WO2013128534A1 - Relay station device and relay method and program - Google Patents

Relay station device and relay method and program Download PDF

Info

Publication number
WO2013128534A1
WO2013128534A1 PCT/JP2012/054693 JP2012054693W WO2013128534A1 WO 2013128534 A1 WO2013128534 A1 WO 2013128534A1 JP 2012054693 W JP2012054693 W JP 2012054693W WO 2013128534 A1 WO2013128534 A1 WO 2013128534A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
communication network
communication
domain
data
Prior art date
Application number
PCT/JP2012/054693
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/054693 priority Critical patent/WO2013128534A1/en
Priority to JP2014501845A priority patent/JP5686925B2/en
Priority to TW101114483A priority patent/TW201336267A/en
Publication of WO2013128534A1 publication Critical patent/WO2013128534A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/417Bus networks with decentralised control with deterministic access, e.g. token passing

Definitions

  • the present invention relates to a technique for relaying communication data.
  • the description will be focused on a technique for relaying communication data in a communication system using the token passing method.
  • One communication system using the token passing method is defined by IEEE 802.4.
  • tokens are sequentially passed to each control device (referred to as “station device” or “station”) via a communication path, and only the station that receives the token has a transmission right, so that Transmission control is performed.
  • station device referred to as “station device” or “station”
  • transmission control is performed.
  • Patent Document 1 discloses a method for realizing a plurality of different transmission cycles corresponding to applications on one transmission path.
  • a token circuit is provided for each transmission cycle, and a station that manages the token circuit (referred to as a token master) selects a circuit for each transmission cycle. Since each tour route needs to be constructed with the token master as a base point, if the number of tour routes increases, the transmission efficiency of the entire communication system deteriorates. That is, the time interval (communication cycle) at which each station obtains a token becomes longer.
  • Patent Document 2 As a system for improving transmission efficiency as a communication system, that is, for shortening the communication cycle, there is a system described in Patent Document 2.
  • a communication system is configured in a ring shape, and tokens are circulated in a certain direction, and a plurality of tokens are circulated simultaneously (multi-token method).
  • multi-token method multi-token method
  • Patent Document 2 It can be analogized that the system described in Patent Document 2 is implemented by star connection using a switching hub, for example, without limiting the topology.
  • a switching hub for example, without limiting the topology.
  • all nodes participating in the communication system need to have a buffer corresponding to the number of tokens, resulting in high cost. There is a problem.
  • Patent Document 1 when a plurality of applications are realized on one transmission path, according to Patent Document 1, there is a problem that the communication cycle cannot be shortened. Further, according to Patent Document 2, there is a problem that the network configuration is limited to ring connection. Further, when the network configuration is not limited such as star connection, there is a problem that the cost is increased.
  • One of the main objects of the present invention is to solve the above-mentioned problems.
  • the data transmission opportunities arrive at each station device with a simple configuration.
  • the main purpose is to shorten the cycle and reliably deliver the data required for each station apparatus to each station apparatus.
  • the relay station apparatus is A first receiving unit that receives a plurality of communication data transmitted from a plurality of station devices included in the first communication network as a plurality of first communication data; A second receiving unit that receives a plurality of communication data transmitted from a plurality of station devices included in the second communication network as a plurality of second communication data; A first timing detector that detects arrival of a first transmission timing that arrives at a predetermined period; A second timing detector for detecting arrival of a second transmission timing that arrives at a predetermined period; When the arrival of the first transmission timing is detected by the first timing detection unit, a plurality of second received by the second reception unit before the arrival of the first transmission timing is detected.
  • a second transmission unit configured to transmit, to the specific station device in the second communication network, the first communication data transmitted from the specific station device in the first communication network among the communication data. It is characterized by that.
  • the relay station device divides the network into the first communication network and the second communication network, and the relay station device transmits the second communication data from the second communication network to the first communication network.
  • FIG. 2 is a diagram illustrating a configuration example of a network system in Embodiment 1.
  • FIG. 3 shows an internal configuration example of a station apparatus in the first embodiment.
  • FIG. 3 shows an internal configuration example of a relay station apparatus in the first embodiment.
  • FIG. 4 shows a data flow using the network shared memory in the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a communication sequence in the first embodiment.
  • FIG. 3 shows a data flow of the relay station apparatus in the first embodiment.
  • FIG. 3 illustrates a configuration example of a data frame in Embodiment 1;
  • FIG. 4 shows a configuration example of a token frame in the first embodiment.
  • FIG. 3 shows an internal configuration example of a station apparatus in the first embodiment.
  • FIG. 3 shows an internal configuration example of a relay station apparatus in the first embodiment.
  • FIG. 4 shows a data flow using the network shared memory in the first embodiment.
  • FIG. 10 shows a configuration example (multiple domain) of a network system in a third embodiment.
  • FIG. FIG. 5 is a diagram illustrating a hardware configuration example of a relay station apparatus in the first to fourth embodiments.
  • FIG. 1 is a configuration diagram of a network system including relay station apparatus 100 (hereinafter simply referred to as “relay station 100”) according to the present embodiment.
  • relay station 100 a plurality of station apparatuses 200 (hereinafter simply referred to as “station 200”), a relay station 100, and a switching hub 300 are connected by a transmission path.
  • One of the stations 200 becomes a representative to lead the token circulation (to become a token master).
  • the station A1 (200a1) and the station B1 (200b1) lead the token circulation.
  • Which station becomes the token master may be set in advance, or may be selected using a separate communication protocol.
  • Station A1 (200a1), station A2 (200a2), and station A3 (200a3) are stations grouped for application A. Further, the station B1 (200b1), the station B2 (200b2), and the station B3 (200b3) are stations grouped for application B, which is another application. When there is no need to distinguish between stations, they are simply referred to as “stations”. Station A1, station A2, and station A3 are collectively referred to as “group A stations”, and station B1, station B2, and station B3 are collectively referred to as “group B stations”. Each station of the station A1 (200a1), the station A2 (200a2), and the station A3 (200a3) needs to receive data of other stations in the group A in order to share the data for the application A.
  • each station of the station B1 (200b1), the station B2 (200b2), and the station B3 (200b3) needs to receive data of other stations in the group B in order to share the data for the application B.
  • group A stations do not require data from group B stations
  • group B stations do not require data from group A stations.
  • the domain 1 is configured by the station A1, the station A2, the station B2, and the relay station 100.
  • the station B1, the station B3, the station A3, and the relay station 100 constitute a domain 2.
  • the order of circulating the tokens is as described above.
  • a configuration example of the data frame is as shown in FIG. 7, and a configuration example of the token frame is as shown in FIG.
  • the data frame includes data information transmitted by the station, such as an offset of the network shared memory and actual data contents.
  • the token frame includes information on a station that holds the token next, for example, a MAC (Media Access Control) address, a station identifier, and the like. The station that received the token frame will hold the token.
  • MAC Media Access Control
  • the concept of the network shared memory is shown in FIG.
  • the station A1 transmits a data frame
  • the station A1 writes to the address assigned to the station A1 in the network shared memory.
  • Stations that want to use the data of the station A1 in applications, etc., here the stations A2 and A3 receive the data frame transmitted by the station A1, and conceptually data from the address assigned to the station A1 of the network shared memory Is read out.
  • FIG. 2 shows an internal configuration example of the station 200 included in the configuration shown in FIG.
  • the station 200 includes a reception processing unit 201, a transmission processing unit 202, a token processing unit 203, a memory management unit 204, an application 205, a memory 206, and the like.
  • the reception processing unit 201 has a function of classifying the received frame type (data frame, token frame).
  • the transmission processing unit 202 has a function of transmitting frames in order.
  • the token processing unit 203 has a function of managing the token circulation order.
  • the memory management unit 204 associates the real memory 206 of the station 200 with the network shared memory.
  • the application 205 reads data used in a program or the like from the network shared memory (real memory 206), writes data calculated by itself into the network shared memory, and the like.
  • FIG. 3 is an internal configuration diagram of the relay station 100.
  • the relay station 100 has a plurality of reception processing units, transmission processing units, and token processing units in order to participate in a plurality of domains.
  • relay station 100 is described as an independent station.
  • station A2 may have the configuration of FIG. 3 and operate as relay station 100.
  • the domain 1 side reception processing unit 101 receives a frame from the station 200 included in the domain 1 and classifies the type of the received frame (data frame or token frame).
  • the domain 1 side reception processing unit 101 corresponds to an example of a first reception unit.
  • the data frame received by the domain 1 side reception processing unit 101 corresponds to an example of first communication data.
  • the domain 2 side reception processing unit 104 receives a frame from the station 200 included in the domain 2 and classifies the type of the received frame (data frame or token frame).
  • the domain 2 side reception processing unit 104 corresponds to an example of a second reception unit.
  • the data frame received by the domain 2 side reception processing unit 104 corresponds to an example of second communication data.
  • the domain 1 side token processing unit 103 transmits the data frame transmission timing to the station 200 in the domain 1 (first Is sent to the domain 1 side transmission processing unit 102, which will be described later, to instruct the transmission of the data frame to the station 200 in the domain 1.
  • the domain 1 side token processing unit 103 corresponds to an example of a first timing detection unit.
  • the domain 2 side token processing unit 106 when the domain 2 side reception processing unit 104 receives a token frame from the station 200 included in the domain 2, transmits a data frame transmission timing (second time) to the station 200 in the domain 2 Is sent to the domain 2 side transmission processing unit 105, which will be described later, to instruct the transmission of the data frame to the station 200 in the domain 2.
  • the domain 2 side token processing unit 106 corresponds to an example of a second timing detection unit.
  • the domain 1 side transmission processing unit 102 transmits a frame to the station 200 included in the domain 1. More specifically, when receiving an instruction from the domain 1 side token processing unit 103, the domain 1 side transmission processing unit 102 receives the domain 2 side reception before the domain 1 side token processing unit 103 detects the transmission timing.
  • the processing unit 104 transmits the data received from the station 200 in the domain 2 to the station 200 in the domain 1.
  • the domain 1 side transmission processing unit 102 transmits the data received from the group A station in the domain 2 to the group A station in the domain 1, and the data received from the group B station in the domain 2 1 to group B stations in 1. After transmitting the data to the stations in the domain 1, the domain 1 side transmission processing unit 102 transmits the token frame to the station A1 in the domain 1.
  • the domain 1 side transmission processing unit 102 corresponds to an example of a first transmission unit.
  • the domain 2 side transmission processing unit 105 transmits a frame to the station 200 included in the domain 2. More specifically, when receiving an instruction from the domain 2 side token processing unit 106, the domain 2 side transmission processing unit 105 receives the domain 1 side reception before the domain 2 side token processing unit 106 detects the transmission timing.
  • the processing unit 101 transmits data received from the station 200 in the domain 1 to the station 200 in the domain 2.
  • the domain 2 side transmission processing unit 105 transmits the data received by the domain 1 side reception processing unit 101 from the group A station in the domain 1 to the group A station in the domain 2, and the domain 1 side reception processing unit 101
  • the data received from the group B station in the domain 1 is transmitted to the group B station in the domain 2.
  • domain 2 side transmission processing section 105 transmits a token frame to station B1 in domain 2.
  • the domain 2 side transmission processing unit 105 corresponds to an example of a second transmission unit.
  • the memory management unit 107 is the same as the memory management unit 204 in FIG. 2, the application 108 is the same as the application 205 in FIG. 2, and the memory 109 is the same as the memory 206 in FIG. In the relay station 100, the application 108 may be omitted.
  • FIG. 5 A communication sequence according to the present embodiment will be described with reference to FIG.
  • a solid arrow represents a data frame
  • a dashed arrow represents a token frame
  • a black circle represents a token.
  • the station A1 has a token and transmits a data frame to the station A2 and the relay station 100. Thereafter, station A1 sends a token frame to station A2 and passes the token to station A2. Next, the station A2 holds the token, and the station A2 transmits the data frame to the station A1 and the relay station 100. Station A2 then sends a token frame to station B2 and passes the token to station B2. Next, the station B2 holds the token, and the station B2 transmits the data frame to the relay station 100. Thereafter, the station B2 transmits a token frame to the relay station 100, and passes the token to the relay station 100. Finally, the relay station 100 holds a token.
  • the relay station 100 transmits data from the domain 2 to the stations A1, A2, and B2. More specifically, the data of the station A3 obtained by communication with the domain 2 is transmitted to the stations A1 and A2. Further, the data of the stations B1 and B3 are transmitted to the station B2. Thereafter, the relay station 100 transmits a token frame to the station A1, and returns the token to the first station A1. Thereafter, the station A1 again holds the token and repeats the same processing.
  • the station B1 has a token and transmits a data frame to the station B3 and the relay station 100.
  • Station B1 then sends a token frame to station B3 and passes the token to station B3.
  • the station B3 holds the token, and the station B3 transmits the data frame to the station B1 and the relay station 100.
  • Station B3 then sends a token frame to station A3 and passes the token to station A3.
  • the station A3 holds the token, and the station A3 transmits the data frame to the relay station 100.
  • the station A3 transmits a token frame to the relay station 100 and passes the token to the relay station 100.
  • the relay station 100 holds a token.
  • the relay station 100 transmits data from the domain 1 to the stations B1, B3, and A3. More specifically, the data of the station B2 obtained by communication with the domain 1 is transmitted to the stations B1 and B3. Further, the data of the stations A1 and A2 are transmitted to the station A3. Thereafter, the relay station 100 transmits a token frame to the station B1, and returns the token to the first station B1. Thereafter, the station B1 again holds the token and repeats the same processing.
  • the domain 1 side reception processing unit 101 receives the data frame from the station A1, and the data included in the data frame from the station A1 (data shown in FIG. 7). Is transferred to the memory management unit 107, and the memory management unit 107 stores the data from the station A1 in the area allocated to the station A1 in the memory 109.
  • the domain 2 side reception processing unit 104 receives the data frame from the station B1, transfers the data included in the data frame from the station B1 (data shown in FIG. 7) to the memory management unit 107, and the memory management unit 107.
  • data frames are received from the stations B3 and A3
  • data is stored in the same procedure.
  • the domain 1 side reception processing unit 101 When the domain 1 side reception processing unit 101 receives a token frame from the station B2, the domain 1 side reception processing unit 101 transfers the token frame to the domain 1 side token processing unit 103, and the domain 1 side token processing unit 103 Detects the arrival of the transmission timing of domain 1, and instructs the transmission of data to domain 1.
  • the domain 1 side token processing unit 103 requests the memory management unit 107 to output data (data of the stations B1, B3, and A3) received from the domain 2 by the domain 2 side reception processing unit 104. Then, the domain 1 side transmission processing unit 102 inputs the corresponding data from the memory management unit 107, generates a data frame including the input data, and transmits the data frame to the domain 1 station 200.
  • the domain 1 side token processing unit 103 may generate two data frames including a data frame including only the data of the stations B1 and B3 and a data frame including only the data of the station A3.
  • One data frame including all data of the stations B1, B3, and A3 may be generated.
  • a data frame including only the data of the stations B1 and B3 is transmitted to the station B2, and a data frame including only the data of the station A3 is transmitted to the stations A1 and A3.
  • the generated single frame is transmitted to all of the stations A1, A3, and B2, and each station discards unnecessary data (data of stations in other groups).
  • the domain 2 side reception processing unit 104 When the domain 2 side reception processing unit 104 receives a token frame from the station A3, the domain 2 side reception processing unit 104 transfers the token frame to the domain 2 side token processing unit 106, and the domain 2 side token processing unit 106 Detects the arrival of the transmission timing of the domain 2, and instructs the domain 2 side transmission processing unit 105 to transmit data to the domain 2.
  • the domain 2 side token processing unit 106 requests the memory management unit 107 to output the data received from the domain 1 by the domain 1 side reception processing unit 101 (data of the stations A1, A2, and B2). Then, the domain 2 side transmission processing unit 105 inputs corresponding data from the memory management unit 107, generates a data frame including the input data, and transmits the data frame to the domain 2 station 200.
  • the domain 2 side token processing unit 106 may generate two data frames including a data frame including only the data of the stations A1 and A2 and a data frame including only the data of the station B2.
  • One data frame including all data of the stations A1, A2, and B2 may be generated.
  • a data frame including only the data of the stations A1 and A2 is transmitted to the station A3, and a data frame including only the data of the station B2 is transmitted to the stations B1 and B3.
  • one generated frame is transmitted to all of the stations B1, B3, and A3, and each station discards unnecessary data (data of stations in other groups).
  • FIG. 6 shows a state of data exchange with the network shared memory with a focus on the relay station 100.
  • the relay station 100 receives data from the station A1, the station A2, and the station B2 in the domain 1 and transmits them to the domain 2 side. Further, the relay station 100 receives the data of the station A3, the station B1, and the station B3 in the domain 2 and transmits them to the domain 1 side.
  • relay station 100 transmits all the data of domain 1 to domain 2, but the data to be transmitted may be selected according to the actual application. For example, when the station A3 does not use the data of the station A1 in the network configuration of FIG. 1 and the communication sequence of FIG. 5, the relay station 100 may not transmit the data of the station A1 to the domain 2 (the station A2 Send data only).
  • the network configuration shown in FIG. 1 corresponds to the network configuration shown in FIG. 14 in which the relay station 100 is arranged between the station A2 and the right switching hub 300.
  • the time interval (communication cycle) at which each station obtains a token becomes long.
  • each station has the same attributes as in FIG. That is, the station A1, the station A2, and the station A3 are application A stations, and the station B1, the station B2, and the station B3 are application B stations.
  • the station A1 is a token master.
  • the station A1 has a token and transmits data frames to the stations A2 and A3. Thereafter, the station A1 transmits a token frame to the station A2, and passes the token to the station A2. Next, the station A2 will hold the token, and the station A2 transmits data frames to the stations A1 and A3. Thereafter, a token frame is transmitted, and the token is passed to the station B2. Next, the station B2 will hold the token, and the station B2 transmits the data frame to the stations B1 and B3.
  • the data frame and the token frame are transmitted in the same procedure, and one transmission cycle is completed when the station A1 receives the token frame from the station B3.
  • the stations in group A do not need to receive data from the stations in group B
  • the stations in group B do not need to receive data from the stations in group A, but stations A1, A2, B2 , A 3, B 1, B 3 in order of tokens to all stations, one transmission cycle is not completed.
  • the time interval (corresponding to the length of the arrow shown on the left in FIG. 15) at which each station obtains a token becomes longer.
  • the time interval at which each station obtains a token can be shortened.
  • tokens are circulated in domain 1 and domain 2 divided by relay station 100 to exchange data within the domain, and relay station 100 mediates data exchange between domains.
  • the communication cycle can be shortened (corresponding to the length of the arrow shown on the left in FIG. 5).
  • the communication cycle can be shortened when a plurality of applications are realized on one transmission path. Even when the network configuration is a star connection or the like, the communication cycle can be shortened at a low cost.
  • a control device having a function of dividing a network into small units (domains) so that tokens can be circulated in parallel for each domain and mediating data transferred between domains is described. did.
  • control device that controls to select data to be transferred between domains and not to transmit data unnecessary for other domains has been described.
  • relay station 100 relays data between two domains, domain 1 and domain 2
  • data may be relayed between three or more domains. Good.
  • a reception processing unit, a transmission processing unit, and a token processing unit corresponding to the third and subsequent domains are provided.
  • a domain 3 side reception processing unit, a domain 3 side transmission processing unit, and a domain 3 side token processing unit are added.
  • the domain 1 side reception processing unit 101 is an example of the first reception unit
  • the domain 1 side transmission processing unit 102 is an example of the first transmission unit
  • the domain 1 side token processing unit 103 is an example of the first timing detection unit.
  • the domain 2 side reception processing unit 104 and the domain 3 side reception processing unit are examples of the second reception unit
  • the domain 2 side transmission processing unit 105 and the domain 3 side transmission processing unit are examples of the second transmission unit
  • the domain 2 side token processing unit 106 and the domain 3 side token processing unit are examples of the second timing detection unit.
  • the domain 2 side reception processing unit 104 is an example of the first reception unit
  • the domain 2 side transmission processing unit 105 is an example of the first transmission unit
  • the domain 2 side token processing unit 106 is This is an example of the first timing detection unit.
  • the domain 1 side reception processing unit 101 and the domain 3 side reception processing unit are examples of the second reception unit
  • the domain 1 side transmission processing unit 102 and the domain 3 side transmission processing unit are examples of the second transmission unit
  • the domain 1 side token processing unit 103 and the domain 3 side token processing unit are examples of the second timing detection unit. The same applies to domain 3.
  • FIG. FIG. 9 is a network configuration example of the test environment in the present embodiment.
  • domains are divided and exist independently for each specific application. For example, there are cases in which each domain is constructed separately and the domains are connected after testing due to different application designers.
  • the relay station 100 in FIG. 9 performs tests for each domain even if the other domains are not actually connected by simulating the communication contents of the other domains for the domain to be tested. It becomes possible to do. That is, whether the relay station 100a connected to the domain 1 is communicating with the network (the domain 2 that does not actually exist) that the domain 1 is a communication destination in the domain 1 test. Emulate like this.
  • the relay station 100a generates data that the domain 1 station recognizes as data from the domain 2 station, and transmits the data to the domain 1 station. Further, the relay station 100a behaves as if it has transmitted data received from a domain 1 station to a domain 2 station. Similarly, the relay station 100b connected to the domain 2 communicates with the network (the domain 1 that does not actually exist) that the domain 2 is a communication destination in the domain 2 test. Emulate as if. Domain 1 and domain 2 correspond to the test target network.
  • FIG. 10 shows an actual network configuration example in the present embodiment.
  • the relay station 100a is an actual network configuration based on the domain 1 test that simulates the domain 2 and the relay station 100b that tests the domain 2 that simulates the domain 1. It is possible to reduce troubles at the time of starting up the network and reduce costs such as shortening the delivery time.
  • FIG. FIG. 11 shows a network configuration example in this embodiment.
  • the function of dividing the domain may be provided as an internal function of the station.
  • domain division can be subdivided (multiple domains can be configured).
  • the station A1 receives the data of the stations B1 to B2 and the stations C1 to C3 according to the application and transmits them to the domain 1.
  • the station A1 transmits the data of the stations A1 to A3 to the station B1 and the station C1.
  • the station B1 receives the data of the stations A1 to A3 and the stations C1 to C3 according to the application and transmits them to the domain 2.
  • the station B1 transmits the data of the stations B1 and B2 to the station A1 and the station C1.
  • the station C1 communicates in the same manner.
  • the relay station can further reduce the communication time by limiting the data content transmitted to other relay stations or domains.
  • a communication system has been described in which a plurality of control devices are provided, the control devices are connected, and the domains are configured in a multiplexed manner.
  • FIG. 12 shows a network configuration example in this embodiment.
  • the effect of shortening the communication cycle by domain division may be small, or conversely, the communication cycle may be increased by dividing the domain.
  • a station that represents the network for example, the station A1 collects link connection status information of each station and makes the network configuration known in advance.
  • the relay station 100 is simply relayed to the frame, and the operation described in the first embodiment is not performed.
  • the relay station 100 transmits the data frame from the domain 1 station to the domain 2 station regardless of the arrival of the transmission timing, regardless of the reception of the token frame.
  • the data frame from the station is transmitted to the station in domain 1.
  • the station A1 determines the effect of domain division, but the relay station itself may determine the effect of domain division.
  • the effect of domain division is determined by calculating and comparing the communication time before and after domain division from the data frame, token frame size, transmission path bandwidth, and token processing time.
  • control device determines whether or not to divide a domain from network configuration information collected in advance and notifies the control device according to claims 1 and 3 of whether or not to divide the domain.
  • the relay station 100 is a computer, and each element of the relay station 100 can execute processing by a program. Further, the program can be stored in a storage medium so that the program can be read from the storage medium by a computer.
  • an arithmetic device 901, an external storage device 902, a main storage device 903, a communication device 904, and an input / output device 905 are connected to the bus.
  • the arithmetic device 901 is a CPU (Central Processing Unit) that executes a program.
  • the external storage device 902 is, for example, a ROM (Read Only Memory), a flash memory, or a hard disk device.
  • the main storage device 903 is a RAM (Random Access Memory) and corresponds to the memory 109.
  • the communication device 904 corresponds to the physical layer of the domain 1 side reception processing unit 101, the domain 1 side transmission processing unit 102, the domain 2 side reception processing unit 104, and the domain 2 side transmission processing unit 105.
  • the input / output device 905 is, for example, a touch panel display device.
  • the program is normally stored in the external storage device 402, and is sequentially read into the arithmetic device 901 and executed while being loaded in the main storage device 403.
  • the program is a program that realizes the function described as “unit” shown in FIG.
  • an operating system (OS) is also stored in the external storage device 902. At least a part of the OS is loaded into the main storage device 903, and the arithmetic device 901 executes “OS” shown in FIG. ”Is executed.
  • the application 108 is also stored in the external storage device 402 and is sequentially executed by the arithmetic device 901 while being loaded in the main storage device 403.
  • determining”, “determining”, “extracting”, “detecting”, “setting of”, “registering”, “ Information, data, signal values, and variable values indicating the results of the processing described as “selection”, “generation of”, “input of”, “output of”, and the like are stored as files in the main storage device 903. Has been.
  • data received from each station is stored in the main storage device 903.
  • the encryption key / decryption key, random number value, and parameter may be stored in the main storage device 903 as a file.
  • FIG. 13 is merely an example of the hardware configuration of relay station 100, and the hardware configuration of relay station 100 is not limited to the configuration illustrated in FIG. 13 and may be other configurations. . Further, the station 200 shown in the first to fourth embodiments may have the hardware configuration shown in FIG. 13 or may have another hardware configuration.
  • relay method according to the present invention can be realized by the procedure shown in the first to fourth embodiments.
  • 100 relay station 101 domain 1 side reception processing unit, 102 domain 1 side transmission processing unit, 103 domain 1 side token processing unit, 104 domain 2 side reception processing unit, 105 domain 2 side transmission processing unit, 106 domain 2 side token processing Part, 107 memory management part, 108 application, 109 memory, 200 stations, 201 reception processing part, 202 transmission processing part, 203 token processing part, 204 memory management part, 205 application, 206 memory, 300 switching hub.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

A relay station (100) is connected to a domain (1) and a domain (2). The relay station (100) receives data from stations (200) in the domain (1), and receives data from stations (200) in the domain (2). If a data transmission timing in the domain (1) is reached, the relay station (100) transmits data received from the stations (200) in the domain (2) to the stations (200) in the domain (1), and if a data transmission timing in the domain (2) is reached, the relay station (100) transmits data received from the stations (200) in the domain (1) to the stations (200) in the domain (2).

Description

中継局装置及び中継方法及びプログラムRelay station apparatus, relay method, and program
 本発明は、通信データを中継する技術に関する。
 以下では、トークンパッシング方式を用いた通信システムにおいて通信データを中継する技術を中心に説明を進める。
The present invention relates to a technique for relaying communication data.
In the following, the description will be focused on a technique for relaying communication data in a communication system using the token passing method.
 トークンパッシング方式を用いた通信システムの一つに、IEEE802.4で定められたものがある。
 この方式では、トークンが通信経路を介して各制御装置(「局装置」又は「局」と呼ぶ)に次々と渡され、トークンを受け取った局のみが送信権を持つことによって、通信経路上の伝送制御を行っている。
 上記のようなトークンパッシング方式を用いた通信システムにおいて、近年、伝送速度の向上から、一つの伝送路上で複数のアプリケーションを実現したいという要望が高まっている。
One communication system using the token passing method is defined by IEEE 802.4.
In this method, tokens are sequentially passed to each control device (referred to as “station device” or “station”) via a communication path, and only the station that receives the token has a transmission right, so that Transmission control is performed.
In the communication system using the token passing system as described above, in recent years, there has been an increasing demand for realizing a plurality of applications on one transmission path because of an improvement in transmission speed.
 特許文献1では、一つの伝送路上で、アプリケーションに応じた複数の異なる伝送サイクルを実現する方式が開示されている。
 特許文献1の方式は、伝送サイクル毎にトークンの巡回路を設け、トークンの巡回路を管理する局(トークンマスタと呼ぶ)が、伝送サイクル毎の巡回路の選択を行うようにする。
 各巡回路はトークンマスタを基点として構築する必要があるため、巡回路数が多くなると、通信システム全体としての伝送効率が悪くなる。
 すなわち、各局がトークンを得る時間間隔(通信周期)が長くなる。
Patent Document 1 discloses a method for realizing a plurality of different transmission cycles corresponding to applications on one transmission path.
In the method of Patent Document 1, a token circuit is provided for each transmission cycle, and a station that manages the token circuit (referred to as a token master) selects a circuit for each transmission cycle.
Since each tour route needs to be constructed with the token master as a base point, if the number of tour routes increases, the transmission efficiency of the entire communication system deteriorates.
That is, the time interval (communication cycle) at which each station obtains a token becomes longer.
 通信システムとして伝送効率を良くする、すなわち通信周期を短くする方式として、特許文献2に記載されている方式がある。
 特許文献2の方式は、通信システムをリング状に構成し、トークンを一定方向に巡回するようにし、複数のトークンを同時に巡回させる(マルチトークン方式)。
 しかしながら、この方式はネットワークトポロジーがリング接続に限定されているという課題がある。
As a system for improving transmission efficiency as a communication system, that is, for shortening the communication cycle, there is a system described in Patent Document 2.
In the method of Patent Document 2, a communication system is configured in a ring shape, and tokens are circulated in a certain direction, and a plurality of tokens are circulated simultaneously (multi-token method).
However, this method has a problem that the network topology is limited to ring connection.
 トポロジーを制限せずに、例えばスイッチングハブを用いたスター接続で特許文献2記載の方式を実施することも類推できる。
 しかしながら、複数のトークンに基づいて送信された複数のデータが同時に同一ノードに到達する場合に備えて、通信システムに参加するノードすべてがトークン数に応じたバッファを持つ必要があり、高コストになるという課題がある。
It can be analogized that the system described in Patent Document 2 is implemented by star connection using a switching hub, for example, without limiting the topology.
However, in preparation for a case where a plurality of data transmitted based on a plurality of tokens reach the same node at the same time, all nodes participating in the communication system need to have a buffer corresponding to the number of tokens, resulting in high cost. There is a problem.
特開2009-201013号公報JP 2009-201013 A 特開平9-270811号公報JP-A-9-270811
 前述したように、一つの伝送路上で複数のアプリケーションを実現する場合、特許文献1によれば、通信周期を短くできないという課題がある。
 また、特許文献2によれば、ネットワーク構成がリング接続に限定されてしまうという課題がある。
 また、スター接続など、ネットワーク構成を限定しない場合、コストが高くなるという課題がある。
As described above, when a plurality of applications are realized on one transmission path, according to Patent Document 1, there is a problem that the communication cycle cannot be shortened.
Further, according to Patent Document 2, there is a problem that the network configuration is limited to ring connection.
Further, when the network configuration is not limited such as star connection, there is a problem that the cost is increased.
 本発明は、上記の課題を解決することを主な目的の一つとしており、各局装置に周期的にデータ送信機会が到来するネットワークにおいて、簡易な構成によって、各局装置にデータ送信機会が到来する周期を短くするとともに、各局装置に必要なデータを各局装置に確実に届けるようにすることを主な目的とする。 One of the main objects of the present invention is to solve the above-mentioned problems. In a network where data transmission opportunities periodically arrive at each station device, the data transmission opportunities arrive at each station device with a simple configuration. The main purpose is to shorten the cycle and reliably deliver the data required for each station apparatus to each station apparatus.
 本発明に係る中継局装置は、
 第1の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第1の通信データとして受信する第1の受信部と、
 第2の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第2の通信データとして受信する第2の受信部と、
 所定の周期で到来する第1の送信タイミングの到来を検知する第1のタイミング検知部と、
 所定の周期で到来する第2の送信タイミングの到来を検知する第2のタイミング検知部と、
 前記第1のタイミング検知部により前記第1の送信タイミングの到来が検知された際に、前記第1の送信タイミングの到来の検知前に前記第2の受信部により受信された複数の第2の通信データのうち前記第2の通信ネットワーク内の特定の局装置から送信された第2の通信データを、前記第1の通信ネットワーク内の特定の局装置に送信する第1の送信部と、
 前記第2のタイミング検知部により前記第2の送信タイミングの到来が検知された際に、前記第2の送信タイミングの到来の検知前に前記第1の受信部により受信された複数の第1の通信データのうち前記第1の通信ネットワーク内の特定の局装置から送信された第1の通信データを、前記第2の通信ネットワーク内の特定の局装置に送信する第2の送信部とを有することを特徴とする。
The relay station apparatus according to the present invention is
A first receiving unit that receives a plurality of communication data transmitted from a plurality of station devices included in the first communication network as a plurality of first communication data;
A second receiving unit that receives a plurality of communication data transmitted from a plurality of station devices included in the second communication network as a plurality of second communication data;
A first timing detector that detects arrival of a first transmission timing that arrives at a predetermined period;
A second timing detector for detecting arrival of a second transmission timing that arrives at a predetermined period;
When the arrival of the first transmission timing is detected by the first timing detection unit, a plurality of second received by the second reception unit before the arrival of the first transmission timing is detected. A first transmission unit for transmitting second communication data transmitted from a specific station device in the second communication network to a specific station device in the first communication network;
When the arrival of the second transmission timing is detected by the second timing detection unit, a plurality of first received by the first reception unit before the arrival of the second transmission timing is detected. A second transmission unit configured to transmit, to the specific station device in the second communication network, the first communication data transmitted from the specific station device in the first communication network among the communication data. It is characterized by that.
 本発明によれば、中継局装置によりネットワークを第1の通信ネットワークと第2の通信ネットワークとに分割し、中継局装置が、第2の通信ネットワークからの第2の通信データを第1の通信ネットワーク内の局装置に送信し、第1の通信ネットワークからの第1の通信データを第2の通信ネットワーク内の局装置に送信することで、各局装置にデータ送信機会が到来する周期を短くすることができ、更に、各局装置に必要なデータを各局装置に確実に届けることができる。 According to the present invention, the relay station device divides the network into the first communication network and the second communication network, and the relay station device transmits the second communication data from the second communication network to the first communication network. By transmitting to the station apparatus in the network and transmitting the first communication data from the first communication network to the station apparatus in the second communication network, the period at which the data transmission opportunity arrives at each station apparatus is shortened. In addition, data necessary for each station apparatus can be reliably delivered to each station apparatus.
実施の形態1におけるネットワークシステムの構成例を示す図。2 is a diagram illustrating a configuration example of a network system in Embodiment 1. FIG. 実施の形態1における局装置の内部構成例を示す図。FIG. 3 shows an internal configuration example of a station apparatus in the first embodiment. 実施の形態1における中継局装置の内部構成例を示す図。FIG. 3 shows an internal configuration example of a relay station apparatus in the first embodiment. 実施の形態1におけるネットワーク共有メモリを用いたデータフローを示す図。FIG. 4 shows a data flow using the network shared memory in the first embodiment. 実施の形態1における通信シーケンス例を示す図。FIG. 3 is a diagram illustrating an example of a communication sequence in the first embodiment. 実施の形態1における中継局装置のデータフローを示す図。FIG. 3 shows a data flow of the relay station apparatus in the first embodiment. 実施の形態1におけるデータフレームの構成例を示す図。FIG. 3 illustrates a configuration example of a data frame in Embodiment 1; 実施の形態1におけるトークンフレームの構成例を示す図。FIG. 4 shows a configuration example of a token frame in the first embodiment. 実施の形態2におけるネットワークシステムの構成例(テスト環境)を示す図。The figure which shows the structural example (test environment) of the network system in Embodiment 2. FIG. 実施の形態2におけるネットワークシステムの構成例(実際の環境)を示す図。The figure which shows the structural example (actual environment) of the network system in Embodiment 2. FIG. 実施の形態3におけるネットワークシステムの構成例(多重ドメイン)を示す図。FIG. 10 shows a configuration example (multiple domain) of a network system in a third embodiment. 実施の形態4におけるネットワークシステムの構成例(低効率)を示す図。The figure which shows the structural example (low efficiency) of the network system in Embodiment 4. FIG. 実施の形態1~4における中継局装置のハードウェア構成例を示す図。FIG. 5 is a diagram illustrating a hardware configuration example of a relay station apparatus in the first to fourth embodiments. 従来のネットワークシステムの構成例を示す図。The figure which shows the structural example of the conventional network system. 従来の通信シーケンス例を示す図。The figure which shows the example of a conventional communication sequence.
 実施の形態1.
 図1は、本実施の形態に係る中継局装置100(以下、単に「中継局100」という)を含むネットワークシステムの構成図である。
 図1の例では、複数の局装置200(以下、単に「局200」という)と、中継局100、スイッチングハブ300が伝送路により接続されている。
 局200の内、いずれかの局が代表となりトークンの巡回を主導する(トークンマスタとなる)。
 図1の例では、局A1(200a1)と局B1(200b1)がトークンの巡回を主導するものとする。
 いずれの局がトークンマスタとなるかは予め設定していてもよいし、別途通信プロトコルを用いて選出するようにしてもよい。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a network system including relay station apparatus 100 (hereinafter simply referred to as “relay station 100”) according to the present embodiment.
In the example of FIG. 1, a plurality of station apparatuses 200 (hereinafter simply referred to as “station 200”), a relay station 100, and a switching hub 300 are connected by a transmission path.
One of the stations 200 becomes a representative to lead the token circulation (to become a token master).
In the example of FIG. 1, it is assumed that the station A1 (200a1) and the station B1 (200b1) lead the token circulation.
Which station becomes the token master may be set in advance, or may be selected using a separate communication protocol.
 局A1(200a1)、局A2(200a2)、局A3(200a3)はアプリケーションA用にグルーピングされた局である。
 また、局B1(200b1)、局B2(200b2)、局B3(200b3)が別のアプリケーションであるアプリケーションB用にグルーピングされた局である。
 なお、各局を区別する必要がないときは、単に「局」という。
 また、局A1、局A2、局A3をまとめて「グループAの局」といい、局B1、局B2、局B3をまとめて「グループBの局」という。
 局A1(200a1)、局A2(200a2)、局A3(200a3)の各局は、アプリケーションA用のデータを共有するために、グループAの他の局のデータを受信する必要がある。
 同様に、局B1(200b1)、局B2(200b2)、局B3(200b3)の各局は、アプリケーションB用のデータを共有するために、グループBの他の局のデータを受信する必要がある。
 逆に、グループAの局はグループBの局からのデータは不要であり、同様に、グループBの局はグループAの局からのデータは不要である。
Station A1 (200a1), station A2 (200a2), and station A3 (200a3) are stations grouped for application A.
Further, the station B1 (200b1), the station B2 (200b2), and the station B3 (200b3) are stations grouped for application B, which is another application.
When there is no need to distinguish between stations, they are simply referred to as “stations”.
Station A1, station A2, and station A3 are collectively referred to as “group A stations”, and station B1, station B2, and station B3 are collectively referred to as “group B stations”.
Each station of the station A1 (200a1), the station A2 (200a2), and the station A3 (200a3) needs to receive data of other stations in the group A in order to share the data for the application A.
Similarly, each station of the station B1 (200b1), the station B2 (200b2), and the station B3 (200b3) needs to receive data of other stations in the group B in order to share the data for the application B.
Conversely, group A stations do not require data from group B stations, and similarly, group B stations do not require data from group A stations.
 図1に示した通り、局A1、局A2、局B2、中継局100でドメイン1を構成する。
 本実施の形態では、トークンを巡回する順番もこの通りに予め設定されているものとする。
 また、局B1、局B3、局A3、中継局100でドメイン2を構成する。
 ドメイン2でも、同様に、トークンを巡回する順番はこの通りとする。
 各ドメインで代表となる局A1および局B2が最初にトークンを保持しており、データフレームとトークンフレームを送信する。
 なお、データフレームの構成例は図7に示す通りであり、トークンフレームの構成例は図8に示す通りである。
 図7に示すように、データフレームには、局が送信するデータ情報、例えばネットワーク共有メモリのオフセットや実際のデータ内容等が含まれる。
 図8に示すように、トークンフレームには、次にトークンを保有する局の情報、例えばMAC(Media Access Control)アドレスや局の識別子等が含まれる。
 トークンフレームを受信した局がトークンを保有することになる。
As illustrated in FIG. 1, the domain 1 is configured by the station A1, the station A2, the station B2, and the relay station 100.
In this embodiment, it is assumed that the order of circulating tokens is also set in advance.
The station B1, the station B3, the station A3, and the relay station 100 constitute a domain 2.
Similarly, in the domain 2, the order of circulating the tokens is as described above.
Stations A1 and B2, which are representative in each domain, initially hold tokens and transmit data frames and token frames.
A configuration example of the data frame is as shown in FIG. 7, and a configuration example of the token frame is as shown in FIG.
As shown in FIG. 7, the data frame includes data information transmitted by the station, such as an offset of the network shared memory and actual data contents.
As shown in FIG. 8, the token frame includes information on a station that holds the token next, for example, a MAC (Media Access Control) address, a station identifier, and the like.
The station that received the token frame will hold the token.
 次に、ネットワーク共有メモリの概念を図4に示す。
 例えば、局A1がデータフレームを送信する場合、概念としては、局A1はネットワーク共有メモリの局A1に割り当てられたアドレスに書き込むようにする。
 局A1のデータを、アプリケーション等で使用したい局、ここでは局A2と局A3は、局A1が送信したデータフレームを受信し、概念としてはネットワーク共有メモリの局A1に割当てられているアドレスからデータを読み出すようにする。
Next, the concept of the network shared memory is shown in FIG.
For example, when the station A1 transmits a data frame, as a concept, the station A1 writes to the address assigned to the station A1 in the network shared memory.
Stations that want to use the data of the station A1 in applications, etc., here the stations A2 and A3 receive the data frame transmitted by the station A1, and conceptually data from the address assigned to the station A1 of the network shared memory Is read out.
 図2は、図1で示した構成に含まれる局200の内部構成例である。
 局200は、受信処理部201、送信処理部202、トークン処理部203、メモリ管理部204、アプリケーション205、メモリ206等から構成される。
 受信処理部201は、受信したフレームの種別(データフレーム、トークンフレーム)を分類する機能を持つ。
 送信処理部202は、フレームを順番に送信する機能を持つ。
 トークン処理部203は、トークンの巡回順序を管理する機能を持つ。
 メモリ管理部204は、局200が持つ実メモリ206とネットワーク共有メモリの対応付けを行う。
 アプリケーション205は、プログラムなどで使用するデータをネットワーク共有メモリ(実メモリ206)から読み出す、自身で計算したデータをネットワーク共有メモリに書き込む、等を行う。
FIG. 2 shows an internal configuration example of the station 200 included in the configuration shown in FIG.
The station 200 includes a reception processing unit 201, a transmission processing unit 202, a token processing unit 203, a memory management unit 204, an application 205, a memory 206, and the like.
The reception processing unit 201 has a function of classifying the received frame type (data frame, token frame).
The transmission processing unit 202 has a function of transmitting frames in order.
The token processing unit 203 has a function of managing the token circulation order.
The memory management unit 204 associates the real memory 206 of the station 200 with the network shared memory.
The application 205 reads data used in a program or the like from the network shared memory (real memory 206), writes data calculated by itself into the network shared memory, and the like.
 図3は、中継局100の内部構成図である。
 中継局100は、複数のドメインに参加するため、受信処理部、送信処理部、トークン処理部を複数持つ。
 なお、本実施の形態では、中継局100を独立した局として記載しているが、例えば局A2が図3の構成をもち、中継局100として動作してもよい。
FIG. 3 is an internal configuration diagram of the relay station 100.
The relay station 100 has a plurality of reception processing units, transmission processing units, and token processing units in order to participate in a plurality of domains.
In the present embodiment, relay station 100 is described as an independent station. However, for example, station A2 may have the configuration of FIG. 3 and operate as relay station 100.
 ドメイン1側受信処理部101は、ドメイン1に含まれる局200からのフレームを受信し、受信したフレームの種別(データフレーム、トークンフレーム)を分類する。
 ドメイン1側受信処理部101は、第1の受信部の例に相当する。
 また、ドメイン1側受信処理部101が受信するデータフレームは第1の通信データの例に相当する。
The domain 1 side reception processing unit 101 receives a frame from the station 200 included in the domain 1 and classifies the type of the received frame (data frame or token frame).
The domain 1 side reception processing unit 101 corresponds to an example of a first reception unit.
The data frame received by the domain 1 side reception processing unit 101 corresponds to an example of first communication data.
 ドメイン2側受信処理部104は、ドメイン2に含まれる局200からのフレームを受信し、受信したフレームの種別(データフレーム、トークンフレーム)を分類する。
 ドメイン2側受信処理部104は、第2の受信部の例に相当する。
 また、ドメイン2側受信処理部104が受信するデータフレームは第2の通信データの例に相当する。
The domain 2 side reception processing unit 104 receives a frame from the station 200 included in the domain 2 and classifies the type of the received frame (data frame or token frame).
The domain 2 side reception processing unit 104 corresponds to an example of a second reception unit.
The data frame received by the domain 2 side reception processing unit 104 corresponds to an example of second communication data.
 ドメイン1側トークン処理部103は、ドメイン1側受信処理部101がドメイン1内に含まれる局200からトークンフレームを受信した際に、ドメイン1内の局200へのデータフレームの送信タイミング(第1の送信タイミング)の到来を検知し、後述のドメイン1側送信処理部102にドメイン1内の局200へのデータフレームの送信を指示する。
 ドメイン1側トークン処理部103は、第1のタイミング検知部の例に相当する。
When the domain 1 side reception processing unit 101 receives a token frame from the station 200 included in the domain 1, the domain 1 side token processing unit 103 transmits the data frame transmission timing to the station 200 in the domain 1 (first Is sent to the domain 1 side transmission processing unit 102, which will be described later, to instruct the transmission of the data frame to the station 200 in the domain 1.
The domain 1 side token processing unit 103 corresponds to an example of a first timing detection unit.
 ドメイン2側トークン処理部106は、ドメイン2側受信処理部104がドメイン2内に含まれる局200からトークンフレームを受信した際に、ドメイン2内の局200へのデータフレームの送信タイミング(第2の送信タイミング)の到来を検知し、後述のドメイン2側送信処理部105にドメイン2内の局200へのデータフレームの送信を指示する。
 ドメイン2側トークン処理部106は、第2のタイミング検知部の例に相当する。
The domain 2 side token processing unit 106, when the domain 2 side reception processing unit 104 receives a token frame from the station 200 included in the domain 2, transmits a data frame transmission timing (second time) to the station 200 in the domain 2 Is sent to the domain 2 side transmission processing unit 105, which will be described later, to instruct the transmission of the data frame to the station 200 in the domain 2.
The domain 2 side token processing unit 106 corresponds to an example of a second timing detection unit.
 ドメイン1側送信処理部102は、ドメイン1に含まれる局200にフレームを送信する。
 より具体的には、ドメイン1側送信処理部102は、ドメイン1側トークン処理部103からの指示があった際に、ドメイン1側トークン処理部103が送信タイミングを検知する前にドメイン2側受信処理部104がドメイン2内の局200から受信したデータを、ドメイン1内の局200に送信する。
 ドメイン1側送信処理部102は、ドメイン2内のグループAの局から受信したデータは、ドメイン1内のグループAの局に送信し、ドメイン2内のグループBの局から受信したデータは、ドメイン1内のグループBの局に送信する。
 ドメイン1内の局へのデータの送信後に、ドメイン1側送信処理部102は、トークンフレームをドメイン1内の局A1に送信する。
 ドメイン1側送信処理部102は、第1の送信部の例に相当する。
The domain 1 side transmission processing unit 102 transmits a frame to the station 200 included in the domain 1.
More specifically, when receiving an instruction from the domain 1 side token processing unit 103, the domain 1 side transmission processing unit 102 receives the domain 2 side reception before the domain 1 side token processing unit 103 detects the transmission timing. The processing unit 104 transmits the data received from the station 200 in the domain 2 to the station 200 in the domain 1.
The domain 1 side transmission processing unit 102 transmits the data received from the group A station in the domain 2 to the group A station in the domain 1, and the data received from the group B station in the domain 2 1 to group B stations in 1.
After transmitting the data to the stations in the domain 1, the domain 1 side transmission processing unit 102 transmits the token frame to the station A1 in the domain 1.
The domain 1 side transmission processing unit 102 corresponds to an example of a first transmission unit.
 ドメイン2側送信処理部105は、ドメイン2に含まれる局200にフレームを送信する。
 より具体的には、ドメイン2側送信処理部105は、ドメイン2側トークン処理部106からの指示があった際に、ドメイン2側トークン処理部106が送信タイミングを検知する前にドメイン1側受信処理部101がドメイン1内の局200から受信したデータを、ドメイン2内の局200に送信する。
 ドメイン2側送信処理部105は、ドメイン1側受信処理部101がドメイン1内のグループAの局から受信したデータは、ドメイン2内のグループAの局に送信し、ドメイン1側受信処理部101がドメイン1内のグループBの局から受信したデータは、ドメイン2内のグループBの局に送信する。
 ドメイン2内の局へのデータの送信後に、ドメイン2側送信処理部105は、トークンフレームをドメイン2内の局B1に送信する。
 ドメイン2側送信処理部105は、第2の送信部の例に相当する。
The domain 2 side transmission processing unit 105 transmits a frame to the station 200 included in the domain 2.
More specifically, when receiving an instruction from the domain 2 side token processing unit 106, the domain 2 side transmission processing unit 105 receives the domain 1 side reception before the domain 2 side token processing unit 106 detects the transmission timing. The processing unit 101 transmits data received from the station 200 in the domain 1 to the station 200 in the domain 2.
The domain 2 side transmission processing unit 105 transmits the data received by the domain 1 side reception processing unit 101 from the group A station in the domain 1 to the group A station in the domain 2, and the domain 1 side reception processing unit 101 The data received from the group B station in the domain 1 is transmitted to the group B station in the domain 2.
After data transmission to a station in domain 2, domain 2 side transmission processing section 105 transmits a token frame to station B1 in domain 2.
The domain 2 side transmission processing unit 105 corresponds to an example of a second transmission unit.
 メモリ管理部107は図2のメモリ管理部204と同様であり、アプリケーション108は図2のアプリケーション205と同様であり、メモリ109は図2のメモリ206と同様である。
 なお、中継局100では、アプリケーション108は省略してもよい。
The memory management unit 107 is the same as the memory management unit 204 in FIG. 2, the application 108 is the same as the application 205 in FIG. 2, and the memory 109 is the same as the memory 206 in FIG.
In the relay station 100, the application 108 may be omitted.
 本実施の形態に係る通信シーケンスを、図5を用いて説明する。
 図5では、実線の矢印がデータフレームを表し、破線の矢印がトークンフレームを表し、黒丸がトークンを表す。
A communication sequence according to the present embodiment will be described with reference to FIG.
In FIG. 5, a solid arrow represents a data frame, a dashed arrow represents a token frame, and a black circle represents a token.
 まず、ドメイン1における通信シーケンスを説明する。
 最初に局A1がトークンを保有しており、データフレームを局A2および中継局100宛に送信する。
 その後、局A1はトークンフレームを局A2に送信し、トークンを局A2に渡す。
 次に、局A2がトークンを保有することとなり、局A2は、データフレームを局A1および中継局100宛に送信する。
 その後、局A2はトークンフレームを局B2に送信し、トークンを局B2に渡す。
 次に、局B2がトークンを保有することとなり、局B2は、データフレームを中継局100宛に送信する。
 その後、局B2はトークンフレームを中継局100に送信し、トークンを中継局100に渡す。
 最後に、中継局100がトークンを保有することとなる。
 中継局100は、ドメイン2からのデータを局A1、局A2、局B2宛に送信する。
 より具体的には、ドメイン2との通信により得られた局A3のデータを、局A1と局A2に対して送信する。
 また、局B1と局B3のデータを局B2に対して送信する。
 その後、中継局100は、トークンフレームを局A1に送信し、トークンを最初の局A1に戻す。
 以降、再度局A1がトークンを保有し、同様の処理を繰り返す。
First, a communication sequence in the domain 1 will be described.
First, the station A1 has a token and transmits a data frame to the station A2 and the relay station 100.
Thereafter, station A1 sends a token frame to station A2 and passes the token to station A2.
Next, the station A2 holds the token, and the station A2 transmits the data frame to the station A1 and the relay station 100.
Station A2 then sends a token frame to station B2 and passes the token to station B2.
Next, the station B2 holds the token, and the station B2 transmits the data frame to the relay station 100.
Thereafter, the station B2 transmits a token frame to the relay station 100, and passes the token to the relay station 100.
Finally, the relay station 100 holds a token.
The relay station 100 transmits data from the domain 2 to the stations A1, A2, and B2.
More specifically, the data of the station A3 obtained by communication with the domain 2 is transmitted to the stations A1 and A2.
Further, the data of the stations B1 and B3 are transmitted to the station B2.
Thereafter, the relay station 100 transmits a token frame to the station A1, and returns the token to the first station A1.
Thereafter, the station A1 again holds the token and repeats the same processing.
 次に、ドメイン2における通信シーケンスを説明する。
 基本動作はドメイン1の通信と同様である。
 最初に局B1がトークンを保有しており、データフレームを局B3および中継局100宛に送信する。
 その後、局B1はトークンフレームを局B3に送信し、トークンを局B3に渡す。
 次に、局B3がトークンを保有することとなり、局B3は、データフレームを局B1および中継局100宛に送信する。
 その後、局B3はトークンフレームを局A3に送信し、トークンを局A3に渡す。
 次に、局A3がトークンを保有することとなり、局A3は、データフレームを中継局100宛に送信する。
 その後、局A3は、トークンフレームを中継局100に送信し、トークンを中継局100に渡す。
 最後に、中継局100がトークンを保有することとなる。
 中継局100は、ドメイン1からのデータを局B1、局B3、局A3宛に送信する。
 より具体的には、ドメイン1との通信により得られた局B2のデータを、局B1と局B3に対して送信する。
 また、局A1と局A2のデータを局A3に対して送信する。
 その後、中継局100は、トークンフレームを局B1に送信し、トークンを最初の局B1に戻す。
 以降、再度局B1がトークンを保有し、同様の処理を繰り返す。
Next, a communication sequence in the domain 2 will be described.
The basic operation is the same as that of domain 1 communication.
First, the station B1 has a token and transmits a data frame to the station B3 and the relay station 100.
Station B1 then sends a token frame to station B3 and passes the token to station B3.
Next, the station B3 holds the token, and the station B3 transmits the data frame to the station B1 and the relay station 100.
Station B3 then sends a token frame to station A3 and passes the token to station A3.
Next, the station A3 holds the token, and the station A3 transmits the data frame to the relay station 100.
Thereafter, the station A3 transmits a token frame to the relay station 100 and passes the token to the relay station 100.
Finally, the relay station 100 holds a token.
The relay station 100 transmits data from the domain 1 to the stations B1, B3, and A3.
More specifically, the data of the station B2 obtained by communication with the domain 1 is transmitted to the stations B1 and B3.
Further, the data of the stations A1 and A2 are transmitted to the station A3.
Thereafter, the relay station 100 transmits a token frame to the station B1, and returns the token to the first station B1.
Thereafter, the station B1 again holds the token and repeats the same processing.
 図5に示す通信シーケンスにおいて、中継局100の内部では、ドメイン1側受信処理部101が局A1からのデータフレームを受信し、局A1からのデータフレームに含まれるデータ(図7に示すデータ)をメモリ管理部107に転送し、メモリ管理部107がメモリ109内の局A1に割り当てられた領域に局A1からのデータを格納する。
 局A2及び局B2からデータフレームを受信した場合も同様の手順でデータが格納される。
 また、ドメイン2側受信処理部104が局B1からのデータフレームを受信し、局B1からのデータフレームに含まれるデータ(図7に示すデータ)をメモリ管理部107に転送し、メモリ管理部107がメモリ109内の局B1に割り当てられた領域に局B1からのデータを格納する。
 局B3及び局A3からデータフレームを受信した場合も同様の手順でデータが格納される。
In the communication sequence shown in FIG. 5, in the relay station 100, the domain 1 side reception processing unit 101 receives the data frame from the station A1, and the data included in the data frame from the station A1 (data shown in FIG. 7). Is transferred to the memory management unit 107, and the memory management unit 107 stores the data from the station A1 in the area allocated to the station A1 in the memory 109.
When data frames are received from the stations A2 and B2, data is stored in the same procedure.
Further, the domain 2 side reception processing unit 104 receives the data frame from the station B1, transfers the data included in the data frame from the station B1 (data shown in FIG. 7) to the memory management unit 107, and the memory management unit 107. Stores the data from the station B1 in the area allocated to the station B1 in the memory 109.
When data frames are received from the stations B3 and A3, data is stored in the same procedure.
 そして、ドメイン1側受信処理部101が局B2からトークンフレームを受信した場合は、ドメイン1側受信処理部101はトークンフレームをドメイン1側トークン処理部103に転送し、ドメイン1側トークン処理部103がドメイン1の送信タイミングの到来を検知し、にドメイン1へのデータ送信を指示する。
 ドメイン1側トークン処理部103は、ドメイン2側受信処理部104がドメイン2から受信したデータ(局B1、B3、A3のデータ)の出力をメモリ管理部107に要求する。
 そして、ドメイン1側送信処理部102が、メモリ管理部107から該当するデータを入力し、入力したデータを含むデータフレームを生成し、ドメイン1の局200に送信する。
 ここで、ドメイン1側トークン処理部103は、局B1、B3のデータのみを含むデータフレームと局A3のデータのみを含むデータフレームの2つのデータフレームを生成するようにしてもよい。
 また、局B1、B3、A3の全てのデータを含む1つのデータフレームを生成するようにしてもよい。
 前者の場合は、局B1、B3のデータのみを含むデータフレームを局B2に送信し、局A3のデータのみを含むデータフレームを局A1と局A3に送信する。
 後者の場合は、生成した1つのフレームを局A1、A3、B2の全てに送信し、各局が不要なデータ(他のグループの局のデータ)を破棄する。
When the domain 1 side reception processing unit 101 receives a token frame from the station B2, the domain 1 side reception processing unit 101 transfers the token frame to the domain 1 side token processing unit 103, and the domain 1 side token processing unit 103 Detects the arrival of the transmission timing of domain 1, and instructs the transmission of data to domain 1.
The domain 1 side token processing unit 103 requests the memory management unit 107 to output data (data of the stations B1, B3, and A3) received from the domain 2 by the domain 2 side reception processing unit 104.
Then, the domain 1 side transmission processing unit 102 inputs the corresponding data from the memory management unit 107, generates a data frame including the input data, and transmits the data frame to the domain 1 station 200.
Here, the domain 1 side token processing unit 103 may generate two data frames including a data frame including only the data of the stations B1 and B3 and a data frame including only the data of the station A3.
One data frame including all data of the stations B1, B3, and A3 may be generated.
In the former case, a data frame including only the data of the stations B1 and B3 is transmitted to the station B2, and a data frame including only the data of the station A3 is transmitted to the stations A1 and A3.
In the latter case, the generated single frame is transmitted to all of the stations A1, A3, and B2, and each station discards unnecessary data (data of stations in other groups).
 また、ドメイン2側受信処理部104が局A3からトークンフレームを受信した場合は、ドメイン2側受信処理部104はトークンフレームをドメイン2側トークン処理部106に転送し、ドメイン2側トークン処理部106がドメイン2の送信タイミングの到来を検知し、ドメイン2側送信処理部105にドメイン2へのデータ送信を指示する。
 ドメイン2側トークン処理部106は、ドメイン1側受信処理部101がドメイン1から受信したデータ(局A1、A2、B2のデータ)の出力をメモリ管理部107に要求する。
 そして、ドメイン2側送信処理部105が、メモリ管理部107から該当するデータを入力し、入力したデータを含むデータフレームを生成し、ドメイン2の局200に送信する。
 ここで、ドメイン2側トークン処理部106は、局A1、A2のデータのみを含むデータフレームと局B2のデータのみを含むデータフレームの2つのデータフレームを生成するようにしてもよい。
 また、局A1、A2、B2の全てのデータを含む1つのデータフレームを生成するようにしてもよい。
 前者の場合は、局A1、A2のデータのみを含むデータフレームを局A3に送信し、局B2のデータのみを含むデータフレームを局B1と局B3に送信する。
 後者の場合は、生成した1つのフレームを局B1、B3、A3の全てに送信し、各局が不要なデータ(他のグループの局のデータ)を破棄する。
When the domain 2 side reception processing unit 104 receives a token frame from the station A3, the domain 2 side reception processing unit 104 transfers the token frame to the domain 2 side token processing unit 106, and the domain 2 side token processing unit 106 Detects the arrival of the transmission timing of the domain 2, and instructs the domain 2 side transmission processing unit 105 to transmit data to the domain 2.
The domain 2 side token processing unit 106 requests the memory management unit 107 to output the data received from the domain 1 by the domain 1 side reception processing unit 101 (data of the stations A1, A2, and B2).
Then, the domain 2 side transmission processing unit 105 inputs corresponding data from the memory management unit 107, generates a data frame including the input data, and transmits the data frame to the domain 2 station 200.
Here, the domain 2 side token processing unit 106 may generate two data frames including a data frame including only the data of the stations A1 and A2 and a data frame including only the data of the station B2.
One data frame including all data of the stations A1, A2, and B2 may be generated.
In the former case, a data frame including only the data of the stations A1 and A2 is transmitted to the station A3, and a data frame including only the data of the station B2 is transmitted to the stations B1 and B3.
In the latter case, one generated frame is transmitted to all of the stations B1, B3, and A3, and each station discards unnecessary data (data of stations in other groups).
 図6は、中継局100に焦点を当ててネットワーク共有メモリとのデータのやり取りの様子を示したものである。
 中継局100は、ドメイン1の局A1、局A2、局B2からデータを受信し、ドメイン2側に送信する。
 また、中継局100は、ドメイン2の局A3、局B1、局B3のデータを受信し、ドメイン1側に送信する。
 なお、本実施の形態では、中継局100はドメイン1のデータをすべてドメイン2に送信するようにしているが、実際のアプリケーションに応じて、送信するデータを選別してもよい。
 例えば、図1のネットワーク構成、図5の通信シーケンスにおいて、局A3が局A1のデータを使用しない場合、中継局100はドメイン2に局A1のデータを送信しないようにしてもよい(局A2のデータのみを送信する)。
FIG. 6 shows a state of data exchange with the network shared memory with a focus on the relay station 100.
The relay station 100 receives data from the station A1, the station A2, and the station B2 in the domain 1 and transmits them to the domain 2 side.
Further, the relay station 100 receives the data of the station A3, the station B1, and the station B3 in the domain 2 and transmits them to the domain 1 side.
In the present embodiment, relay station 100 transmits all the data of domain 1 to domain 2, but the data to be transmitted may be selected according to the actual application.
For example, when the station A3 does not use the data of the station A1 in the network configuration of FIG. 1 and the communication sequence of FIG. 5, the relay station 100 may not transmit the data of the station A1 to the domain 2 (the station A2 Send data only).
 図1に示すネットワーク構成は、図14に示すネットワーク構成において局A2と右側のスイッチングハブ300との間に中継局100を配置したものに相当する。
 図14のネットワーク構成では中継局100によってネットワークが分割されていないため、各局がトークンを得る時間間隔(通信周期)が長くなる。
The network configuration shown in FIG. 1 corresponds to the network configuration shown in FIG. 14 in which the relay station 100 is arranged between the station A2 and the right switching hub 300.
In the network configuration of FIG. 14, since the network is not divided by the relay station 100, the time interval (communication cycle) at which each station obtains a token becomes long.
 図14においても、各局は図1と同じ属性をもつ。
 つまり、局A1、局A2、局A3はアプリケーションA用の局であり、また、局B1、局B2、局B3はアプリケーションB用の局である。
 なお、図14の構成では、局A1がトークンマスタである。
Also in FIG. 14, each station has the same attributes as in FIG.
That is, the station A1, the station A2, and the station A3 are application A stations, and the station B1, the station B2, and the station B3 are application B stations.
In the configuration of FIG. 14, the station A1 is a token master.
 次に、図15を用いて、図14のネットワーク構成における通信シーケンスを説明する。
 図15に示すように、最初に局A1がトークンを保有しており、データフレームを局A2および局A3に送信する。
 その後、局A1がトークンフレームを局A2に送信し、トークンを局A2に渡す。
 次に、局A2がトークンを保有することとなり、局A2は、データフレームを局A1およびA3に送信する。その後、トークンフレームを送信し、トークンを局B2に渡す。
 次に、局B2がトークンを保有することとなり、局B2が、データフレームを局B1及び局B3に送信する。
 以降、同様の手順でデータフレームとトークンフレームの送信が行われ、局A1が局B3からトークンフレームを受信した時点で、1つの伝送サイクルが終了する。
 このように、グループAの局はグループBの局のデータの受信が不要であり、グループBの局はグループAの局のデータの受信が不要であるにもかかわらず、局A1、A2、B2、A3、B1、B3の順に全ての局にトークンを巡回させないと1つ伝送サイクルが終了しない。
 このため、各局がトークンを得る時間間隔(図15の左に示す矢印の長さに相当)が長くなる。
Next, a communication sequence in the network configuration of FIG. 14 will be described with reference to FIG.
As shown in FIG. 15, first, the station A1 has a token and transmits data frames to the stations A2 and A3.
Thereafter, the station A1 transmits a token frame to the station A2, and passes the token to the station A2.
Next, the station A2 will hold the token, and the station A2 transmits data frames to the stations A1 and A3. Thereafter, a token frame is transmitted, and the token is passed to the station B2.
Next, the station B2 will hold the token, and the station B2 transmits the data frame to the stations B1 and B3.
Thereafter, the data frame and the token frame are transmitted in the same procedure, and one transmission cycle is completed when the station A1 receives the token frame from the station B3.
Thus, the stations in group A do not need to receive data from the stations in group B, and the stations in group B do not need to receive data from the stations in group A, but stations A1, A2, B2 , A 3, B 1, B 3 in order of tokens to all stations, one transmission cycle is not completed.
For this reason, the time interval (corresponding to the length of the arrow shown on the left in FIG. 15) at which each station obtains a token becomes longer.
 これに対し、図14に示すネットワーク構成に中継局100を接続し、ネットワークをドメイン1とドメイン2に分割することで、各局がトークンを得る時間間隔を短縮することができる。
 つまり、本実施の形態では、中継局100により分割されたドメイン1とドメイン2でそれぞれトークンを巡回させてドメイン内でデータ交換を行い、中継局100はドメイン間のデータ交換を仲介するようにする。
 これにより、例えばドメイン1から見ると、従来は局A3、局B1、局B3にそれぞれトークンを渡して得る必要があったデータは、中継局100にトークンを渡すことによって一斉に局A3、局B1、局B3のデータを得ることができるので、通信周期を短縮することができる(図5の左に示す矢印の長さに相当)。
 このとき、中継局100は各ドメインのデータの仲介を行うため、各局は中継局100の有無によらず同様のデータを送信、受信すればよい。
On the other hand, by connecting the relay station 100 to the network configuration shown in FIG. 14 and dividing the network into the domain 1 and the domain 2, the time interval at which each station obtains a token can be shortened.
In other words, in this embodiment, tokens are circulated in domain 1 and domain 2 divided by relay station 100 to exchange data within the domain, and relay station 100 mediates data exchange between domains. .
As a result, for example, when viewed from the domain 1, data conventionally required to be obtained by passing tokens to the station A3, the station B1, and the station B3 can be obtained all at once by passing the tokens to the relay station 100. Since the data of the station B3 can be obtained, the communication cycle can be shortened (corresponding to the length of the arrow shown on the left in FIG. 5).
At this time, since the relay station 100 mediates data of each domain, each station may transmit and receive similar data regardless of the presence or absence of the relay station 100.
 このように、本実施の形態では、一つの伝送路上で複数のアプリケーションを実現する際に通信周期を短縮することができる。
 また、ネットワーク構成をスター接続などにする場合でも、通信周期の短縮を、低コストで実現することができる。
Thus, in this embodiment, the communication cycle can be shortened when a plurality of applications are realized on one transmission path.
Even when the network configuration is a star connection or the like, the communication cycle can be shortened at a low cost.
 以上、本実施の形態では、ネットワークを小さい単位(ドメイン)に分割して、ドメイン毎に並行してトークンを巡回できるようにし、ドメイン間で受け渡すデータの仲介を行う機能を持つ制御装置を説明した。 As described above, in the present embodiment, a control device having a function of dividing a network into small units (domains) so that tokens can be circulated in parallel for each domain and mediating data transferred between domains is described. did.
 また、本実施の形態では、ドメイン間で受け渡すデータを取捨選択し、他ドメインにとって不要なデータは送信しないように制御する制御装置を説明した。 Further, in the present embodiment, the control device that controls to select data to be transferred between domains and not to transmit data unnecessary for other domains has been described.
 なお、本実施の形態では、ドメイン1とドメイン2の2つのドメインの間で中継局100がデータを中継する例を説明したが、3つ以上のドメインの間でデータを中継するようにしてもよい。
 この場合は、図3の構成に加えて、3つ目以降のドメインに対応する受信処理部、送信処理部、トークン処理部を設ける。
 例えば、ドメイン1~3の間でデータを中継する中継局100であれば、ドメイン3側受信処理部、ドメイン3側送信処理部、ドメイン3側トークン処理部を追加する。
 この場合は、ドメイン1に着目すると、ドメイン1側受信処理部101が第1の受信部の例となり、ドメイン1側送信処理部102が第1の送信部の例となり、ドメイン1側トークン処理部103が第1のタイミング検知部の例となる。
 そして、ドメイン2側受信処理部104とドメイン3側受信処理部が第2の受信部の例となり、ドメイン2側送信処理部105とドメイン3側送信処理部が第2の送信部の例となり、ドメイン2側トークン処理部106とドメイン3側トークン処理部が第2のタイミング検知部の例となる。
 また、ドメイン2に着目すると、ドメイン2側受信処理部104が第1の受信部の例となり、ドメイン2側送信処理部105が第1の送信部の例となり、ドメイン2側トークン処理部106が第1のタイミング検知部の例となる。
 そして、ドメイン1側受信処理部101とドメイン3側受信処理部が第2の受信部の例となり、ドメイン1側送信処理部102とドメイン3側送信処理部が第2の送信部の例となり、ドメイン1側トークン処理部103とドメイン3側トークン処理部が第2のタイミング検知部の例となる。
 ドメイン3についても、同様である。
In this embodiment, an example in which relay station 100 relays data between two domains, domain 1 and domain 2, has been described. However, data may be relayed between three or more domains. Good.
In this case, in addition to the configuration of FIG. 3, a reception processing unit, a transmission processing unit, and a token processing unit corresponding to the third and subsequent domains are provided.
For example, if the relay station 100 relays data between the domains 1 to 3, a domain 3 side reception processing unit, a domain 3 side transmission processing unit, and a domain 3 side token processing unit are added.
In this case, focusing on domain 1, the domain 1 side reception processing unit 101 is an example of the first reception unit, the domain 1 side transmission processing unit 102 is an example of the first transmission unit, and the domain 1 side token processing unit 103 is an example of the first timing detection unit.
The domain 2 side reception processing unit 104 and the domain 3 side reception processing unit are examples of the second reception unit, the domain 2 side transmission processing unit 105 and the domain 3 side transmission processing unit are examples of the second transmission unit, The domain 2 side token processing unit 106 and the domain 3 side token processing unit are examples of the second timing detection unit.
Focusing on domain 2, the domain 2 side reception processing unit 104 is an example of the first reception unit, the domain 2 side transmission processing unit 105 is an example of the first transmission unit, and the domain 2 side token processing unit 106 is This is an example of the first timing detection unit.
The domain 1 side reception processing unit 101 and the domain 3 side reception processing unit are examples of the second reception unit, the domain 1 side transmission processing unit 102 and the domain 3 side transmission processing unit are examples of the second transmission unit, The domain 1 side token processing unit 103 and the domain 3 side token processing unit are examples of the second timing detection unit.
The same applies to domain 3.
 実施の形態2.
 図9は、本実施の形態におけるテスト環境のネットワーク構成例である。
 本実施の形態では、特定のアプリケーション毎にドメインが分割、独立して存在している。
 例えば、アプリケーションの設計者が異なるなどして、各ドメインを別々に構築し、テスト後にドメイン間を接続する場合がある。
 図9における中継局100は、テストの対象となるドメインに対して、他のドメインの通信内容を模擬することにより、実際には他のドメインが接続されていなくても、ドメイン毎にテストを実施することが可能になる。
 つまり、ドメイン1に接続された中継局100aは、ドメイン1のテストの際に、ドメイン1が通信先とするネットワーク(実際には存在していないドメイン2)との間で通信が行われているかのようにエミュレートする。
 具体的には、中継局100aは、ドメイン1の局がドメイン2の局からのデータと認識するデータを生成し、ドメイン1の局に送信する。
 また、中継局100aは、ドメイン1の局から受信したデータをドメイン2の局に送信しているかのように振る舞う。
 同様に、ドメイン2に接続された中継局100bは、ドメイン2のテストの際に、ドメイン2が通信先とするネットワーク(実際には存在していないドメイン1)との間で通信が行われているかのようにエミュレートする。
 なお、ドメイン1とドメイン2は、テスト対象ネットワークに相当する。
Embodiment 2. FIG.
FIG. 9 is a network configuration example of the test environment in the present embodiment.
In this embodiment, domains are divided and exist independently for each specific application.
For example, there are cases in which each domain is constructed separately and the domains are connected after testing due to different application designers.
The relay station 100 in FIG. 9 performs tests for each domain even if the other domains are not actually connected by simulating the communication contents of the other domains for the domain to be tested. It becomes possible to do.
That is, whether the relay station 100a connected to the domain 1 is communicating with the network (the domain 2 that does not actually exist) that the domain 1 is a communication destination in the domain 1 test. Emulate like this.
Specifically, the relay station 100a generates data that the domain 1 station recognizes as data from the domain 2 station, and transmits the data to the domain 1 station.
Further, the relay station 100a behaves as if it has transmitted data received from a domain 1 station to a domain 2 station.
Similarly, the relay station 100b connected to the domain 2 communicates with the network (the domain 1 that does not actually exist) that the domain 2 is a communication destination in the domain 2 test. Emulate as if.
Domain 1 and domain 2 correspond to the test target network.
 図10は本実施の形態における実際のネットワーク構成例である。
 図9を参照して説明したように、中継局100aがドメイン2を疑似したドメイン1のテストと、中継局100bがドメイン1を疑似したドメイン2のテストとによって、実際のネットワーク構成である図10のネットワークの立ち上げ時の障害を少なくでき、納期短縮等、コストを削減することができる。
FIG. 10 shows an actual network configuration example in the present embodiment.
As described with reference to FIG. 9, the relay station 100a is an actual network configuration based on the domain 1 test that simulates the domain 2 and the relay station 100b that tests the domain 2 that simulates the domain 1. It is possible to reduce troubles at the time of starting up the network and reduce costs such as shortening the delivery time.
 本実施の形態では、
 実際には接続されていないシステムを模擬し、予め実際のシステムを想定したテストを可能とする制御装置を説明した。
In this embodiment,
A control device that simulates a system that is not actually connected and enables a test that assumes the actual system in advance has been described.
 実施の形態3.
 図11は本実施の形態におけるネットワーク構成例である。
 先に述べたとおり、ドメインを分割する機能は局の内部機能として設けてもよい。
 また、中継機能を持った局間を接続することにより、ドメインの分割を細分化(多重のドメインを構成)することができる。
 分割したドメイン1~3が並行してトークンを巡回させることにより、単に中継局を設けて2分割するよりも高速化を図ることができる。
Embodiment 3 FIG.
FIG. 11 shows a network configuration example in this embodiment.
As described above, the function of dividing the domain may be provided as an internal function of the station.
Also, by connecting stations having a relay function, domain division can be subdivided (multiple domains can be configured).
By dividing the tokens in the divided domains 1 to 3 in parallel, it is possible to achieve a higher speed than simply providing a relay station and dividing the token into two.
 以下、動作概要を説明する。
 本実施の形態では、局A1は、アプリケーションに応じて局B1~B2、局C1~C3のデータを受信し、ドメイン1に送信する。
 また、局A1は、局A1~A3のデータを局B1、局C1に送信する。
 同様にして、局B1は、アプリケーションに応じて局A1~A3、局C1~C3のデータを受信して、ドメイン2に送信する。
 また、局B1は、局B1~B2のデータを局A1、局C1に送信する。
 局C1も同様にして通信する。
 なお、アプリケーションに応じて、中継局は他中継局、またはドメインに送信するデータ内容を制限することにより、通信時間をさらに短縮することができる。
Hereinafter, an outline of the operation will be described.
In the present embodiment, the station A1 receives the data of the stations B1 to B2 and the stations C1 to C3 according to the application and transmits them to the domain 1.
The station A1 transmits the data of the stations A1 to A3 to the station B1 and the station C1.
Similarly, the station B1 receives the data of the stations A1 to A3 and the stations C1 to C3 according to the application and transmits them to the domain 2.
Further, the station B1 transmits the data of the stations B1 and B2 to the station A1 and the station C1.
The station C1 communicates in the same manner.
Depending on the application, the relay station can further reduce the communication time by limiting the data content transmitted to other relay stations or domains.
 本実施の形態では、制御装置を複数設け、制御装置間を接続し、ドメインを多重に構成する通信システムを説明した。 In the present embodiment, a communication system has been described in which a plurality of control devices are provided, the control devices are connected, and the domains are configured in a multiplexed manner.
 実施の形態4.
 図12は本実施の形態におけるネットワーク構成例である。
 中継局100の位置よっては、ドメイン分割による通信周期の短縮の効果が小さい、あるいは逆にドメインを分割することにより通信周期が大きくなる場合がある。
 本実施の形態では、ネットワークを代表する局、例えば局A1が各局のリンク接続状態情報などを収集し、ネットワーク構成が予め分かるようにする。
 ドメイン分割の効果が小さい、あるいはドメイン分割の効果が無いことが判明した場合、中継局100に対して単にフレームの中継のみ行い、実施の形態1で示した動作を行わないように設定する。
 この場合は、中継局100は、トークンフレームの受信いかんにかからず、つまり、送信タイミングの到来とは無関係に、ドメイン1の局からのデータフレームをドメイン2の局に送信し、ドメイン2の局からのデータフレームをドメイン1の局に送信する。
Embodiment 4 FIG.
FIG. 12 shows a network configuration example in this embodiment.
Depending on the position of the relay station 100, the effect of shortening the communication cycle by domain division may be small, or conversely, the communication cycle may be increased by dividing the domain.
In the present embodiment, a station that represents the network, for example, the station A1, collects link connection status information of each station and makes the network configuration known in advance.
When it is found that the domain division effect is small or there is no domain division effect, the relay station 100 is simply relayed to the frame, and the operation described in the first embodiment is not performed.
In this case, the relay station 100 transmits the data frame from the domain 1 station to the domain 2 station regardless of the arrival of the transmission timing, regardless of the reception of the token frame. The data frame from the station is transmitted to the station in domain 1.
 これにより、ドメイン分割により通信周期が大きくなる場合の影響を抑えることができる。
 なお、本実施の形態では局A1がドメイン分割の効果を判定したが、中継局自身がドメイン分割の効果を判定するようにしてもよい。
 ドメイン分割の効果の判定は、データフレーム、トークンフレームのサイズと伝送路の帯域幅、トークン処理時間から、ドメイン分割前後の通信時間を算出、比較することで行うなどの方法がある。
Thereby, the influence when a communication period becomes large by domain division | segmentation can be suppressed.
In this embodiment, the station A1 determines the effect of domain division, but the relay station itself may determine the effect of domain division.
The effect of domain division is determined by calculating and comparing the communication time before and after domain division from the data frame, token frame size, transmission path bandwidth, and token processing time.
 以上、本実施の形態の形態では、
 ネットワークをドメイン分割する際、予め収集したネットワーク構成情報からドメイン分割の是非を判定し、請求項1および3記載の制御装置に対してドメイン分割の是非を通知する制御装置を説明した。
As described above, in the present embodiment,
The control device has been described that determines whether or not to divide a domain from network configuration information collected in advance and notifies the control device according to claims 1 and 3 of whether or not to divide the domain.
 最後に、実施の形態1~4に示した中継局100のハードウェア構成例を図13を参照して説明する。
 中継局100はコンピュータであり、中継局100の各要素はプログラムにより処理を実行することができる。
 また、プログラムを記憶媒体に記憶させ、記憶媒体からプログラムをコンピュータに読み取られるようにすることができる。
 中継局100のハードウェア構成としては、バスに、演算装置901、外部記憶装置902、主記憶装置903、通信装置904、入出力装置905が接続されている。
Finally, a hardware configuration example of relay station 100 shown in Embodiments 1 to 4 will be described with reference to FIG.
The relay station 100 is a computer, and each element of the relay station 100 can execute processing by a program.
Further, the program can be stored in a storage medium so that the program can be read from the storage medium by a computer.
As a hardware configuration of the relay station 100, an arithmetic device 901, an external storage device 902, a main storage device 903, a communication device 904, and an input / output device 905 are connected to the bus.
 演算装置901は、プログラムを実行するCPU(Central Processing Unit)である。
 外部記憶装置902は、例えばROM(Read Only Memory)やフラッシュメモリ、ハードディスク装置である。
 主記憶装置903は、RAM(Random Access Memory)であり、メモリ109に相当する。
 通信装置904は、ドメイン1側受信処理部101、ドメイン1側送信処理部102、ドメイン2側受信処理部104及びドメイン2側送信処理部105の物理層に対応する。
 入出力装置905は、例えばタッチパネル式のディスプレイ装置である。
The arithmetic device 901 is a CPU (Central Processing Unit) that executes a program.
The external storage device 902 is, for example, a ROM (Read Only Memory), a flash memory, or a hard disk device.
The main storage device 903 is a RAM (Random Access Memory) and corresponds to the memory 109.
The communication device 904 corresponds to the physical layer of the domain 1 side reception processing unit 101, the domain 1 side transmission processing unit 102, the domain 2 side reception processing unit 104, and the domain 2 side transmission processing unit 105.
The input / output device 905 is, for example, a touch panel display device.
 プログラムは、通常は外部記憶装置402に記憶されており、主記憶装置403にロードされた状態で、順次演算装置901に読み込まれ、実行される。
 プログラムは、図1に示す「~部」として説明している機能を実現するプログラムである。
 更に、外部記憶装置902にはオペレーティングシステム(OS)も記憶されており、OSの少なくとも一部が主記憶装置903にロードされ、演算装置901はOSを実行しながら、図1に示す「~部」の機能を実現するプログラムを実行する。
 また、アプリケーション108も外部記憶装置402に記憶されており、主記憶装置403にロードされた状態で、順次演算装置901により実行される。
 また、実施の形態1~4の説明において、「~の判断」、「~の判定」、「~の抽出」、「~の検知」、「~の設定」、「~の登録」、「~の選択」、「~の生成」、「~の入力」、「~の出力」等として説明している処理の結果を示す情報やデータや信号値や変数値が主記憶装置903にファイルとして記憶されている。
 また、各局から受信したデータが主記憶装置903に記憶される。
 また、暗号鍵・復号鍵や乱数値やパラメータが、主記憶装置903にファイルとして記憶されてもよい。
The program is normally stored in the external storage device 402, and is sequentially read into the arithmetic device 901 and executed while being loaded in the main storage device 403.
The program is a program that realizes the function described as “unit” shown in FIG.
Further, an operating system (OS) is also stored in the external storage device 902. At least a part of the OS is loaded into the main storage device 903, and the arithmetic device 901 executes “OS” shown in FIG. ”Is executed.
The application 108 is also stored in the external storage device 402 and is sequentially executed by the arithmetic device 901 while being loaded in the main storage device 403.
In the description of the first to fourth embodiments, “determining”, “determining”, “extracting”, “detecting”, “setting of”, “registering”, “ Information, data, signal values, and variable values indicating the results of the processing described as “selection”, “generation of”, “input of”, “output of”, and the like are stored as files in the main storage device 903. Has been.
In addition, data received from each station is stored in the main storage device 903.
Further, the encryption key / decryption key, random number value, and parameter may be stored in the main storage device 903 as a file.
 なお、図13の構成は、あくまでも中継局100のハードウェア構成の一例を示すものであり、中継局100のハードウェア構成は図13に記載の構成に限らず、他の構成であってもよい。
 また、実施の形態1~4に示した局200も、図13のハードウェア構成をしていてもよいし、他のハードウェア構成であってもよい。
Note that the configuration of FIG. 13 is merely an example of the hardware configuration of relay station 100, and the hardware configuration of relay station 100 is not limited to the configuration illustrated in FIG. 13 and may be other configurations. .
Further, the station 200 shown in the first to fourth embodiments may have the hardware configuration shown in FIG. 13 or may have another hardware configuration.
 また、実施の形態1~4に示す手順により、本発明に係る中継方法を実現可能である。 Further, the relay method according to the present invention can be realized by the procedure shown in the first to fourth embodiments.
 また、実施の形態1~4では、トークンパッシングが行われるネットワークを対象にして説明を進めたが、各局の送信機会が周期的に到来し、送信機会が到来した局がデータを送信するネットワークであれば、他の種類のネットワークでも実施の形態1~4に示した中継局100の機能は適用可能である。 In the first to fourth embodiments, the description has been made with respect to a network in which token passing is performed. However, a transmission opportunity of each station periodically arrives, and a station in which a transmission opportunity arrives transmits data. If so, the functions of relay station 100 shown in the first to fourth embodiments can be applied to other types of networks.
 100 中継局、101 ドメイン1側受信処理部、102 ドメイン1側送信処理部、103 ドメイン1側トークン処理部、104 ドメイン2側受信処理部、105 ドメイン2側送信処理部、106 ドメイン2側トークン処理部、107 メモリ管理部、108 アプリケーション、109 メモリ、200 局、201 受信処理部、202 送信処理部、203 トークン処理部、204 メモリ管理部、205 アプリケーション、206 メモリ、300 スイッチングハブ。 100 relay station, 101 domain 1 side reception processing unit, 102 domain 1 side transmission processing unit, 103 domain 1 side token processing unit, 104 domain 2 side reception processing unit, 105 domain 2 side transmission processing unit, 106 domain 2 side token processing Part, 107 memory management part, 108 application, 109 memory, 200 stations, 201 reception processing part, 202 transmission processing part, 203 token processing part, 204 memory management part, 205 application, 206 memory, 300 switching hub.

Claims (12)

  1.  第1の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第1の通信データとして受信する第1の受信部と、
     第2の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第2の通信データとして受信する第2の受信部と、
     所定の周期で到来する第1の送信タイミングの到来を検知する第1のタイミング検知部と、
     所定の周期で到来する第2の送信タイミングの到来を検知する第2のタイミング検知部と、
     前記第1のタイミング検知部により前記第1の送信タイミングの到来が検知された際に、前記第1の送信タイミングの到来の検知前に前記第2の受信部により受信された複数の第2の通信データのうち前記第2の通信ネットワーク内の特定の局装置から送信された第2の通信データを、前記第1の通信ネットワーク内の特定の局装置に送信する第1の送信部と、
     前記第2のタイミング検知部により前記第2の送信タイミングの到来が検知された際に、前記第2の送信タイミングの到来の検知前に前記第1の受信部により受信された複数の第1の通信データのうち前記第1の通信ネットワーク内の特定の局装置から送信された第1の通信データを、前記第2の通信ネットワーク内の特定の局装置に送信する第2の送信部とを有することを特徴とする中継局装置。
    A first receiving unit that receives a plurality of communication data transmitted from a plurality of station devices included in the first communication network as a plurality of first communication data;
    A second receiving unit that receives a plurality of communication data transmitted from a plurality of station devices included in the second communication network as a plurality of second communication data;
    A first timing detector that detects arrival of a first transmission timing that arrives at a predetermined period;
    A second timing detector for detecting arrival of a second transmission timing that arrives at a predetermined period;
    When the arrival of the first transmission timing is detected by the first timing detection unit, a plurality of second received by the second reception unit before the arrival of the first transmission timing is detected. A first transmission unit for transmitting second communication data transmitted from a specific station device in the second communication network to a specific station device in the first communication network;
    When the arrival of the second transmission timing is detected by the second timing detection unit, a plurality of first received by the first reception unit before the arrival of the second transmission timing is detected. A second transmission unit configured to transmit, to the specific station device in the second communication network, the first communication data transmitted from the specific station device in the first communication network among the communication data. A relay station apparatus characterized by that.
  2.  前記第1の送信部は、
     前記第1のタイミング検知部により前記第1の送信タイミングの到来が検知された際に、前記第1の送信タイミングの到来の検知前に前記第2の受信部により受信された複数の第2の通信データのうち前記第2の通信ネットワーク内の特定のグループに属する局装置から送信された第2の通信データを、前記第1の通信ネットワーク内の前記特定のグループに属する局装置に送信し、
     前記第2の送信部は、
     前記第2のタイミング検知部により前記第2の送信タイミングの到来が検知された際に、前記第2の送信タイミングの到来の検知前に前記第1の受信部により受信された複数の第1の通信データのうち前記第1の通信ネットワーク内の前記特定のグループに属する局装置から送信された第1の通信データを、前記第2の通信ネットワーク内の前記特定のグループに属する局装置に送信することを特徴とする請求項1に記載の中継局装置。
    The first transmitter is
    When the arrival of the first transmission timing is detected by the first timing detection unit, a plurality of second received by the second reception unit before the arrival of the first transmission timing is detected. Transmitting the second communication data transmitted from the station device belonging to a specific group in the second communication network among the communication data to the station device belonging to the specific group in the first communication network;
    The second transmitter is
    When the arrival of the second transmission timing is detected by the second timing detection unit, a plurality of first received by the first reception unit before the arrival of the second transmission timing is detected. Of the communication data, the first communication data transmitted from the station device belonging to the specific group in the first communication network is transmitted to the station device belonging to the specific group in the second communication network. The relay station apparatus according to claim 1.
  3.  前記第1の送信部は、
     前記第2の通信ネットワーク内の前記特定のグループに属する2以上の局装置のうちの特定の局装置から送信された第2の通信データを、前記第1の通信ネットワーク内の前記特定のグループに属する特定の局装置に送信することを特徴とする請求項2に記載の中継局装置。
    The first transmitter is
    Second communication data transmitted from a specific station device among two or more station devices belonging to the specific group in the second communication network is transmitted to the specific group in the first communication network. The relay station apparatus according to claim 2, wherein the relay station apparatus transmits to a specific station apparatus to which the station belongs.
  4.  前記第2の送信部は、
     前記第1の通信ネットワーク内の前記特定のグループに属する2以上の局装置のうちの特定の局装置から送信された第1の通信データを、前記第2の通信ネットワーク内の前記特定のグループに属する特定の局装置に送信することを特徴とする請求項2又は3に記載の中継局装置。
    The second transmitter is
    First communication data transmitted from a specific station device among two or more station devices belonging to the specific group in the first communication network is transmitted to the specific group in the second communication network. The relay station apparatus according to claim 2 or 3, wherein the relay station apparatus transmits to a specific station apparatus to which the station belongs.
  5.  前記第1の受信部は、
     データの送信機会が各局装置に所定の周期ごとに到来し、送信機会が到来した局装置によりデータの送信が行われる第1のネットワークに含まれる各局装置から第1のデータを受信し、
     前記第2の受信部は、
     データの送信機会が各局装置に所定の周期ごとに到来し、送信機会が到来した局装置によりデータの送信が行われる第2のネットワークに含まれる各局装置から第2のデータを受信することを特徴とする請求項1~4のいずれかに記載の中継局装置。
    The first receiving unit includes:
    A data transmission opportunity arrives at each station device at a predetermined cycle, and the first data is received from each station device included in the first network in which data transmission is performed by the station device at which the transmission opportunity has arrived,
    The second receiver is
    A data transmission opportunity arrives at each station device every predetermined period, and the second data is received from each station device included in the second network in which data transmission is performed by the station device at which the transmission opportunity has arrived. The relay station apparatus according to any one of claims 1 to 4.
  6.  前記中継局装置は、
     トークンパッシングが行われる第1の通信ネットワークと、前記第1の通信ネットワークのトークンパッシングと並行してトークンパッシングが行われる第2の通信ネットワークとの間で通信データを中継しており、
     前記第1の受信部は、
     前記第1の通信ネットワークで巡回しているトークンを、所定の周期で、前記第1の通信ネットワーク内のいずれかの局装置から受信し、
     前記第1のタイミング検知部は、
     前記第1の受信部によりトークンが受信された際に、前記第1の送信タイミングが到来したと判断し、
     前記第2の受信部は、
     前記第2の通信ネットワークで巡回しているトークンを、所定の周期で、前記第2の通信ネットワーク内のいずれかの局装置から受信し、
     前記第2のタイミング検知部は、
     前記第2の受信部によりトークンが受信された際に、前記第2の送信タイミングが到来したと判断することを特徴とする請求項1~5のいずれかに記載の中継局装置。
    The relay station device
    Relaying communication data between a first communication network where token passing is performed and a second communication network where token passing is performed in parallel with token passing of the first communication network;
    The first receiving unit includes:
    Receiving a token circulating in the first communication network at a predetermined cycle from any station device in the first communication network;
    The first timing detector is
    When the token is received by the first receiver, it is determined that the first transmission timing has arrived,
    The second receiver is
    Receiving a token circulating in the second communication network at a predetermined cycle from any station device in the second communication network;
    The second timing detector is
    6. The relay station apparatus according to claim 1, wherein when the token is received by the second receiving unit, it is determined that the second transmission timing has arrived.
  7.  前記中継局装置は、
     複数の局装置が含まれるトークンパッシングネットワークを分割して得られた、第1の通信ネットワークと、第2の通信ネットワークとの間で通信データを中継することを特徴とする請求項6に記載の中継局装置。
    The relay station device
    The communication data is relayed between the first communication network and the second communication network obtained by dividing a token passing network including a plurality of station devices. Relay station device.
  8.  前記中継局装置は、
     前記第1の通信ネットワークに含まれる局装置及び前記第2の通信ネットワークに含まれる局装置のいずれかであることを特徴とする請求項1に記載の中継局装置。
    The relay station device
    The relay station apparatus according to claim 1, wherein the relay station apparatus is one of a station apparatus included in the first communication network and a station apparatus included in the second communication network.
  9.  前記中継局装置は、
     テストの対象となるテスト対象ネットワークと接続された際に、
     前記テスト対象ネットワークと、前記テスト対象ネットワークが通信先とするネットワークとの間で通信が行われているようにエミュレートすることを特徴とする請求項1に記載の中継局装置。
    The relay station device
    When connected to the network under test,
    The relay station apparatus according to claim 1, wherein the relay station apparatus emulates such that communication is performed between the test target network and a network that is the communication target of the test target network.
  10.  前記第1の送信部は、
     所定の場合に、前記第1の送信タイミングと無関係に、前記第2の受信部により受信されたいずれかの第2の通信データを、前記第1の通信ネットワーク内のいずれかの局装置に送信し、
     前記第2の送信部は、
     所定の場合に、前記第2の送信タイミングと無関係に、前記第1の受信部により受信されたいずれかの第1の通信データを、前記第2の通信ネットワーク内のいずれかの局装置に送信することを特徴とする請求項1に記載の中継局装置。
    The first transmitter is
    In a predetermined case, regardless of the first transmission timing, any second communication data received by the second receiving unit is transmitted to any station apparatus in the first communication network. And
    The second transmitter is
    In a predetermined case, regardless of the second transmission timing, any first communication data received by the first reception unit is transmitted to any station apparatus in the second communication network. The relay station apparatus according to claim 1, wherein:
  11.  中継局装置が、
     第1の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第1の通信データとして受信し、
     第2の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第2の通信データとして受信し、
     所定の周期で到来する第1の送信タイミングの到来を検知し、
     所定の周期で到来する第2の送信タイミングの到来を検知し、
     前記第1の送信タイミングの到来が検知された際に、前記第1の送信タイミングの到来の検知前に受信された複数の第2の通信データのうち前記第2の通信ネットワーク内の特定の局装置から送信された第2の通信データを、前記第1の通信ネットワーク内の特定の局装置に送信し、
     前記第2の送信タイミングの到来が検知された際に、前記第2の送信タイミングの到来の検知前に受信された複数の第1の通信データのうち前記第1の通信ネットワーク内の特定の局装置から送信された第1の通信データを、前記第2の通信ネットワーク内の特定の局装置に送信することを特徴とする中継方法。
    The relay station device
    Receiving a plurality of communication data transmitted from a plurality of station devices included in the first communication network as a plurality of first communication data;
    Receiving a plurality of communication data transmitted from a plurality of station devices included in the second communication network as a plurality of second communication data;
    Detecting the arrival of the first transmission timing arriving at a predetermined period;
    Detecting the arrival of the second transmission timing arriving at a predetermined period;
    When the arrival of the first transmission timing is detected, a specific station in the second communication network among the plurality of second communication data received before the detection of the arrival of the first transmission timing Transmitting the second communication data transmitted from the device to a specific station device in the first communication network;
    When the arrival of the second transmission timing is detected, a specific station in the first communication network among the plurality of first communication data received before detection of the arrival of the second transmission timing A relay method comprising: transmitting first communication data transmitted from a device to a specific station device in the second communication network.
  12.  第1の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第1の通信データとして受信する第1の受信処理と、
     第2の通信ネットワークに含まれる複数の局装置から送信された複数の通信データを、複数の第2の通信データとして受信する第2の受信処理と、
     所定の周期で到来する第1の送信タイミングの到来を検知する第1のタイミング検知処理と、
     所定の周期で到来する第2の送信タイミングの到来を検知する第2のタイミング検知処理と、
     前記第1のタイミング検知処理により前記第1の送信タイミングの到来が検知された際に、前記第1の送信タイミングの到来の検知前に前記第2の受信処理により受信された複数の第2の通信データのうち前記第2の通信ネットワーク内の特定の局装置から送信された第2の通信データを、前記第1の通信ネットワーク内の特定の局装置に送信する第1の送信処理と、
     前記第2のタイミング検知処理により前記第2の送信タイミングの到来が検知された際に、前記第2の送信タイミングの到来の検知前に前記第1の受信処理により受信された複数の第1の通信データのうち前記第1の通信ネットワーク内の特定の局装置から送信された第1の通信データを、前記第2の通信ネットワーク内の特定の局装置に送信する第2の送信処理とをコンピュータに実行させることを特徴とするプログラム。
    A first reception process for receiving a plurality of communication data transmitted from a plurality of station devices included in the first communication network as a plurality of first communication data;
    A second reception process for receiving a plurality of communication data transmitted from a plurality of station devices included in the second communication network as a plurality of second communication data;
    A first timing detection process for detecting arrival of a first transmission timing that arrives at a predetermined period;
    A second timing detection process for detecting the arrival of the second transmission timing that arrives at a predetermined period;
    When the arrival of the first transmission timing is detected by the first timing detection process, a plurality of second received by the second reception process before the detection of the arrival of the first transmission timing is detected. A first transmission process for transmitting, out of communication data, second communication data transmitted from a specific station device in the second communication network to a specific station device in the first communication network;
    When the arrival of the second transmission timing is detected by the second timing detection process, a plurality of first received by the first reception process before the arrival of the second transmission timing is detected. A second transmission process for transmitting the first communication data transmitted from the specific station device in the first communication network to the specific station device in the second communication network of the communication data; A program characterized by being executed.
PCT/JP2012/054693 2012-02-27 2012-02-27 Relay station device and relay method and program WO2013128534A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/054693 WO2013128534A1 (en) 2012-02-27 2012-02-27 Relay station device and relay method and program
JP2014501845A JP5686925B2 (en) 2012-02-27 2012-02-27 Relay station apparatus, relay method, and program
TW101114483A TW201336267A (en) 2012-02-27 2012-04-24 Relay station apparatus and relay method and computer readable recording media recorded with program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054693 WO2013128534A1 (en) 2012-02-27 2012-02-27 Relay station device and relay method and program

Publications (1)

Publication Number Publication Date
WO2013128534A1 true WO2013128534A1 (en) 2013-09-06

Family

ID=49081795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054693 WO2013128534A1 (en) 2012-02-27 2012-02-27 Relay station device and relay method and program

Country Status (3)

Country Link
JP (1) JP5686925B2 (en)
TW (1) TW201336267A (en)
WO (1) WO2013128534A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283556A (en) * 2002-03-26 2003-10-03 Hitachi Ltd Data communication repeater and system
JP2003338828A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Station facility control system
JP2009525697A (en) * 2006-02-01 2009-07-09 ジーイー・アビエイション・システムズ・エルエルシー System and method for enabling a bus limited to a linear topology to be extended to other topologies

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730576A (en) * 1993-07-14 1995-01-31 Hitachi Ltd Transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283556A (en) * 2002-03-26 2003-10-03 Hitachi Ltd Data communication repeater and system
JP2003338828A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Station facility control system
JP2009525697A (en) * 2006-02-01 2009-07-09 ジーイー・アビエイション・システムズ・エルエルシー System and method for enabling a bus limited to a linear topology to be extended to other topologies

Also Published As

Publication number Publication date
TW201336267A (en) 2013-09-01
JPWO2013128534A1 (en) 2015-07-30
JP5686925B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
US10484206B2 (en) Path detection method in VxLAN, controller, and network device
JP7417825B2 (en) slice-based routing
EP3586494B1 (en) Load balancing in distributed computing systems
CN103548327B (en) The method of the dynamic port mirror image unrelated for offer position on distributed virtual switch
KR101790315B1 (en) Distributed load balancer
JP4995310B2 (en) Destination packet detection apparatus and detection method
US20200195553A1 (en) System and method for measuring performance of virtual network functions
Maglione-Mathey et al. Scalable deadlock-free deterministic minimal-path routing engine for infiniband-based dragonfly networks
US10523464B2 (en) Multi-homed access
CN105610710A (en) Methods and apparatus for standard protocol validation mechanisms deployed over switch fabric system
CN104823409A (en) Network virtualization over infiniband
WO2021098271A1 (en) Method for issuing oam configuration information and control node
Lin et al. DTE-SDN: A dynamic traffic engineering engine for delay-sensitive transfer
JP2018191279A (en) Method for test traffic generation and inspection, and associated switch input port or output port and switch
CN107872368B (en) Method and device for detecting accessibility of gateway in network node cluster and terminal
JP2012050091A (en) Traffic generator with dynamic mpls label assignment
CN105743816B (en) A kind of link aggregation method and device
US10257080B1 (en) Hardware resource allocation for equal-cost multi-path groups
US9985864B2 (en) High precision packet generation in software using a hardware time stamp counter
CN105763463B (en) Method and device for transmitting link detection message
WO2016177180A1 (en) Method and device for reporting openflow switch capability
Escudero-Sahuquillo et al. Feasible enhancements to congestion control in InfiniBand-based networks
TW201519598A (en) Process system for constructing network structure deployment diagram and the method thereof and computer program product storing network structure deployment analysis program are provided to analyze the network structure deployment of target network
JP5686925B2 (en) Relay station apparatus, relay method, and program
WO2022222479A1 (en) Network detection method and apparatus, and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869777

Country of ref document: EP

Kind code of ref document: A1