WO2013128571A1 - Device for correcting joining material application conditions - Google Patents

Device for correcting joining material application conditions Download PDF

Info

Publication number
WO2013128571A1
WO2013128571A1 PCT/JP2012/054925 JP2012054925W WO2013128571A1 WO 2013128571 A1 WO2013128571 A1 WO 2013128571A1 JP 2012054925 W JP2012054925 W JP 2012054925W WO 2013128571 A1 WO2013128571 A1 WO 2013128571A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
bonding material
solar
interconnector
material application
Prior art date
Application number
PCT/JP2012/054925
Other languages
French (fr)
Japanese (ja)
Inventor
範明 岩城
周一 平田
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2012/054925 priority Critical patent/WO2013128571A1/en
Priority to JP2014501875A priority patent/JP5901740B2/en
Publication of WO2013128571A1 publication Critical patent/WO2013128571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a bonding material application condition correction device that corrects the application condition of the bonding material based on the application state of the bonding material applied to the solar battery cell.
  • a solar cell module (solar cell panel) in which a plurality of solar cells having a negative electrode on the light-receiving surface and a positive electrode on the back surface are arranged vertically and horizontally, a plurality of solar cells are arranged.
  • An interconnector is used for string wiring. That is, the interconnector connects the electrodes of one solar battery cell and the electrodes of another adjacent solar battery cell to each other and performs string wiring.
  • Patent Document 1 or Patent Document 2 is known.
  • the present invention has been made to solve the above-described conventional problems.
  • the bonding material can be applied to the upper and lower surfaces of the solar cell, and the application condition of the bonding material can be corrected.
  • An object of the present invention is to provide an apparatus for correcting bonding material application conditions.
  • the present invention provides a bonding material application device that applies a bonding material to the surface of a solar battery cell, an inspection camera that images the bonding material applied to the surface of the solar battery cell, and image information captured by the inspection camera.
  • the bonding material can be applied to the upper and lower surfaces of the solar battery cell in the process of supplying the solar battery cell, and the application of the bonding material is performed based on the application state of the bonding material imaged by the inspection camera. Since the start position, the end position, and the like can be measured, it is possible to quickly and accurately determine the application conditions that have been relied on by hand.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG.
  • FIG. 3 is a cross-sectional view taken along line 3-3 in FIG.
  • FIG. 10 direction of FIG. It is a schematic plan view which shows the carry head of a cell supply unit. It is a top view which shows the joining unit of a string wiring apparatus. It is a figure which shows the pressing member provided in the upper hot plate of the joining unit. It is a figure which shows the state which superposed
  • a solar cell string wiring device and a solar cell module manufacturing device according to embodiments of the present invention will be described below.
  • FIG. 1 is a schematic diagram showing an example of a solar cell module (solar cell panel) 10.
  • the solar cell modules 10 are arranged in an XY plane and electrically connected in series (Xm in the X direction, X direction).
  • the solar cells 11 are arranged in the Y direction perpendicular to the Y direction).
  • FIG. 1 shows an example in which a solar cell module 10 is configured by a total of 16 solar cells 11 in which Xm is 4 and Yn is 4 rows.
  • the solar cells 11 adjacent in the X direction are electrically connected through an interconnector 12 as a conductive member.
  • the interconnector 12 forms a straight line having a length straddling two solar cells 11 adjacent to each other in the X direction.
  • the right end (front half) of the longitudinal direction is The negative electrode formed on the lower surface (light receiving surface) of the solar cell 11 or the positive electrode formed on the upper surface (rear surface) is joined to the left end (second half) in the longitudinal direction of the solar cell 11. It is joined to the plus side electrode formed on the upper surface or the minus side electrode formed on the lower surface.
  • an interconnector 12a having a shorter length than the interconnector 12 having a length straddling the two solar cells 11 is provided on the lower surface (minus side electrode) of the solar cells 11. Alternatively, it is joined to the upper surface (plus side electrode). Each one end of the short interconnector 12a is slightly protruded from both ends of the solar battery cell 11.
  • the required number Xm of solar cells 11 arranged in the X direction are electrically connected in series to form a string-connected solar cell group 110A, 110B.
  • the solar cell groups 110A and 110B are arranged in the Y direction with the required number of columns Yn, and the interconnectors 12a having short lengths are matrix-wired to constitute the solar cell module 10.
  • each end of the interconnector 12a having a short length is connected to the upper and lower surfaces of the solar cells 11 at the left and right ends as shown in FIG.
  • the solar cell group 110B in the even-numbered columns from the top in FIG. 1 is slightly protruded, and each end of the short-length interconnector 12a has solar cells at the left and right ends as shown in FIG. It slightly protrudes from the lower surface and the upper surface of the cell 11.
  • the solar cell module 10 includes two types of solar cell groups 110A and 110B (hereinafter, the first solar cell group 110A and the second solar cell group 110B) in which the junction structure of the interconnector 12 is different.
  • the first and second solar battery cell groups 110A and 110B are alternately arranged in the Y direction.
  • each one end of the interconnector 12a protruded from both ends of the first solar cell group 110A in the odd-numbered row and the interconnector protruded from both ends in the second solar cell group 110B in the even-numbered row As shown in FIG. 1, each end of 12a is joined to each other by a bus metal 14 as a conductive member, so that all the solar cells 11 constituting the solar cell module 10 are connected in series.
  • the solar cell module 10 includes a cover glass made of transparent tempered glass on the light receiving surface (minus side electrode), and a back sheet having excellent weather resistance on the back surface (plus side electrode).
  • a plurality of solar cells 11 are sealed with a resin such as EVA between the back sheet and the back sheet, and in the embodiment described below, for convenience of explanation, they are arranged on a cover glass.
  • the Xm ⁇ Yn solar battery cells 11 are referred to as a solar battery module 10.
  • the manufacturing apparatus includes a string wiring device (string wiring step) 21, a layup device (layup step) 22, and a matrix wiring device (matrix wiring step) arranged along the X direction. ) 23.
  • the lay-up device 22 and the matrix wiring device 23 are connected by a transport conveyor 25, and the solar cell module 10 that is matrix-wired by the matrix wiring device 23 is transported to the next process by the carry-out conveyor 26.
  • the string wiring device 21 includes two sets of connector supply units (conductive member supply units) 31A and 31B that supply the interconnector 12 for string wiring of the first and second solar battery cell groups 110A and 110B, Two sets of cell supply units 32A and 32B for supplying the battery cells 11, two sets of joining units 33A and 33B for joining the interconnector 12 to the solar battery cells 11, and the solar battery cell 11 to which the interconnector 12 is joined are conveyed.
  • the two units (two rows) of the cell transport units 34A and 34B are arranged in parallel.
  • each unit that manufactures the first solar cell group 110A is referred to as a first unit
  • each unit that manufactures the second solar cell group 110B is referred to as a second unit to be distinguished. To do.
  • the first connector supply unit 31 ⁇ / b> A has a plurality of rows (two rows in the embodiment) of bobbins 41 spaced in the Y direction around which the interconnector 12 is wound, and the bobbin 41.
  • Each of the interconnectors 12 is clamped at one end and pulled out in the X direction, and a vertically movable cutter 43 for cutting the interconnector 12 pulled out to a predetermined position by the pulling means 42 into a predetermined length is provided. .
  • the pulling means 42 has a moving base 45 movably supported by a guide rail 44 formed along the X direction.
  • the moving base 45 is rotated by a motor 46 and is a first ball screw shaft 47. Is rotated along the guide rail 44 in the X direction by a predetermined amount.
  • a second ball screw shaft 48 is supported on the moving table 45 so as to be rotatable about an axis parallel to the first ball screw shaft 47, and the second ball screw shaft 48 is installed on the moving table 45.
  • the motor 49 is rotationally driven.
  • a movement guide 50 for guiding the interconnector 12 is fixed to the movement table 45.
  • the pull-out means 42 is provided with first and second clampers 51 and 52 for clamping the interconnector 12 pulled out from the bobbin 41.
  • the first and second clampers 51 and 52 are operated by an actuator not shown.
  • the first clamper 51 is disposed at a position downstream of the cutter 43
  • the second clamper 52 is disposed at a position upstream of the cutter 43.
  • the first clamper 51 is screw-engaged with the second ball screw shaft 48 so that the end of the interconnector 12 can be clamped and moved by a predetermined amount in the X direction.
  • the second clamper 52 is advanced and retracted by a predetermined amount in the X direction by a cylinder (not shown), and when the interconnector 12 is cut to a predetermined length, the base portion of the interconnector 12 to be cut is removed. It is designed to clamp.
  • the interconnector 12 pulled out from the bobbin 41 is pulled out while being guided by a plurality of guide rollers 55.
  • an engagement roller 56 is pivotally supported by an elevating member 57 that can move up and down, and the interconnector 12 is stretched over the engagement roller 56 in a U-shape. It is bent and guided to the fixed second clamper 52.
  • a guide roller (downstream guide roller) 55 on the downstream side of the engaging roller 56 is common to the plurality of interconnectors 12 joined to the solar battery cell 11, and the outer surface thereof has an interface in the plurality of types of solar battery cells 11.
  • a number of grooves are provided in accordance with the joining positions of the connector 12 in the Y direction.
  • interval of the Y direction of each interconnector 12 of multiple types of photovoltaic cell 11 is provided previously, the production change to the different photovoltaic cell 11 becomes easy. Further, the interconnector 12 is pulled out at an acute angle by the downstream guide roller 55 in the direction opposite to the direction of the winding rod by the bobbin 41.
  • a piston rod 58 a of a tension cylinder 58 is connected to the elevating member 57, and the tension cylinder 58 pulls the interconnector 12 through the elevating member 57 with a tensile force smaller than the breaking force of the interconnector 12. .
  • the tension cylinder 58 can change the tensile force according to the type (breaking force) of the interconnector 12.
  • FIG. 6 shows a procedure for supplying the image data on the computer 11.
  • the second ball screw shaft 47 is rotated by a predetermined amount by the second motor 49, whereby the first clamper 51 that clamps the tip of the interconnector 12 is moved.
  • FIG. 6 (B) it is moved forward to a predetermined position and the interconnector 12 is pulled out by a predetermined amount.
  • the cutter 43 is lowered to cut the interconnector 12 into a predetermined length.
  • the first clamper 51 is moved integrally with the moving table 45 together with the moving guide 50 by moving the moving table 45 by a predetermined amount by the rotation of the first ball screw shaft 47 by the first motor 46. (See FIG. 6C). As a result, the first clamper 51 is moved onto the lower hot plate 81, and the interconnector 12 having a predetermined length clamped thereto is supplied onto the solar cells 11 placed on the lower hot plate 81. .
  • the second clamper 52 is unclamped and retracted by a certain amount, and then the second clamper 52 is moved forward by a constant amount while the interconnector 12 is clamped by the second clamper 52, and the interconnector 12 is moved to the cutter 43. (See FIG. 6D.)
  • the first clamper 51 is unclamped, and the first clamper 51 is moved together with the moving table 45 by the first and second motors 46 and 49. Is returned to the original position (see FIG. 6A), the interconnector 12 is polymerized on the solar battery cell 11.
  • the moving acceleration is appropriately set (for example, 1G), whereby the interconnector 12 is pulled by the tension force of the tension cylinder 58. Can be towed against.
  • the curl of the interconnector 12 wound around the bobbin 41 and having the curl can be removed and straightened.
  • the interconnector 12 is pulled with a tensile force smaller than the breaking force, if the tensile force acting on the interconnector 12 is increased, the elevating member 57 is raised, and therefore the interconnector 12 is excessively pulled. The curl can be removed without applying a force.
  • the second connector supply unit 31B is also configured in the same manner as the first connector supply unit 31A described above, and the interconnector 12 pulled out from the bobbin 41 is cut to a predetermined length while removing the curl. It supplies to the photovoltaic cell 11 mounted in the upper hot plate 81 (refer FIG. 12) of 2 joining unit 33B.
  • the first cell supply unit 32A conveys the solar cells 11 in the Y direction with the light receiving surface facing downward, and supplies them to the first joining unit 33A.
  • the second cell supply unit 32B is a solar cell. The cell 11 is transported in the Y direction with the light receiving surface facing upward, and is supplied to the second joining unit 33B.
  • the first cell supply unit 32 ⁇ / b> A has a cell supply station 62 for supplying a cassette 61 in which a large number of solar cells 11 are stacked with the light receiving surface facing downward, and a stack on the cassette 61.
  • the cell lifter station 63 that always holds the uppermost solar cell 11 in a fixed height position, the cell inspection station 64 that inspects chipping or cracking of the solar cell 11, and the inclination of the solar cell 11 is corrected.
  • An inclination correction station 65 and a cell delivery station 66 for delivering the solar battery cell 11 are arranged with a certain interval in the Y direction.
  • the cassette 61 supplied to the cell supply station 62 is manually or automatically sent onto the lifter 63a of the cell lifter station 63, and the uppermost solar cell 11 stacked on the cassette 61 is always fixed by the lifter 63a. It is designed to be held at the height position. That is, even if the upper surface position of the uppermost solar cell 11 is detected by a height position detection sensor (not shown) and the stacked solar cells 11 are sequentially supplied, the uppermost solar cell 11 is always kept at a certain height. Can be held in this position.
  • the cell inspection station 64 is provided with an inspection camera 67 that images the supplied solar battery cell 11 from above. By processing the image captured by the inspection camera 67, the solar battery cell 11 is defective such as a crack or a chip. Can be detected.
  • the cell inspection station 64 is provided with a holding base including a light source (not shown) and a white light diffusion plate, and the solar cells 11 are transferred onto the holding base by a cell transfer hand 71a described later. Is done. Then, during the return operation of the cell transfer hand 71a, that is, the moment when the portion between the cell transfer hands 71a and 71b passes through the holding table, the light source is turned on, and the solar cells transferred onto the holding table 11 is imaged by the inspection camera 67 provided above the solar battery cell 11. As a result, the solar battery cell 11 can be imaged without being affected by the cell transfer hand 71a, so image processing is performed to determine whether or not the transmitted image (shadow) of the captured solar battery cell 11 is missing or cracked. By doing so, it is possible to determine whether there is a chip or a crack.
  • the inclination correction station 65 In the inclination correction station 65, the inclination of the solar battery cell 11 is corrected by pressing the supplied solar battery cell 11 against the reference block 69 by the pressing member 68.
  • an opening / closing door 65a is provided on the lower surface of the inclination correction station 65 in order to discard the solar battery cell 11 detected as defective by the inspection camera 67, and a disposal box 70 is installed below the opening / closing door 65a. Yes.
  • the photovoltaic cell 11 is moved from the cell lifter station 63 to the cell inspection station 64, from the cell inspection station 64 to the inclination correction station 65, and to the inclination correction station 65 by the pick and place operation by the three cell transfer hands 71a, 71b, 71c.
  • the pick-and-place operation the solar cells 11 are sucked and held by the cell transfer hands 71a, 71b, 71c, and are sequentially transported to the next station.
  • Dispensers 73a and 73b as flux application devices for applying flux 72 as a bonding material to the upper and lower surfaces of the solar battery cell 11 are disposed between the inclination correction station 65 and the cell delivery station 66, respectively. As shown in FIGS. 9 and 10, the dispensers 73a and 73b are provided with supply nozzles 73a1 and 73b1 for applying two rows of flux 72 to the upper and lower surfaces of the solar battery cell 11, respectively.
  • the bonding material in addition to flux, cream solder or anisotropic conductive film (ACF) may be used.
  • ACF anisotropic conductive film
  • the inspection / attachment conditions for the film attachment state are determined.
  • an opening / closing valve (not shown) is opened and closed, and the supply nozzles 73a1, 73b1 of the dispensers 73a, 73b,
  • the flux 72 is discharged from 73b1 and applied to the upper and lower surfaces of the solar battery cell 11, respectively.
  • the cell delivery station 66 is provided with inspection cameras 151 and 152 for imaging the solar battery cell 11 coated with the flux 72 from above and below.
  • an application state inspection station may be provided between the cell delivery station 66 and the inclination correction station 65, and inspection cameras 151 and 152 may be provided in the application state inspection station.
  • Image information captured by the inspection cameras 151 and 152 is input to the image processing device 153 and subjected to image processing, and application conditions such as a flux application start position, a flux application end position, and a flux application amount are measured.
  • application conditions such as a flux application start position, a flux application end position, and a flux application amount are measured.
  • the flux application amount is determined based on the width direction dimension of the area where the flux 72 is applied.
  • Information regarding the target application condition is registered in the control unit 154 in advance, and the information captured by the inspection cameras 151 and 152 is compared with the registered information in the control unit 154, and the comparison result is displayed. Based on this, a signal for correcting the application conditions such as the flux application start position, the flux application end position, and the flux application amount is fed back to the dispensers 73a and 73b. Thereby, the application state of the flux 72 can be always maintained accurately by correcting the opening / closing timing and / or opening / closing amount of the opening / closing valve or by correcting the moving speed from the inclination correction station 65 to the cell delivery station 66. I have to. In this way, it is possible to quickly and accurately determine the application conditions that have been relied on by hand.
  • Application conditions can be set / changed for each of the supply nozzles 73a1, 73b1, and can also be set / changed for each of the front and back surfaces of the solar battery cell 11.
  • the application condition may be changed every time during the production operation, or only during a predetermined number of production operations at the start of production (in this case, the production is performed only for a predetermined time without being performed every time at the start of production). Only when production is started after interruption). You may carry out at the time of resumption of production after flux replenishment.
  • the solar cells 11 in which the application state is poor may be discarded, and the application position is shifted within an allowable range. If so, the joining position of the interconnector 12 may be corrected according to the application position of the flux 72. In this case, when the solar battery cell 11 is placed on the lower hot plate 81 by a carry head 78 described later, it is possible to place the solar battery cell 11 after correcting the position according to the application position of the flux 72.
  • an inspection camera is provided in the working robot 74, and the solar cells 11 transferred to the cell delivery station 66 are imaged from above, and the flux 72 The application state may be inspected.
  • the coating state of one of the front surface and the back surface of the solar battery cell 11 may be inspected, and the coating conditions for both the front surface and the back surface may be set / changed.
  • the first And the working robot 74 which conveys the photovoltaic cell 11 is arrange
  • the working robot 74 is common to the first and second cell supply units 32A and 32B.
  • the working robot 74 includes a Y slide 76 that is slidably guided by a guide rail 75 installed along the Y direction, an X slide 77 that is slidably guided by the Y slide 76 in the X direction, and an X slide 77. And a carry head 78 supported so as to be movable in the vertical direction.
  • the carry head 78 is provided with a suction hand 78 a that sucks the solar battery cells 11.
  • the work robot 74 performs only the operation of transferring the solar cells 11 from the cell delivery station 66 onto the lower hot plate 81, and therefore, only one carry head 78 is provided. Installed.
  • the solar cells 11 transported from the cell delivery station 66 to the first and second joining units 33A and 33B by the carry head 78 are picked up by the camera 79 in the middle of the transport, and are displaced based on the image recognition. Is corrected.
  • the second cell supply unit 32B is also configured in the same manner as the first cell supply unit 32A described above, with the flux 72 applied to the upper and lower surfaces of the solar cells 11 supplied with the light receiving surface facing upward.
  • the solar battery cell 11 is supplied onto the upper hot plate 81 of the second joining unit 33B.
  • the first and second joining units 33A and 33B each have a fixed lower hot plate 81 and a movable upper hot plate 82, as shown in FIG.
  • the first and second joining units 33A and 33B are disposed at a predetermined distance in the Y direction across the fixed block 83 disposed between the first and second joining units 33A and 33B.
  • the first and second cell transport units 34A and 34B are connected to respective one end portions (start end portions).
  • first joining unit 33A and the second joining unit 33B have basically the same configuration, the configuration of the first joining unit 33A will be described below with reference to FIGS.
  • the lower hot plate 81 of the first joining unit 33A includes a heater for preheating the upper surface 81a of the lower hot plate 81, and the upper hot plate 82 is used for heating the lower surface 82a of the upper hot plate 82. Built-in heater.
  • a guide rail 84 is provided along the X direction on the side surface of the fixed block 83 installed on the base 35.
  • a movable table 85 is guided on the guide rail 84 so as to be movable in the X direction by a predetermined amount.
  • An upper hot plate 82 is supported on the guide rail 86 provided on the movable table 85 so as to be movable up and down by a predetermined amount.
  • a ball screw shaft 88 driven by a motor 87 is supported on the fixed block 83 so as to be rotatable about an axis parallel to the X direction, and a ball nut 85 a fixed to the moving base 85 is screwed to the ball screw shaft 88. Is engaged.
  • the upper hot plate 82 is positioned at an upper position of the lower hot plate 81 when the moving table 85 is guided by the guide rail 84 by the rotation of the ball screw shaft 88 and moved by a predetermined amount in the X direction. In this state, the upper hot plate 82 is guided by the guide rail 86 and lowered by a lifting device (not shown), whereby the solar cell 11 and the interconnector 12 are interposed between the lower hot plate 81 and the upper hot plate 82. Apply heat and crimp.
  • a plurality of (two) rows of interconnectors 12 (12a) having a predetermined length supplied from the first connector supply unit 31A are placed on the upper surface 81a of the lower hot plate 81. And on these interconnectors 12, the solar cells 11 with the flux 72 applied on the upper and lower surfaces are mounted so that the flux 72 applied on the lower surface is in contact with the interconnector 12, and further on the upper surface of the solar cells 11.
  • a plurality of (two) rows of interconnectors 12 having a predetermined length are mounted at positions where they contact the applied flux 72. That is, on the lower hot plate 81, the solar battery cell 11 and the interconnector 12 are superposed on the top and bottom thereof.
  • the interconnector 12 and the solar cell 11 are sandwiched between the lower hot plate 81 and the upper hot plate 82 by the movement and lowering of the upper hot plate 82 in the X direction, and the interconnector 12 and the solar cell 11 are heated.
  • the interconnector 12 is joined to the plus side electrode and the minus side electrode of the solar battery cell 11 via the flux 72 by crimping.
  • a guide groove 89 is formed at the center in the X direction along the Y direction.
  • a pressing plate 90 as a pressing member is accommodated so as to be able to protrude and retract from the lower surface 82a of the upper hot plate 82.
  • the holding plate 90 is pressed in a direction protruding from the lower surface of the upper hot plate 82 by an urging force of a spring (not shown), and is normally held at a position protruding from the lower surface 82 a of the upper hot plate 82 by a predetermined amount.
  • the interconnector 12 prior to thermocompression bonding of the solar cells 11 and the interconnector 12 by the lowering of the upper hot plate 82, the interconnector 12 is pressed by the holding plate 90 with a spring force, and the interconnector 12 and the solar cells 11 are Misalignment is suppressed.
  • the pressing plate 90 acts so as to continue to press the interconnector 12 by the spring force even when the upper hot plate 82 rises after the solar battery cell 11 and the interconnector 12 are thermocompression bonded.
  • the positional deviation between the solar battery cell 11 and the interconnector 12 is regulated until the welded flux 72 is cured.
  • the interconnector 12 can be accurately joined to a predetermined position of the solar battery cell 11.
  • reference numeral 83 denotes a duct.
  • the second joining unit 33B is configured similarly to the first joining unit 33A described above.
  • the difference between the first bonding unit 33A and the second bonding unit 33B is that the solar cell 11 faces the light receiving surface downward from the first cell supply unit 32A on the lower hot plate 81 of the first bonding unit 33A. Supplied in the posture.
  • the solar cell 11 is supplied to the lower hot plate 81 of the second joining unit 33B from the second cell supply unit 32B with the light receiving surface facing upward.
  • the first cell transport unit 34A has a length in the X direction sufficient to simultaneously support the required number Xm or more of solar cells 11 transported from the lower hot plate 81 of the first joining unit 33A. .
  • the first cell transport unit 34 ⁇ / b> A has a pair of transport members 91 that transport the solar cells 11 to which the interconnectors 12 are joined.
  • the accommodation grooves 92 that can accommodate the conveying members 91 are provided on the upper surface of the lower hot plate 81 in two rows on both sides along the X direction.
  • the transport member 91 lifts and carries the solar cell 11 from above the lower hot plate 81 by a lift-and-carry operation by the first cell transport unit 34A, that is, a box motion of ascending a ⁇ forward b ⁇ descending c ⁇ retreat d. It is transported to the start end of one cell transport unit 34A.
  • the conveying member 91 is normally held at the original position buried in the accommodation groove 92, and when the joining between the solar battery cell 11 and the interconnector 12 is finished, the transport member 91 is lifted to scoop up the solar battery cell 11. Thereafter, the forward and downward movement of the transport member 91 transports the solar cells 11 by one pitch and supports them on a fixed support base (not shown) of the first cell transport unit 34A.
  • a slow cooling station 95 for gradually cooling the solar cells 11 transported by one pitch from the lower hot plate 81 is provided at the start end of the first cell transport unit 34A. Yes.
  • the slow cooling station 95 is composed of a plurality of slow cooling heaters 96 a, 96 b, 96 c... Arranged along the X direction at the transport pitch interval of the solar battery cells 11.
  • the plurality of slow cooling heaters 96a, 96b, 96c... Are set so that the heater temperature gradually decreases so that the temperature of the solar battery cell 11 conveyed from the lower hot plate 81 is gradually decreased. Therefore, the warpage of the solar battery cell 11 is suppressed by slow cooling.
  • the solar cells 11 transported from the lower hot plate 81 by the first cell transport unit 34A are first transported onto the first slow-cooling heater 96a set to a predetermined temperature, and then the first slow-heater 96a.
  • the solar cell 11 heated by the hot plates 81 and 82 is lowered by a predetermined temperature by the cold heater 96a.
  • the solar battery cell 11 is transported onto the second slow cooling heater 96b set lower than the first slow cooling heater 96a by a certain temperature and gradually cooled, and further from the second slow cooling heater 96b. It is transported onto the third slow cooling heater 96c set lower by a certain temperature and gradually cooled.
  • the temperature of the solar battery cell 11 is gradually lowered by the slow cooling station 95 including the three to five slow cooling heaters 96a, 96b, 96c,... 11 warpage is suppressed.
  • the second cell transport unit 34B is also configured in the same manner as the first cell transport unit 34A described above. The difference is whether the solar cells 11 are transported with the light receiving surface facing downward or transported upward. Only.
  • a first cell mounting table 101 and a transfer device 103 are arranged in parallel on both sides of the first cell transport unit 34A.
  • the transfer device 103 transfers the first solar cell group 110 ⁇ / b> A including the predetermined number of solar cells 11 conveyed by the first cell conveyance unit 34 ⁇ / b> A onto the first cell mounting table 101. .
  • the transfer device 103 includes a moving table 112 that is movably guided by a guide rail 111 installed on the base 35 along the Y direction, and a guide rail 113 that is formed on the moving table 112 along the vertical direction. And a plurality of suction heads 116 held by holding rails 115 held on the lifting table 114 so as to be positionally adjustable in the X direction.
  • the adsorption heads 116 are provided in a number capable of adsorbing at least a predetermined number (Xm) of the solar cells 11 constituting the first solar cell group 110A, and the upper surfaces of the solar cells 11 are placed on the adsorption heads 116.
  • a pair of adsorbing members 116a to be adsorbed are respectively held.
  • an extra suction head 116 is provided by ⁇ (two) so that different types of solar battery modules 10 can be accommodated, and usually the extra suction head 116 ′ is the first solar cell group. It is retracted to a position that does not hinder the adsorption of 110A.
  • the adsorbing member 116a is brought into contact with the upper surface of each solar cell 11 on the first cell transport unit 34A as the elevating table 114 is lowered, and simultaneously adsorbs each solar cell 11 by vacuum adsorption. Then, the first solar cell group 110 ⁇ / b> A adsorbed by the adsorbing member 116 a is transferred onto the first cell mounting table 101 by the ascent of the elevating table 114 and the forward movement of the moving table 112.
  • the second cell transport unit 34B is provided with a second cell mounting table 102 in parallel, and the reversal transfer is performed between the second cell mounting table 102 and the second cell transport unit 34B.
  • a loading device 104 is provided.
  • the reverse transfer device 104 moves the second solar cell group 110B composed of the required number of solar cells 11 transported by the second cell transport unit 34A upside down onto the second cell mounting table 102. It is listed.
  • the reversal transfer device 104 has a reversing table 122 supported on the base 35 so as to be rotatable about a support shaft 121 parallel to the X direction, and a motor 123 that reverses the reversing table 122 by 180 degrees as a drive source. And a plurality of suction heads 126 held on the slider 125 so as to be position-adjustable in the X direction.
  • the suction head 126 is provided with Xm + ⁇ similarly to the suction head 116 of the transfer device 103 described above, and the lower surfaces of the predetermined number of solar cells 11 constituting the second solar cell group 110B are provided on these suction heads 126. A pair of adsorbing members 126a that adsorb each is held.
  • the adsorption member 126a is brought into contact with the lower surface of each solar cell 11 on the second cell transport unit 34B by the slide of the slider 125, and simultaneously adsorbs each solar cell 11 by vacuum adsorption. Then, the second solar cell group 110 ⁇ / b> B adsorbed by the adsorbing member 126 a is transferred onto the second cell mounting table 102 in an inverted state by reversing the reversing table 122 by 180 degrees.
  • the reverse transfer device 104 transfers the second solar cell group 110 ⁇ / b> B onto the second cell mounting table 102 while reversing the posture in which the light receiving surface faces downward. Thereby, the light receiving surfaces of the first and second solar battery cell groups 110A and 110B transferred onto the first and second cell mounting bases 101 and 102 are aligned downward.
  • a lay-up device 22 is disposed corresponding to the first and second cell mounting bases 101 and 102 of the string wiring device 21. As shown in FIG. 4, the lay-up device 22 is supplied with a cover glass 130 for arranging a required number of solar battery groups 110A and 110B in the Y-axis direction automatically or manually from the standby position P1. It has become. On the cover glass 130, the 1st and 2nd photovoltaic cell groups 110A and 110B are conveyed alternately from the 1st and 2nd cell mounting bases 101 and 102, and are laid up.
  • the lay-up device 22 is provided with a pair of guide rails 131 extending in the Y direction over the upper positions of the first and second cell mounts 101, 102.
  • a carry head 132 that conveys the groups 110A and 110B is supported so as to be movable in the Y direction.
  • a lift head 133 is supported on the carry head 132 so as to be movable up and down.
  • a holding rail is attached to the lifting platform 133, and a plurality of (Xm + ⁇ ) suction heads are held on the holding rail so that the position of the suction head can be adjusted in the X direction.
  • the adsorption head holds a pair of adsorption members that respectively adsorb the upper surfaces of a predetermined number of solar cells 11 constituting the solar cell group 110A or 110B.
  • the adsorbing member is brought into contact with the upper surface of each of the solar cells 11 of the solar cell groups 110A and 110B transferred onto the first or second cell mounting bases 101 and 102 by the lowering of the lifting / lowering base 133, and vacuum Each solar cell 11 is adsorbed simultaneously by adsorption. Then, the adsorbed solar cell groups 110A and 110B are transported onto the cover glass 130 supplied to the lay-up device 22 by the raising of the elevator 133 and the movement of the carry head 132 in the Y direction.
  • Solar cell group 110 ⁇ / b> A, 110 ⁇ / b> B is attached to cover glass 130.
  • 110 A of 1st photovoltaic cell groups conveyed from the 1st cell mounting base 101, 2nd photovoltaic cell group 110Bg conveyed from the 2nd cell mounting base 102, and the cover glass 130 are alternately turned to a Y direction. Installed.
  • the cover glass 130 is transported to the matrix wiring device 23 by the transport conveyor 25.
  • the matrix wiring device 23 includes a bus metal supply unit (conductive member supply unit) 142 for supplying a bus metal 14 (see FIG. 1) as a conductive member wound around a bobbin 141, and a guide rail.
  • a working robot 144 is provided that can move in the X and Y directions along 143a and 143b.
  • the bus metal supply unit 142 is configured to pull out the bus metal 14 wound around the bobbin 141 in the Y direction, cut it into a predetermined length, and supply the cut bus metal 14 to a predetermined position.
  • a carry head 145 having an adsorbing member that adsorbs the bus metal 14 cut to a predetermined length, and a process head 146 having a heater for welding the bus metal 14 are movable in the vertical direction. Is retained.
  • the bus metal 14 supplied to the predetermined position by the bus metal supply unit 142 is transferred by the carry head 145 of the work robot 144.
  • the first and second photovoltaic cell groups 110A and 110B adjacent in the Y direction are sequentially mounted between the end portions of the interconnector 12 protruding from the right end portions. Thereafter, the bus metal 14 is welded by the process head 146 of the work robot 144, and the bus metal 14 and the interconnector 12 are electrically connected.
  • the cover glass 130 is transported by a predetermined amount by the transport conveyor 25, and in this state, the second and first solar cells that are next to each other in the Y direction.
  • the bus metal 14 is sequentially mounted between the end portions of the interconnector 12 protruding from the left end portions of the groups 110B and 110A, and the bus metal 14 is welded. Are electrically connected. As a result, all of the matrix Xm ⁇ Yn solar cells 11 are electrically connected in series.
  • an interconnector may be used in place of the bus metal 14, and the interconnector may be joined to the interconnector 12 described above via a flux.
  • the first motor 46 rotates the first ball screw shaft 47 by a predetermined amount, and the first clamper 51 together with the moving guide 50 is integrated with the moving table 45 as shown in FIG. Move.
  • the first clamper 51 is moved onto the lower hot plate 81, and the interconnector 12 having a predetermined length clamped thereto is supplied onto the solar cells 11 placed on the lower hot plate 81.
  • the second clamper 52 is unclamped and retracted by a certain amount.
  • the second clamper 52 is moved forward in a state where the interconnector 12 is clamped, and the interconnector 12 is pulled out to the front position of the cutter 43 (see FIG. 6D).
  • the first clamper 51 is returned to the original position together with the moving table 45 by the first and second motors 46 and 49 (see FIG. 6A).
  • the interconnector 12 has a short length to be joined to the solar cells 11 positioned at both ends of the solar cell groups 110A and 110B and a long length to join the adjacent solar cells 11 to each other. And cut into two types. That is, when the interconnector 12 is joined to the first solar battery cell 11 of the solar battery cell group 110A, 110B, first, the short interconnector 12 is connected to the eleventh and second joint units 33A, 33B. Two rows are supplied to a predetermined position on each lower hot plate 81.
  • the flux 72 is applied to the upper and lower surfaces by the dispensers 73a and 73b. (See FIG. 9).
  • the application state of the flux 72 applied to the solar battery cell 11 is picked up by the inspection cameras 151 and 152 and subjected to image processing by the image processing device 153. Then, the application condition is corrected based on the result of the image processing.
  • the solar cells 11 having the upper and lower surfaces coated with the flux 72 are supplied onto the interconnector 12 on the lower hot plate 81 of the first joining unit 33A.
  • the first solar cell 11 with the light receiving surface facing upward from the second cell supply unit 32B is coated with flux 72 on the upper and lower surfaces, and then on the lower hot plate 81 of the second joining unit 33B. Is mounted on the interconnector 12.
  • the front half of the interconnector 12 having a long length is then supplied onto the solar cell 11 with the light receiving surface facing downward and the solar cell 11 with the light receiving surface facing upward.
  • the solar cells 11 and the interconnectors 12 are placed in a superposed state on the lower hot plates 81 of the first and second joining units 33A and 33B.
  • the interconnector 12 and the solar battery cell 11 are sandwiched between the lower hot plate 81 and the upper hot plate 82 by moving and lowering the upper hot plate 82 in the X direction, while heating the interconnector 12 and the solar battery cell 11.
  • the interconnector 12 is joined to the plus side electrode and the minus side electrode of the solar battery cell 11 via the flux 72 by pressure bonding.
  • the holding plate 90 shown in FIG. 13 presses the interconnector 12 on the solar battery cell 11 from above with a spring force, so that the interconnector 12 and the solar battery superposed with each other are stacked. The positional deviation of the cell 11 can be suppressed.
  • each upper hot plate 82 is raised, moved by a predetermined amount in the X direction, and retracted from the lower hot plate 81.
  • the interconnector 12 is joined to the upper and lower surfaces of the solar battery cell 11 via the flux 72.
  • the presser plate 90 continues to press the interconnector 12 by the spring force even when the upper hot plate 82 rises, so that the position of the solar battery cell 11 and the interconnector 12 is maintained while the welded flux 72 is cured. Deviation can be regulated.
  • the solar cells 11 to which the interconnector 12 is joined are scooped up to the transport member 91 by the lift and carry operation by the first and second cell transport units 34A and 34B, and transported one pitch at a time.
  • the first solar battery cell 11 is conveyed from the lower hot plate 81 onto the first slow cooling heater 96a and gradually cooled.
  • the latter half of the interconnector 12 joined to the upper surface of the solar battery cell 11 is positioned on the lower hot plate 81.
  • the second solar cell 11 from the first and second cell supply units 32A and 32B is supplied onto the lower hot plate 81 with the flux 72 applied in the same manner as described above. It is placed on the second half of the interconnector 12 positioned on 81.
  • the interconnector 12 having a longer length is supplied onto the lower hot plate 81 in the same manner as described above from the first and second connector supply units 31A and 31B, and the front half of the interconnector 12 is on the solar battery cell 11. (See FIG. 14B).
  • the upper hot plate 82 is operated, and the interconnector 12 is joined to the upper and lower surfaces of the solar battery cell 11 via the flux 72.
  • the first solar battery cell 11 is simultaneously transported from the first slow cooling heater 96a to the second slow cooling heater 96b by the lift and carry operation by the first and second cell transport units 34A and 34B.
  • the second solar battery cell 11 is conveyed from the lower hot plate 81 to the first slow cooling heater 96a.
  • the solar battery cell 11 to which the interconnector 12 is joined is sequentially transported one pitch at a time by the first and second cell transport units 34A and 34B.
  • the first and second solar battery cell groups 110A and 110B including the predetermined number of solar battery cells 11 are transported on the first and second cell transport units 34A and 34B.
  • the first and second solar battery cell groups 110A and 110B are manufactured by the same connection process (see FIG. 14) in which the interconnector 12, the solar battery cell 11, and the interconnector 12 are sequentially stacked from the lower side. Therefore, the string wiring operation of the solar battery cell groups 110A and 110B can be easily performed.
  • the interconnector joined to the last photovoltaic cell 11 of the first and second photovoltaic cell groups 110A and 110B is also used with a short length, and the first joining unit 33A makes the length of the interconnector.
  • the short interconnector 12a is joined to the back surface (upper surface) side of the solar cell 11, and the short interconnector 12a is joined to the light receiving surface (upper surface) side of the solar cell 11 by the second joining unit 33B.
  • the solar battery cell groups 110A and 110B including the required number of solar battery cells 11 are transported on the first and second cell transport units 34A and 34B, respectively, they are transferred to the first and second joining units 33A and 33B.
  • the short interconnector 12 is supplied again, the first solar cell 11 is supplied, and the above-described operation is repeated.
  • the transfer device 103 is transferred.
  • the plurality of adsorption heads 116 adsorb the upper surfaces of the respective solar cells 11 of the first solar cell group 110A on the first cell transport unit 34A, and receive light without changing the posture by the transfer device 103.
  • the surface is transferred onto the first cell mounting base 101 with the surface (minus side electrode) facing downward. That is, in the first solar cell group 110A, a short interconnector 12a joined to the negative electrode of the first solar cell 11 is disposed below the solar cell 11 as shown in FIG. In the state where it is located, it is transferred onto the first cell mounting table 101.
  • the lower surfaces of the respective solar cells 11 of the second solar cell group 110B on the second cell transport unit 34B are adsorbed by the plurality of suction pads 127 of the reverse transfer device 104, respectively.
  • the second solar cell group 110B is turned upside down by the 180-degree reversing operation, and is transferred onto the second cell mounting table 102 with the light receiving surface (minus side electrode) facing downward. That is, in the second solar cell group 110B, the short interconnector 12a joined to the positive side electrode of the first solar cell 11 is positioned above the solar cell 11 as shown in FIG. In this state, the sample is transferred onto the second cell mounting table 102.
  • the first and second solar battery cell groups 110 ⁇ / b> A and 110 ⁇ / b> B have different connection structures of the interconnector 12 to the solar battery cells 11.
  • the 1st and 2nd photovoltaic cell group 110A, 110B conveyed on 1st and 2nd cell conveyance unit 34A, 34B is 1st by the transfer apparatus 103 and the reverse transfer apparatus 104. And it is carried out to the 2nd cell mounting base 101,102.
  • unnecessary solar cells 11 are not retained on the first and second cell transport units 34A and 34B, the above-described joining work and transport work can be continued, and the string wiring work is efficiently performed. Will be able to do it.
  • a cover glass 130 for arranging a required number of two types of solar cell groups 110A and 110B alternately in the Y-axis direction is supplied automatically or manually to the layup position of the layup device 22.
  • Solar cell groups 110 ⁇ / b> A and 110 ⁇ / b> B are alternately conveyed from the first and second cell mounting bases 101 and 102 by the carry head 132 onto the cover glass 130.
  • the first solar cell group 110 ⁇ / b> A is attached to the first row of the cover glass 130 from the first cell mounting base 101, and the second row of the second glass mounting base 102 is attached to the second row of the cover glass 130.
  • the solar battery cell group 110B is mounted.
  • the first solar cell group 110A is attached to the odd-numbered rows of the cover glass 130
  • the second solar cell group 110B is attached to the even-numbered rows, and the required number of solar cells in the Y-axis direction.
  • Cell groups 110A and 110B are arranged.
  • the short interconnector 12a joined to the negative electrode of the solar battery cell 11 and the positive side of the solar battery cell 11 are connected to both ends of the solar battery cell groups 110A and 110B adjacent to each other in the Y-axis direction.
  • the short interconnectors 12a joined to the electrodes are alternately arranged in the Y-axis direction.
  • the bus metal 14 is pulled out from the bobbin 141 of the bus metal supply unit 142 of the matrix wiring device 23 in the Y direction, cut to a predetermined length, and sucked and held by a suction head attached to the carry head 145 of the work robot 144. And mounted between the interconnectors 12a.
  • bus metal 14 is connected between the interconnectors 12a protruding from the right ends of the third and fourth row solar cell groups 110A and 110B, and between the fifth and sixth row solar cell groups 110A. , 110B are respectively mounted between the interconnectors 12a protruding from the right ends of
  • the process head 146 with a built-in heater is used to heat and bond the connecting portion between the bus metal 14 and the interconnector 12 so that the bus metal 14 is melted and joined to the negative electrode 12a.
  • the interconnector 12a joined to the plus side electrode is electrically connected via the bus metal 14.
  • the bonding material application devices (dispensers) 73 a and 73 b that apply the bonding material (flux) 72 to the upper and lower surfaces of the solar battery cell 11, and the bonding applied to the upper and lower surfaces of the solar battery cell 11.
  • Inspection cameras 151 and 152 that image the material 72
  • an image processing device 153 that performs image processing on image information captured by the inspection cameras 151 and 152
  • a correction control device 154 for correcting the bonding material application condition by 73a and 73b is provided.
  • the bonding material application devices 73a and 73b have the plurality of supply nozzles 73a1 and 73b1 that simultaneously apply the plurality of rows of the bonding material 72 to the solar battery cell 11, and the supply nozzles 73a1 and 73b1 are provided. Since the bonding material 72 having a predetermined length is applied to the upper and lower surfaces of the solar battery cell 11 by being moved relative to the solar battery cell 11, a plurality of rows of the bonding materials 72 are applied to the upper and lower surfaces of the solar battery cell. It can be easily applied.
  • the bonding material application conditions are the bonding material application start position and the bonding material application end position, by feeding back the application state of the bonding material 72 imaged by the inspection cameras 151 and 152, The bonding material application start position and end position can be properly maintained.
  • the bonding material application conditions are the bonding material application start position, the bonding material application end position, and the bonding material application amount
  • the application state of the bonding material 72 imaged by the inspection cameras 151 and 152 is determined.
  • the bonding material application start position, the end position, and the bonding material application amount can be appropriately maintained.
  • the bonding material (flux) 72 is applied in two rows on the upper and lower surfaces of the solar battery cell 11 has been described.
  • Applicable and the application conditions may be at least the bonding material application start position and the bonding material application end position.
  • the solar battery cell 11 to which the bonding material 72 is applied and the plurality of conductive members (interconnectors) 12 are thermocompression bonded between the lower hot plate 81 and the upper hot plate 82.
  • a heater it is also possible to attach a heater to a robot that can move in a three-dimensional direction.
  • the present invention is not limited to the configurations described in the embodiments, and can take various forms without departing from the gist of the present invention described in the claims.
  • the flux application condition correction device is suitable for use in a solar cell module in which adjacent solar cells are electrically joined via a conductive member.
  • SYMBOLS 10 Solar cell module, 11 (11A, 11B) ... Solar cell, 12, 14 ... Conductive member (interconnector, bus metal), 21 ... String wiring apparatus, 31A, 31B ... Conductive member supply unit, 32A, 32B ... Cell supply unit, 33A, 33B ... bonding unit, 34A, 34B ... cell transport unit, 72 ... bonding material (flux), 73a, 73b ... bonding material application device (dispenser), 151, 152 ... inspection camera, 153 ... image processing Devices, 154... Correction control devices.

Abstract

Provided is a device that is for correcting joining material application conditions, can apply a joining material to the upper and lower surfaces of a solar cell in a process for supplying a solar cell, and moreover can correct the application conditions of the joining material. To said end, the present invention is provided with: a joining material application device (73a, 73b) that applies the joining material (72) to the surface of the solar cell (11); an inspection camera (151, 152) that images the joining material applied to the surface of the solar cell; an image processing device (153) that subjects the image information captured by the inspection camera to image processing; and a correction control device (154) that, on the basis of the result of image processing by image processing device, corrects the joining material application conditions of the joining material application device.

Description

接合材料塗布条件補正装置Bonding material application condition correction device
 本発明は、太陽電池セルに塗布した接合材料の塗布状態に基づいて接合材料の塗布条件を補正する接合材料塗布条件補正装置に関するものである。 The present invention relates to a bonding material application condition correction device that corrects the application condition of the bonding material based on the application state of the bonding material applied to the solar battery cell.
 従来、受光面を形成した面にマイナス側電極を有し、その裏面にプラス側電極を有する太陽電池セルを縦横に複数配列した太陽電池モジュール(太陽電池パネル)においては、複数の太陽電池セルをストリング配線するために、インターコネクタが用いられている。すなわち、インターコネクタによって、1つの太陽電池セルの電極と隣接する他の太陽電池セルの電極とを互いに接続して、ストリング配線するようになっている。この種の太陽電池モジュールとして、例えば、特許文献1あるいは特許文献2に記載されたものが知られている。 Conventionally, in a solar cell module (solar cell panel) in which a plurality of solar cells having a negative electrode on the light-receiving surface and a positive electrode on the back surface are arranged vertically and horizontally, a plurality of solar cells are arranged. An interconnector is used for string wiring. That is, the interconnector connects the electrodes of one solar battery cell and the electrodes of another adjacent solar battery cell to each other and performs string wiring. As this type of solar cell module, for example, one described in Patent Document 1 or Patent Document 2 is known.
特開2003-298095号公報JP 2003-298095 A 特開2011-187601号公報JP2011-187601A
 特許文献1に記載のものは、太陽電池セルにインターコネクタを接合するために、はんだコーティングされたインターコネクタを用いているが、はんだコーティングされたインターコネクタは高価であり、太陽電池モジュールのコストを上昇させる要因となる。 Although the thing of patent document 1 uses the solder-coated interconnector in order to join an interconnector to a photovoltaic cell, the solder-coated interconnector is expensive, and the cost of a solar cell module is reduced. It becomes a factor to raise.
 これに対して、特許文献2に記載のものは、太陽電池セルにインターコネクタを、クリームはんだ(はんだの粉末にフラックスを加えて、適当な粘度にしたもの)を介して接合するようになっているため、高価なインターコネクタを用いることなく、太陽電池モジュールを製造することができる。 On the other hand, the thing of patent document 2 comes to join an interconnector to a photovoltaic cell via cream solder (thing which added flux to solder powder and made it suitable viscosity). Therefore, a solar cell module can be manufactured without using an expensive interconnector.
 しかしながら、はんだクリームを用いて接合する場合には、インターコネクタ上にクリームはんだを塗布し、その上に太陽電池セルを載置した後、太陽電池セル上にクリームはんだを塗布し、さらに、その上にインターコネクタを載置して、太陽電池セルにインターコネクタを接合する必要がある。このために、接合工程が長くなる問題がある。 However, when joining using solder cream, apply cream solder on the interconnector, place the solar cell on it, apply cream solder on the solar cell, and then It is necessary to mount the interconnector on the solar cell and join the interconnector to the solar cell. For this reason, there exists a problem which a joining process becomes long.
 本発明は、上記した従来の問題を解決するためになされたもので、太陽電池セルを供給する過程で太陽電池セルの上下面に接合材料を塗布でき、しかも、接合材料の塗布条件を補正可能な接合材料塗布条件補正装置を提供することを目的とするものである。 The present invention has been made to solve the above-described conventional problems. In the process of supplying solar cells, the bonding material can be applied to the upper and lower surfaces of the solar cell, and the application condition of the bonding material can be corrected. An object of the present invention is to provide an apparatus for correcting bonding material application conditions.
 本発明は、太陽電池セルの表面に接合材料を塗布する接合材料塗布装置と、前記太陽電池セルの表面に塗布された接合材料を撮像する検査カメラと、該検査カメラによって撮像した画像情報を画像処理する画像処理装置と、該画像処理装置によって画像処理された結果に基づいて、前記接合材料塗布装置による接合材料塗布条件を補正する補正制御装置を備えている。 The present invention provides a bonding material application device that applies a bonding material to the surface of a solar battery cell, an inspection camera that images the bonding material applied to the surface of the solar battery cell, and image information captured by the inspection camera. An image processing device to be processed and a correction control device for correcting the bonding material application condition by the bonding material application device based on the result of image processing by the image processing device.
 かかる構成によれば、太陽電池セルを供給する過程で太陽電池セルの上下面に接合材料を塗布することができ、しかも、検査カメラによって撮像した接合材料の塗布状態に基づいて、接合材料の塗布開始位置および終了位置等を計測することができるため、従来人手に頼っていた塗布条件出しを速やかにかつ正確に行うことができる。 According to such a configuration, the bonding material can be applied to the upper and lower surfaces of the solar battery cell in the process of supplying the solar battery cell, and the application of the bonding material is performed based on the application state of the bonding material imaged by the inspection camera. Since the start position, the end position, and the like can be measured, it is possible to quickly and accurately determine the application conditions that have been relied on by hand.
太陽電池モジュールを示す概略平面図である。It is a schematic plan view which shows a solar cell module. 図1の2-2線に沿って切断した断面図である。FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 図1の3-3線に沿って切断した断面図である。FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 本発明の実施の形態に係る太陽電池モジュール製造装置の全体を示す平面図である。It is a top view which shows the whole solar cell module manufacturing apparatus which concerns on embodiment of this invention. ストリング配線装置のコネクタ供給ユニットを示す概略側面図である。It is a schematic side view which shows the connector supply unit of a string wiring apparatus. インターコネクタを所定長さに切断して引き出す説明図である。It is explanatory drawing which cuts and pulls out an interconnector to predetermined length. ストリング配線装置のセル供給ユニットを示す概略平面図である。It is a schematic plan view which shows the cell supply unit of a string wiring apparatus. セル供給ユニットにおける太陽電池セルの供給手順を示す説明図ある。It is explanatory drawing which shows the supply procedure of the photovoltaic cell in a cell supply unit. フラックスが塗布された太陽電池セルを示す平面図である。It is a top view which shows the photovoltaic cell by which the flux was apply | coated. 図9の矢印10方向から見た図である。It is the figure seen from the arrow 10 direction of FIG. セル供給ユニットのキャリーヘッドを示す概略平面図である。It is a schematic plan view which shows the carry head of a cell supply unit. ストリング配線装置の接合ユニットを示す平面図である。It is a top view which shows the joining unit of a string wiring apparatus. 接合ユニットの上部ホットプレートに設けた押さえ部材を示す図である。It is a figure which shows the pressing member provided in the upper hot plate of the joining unit. インターコネクタと太陽電池セルを接合ユニットにおいて重合させた状態を示す図である。It is a figure which shows the state which superposed | polymerized the interconnector and the photovoltaic cell in the junction unit. ストリング配線装置のセル搬送ユニットの搬送部材を示す図である。It is a figure which shows the conveyance member of the cell conveyance unit of a string wiring apparatus. セル搬送ユニットの徐冷ステーションを示す概略平面図である。It is a schematic plan view which shows the slow cooling station of a cell conveyance unit. セル搬送ユニットを示す図4の矢印17方向から見た図である。It is the figure seen from the arrow 17 direction of FIG. 4 which shows a cell conveyance unit. 図17の矢印18方向から見た図である。It is the figure seen from the arrow 18 direction of FIG. マトリックス配線装置を示す斜視図である。It is a perspective view which shows a matrix wiring apparatus.
 以下本発明の実施の形態に係る太陽電池セルのストリング配線装置および太陽電池モジュール製造装置について説明する。 A solar cell string wiring device and a solar cell module manufacturing device according to embodiments of the present invention will be described below.
 図1は太陽電池モジュール(太陽電池パネル)10の一例を示す概要図で、当該太陽電池モジュール10は、XY平面に配列され、直列に電気的接続された複数(X方向にXm個、X方向に対して直交するY方向にYn列)の太陽電池セル11から構成されている。図1においては、理解しやすいように、Xmを4個、Ynを4列とした合計16個の太陽電池セル11によって、太陽電池モジュール10を構成した例で示している。 FIG. 1 is a schematic diagram showing an example of a solar cell module (solar cell panel) 10. The solar cell modules 10 are arranged in an XY plane and electrically connected in series (Xm in the X direction, X direction). The solar cells 11 are arranged in the Y direction perpendicular to the Y direction). For easy understanding, FIG. 1 shows an example in which a solar cell module 10 is configured by a total of 16 solar cells 11 in which Xm is 4 and Yn is 4 rows.
 X方向に隣接する太陽電池セル11は、導電部材としてのインターコネクタ12を介して電気的に接続されている。インターコネクタ12は、X方向に隣合う2つの太陽電池セル11に跨る長さを有した直線状をなすもので、図2および図3に示すように、その長手方向の右端(前半部)が、太陽電池セル11の下面(受光面)に形成されたマイナス側電極、あるいは上面(裏面)に形成されたプラス側電極に接合され、長手方向の左端(後半部)が、太陽電池セル11の上面に形成されたプラス側電極、あるいは下面に形成されたマイナス側電極に接合されている。 The solar cells 11 adjacent in the X direction are electrically connected through an interconnector 12 as a conductive member. The interconnector 12 forms a straight line having a length straddling two solar cells 11 adjacent to each other in the X direction. As shown in FIGS. 2 and 3, the right end (front half) of the longitudinal direction is The negative electrode formed on the lower surface (light receiving surface) of the solar cell 11 or the positive electrode formed on the upper surface (rear surface) is joined to the left end (second half) in the longitudinal direction of the solar cell 11. It is joined to the plus side electrode formed on the upper surface or the minus side electrode formed on the lower surface.
 X方向の両端に配列された太陽電池セル11には、2つの太陽電池セル11に跨る長さのインターコネクタ12より長さの短いインターコネクタ12aが、太陽電池セル11の下面(マイナス側電極)もしくは上面(プラス側電極)に接合されている。これら長さの短いインターコネクタ12aの各一端は、太陽電池セル11の両端より僅かに突出されている。 In the solar cells 11 arranged at both ends in the X direction, an interconnector 12a having a shorter length than the interconnector 12 having a length straddling the two solar cells 11 is provided on the lower surface (minus side electrode) of the solar cells 11. Alternatively, it is joined to the upper surface (plus side electrode). Each one end of the short interconnector 12a is slightly protruded from both ends of the solar battery cell 11.
 これによって、X方向に配列された所要個数Xmの太陽電池セル11が電気的に直列接続され、ストリング配線された太陽電池セル群110A、110Bが構成される。そして、当該太陽電池セル群110A、110BがY方向に所要列数Yn配列され、長さの短いインターコネクタ12a同士がマトリックス配線されることにより、太陽電池モジュール10が構成される。 Thus, the required number Xm of solar cells 11 arranged in the X direction are electrically connected in series to form a string-connected solar cell group 110A, 110B. Then, the solar cell groups 110A and 110B are arranged in the Y direction with the required number of columns Yn, and the interconnectors 12a having short lengths are matrix-wired to constitute the solar cell module 10.
 この際、図1の上から奇数列目の太陽電池セル群110Aは、長さの短いインターコネクタ12aの各一端が、図2に示すように、左右端の太陽電池セル11の上面および下面より僅かに突出されているのに対し、図1の上から偶数列目の太陽電池セル群110Bは、長さの短いインターコネクタ12aの各一端が、図3に示すように、左右端の太陽電池セル11の下面および上面より僅かに突出されている。 At this time, in each of the odd-numbered solar cell groups 110A from the top of FIG. 1, each end of the interconnector 12a having a short length is connected to the upper and lower surfaces of the solar cells 11 at the left and right ends as shown in FIG. The solar cell group 110B in the even-numbered columns from the top in FIG. 1 is slightly protruded, and each end of the short-length interconnector 12a has solar cells at the left and right ends as shown in FIG. It slightly protrudes from the lower surface and the upper surface of the cell 11.
 このように、太陽電池モジュール10は、インターコネクタ12の接合構造を異にした2種類の太陽電池セル群110A、110B(以下、第1の太陽電池セル群110A、第2の太陽電池セル群110Bという)からなり、これら第1および第2の太陽電池セル群110A、110BがY方向に交互に配置されて構成される。 As described above, the solar cell module 10 includes two types of solar cell groups 110A and 110B (hereinafter, the first solar cell group 110A and the second solar cell group 110B) in which the junction structure of the interconnector 12 is different. The first and second solar battery cell groups 110A and 110B are alternately arranged in the Y direction.
 そして、奇数列目の第1の太陽電池セル群110Aの両端部より突出されたインターコネクタ12aの各一端と、偶数列目の第2の太陽電池セル群110Bの両端部より突出されたインターコネクタ12aの各一端が、導電部材としてのバスメタル14よって図1に示すように互いに接合されることにより、太陽電池モジュール10を構成するすべての太陽電池セル11が直列に接続される。 And each one end of the interconnector 12a protruded from both ends of the first solar cell group 110A in the odd-numbered row and the interconnector protruded from both ends in the second solar cell group 110B in the even-numbered row As shown in FIG. 1, each end of 12a is joined to each other by a bus metal 14 as a conductive member, so that all the solar cells 11 constituting the solar cell module 10 are connected in series.
 なお、一般に太陽電池モジュール10は、受光面(マイナス側電極)に透明な強化ガラスからなるカバーガラスが配置され、裏面(プラス側電極)に耐候性に優れたバックシートが配置され、これらカバーガラスとバックシートとの間に、複数の太陽電池セル11がEVA等の樹脂で封止されて完成品とされるが、以下に述べる実施の形態においては、説明の便宜上、カバーガラス上に配列されたXm×Yn個の太陽電池セル11を、太陽電池モジュール10と称する。 In general, the solar cell module 10 includes a cover glass made of transparent tempered glass on the light receiving surface (minus side electrode), and a back sheet having excellent weather resistance on the back surface (plus side electrode). A plurality of solar cells 11 are sealed with a resin such as EVA between the back sheet and the back sheet, and in the embodiment described below, for convenience of explanation, they are arranged on a cover glass. The Xm × Yn solar battery cells 11 are referred to as a solar battery module 10.
 次に、上記した構成の太陽電池モジュール10を製造する製造装置の具体的な構成について説明する。当該製造装置は、図4に示すように、X方向に沿って配設されたストリング配線装置(ストリング配線工程)21と、レイアップ装置(レイアップ工程)22と、マトリックス配線装置(マトリックス配線工程)23を備えている。レイアップ装置22とマトリックス配線装置23は搬送コンベア25によって連接され、マトリックス配線装置23によってマトリックス配線された太陽電池モジュール10は、搬出コンベア26によって次工程に搬送される。 Next, a specific configuration of a manufacturing apparatus for manufacturing the solar cell module 10 having the above-described configuration will be described. As shown in FIG. 4, the manufacturing apparatus includes a string wiring device (string wiring step) 21, a layup device (layup step) 22, and a matrix wiring device (matrix wiring step) arranged along the X direction. ) 23. The lay-up device 22 and the matrix wiring device 23 are connected by a transport conveyor 25, and the solar cell module 10 that is matrix-wired by the matrix wiring device 23 is transported to the next process by the carry-out conveyor 26.
 ストリング配線装置21は、第1および第2の太陽電池セル群110A、110Bをストリング配線するために、インターコネクタ12を供給する2組のコネクタ供給ユニット(導電部材供給ユニット)31A、31Bと、太陽電池セル11を供給する2組のセル供給ユニット32A、32Bと、太陽電池セル11にインターコネクタ12を接合する2組の接合ユニット33A、33Bと、インターコネクタ12を接合した太陽電池セル11を搬送する2列のセル搬送ユニット34A、34Bによって、主として構成され、これら2組(2列)のユニットはそれぞれ並設されている。 The string wiring device 21 includes two sets of connector supply units (conductive member supply units) 31A and 31B that supply the interconnector 12 for string wiring of the first and second solar battery cell groups 110A and 110B, Two sets of cell supply units 32A and 32B for supplying the battery cells 11, two sets of joining units 33A and 33B for joining the interconnector 12 to the solar battery cells 11, and the solar battery cell 11 to which the interconnector 12 is joined are conveyed. The two units (two rows) of the cell transport units 34A and 34B are arranged in parallel.
 これら、コネクタ供給ユニット31A、31B、セル供給ユニット32A、32B、接合ユニット33A、33B、セル搬送ユニット34A、34Bは、共通の基台35上に配設されている。以下においては、第1の太陽電池セル群110Aを製造する各ユニットを第1のユニットと称し、第2の太陽電池セル群110Bを製造する各ユニットを第2のユニットと称して区別することにする。 These connector supply units 31A and 31B, cell supply units 32A and 32B, joining units 33A and 33B, and cell transport units 34A and 34B are arranged on a common base 35. In the following, each unit that manufactures the first solar cell group 110A is referred to as a first unit, and each unit that manufactures the second solar cell group 110B is referred to as a second unit to be distinguished. To do.
 第1のコネクタ供給ユニット31Aは、図5に示すように、インターコネクタ12を巻付けたY方向に離間した複数列(実施の形態においては、2列)のボビン41と、ボビン41に巻かれたインターコネクタ12の各一端をクランプしてX方向に引き出す引き出し手段42と、引き出し手段42によって所定位置に引き出されたインターコネクタ12を所定長さに切断する上下移動可能なカッター43を備えている。 As shown in FIG. 5, the first connector supply unit 31 </ b> A has a plurality of rows (two rows in the embodiment) of bobbins 41 spaced in the Y direction around which the interconnector 12 is wound, and the bobbin 41. Each of the interconnectors 12 is clamped at one end and pulled out in the X direction, and a vertically movable cutter 43 for cutting the interconnector 12 pulled out to a predetermined position by the pulling means 42 into a predetermined length is provided. .
 引き出し手段42は、X方向に沿って形成されたガイドレール44に移動可能に支持された移動台45を有しており、移動台45はモータ46によって回転駆動される第1のボールねじ軸47の回転によって、ガイドレール44に沿ってX方向に所定量移動されるようになっている。 The pulling means 42 has a moving base 45 movably supported by a guide rail 44 formed along the X direction. The moving base 45 is rotated by a motor 46 and is a first ball screw shaft 47. Is rotated along the guide rail 44 in the X direction by a predetermined amount.
 移動台45には、第2のボールねじ軸48が第1のボールねじ軸47と平行な軸線の回りに回転可能に支持され、第2のボールねじ軸48は、移動台45に設置されたモータ49によって回転駆動されるようになっている。また、移動台45には、インターコネクタ12をガイドするための移動ガイド50が固定されている。 A second ball screw shaft 48 is supported on the moving table 45 so as to be rotatable about an axis parallel to the first ball screw shaft 47, and the second ball screw shaft 48 is installed on the moving table 45. The motor 49 is rotationally driven. In addition, a movement guide 50 for guiding the interconnector 12 is fixed to the movement table 45.
 引き出し手段42には、ボビン41より引き出されたインターコネクタ12をクランプする第1および第2のクランパ51、52が設けられ、第1および第2のクランパ51、52は、図略のアクチュエータの作動によってインターコネクタ12をクランプ、アンクランプできるようになっている。第1のクランパ51は、カッター43より下流側の位置に配置され、第2のクランパ52は、カッター43の上流側の位置に配置されている。 The pull-out means 42 is provided with first and second clampers 51 and 52 for clamping the interconnector 12 pulled out from the bobbin 41. The first and second clampers 51 and 52 are operated by an actuator not shown. Thus, the interconnector 12 can be clamped and unclamped. The first clamper 51 is disposed at a position downstream of the cutter 43, and the second clamper 52 is disposed at a position upstream of the cutter 43.
 第1のクランパ51は第2のボールねじ軸48にねじ係合され、インターコネクタ12の端部をクランプしてX方向に所定量移動できるようになっている。一方、第2のクランパ52は、図示しないシリンダによってX方向に所定量進退されるようになっており、インターコネクタ12を所定長さに切断する際に、切断されるインターコネクタ12の根元部分をクランプするようになっている。 The first clamper 51 is screw-engaged with the second ball screw shaft 48 so that the end of the interconnector 12 can be clamped and moved by a predetermined amount in the X direction. On the other hand, the second clamper 52 is advanced and retracted by a predetermined amount in the X direction by a cylinder (not shown), and when the interconnector 12 is cut to a predetermined length, the base portion of the interconnector 12 to be cut is removed. It is designed to clamp.
 ボビン41より引き出されたインターコネクタ12は、複数のガイドローラ55にガイドされながら引き出される。複数のガイドローラ55の間の下方位置には、係合ローラ56が上下動可能な昇降部材57に軸支されており、この係合ローラ56にインターコネクタ12が掛け渡されてU字状に屈曲され、固定の第2のクランパ52に導かれるようになっている。 The interconnector 12 pulled out from the bobbin 41 is pulled out while being guided by a plurality of guide rollers 55. At a lower position between the plurality of guide rollers 55, an engagement roller 56 is pivotally supported by an elevating member 57 that can move up and down, and the interconnector 12 is stretched over the engagement roller 56 in a U-shape. It is bent and guided to the fixed second clamper 52.
 係合ローラ56の下流側のガイドローラ(下流側ガイドローラ)55は、太陽電池セル11に接合する複数のインターコネクタ12に共通であり、その外表面には複数種類の太陽電池セル11におけるインターコネクタ12のY方向の接合位置に合わせた多数の溝が設けられている。これによって、ボビン41からインターコネクタ12が引き出される際に、ボビン41からの引き出し位置がY方向に移動しても、下流側ガイドローラに引き回された時点で必ずインターコネクタ12のY方向の接合間隔に合うことになる。さらに、予め複数種類の太陽電池セル11の各インターコネクタ12のY方向の接合間隔に合わせた溝が設けられているので、異なる太陽電池セル11への生産変更が容易となる。また、インターコネクタ12は下流側ガイドローラ55によって、ボビン41による巻癖の方向とは反対方向に鋭角に引き出されるようになっている。 A guide roller (downstream guide roller) 55 on the downstream side of the engaging roller 56 is common to the plurality of interconnectors 12 joined to the solar battery cell 11, and the outer surface thereof has an interface in the plurality of types of solar battery cells 11. A number of grooves are provided in accordance with the joining positions of the connector 12 in the Y direction. As a result, when the interconnector 12 is pulled out from the bobbin 41, even if the pull-out position from the bobbin 41 moves in the Y direction, the interconnector 12 must be joined in the Y direction when it is drawn around by the downstream guide roller. It will fit the interval. Furthermore, since the groove | channel according to the joining space | interval of the Y direction of each interconnector 12 of multiple types of photovoltaic cell 11 is provided previously, the production change to the different photovoltaic cell 11 becomes easy. Further, the interconnector 12 is pulled out at an acute angle by the downstream guide roller 55 in the direction opposite to the direction of the winding rod by the bobbin 41.
 昇降部材57にはテンションシリンダ58のピストンロッド58aが連結され、テンションシリンダ58は昇降部材57を介してインターコネクタ12を、インターコネクタ12の破断力よりも小さな引張力で牽引するようになっている。テンションシリンダ58は、インターコネクタ12の種別(破断力)に応じて、引張力を変更可能となっている。 A piston rod 58 a of a tension cylinder 58 is connected to the elevating member 57, and the tension cylinder 58 pulls the interconnector 12 through the elevating member 57 with a tensile force smaller than the breaking force of the interconnector 12. . The tension cylinder 58 can change the tensile force according to the type (breaking force) of the interconnector 12.
 第1のコネクタ供給ユニット31Aのボビン41より引き出されたインターコネクタ12を、所定長さに切断し、第1の接合ユニット33Aの下部ホットプレート81(図12参照)に載置された太陽電池セル11上に供給する手順を図6に示す。まず、図6(A)に示す原位置状態において、第2のモータ49によって第2のボールねじ軸47を所定量回転させることにより、インターコネクタ12の先端部をクランプした第1のクランパ51を、図6(B)に示すように、所定位置まで前進移動させ、インターコネクタ12を所定量引き出す。しかる後、カッター43を下降させてインターコネクタ12を所定長さに切断する。 A solar battery cell in which the interconnector 12 drawn out from the bobbin 41 of the first connector supply unit 31A is cut to a predetermined length and placed on the lower hot plate 81 (see FIG. 12) of the first joining unit 33A. FIG. 6 shows a procedure for supplying the image data on the computer 11. First, in the in-situ state shown in FIG. 6A, the second ball screw shaft 47 is rotated by a predetermined amount by the second motor 49, whereby the first clamper 51 that clamps the tip of the interconnector 12 is moved. As shown in FIG. 6 (B), it is moved forward to a predetermined position and the interconnector 12 is pulled out by a predetermined amount. Thereafter, the cutter 43 is lowered to cut the interconnector 12 into a predetermined length.
 続いて、第1のモータ46による第1のボールねじ軸47の回転によって、移動台45を所定量移動させることにより、移動ガイド50とともに第1のクランパ51を、移動台45と一体的に移動させる(図6(C)参照)。これによって、第1のクランパ51が下部ホットプレート81上まで移動され、これにクランプされた所定長さのインターコネクタ12が、下部ホットプレート81に載置された太陽電池セル11上に供給される。 Subsequently, the first clamper 51 is moved integrally with the moving table 45 together with the moving guide 50 by moving the moving table 45 by a predetermined amount by the rotation of the first ball screw shaft 47 by the first motor 46. (See FIG. 6C). As a result, the first clamper 51 is moved onto the lower hot plate 81, and the interconnector 12 having a predetermined length clamped thereto is supplied onto the solar cells 11 placed on the lower hot plate 81. .
 同時に、第2のクランパ52をアンクランプさせて一定量後退させ、その後、第2のクランパ52によりインターコネクタ12をクランプした状態で、第2のクランパ52を一定前進させ、インターコネクタ12をカッター43の前方位置まで引き出す((図6(D)参照)。これとともに、第1のクランパ51がアンクランプされて、第1および第2のモータ46、49によって移動台45とともに、第1のクランパ51が原位置に復帰される(図6(A)参照)ことにより、インターコネクタ12が太陽電池セル11上に重合される。 At the same time, the second clamper 52 is unclamped and retracted by a certain amount, and then the second clamper 52 is moved forward by a constant amount while the interconnector 12 is clamped by the second clamper 52, and the interconnector 12 is moved to the cutter 43. (See FIG. 6D.) At the same time, the first clamper 51 is unclamped, and the first clamper 51 is moved together with the moving table 45 by the first and second motors 46 and 49. Is returned to the original position (see FIG. 6A), the interconnector 12 is polymerized on the solar battery cell 11.
 ところで、第1のクランパ51によってクランプしたインターコネクタ12を第2のモータ49によって引き出す際に、その移動加速度を適切に設定(例えば、1G)することにより、インターコネクタ12をテンションシリンダ58の引張力に抗して牽引することができる。これによって、ボビン41に巻かれて巻癖が付いたインターコネクタ12の巻癖を除去し、直線状に矯正できるようになる。この際、インターコネクタ12は、破断力よりも小さな引張力で牽引されているので、インターコネクタ12に作用する引張力が大きくなると、昇降部材57が上昇されるため、インターコネクタ12に過度の引張力を作用させることなく、巻癖の除去が可能となる。 By the way, when the interconnector 12 clamped by the first clamper 51 is pulled out by the second motor 49, the moving acceleration is appropriately set (for example, 1G), whereby the interconnector 12 is pulled by the tension force of the tension cylinder 58. Can be towed against. As a result, the curl of the interconnector 12 wound around the bobbin 41 and having the curl can be removed and straightened. At this time, since the interconnector 12 is pulled with a tensile force smaller than the breaking force, if the tensile force acting on the interconnector 12 is increased, the elevating member 57 is raised, and therefore the interconnector 12 is excessively pulled. The curl can be removed without applying a force.
 第2のコネクタ供給ユニット31Bも、上記した第1のコネクタ供給ユニット31Aと同様に構成されており、ボビン41より引き出されたインターコネクタ12を巻癖を除去しながら所定長さに切断し、第2の接合ユニット33Bの上部ホットプレート81(図12参照)に載置された太陽電池セル11上に供給するようになっている。 The second connector supply unit 31B is also configured in the same manner as the first connector supply unit 31A described above, and the interconnector 12 pulled out from the bobbin 41 is cut to a predetermined length while removing the curl. It supplies to the photovoltaic cell 11 mounted in the upper hot plate 81 (refer FIG. 12) of 2 joining unit 33B.
 第1のセル供給ユニット32Aは、太陽電池セル11を受光面を下向きにしてY方向に搬送し、第1の接合ユニット33Aに供給するものであり、第2のセル供給ユニット32Bは、太陽電池セル11を受光面を上向きにしてY方向に搬送し、第2の接合ユニット33Bに供給するものである。 The first cell supply unit 32A conveys the solar cells 11 in the Y direction with the light receiving surface facing downward, and supplies them to the first joining unit 33A. The second cell supply unit 32B is a solar cell. The cell 11 is transported in the Y direction with the light receiving surface facing upward, and is supplied to the second joining unit 33B.
 第1のセル供給ユニット32Aには、図7および図8に示すように、多数の太陽電池セル11を受光面を下向きにして積層したカセット61を供給するセル供給ステーション62と、カセット61に積層された最上位の太陽電池セル11を常に一定の高さ位置に保持するセルリフターステーション63と、太陽電池セル11の欠けや割れを検査するセル検査ステーション64と、太陽電池セル11の傾きを矯正する傾き矯正ステーション65と、太陽電池セル11を受け渡すセル受渡しステーション66が、Y方向に一定の間隔を有して配設されている。 As shown in FIGS. 7 and 8, the first cell supply unit 32 </ b> A has a cell supply station 62 for supplying a cassette 61 in which a large number of solar cells 11 are stacked with the light receiving surface facing downward, and a stack on the cassette 61. The cell lifter station 63 that always holds the uppermost solar cell 11 in a fixed height position, the cell inspection station 64 that inspects chipping or cracking of the solar cell 11, and the inclination of the solar cell 11 is corrected. An inclination correction station 65 and a cell delivery station 66 for delivering the solar battery cell 11 are arranged with a certain interval in the Y direction.
 セル供給ステーション62に供給されたカセット61は、手動操作もしくは自動的にセルリフターステーション63のリフター63a上に送り込まれ、リフター63aによって、カセット61に積層された最上位の太陽電池セル11を常に一定の高さ位置に保持するようになっている。すなわち、図示しない高さ位置検出センサーによって最上位の太陽電池セル11の上面位置が検出され、積層された太陽電池セル11が順次供給されても、常に最上位の太陽電池セル11を一定の高さ位置に保持することができる。 The cassette 61 supplied to the cell supply station 62 is manually or automatically sent onto the lifter 63a of the cell lifter station 63, and the uppermost solar cell 11 stacked on the cassette 61 is always fixed by the lifter 63a. It is designed to be held at the height position. That is, even if the upper surface position of the uppermost solar cell 11 is detected by a height position detection sensor (not shown) and the stacked solar cells 11 are sequentially supplied, the uppermost solar cell 11 is always kept at a certain height. Can be held in this position.
 セル検査ステーション64には、供給された太陽電池セル11を上方より撮像する検査カメラ67が設置され、検査カメラ67で撮像した画像を処理することにより、太陽電池セル11の割れや欠け等の不良を検出できるようしている。 The cell inspection station 64 is provided with an inspection camera 67 that images the supplied solar battery cell 11 from above. By processing the image captured by the inspection camera 67, the solar battery cell 11 is defective such as a crack or a chip. Can be detected.
 具体的には、セル検査ステーション64には図示しない光源および白色の光拡散板を備えた保持台が設けられ、この保持台上に、後述するセル移載ハンド71aにより太陽電池セル11が移載される。そして、セル移載ハンド71aの戻り動作中、すなわち、セル移載ハンド71aと71bとの間の部分が保持台を通過する瞬間に光源が点灯し、保持台上に移載された太陽電池セル11の影が太陽電池セル11の上方に設けられた検査カメラ67によって撮像される。これによって、セル移載ハンド71aに影響されることなく太陽電池セル11を撮像できるので、この撮像された太陽電池セル11の透過像(影)に欠けや割れが存在するか否かを画像処理することによって、欠けや割れがあるのを判定することができる。 Specifically, the cell inspection station 64 is provided with a holding base including a light source (not shown) and a white light diffusion plate, and the solar cells 11 are transferred onto the holding base by a cell transfer hand 71a described later. Is done. Then, during the return operation of the cell transfer hand 71a, that is, the moment when the portion between the cell transfer hands 71a and 71b passes through the holding table, the light source is turned on, and the solar cells transferred onto the holding table 11 is imaged by the inspection camera 67 provided above the solar battery cell 11. As a result, the solar battery cell 11 can be imaged without being affected by the cell transfer hand 71a, so image processing is performed to determine whether or not the transmitted image (shadow) of the captured solar battery cell 11 is missing or cracked. By doing so, it is possible to determine whether there is a chip or a crack.
 傾き矯正ステーション65には、供給された太陽電池セル11を押圧部材68によって基準ブロック69に押付けることにより、太陽電池セル11の傾きが矯正される。また、傾き矯正ステーション65の下面には、検査カメラ67で不良と検出された太陽電池セル11を廃棄するために、開閉扉65aが設けられ、開閉扉65aの下方に廃棄ボックス70が設置されている。 In the inclination correction station 65, the inclination of the solar battery cell 11 is corrected by pressing the supplied solar battery cell 11 against the reference block 69 by the pressing member 68. In addition, an opening / closing door 65a is provided on the lower surface of the inclination correction station 65 in order to discard the solar battery cell 11 detected as defective by the inspection camera 67, and a disposal box 70 is installed below the opening / closing door 65a. Yes.
 太陽電池セル11は、3つのセル移載ハンド71a、71b、71cによるピックアンドプレイス動作により、セルリフターステーション63からセル検査ステーション64に、セル検査ステーション64から傾き矯正ステーション65に、傾き矯正ステーション65からセル受渡しステーション66に順次同時搬送される。すなわち、セル移載ハンド71a、71b、71cが、セル供給ユニット32Aに設けられた図略のハンド装置に保持されており、Y方向および上下方向に移動可能な図略の移動装置によるハンド装置のピックアンドプレイス動作により、セル移載ハンド71a、71b、71cに太陽電池セル11が吸着保持され、順次次ステーションに搬送される。 The photovoltaic cell 11 is moved from the cell lifter station 63 to the cell inspection station 64, from the cell inspection station 64 to the inclination correction station 65, and to the inclination correction station 65 by the pick and place operation by the three cell transfer hands 71a, 71b, 71c. To the cell delivery station 66 sequentially. That is, the cell transfer hands 71a, 71b, 71c are held by an unillustrated hand device provided in the cell supply unit 32A, and the hand device by the unillustrated moving device that can move in the Y direction and the up and down direction By the pick-and-place operation, the solar cells 11 are sucked and held by the cell transfer hands 71a, 71b, 71c, and are sequentially transported to the next station.
 傾き矯正ステーション65とセル受渡しステーション66との間には、太陽電池セル11の上下面にそれぞれに接合材料としてのフラックス72を塗布するフラックス塗布装置としてのディスペンサー73a、73bが配置されている。ディスペンサー73a、73bには、図9および図10に示すように、太陽電池セル11の上下面にそれぞれフラックス72を2列ずつ塗布する供給ノズル73a1、73b1がそれぞれ設けられている。 Dispensers 73a and 73b as flux application devices for applying flux 72 as a bonding material to the upper and lower surfaces of the solar battery cell 11 are disposed between the inclination correction station 65 and the cell delivery station 66, respectively. As shown in FIGS. 9 and 10, the dispensers 73a and 73b are provided with supply nozzles 73a1 and 73b1 for applying two rows of flux 72 to the upper and lower surfaces of the solar battery cell 11, respectively.
 接合材料としては、フラックスのほか、クリームはんだでもよく、異方性導電膜(ACF)であってもよい。異方性導電膜の場合には、フィルム貼付状態の検査/貼付条件出しとなる。 As the bonding material, in addition to flux, cream solder or anisotropic conductive film (ACF) may be used. In the case of an anisotropic conductive film, the inspection / attachment conditions for the film attachment state are determined.
 そして、セル移載ハンド71cによって太陽電池セル11が、傾き矯正ステーション65からセル受渡しステーション66に搬送移動される途中で、図略の開閉弁が開閉されて、ディスペンサー73a、73bの供給ノズル73a1、73b1よりフラックス72が吐出され、太陽電池セル11の上下面にそれぞれ塗布されるようになっている。 Then, while the solar cell 11 is transported and moved from the inclination correction station 65 to the cell delivery station 66 by the cell transfer hand 71c, an opening / closing valve (not shown) is opened and closed, and the supply nozzles 73a1, 73b1 of the dispensers 73a, 73b, The flux 72 is discharged from 73b1 and applied to the upper and lower surfaces of the solar battery cell 11, respectively.
 セル受渡しステーション66には、フラックス72が塗布された太陽電池セル11を上方および下方より撮像する検査カメラ151、152が設置されている。この場合、セル受渡しステーション66と傾き矯正ステーション65の間に塗布状態検査ステーションを設け、この塗布状態検査ステーションに検査カメラ151、152を設けてもよい。 The cell delivery station 66 is provided with inspection cameras 151 and 152 for imaging the solar battery cell 11 coated with the flux 72 from above and below. In this case, an application state inspection station may be provided between the cell delivery station 66 and the inclination correction station 65, and inspection cameras 151 and 152 may be provided in the application state inspection station.
 検査カメラ151、152で撮像された画像情報は、画像処理装置153に入力されて画像処理され、フラックス塗布開始位置、フラックス塗布終了位置およびフラックス塗布量等の塗布条件が計測され、補正制御装置としての制御ユニット154に入力される。フラックス塗布量は、フラックス72が塗布された領域の幅方向寸法に基づいて判断する。 Image information captured by the inspection cameras 151 and 152 is input to the image processing device 153 and subjected to image processing, and application conditions such as a flux application start position, a flux application end position, and a flux application amount are measured. To the control unit 154. The flux application amount is determined based on the width direction dimension of the area where the flux 72 is applied.
 制御ユニット154には、目標とする塗布条件に関する情報が予め登録されており、制御ユニット154において、検査カメラ151、152で撮像された情報と、登録された情報とが比較され、その比較結果に基づいて、ディスペンサー73a、73b等にフラックス塗布開始位置、フラックス塗布終了位置およびフラックス塗布量等の塗布条件を補正する信号がフィードバックされるようになっている。これにより、開閉弁の開閉時期および/または開閉量を補正したり、あるいは傾き矯正ステーション65からセル受渡しステーション66への移動速度を補正することにより、フラックス72の塗布状態を常に正確に保持できるようにしている。このように、従来人手に頼っていた塗布条件出しを速やかにかつ正確に行えるようになる。 Information regarding the target application condition is registered in the control unit 154 in advance, and the information captured by the inspection cameras 151 and 152 is compared with the registered information in the control unit 154, and the comparison result is displayed. Based on this, a signal for correcting the application conditions such as the flux application start position, the flux application end position, and the flux application amount is fed back to the dispensers 73a and 73b. Thereby, the application state of the flux 72 can be always maintained accurately by correcting the opening / closing timing and / or opening / closing amount of the opening / closing valve or by correcting the moving speed from the inclination correction station 65 to the cell delivery station 66. I have to. In this way, it is possible to quickly and accurately determine the application conditions that have been relied on by hand.
 塗布条件は、供給ノズル73a1、73b1毎に設定/変更することも可能であり、太陽電池セル11の表面と裏面毎に設定/変更することも可能である。また、塗布条件の変更は、生産動作中に毎回行っても、あるいは、生産開始時に所定枚数の生産動作中だけ行ってもよい(この場合、生産開始時に毎回行わなくても、所定時間だけ生産を中断した後に生産開始された場合だけとしてもよい)。フラックス補給後の生産再開時に行ってもよい。 Application conditions can be set / changed for each of the supply nozzles 73a1, 73b1, and can also be set / changed for each of the front and back surfaces of the solar battery cell 11. In addition, the application condition may be changed every time during the production operation, or only during a predetermined number of production operations at the start of production (in this case, the production is performed only for a predetermined time without being performed every time at the start of production). Only when production is started after interruption). You may carry out at the time of resumption of production after flux replenishment.
 また、フラックス72の塗布状態を検査した結果、塗布条件出しを行うだけでなく、塗布状態が不良である太陽電池セル11を廃棄してもよいし、塗布位置が許容範囲内でずれているだけであれば、インターコネクタ12の接合位置をフラックス72の塗布位置に合わせて補正してもよい。この場合、後述するキャリーヘッド78によって太陽電池セル11を下部ホットプレート81上に載置する際に、フラックス72の塗布位置に合わせて位置補正して載置することによって可能となる。 In addition, as a result of inspecting the application state of the flux 72, not only the application conditions are determined, but the solar cells 11 in which the application state is poor may be discarded, and the application position is shifted within an allowable range. If so, the joining position of the interconnector 12 may be corrected according to the application position of the flux 72. In this case, when the solar battery cell 11 is placed on the lower hot plate 81 by a carry head 78 described later, it is possible to place the solar battery cell 11 after correcting the position according to the application position of the flux 72.
 また、セル供給ユニット32A、32Bに設けられた検査カメラではなく、作業用ロボット74に検査カメラを設け、セル受渡しステーション66に移載された太陽電池セル11を上方から撮像して、フラックス72の塗布状態を検査してもよい。これにより、各セル供給ユニット32A、32Bに検査カメラを設ける必要がなくなる。この場合、太陽電池セル11の表面または裏面の一方の塗布状態を検査し、表面または裏面の両方の塗布条件を設定/変更してもよい。 Also, instead of the inspection cameras provided in the cell supply units 32A and 32B, an inspection camera is provided in the working robot 74, and the solar cells 11 transferred to the cell delivery station 66 are imaged from above, and the flux 72 The application state may be inspected. This eliminates the need to provide inspection cameras in the cell supply units 32A and 32B. In this case, the coating state of one of the front surface and the back surface of the solar battery cell 11 may be inspected, and the coating conditions for both the front surface and the back surface may be set / changed.
 第1および第2のセル供給ユニット32A、32Bのセル受渡しステーション66と、第1および第2の接合ユニット33A、33Bとの間には、図11に示すように、セル受渡しステーション66から第1および第2の接合ユニット33A、33Bの各下部ホットプレート81に太陽電池セル11を搬送する作業用ロボット74が配設されている。作業用ロボット74は、第1および第2のセル供給ユニット32A、32Bに共通のものである。作業用ロボット74は、Y方向に沿って設置されたガイドレール75にスライド可能に案内されたYスライド76と、Yスライド76にX方向にスライド可能に案内されたXスライド77と、Xスライド77に上下方向に移動可能に支持されたキャリーヘッド78からなっている。キャリーヘッド78には、太陽電池セル11を吸着する吸着ハンド78aが設けられている。本実施の形態に係るストリング配線装置21では、作業用ロボット74は太陽電池セル11をセル受渡しステーション66から下部ホットプレート81上に移載する動作だけを行うため、キャリーヘッド78が1つだけが取付けられている。 As shown in FIG. 11, between the cell delivery station 66 of the first and second cell supply units 32A and 32B and the first and second joining units 33A and 33B, the first And the working robot 74 which conveys the photovoltaic cell 11 is arrange | positioned at each lower hotplate 81 of 2nd joining unit 33A, 33B. The working robot 74 is common to the first and second cell supply units 32A and 32B. The working robot 74 includes a Y slide 76 that is slidably guided by a guide rail 75 installed along the Y direction, an X slide 77 that is slidably guided by the Y slide 76 in the X direction, and an X slide 77. And a carry head 78 supported so as to be movable in the vertical direction. The carry head 78 is provided with a suction hand 78 a that sucks the solar battery cells 11. In the string wiring device 21 according to the present embodiment, the work robot 74 performs only the operation of transferring the solar cells 11 from the cell delivery station 66 onto the lower hot plate 81, and therefore, only one carry head 78 is provided. Installed.
 キャリーヘッド78によってセル受渡しステーション66から第1および第2の接合ユニット33A、33Bに搬送される太陽電池セル11は、搬送途中でカメラ79によって吸着状態を撮像され、画像認識に基づいて位置ずれ等を補正される。 The solar cells 11 transported from the cell delivery station 66 to the first and second joining units 33A and 33B by the carry head 78 are picked up by the camera 79 in the middle of the transport, and are displaced based on the image recognition. Is corrected.
 第2のセル供給ユニット32Bも、上記した第1のセル供給ユニット32Aと同様に構成されており、受光面を上向きにして供給された太陽電池セル11の上下面にフラックス72を塗布した状態で、太陽電池セル11を第2の接合ユニット33Bの上部ホットプレート81上に供給する。 The second cell supply unit 32B is also configured in the same manner as the first cell supply unit 32A described above, with the flux 72 applied to the upper and lower surfaces of the solar cells 11 supplied with the light receiving surface facing upward. The solar battery cell 11 is supplied onto the upper hot plate 81 of the second joining unit 33B.
 第1および第2の接合ユニット33A、33Bは、図12に示すように、それぞれ固定の下部ホットプレート81と、可動の上部ホットプレート82を有している。第1および第2の接合ユニット33A、33Bは、第1および第2の接合ユニット33A、33Bの間に配設された固定ブロック83を隔てて、Y方向に所定量離間して配設され、第1および第2のセル搬送ユニット34A、34Bの各一端部(始端部)に連接されている。 The first and second joining units 33A and 33B each have a fixed lower hot plate 81 and a movable upper hot plate 82, as shown in FIG. The first and second joining units 33A and 33B are disposed at a predetermined distance in the Y direction across the fixed block 83 disposed between the first and second joining units 33A and 33B. The first and second cell transport units 34A and 34B are connected to respective one end portions (start end portions).
 第1の接合ユニット33Aと第2の接合ユニット33Bは基本的に同じ構成であるため、以下、第1の接合ユニット33Aについてその構成を図12および図13に基づいて説明する。 Since the first joining unit 33A and the second joining unit 33B have basically the same configuration, the configuration of the first joining unit 33A will be described below with reference to FIGS.
 第1の接合ユニット33Aの下部ホットプレート81には、下部ホットプレート81の上面81aを予熱するためのヒータが内蔵され、上部ホットプレート82には、上部ホットプレート82の下面82aを加熱するためのヒータが内蔵されている。 The lower hot plate 81 of the first joining unit 33A includes a heater for preheating the upper surface 81a of the lower hot plate 81, and the upper hot plate 82 is used for heating the lower surface 82a of the upper hot plate 82. Built-in heater.
 第1の接合ユニット33Aには、基台35上に設置された固定ブロック83の側面にガイドレール84がX方向に沿って設けられている。ガイドレール84には移動台85がX方向に所定量移動可能に案内されており、この移動台85に設けられたガイドレール86に上部ホットプレート82が所定量昇降可能に支持されている。 In the first joining unit 33A, a guide rail 84 is provided along the X direction on the side surface of the fixed block 83 installed on the base 35. A movable table 85 is guided on the guide rail 84 so as to be movable in the X direction by a predetermined amount. An upper hot plate 82 is supported on the guide rail 86 provided on the movable table 85 so as to be movable up and down by a predetermined amount.
 固定ブロック83には、モータ87によって駆動されるボールねじ軸88がX方向に平行な軸線の回りに回転可能に支持され、このボールねじ軸88に移動台85に固定されたボールナット85aがねじ係合されている。上部ホットプレート82は、ボールねじ軸88の回転によって移動台85がガイドレール84に案内されてX方向に所定量移動されることにより、下部ホットプレート81の上方位置に位置決めされる。その状態で、図略の昇降装置によって上部ホットプレート82がガイドレール86に案内されて下降されることにより、下部ホットプレート81と上部ホットプレート82との間で、太陽電池セル11とインターコネクタ12を熱を加えて圧着する。 A ball screw shaft 88 driven by a motor 87 is supported on the fixed block 83 so as to be rotatable about an axis parallel to the X direction, and a ball nut 85 a fixed to the moving base 85 is screwed to the ball screw shaft 88. Is engaged. The upper hot plate 82 is positioned at an upper position of the lower hot plate 81 when the moving table 85 is guided by the guide rail 84 by the rotation of the ball screw shaft 88 and moved by a predetermined amount in the X direction. In this state, the upper hot plate 82 is guided by the guide rail 86 and lowered by a lifting device (not shown), whereby the solar cell 11 and the interconnector 12 are interposed between the lower hot plate 81 and the upper hot plate 82. Apply heat and crimp.
 下部ホットプレート81の上面81aには、図14に示すように、第1のコネクタ供給ユニット31Aより供給された所定長さのインターコネクタ12(12a)が複数列(2列)載置される。そして、これらインターコネクタ12上に、上下面にフラックス72を塗布した太陽電池セル11が、下面に塗布したフラックス72がインターコネクタ12に接触するように装着され、さらに、太陽電池セル11の上面に塗布したフラックス72に接触する位置に、所定長さのインターコネクタ12が複数列(2列)装着される。すなわち、下部ホットプレート81上に、太陽電池セル11とその上下にインターコネクタ12が重合した状態で載置される。 On the upper surface 81a of the lower hot plate 81, as shown in FIG. 14, a plurality of (two) rows of interconnectors 12 (12a) having a predetermined length supplied from the first connector supply unit 31A are placed. And on these interconnectors 12, the solar cells 11 with the flux 72 applied on the upper and lower surfaces are mounted so that the flux 72 applied on the lower surface is in contact with the interconnector 12, and further on the upper surface of the solar cells 11. A plurality of (two) rows of interconnectors 12 having a predetermined length are mounted at positions where they contact the applied flux 72. That is, on the lower hot plate 81, the solar battery cell 11 and the interconnector 12 are superposed on the top and bottom thereof.
 その状態で、上部ホットプレート82のX方向移動および下降によって、インターコネクタ12および太陽電池セル11を下部ホットプレート81と上部ホットプレート82との間で挟み込み、インターコネクタ12および太陽電池セル11を加熱しながら圧着することにより、フラックス72を介して太陽電池セル11のプラス側電極およびマイナス側電極にインターコネクタ12を接合する。 In this state, the interconnector 12 and the solar cell 11 are sandwiched between the lower hot plate 81 and the upper hot plate 82 by the movement and lowering of the upper hot plate 82 in the X direction, and the interconnector 12 and the solar cell 11 are heated. The interconnector 12 is joined to the plus side electrode and the minus side electrode of the solar battery cell 11 via the flux 72 by crimping.
 第1の接合ユニット33Aの上部ホットプレート82の下面82aには、X方向の中央部に、ガイド溝89がY方向に沿って形成されている。ガイド溝89には、押さえ部材としての押さえプレート90が、上部ホットプレート82の下面82aより出没可能に収容されている。押さえプレート90は、図略のスプリングの付勢力によって上部ホットプレート82の下面より突出する方向に押圧され、通常は上部ホットプレート82の下面82aより所定量だけ突出した位置に保持されている。 In the lower surface 82a of the upper hot plate 82 of the first joining unit 33A, a guide groove 89 is formed at the center in the X direction along the Y direction. In the guide groove 89, a pressing plate 90 as a pressing member is accommodated so as to be able to protrude and retract from the lower surface 82a of the upper hot plate 82. The holding plate 90 is pressed in a direction protruding from the lower surface of the upper hot plate 82 by an urging force of a spring (not shown), and is normally held at a position protruding from the lower surface 82 a of the upper hot plate 82 by a predetermined amount.
 これにより、上部ホットプレート82の下降によって太陽電池セル11とインターコネクタ12とを熱圧着するに先立って、押さえプレート90によってインターコネクタ12をスプリング力によって押圧し、インターコネクタ12および太陽電池セル11の位置ずれを抑制するようになっている。 Thus, prior to thermocompression bonding of the solar cells 11 and the interconnector 12 by the lowering of the upper hot plate 82, the interconnector 12 is pressed by the holding plate 90 with a spring force, and the interconnector 12 and the solar cells 11 are Misalignment is suppressed.
 また、押さえプレート90は、太陽電池セル11とインターコネクタ12とを熱圧着した後に、上部ホットプレート82が上昇しても、インターコネクタ12をスプリング力によって押し続けるように作用する。これによって、溶着したフラックス72が硬化するまでの時間、太陽電池セル11とインターコネクタ12との位置ずれを規制する。その結果、インターコネクタ12を太陽電池セル11の定められた位置に正確に接合することが可能となる。 Further, the pressing plate 90 acts so as to continue to press the interconnector 12 by the spring force even when the upper hot plate 82 rises after the solar battery cell 11 and the interconnector 12 are thermocompression bonded. Thus, the positional deviation between the solar battery cell 11 and the interconnector 12 is regulated until the welded flux 72 is cured. As a result, the interconnector 12 can be accurately joined to a predetermined position of the solar battery cell 11.
 なお、図12において、83はダクトであり、このダクト160によって接合ユニット33A、33Bの周辺の空気を吸引することにより、熱圧着時に発生する煙を吸い込む吸煙装置として機能する。 In FIG. 12, reference numeral 83 denotes a duct. By sucking air around the joining units 33 </ b> A and 33 </ b> B through this duct 160, it functions as a smoke absorbing device that sucks in smoke generated during thermocompression bonding.
 第2の接合ユニット33Bも上記した第1の接合ユニット33Aと同様に構成されている。第1の接合ユニット33Aと第2の接合ユニット33Bとで異なる点は、第1の接合ユニット33Aの下部ホットプレート81には、第1のセル供給ユニット32Aより太陽電池セル11が受光面を下向きにした姿勢で供給される。これに対し、第2の接合ユニット33Bの下部ホットプレート81には、第2のセル供給ユニット32Bより太陽電池セル11が受光面を上向きにした姿勢で供給されることである。 The second joining unit 33B is configured similarly to the first joining unit 33A described above. The difference between the first bonding unit 33A and the second bonding unit 33B is that the solar cell 11 faces the light receiving surface downward from the first cell supply unit 32A on the lower hot plate 81 of the first bonding unit 33A. Supplied in the posture. On the other hand, the solar cell 11 is supplied to the lower hot plate 81 of the second joining unit 33B from the second cell supply unit 32B with the light receiving surface facing upward.
 第1のセル搬送ユニット34Aは、第1の接合ユニット33Aの下部ホットプレート81上より搬送された所要個数Xm以上の太陽電池セル11を同時に支持できるに十分なX方向長さを有している。第1のセル搬送ユニット34Aは、図15に示すように、インターコネクタ12を接合した太陽電池セル11を搬送する一対の搬送部材91を有している。 The first cell transport unit 34A has a length in the X direction sufficient to simultaneously support the required number Xm or more of solar cells 11 transported from the lower hot plate 81 of the first joining unit 33A. . As shown in FIG. 15, the first cell transport unit 34 </ b> A has a pair of transport members 91 that transport the solar cells 11 to which the interconnectors 12 are joined.
 これら搬送部材91を収容可能な収容溝92が下部ホットプレート81の上面にX方向に沿って両側に2列設けられている。搬送部材91は、第1のセル搬送ユニット34Aによるリフトアンドキャリー動作、すなわち、上昇a→前進b→下降c→後退dのボックス運動によって、太陽電池セル11を下部ホットプレート81上よりすくい上げて第1のセル搬送ユニット34Aの始端部に搬送する。 The accommodation grooves 92 that can accommodate the conveying members 91 are provided on the upper surface of the lower hot plate 81 in two rows on both sides along the X direction. The transport member 91 lifts and carries the solar cell 11 from above the lower hot plate 81 by a lift-and-carry operation by the first cell transport unit 34A, that is, a box motion of ascending a → forward b → descending c → retreat d. It is transported to the start end of one cell transport unit 34A.
 搬送部材91は、通常、収容溝92内に埋没された原位置に保持されており、太陽電池セル11とインターコネクタ12との接合が終了すると、上昇されて太陽電池セル11をすくい上げる。その後、搬送部材91の前進および下降により、太陽電池セル11を1ピッチ搬送し、第1のセル搬送ユニット34Aの図略の固定支持台上に支持する。 The conveying member 91 is normally held at the original position buried in the accommodation groove 92, and when the joining between the solar battery cell 11 and the interconnector 12 is finished, the transport member 91 is lifted to scoop up the solar battery cell 11. Thereafter, the forward and downward movement of the transport member 91 transports the solar cells 11 by one pitch and supports them on a fixed support base (not shown) of the first cell transport unit 34A.
 第1のセル搬送ユニット34Aの始端部には、図16に示すように、下部ホットプレート81上より1ピッチずつ搬送される太陽電池セル11を徐冷するための徐冷ステーション95が設けられている。 As shown in FIG. 16, a slow cooling station 95 for gradually cooling the solar cells 11 transported by one pitch from the lower hot plate 81 is provided at the start end of the first cell transport unit 34A. Yes.
 徐冷ステーション95は、太陽電池セル11の搬送ピッチ間隔でX方向に沿って配設された複数の徐冷ヒータ96a、96b、96c・・・からなっている。複数の徐冷ヒータ96a、96b、96c・・・は、下部ホットプレート81上より搬送された太陽電池セル11を、徐々に段階的に温度低下させるようにヒータ温度が漸次低下するように設定されており、徐冷によって太陽電池セル11の反りを抑制するようにしている。 The slow cooling station 95 is composed of a plurality of slow cooling heaters 96 a, 96 b, 96 c... Arranged along the X direction at the transport pitch interval of the solar battery cells 11. The plurality of slow cooling heaters 96a, 96b, 96c... Are set so that the heater temperature gradually decreases so that the temperature of the solar battery cell 11 conveyed from the lower hot plate 81 is gradually decreased. Therefore, the warpage of the solar battery cell 11 is suppressed by slow cooling.
 そのために、第1のセル搬送ユニット34Aによって下部ホットプレート81上より搬送された太陽電池セル11は、先ず、所定温度に設定された第1の徐冷ヒータ96a上に搬送され、第1の徐冷ヒータ96aにより、ホットプレート81、82によって加熱された太陽電池セル11を所定温度だけ温度降下させる。次いで、太陽電池セル11は、第1の徐冷ヒータ96aより一定温度だけ低めに設定された第2の徐冷ヒータ96b上に搬送されて徐冷され、さらに、第2の徐冷ヒータ96bより一定温度だけ低めに設定された第3の徐冷ヒータ96c上に搬送されて徐冷される。 For this purpose, the solar cells 11 transported from the lower hot plate 81 by the first cell transport unit 34A are first transported onto the first slow-cooling heater 96a set to a predetermined temperature, and then the first slow-heater 96a. The solar cell 11 heated by the hot plates 81 and 82 is lowered by a predetermined temperature by the cold heater 96a. Next, the solar battery cell 11 is transported onto the second slow cooling heater 96b set lower than the first slow cooling heater 96a by a certain temperature and gradually cooled, and further from the second slow cooling heater 96b. It is transported onto the third slow cooling heater 96c set lower by a certain temperature and gradually cooled.
 このようにして、3~5つの徐冷ヒータ96a、96b、96c・・・からなる徐冷ステーション95によって、太陽電池セル11は徐々に段階的に温度低下され、急激な温度低下による太陽電池セル11の反りが抑制される。これら複数の徐冷ヒータ96a、96b、96c・・・からなる徐冷ステーション95によって、太陽電池セル11を徐冷する徐冷手段を構成している。 In this way, the temperature of the solar battery cell 11 is gradually lowered by the slow cooling station 95 including the three to five slow cooling heaters 96a, 96b, 96c,... 11 warpage is suppressed. The slow cooling station 95 including the plurality of slow cooling heaters 96a, 96b, 96c,.
 第2のセル搬送ユニット34Bも上記した第1のセル搬送ユニット34Aと同様に構成されており、異なる点は、太陽電池セル11を受光面を下向きにして搬送するか、上向きにして搬送するかだけである。 The second cell transport unit 34B is also configured in the same manner as the first cell transport unit 34A described above. The difference is whether the solar cells 11 are transported with the light receiving surface facing downward or transported upward. Only.
 第1のセル搬送ユニット34Aの両側には、図17および図18に示すように、第1のセル置台101と、移載装置103が並設されている。移載装置103は、第1のセル搬送ユニット34Aによって搬送された所定個数の太陽電池セル11からなる第1の太陽電池セル群110Aを、第1のセル置台101上に移載するものである。 As shown in FIGS. 17 and 18, a first cell mounting table 101 and a transfer device 103 are arranged in parallel on both sides of the first cell transport unit 34A. The transfer device 103 transfers the first solar cell group 110 </ b> A including the predetermined number of solar cells 11 conveyed by the first cell conveyance unit 34 </ b> A onto the first cell mounting table 101. .
 移載装置103は、基台35上にY方向に沿って設置されたガイドレール111に移動可能に案内された移動台112と、この移動台112に上下方向に沿って形成されたガイドレール113に昇降可能に支持された昇降台114と、この昇降台114上に保持された保持レール115にX方向に位置調整可能に保持された複数の吸着ヘッド116とを備えている。吸着ヘッド116は、少なくとも第1の太陽電池セル群110Aを構成する所定個数(Xm)の太陽電池セル11をそれぞれ吸着できる個数だけ設けられており、これら吸着ヘッド116に太陽電池セル11の上面を吸着する一対の吸着部材116aがそれぞれ保持されている。 The transfer device 103 includes a moving table 112 that is movably guided by a guide rail 111 installed on the base 35 along the Y direction, and a guide rail 113 that is formed on the moving table 112 along the vertical direction. And a plurality of suction heads 116 held by holding rails 115 held on the lifting table 114 so as to be positionally adjustable in the X direction. The adsorption heads 116 are provided in a number capable of adsorbing at least a predetermined number (Xm) of the solar cells 11 constituting the first solar cell group 110A, and the upper surfaces of the solar cells 11 are placed on the adsorption heads 116. A pair of adsorbing members 116a to be adsorbed are respectively held.
 実施の形態においては、異なる種類の太陽電池モジュール10に対応できるように、吸着ヘッド116がα(2個)だけ余分に設けられ、通常余分の吸着ヘッド116´は、第1の太陽電池セル群110Aの吸着の障害とならない位置に退避されている。 In the embodiment, an extra suction head 116 is provided by α (two) so that different types of solar battery modules 10 can be accommodated, and usually the extra suction head 116 ′ is the first solar cell group. It is retracted to a position that does not hinder the adsorption of 110A.
 吸着部材116aは、昇降台114の下降によって、第1のセル搬送ユニット34A上の各太陽電池セル11の上面にそれぞれ当接され、真空吸着によって各太陽電池セル11を同時に吸着する。そして、昇降台114の上昇および移動台112の前進移動によって、吸着部材116aにて吸着した第1の太陽電池セル群110Aを第1のセル置台101上に移載する。 The adsorbing member 116a is brought into contact with the upper surface of each solar cell 11 on the first cell transport unit 34A as the elevating table 114 is lowered, and simultaneously adsorbs each solar cell 11 by vacuum adsorption. Then, the first solar cell group 110 </ b> A adsorbed by the adsorbing member 116 a is transferred onto the first cell mounting table 101 by the ascent of the elevating table 114 and the forward movement of the moving table 112.
 第2のセル搬送ユニット34Bには、図17に示すように、第2のセル置台102が並設され、この第2のセル置台102と第2のセル搬送ユニット34Bとの間に、反転移載装置104が設けられている。反転移載装置104は、第2のセル搬送ユニット34Aによって搬送された所要個数の太陽電池セル11からなる第2の太陽電池セル群110Bを、第2のセル置台102上に上下反転して移載するものである。 As shown in FIG. 17, the second cell transport unit 34B is provided with a second cell mounting table 102 in parallel, and the reversal transfer is performed between the second cell mounting table 102 and the second cell transport unit 34B. A loading device 104 is provided. The reverse transfer device 104 moves the second solar cell group 110B composed of the required number of solar cells 11 transported by the second cell transport unit 34A upside down onto the second cell mounting table 102. It is listed.
 反転移載装置104は、基台35上にX方向に平行な支軸121を中心にして回転可能に支持された反転台122と、この反転台122を180度反転させるモータ123を駆動源とする反転駆動装置124と、反転台122上に所定量スライド可能に支持されたスライダ125と、スライダ125上にX方向に位置調整可能に保持された複数の吸着ヘッド126とを備えている。 The reversal transfer device 104 has a reversing table 122 supported on the base 35 so as to be rotatable about a support shaft 121 parallel to the X direction, and a motor 123 that reverses the reversing table 122 by 180 degrees as a drive source. And a plurality of suction heads 126 held on the slider 125 so as to be position-adjustable in the X direction.
 吸着ヘッド126は、上記した移載装置103の吸着ヘッド116と同様に、Xm+α設けられ、これら吸着ヘッド126に、第2の太陽電池セル群110Bを構成する所定個数の太陽電池セル11の下面をそれぞれ吸着する一対の吸着部材126aがそれぞれ保持されている。 The suction head 126 is provided with Xm + α similarly to the suction head 116 of the transfer device 103 described above, and the lower surfaces of the predetermined number of solar cells 11 constituting the second solar cell group 110B are provided on these suction heads 126. A pair of adsorbing members 126a that adsorb each is held.
 吸着部材126aは、スライダ125のスライドによって、第2のセル搬送ユニット34B上の各太陽電池セル11の下面に当接され、真空吸着によって各太陽電池セル11を同時に吸着する。そして、反転台122の180度反転によって、吸着部材126aによって吸着した第2の太陽電池セル群110Bを第2のセル置台102上に反転した状態で移載する。 The adsorption member 126a is brought into contact with the lower surface of each solar cell 11 on the second cell transport unit 34B by the slide of the slider 125, and simultaneously adsorbs each solar cell 11 by vacuum adsorption. Then, the second solar cell group 110 </ b> B adsorbed by the adsorbing member 126 a is transferred onto the second cell mounting table 102 in an inverted state by reversing the reversing table 122 by 180 degrees.
 すなわち、反転移載装置104は、第2の太陽電池セル群110Bを、受光面が下向きとなる姿勢に反転して第2のセル置台102上に移載する。これによって、第1および第2のセル置台101、102上に移載された第1および第2の太陽電池セル群110A、110Bの受光面が同じ下向きに揃えられる。 That is, the reverse transfer device 104 transfers the second solar cell group 110 </ b> B onto the second cell mounting table 102 while reversing the posture in which the light receiving surface faces downward. Thereby, the light receiving surfaces of the first and second solar battery cell groups 110A and 110B transferred onto the first and second cell mounting bases 101 and 102 are aligned downward.
 ストリング配線装置21の第1および第2のセル置台101、102に対応して、レイアップ装置22が配設されている。レイアップ装置22には、図4に示すように、太陽電池セル群110A、110BをY軸方向に所要数配列するためのカバーガラス130が、自動または手動にて待機位置P1より供給されるようになっている。カバーガラス130上には、第1および第2のセル置台101、102より交互に第1および第2の太陽電池セル群110A、110Bが搬送されて、レイアップされるようになっている。 A lay-up device 22 is disposed corresponding to the first and second cell mounting bases 101 and 102 of the string wiring device 21. As shown in FIG. 4, the lay-up device 22 is supplied with a cover glass 130 for arranging a required number of solar battery groups 110A and 110B in the Y-axis direction automatically or manually from the standby position P1. It has become. On the cover glass 130, the 1st and 2nd photovoltaic cell groups 110A and 110B are conveyed alternately from the 1st and 2nd cell mounting bases 101 and 102, and are laid up.
 そのために、レイアップ装置22には、第1および第2のセル置台101、102の上方位置に亘って一対のガイドレール131がY方向に沿って設けられ、ガイドレール131には、太陽電池セル群110A、110Bを搬送するキャリーヘッド132がY方向に移動可能に支持されている。キャリーヘッド132には、昇降台133が昇降可能に支持されている。 For this purpose, the lay-up device 22 is provided with a pair of guide rails 131 extending in the Y direction over the upper positions of the first and second cell mounts 101, 102. A carry head 132 that conveys the groups 110A and 110B is supported so as to be movable in the Y direction. A lift head 133 is supported on the carry head 132 so as to be movable up and down.
 昇降台133には、図示してないが、上記した移載装置103と同様に、保持レールが取付けられ、この保持レールに複数(Xm+α)の吸着ヘッドがX方向に位置調整可能に保持されている。吸着ヘッドには、太陽電池セル群110Aあるいは110Bを構成する所定個数の太陽電池セル11の上面をそれぞれ吸着する一対の吸着部材が保持されている。 Although not shown in the figure, a holding rail is attached to the lifting platform 133, and a plurality of (Xm + α) suction heads are held on the holding rail so that the position of the suction head can be adjusted in the X direction. Yes. The adsorption head holds a pair of adsorption members that respectively adsorb the upper surfaces of a predetermined number of solar cells 11 constituting the solar cell group 110A or 110B.
 吸着部材は、昇降台133の下降によって、第1あるいは第2のセル置台101、102上に移載された太陽電池セル群110A、110Bの各太陽電池セル11の上面にそれぞれ当接され、真空吸着によって各太陽電池セル11を同時に吸着する。そして、昇降台133の上昇およびキャリーヘッド132のY方向移動によって、吸着した太陽電池セル群110A、110Bを、レイアップ装置22に供給されたカバーガラス130上に搬送し、昇降台133の下降により太陽電池セル群110A、110Bをカバーガラス130に装着する。この場合、第1のセル置台101より搬送した第1の太陽電池セル群110Aと、第2のセル置台102より搬送した第2の太陽電池セル群110Bg、カバーガラス130上にY方向に交互に装着される。 The adsorbing member is brought into contact with the upper surface of each of the solar cells 11 of the solar cell groups 110A and 110B transferred onto the first or second cell mounting bases 101 and 102 by the lowering of the lifting / lowering base 133, and vacuum Each solar cell 11 is adsorbed simultaneously by adsorption. Then, the adsorbed solar cell groups 110A and 110B are transported onto the cover glass 130 supplied to the lay-up device 22 by the raising of the elevator 133 and the movement of the carry head 132 in the Y direction. Solar cell group 110 </ b> A, 110 </ b> B is attached to cover glass 130. In this case, 110 A of 1st photovoltaic cell groups conveyed from the 1st cell mounting base 101, 2nd photovoltaic cell group 110Bg conveyed from the 2nd cell mounting base 102, and the cover glass 130 are alternately turned to a Y direction. Installed.
 カバーガラス130上のY方向に所要列数(Yn)だけ太陽電池セル群110A、110Bが装着されると、カバーガラス130は搬送コンベア25によってマトリックス配線装置23に搬送される。 When the required number of solar cell groups 110A and 110B are mounted in the Y direction on the cover glass 130, the cover glass 130 is transported to the matrix wiring device 23 by the transport conveyor 25.
 マトリックス配線装置23には、図19に示すように、ボビン141に巻かれた導電部材としてのバスメタル14(図1参照)を供給するバスメタル供給ユニット(導電部材供給ユニット)142と、ガイドレール143a、143b沿ってX,Y方向に移動可能な作業用ロボット144が備えられている。 As shown in FIG. 19, the matrix wiring device 23 includes a bus metal supply unit (conductive member supply unit) 142 for supplying a bus metal 14 (see FIG. 1) as a conductive member wound around a bobbin 141, and a guide rail. A working robot 144 is provided that can move in the X and Y directions along 143a and 143b.
 バスメタル供給ユニット142は、ボビン141に巻かれたバスメタル14をY方向に引き出して所定長さに切断し、切断したバスメタル14を所定位置に供給するようになっている。作業用ロボット144には、所定長さに切断されたバスメタル14を吸着する吸着部材を備えたキャリーヘッド145と、バスメタル14を溶着するヒータを内蔵したプロセスヘッド146が上下方向に移動可能に保持されている。 The bus metal supply unit 142 is configured to pull out the bus metal 14 wound around the bobbin 141 in the Y direction, cut it into a predetermined length, and supply the cut bus metal 14 to a predetermined position. In the working robot 144, a carry head 145 having an adsorbing member that adsorbs the bus metal 14 cut to a predetermined length, and a process head 146 having a heater for welding the bus metal 14 are movable in the vertical direction. Is retained.
 そして、レイアップ装置22より搬送コンベア25によってカバーガラス130が所定位置まで搬送されると、バスメタル供給ユニット142によって所定位置に供給されたバスメタル14を、作業用ロボット144のキャリーヘッド145によって、Y方向に隣合う第1および第2の太陽電池セル群110A、110Bの各右端部より突出したインターコネクタ12の端部間に順次装着する。しかる後、作業用ロボット144のプロセスヘッド146によって、バスメタル14を溶着し、バスメタル14とインターコネクタ12とを電気的に接続する。 When the cover glass 130 is conveyed from the lay-up device 22 to the predetermined position by the conveyor 25, the bus metal 14 supplied to the predetermined position by the bus metal supply unit 142 is transferred by the carry head 145 of the work robot 144. The first and second photovoltaic cell groups 110A and 110B adjacent in the Y direction are sequentially mounted between the end portions of the interconnector 12 protruding from the right end portions. Thereafter, the bus metal 14 is welded by the process head 146 of the work robot 144, and the bus metal 14 and the interconnector 12 are electrically connected.
 太陽電池セル群110A、110Bの右端部のマトリックス配線が終了すると、搬送コンベア25によってカバーガラス130が所定量搬送され、その状態で今度は、Y方向に隣合う第2および第1の太陽電池セル群110B、110Aの各左端部より突出したインターコネクタ12の端部間に、上記したと同様に、バスメタル14を順次装着するとともに、バスメタル14を溶着し、バスメタル14とインターコネクタ12とを電気的に接続する。これによって、マトリックス化されたXm×Ynの太陽電池セル11のすべてが直列に電気的接続される。 When the matrix wiring at the right end of the solar cell groups 110A and 110B is completed, the cover glass 130 is transported by a predetermined amount by the transport conveyor 25, and in this state, the second and first solar cells that are next to each other in the Y direction. In the same manner as described above, the bus metal 14 is sequentially mounted between the end portions of the interconnector 12 protruding from the left end portions of the groups 110B and 110A, and the bus metal 14 is welded. Are electrically connected. As a result, all of the matrix Xm × Yn solar cells 11 are electrically connected in series.
 この場合、バスメタル14に代えて、インターコネクタを用い、このインターコネクタをフラックスを介して上記したインターコネクタ12に接合するようにしてもよい。 In this case, an interconnector may be used in place of the bus metal 14, and the interconnector may be joined to the interconnector 12 described above via a flux.
 次に、上記した実施の形態に基づいて太陽電池セル11をストリング配線する方法、およびストリング配線された太陽電池セル群110A、110Bを組み合わせて太陽電池モジュール10を製造する製造方法について説明する。 Next, a method for string-connecting solar cells 11 based on the above-described embodiment and a method for manufacturing solar cell module 10 by combining string-connected solar cell groups 110A and 110B will be described.
 まず初めに、第1および第2のコネクタ供給ユニット31A、31Bの各ボビン41より引き出されたインターコネクタ12の先端部が第1のクランパ51によってクランプされた図6(A)に示す原位置状態において、第2のモータ49によって第2のボールねじ軸48を所定量回転させ、図6(B)に示すように、第1のクランパ51を前方の位置に移動させ、インターコネクタ12を所定位置まで引き出す。その状態で、カッター43を下降させてインターコネクタ12を所定長さに切断する。 First, the in-situ state shown in FIG. 6A in which the tip end portion of the interconnector 12 pulled out from each bobbin 41 of the first and second connector supply units 31A and 31B is clamped by the first clamper 51. , The second ball screw shaft 48 is rotated by a predetermined amount by the second motor 49, the first clamper 51 is moved to the front position, as shown in FIG. 6B, and the interconnector 12 is moved to the predetermined position. Pull out until. In this state, the cutter 43 is lowered to cut the interconnector 12 to a predetermined length.
 続いて、第1のモータ46によって第1のボールねじ軸47を所定量回転させ、図6(C)に示すように、移動ガイド50とともに第1のクランパ51を、移動台45と一体的に移動させる。これによって、第1のクランパ51が下部ホットプレート81上まで移動され、これにクランプされた所定長さのインターコネクタ12が、下部ホットプレート81に載置された太陽電池セル11上に供給される。一方、第2のクランパ52がアンクランプされ、一定量後退される。 Subsequently, the first motor 46 rotates the first ball screw shaft 47 by a predetermined amount, and the first clamper 51 together with the moving guide 50 is integrated with the moving table 45 as shown in FIG. Move. As a result, the first clamper 51 is moved onto the lower hot plate 81, and the interconnector 12 having a predetermined length clamped thereto is supplied onto the solar cells 11 placed on the lower hot plate 81. . On the other hand, the second clamper 52 is unclamped and retracted by a certain amount.
 続いて、第2のクランパ52がインターコネクタ12をクランプした状態で一定前進され、インターコネクタ12をカッター43の前方位置まで引き出す((図6(D)参照)。同時に、第1のクランパ51がアンクランプされて、第1および第2のモータ46、49によって移動台45とともに、第1のクランパ51が原位置に復帰される(図6(A)参照)。 Subsequently, the second clamper 52 is moved forward in a state where the interconnector 12 is clamped, and the interconnector 12 is pulled out to the front position of the cutter 43 (see FIG. 6D). After being unclamped, the first clamper 51 is returned to the original position together with the moving table 45 by the first and second motors 46 and 49 (see FIG. 6A).
 この場合、インターコネクタ12は、太陽電池セル群110A、110Bの両端に位置する太陽電池セル11に接合される長さの短いものと、隣合う太陽電池セル11を互いに接合する長さの長いものとの2種類に切断される。すなわち、太陽電池セル群110A、110Bの最初の太陽電池セル11にインターコネクタ12を接合する場合には、先ず始めに、長さの短いインターコネクタ12が第11および第2の接合ユニット33A、33Bの各下部ホットプレート81上の所定位置に2列ずつ供給される。 In this case, the interconnector 12 has a short length to be joined to the solar cells 11 positioned at both ends of the solar cell groups 110A and 110B and a long length to join the adjacent solar cells 11 to each other. And cut into two types. That is, when the interconnector 12 is joined to the first solar battery cell 11 of the solar battery cell group 110A, 110B, first, the short interconnector 12 is connected to the eleventh and second joint units 33A, 33B. Two rows are supplied to a predetermined position on each lower hot plate 81.
 次いで、第1のセル供給ユニット32Aより受光面を下向きにした最初の太陽電池セル11が、第1の接合ユニット33Aに供給される途中で、ディスペンサー73a,73bによって上下面にフラックス72を塗布される(図9参照)。太陽電池セル11に塗布されたフラックス72の塗布状態は、検査カメラ151、152によって撮像され、画像処理装置153によって画像処理される。そして、画像処理の結果に基づいて、塗布条件が補正される。 Next, while the first solar cell 11 with the light receiving surface facing downward from the first cell supply unit 32A is supplied to the first joining unit 33A, the flux 72 is applied to the upper and lower surfaces by the dispensers 73a and 73b. (See FIG. 9). The application state of the flux 72 applied to the solar battery cell 11 is picked up by the inspection cameras 151 and 152 and subjected to image processing by the image processing device 153. Then, the application condition is corrected based on the result of the image processing.
 上下面にフラックス72を塗布された太陽電池セル11は、第1の接合ユニット33Aの下部ホットプレート81上のインターコネクタ12上に供給される。同様にして、第2のセル供給ユニット32Bより受光面を上向きにした最初の太陽電池セル11が、上下面にフラックス72を塗布され、しかる後、第2の接合ユニット33Bの下部ホットプレート81上のインターコネクタ12上に載置される。 The solar cells 11 having the upper and lower surfaces coated with the flux 72 are supplied onto the interconnector 12 on the lower hot plate 81 of the first joining unit 33A. Similarly, the first solar cell 11 with the light receiving surface facing upward from the second cell supply unit 32B is coated with flux 72 on the upper and lower surfaces, and then on the lower hot plate 81 of the second joining unit 33B. Is mounted on the interconnector 12.
 しかる後、今度は長さの長いインターコネクタ12の前半部が、受光面を下向きにした太陽電池セル11および受光面を上向きにした太陽電池セル11上にそれぞれ供給される。このような結果、第1および第2の接合ユニット33A、33Bの各下部ホットプレート81上に、図14(A)に示すように、太陽電池セル11とインターコネクタ12が重合状態で載置される。 Thereafter, the front half of the interconnector 12 having a long length is then supplied onto the solar cell 11 with the light receiving surface facing downward and the solar cell 11 with the light receiving surface facing upward. As a result, as shown in FIG. 14 (A), the solar cells 11 and the interconnectors 12 are placed in a superposed state on the lower hot plates 81 of the first and second joining units 33A and 33B. The
 次いで、上部ホットプレート82のX方向移動および下降により、インターコネクタ12および太陽電池セル11を下部ホットプレート81と上部ホットプレート82との間で挟み込み、インターコネクタ12および太陽電池セル11を加熱しながら圧着することにより、太陽電池セル11のプラス側電極およびマイナス側電極にインターコネクタ12をフラックス72を介してそれぞれ接合する。 Subsequently, the interconnector 12 and the solar battery cell 11 are sandwiched between the lower hot plate 81 and the upper hot plate 82 by moving and lowering the upper hot plate 82 in the X direction, while heating the interconnector 12 and the solar battery cell 11. The interconnector 12 is joined to the plus side electrode and the minus side electrode of the solar battery cell 11 via the flux 72 by pressure bonding.
 この際、上部ホットプレート82の下降によって、図13に示す押さえプレート90が、スプリング力にて太陽電池セル11上のインターコネクタ12を上方より押圧するので、互いに重合されたインターコネクタ12および太陽電池セル11の位置ずれを抑制することができる。 At this time, as the upper hot plate 82 descends, the holding plate 90 shown in FIG. 13 presses the interconnector 12 on the solar battery cell 11 from above with a spring force, so that the interconnector 12 and the solar battery superposed with each other are stacked. The positional deviation of the cell 11 can be suppressed.
 しかる後、各上部ホットプレート82が上昇されるとともに、X方向に所定量移動されて下部ホットプレート81上より退避される。これによって、太陽電池セル11の上下面にインターコネクタ12がフラックス72を介して接合される。 Thereafter, each upper hot plate 82 is raised, moved by a predetermined amount in the X direction, and retracted from the lower hot plate 81. As a result, the interconnector 12 is joined to the upper and lower surfaces of the solar battery cell 11 via the flux 72.
 この際、押さえプレート90は、上部ホットプレート82が上昇しても、インターコネクタ12をスプリング力によって押圧し続けるので、溶着したフラックス72が硬化する間、太陽電池セル11とインターコネクタ12との位置ずれを規制することができる。 At this time, the presser plate 90 continues to press the interconnector 12 by the spring force even when the upper hot plate 82 rises, so that the position of the solar battery cell 11 and the interconnector 12 is maintained while the welded flux 72 is cured. Deviation can be regulated.
 インターコネクタ12が接合された太陽電池セル11は、第1および第2のセル搬送ユニット34A、34Bによるリフトアンドキャリー動作によって、搬送部材91にすくい上げられ、1ピッチずつ搬送される。これにより、最初の太陽電池セル11が下部ホットプレート81より第1の徐冷ヒータ96a上に搬送されて、徐冷される。この1ピッチ搬送により、太陽電池セル11の上面に接合されたインターコネクタ12の後半部が下部ホットプレート81上に位置決めされることになる。 The solar cells 11 to which the interconnector 12 is joined are scooped up to the transport member 91 by the lift and carry operation by the first and second cell transport units 34A and 34B, and transported one pitch at a time. As a result, the first solar battery cell 11 is conveyed from the lower hot plate 81 onto the first slow cooling heater 96a and gradually cooled. By this one-pitch conveyance, the latter half of the interconnector 12 joined to the upper surface of the solar battery cell 11 is positioned on the lower hot plate 81.
 次いで、第1および第2のセル供給ユニット32A、32Bより2番目の太陽電池セル11が、上記したと同様にして、フラックス72を塗布した状態で下部ホットプレート81上に供給され、下部ホットプレート81上に位置決めされたインターコネクタ12の後半部上に載置される。 Next, the second solar cell 11 from the first and second cell supply units 32A and 32B is supplied onto the lower hot plate 81 with the flux 72 applied in the same manner as described above. It is placed on the second half of the interconnector 12 positioned on 81.
 その後、第1および第2のコネクタ供給ユニット31A、31Bより、長さの長いインターコネクタ12が、上記したと同様にして、下部ホットプレート81上に供給され、その前半部が太陽電池セル11上に重合される(図14(B)参照)。その状態で、上部ホットプレート82が作動され、太陽電池セル11の上下面にインターコネクタ12がフラックス72を介してそれぞれ接合される。 Thereafter, the interconnector 12 having a longer length is supplied onto the lower hot plate 81 in the same manner as described above from the first and second connector supply units 31A and 31B, and the front half of the interconnector 12 is on the solar battery cell 11. (See FIG. 14B). In this state, the upper hot plate 82 is operated, and the interconnector 12 is joined to the upper and lower surfaces of the solar battery cell 11 via the flux 72.
 しかる後、第1および第2のセル搬送ユニット34A、34Bによるリフトアンドキャリー動作によって、最初の太陽電池セル11が第1の徐冷ヒータ96aから第2の徐冷ヒータ96bに搬送されると同時に、2番目の太陽電池セル11が下部ホットプレート81から第1の徐冷ヒータ96aに搬送される。 Thereafter, the first solar battery cell 11 is simultaneously transported from the first slow cooling heater 96a to the second slow cooling heater 96b by the lift and carry operation by the first and second cell transport units 34A and 34B. The second solar battery cell 11 is conveyed from the lower hot plate 81 to the first slow cooling heater 96a.
 このような動作が繰り返されることにより、インターコネクタ12が接合された太陽電池セル11が、第1および第2のセル搬送ユニット34A、34Bによって順次1ピッチずつ搬送される。その結果、第1および第2のセル搬送ユニット34A、34B上には、所定個数の太陽電池セル11からなる第1および第2の太陽電池セル群110A、110Bが搬送される。 By repeating such an operation, the solar battery cell 11 to which the interconnector 12 is joined is sequentially transported one pitch at a time by the first and second cell transport units 34A and 34B. As a result, the first and second solar battery cell groups 110A and 110B including the predetermined number of solar battery cells 11 are transported on the first and second cell transport units 34A and 34B.
 このように、下側からインターコネクタ12、太陽電池セル11およびインターコネクタ12を順次積み上げていく同一の接続工程(図14参照)によって、第1および第2の太陽電池セル群110A、110Bを製造することができるので、太陽電池セル群110A、110Bのストリング配線作業を容易に行うことができる。 In this way, the first and second solar battery cell groups 110A and 110B are manufactured by the same connection process (see FIG. 14) in which the interconnector 12, the solar battery cell 11, and the interconnector 12 are sequentially stacked from the lower side. Therefore, the string wiring operation of the solar battery cell groups 110A and 110B can be easily performed.
 なお、第1および第2の太陽電池セル群110A、110Bの最後の太陽電池セル11に接合されるインターコネクタにも、長さの短いものが使用され、第1の接合ユニット33Aによって、長さの短いインターコネクタ12aが太陽電池セル11の裏面(上面)側に接合され、第2の接合ユニット33Bによって、長さの短いインターコネクタ12aが太陽電池セル11の受光面(上面)側に接合される。 The interconnector joined to the last photovoltaic cell 11 of the first and second photovoltaic cell groups 110A and 110B is also used with a short length, and the first joining unit 33A makes the length of the interconnector. The short interconnector 12a is joined to the back surface (upper surface) side of the solar cell 11, and the short interconnector 12a is joined to the light receiving surface (upper surface) side of the solar cell 11 by the second joining unit 33B. The
 第1および第2のセル搬送ユニット34A、34B上に、所要個数の太陽電池セル11からなる太陽電池セル群110A、110Bがそれぞれ搬送されると、第1および第2の接合ユニット33A、33Bには、次の太陽電池セル群110A、110Bを製造すべく、再び長さの短いインターコネクタ12が供給されるとともに、最初の太陽電池セル11が供給され、上記した動作を繰り返す。 When the solar battery cell groups 110A and 110B including the required number of solar battery cells 11 are transported on the first and second cell transport units 34A and 34B, respectively, they are transferred to the first and second joining units 33A and 33B. In order to manufacture the next solar cell group 110A, 110B, the short interconnector 12 is supplied again, the first solar cell 11 is supplied, and the above-described operation is repeated.
 このようにして、第1および第2のセル搬送ユニット34A、34B上に搬送された太陽電池セル群110A、110Bの最後の太陽電池セル11が、徐冷ステーション95を通過すると、移載装置103の複数の吸着ヘッド116によって、第1のセル搬送ユニット34A上の第1の太陽電池セル群110Aの各太陽電池セル11の上面がそれぞれ吸着され、移載装置103により、姿勢を変えることなく受光面(マイナス側電極)を下向きにした状態で、第1のセル置台101上に移載される。すなわち、第1の太陽電池セル群110Aは、最初の太陽電池セル11のマイナス側電極に接合された長さの短いインターコネクタ12aが、図2に示すように、太陽電池セル11の下側に位置する状態で第1のセル置台101上に移載される。 Thus, when the last solar cell 11 of the solar cell groups 110A and 110B transported on the first and second cell transport units 34A and 34B passes through the slow cooling station 95, the transfer device 103 is transferred. The plurality of adsorption heads 116 adsorb the upper surfaces of the respective solar cells 11 of the first solar cell group 110A on the first cell transport unit 34A, and receive light without changing the posture by the transfer device 103. The surface is transferred onto the first cell mounting base 101 with the surface (minus side electrode) facing downward. That is, in the first solar cell group 110A, a short interconnector 12a joined to the negative electrode of the first solar cell 11 is disposed below the solar cell 11 as shown in FIG. In the state where it is located, it is transferred onto the first cell mounting table 101.
 同様に、反転移載装置104の複数の吸着パッド127によって、第2のセル搬送ユニット34B上の第2の太陽電池セル群110Bの各太陽電池セル11の下面がそれぞれ吸着され、反転台122の180度反転動作により第2の太陽電池セル群110Bは上下反転され、受光面(マイナス側電極)を下向きにした状態で第2のセル置台102上に移載される。すなわち、第2の太陽電池セル群110Bは、最初の太陽電池セル11のプラス側電極に接合された長さの短いインターコネクタ12aが、図3に示すように、太陽電池セル11の上側に位置する状態で第2のセル置台102上に移載される。 Similarly, the lower surfaces of the respective solar cells 11 of the second solar cell group 110B on the second cell transport unit 34B are adsorbed by the plurality of suction pads 127 of the reverse transfer device 104, respectively. The second solar cell group 110B is turned upside down by the 180-degree reversing operation, and is transferred onto the second cell mounting table 102 with the light receiving surface (minus side electrode) facing downward. That is, in the second solar cell group 110B, the short interconnector 12a joined to the positive side electrode of the first solar cell 11 is positioned above the solar cell 11 as shown in FIG. In this state, the sample is transferred onto the second cell mounting table 102.
 このような結果、第1および第2のセル置台101、102にそれぞれ移載された第1および第2の太陽電池セル群110A、110Bは、共に受光面が下向きに揃えられるが、向きを揃えられた第1および第2の太陽電池セル群110A、110Bは、太陽電池セル11に対するインターコネクタ12の接続構造が、図2および図3に示すように、互いに異なったものとなる。 As a result, the first and second solar cell groups 110A and 110B transferred to the first and second cell mounts 101 and 102, respectively, have the light receiving surfaces aligned downward, but the orientations are aligned. As shown in FIGS. 2 and 3, the first and second solar battery cell groups 110 </ b> A and 110 </ b> B have different connection structures of the interconnector 12 to the solar battery cells 11.
 このように、第1および第2のセル搬送ユニット34A、34B上に搬送された第1および第2の太陽電池セル群110A、110Bは、移載装置103および反転移載装置104によって、第1および第2のセル置台101、102に搬出される。これによって、第1および第2のセル搬送ユニット34A、34B上に必要以上の太陽電池セル11を滞留させることがなくなり、上記した接合作業および搬送作業を継続することができ、ストリング配線作業を効率的に行えるようになる。 Thus, the 1st and 2nd photovoltaic cell group 110A, 110B conveyed on 1st and 2nd cell conveyance unit 34A, 34B is 1st by the transfer apparatus 103 and the reverse transfer apparatus 104. And it is carried out to the 2nd cell mounting base 101,102. As a result, unnecessary solar cells 11 are not retained on the first and second cell transport units 34A and 34B, the above-described joining work and transport work can be continued, and the string wiring work is efficiently performed. Will be able to do it.
 一方、レイアップ装置22のレイアップ位置には、2種類の太陽電池セル群110A、110BをY軸方向に交互に所要数配列するためのカバーガラス130が、自動または手動にて供給され、このカバーガラス130上にキャリーヘッド132によって、第1および第2のセル置台101、102より交互に太陽電池セル群110A、110Bが搬送される。 On the other hand, a cover glass 130 for arranging a required number of two types of solar cell groups 110A and 110B alternately in the Y-axis direction is supplied automatically or manually to the layup position of the layup device 22. Solar cell groups 110 </ b> A and 110 </ b> B are alternately conveyed from the first and second cell mounting bases 101 and 102 by the carry head 132 onto the cover glass 130.
 すなわち、カバーガラス130の1列目には、第1のセル置台101より第1の太陽電池セル群110Aが装着され、カバーガラス130の2列目には、第2のセル置台102より第2の太陽電池セル群110Bが装着される。以下、カバーガラス130の奇数列目には、第1の太陽電池セル群110Aが、偶数列目には、第2の太陽電池セル群110Bが装着され、Y軸方向に所要列数の太陽電池セル群110A、110Bが配列される。これによって、Y軸方向に隣合う太陽電池セル群110A、110Bの両端部には、太陽電池セル11のマイナス側電極に接合された長さの短いインターコネクタ12aと、太陽電池セル11のプラス側電極に接合された長さの短いインターコネクタ12aとがY軸方向に交互に配置されるようになる。 That is, the first solar cell group 110 </ b> A is attached to the first row of the cover glass 130 from the first cell mounting base 101, and the second row of the second glass mounting base 102 is attached to the second row of the cover glass 130. The solar battery cell group 110B is mounted. Hereinafter, the first solar cell group 110A is attached to the odd-numbered rows of the cover glass 130, and the second solar cell group 110B is attached to the even-numbered rows, and the required number of solar cells in the Y-axis direction. Cell groups 110A and 110B are arranged. Thereby, the short interconnector 12a joined to the negative electrode of the solar battery cell 11 and the positive side of the solar battery cell 11 are connected to both ends of the solar battery cell groups 110A and 110B adjacent to each other in the Y-axis direction. The short interconnectors 12a joined to the electrodes are alternately arranged in the Y-axis direction.
 カバーガラス130上のY方向に、ストリング配線されたXm個の太陽電池セル11からなる太陽電池セル群110A、110BがYn列装着されると、カバーガラス130が搬送コンベア25によってレイアップ装置22よりマトリックス配線装置23に搬送される。 When solar cell groups 110A and 110B made up of Xm solar cells 11 string-connected in the Y direction on the cover glass 130 are mounted in Yn rows, the cover glass 130 is transferred from the layup device 22 by the conveyor 25. It is conveyed to the matrix wiring device 23.
 カバーガラス130の前端部(図4の右端部)がマトリックス配線装置23内に搬送されると、1列目の太陽電池セル群110Aの右端より突出するマイナス側電極に接続されたインターコネクタ12aと、2列目の太陽電池セル群110Bの右端より突出するプラス側電極に接続されたインターコネクタ12aとの間に、所定長さに切断されたバスメタル14が装着される。 When the front end portion (the right end portion in FIG. 4) of the cover glass 130 is transported into the matrix wiring device 23, the interconnector 12a connected to the negative electrode protruding from the right end of the solar cell group 110A in the first row; A bus metal 14 cut to a predetermined length is mounted between the interconnector 12a connected to the positive electrode protruding from the right end of the solar cell group 110B in the second row.
 かかるバスメタル14は、マトリックス配線装置23のバスメタル供給ユニット142のボビン141よりY方向に引き出されて所定長さに切断され、作業用ロボット144のキャリーヘッド145に取付けられた吸着ヘッドにより吸着保持されて、インターコネクタ12aの間に装着される。 The bus metal 14 is pulled out from the bobbin 141 of the bus metal supply unit 142 of the matrix wiring device 23 in the Y direction, cut to a predetermined length, and sucked and held by a suction head attached to the carry head 145 of the work robot 144. And mounted between the interconnectors 12a.
 同様にして、バスメタル14は、3列目と4列目の太陽電池セル群110A、110Bの各右端より突出するインターコネクタ12aの間、および5列目と6列目の太陽電池セル群110A、110Bの各右端より突出するインターコネクタ12aの間にそれぞれ装着される、 Similarly, the bus metal 14 is connected between the interconnectors 12a protruding from the right ends of the third and fourth row solar cell groups 110A and 110B, and between the fifth and sixth row solar cell groups 110A. , 110B are respectively mounted between the interconnectors 12a protruding from the right ends of
 しかる状態で、ヒータを内蔵したプロセスヘッド146により、バスメタル14とインターコネクタ12の接続個所を加熱しながら圧着することにより、バスメタル14を溶融して、マイナス側電極に接合されたインターコネクタ12aとプラス側電極に接合されたインターコネクタ12aをバスメタル14を介して電気的に接続する。 In this state, the process head 146 with a built-in heater is used to heat and bond the connecting portion between the bus metal 14 and the interconnector 12 so that the bus metal 14 is melted and joined to the negative electrode 12a. The interconnector 12a joined to the plus side electrode is electrically connected via the bus metal 14.
 続いて、カバーガラス130がX方向に所定量搬送され、カバーガラス130の後端部(図4の左端部)がマトリックス配線装置23内に搬送されると、前述したと同様にして、2列目(4列目)の太陽電池セル群110Bの左端より突出するマイナス側電極に接続されたインターコネクタ12aと、3列目(5列目)の太陽電池セル群110Aの左端より突出するプラス側電極に接続されたインターコネクタ12aとの間に、所定長さに切断されたバスメタル14が装着される。そして、バスメタル14がプロセスヘッド146によって溶着されることにより、マイナス側電極に接合されたインターコネクタ12aとプラス側電極に接合されたインターコネクタ12aがバスメタル14を介して電気的に接続される。 Subsequently, when the cover glass 130 is conveyed by a predetermined amount in the X direction and the rear end portion (left end portion in FIG. 4) of the cover glass 130 is conveyed into the matrix wiring device 23, two rows are formed in the same manner as described above. Interconnector 12a connected to the negative electrode protruding from the left end of the fourth (fourth row) solar cell group 110B and the positive side protruding from the left end of the third row (fifth row) solar cell group 110A Between the interconnector 12a connected to the electrode, a bus metal 14 cut to a predetermined length is mounted. The bus metal 14 is welded by the process head 146, whereby the interconnector 12 a joined to the minus electrode and the interconnector 12 a joined to the plus electrode are electrically connected via the bus metal 14. .
 このようにして、Xm×Ynのすべての太陽電池セル11が、インターコネクタ12およびバスメタル14を介して直列に電気的接続され、太陽電池モジュール10が製造される。その後、当該太陽電池モジュール10は搬出コンベア26に搬出され、次工程に搬送される。そして、次工程において、太陽電池セル11上にEVA等の樹脂を封止してバックシートを装着するとともに、周囲をアルミフレームによって気密的に覆うことにより完成品となる。 Thus, all the solar cells 11 of Xm × Yn are electrically connected in series via the interconnector 12 and the bus metal 14, and the solar cell module 10 is manufactured. Then, the said solar cell module 10 is carried out to the carry-out conveyor 26, and is conveyed by the following process. Then, in the next step, a resin such as EVA is sealed on the solar battery cell 11 and a back sheet is mounted, and the periphery is hermetically covered with an aluminum frame to be a finished product.
 上記した実施の形態によれば、太陽電池セル11の上下面に接合材料(フラックス)72を塗布する接合材料塗布装置(ディスペンサー)73a、73bと、太陽電池セル11の上下面に塗布された接合材料72を撮像する検査カメラ151、152と、検査カメラ151、152によって撮像した画像情報を画像処理する画像処理装置153と、画像処理装置153によって画像処理された結果に基づいて、接合材料塗布装置73a、73bによる接合材料塗布条件を補正する補正制御装置154を備えている。 According to the above-described embodiment, the bonding material application devices (dispensers) 73 a and 73 b that apply the bonding material (flux) 72 to the upper and lower surfaces of the solar battery cell 11, and the bonding applied to the upper and lower surfaces of the solar battery cell 11. Inspection cameras 151 and 152 that image the material 72, an image processing device 153 that performs image processing on image information captured by the inspection cameras 151 and 152, and a bonding material application device based on the results of image processing performed by the image processing device 153 A correction control device 154 for correcting the bonding material application condition by 73a and 73b is provided.
 この構成により、太陽電池セル11を供給時に太陽電池セル11の上下面に接合材料72を塗布することが可能となり、しかも、検査カメラ151、152によって撮像した接合材料72の塗布状態に基づいて、接合材料72の塗布開始位置および終了位置等を計測するようにしたので、従来人手に頼っていた塗布条件出しを速やかにかつ正確に行うことができる。 With this configuration, it becomes possible to apply the bonding material 72 to the upper and lower surfaces of the solar battery cell 11 when supplying the solar battery cell 11, and based on the application state of the bonding material 72 imaged by the inspection cameras 151 and 152, Since the application start position, end position, and the like of the bonding material 72 are measured, it is possible to quickly and accurately determine the application conditions that have been relied on manually.
 上記した実施の形態によれば、接合材料塗布装置73a、73bは、太陽電池セル11に複数列の接合材料72を同時に塗布する複数の供給ノズル73a1、73b1を有し、供給ノズル73a1、73b1を太陽電池セル11に対して相対移動させることにより、太陽電池セル11の上下面に所定長さの接合材料72を塗布するようにしたので、太陽電池セルの上下面に複数列の接合材料72を容易に塗布することができる。 According to the above-described embodiment, the bonding material application devices 73a and 73b have the plurality of supply nozzles 73a1 and 73b1 that simultaneously apply the plurality of rows of the bonding material 72 to the solar battery cell 11, and the supply nozzles 73a1 and 73b1 are provided. Since the bonding material 72 having a predetermined length is applied to the upper and lower surfaces of the solar battery cell 11 by being moved relative to the solar battery cell 11, a plurality of rows of the bonding materials 72 are applied to the upper and lower surfaces of the solar battery cell. It can be easily applied.
 上記した実施の形態によれば、接合材料塗布条件を、接合材料塗布開始位置と接合材料塗布終了位置としたので、検査カメラ151,152によって撮像した接合材料72の塗布状態をフィードバックすることにより、接合材料塗布開始位置および終了位置を適正に維持することができる。 According to the above-described embodiment, since the bonding material application conditions are the bonding material application start position and the bonding material application end position, by feeding back the application state of the bonding material 72 imaged by the inspection cameras 151 and 152, The bonding material application start position and end position can be properly maintained.
 上記した実施の形態によれば、接合材料塗布条件を、接合材料塗布開始位置、接合材料塗布終了位置および接合材料塗布量としたので、検査カメラ151,152によって撮像した接合材料72の塗布状態をフィードバックすることにより、接合材料塗布開始位置、終了位置および接合材料塗布量を適正に維持することができる。 According to the above-described embodiment, since the bonding material application conditions are the bonding material application start position, the bonding material application end position, and the bonding material application amount, the application state of the bonding material 72 imaged by the inspection cameras 151 and 152 is determined. By performing the feedback, the bonding material application start position, the end position, and the bonding material application amount can be appropriately maintained.
 上記した実施の形態においては、太陽電池セル11の上下面に接合材料(フラックス)72を2列と塗布する例について述べたが、太陽電池セル11の片面に接合材料72を塗布するものにも適用可能であり、また、塗布条件も、少なくとも、接合材料塗布開始位置および接合材料塗布終了位置としたものであればよい。 In the above-described embodiment, the example in which the bonding material (flux) 72 is applied in two rows on the upper and lower surfaces of the solar battery cell 11 has been described. Applicable and the application conditions may be at least the bonding material application start position and the bonding material application end position.
 また、上記した実施の形態においては、接合材料72を塗布した太陽電池セル11と複数の導電部材(インターコネクタ)12を、下部ホットプレート81と上部ホットプレート82との間で熱圧着することによりに同時に接合するようにした例について述べたが、3次元方向に移動可能なロボット等にヒータを取付けて行うことも可能である。 In the above-described embodiment, the solar battery cell 11 to which the bonding material 72 is applied and the plurality of conductive members (interconnectors) 12 are thermocompression bonded between the lower hot plate 81 and the upper hot plate 82. However, it is also possible to attach a heater to a robot that can move in a three-dimensional direction.
 斯様に、本発明は実施の形態で述べた構成に限定されるものではなく、特許請求の範囲に記載した本発明の主旨を逸脱しない範囲内で種々の形態を採り得るものである。 Thus, the present invention is not limited to the configurations described in the embodiments, and can take various forms without departing from the gist of the present invention described in the claims.
 本発明に係るフラックス塗布条件補正装置は、隣合う太陽電池セルを導電部材を介して電気的に接合する太陽電池モジュールに用いるのに適している。 The flux application condition correction device according to the present invention is suitable for use in a solar cell module in which adjacent solar cells are electrically joined via a conductive member.
 10…太陽電池モジュール、11(11A、11B)…太陽電池セル、12、14…導電部材(インターコネクタ、バスメタル)、21…ストリング配線装置、31A、31B…導電部材供給ユニット、32A、32B…セル供給ユニット、33A、33B…接合ユニット、34A、34B…セル搬送ユニット、72…接合材料(フラックス)、73a、73b…接合材料塗布装置(ディスペンサー)、151、152…検査カメラ、153…画像処理装置、154…補正制御装置。 DESCRIPTION OF SYMBOLS 10 ... Solar cell module, 11 (11A, 11B) ... Solar cell, 12, 14 ... Conductive member (interconnector, bus metal), 21 ... String wiring apparatus, 31A, 31B ... Conductive member supply unit, 32A, 32B ... Cell supply unit, 33A, 33B ... bonding unit, 34A, 34B ... cell transport unit, 72 ... bonding material (flux), 73a, 73b ... bonding material application device (dispenser), 151, 152 ... inspection camera, 153 ... image processing Devices, 154... Correction control devices.

Claims (4)

  1.  隣合う太陽電池セルのプラス側電極とマイナス側電極を導電部材を介して電気的に接続するストリング配線装置において、
     前記太陽電池セルの表面に接合材料を塗布する接合材料塗布装置と、前記太陽電池セルの表面に塗布された接合材料を撮像する検査カメラと、該検査カメラによって撮像した画像情報を画像処理する画像処理装置と、該画像処理装置によって画像処理された結果に基づいて、前記接合材料塗布装置による接合材料塗布条件を補正する補正制御装置を備えたことを特徴とする接合材料塗布条件補正装置。
    In the string wiring device that electrically connects the plus side electrode and the minus side electrode of adjacent solar cells via a conductive member,
    A bonding material application device that applies a bonding material to the surface of the solar cell, an inspection camera that images the bonding material applied to the surface of the solar cell, and an image that processes image information captured by the inspection camera A bonding material application condition correction device comprising: a processing device; and a correction control device that corrects a bonding material application condition by the bonding material application device based on a result of image processing performed by the image processing device.
  2.  請求項1において、接合材料塗布装置は、前記太陽電池セルに複数列の接合材料を同時に塗布する複数の接合材料供給ノズルを有し、該接合材料供給ノズルを前記太陽電池セルに対して相対移動させることにより、前記太陽電池セルの表面に所定長さの接合材料を塗布するようにした接合材料塗布条件補正装置。 The bonding material application apparatus according to claim 1, further comprising: a plurality of bonding material supply nozzles that simultaneously apply a plurality of rows of bonding materials to the solar cells, wherein the bonding material supply nozzles move relative to the solar cells. A bonding material application condition correction device configured to apply a predetermined length of the bonding material to the surface of the solar battery cell.
  3.  請求項1または請求項2において、前記接合材料塗布条件を、接合材料塗布開始位置と接合材料塗布終了位置とした接合材料塗布条件補正装置。 3. The bonding material application condition correction apparatus according to claim 1, wherein the bonding material application conditions are a bonding material application start position and a bonding material application end position.
  4.  請求項3において、前記接合材料塗布条件に、接合材料塗布量を加えた接合材料塗布条件補正装置。 4. The bonding material application condition correction apparatus according to claim 3, wherein a bonding material application amount is added to the bonding material application condition.
PCT/JP2012/054925 2012-02-28 2012-02-28 Device for correcting joining material application conditions WO2013128571A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/054925 WO2013128571A1 (en) 2012-02-28 2012-02-28 Device for correcting joining material application conditions
JP2014501875A JP5901740B2 (en) 2012-02-28 2012-02-28 String wiring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054925 WO2013128571A1 (en) 2012-02-28 2012-02-28 Device for correcting joining material application conditions

Publications (1)

Publication Number Publication Date
WO2013128571A1 true WO2013128571A1 (en) 2013-09-06

Family

ID=49081824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054925 WO2013128571A1 (en) 2012-02-28 2012-02-28 Device for correcting joining material application conditions

Country Status (2)

Country Link
JP (1) JP5901740B2 (en)
WO (1) WO2013128571A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022188A (en) * 1998-07-03 2000-01-21 Npc:Kk Soldering system for tab lead
JP2002139452A (en) * 2000-11-01 2002-05-17 Fuji Mach Mfg Co Ltd Method and apparatus for inspection of coating state
JP2011187601A (en) * 2010-03-08 2011-09-22 Fuji Mach Mfg Co Ltd Method and apparatus for manufacturing solar cell module, and solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022188A (en) * 1998-07-03 2000-01-21 Npc:Kk Soldering system for tab lead
JP2002139452A (en) * 2000-11-01 2002-05-17 Fuji Mach Mfg Co Ltd Method and apparatus for inspection of coating state
JP2011187601A (en) * 2010-03-08 2011-09-22 Fuji Mach Mfg Co Ltd Method and apparatus for manufacturing solar cell module, and solar cell module

Also Published As

Publication number Publication date
JP5901740B2 (en) 2016-04-13
JPWO2013128571A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5885829B2 (en) String wiring apparatus and wiring method, solar cell module manufacturing apparatus and manufacturing method
KR101000495B1 (en) Apparatus for manufacturing of solar cell string
EP2581934A1 (en) Apparatus and method for the production of photovoltaic modules
KR101036839B1 (en) Over head jig and apparatus for manufacturing of solar cell string
JP2013139044A (en) Soldering device of tab lead for solar cell
CN114833504B (en) Battery string preparation method and battery string welding equipment
KR101104808B1 (en) Apparatus for bonding fpc
CN113814517A (en) Series welding machine
JP5916839B2 (en) Conductive member supply apparatus and supply method
JP5566319B2 (en) Method and system for manufacturing solar cell module
JP5897106B2 (en) String wiring device
KR101042997B1 (en) soldering apparatus and soldering method for manufacturing solar cell module
TWI511210B (en) A lead connection device and a connection method, a semiconductor element, and a solar battery module
JP5901740B2 (en) String wiring device
CN114871617B (en) Converging welding machine and converging belt welding method
TWM455623U (en) Automated touch panel bonding system
JPH0675199A (en) Apparatus for production of liquid crystal panel, positioning device and working device
KR101142274B1 (en) Arrangement appratus for lead frame
JP6008936B2 (en) String device for solar cell manufacturing
JP2012182358A (en) Apparatus and method for assembling fpd module
KR102125383B1 (en) Conveyer apparatus
CN117747715A (en) Cell gluing device, gluing method and cell stringing equipment
TW201808766A (en) Adhesion device
KR20160009223A (en) Tabbing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870113

Country of ref document: EP

Kind code of ref document: A1