with the LF signal, and the left and right are determined based on the wheel rotation direction. The accuracy of determination can be improved.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the biaxial acceleration sensor is used as the rotation direction sensor, but the rotation direction information may be acquired by a magnetic sensor or an optical sensor instead of the acceleration sensor.
  • the arrangement, size, and the like of each component in the above embodiment can be changed as appropriate.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.

Abstract

The purpose of the present invention is to reduce the number of low-frequency (LF) antennas and reduce costs while improving the degree of freedom in vehicle body layout. A tire condition monitor device comprises sensor units (13A-13D) respectively provided on front wheels (12A, 12B) and rear wheels (12C, 12D); an LF antenna (15) that transmits a response request signal to the sensor units (13A-13D) which requests a response from the sensor units; and an on-car device (14). The communication area of the LF antenna (15) is set such that one wheel group is located inside the communication area while the other wheel group is located outside the communication area. The on-car device (14) determines wheels in accordance with whether or not the sensor signals received from each of the sensor units (13A-13D) are synchronized with said response request signal and the rotational direction information of the wheels.

Description

タイヤ状態監視装置Tire condition monitoring device
 本発明は、車両の前輪及び後輪にそれぞれに設けられた複数のセンサユニットと車体側装置との間で無線通信してタイヤ情報を監視するタイヤ状態監視装置に関する。 The present invention relates to a tire condition monitoring device that monitors tire information through wireless communication between a plurality of sensor units provided on a front wheel and a rear wheel of a vehicle and a vehicle body side device.
 従来、自動車などの車両において、車輪を構成するタイヤの空気圧や温度等のタイヤ状態を監視するTPMS(Tire Pressure Monitoring System)が知られている。TPMSでは、各車輪にタイヤ状態を検出するセンシング機能と無線通信機能を備えたセンサユニットが直接取り付けられ、車体側に各車輪のセンサユニットと無線通信する車体側装置が備えられる。車体側装置は、各車輪のセンサユニットから受信したセンサ信号に基づいて各車輪のタイヤ状態を監視し、タイヤ状態の異常を検出してユーザに通知する。 Conventionally, in vehicles such as automobiles, TPMS (Tire Pressure Monitoring System) for monitoring tire conditions such as air pressure and temperature of tires constituting wheels has been known. In TPMS, a sensor unit having a sensing function for detecting a tire condition and a wireless communication function is directly attached to each wheel, and a vehicle body side device that wirelessly communicates with the sensor unit of each wheel is provided on the vehicle body side. The vehicle body side device monitors the tire condition of each wheel based on the sensor signal received from the sensor unit of each wheel, detects an abnormality in the tire condition, and notifies the user.
 かかるTPMSでは、車体側装置が、タイヤ状態を示すセンサ信号を送信しているセンサユニット(車輪)を特定する必要がある。このため、TPMSは、センサユニットとセンサユニットが取り付けられた車輪とを対応づける輪確定が実施される。例えば、エンジンを始動させるためのイグニッションスイッチをオフからオンにしたタイミングで、センサユニットを識別するセンサ識別情報と当該センサユニットが設けられた車輪の位置とを関連付ける輪確定処理が行われる(例えば、特許文献1参照)。 In such TPMS, it is necessary for the vehicle body side device to specify the sensor unit (wheel) that is transmitting the sensor signal indicating the tire condition. For this reason, the TPMS performs wheel determination that associates the sensor unit with the wheel to which the sensor unit is attached. For example, at the timing when the ignition switch for starting the engine is turned on from OFF, wheel determination processing is performed to associate sensor identification information for identifying the sensor unit with the position of the wheel on which the sensor unit is provided (for example, Patent Document 1).
 特許文献1のタイヤ状態監視装置は、車体前方に設けられ前輪の輪確定に用いられる第1送信アンテナと、車体後方に設けられ後輪の輪確定に用いられる第2送信アンテナとを備え、車体側装置が前輪のセンサユニットからのセンサ信号又は後輪のセンサユニットからのセンサ信号を受信する。車体側装置の制御装置は、受信したセンサ信号のRSSI(Received Signal Strength Indication)に基づいて当該信号を送信したセンサユニットが取り付けられた車輪の位置を特定する。具体的には、第1送信アンテナ及び第2送信アンテナを車軸方向(左右方向)の偏心位置にそれぞれ設置する。そして、前輪のセンサユニットが第1アンテナからのLF信号を受けて送信したセンサ信号を車体側の受信アンテナで受信し、その受信したセンサ信号のRSSIに基づいて、当該センサ信号を送信したセンサユニットが左右いずれの前輪に取り付けられているかを判別する。同様に、後輪のセンサユニットが第2アンテナからのLF信号を受けて送信したセンサ信号を受信アンテナで受信し、その受信したセンサ信号のRSSIに基づいて、当該センサ信号を送信したセンサユニットが左右いずれの後輪に取り付けられているかを判別する。制御装置は、特定した車輪の位置とセンサユニットの識別情報とを関連付けて記憶部に記憶させる。 The tire condition monitoring device of Patent Document 1 includes a first transmission antenna that is provided at the front of the vehicle body and used for determining the front wheel, and a second transmission antenna that is provided at the rear of the vehicle body and used for determining the wheel of the rear wheel. The side device receives a sensor signal from the front wheel sensor unit or a sensor signal from the rear wheel sensor unit. Based on the RSSI (Received Signal Strength Strength Indication) of the received sensor signal, the control device of the vehicle body side device identifies the position of the wheel to which the sensor unit that transmitted the signal is attached. Specifically, the first transmission antenna and the second transmission antenna are respectively installed at eccentric positions in the axle direction (left-right direction). And the sensor unit which received the LF signal from the 1st antenna with the front wheel sensor unit received with the receiving antenna on the vehicle body side, and transmitted the sensor signal based on the RSSI of the received sensor signal Is attached to the left or right front wheel. Similarly, the sensor unit that receives the LF signal from the second antenna by the rear wheel sensor unit receives the sensor signal at the receiving antenna, and transmits the sensor signal based on the RSSI of the received sensor signal. Determine whether it is attached to the left or right rear wheel. The control device stores the identified wheel position and the identification information of the sensor unit in the storage unit in association with each other.
特開2009-214708号公報JP 2009-214708 A
 しかしながら、特許文献1のタイヤ状態監視装置は、前輪のセンサユニットに対応して第1アンテナを設け、後輪のセンサユニットに対応して第2アンテナを設けているので、前後左右の4つの車輪を確定するために、車体前方と車体後方とに少なくとも2つのアンテナを設ける必要がある。このため、アンテナを2本設置するためのコストがかかると共に、アンテナ設置上の制約が大きく、車体のレイアウトの自由度が低減するという問題点があった。 However, since the tire condition monitoring device of Patent Document 1 is provided with the first antenna corresponding to the front wheel sensor unit and the second antenna corresponding to the rear wheel sensor unit, the four wheels on the front, rear, left and right are provided. In order to determine the above, it is necessary to provide at least two antennas on the front and rear of the vehicle body. For this reason, there is a problem in that the cost for installing two antennas is high, and restrictions on the antenna installation are large, and the degree of freedom in layout of the vehicle body is reduced.
 本発明はかかる点に鑑みてなされたものであり、車輪のセンサユニットに応答を要求する応答要求信号を送信するアンテナ本数を削減でき、コストの低減を図ることができると共に、車体のレイアウトの自由度を向上できるタイヤ状態監視装置を提供することを目的とする。 The present invention has been made in view of the above points, and can reduce the number of antennas that transmit response request signals for requesting responses to the wheel sensor units, thereby reducing costs and freeing the layout of the vehicle body. It is an object to provide a tire condition monitoring device capable of improving the degree.
 本発明のタイヤ状態監視装置は、車両の車輪を構成する前輪及び後輪にそれぞれ設けられた複数のセンサユニットと、前記センサユニットに対して応答を要求する応答要求信号を送信する車体側アンテナと、前記各センサユニットと無線通信する車体側装置と、を備え、前記車体側アンテナは、前記車体側アンテナに対して近い側の前輪又は後輪が前記応答要求信号を受信し、かつ前記車体側アンテナに対して遠い側の前輪又は後輪が前記応答要求信号を受信しないように配置し、前記各センサユニットは、センサ識別情報を含んだセンサ信号を、前記車体側アンテナが送信する前記応答要求信号とは非同期に前記車体側装置へ送信すると共に、前記応答要求信号を受信していればセンサ識別情報を含んだセンサ信号を前記応答要求信号に同期して送信し、前記各センサユニットは、前記前輪と前記後輪それぞれの左右の車輪の回転方向を示す回転方向情報が互いに異なるように構成されて配置されており、前記車輪の回転方向を検出し、検出した車輪回転方向を示す回転方向情報及びセンサ識別情報を含んだセンサ信号を前記車体側装置に送信し、前記車体側装置は、前記応答要求信号に同期して受信したセンサ信号に含まれたセンサ識別情報から前記車体側アンテナに近い側の車輪を確定し、前記応答要求信号に非同期で受信したセンサ信号に含まれたセンサ識別情報から前記車体側アンテナから遠い側の車輪を確定し、センサ信号に含まれた回転方向情報から左右の車輪を確定する、ことを特徴とする。 A tire condition monitoring device according to the present invention includes a plurality of sensor units provided respectively on front wheels and rear wheels constituting a vehicle wheel, and a vehicle body side antenna that transmits a response request signal for requesting a response to the sensor unit. A vehicle body side device that wirelessly communicates with each sensor unit, and the vehicle body side antenna receives the response request signal from a front wheel or a rear wheel closer to the vehicle body side antenna, and the vehicle body side The front wheel or the rear wheel on the side far from the antenna is arranged so as not to receive the response request signal, and each of the sensor units transmits the sensor signal including the sensor identification information by the vehicle body side antenna. Asynchronously with the signal, the signal is transmitted to the vehicle body side device, and if the response request signal is received, a sensor signal including sensor identification information is used as the response request signal. The sensor units are arranged so that rotational direction information indicating the rotational directions of the left and right wheels of the front wheel and the rear wheel is different from each other, and detects the rotational direction of the wheels. A sensor signal including rotation direction information indicating the detected wheel rotation direction and sensor identification information is transmitted to the vehicle body side device, and the vehicle body side device is included in the sensor signal received in synchronization with the response request signal. From the detected sensor identification information, the wheel closer to the vehicle body side antenna is determined, and from the sensor identification information included in the sensor signal received asynchronously to the response request signal, the wheel far from the vehicle body side antenna is determined. The left and right wheels are determined from the rotational direction information included in the sensor signal.
 この構成によれば、応答要求信号を送信するアンテナに対して近い側の車輪グループが通信エリアに入り、遠い側の車輪グループが通信エリアに入らないように通信エリアを設定し、各センサユニットから受信したセンサ信号が応答要求信号に同期しているか否かに応じて車輪と前記車体側アンテナとの距離の遠近を判別し、また車輪回転方向によって左右を判定するので、LF送信用のアンテナを1本に削減することができ、コストダウンを図れると共に車体のレイアウトの自由度を向上できる。なお、本明細書で述べる「同期」とは、複数の信号において周期が同一であり、かつ位相も同一であることを意味する。 According to this configuration, the communication area is set so that the wheel group closer to the antenna transmitting the response request signal enters the communication area and the wheel group far from the antenna does not enter the communication area. Depending on whether or not the received sensor signal is synchronized with the response request signal, the distance between the wheel and the vehicle body side antenna is determined, and the left and right are determined by the wheel rotation direction. The number can be reduced to one, and the cost can be reduced and the degree of freedom of the layout of the vehicle body can be improved. Note that “synchronization” described in the present specification means that a plurality of signals have the same period and the same phase.
 前記各センサユニットは、第1の周期で前記応答要求信号とは非同期でセンサ信号を送信し、前記車体側アンテナは、輪確定するまでは第1の周期よりも短い第2の周期で応答要求信号を送信することが望ましい。この構成によれば、第2の周期が第1の周期よりも短いため、短時間で輪の確定ができる。また、前記車体側アンテナは、車両のフロント部に設置されても良い。この構成によれば、車両中央部に車体側アンテナを配置する場合に比べ、車体側アンテナに近い側の車輪グループと車体側アンテナから遠い側の車輪グループとの距離差を大きくできるため、通信可能な車輪グループと通信不能な車輪グループとを確実に識別できる。 Each sensor unit transmits a sensor signal asynchronously with the response request signal in a first cycle, and the vehicle body side antenna requests a response in a second cycle shorter than the first cycle until the wheel is determined. It is desirable to transmit a signal. According to this configuration, since the second period is shorter than the first period, the wheel can be determined in a short time. Further, the vehicle body side antenna may be installed at a front portion of the vehicle. According to this configuration, the distance difference between the wheel group on the side closer to the vehicle body side antenna and the wheel group on the side far from the vehicle body side antenna can be increased compared with the case where the vehicle body side antenna is arranged in the center of the vehicle. A wheel group that cannot communicate with a wheel group that cannot communicate with each other can be reliably identified.
 本発明によれば、車輪のセンサユニットに応答を要求する応答要求信号を送信する車体側アンテナ本数を削減でき、コストの低減を図ることができると共に、車体のレイアウトの自由度を向上できる。 According to the present invention, it is possible to reduce the number of vehicle body side antennas that transmit a response request signal for requesting a response to the wheel sensor unit, thereby reducing the cost and improving the degree of freedom of the vehicle body layout.
本実施の形態に係るタイヤ状態監視装置の全体構成図である。1 is an overall configuration diagram of a tire condition monitoring device according to the present embodiment. 本実施の形態に係るタイヤ状態監視装置の詳細機能構成図である。It is a detailed functional block diagram of the tire condition monitoring apparatus which concerns on this Embodiment. 本実施の形態に係る車輪の回転方向の検出例を説明するための図である。It is a figure for demonstrating the example of a detection of the rotation direction of the wheel which concerns on this Embodiment. 本実施の形態に係るUHF信号の受信とLF信号の送信との関係を説明するための図である。It is a figure for demonstrating the relationship between reception of the UHF signal which concerns on this Embodiment, and transmission of LF signal. センサ識別情報と車輪識別情報とを対応付けて記憶した記憶部の記憶内容を示す図である。It is a figure which shows the memory content of the memory | storage part which matched and memorize | stored sensor identification information and wheel identification information. 本実施の形態における車輪確定のためのフロー図である。It is a flowchart for wheel decision in this Embodiment.
 以下、本実施の形態に係るタイヤ状態監視装置について、図面を参照して詳述する。 Hereinafter, the tire condition monitoring apparatus according to the present embodiment will be described in detail with reference to the drawings.
 図1は、本実施の形態のタイヤ状態監視装置の全体構成図である。本実施の形態のタイヤ状態監視装置が、4輪の車両10に対して適用された構成を示している。車両10は、車体11と、車体11に取り付けられた4つの車輪12A~12Dとを備えている。以下の説明では、矢印FR方向を車両10の前方とし、矢印FRと反対の矢印BKの方向を車両10の後方とする。また、適宜、車体11の前方に取り付けられた車輪12A、12Bを前輪12A、12B、車体11の後方に取り付けられた車輪12C、12Dを後輪12C、12Dと称する。 FIG. 1 is an overall configuration diagram of a tire condition monitoring apparatus according to the present embodiment. 1 shows a configuration in which the tire condition monitoring device of the present embodiment is applied to a four-wheel vehicle 10. The vehicle 10 includes a vehicle body 11 and four wheels 12A to 12D attached to the vehicle body 11. In the following description, the direction of the arrow FR is the front of the vehicle 10, and the direction of the arrow BK opposite to the arrow FR is the rear of the vehicle 10. Further, as appropriate, the wheels 12A and 12B attached to the front of the vehicle body 11 are referred to as front wheels 12A and 12B, and the wheels 12C and 12D attached to the rear of the vehicle body 11 are referred to as rear wheels 12C and 12D.
 タイヤ状態監視装置は、車輪12A~12Dにそれぞれ取り付けられたセンサユニット13A~13Dと、車体11の所定位置(例えば中央付近)に設けられる車体側装置としての制御装置14と、後述するLF通信エリアRが設定されるように車体11の前方に設けられるLFアンテナ15と、を具備する。 The tire condition monitoring device includes sensor units 13A to 13D attached to the wheels 12A to 12D, a control device 14 as a vehicle body side device provided at a predetermined position (for example, near the center) of the vehicle body 11, and an LF communication area described later. And an LF antenna 15 provided in front of the vehicle body 11 so that R is set.
 センサユニット13A~13Dは、それぞれ車輪12A~12Dのタイヤ内部(例えば、ホイール)に固定されており、車輪12A~12Dと一体的に回転する。 The sensor units 13A to 13D are fixed inside the tires (for example, wheels) of the wheels 12A to 12D, respectively, and rotate integrally with the wheels 12A to 12D.
 制御装置14は、センサユニット13A~13Dからセンサ信号を所定周期で受信し、受信したセンサ信号に基づいてセンサユニット13A~13Dが取り付けられた車輪12A~12Dの状態(異常の有無等)を検出する。ここで、センサ信号は、センサユニット13A~13Dが取り付けられた車輪12A~12Dのタイヤ状態を通知する信号であり、センサユニット13A~13Dを識別するセンサ識別情報を含む。センサ信号としては、例えば、433.92MHz、9.6kbpsのUHF信号が用いられる。なお、センサ信号としては、RF信号など、後述する要求信号に用いられるLF(Low Frequency)信号と区別可能な信号であって通信品質を確保可能であれば別の仕様の信号が用いられてもよい。 The control device 14 receives sensor signals from the sensor units 13A to 13D in a predetermined cycle, and detects the state (whether there is an abnormality, etc.) of the wheels 12A to 12D to which the sensor units 13A to 13D are attached based on the received sensor signals. To do. Here, the sensor signal is a signal for notifying the tire condition of the wheels 12A to 12D to which the sensor units 13A to 13D are attached, and includes sensor identification information for identifying the sensor units 13A to 13D. For example, a UHF signal of 433.92 MHz and 9.6 kbps is used as the sensor signal. The sensor signal is a signal that can be distinguished from an LF (Low Frequency) signal used for a request signal described later, such as an RF signal, and a signal with a different specification can be used as long as communication quality can be ensured. Good.
 LFアンテナ15は、前輪グループ又は後輪グループの一方の車輪グループに相対的に近付いて配置される。ここで、前輪グループとは、前輪12A、12Bが属する車輪グループであり、後輪グループとは、後輪12C、12Dが属する車輪グループである。本実施の形態では、LFアンテナ15は車体11のフロントバンパーに配置されている。LFアンテナ15は、制御装置14の要求を受けてセンサユニットに応答を要求する応答要求信号を送信する。ここで、応答要求信号とは、センサユニット13A~13Dに対してセンサ信号の送信を要求する信号であり、例えば、125kHz、3.9KbpsのLF信号が用いられる。 The LF antenna 15 is disposed relatively close to one of the front wheel group and the rear wheel group. Here, the front wheel group is a wheel group to which the front wheels 12A and 12B belong, and the rear wheel group is a wheel group to which the rear wheels 12C and 12D belong. In the present embodiment, the LF antenna 15 is disposed on the front bumper of the vehicle body 11. The LF antenna 15 receives a request from the control device 14 and transmits a response request signal for requesting a response from the sensor unit. Here, the response request signal is a signal that requests the sensor units 13A to 13D to transmit a sensor signal, and for example, an LF signal of 125 kHz and 3.9 Kbps is used.
 LFアンテナ15から送信される応答要求信号をセンサユニットが検出可能な範囲がLF通信エリアRとなる。LF通信エリアRの大きさは、LF信号である応答要求信号の信号強度とセンサユニットの受信感度との関係で決まる。本実施の形態は、図1に示すように、前輪12A、12Bに取り付けられるセンサユニット13A、13BがLF通信エリアRに含まれる一方で、後輪12C、12Dに取り付けられるセンサユニット13C、13DはLF通信エリアRに含まれないように、LFアンテナ15の配置位置が決められる。したがって、LF通信エリアRに含まれている前輪グループのセンサユニット13A、13Bは応答要求信号に応答(同期)してセンサ信号を返信するが、LF通信エリアRに含まれていない後輪グループのセンサユニット13C、13Dは応答要求信号に応答(同期)しない。 The range in which the sensor unit can detect the response request signal transmitted from the LF antenna 15 is the LF communication area R. The size of the LF communication area R is determined by the relationship between the signal strength of the response request signal that is an LF signal and the reception sensitivity of the sensor unit. In the present embodiment, as shown in FIG. 1, the sensor units 13A and 13B attached to the front wheels 12A and 12B are included in the LF communication area R, while the sensor units 13C and 13D attached to the rear wheels 12C and 12D are The arrangement position of the LF antenna 15 is determined so as not to be included in the LF communication area R. Therefore, the sensor units 13A and 13B of the front wheel group included in the LF communication area R respond to (synchronize) the response request signal and return the sensor signal, but the rear wheel group of the rear wheel group not included in the LF communication area R. The sensor units 13C and 13D do not respond (synchronize) with the response request signal.
 なお、後輪グループのセンサユニット13C、13DがLF通信エリアRに含まれていて、かつ前輪グループのセンサユニット13A、13BがLF通信エリアRに含まれないようにLFアンテナ15の設置位置を設定すれば、後輪グループのセンサユニット13C、13Dは応答要求信号に同期して通知信号を返信するが、前輪グループのセンサユニット13A、13Bは応答要求信号に応答しないようになる。このようなLF通信エリアRを設定する場合は、LFアンテナ15は、車体11の後方に配置される。以下では、図1に示すように、LFアンテナ15が車体11の前方に配置される例で説明を行う。 The installation position of the LF antenna 15 is set so that the sensor units 13C and 13D of the rear wheel group are included in the LF communication area R and the sensor units 13A and 13B of the front wheel group are not included in the LF communication area R. Then, the sensor units 13C and 13D in the rear wheel group send back notification signals in synchronization with the response request signal, but the sensor units 13A and 13B in the front wheel group do not respond to the response request signal. When such an LF communication area R is set, the LF antenna 15 is disposed behind the vehicle body 11. Hereinafter, as illustrated in FIG. 1, an example in which the LF antenna 15 is disposed in front of the vehicle body 11 will be described.
 図2は、本実施の形態のタイヤ状態検出装置の機能構成図である。なお、以下において、車輪12A~12D、センサユニット13A~13Dを区別しない場合、車輪12、センサユニット13と総称する。以下では、センサ信号としてUHF信号、応答要求信号としてLF信号を用いるものとする。 FIG. 2 is a functional configuration diagram of the tire condition detection device of the present embodiment. Hereinafter, when the wheels 12A to 12D and the sensor units 13A to 13D are not distinguished, they are collectively referred to as the wheels 12 and the sensor unit 13. In the following, it is assumed that a UHF signal is used as a sensor signal and an LF signal is used as a response request signal.
 図2に示すように、各車輪12に取り付けられるセンサユニット13は、受信アンテナ131を介して応答要求信号としてのLF信号を受信する受信部132と、送信アンテナ133を介してセンサ信号としてのUHF信号を送信する送信部134と、空気圧や温度などのタイヤ状態を取得するタイヤ状態取得部135と、車輪12の回転方向を取得する回転方向取得部136と、センサユニット13に個別に割り当てられたユニット識別子を記憶する記憶部137とを具備する。 As shown in FIG. 2, the sensor unit 13 attached to each wheel 12 includes a reception unit 132 that receives an LF signal as a response request signal via the reception antenna 131, and a UHF as a sensor signal via the transmission antenna 133. The transmission unit 134 that transmits a signal, the tire state acquisition unit 135 that acquires the tire state such as air pressure and temperature, the rotation direction acquisition unit 136 that acquires the rotation direction of the wheel 12, and the sensor unit 13 are individually assigned. And a storage unit 137 for storing the unit identifier.
 タイヤ状態取得部135は、空気圧や温度などのタイヤ状態を示すタイヤ状態情報を取得し、取得したタイヤ状態情報を送信部134に出力する。タイヤ状態取得部135は、空気圧センサや温度センサから構成されていてもよいし、これらに接続されたインタフェースであってもよい。 The tire state acquisition unit 135 acquires tire state information indicating the tire state such as air pressure and temperature, and outputs the acquired tire state information to the transmission unit 134. The tire state acquisition unit 135 may be configured by an air pressure sensor or a temperature sensor, or may be an interface connected thereto.
 回転方向取得部136は、センサユニット13が取り付けられた前輪および後輪にそれぞれにおいて左右の車輪12の回転方向を示す回転方向情報が互いに異なるように配置され、取得した回転方向情報を送信部134に出力する。回転方向取得部136は、車輪12の回転方向を検出するセンサから構成されていてもよいし、これに接続されたインタフェースであってもよい。車輪12の回転方向は、車輪12に設けられた2つの加速度センサの出力の位相差に基づいて決定される。 The rotation direction acquisition unit 136 is arranged so that the rotation direction information indicating the rotation direction of the left and right wheels 12 is different from each other on the front wheel and the rear wheel to which the sensor unit 13 is attached, and the acquired rotation direction information is transmitted to the transmission unit 134. Output to. The rotation direction acquisition unit 136 may be configured from a sensor that detects the rotation direction of the wheel 12, or may be an interface connected to the sensor. The rotation direction of the wheel 12 is determined based on the phase difference between the outputs of the two acceleration sensors provided on the wheel 12.
 具体的には、図3に示すように、車輪12には、車輪12の接線方向に対して垂直な検出方向A1を有する図示しない加速度センサXと、車輪12の接線方向に対して平行な検出方向A2を有する図示しない加速度センサYとが車輪12の所定位置Aに設けられる。かかる2つの加速度センサが車輪12とともに左回転するとき、すなわち加速度センサXおよびYがA→B→C→Dの経路で回転するとき、所定位置Aにおける加速度センサXの出力は車輪回転の遠心力に抗する重力の影響を最も受けるため最小となり、車輪12がBに回転するにつれ出力が増加し、位置Cにおいて車輪回転の遠心力に準ずる重力の影響を最も受けるため出力最大となり、Dに回転するにつれ出力が減少する。それに対し、加速度センサYの出力は、AからBに回転するにつれ増加しBで最大となったのち、Cに回転するにつれて出力が減少し、Dにおいて出力が最小となる。そのため、加速度センサXと加速度センサYの出力を比較すると、センサYの位相がセンサXより90度早くなり、位相差が-90度となる。逆に加速度センサが車輪12とともに右回転するとき、センサXの位相がセンサYより90度早くなり、位相差が+90度となる。このように車輪12の回転方向は、位相差の正負によって決定される。 Specifically, as shown in FIG. 3, the wheel 12 includes an acceleration sensor X (not shown) having a detection direction A1 perpendicular to the tangential direction of the wheel 12 and detection parallel to the tangential direction of the wheel 12. An acceleration sensor Y (not shown) having a direction A2 is provided at a predetermined position A of the wheel 12. When the two acceleration sensors rotate left together with the wheel 12, that is, when the acceleration sensors X and Y rotate along the route A → B → C → D, the output of the acceleration sensor X at the predetermined position A is the centrifugal force of the wheel rotation. The output is increased as the wheel 12 rotates to B, and the output increases at the position C. The output is maximized because it receives the influence of gravity according to the centrifugal force of the wheel rotation. As a result, the output decreases. On the other hand, the output of the acceleration sensor Y increases as it rotates from A to B, reaches a maximum at B, then decreases as it rotates to C, and reaches a minimum at D. Therefore, when the outputs of the acceleration sensor X and the acceleration sensor Y are compared, the phase of the sensor Y is 90 degrees earlier than the sensor X, and the phase difference is −90 degrees. Conversely, when the acceleration sensor rotates right together with the wheel 12, the phase of the sensor X is 90 degrees earlier than the sensor Y, and the phase difference is +90 degrees. Thus, the rotation direction of the wheel 12 is determined by the positive / negative of the phase difference.
 図2に示すように、送信部134は、送信アンテナ133を介してUHF信号を送信する。具体的には、送信部134は、記憶部137に記憶されているセンサ識別情報、タイヤ状態取得部135で取得されたタイヤ状態情報、回転方向取得部136で取得された回転方向情報を含むUHF信号を生成して、送信する。また、図4Aに示すように、送信部134は、LFアンテナ15からのLF信号(応答要求信号)を受信すると、LF信号に同期して周期C2でUHF信号を送信する。また、図4Bに示すように、LF信号を受信しないときには、送信部134は、LFアンテナ15からのLF信号とは非同期で、所定の周期C1でUHF信号を送信する。なお、図4では、説明の便宜上、センサユニット13B、13Dの送信部134は図示していない。 As shown in FIG. 2, the transmission unit 134 transmits a UHF signal via the transmission antenna 133. Specifically, the transmission unit 134 includes UHF including sensor identification information stored in the storage unit 137, tire state information acquired by the tire state acquisition unit 135, and rotation direction information acquired by the rotation direction acquisition unit 136. Generate and send a signal. As shown in FIG. 4A, when receiving the LF signal (response request signal) from the LF antenna 15, the transmission unit 134 transmits a UHF signal in a cycle C2 in synchronization with the LF signal. As shown in FIG. 4B, when the LF signal is not received, the transmission unit 134 transmits the UHF signal in a predetermined cycle C1 asynchronously with the LF signal from the LF antenna 15. In FIG. 4, the transmitter 134 of the sensor units 13B and 13D is not shown for convenience of explanation.
 車体11に設けられた制御装置14は、LFアンテナ15を介してLF信号を送信する送信部141と、受信アンテナ142を介してUHF信号を受信する受信部143と、UHF信号を送信したセンサユニット13が取り付けられた車輪12の位置を特定する輪確定部144と、輪確定部144により特定された位置とユニット識別子とを関連付けて記憶する記憶部145とを具備する。 The control device 14 provided in the vehicle body 11 includes a transmission unit 141 that transmits an LF signal via the LF antenna 15, a reception unit 143 that receives a UHF signal via the reception antenna 142, and a sensor unit that transmits the UHF signal. 13 includes a wheel determination unit 144 that specifies the position of the wheel 12 to which the wheel 13 is attached, and a storage unit 145 that stores the position specified by the wheel determination unit 144 in association with the unit identifier.
 送信部141は、LFアンテナ15を介してLF信号を送信する。具体的には、図4に示すように、送信部141は、受信部143でUHF信号が受信される所定の周期C1とは非同期で、LF信号を送信する。また、送信部141は、UHF信号が受信される所定の周期C1よりも短い周期C2で、LF信号を送信する。 The transmission unit 141 transmits an LF signal via the LF antenna 15. Specifically, as illustrated in FIG. 4, the transmission unit 141 transmits the LF signal asynchronously with a predetermined period C1 at which the reception unit 143 receives the UHF signal. Moreover, the transmission part 141 transmits an LF signal with the period C2 shorter than the predetermined period C1 by which a UHF signal is received.
 また、送信部141は、所定のLF通信エリアで所定の信号強度が保たれる送信電力でLF信号を送信する。ここで、所定のLF通信エリアとは、上述のように、LFアンテナ15に対して近い側の車輪グループを含み、遠い側の車輪グループを含まないように設定されるものである。図1に示す本実施の形態では、送信部141は、前輪グループを含み、後輪グループを含まないLF通信エリアRで所定の信号強度が保たれる送信電力でLF信号を送信する。 Further, the transmission unit 141 transmits an LF signal with transmission power that maintains a predetermined signal strength in a predetermined LF communication area. Here, as described above, the predetermined LF communication area is set so as to include a wheel group on the side closer to the LF antenna 15 and not include a wheel group on the far side. In the present embodiment shown in FIG. 1, transmission section 141 transmits an LF signal with transmission power that maintains a predetermined signal strength in LF communication area R that includes a front wheel group and does not include a rear wheel group.
 輪確定部144は、受信部143で受信されたUHF信号がLFアンテナ15から送信されたLF信号に同期しているか否かに応じて、車輪12の輪確定を行う。ここで、車輪12の輪確定とは、受信部143で受信されたUHF信号を送信したセンサユニット13が取り付けられた車輪12の位置を特定することをいう。 The wheel determination unit 144 determines the wheel of the wheel 12 according to whether the UHF signal received by the reception unit 143 is synchronized with the LF signal transmitted from the LF antenna 15. Here, the wheel determination of the wheel 12 refers to specifying the position of the wheel 12 to which the sensor unit 13 that has transmitted the UHF signal received by the receiving unit 143 is attached.
 具体的には、輪確定部144は、受信部143で受信されたUHF信号がLFアンテナ15から送信されたLF信号に同期している場合、当該UHF信号を送信してきたセンサユニット(車輪)は、LFアンテナ15に近い車輪グループであると判定する。例えば、図1に示すLF通信エリアRを設定した場合、輪確定部144は、受信部143で受信されたUHF信号がLFアンテナ15を介して送信されたLF信号に同期していれば、前輪グループに属する車輪12A,12B(センサユニット13A,13B)からのUHF信号であると判定する。また、輪確定部144は、当該UHF信号に含まれる回転方向情報に基づいて、前輪グループの左右の車輪12A、12BのいずれからのUHF信号であるかを判定する。輪確定部144は、図5に示すように、センサユニット13と車輪12との対応関係が確定したならば、確定した車輪の識別情報(ここでは、12A、12B)と、当該UHF信号に含まれるセンサ識別情報(ここでは、13A、13B)とを関連付けて記憶部145に記憶させる。 Specifically, when the UHF signal received by the reception unit 143 is synchronized with the LF signal transmitted from the LF antenna 15, the wheel determination unit 144 determines that the sensor unit (wheel) that has transmitted the UHF signal is It is determined that the wheel group is close to the LF antenna 15. For example, when the LF communication area R shown in FIG. 1 is set, if the UHF signal received by the receiving unit 143 is synchronized with the LF signal transmitted via the LF antenna 15, It is determined that the UHF signal is from the wheels 12A and 12B ( sensor units 13A and 13B) belonging to the group. Further, the wheel determination unit 144 determines which one of the left and right wheels 12A and 12B of the front wheel group is the UHF signal based on the rotation direction information included in the UHF signal. As shown in FIG. 5, if the correspondence between the sensor unit 13 and the wheel 12 is confirmed, the wheel determination unit 144 includes the determined wheel identification information (here, 12A and 12B) and the UHF signal. Sensor identification information (in this case, 13A, 13B) is stored in the storage unit 145 in association with each other.
 また、輪確定部144は、受信部143で受信されたUHF信号がLFアンテナ15から送信されたLF信号とは非同期である場合、当該UHF信号に含まれるセンサ識別情報が輪確定済みであるか否かを判定する。輪確定部144は、輪確定済みではない場合、LFアンテナ15から遠い車輪グループであると判定する。例えば、図1に示すLF通信エリアRを設定した場合、輪確定部144は、受信したUHF信号に含まれるセンサ識別情報が輪確定済みではない場合、後輪グループに属する車輪12C,12D(センサユニット13C,13D)からのUHF信号であると判定する。また、輪確定部144は、当該UHF信号に含まれる回転方向情報に基づいて、後輪グループの左右の車輪12C、12Dのいずれかを確定する。輪確定部144は、図5に示すように、確定した車輪の識別情報(ここでは、12C、12D)と、当該UHF信号に含まれるセンサ識別情報(ここでは、13C、13D)とを関連づけて記憶部145に記憶させる。 Further, when the UHF signal received by the receiving unit 143 is asynchronous with the LF signal transmitted from the LF antenna 15, the wheel determining unit 144 determines whether the sensor identification information included in the UHF signal has been determined. Determine whether or not. The wheel determination unit 144 determines that the wheel group is far from the LF antenna 15 when the wheel has not been determined. For example, when the LF communication area R shown in FIG. 1 is set, the wheel determination unit 144, when the sensor identification information included in the received UHF signal is not wheel determination, wheels 12C and 12D (sensors belonging to the rear wheel group) It is determined that the signal is a UHF signal from the units 13C and 13D). In addition, the wheel determination unit 144 determines one of the left and right wheels 12C and 12D of the rear wheel group based on the rotation direction information included in the UHF signal. As shown in FIG. 5, the wheel determination unit 144 associates the determined wheel identification information (here, 12C, 12D) with the sensor identification information (here, 13C, 13D) included in the UHF signal. The data is stored in the storage unit 145.
 次に、以上のように構成されたタイヤ状態監視装置の動作について説明する。
 図4に示すように、センサユニット13A(13B)(前輪グループ),センサユニット13C(13D)(後輪グループ)が所定周期C1でUHF信号を送信し、LFアンテナ15が輪確定するまでの所定期間に亘り、UHF信号の送信周期C1よりも十分に短い周期C2でLF信号を送信する。LF通信エリアR内に存在する前輪グループのセンサユニット13A(13B)は受信したLF信号に同期して所定周期C2のUHF信号を送信する。一方、LF通信エリアR外となる後輪グループのセンサユニット13C(13D)はLF信号を受信できないので応答しないため、LF信号に同期した周期C2のUHF信号は送信しないで周期C1のUHF信号を送信し続ける。
Next, the operation of the tire condition monitoring apparatus configured as described above will be described.
As shown in FIG. 4, the sensor unit 13A (13B) (front wheel group), the sensor unit 13C (13D) (rear wheel group) transmit UHF signals at a predetermined cycle C1, and the predetermined period until the LF antenna 15 determines the wheel. Over a period, the LF signal is transmitted in a cycle C2 that is sufficiently shorter than the UHF signal transmission cycle C1. The front wheel group sensor unit 13A (13B) existing in the LF communication area R transmits a UHF signal having a predetermined period C2 in synchronization with the received LF signal. On the other hand, the sensor unit 13C (13D) in the rear wheel group outside the LF communication area R does not respond because it cannot receive the LF signal, and therefore does not transmit the UHF signal of the cycle C2 synchronized with the LF signal and transmits the UHF signal of the cycle C1. Keep sending.
 制御装置14の受信部143は、前輪グループのセンサユニット13A(13B)、及び後輪グループのセンサユニット13C(13D)から所定周期C1のUHF信号を受信すると共に、アンテナ15からLF信号が送信されると、前輪グループのセンサユニット13A(13B)だけからLF信号に同期した周期C2のUHF信号を受信する。制御装置14の輪確定部144は、周期C1で受信されるUHF信号と周期C2で受信されるUHF信号とから以下に示す輪確定処理を実行する。 The receiving unit 143 of the control device 14 receives a UHF signal having a predetermined period C1 from the sensor unit 13A (13B) of the front wheel group and the sensor unit 13C (13D) of the rear wheel group, and transmits an LF signal from the antenna 15. Then, the UHF signal having the period C2 synchronized with the LF signal is received only from the sensor unit 13A (13B) of the front wheel group. The wheel determination unit 144 of the control device 14 executes the following wheel determination process from the UHF signal received at the cycle C1 and the UHF signal received at the cycle C2.
 図6は、本実施の形態における輪確定動作を示すフローチャートである。制御装置14の送信部141は、LFアンテナ15を介して、LF通信エリアR内で検出可能なLF信号を応答要求信号として送信する(ステップS101)。 FIG. 6 is a flowchart showing the wheel determination operation in the present embodiment. The transmission unit 141 of the control device 14 transmits an LF signal that can be detected within the LF communication area R as a response request signal via the LF antenna 15 (step S101).
 制御装置14の輪確定部144は、センサユニット13から、センサ信号としてのUHF信号が受信されたか否かを判定する(ステップS102)。センサユニット13からUHF信号が受信されていない場合(ステップS102;No)、ステップS101に戻る。 The wheel determination unit 144 of the control device 14 determines whether or not a UHF signal as a sensor signal has been received from the sensor unit 13 (step S102). When no UHF signal is received from the sensor unit 13 (step S102; No), the process returns to step S101.
 一方、受信部143がセンサユニット13からUHF信号を受信している場合(ステップS102;Yes)、輪確定部144は、当該UHF信号がステップS101で送信されたLF信号に同期しているか否かを判定する(ステップS103)。 On the other hand, when the receiving unit 143 receives a UHF signal from the sensor unit 13 (step S102; Yes), the wheel determination unit 144 determines whether the UHF signal is synchronized with the LF signal transmitted in step S101. Is determined (step S103).
 受信部143で受信されたUHF信号がステップS101で送信されたLF信号に起動されて送信されている場合(ステップS103;Yes)、輪確定部144は、LF通信エリアR内にある車輪グループ(LFアンテナ15に近い前輪グループ)の輪確定処理を行う。すなわち、前輪グループを構成している左右の車輪12A,12Bのうちいずれの車輪に設けられたセンサユニット13Aまたは13Bから送信されたUHF信号であるか判定する。このため、輪確定部144は、受信部143で受信されたUHF信号に含まれる回転方向情報を抽出し、この回転方向情報に基づいて前輪グループのうち左右いずれの車輪12であるかを確定する(ステップS104~S107)。上述のように、回転方向情報とは、車輪12に設けられた回転方向センサで検知された車輪12の回転方向を示す情報である。ここでは、車体11が前進しているときに、車体11の進行方向の右側に取り付けられた車輪12B,12Dは右回転しているものとして認識され、車体11の進行方向の左側に取り付けられた車輪12A,12Cは左回転しているものとして認識されるように観測基準位置を定める。例えば、左右の車輪が取り付けられる車軸の軸方向の中央部に観測基準位置を定めて、車体11が前進しているときに、観測基準位置から右側に取り付けられた車輪12B,12Dを車軸方向に向いて見れば反時計回りに見え、左側に取り付けられた車輪12A,12Cを車軸方向に向いて見れば時計回りに見える。すなわち、同一方向に前進回転している車輪12が左右で異なる方向に回転しているように認識される。車輪12の回転方向は観測基準位置によって変化するので、ここでは上記回転方向が観測される位置を観測基準位置とする。 When the UHF signal received by the reception unit 143 is activated by the LF signal transmitted in step S101 and transmitted (step S103; Yes), the wheel determination unit 144 includes a wheel group in the LF communication area R ( The wheel determination process of the front wheel group close to the LF antenna 15 is performed. That is, it is determined whether the UHF signal is transmitted from the sensor unit 13A or 13B provided on any of the left and right wheels 12A and 12B constituting the front wheel group. For this reason, the wheel determination unit 144 extracts the rotation direction information included in the UHF signal received by the reception unit 143, and determines which of the front wheel group is the left or right wheel 12 based on the rotation direction information. (Steps S104 to S107). As described above, the rotation direction information is information indicating the rotation direction of the wheel 12 detected by a rotation direction sensor provided on the wheel 12. Here, when the vehicle body 11 is moving forward, the wheels 12B and 12D attached to the right side of the traveling direction of the vehicle body 11 are recognized as rotating right and attached to the left side of the traveling direction of the vehicle body 11. The observation reference positions are determined so that the wheels 12A and 12C are recognized as rotating left. For example, when the observation reference position is set at the axial center of the axle to which the left and right wheels are attached, and the vehicle body 11 is moving forward, the wheels 12B and 12D attached on the right side from the observation reference position are moved in the axle direction. If it looks facing, it will look counterclockwise, and if it sees the wheel 12A, 12C attached to the left side facing an axle direction, it will look clockwise. That is, it is recognized that the wheel 12 rotating forward in the same direction is rotating in different directions on the left and right. Since the rotation direction of the wheel 12 varies depending on the observation reference position, the position where the rotation direction is observed is defined as the observation reference position.
 具体的には、輪確定部144は、回転方向情報が示す車輪12の回転方向が右回転である場合(ステップS104;Yes)、輪確定部144は、確定された車輪グループの内の右の車輪12であると判定して当該UHF信号送信元の車輪位置を確定する。図1に示す例では、輪確定部144は、UHF信号に含まれた回転方向情報(右回転)から、当該UHF信号送信元の車輪を右前の車輪12Bであると確定する(ステップS105)。 Specifically, when the rotation direction of the wheel 12 indicated by the rotation direction information is right rotation (step S104; Yes), the wheel determination unit 144 determines that the wheel determination unit 144 has the right wheel in the determined wheel group. It determines with it being the wheel 12, and determines the wheel position of the said UHF signal transmission origin. In the example illustrated in FIG. 1, the wheel determination unit 144 determines that the UHF signal transmission source wheel is the right front wheel 12B from the rotation direction information (right rotation) included in the UHF signal (step S105).
 車輪12の回転方向が右回転ではない場合(ステップS104;No)、輪確定部144は、車輪12の回転方向が左回転であるか否かを判定する(ステップS106)。車輪12の回転方向が左回転である場合(ステップS106;Yes)、輪確定部144は、当該UHF信号送信元の車輪を左前の車輪12Aであると確定する(ステップS107)。車輪12の回転方向が左回転でもない場合(ステップS106;No)、ステップS101に戻る。 When the rotation direction of the wheel 12 is not right rotation (step S104; No), the wheel determination unit 144 determines whether or not the rotation direction of the wheel 12 is left rotation (step S106). When the rotation direction of the wheel 12 is the left rotation (step S106; Yes), the wheel determination unit 144 determines that the wheel of the UHF signal transmission source is the left front wheel 12A (step S107). When the rotation direction of the wheel 12 is not left-turning (step S106; No), the process returns to step S101.
 一方、受信部143で受信されたUHF信号がLFアンテナ15から送信したLF信号と同期していないと判定された場合(ステップS103;No)、輪確定部144は、UHF信号を送信したセンサユニット13が取り付けられている車輪12は、LF通信エリアR外の車輪グループ、すなわち、後輪グループに含まれる左後の車輪12C又は右後の車輪12Dであると判定する。かかる場合、輪確定部144は、受信したUHF信号に含まれる回転方向情報に基づいて、UHF信号を送信したセンサユニット13が左後の車輪12Cまたは右後の車輪12Dのいずれに取り付けられているかを判定する。 On the other hand, when it is determined that the UHF signal received by the reception unit 143 is not synchronized with the LF signal transmitted from the LF antenna 15 (step S103; No), the wheel determination unit 144 transmits the UHF signal to the sensor unit. The wheel 12 to which 13 is attached is determined to be the wheel group outside the LF communication area R, that is, the left rear wheel 12C or the right rear wheel 12D included in the rear wheel group. In such a case, the wheel determination unit 144 determines whether the sensor unit 13 that has transmitted the UHF signal is attached to the left rear wheel 12C or the right rear wheel 12D based on the rotation direction information included in the received UHF signal. Determine.
 輪確定部144は、受信したUHF信号に含まれる回転方向情報に基づいて、当該UHF信号を送信したセンサユニット13が取り付けられた車輪12の回転方向が右回転であるか否かを判定する(ステップS108)。 Based on the rotation direction information included in the received UHF signal, the wheel determination unit 144 determines whether or not the rotation direction of the wheel 12 to which the sensor unit 13 that has transmitted the UHF signal is attached is a right rotation ( Step S108).
 車輪12の回転方向が右回転である場合(ステップS108;Yes)、輪確定部144は、UHF信号が右後の車輪12Dに取り付けられたセンサユニット13Dから送信されたと判別する(ステップS109)。 When the rotation direction of the wheel 12 is right rotation (step S108; Yes), the wheel determination unit 144 determines that the UHF signal is transmitted from the sensor unit 13D attached to the right rear wheel 12D (step S109).
 車輪12の回転方向が右回転ではない場合(ステップS108;No)、輪確定部144は、車輪12の回転方向が左回転であるか否かを判定する(ステップS110)。車輪12の回転方向が左回転である場合(ステップS110;Yes)、輪確定部144は、UHF信号が左後の車輪12Cに取り付けられたセンサユニット13Cから送信されたと判別する(ステップS111)。車輪12の回転方向が左回転でもない場合(ステップS110;No)、ステップS101に戻る。 When the rotation direction of the wheel 12 is not right rotation (step S108; No), the wheel determination unit 144 determines whether or not the rotation direction of the wheel 12 is left rotation (step S110). When the rotation direction of the wheel 12 is counterclockwise (step S110; Yes), the wheel determination unit 144 determines that the UHF signal is transmitted from the sensor unit 13C attached to the left rear wheel 12C (step S111). When the rotation direction of the wheel 12 is not left rotation (step S110; No), the process returns to step S101.
 以上のように、輪確定部144は、UHF信号を送信したセンサユニット13が、左前の車輪12A、右前の車輪12B、左後の車輪12C、右後の車輪12Dのいずれに取り付けられているかを判別する。輪確定部144は、センサユニット13が取り付けられた車輪12を判別すると、受信したUHF信号に当該センサユニット13の識別情報が含まれているかを判定する(ステップS112~S115)。 As described above, the wheel determination unit 144 determines whether the sensor unit 13 that transmitted the UHF signal is attached to the left front wheel 12A, the right front wheel 12B, the left rear wheel 12C, or the right rear wheel 12D. Determine. When determining the wheel 12 to which the sensor unit 13 is attached, the wheel determination unit 144 determines whether the received UHF signal includes identification information of the sensor unit 13 (steps S112 to S115).
 受信したUHF信号にセンサユニット13の識別情報が含まれている場合(ステップS112~S115;Yes)、輪確定部144は、判別した車輪12の位置とセンサユニット13の識別情報とを関連付けて記憶部145に記憶させる(ステップS116)。また、輪確定部144は、判別した車輪12の位置とセンサユニット13の識別情報を、通信部(不図示)を介して車両搭載機器(不図示)に出力する(ステップS117)。 When the received UHF signal includes the identification information of the sensor unit 13 (steps S112 to S115; Yes), the wheel determination unit 144 stores the determined position of the wheel 12 and the identification information of the sensor unit 13 in association with each other. The data is stored in the unit 145 (step S116). In addition, the wheel determination unit 144 outputs the determined position of the wheel 12 and the identification information of the sensor unit 13 to a vehicle-mounted device (not shown) via a communication unit (not shown) (step S117).
 本実施の形態に係るタイヤ状態監視装置によれば、LFアンテナ15は車体11のフロントバンパーに配置し、前輪グループのみがLF通信エリアRに入るように設定し、LF信号に同期したUHF信号を前輪グループの車輪12に設けたセンサユニット13A,13Bからの信号と判断し、LF信号に非同期のUHF信号であって前輪グループの車輪12を除いた車輪を後輪グループと判断するので、LF送信用のアンテナを1本に削減することができ、コストダウンを図れると共に車体のレイアウトの自由度を向上できる。 According to the tire condition monitoring apparatus according to the present embodiment, the LF antenna 15 is disposed on the front bumper of the vehicle body 11, only the front wheel group is set to enter the LF communication area R, and the UHF signal synchronized with the LF signal is transmitted to the front wheel. Since it is determined as a signal from the sensor units 13A and 13B provided on the wheels 12 of the group, and the UHF signal that is asynchronous with the LF signal and the wheels excluding the wheels 12 of the front wheel group are determined as the rear wheel group, The number of antennas can be reduced to one, so that the cost can be reduced and the flexibility of the layout of the vehicle body can be improved.
 また、従来のUHF信号のRSSI値を利用して輪確定する方式は、LFアンテナの位置ずれや電波強度の変化等の要因で輪確定精度が低下する可能性があるが、本実施の形態に係るタイヤ状態監視装置によれば、LF信号に対して同期/非同期によって車輪グループを判定し、車輪回転方向によって左右を判定するので、UHF信号のRSSI値を利用して輪確定する方式に比べて確定精度を向上できる。 In addition, the conventional method of determining the wheel using the RSSI value of the UHF signal may reduce the wheel determination accuracy due to factors such as a positional shift of the LF antenna and a change in radio wave intensity. According to the tire condition monitoring apparatus, the wheel group is determined synchronously / asynchronously with the LF signal, and the left and right are determined based on the wheel rotation direction. The accuracy of determination can be improved.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態では、回転方向センサを2軸の加速度センサを用いたが、加速度センサの替わりに磁気式センサや光学式センサで回転方向情報を取得しても良い。また、上記実施の形態における各構成要素の配置、大きさなどは適宜変更して実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 Note that the present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, in the above-described embodiment, the biaxial acceleration sensor is used as the rotation direction sensor, but the rotation direction information may be acquired by a magnetic sensor or an optical sensor instead of the acceleration sensor. In addition, the arrangement, size, and the like of each component in the above embodiment can be changed as appropriate. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本出願は、2012年3月6日出願の特願2012-049224に基づく。この内容は、すべてここに含めておく。 This application is based on Japanese Patent Application No. 2012-049224 filed on March 6, 2012. All this content is included here.

Claims (3)

  1.  車両の車輪を構成する前輪及び後輪にそれぞれ設けられた複数のセンサユニットと、前記センサユニットに対して応答を要求する応答要求信号を送信する車体側アンテナと、前記各センサユニットと無線通信する車体側装置と、を備え、
     前記車体側アンテナは、前記車体側アンテナに対して近い側の前輪又は後輪が前記応答要求信号を受信し、かつ前記車体側アンテナに対して遠い側の前輪又は後輪が前記応答要求信号を受信しないように配置し、
     前記各センサユニットは、センサ識別情報を含んだセンサ信号を、前記車体側アンテナが送信する前記応答要求信号とは非同期に前記車体側装置へ送信すると共に、前記応答要求信号を受信していればセンサ識別情報を含んだセンサ信号を前記応答要求信号に同期して送信し、
     前記各センサユニットは、前記前輪と前記後輪それぞれの左右の車輪の回転方向を示す回転方向情報が互いに異なるように構成されて配置されており、前記車輪の回転方向を検出し、検出した車輪回転方向を示す回転方向情報及びセンサ識別情報を含んだセンサ信号を前記車体側装置に送信し、
     前記車体側装置は、前記応答要求信号に同期して受信したセンサ信号に含まれたセンサ識別情報から前記車体側アンテナに近い側の車輪を確定し、前記応答要求信号に非同期で受信したセンサ信号に含まれたセンサ識別情報から前記車体側アンテナから遠い側の車輪を確定し、センサ信号に含まれた回転方向情報から左右の車輪を確定する、
    ことを特徴とするタイヤ状態監視装置。
    A plurality of sensor units respectively provided on front wheels and rear wheels constituting a vehicle wheel, a vehicle body side antenna that transmits a response request signal for requesting a response to the sensor unit, and wireless communication with each sensor unit A vehicle body side device,
    In the vehicle body side antenna, a front wheel or a rear wheel closer to the vehicle body side antenna receives the response request signal, and a front wheel or rear wheel far from the vehicle body side antenna receives the response request signal. Arrange to avoid receiving,
    Each sensor unit transmits a sensor signal including sensor identification information to the vehicle body side device asynchronously with the response request signal transmitted by the vehicle body antenna, and receives the response request signal. A sensor signal including sensor identification information is transmitted in synchronization with the response request signal,
    Each sensor unit is configured and arranged so that rotation direction information indicating rotation directions of the left and right wheels of the front wheel and the rear wheel is different from each other, and detects the rotation direction of the wheel, and detects the detected wheel. A sensor signal including rotation direction information indicating the rotation direction and sensor identification information is transmitted to the vehicle body side device;
    The vehicle body side device determines a wheel closer to the vehicle body side antenna from the sensor identification information included in the sensor signal received in synchronization with the response request signal, and the sensor signal received asynchronously with the response request signal Determining the wheels on the side far from the vehicle body side antenna from the sensor identification information included in, and determining the left and right wheels from the rotation direction information included in the sensor signal,
    The tire condition monitoring apparatus characterized by the above-mentioned.
  2.  前記各センサユニットは、第1の周期で前記応答要求信号とは非同期でセンサ信号を送信し、前記車体側アンテナは、輪確定するまでは第1の周期よりも短い第2の周期で応答要求信号を送信する、ことを特徴とする請求項1記載のタイヤ状態監視装置。 Each sensor unit transmits a sensor signal asynchronously with the response request signal in a first cycle, and the vehicle body side antenna requests a response in a second cycle shorter than the first cycle until the wheel is determined. 2. The tire condition monitoring apparatus according to claim 1, wherein a signal is transmitted.
  3.  前記車体側アンテナは、車両のフロント部に設置されていることを特徴とする請求項1又は請求項2に記載のタイヤ状態監視装置。
     
     
    The tire state monitoring device according to claim 1 or 2, wherein the vehicle body side antenna is installed in a front portion of a vehicle.

PCT/JP2013/053102 2012-03-06 2013-02-08 Tire condition monitor device WO2013132960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049224 2012-03-06
JP2012049224 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013132960A1 true WO2013132960A1 (en) 2013-09-12

Family

ID=49116444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053102 WO2013132960A1 (en) 2012-03-06 2013-02-08 Tire condition monitor device

Country Status (1)

Country Link
WO (1) WO2013132960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309577B2 (en) 2019-11-13 2023-07-18 Toyo Tire株式会社 Tire management system and tire management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206073A (en) * 2004-01-23 2005-08-04 Honda Motor Co Ltd Tire air pressure monitoring device
JP2006017463A (en) * 2004-06-30 2006-01-19 Fuji Electric Systems Co Ltd Tire pneumatic pressure monitoring system capable of facilitating registration of transmitter id, and transmitter id registering method capable of facilitating registration of transmitter id
JP2008184018A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Wheel state monitoring system and wheel state detection system
JP2009214708A (en) * 2008-03-11 2009-09-24 Omron Corp Tire monitor device
JP2011183948A (en) * 2010-03-09 2011-09-22 Tokai Rika Co Ltd Tire air pressure monitoring system and tire air pressure detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206073A (en) * 2004-01-23 2005-08-04 Honda Motor Co Ltd Tire air pressure monitoring device
JP2006017463A (en) * 2004-06-30 2006-01-19 Fuji Electric Systems Co Ltd Tire pneumatic pressure monitoring system capable of facilitating registration of transmitter id, and transmitter id registering method capable of facilitating registration of transmitter id
JP2008184018A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Wheel state monitoring system and wheel state detection system
JP2009214708A (en) * 2008-03-11 2009-09-24 Omron Corp Tire monitor device
JP2011183948A (en) * 2010-03-09 2011-09-22 Tokai Rika Co Ltd Tire air pressure monitoring system and tire air pressure detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309577B2 (en) 2019-11-13 2023-07-18 Toyo Tire株式会社 Tire management system and tire management method

Similar Documents

Publication Publication Date Title
JP4483482B2 (en) Position detecting device and tire air pressure detecting device having position detecting function
EP2018980B1 (en) Tyre localization system
US7411488B2 (en) Tire location detecting apparatus configured with rotation direction detecting devices and triggering device
US10214060B2 (en) Wheel position detection device and tire-pressure detection system equipped with same
US10245903B2 (en) Communication device mounting position determination system and determination apparatus
US8584517B2 (en) Load based wheel position determination
KR20080026048A (en) Wheel position detecting device and tire air pressure detecting device using the same
JP2009029209A (en) Tire monitoring device and tire failure detecting device
JP2003175711A (en) Tire state monitoring device
JP2008518836A (en) Tire pressure control system for automobiles
JP6720920B2 (en) Tire pressure detection system
US8217776B2 (en) Tire pressure sensor location identification
EP3815932B1 (en) Tire pressure monitoring system and tire pressure monitoring method
JP2012210912A (en) Wheel position detecting device and tire air pressure detecting device equipped with the same
JP2008074223A (en) Wheel information transmitter, wheel information processor and wheel attachment position presumption method
WO2013132960A1 (en) Tire condition monitor device
JP6036528B2 (en) Theft detection system, transmitter and receiver constituting the system
US20080059029A1 (en) Method of discriminating between rotating wheels and nonrotating wheels of a vehicle while said vehicle is being driven
US20090066497A1 (en) Automotive Tire Pressure Monitoring System
KR20110061184A (en) Location recognization method for transmitter module in tire pressure monitering system
KR101743652B1 (en) Method of auto location using multi sensing tilt sensor and tire pressure monitoring system thereof
WO2021085065A1 (en) Tire air pressure monitoring system
JP2017109727A (en) Tire air pressure monitoring system, detection device, and monitoring device
JP2012250591A (en) Wheel position detection device, and tire pneumatic pressure detection device provided with the same
JP2016037233A (en) Tire inflation pressure detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP