WO2013125356A1 - テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子 - Google Patents

テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子 Download PDF

Info

Publication number
WO2013125356A1
WO2013125356A1 PCT/JP2013/052814 JP2013052814W WO2013125356A1 WO 2013125356 A1 WO2013125356 A1 WO 2013125356A1 JP 2013052814 W JP2013052814 W JP 2013052814W WO 2013125356 A1 WO2013125356 A1 WO 2013125356A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
ring
liquid crystal
phenylene
carbons
Prior art date
Application number
PCT/JP2013/052814
Other languages
English (en)
French (fr)
Inventor
田中 裕之
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to CN201380021138.3A priority Critical patent/CN104245646B/zh
Priority to JP2014500643A priority patent/JP6098632B2/ja
Priority to US14/379,752 priority patent/US9347003B2/en
Publication of WO2013125356A1 publication Critical patent/WO2013125356A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/22Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/192Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3048Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3059Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/18Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
    • C09K2019/181Ph-C≡C-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3019Cy-Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3021Cy-Ph-Ph-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • C09K2019/3042Cy-Cy-C2H4-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3048Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon double bonds
    • C09K2019/305Cy-CH=CH-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3048Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon double bonds
    • C09K2019/3054Cy-Cy-CH=CH-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3077Cy-Cy-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/308Cy-Cy-COO-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3083Cy-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Definitions

  • the present invention relates to a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element. More specifically, the present invention relates to a liquid crystal compound having tetrafluoropropenyl, a composition containing this compound and having a nematic phase, and a liquid crystal display device using the composition.
  • Liquid crystal display elements are widely used for displays such as personal computers and televisions. This element utilizes the optical anisotropy and dielectric anisotropy of a liquid crystalline compound.
  • PC phase change
  • TN twisted nematic
  • STN super twisted nematic
  • BTN bistable twisted nematic
  • ECB electrically controlled birefringence
  • OCB opticallycompensated
  • bend mode an IPS (in-plane switching) mode
  • VA vertical alignment
  • PSA polymer sustained alignment
  • liquid crystal composition having appropriate physical properties is used.
  • the liquid crystal compound contained in the composition has physical properties shown in the following (1) to (8).
  • (1) High stability against heat, light, etc. (2) high clearing point, (3) Lower minimum temperature of the liquid crystal phase, (4) small viscosity ( ⁇ ), (5) Appropriate optical anisotropy ( ⁇ n), (6) Large dielectric anisotropy ( ⁇ ), (7) Appropriate elastic constant (K), (8) Excellent compatibility with other liquid crystal compounds.
  • a compound having high stability against heat, light, etc. increases the voltage holding ratio of the device. This increases the lifetime of the device.
  • a compound having a high clearing point as in (2) widens the usable temperature range of the device.
  • a compound having a lower minimum temperature of the liquid crystal phase such as a nematic phase or a smectic phase, particularly a lower minimum temperature of the nematic phase also extends the usable temperature range of the device.
  • a compound having a small viscosity shortens the response time of the device.
  • a compound having an appropriate optical anisotropy improves the contrast of the device.
  • a compound having a large optical anisotropy or a small optical anisotropy that is, an appropriate optical anisotropy is required.
  • a compound having a large optical anisotropy is suitable.
  • a compound having a large dielectric anisotropy as in (6) lowers the threshold voltage of the device. This reduces the power consumption of the element.
  • a compound having a large elastic constant shortens the response time of the device.
  • a compound having a small elastic constant lowers the threshold voltage of the device. Therefore, an appropriate elastic constant is required according to the characteristics to be improved.
  • a compound having excellent compatibility with other liquid crystal compounds as in (8) can be easily mixed with liquid crystal compounds having different physical properties to adjust the physical properties of the composition.
  • Patent Document 1 and Non-Patent Document 1 describe a compound (S-1) having trifluoropropenyl. However, since this compound does not have a sufficiently large dielectric anisotropy, it seems that a liquid crystal composition containing this compound cannot satisfy the threshold voltage required by a commercially available device.
  • Patent Document 2 discloses a compound (S-2) having pentafluoropropenyl. However, this compound does not have a sufficiently large dielectric anisotropy.
  • Patent Document 3 discloses compounds (S-3) and (S-4) having pentafluoropropenyl and difluoroethyleneoxy.
  • this compound also has a dielectric anisotropy that is not sufficiently large, and the high stability to heat, light, etc. of (1) is insufficient.
  • the first object of the present invention is high stability to heat, light, etc., high clearing point, low minimum temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, large dielectric anisotropy, suitable elasticity It is a liquid crystal compound having a constant and excellent compatibility with other liquid crystal compounds. This object is a compound having a particularly large dielectric anisotropy.
  • the second purpose is to contain this compound and to have a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, and a suitable elastic constant.
  • a liquid crystal composition. This purpose is a liquid crystal composition excellent in balance with these characteristics.
  • a third object is a liquid crystal display device containing this composition and having a wide temperature range in which the device can be used, a short response time, a large voltage holding ratio, a large contrast ratio, and a long lifetime.
  • the present invention relates to a compound represented by the formula (1), a liquid crystal composition containing the compound, and a liquid crystal display device using the composition.
  • R 1 is alkyl having 1 to 15 carbon atoms, in which at least one —CH 2 — may be replaced by —O— or —S—, and at least one — (CH 2 ) 2 — May be replaced with —CH ⁇ CH— and at least one hydrogen may be replaced with a halogen;
  • Ring A 1 , Ring A 2 , Ring A 3 , Ring A 4 , and Ring B 1 are each independently 1,4-cyclohexylene, 1,4-phenylene, 1, wherein at least one hydrogen is replaced by halogen 4-phenylene, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl;
  • Z 1 , Z 2 , Z 3 , and Z 4 are independently a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—,
  • the liquid crystalline compound of the present invention has high stability to heat, light, etc., high clearing point, low minimum temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, large dielectric anisotropy, appropriate elastic constant. And excellent compatibility with other liquid crystal compounds.
  • This compound has a particularly large dielectric anisotropy.
  • the liquid crystal composition of the present invention contains this compound and has a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, and a suitable elasticity. Have a constant. This composition is excellent in these properties with a good balance.
  • the liquid crystal display element of the present invention contains this composition and has a wide temperature range in which the element can be used, a short response time, a large voltage holding ratio, a large contrast ratio, and a long lifetime.
  • the liquid crystal compound is a general term for a compound having a liquid crystal phase such as a nematic phase or a smectic phase, and a compound having no liquid crystal phase but useful as a component of a liquid crystal composition.
  • a liquid crystal compound, a liquid crystal composition, and a liquid crystal display element may be abbreviated as a compound, a composition, and an element, respectively.
  • a liquid crystal display element is a general term for a liquid crystal display panel and a liquid crystal display module.
  • the clearing point is a liquid crystal phase-isotropic phase transition temperature in the liquid crystal compound.
  • the lower limit temperature of the liquid crystal phase is the transition temperature of the solid-liquid crystal phase (smectic phase, nematic phase, etc.) in the liquid crystal compound.
  • the upper limit temperature of the nematic phase is a transition temperature between the nematic phase and the isotropic phase in the liquid crystal composition, and may be abbreviated as the upper limit temperature.
  • the lower limit temperature of the nematic phase may be abbreviated as the lower limit temperature.
  • the compound represented by formula (1) may be abbreviated as compound (1). This abbreviation may also apply to compounds represented by formula (2) and the like.
  • symbols such as A 1 , B 1 , and C 1 surrounded by hexagons correspond to the rings A 1 , B 1 , and C 1 , respectively.
  • the amount of the compound expressed as a percentage is a weight percentage (% by weight) based on the total weight of the composition.
  • Multiple R 1 are used in different formulas. In these compounds, two groups represented by two arbitrary R 1 may be the same or different. This rule also applies to symbols such as rings A 1 and Z 1 .
  • the expression “at least one“ A ”may be replaced by“ B ”” means that when “A” is one, the position of “A” is arbitrary, and the number of “A” is two or more. This also means that these positions can be selected without limitation.
  • the expression “at least one A may be replaced by B, C or D” means that any A is replaced by B, any A is replaced by C, and any A is D When replaced, it means that a plurality of A are further replaced by at least two of B, C, and D.
  • alkyl in which at least one —CH 2 — may be replaced by —O— or —CH ⁇ CH— Alkyl, alkenyl, alkoxy, alkoxyalkyl, alkoxyalkenyl, alkenyloxyalkyl are included. Note that it is not preferable that two consecutive —CH 2 — are replaced by —O— to form —O—O—. In alkyl and the like, it is not preferable that —CH 2 — in the methyl moiety (—CH 2 —H) is replaced by —O— to become —O—H.
  • the present invention includes the following contents.
  • R 1 is alkyl having 1 to 15 carbon atoms, in which at least one —CH 2 — may be replaced by —O— or —S—, and at least one — (CH 2 ) 2 — May be replaced with —CH ⁇ CH— and at least one hydrogen may be replaced with a halogen;
  • Ring A 1 , Ring A 2 , Ring A 3 , Ring A 4 , and Ring B 1 are each independently 1,4-cyclohexylene, 1,4-phenylene, 1, wherein at least one hydrogen is replaced by halogen 4-phenylene, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl;
  • Z 1 , Z 2 , Z 3 , and Z 4 are independently a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—,
  • the ring B 1 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by halogen
  • the ring B 1 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by halogen
  • R 1 is alkyl having 1 to 15 carbons, alkenyl having 2 to 15 carbons, alkoxy having 1 to 14 carbons, or 2 to 14 carbons.
  • Z 1 , Z 2 , Z 3 , and Z 4 are each independently a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —COO—, —OCO—, —CF
  • R 1 is alkyl having 1 to 15 carbons or alkenyl having 2 to 15 carbons; Z 1 , Z 2 , Z 3 , and Z 4
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons; ring A 1 , ring A 2 , ring A 3 , And ring A 4 is independently 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, 1,3-dioxane-2,5-diyl, Or tetrahydropyran-2,5-diyl and ring B 1 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by halogen;
  • the compound according to item [1], wherein 1 , Z 2 , Z 3 , and Z 4 are each independently a single bond, — (CH 2 ) 2 —, or —CH ⁇ CH—.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons
  • Ring A 1 , Ring A 2 , and Ring A 3 are independently 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, 1,3-phenylene, Dioxane-2,5-diyl or tetrahydropyran-2,5-diyl
  • Ring B 1 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by halogen
  • Z 1 , Z 2 , and Z 3 are each independently a single bond, — (CH 2 ) 2 —, or —CH ⁇ CH—.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons;
  • L 1 , L 2 , L 3 , and L 4 are hydrogen or Fluorine.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons; L 1 is hydrogen or fluorine.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons;
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L 7 are independently Hydrogen or fluorine.
  • R 1 is alkyl having 1 to 10 carbons; L 1 , L 2 , and L 3 are independently hydrogen or fluorine.
  • a liquid crystal composition comprising at least one compound according to any one of items [1] to [10].
  • R 2 is independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one hydrogen may be replaced by fluorine, and at least one —CH 2 — is May be replaced by -O-;
  • X 1 is fluorine, chlorine, —OCF 3 , —OCHF 2 , —CF 3 , —CHF 2 , —CH 2 F, —CF ⁇ F 2 , —OCF 2 CHF 2 , or —OCF 2 CHFCF 3 ;
  • Ring C 1 , Ring C 2 , and Ring C 3 are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,6-difluoro-1,4- Phenylene, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, or pyrimidine-2,
  • R 3 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in alkyl and alkenyl, at least one hydrogen may be replaced by fluorine, and at least one —CH 2 — is —O May be replaced by-;
  • X 2 is —C ⁇ N or —C ⁇ C—C ⁇ N;
  • Ring D 1 , Ring D 2 , and Ring D 3 are independently 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, 1,3-dioxane-2, 5-diyl, tetrahydropyran-2,5-diyl, or pyrimidine-2,5-diyl;
  • Z 7 represents a single bond, - (CH 2) 2 - , - C ⁇ C -, - COO -, - CF 2 O -, - OCF 2 -, or -CH 2 O-;
  • L 10 and L 11 are independently
  • R 4 and R 5 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one hydrogen may be replaced by fluorine, and at least one — CH 2 — may be replaced by —O—;
  • Ring E 1 , Ring E 2 , Ring E 3 , and Ring E 4 are each independently 1,4-cyclohexylene, 1,4-cyclohexenylene, wherein at least one hydrogen may be replaced by fluorine, 4-phenylene, tetrahydropyran-2,5-diyl, or decahydronaphthalene-2,6-diyl;
  • Z 8, Z 9, Z 10 , and Z 11 are independently a single bond, - (CH 2) 2 - , - COO -, - CH 2 O -, - OCF 2 -, or -OCF 2 (CH 2 2 ) is;
  • L 12 and L 13 are independently fluorine or chlorine
  • R 6 and R 7 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and alkenyl, at least one —CH 2 — may be replaced by —O—.
  • Ring F 1 , Ring F 2 , and Ring F 3 are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,5-difluoro-1,4- Phenylene, or pyrimidine-2,5-diyl
  • Z 12 and Z 13 are each independently a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, or —COO—.
  • liquid crystal composition according to item [14] further comprising at least one compound selected from the group of compounds represented by formulas (12) to (14) according to item [15].
  • liquid crystal composition according to any one of items [11] to [19], further containing at least one optically active compound and / or polymerizable compound.
  • liquid crystal composition according to any one of items [11] to [20], further comprising at least one antioxidant and / or ultraviolet absorber.
  • a liquid crystal display device comprising the liquid crystal composition according to any one of items [11] to [21].
  • the compound, liquid crystal composition, and liquid crystal display element of the present invention will be described in order. 1-1.
  • Compound of the Present Invention Preferred examples of the compound (1) and compound (1) of the present invention will be described.
  • Preferred examples of the terminal group, ring structure, bonding group, and substituent in compound (1) also apply to the sub-formula of compound (1).
  • R 1 is alkyl having 1 to 15 carbons, and in this alkyl, at least one —CH 2 — may be replaced by —O— or —S—, and at least one — (CH 2 ) 2 — may be replaced by —CH ⁇ CH—, and in these groups, at least one hydrogen may be replaced by halogen.
  • R 1 examples of such R 1 are alkyl, alkoxy, alkoxyalkyl, alkoxyalkoxy, alkylthio, alkylthioalkoxy, alkenyl, alkenyloxy, alkenyloxyalkyl, alkoxyalkenyl, and alkenylthio.
  • straight chain is preferable to branch. Even when R 1 is a branched group, it is preferable when it is optically active.
  • —CH ⁇ CH— in alkenyl depends on the position of the double bond. —CH ⁇ CHCH 3 , —CH ⁇ CHC 2 H 5 , —CH ⁇ CHC 3 H 7 , —CH ⁇ CHC 4 H 9 , —C 2 H 4 CH ⁇ CHCH 3 , and —C 2 H 4 CH ⁇ CHC 2
  • the trans configuration is preferable.
  • -CH 2 CH CHCH 3
  • An alkenyl compound having a preferred configuration has a high clearing point or a wide temperature range of a liquid crystal phase.
  • Mol. Cryst. Liq. Cryst., 1985, 131, 109 and Mol. Cryst. Liq. Cryst., 1985, 131, 327 have detailed descriptions.
  • alkyl examples include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17 , -C 9 H 19 , -C 10 H 21 , -C 11 H 23 , -C 12 H 25 , -C 13 H 27 , -C 14 H 29 , and -C 15 H 31 .
  • alkoxy examples include —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 , —OC 5 H 11 , —OC 6 H 13 and —OC 7 H 15 , —OC 8 H 17 , —OC 9 H 19 , —OC 10 H 21 , —OC 11 H 23 , —OC 12 H 25 , —OC 13 H 27 , and —OC 14 H 29 .
  • alkoxyalkyl examples include —CH 2 OCH 3 , —CH 2 OC 2 H 5 , —CH 2 OC 3 H 7 , — (CH 2 ) 2 —OCH 3 , — (CH 2 ) 2 —OC 2 H 5 , — (CH 2 ) 2 —OC 3 H 7 , — (CH 2 ) 3 —OCH 3 , — (CH 2 ) 4 —OCH 3 , and — (CH 2 ) 5 —OCH 3 .
  • alkenyl examples include —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH 2 CH ⁇ CH 2 , —CH ⁇ CHC 2 H 5 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2 —CH ⁇ CH 2 , —CH ⁇ CHC 3 H 7 , —CH 2 CH ⁇ CHC 2 H 5 , — (CH 2 ) 2 —CH ⁇ CHCH 3 , and — (CH 2 ) 3 —CH ⁇ CH 2 .
  • alkenyloxy examples are —OCH 2 CH ⁇ CH 2 , —OCH 2 CH ⁇ CHCH 3 , and —OCH 2 CH ⁇ CHC 2 H 5 .
  • alkyl in which at least one hydrogen is replaced by halogen examples include —CH 2 F, —CHF 2 , —CF 3 , — (CH 2 ) 2 —F, —CF 2 CH 2 F, —CF 2 CHF 2 , —CH 2 CF 3 , —CF 2 CF 3 , — (CH 2 ) 3 —F, — (CF 2 ) 3 —F, —CF 2 CHFCF 3 , —CHFCF 2 CF 3 , — (CH 2 ) 4 —F , — (CF 2 ) 4 —F, — (CH 2 ) 5 —F, — (CF 2 ) 5 —F, —CH 2 Cl, —CHCl 2 , —CCl 3 , — (CH 2 ) 2 —Cl, -CCl 2 CH 2 Cl, -CCl 2 CHCl 2 , -CH 2 CCl 3 , -CCl 2 CCl 3 ,-(
  • alkoxy in which at least one hydrogen is replaced by halogen examples include —OCH 2 F, —OCHF 2 , —OCF 3 , —O— (CH 2 ) 2 —F, —OCF 2 CH 2 F, —OCF 2 CHF 2 , —OCH 2 CF 3 , —O— (CH 2 ) 3 —F, —O— (CF 2 ) 3 —F, —OCF 2 CHFCF 3 , —OCHFCF 2 CF 3 , —O (CH 2 ) 4 — F, —O— (CF 2 ) 4 —F, —O— (CH 2 ) 5 —F, —O— (CF 2 ) 5 —F, —OCH 2 Cl, —OCHCl 2 , —OCCl 3 , —O — (CH 2 ) 2 —Cl, —OCCl 2 CHCl 2 , —OCH 2 CC
  • R 1 is preferably alkyl having 1 to 15 carbons, alkenyl having 2 to 15 carbons, alkoxy having 1 to 14 carbons, alkenyloxy having 2 to 14 carbons, more preferably alkyl having 1 to 15 carbons, Alkenyl having 2 to 15 carbon atoms is more preferable, and alkyl having 1 to 10 carbon atoms and alkenyl having 2 to 10 carbon atoms are particularly preferable.
  • R 1 More preferred examples of R 1 include —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 , —C 5 H 11 , —C 6 H 13 , —C 7 H 15 , —C 8 H 17 , —C 9 H 19 , —C 10 H 21 , —CH ⁇ CH 2 , —CH ⁇ CHCH 3 , —CH 2 CH ⁇ CH 2 , —CH ⁇ CHC 2 H 5 , —CH 2 CH ⁇ CHCH 3 , — (CH 2 ) 2 —CH ⁇ CH 2 , —CH ⁇ CHC 3 H 7 , —CH 2 CH ⁇ CHC 2 H 5 , — (CH 2 ) 2 —CH ⁇ CHCH 3 , and — (CH 2 ) 3 —CH ⁇ CH 2 .
  • ring A 1 , ring A 2 , ring A 3 , ring A 4 , and ring B 1 are independently 1,4-cyclohexylene, 1,4-phenylene, and at least one hydrogen is halogen 1,4-phenylene, 1,3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl.
  • Preferred examples of ring A 1 , ring A 2 , ring A 3 , and ring A 4 are 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, 1,3-dioxane-2,5-diyl and tetrahydropyran-2,5-diyl.
  • Preferred examples of 1,4-phenylene in which at least one hydrogen is replaced by halogen are groups (15-1) to (15-18).
  • 2-Fluoro-1,4-phenylene is not symmetrical. There are cases where the lateral fluorine is located on the left end group side (leftward; 15-1) and where it is located on the right end group side (rightward; 15-2). Preferred 2-fluoro-1,4-phenylene is rightward (15-2). 2,6-Difluoro-1,4-phenylene (15-4 and 15-6) is also not symmetrical. Preferred 2,6-difluoro-1,4-phenylene is rightward (15-4). Also in other groups, when it is not symmetrical, the right direction is preferable.
  • 1,4-phenylene in which at least one hydrogen is replaced by halogen are 2-fluoro-1,4-phenylene and 2,6-difluoro-1,4-phenylene.
  • 1,3-Dioxane-2,5-diyl is not symmetrical. There are cases where -O- is located on the left end group side (leftward; 15-19) and cases where it is located on the right end group side (rightward; 15-20). Preferred 1,3-dioxane-2,5-diyl is rightward (15-20). Tetrahydropyran-2,5-diyl (15-21 and 15-22) is also not symmetric. Preferred tetrahydropyran-2,5-diyl is rightward (15-22). Pyrimidine-2,5-diyl and pyridine-2,5-diyl are also preferred to the right (15-24 and 15-26). That is, rightward direction means that O or N is on the tetrafluoropropenyl side.
  • ring A 1 , ring A 2 , ring A 3 , and ring A 4 are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,6-difluoro. 1,4-phenylene, 1,3-dioxane-2,5-diyl, and tetrahydropyran-2,5-diyl.
  • Preferred examples of ring B 1 are 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene substituted with halogen.
  • Examples of 1,4-phenylene substituted with halogen are the same as those of the ring A 1 , the ring A 2 , the ring A 3 , and the ring A 4 .
  • Z 1 , Z 2 , Z 3 , and Z 4 are independently a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —C ⁇ C—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 O—, —OCH 2 —, or —CF ⁇ CF—.
  • Z 1 , Z 2 , Z 3 , and Z 4 are a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —COO—, and —CF 2 O—. More preferred examples of Z 1 , Z 2 , Z 3 , and Z 4 are a single bond, — (CH 2 ) 2 —, and —CH ⁇ CH—. When all of Z 1 , Z 2 , Z 3 and Z 4 are single bonds, or a combination of a single bond and one — (CH 2 ) 2 — or one —CH ⁇ CH— is particularly preferred.
  • l, m, n, and o are independently 0 or 1, and the sum thereof is 1 or more.
  • Preferred examples of the sum of l, m, n, and o are 1, 2, and 3. More preferred examples of the sum of l, m, n, and o are 1 and 2. 1-2.
  • R 1 , ring A 1 , ring A 2 , ring A 3 , ring A 4 , ring B 1 , Z 1 , Z 2 , Z 3 , and Z 4 It is possible to arbitrarily adjust physical properties such as clearing point, optical anisotropy, dielectric anisotropy, etc., by appropriately combining the type of and the sum of l, m, n, and o. Since there is no great difference in the physical properties of the compound, the compound (1) may contain an isotope such as 2 H (deuterium) and 13 C in an amount larger than the natural abundance. The main effects of the type such as R 1 on the physical properties of the compound (1) will be described below.
  • R 1 When the left end group R 1 is linear, the temperature range of the liquid crystal phase is wide and the viscosity is small. When R 1 is a branched chain, the compatibility with other liquid crystal compounds is good. A compound in which R 1 is optically active is useful as a chiral dopant. By adding this compound to the composition, a reverse twisted domain generated in the liquid crystal display device can be prevented. A compound in which R 1 is not optically active is useful as a component of the composition.
  • R 1 is alkenyl
  • the preferred configuration depends on the position of the double bond as described above. An alkenyl compound having a preferred configuration has a high maximum temperature or a wide temperature range of the liquid crystal phase.
  • ring B 1 is 1,4-cyclohexylene
  • the stability to heat, light, etc. is high, and the viscosity is small.
  • ring B 1 is 1,4-phenylene or 1,4-phenylene in which at least one hydrogen is replaced by halogen, the clearing point is high, the optical anisotropy is large, and the dielectric anisotropy is large.
  • the linking groups Z 1 , Z 2 , Z 3 , and Z 4 are a single bond, — (CH 2 ) 2 —, —CH ⁇ CH—, —CF 2 O—, —OCF 2 —, or —CF ⁇ CF—. When it is, the viscosity is small. When the linking group is a single bond, — (CH 2 ) 2 —, or —CH ⁇ CH—, the viscosity is smaller. When the bonding group is —CH ⁇ CH—, the temperature range of the liquid crystal phase is wide and the elastic constant (K) is large. When the bonding group is —C ⁇ C—, the optical anisotropy is large. In particular, when the bonding group is —CF 2 O— or —COO—, the dielectric anisotropy is large.
  • the viscosity is small and the compatibility with other liquid crystal compounds is good.
  • the viscosity is small and the clearing point is high.
  • the viscosity is small and the clearing point is particularly high.
  • the compound (1) is useful as a component of a liquid crystal composition used in a liquid crystal display device having a mode such as PC, TN, STN, ECB, OCB, IPS, and VA. 1-3.
  • Examples of Compound (1) Preferred examples of compound (1) are compounds (1-1) to (1-3). More preferred examples are compounds (1-4) to (1-19), compounds (1-20) to (1-31), and compounds (1-32) to (1-39). Most preferred examples are compounds (1-40) to (1-47).
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons
  • ring A 1 , ring A 2 , and ring A 3 are independently 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by halogen, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2, 5-diyl
  • ring B 1 is 1,4-cyclohexylene, 1,4-phenylene, or 1,4-phenylene in which at least one hydrogen is replaced by halogen
  • Z 1 , Z 2 , and Z 3 is independently a single bond, — (CH 2 ) 2 —, or —CH ⁇ CH—.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons;
  • L 1 , L 2 , L 3 , and L 4 are hydrogen or Fluorine.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons; L 1 is hydrogen or fluorine.
  • R 1 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons;
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L 7 are hydrogen or fluorine.
  • the liquid crystalline compound of the present invention comprises tetrafluoropropenyl together with R 1 , ring A 1 , ring A 2 , ring A 3 , ring A 4 , and rings B 1 , Z 1 , Z 2 , Z 3 , and Z 4. It has high stability against heat, light, etc., high clearing point, low minimum temperature of liquid crystal phase, small viscosity, suitable optical anisotropy, large dielectric anisotropy, suitable elastic constant, etc. It has excellent balance with excellent compatibility with other liquid crystal compounds and has a particularly large dielectric anisotropy.
  • Compounds (1-4) to (1-19) are preferable from the viewpoints of high stability to heat, light, etc., high clearing point, and small viscosity.
  • Compounds (1-20) to (1-31) are preferred from the viewpoints of high clearing point and excellent compatibility.
  • Compounds (1-32) to (1-39) are preferable from the viewpoint of a high clearing point, a large optical anisotropy, and a large dielectric anisotropy.
  • R 1 is alkyl having 1 to 10 carbons; L 1 , L 2 , and L 3 are independently hydrogen or fluorine.
  • R 1 is alkyl having 1 to 10 carbons; L 1 , L 2 , and L 3 are independently hydrogen or fluorine.
  • Synthesis of Compound (1) A method for synthesizing compound (1) will be described. Compound (1) can be synthesized by appropriately combining organic synthetic chemistry methods. Methods for introducing the desired end groups, rings and linking groups into the starting materials are “Organic Syntheses” (John Wiley & Sons, Inc), “Organic Reactions” (Organic Reactions, John Wiley & Sons, Inc) , “Comprehensive Organic Synthesis, Pergamon Press” and “New Experimental Chemistry Course” (Maruzen). 1-4-1.
  • MSG 1 (or MSG 2 ) is a monovalent organic group having at least one ring.
  • the monovalent organic groups represented by a plurality of MSG 1 (or MSG 2 ) may be the same or different.
  • Compound (21) is fluorinated with hydrogen fluoride pyridine complex and NBS (N-bromosuccinimide) to synthesize compound (1C) having —CF 2 O—.
  • NBS N-bromosuccinimide
  • Compound (1C) can also be synthesized by fluorinating compound (21) with (diethylamino) sulfur trifluoride (DAST).
  • DAST diethylamino sulfur trifluoride
  • a compound having —OCF 2 — is also synthesized by this method.
  • These linking groups can also be generated by the method described in Peer. Kirsch et al., Angew. Chem. Int. Ed.
  • a bromide (28) is synthesized by combining the above. 1-4-2. Formation of ring A 1 , ring A 2 , ring A 3 , ring A 4 , and ring B 1 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro -1,4-phenylene, 2,5-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, 2,3,5,6-tetrafluoro-1,4-phenylene, 1, Starting materials are commercially available for rings such as 3-dioxane-2,5-diyl, tetrahydropyran-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, or synthetic methods Is well known.
  • MSG compounds (16) to (18) corresponding to such a ring are used.
  • Method for synthesizing compound (1) An example of a method for synthesizing compound (1) is as follows. Bromide (28) synthesized by a known method and mercaptophenyltetrazole (29) are reacted in the presence of a base such as KOH to obtain sulfide (30). This sulfide (30) is oxidized with an oxidizing agent such as MCPBA (metachloroperbenzoic acid) to obtain sulfone (31).
  • MCPBA metalachloroperbenzoic acid
  • the sulfone (31) is reacted with LDA (lithium diisopropylamide) and then with NFSI (N-fluorobenzenesulfonimide) to obtain a fluorinated sulfone (32).
  • This fluorinated sulfone (32) is reacted with trifluoroacetaldehyde (33) in the presence of KHMDS (hexamethyldisilazane potassium) to synthesize compound (1).
  • KHMDS hexamethyldisilazane potassium
  • composition (1) contains at least one compound (1) as a component.
  • the composition (1) may contain two or more compounds (1).
  • the component of the liquid crystal compound may be only the compound (1).
  • the composition (1) preferably contains at least one of the compounds (1) in the range of 1 to 99% by weight in order to develop excellent characteristics. A more desirable ratio is in the range of 5 to 60% by weight.
  • the composition (1) may contain the compound (1) and various liquid crystal compounds other than the compound (1).
  • compositions comprise a compound selected from components B, C, D and E shown below.
  • the components can be selected in consideration of the dielectric anisotropy of the compound (1).
  • a properly selected composition has a high nematic phase maximum temperature, a low nematic phase minimum temperature, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, and a suitable elastic constant.
  • Component B is compounds (2), (3) and (4).
  • Component C is compound (5).
  • Component D is compounds (6), (7), (8), (9), (10), and (11).
  • Component E is compounds (12), (13) and (14). These components will be described in order.
  • Component B is a compound having a halogen or fluorine-containing group at the right end of formulas (2) to (4). (One of the terminals is a fluorine-containing group bonded to the benzene ring)
  • Preferable examples of component B include compounds (2-1) to (2-16), compounds (3-1) to (3-112), and compounds (4-1) to (4-54). .
  • Component B has a positive dielectric anisotropy and is very excellent in stability to heat, light, etc., and is used when preparing a composition for TFT mode or PSA mode.
  • the content of component B is suitably in the range of 1 to 99% by weight, preferably 10 to 97% by weight, more preferably 40 to 95% by weight, based on the total weight of the composition.
  • the viscosity of this composition can be adjusted by further adding compounds (12), (13), and (14) (component E).
  • Component C is a compound (5) in which the right terminal group of the formula (5) is —C ⁇ N or —C ⁇ C—C ⁇ N. (One of the terminals is a cyano-containing group bonded to the benzene ring)
  • Preferable examples of component C include compounds (5-1) to (5-64).
  • Component C is mainly used when preparing a composition for STN mode, TN mode, or PSA mode because of its positive dielectric anisotropy and a large value. By adding this component C, the dielectric anisotropy of the composition can be increased.
  • Component C has the effect of expanding the temperature range of the liquid crystal phase, adjusting the viscosity, or adjusting the optical anisotropy.
  • Component C is also useful for adjusting the voltage-transmittance curve of the device.
  • the content of component C is suitably in the range of 1 to 99% by weight, preferably 10 to 97%, based on the total weight of the composition. It is in the range of wt%, more preferably in the range of 40 to 95 wt%.
  • This composition can adjust the temperature range, viscosity, optical anisotropy, dielectric anisotropy, etc. of the liquid crystal phase by adding component E.
  • Component D is compound (6), (7), (8 ), (9), (10), and (11). These compounds have a benzene ring in which the lateral position is substituted with two halogens, such as 2,3-difluoro-1,4-phenylene.
  • component D examples include compounds (6-1) to (6-6), compounds (7-1) to (7-15), compound (8-1), compounds (9-1) to (9- 3), compounds (10-1) to (10-11), and compounds (11-1) to (11-10).
  • Component D is a compound having a negative dielectric anisotropy.
  • Component D is mainly used when preparing a composition for VA mode or PSA mode. Increasing the content of component D increases the dielectric anisotropy of the composition but increases the viscosity. Therefore, as long as the required value of dielectric anisotropy is satisfied, the content is preferably small. Accordingly, considering that the absolute value of dielectric anisotropy is about 5, the content is preferably 40% by weight or more in order to drive sufficiently.
  • the compound (6) is a bicyclic compound, it mainly has the effect of adjusting the viscosity, adjusting the optical anisotropy, or adjusting the dielectric anisotropy. Since the compounds (7) and (8) are tricyclic compounds, there are effects of increasing the maximum temperature, increasing the optical anisotropy, or increasing the dielectric anisotropy. Compounds (9), (10) and (11) have the effect of increasing the dielectric anisotropy.
  • the content of component D is preferably 40% by weight or more, more preferably 50 to 95% by weight, based on the total weight of the composition. Range.
  • the elastic constant of the composition can be adjusted, and the voltage-transmittance curve of the device can be adjusted.
  • the content of component D is preferably 30% by weight or less based on the total weight of the composition.
  • Component E is a compound in which two terminal groups are alkyl or the like.
  • Preferred examples of component E include compounds (12-1) to (12-11), compounds (13-1) to (13-19), and compounds (14-1) to (14-6). it can.
  • Component E is a compound close to neutrality because the absolute value of dielectric anisotropy is small.
  • the compound (12) is mainly effective in adjusting the viscosity or adjusting the optical anisotropy.
  • Compounds (13) and (14) have the effect of expanding the temperature range of the nematic phase by increasing the maximum temperature or adjusting the optical anisotropy.
  • the content of component E decreases the viscosity of the composition but decreases the dielectric anisotropy. Therefore, as long as the required value of dielectric anisotropy is satisfied, the content is preferably large. Therefore, when preparing a composition for VA mode or PSA mode, the content of component E is preferably 30% by weight or more, more preferably 40% by weight or more, based on the total weight of the composition. is there.
  • Preparation of liquid crystal composition The composition (1) is prepared by a method of dissolving necessary components at a high temperature.
  • additives may be added to the composition. Examples of the additive include an optically active compound, a polymerizable compound, a polymerization initiator, an antioxidant, and an ultraviolet absorber. Such additives are well known to those skilled in the art and are described in the literature.
  • Composition (1) may further contain at least one optically active compound.
  • the optically active compound a known chiral dopant can be added. This chiral dopant has the effect of preventing reverse twisting by inducing the helical structure of the liquid crystal to give the necessary twist angle.
  • Preferred examples of the chiral dopant include the following optically active compounds (Op-1) to (Op-13).
  • Composition (1) adjusts the helical pitch by adding such an optically active compound.
  • the helical pitch is preferably adjusted in the range of 40 to 200 ⁇ m for the TFT mode and TN mode compositions. In the case of an STN mode composition, it is preferably adjusted to a range of 6 to 20 ⁇ m. In the case of a composition for the BTN mode, it is preferably adjusted to a range of 1.5 to 4 ⁇ m.
  • Two or more optically active compounds may be added for the purpose of adjusting the temperature dependence of the helical pitch.
  • Composition (1) can also be used for the PSA mode by adding a polymerizable compound.
  • polymerizable compounds are acrylate, methacrylate, vinyl, vinyloxy, propenyl ether, epoxy, vinyl ketone, oxetane and the like.
  • the polymerizable compound is preferably polymerized by UV irradiation or the like in the presence of a suitable initiator such as a photopolymerization initiator. Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
  • An antioxidant is effective for maintaining a large voltage holding ratio.
  • Preferred examples of the antioxidant include 2,6-di-tert-butyl-4-alkylphenol.
  • the ultraviolet absorber is effective for preventing a decrease in the maximum temperature.
  • Preferred examples of the ultraviolet absorber include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines.
  • Composition (1) can be used for GH (guest host) mode if dichroic dyes such as merocyanine, styryl, azo, azomethine, azoxy, quinophthalone, anthraquinone, and tetrazine are added. You can also
  • optically active compounds polymerizable compounds, antioxidants, ultraviolet absorbers, dyes and the like is not particularly limited.
  • the device containing this composition has a large voltage holding ratio.
  • This composition is suitable for an AM device, particularly a transmissive AM device.
  • a composition having an optical anisotropy in the range of about 0.08 to about 0.25 by controlling the proportion of the component compounds or by mixing other liquid crystal compounds, and further from about 0.10 Compositions having optical anisotropy in the range of about 0.30 may be prepared.
  • This composition can be used as a composition having a nematic phase, or can be used as an optically active composition by adding an optically active compound.
  • the preferred minimum temperature of the nematic phase of the liquid crystal composition of the invention is at least about ⁇ 20 ° C. or less, the more preferred minimum temperature of the nematic phase is about ⁇ 30 ° C. or less, and the particularly preferred minimum temperature of the nematic phase is about ⁇ It is 40 degrees C or less.
  • the preferable upper limit temperature of the nematic phase of the liquid crystal composition of the present invention is at least about 70 ° C. or more, the more preferable upper limit temperature of the nematic phase is about 80 ° C. or more, and the more preferable upper limit temperature of the nematic phase is about 90 ° C. That's it.
  • the preferred optical anisotropy of the liquid crystal composition of the present invention at 589 nm and 25 ° C. is in the range of about 0.07 to about 0.20, and the more preferred optical anisotropy is about 0.07 to about 0.16.
  • a particularly preferred optical anisotropy is in the range of about 0.08 to about 0.13.
  • a preferable dielectric anisotropy of the liquid crystal composition of the present invention at 25 ° C. is at least about 2 or more, a more preferable dielectric anisotropy is about 3 or more, and a particularly more preferable dielectric anisotropy is about 3 .5 or more. 3.
  • Liquid crystal display element Composition (1) has operation modes, such as PC mode, TN mode, STN mode, OCB mode, and PSA mode, and can be used for the liquid crystal display element driven by an active matrix (AM system).
  • the composition (1) has operation modes such as a PC mode, a TN mode, an STN mode, an OCB mode, a VA mode, and an IPS mode, and can also be used for a liquid crystal display element driven by a passive matrix (PM) method. it can.
  • AM and PM elements can be applied to any of a reflection type, a transmission type, and a transflective type.
  • the composition (1) includes an NCAP (nematic curvilinear aligned phase) element produced by encapsulating nematic liquid crystal, and a polymer dispersed liquid crystal display element (PDLCD) produced by forming a three-dimensional network polymer in the liquid crystal. It can also be used for polymer network liquid crystal display elements (PNLCD).
  • NCAP nematic curvilinear aligned phase
  • PDLCD polymer dispersed liquid crystal display element
  • the synthesized compound was identified by a method such as NMR analysis.
  • DRX-500 (Bruker Biospin Co., Ltd.) was used as the NMR analyzer .
  • the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature, 500 MHz, and 16 integrations.
  • Tetramethylsilane was used as an internal standard.
  • CFCl 3 was used as an internal standard and the number of integrations was 24.
  • s is a singlet
  • d is a doublet
  • t is a triplet
  • q is a quartet
  • quint is a quintet
  • sex is a sextet
  • m is a multiplet
  • br is broad.
  • ⁇ Extrapolated value> (100 ⁇ ⁇ Measured value of sample> ⁇ ⁇ Weight% of mother liquid crystal> ⁇ ⁇ Measured value of mother liquid crystal>) / ⁇ Weight% of compound>
  • the ratio between the compound and the mother liquid crystal is this ratio, when the crystal (or smectic phase) precipitates at 25 ° C., the ratio between the compound and the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight. %: 95% by weight, 1% by weight: 99% by weight, and the physical properties of the samples were measured at a rate at which crystals (or smectic phases) did not precipitate at 25 ° C.
  • the ratio of the compound to the mother liquid crystal is 15% by weight: 85% by weight.
  • the following mother liquid crystal (i) was used as the mother liquid crystal.
  • the ratio of the component of the mother liquid crystal (i) is indicated by weight%.
  • Phase structure A sample (compound) is placed on a hot plate (Mettler FP-52 type hot stage) of a melting point measurement apparatus equipped with a polarizing microscope, and the phase state and its change are heated while heating at a rate of 3 ° C / min. Observation with a polarizing microscope identified the type of phase.
  • the crystal was represented as C. When the types of crystals can be distinguished, they are expressed as C 1 or C 2 , respectively.
  • the smectic phase is represented as S and the nematic phase is represented as N.
  • the smectic phase when a smectic A phase, a smectic B phase, a smectic C phase, or a smectic F phase can be distinguished, they are represented as S A , S B , S C , or S F , respectively.
  • the liquid (isotropic) was designated as I.
  • the transition temperature is expressed as “C 50.0 N 100.0 I”, for example. This indicates that the transition temperature (CN) from the crystal to the nematic phase is 50.0 ° C., and the transition temperature (clearing point) from the nematic phase to the liquid is 100.0 ° C.
  • T C Minimum Temperature of a Nematic Phase
  • Viscosity (bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s) It measured using the E-type rotational viscometer.
  • Viscosity (Rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s) The measurement followed the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 ⁇ m. This TN device was applied stepwise in the range of 16V to 19.5V every 0.5V. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current and peak time of the transient current generated by this application were measured.
  • Threshold voltage (Vth; measured at 25 ° C .; V)
  • An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement.
  • the light source is a halogen lamp.
  • a sample was put in a normally white mode TN device in which the distance between two glass substrates (cell gap) was about 0.45 / ⁇ n ( ⁇ m) and the twist angle was 80 degrees.
  • the voltage (32 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 10V by 0.02V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum.
  • the threshold voltage is a voltage when the transmittance reaches 90%.
  • ⁇ material ⁇ Solmix (registered trademark) A-11 is a mixture of ethanol (85.5%), methanol (13.4%) and isopropanol (1.1%), and was obtained from Nippon Alcohol Sales Co., Ltd. Tetrahydrofuran may be abbreviated as THF.
  • N-fluorobenzenesulfonimide may be abbreviated as NFSI.
  • Step 1 Under a nitrogen atmosphere, compound (T-1) (21.0 g), mercaptophenyltetrazole (13.7 g), and TBAHS (tetrabutylammonium hydrogen sulfate) (1.18 g) were placed in a reactor, and toluene was added. (80.0 ml). A solution of potassium hydroxide (5.56 g) in water (40.0 ml) was slowly added thereto, and the mixture was stirred at 70 ° C. for 8 hours. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate. This solution was concentrated under reduced pressure to obtain compound (T-2) (27.8 g; 100%).
  • TBAHS tetrabutylammonium hydrogen sulfate
  • Step 3 Under a nitrogen atmosphere, compound (T-3) (8.49 g) was charged into a reactor, dissolved in toluene (250 ml), and cooled to -70 ° C. To this, LDA (1.12M; THF solution; 24.6 ml) was slowly added and stirred for 12 minutes. Next, NFSI (9.32 g) was added, stirred for 50 minutes, and further stirred for 50 minutes while returning to room temperature. After the reaction mixture was cooled again to ⁇ 70 ° C., trifluoroacetaldehyde (7.77 g) in THF (50.0 ml) and KHMDS (1.00 M; THF solution; 39.4 ml) were slowly added for 1 hour.
  • the mixture was stirred and further stirred for 3 hours while returning to room temperature.
  • the trifluoroacetaldehyde used in the reaction was obtained by mixing trifluoroacetaldehyde ethyl hemiacetal (14.2 g) and concentrated sulfuric acid (100 ml) and stirring at 80 ° C.
  • the reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
  • the solution was concentrated under reduced pressure and the residue was purified by silica gel chromatography (heptane). Further purification by recrystallization from Solmix (registered trademark) A-11 gave Compound (No. 1-1-1) (1.74 g; 27.5%).
  • Step 1 Under a nitrogen atmosphere, compound (T-4) (16.0 g), mercaptophenyltetrazole (8.31 g), and TBAHS (tetrabutylammonium hydrogen sulfate) (0.720 g) were placed in a reactor, and toluene was added. (80.0 ml). A solution of potassium hydroxide (3.39 g) in water (40.0 ml) was slowly added thereto, and the mixture was stirred at 70 ° C. for 8 hours. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure to obtain compound (T-5) (20.1 g; 100%).
  • TBAHS tetrabutylammonium hydrogen sulfate
  • Step 3 Under a nitrogen atmosphere, compound (T-6) (10.0 g) was charged into a reactor, dissolved in toluene (400 ml), and cooled to -70 ° C. To this, LDA (1.12M; THF solution; 24.6 ml) was slowly added and stirred for 12 minutes. Next, NFSI (9.34 g) was added, stirred for 50 minutes, and further stirred for 50 minutes while returning to room temperature. After the reaction mixture was cooled again to ⁇ 70 ° C., trifluoroacetaldehyde (7.51 g) in THF (50.0 ml) and KHMDS (1.00 M; THF solution; 39.5 ml) were slowly added for 1 hour.
  • the mixture was stirred and further stirred for 3 hours while returning to room temperature.
  • the reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
  • the solution was concentrated under reduced pressure and the residue was purified by silica gel chromatography (heptane).
  • the product was further purified by recrystallization from a mixed solvent of heptane and Solmix (registered trademark) A-11 (volume ratio, 1: 1) to obtain compound (No. 1-2-3) (2.27 g; 29. 0%) was obtained.
  • Step 2 Compound (T-9) (21.4 g; 89.9%) was obtained in the same manner as in Step 2 of Example 2, using compound (T-8) (22.4 g) as a starting material. It was.
  • Step 3 Under a nitrogen atmosphere, compound (T-9) (18.3 g) was charged into a reactor, dissolved in toluene (730 ml), and cooled to -70 ° C. To this, LDA (1.12M; THF solution; 41.7 ml) was slowly added and stirred for 12 minutes. Next, NFSI (15.8 g) was added, stirred for 50 minutes, and further stirred for 50 minutes while returning to room temperature. The reaction mixture was poured into a saturated aqueous ammonium chloride solution, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (toluene). Further purification by recrystallization from toluene gave Compound (T-10) (12.6 g; 66.6%).
  • Step 4 Under a nitrogen atmosphere, compound (T-10) (13.2 g) was placed in a reactor, and DMF (N, N-dimethylformamide) (200 ml) and DMPU (N, N′-dimethylpropyleneurea) ( 200 ml) and cooled to -70 ° C. To this, KHMDS (1.00 M; THF solution; 46.6 ml) and a solution of trifluoroacetaldehyde (13.2 g) in THF (10.0 ml) were slowly added, stirred for 1 hour, and returned to room temperature. Stir for hours. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene.
  • Step 1 Compound (T-12) (21.8 g; 99.1%) was obtained in the same manner as in Step 1 of Example 1, using compound (T-11) (17.6 g) as a raw material. It was.
  • Step 2 Compound (T-13) (16.4 g; 75.9%) was obtained in the same manner as in Step 2 of Example 2, using compound (T-12) (20.3 g) as a starting material. It was.
  • Step 3 Compound (T-14) (10.9 g; 68.6%) was obtained in the same manner as in Step 3 of Example 3, using Compound (T-13) (15.4 g) as a starting material. It was.
  • Step 4 Under a nitrogen atmosphere, compound (T-14) (9.86 g) was charged into a reactor, dissolved in THF (400 ml), and cooled to -70 ° C. A solution of trifluoroacetaldehyde (13.3 g) in THF (10.0 ml) and KHMDS (1.00 M; THF solution; 36.9 ml) were slowly added thereto, and the mixture was stirred for 1 hour and returned to room temperature for another 3 hours. Stir. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
  • Step 1 Compound (T-16) (24.1 g; 97.2%) was obtained in the same manner as in Step 1 of Example 1, using compound (T-15) (18.1 g) as a starting material. It was.
  • Step 3 Compound (T-18) (13.0 g; 76.2%) was obtained in the same manner as in Step 3 of Example 3 using Compound (T-17) (16.3 g) as a starting material. It was.
  • Step 4 Compound (T-19) (4.39 g; 49.1%) was obtained in the same manner as in Step 4 of Example 4 using compound (T-18) (13.0 g) as a starting material. It was.
  • Step 5 Under nitrogen atmosphere, compound (T-19) (4.39 g), formic acid (21.9 ml), TBAB (tetrabutylammonium bromide) (1.50 g), and toluene (45.0 ml) were added to the reactor. And stirred at room temperature for 12 hours. The reaction mixture was poured into water and neutralized with sodium bicarbonate, and then the aqueous layer was extracted with toluene. The combined organic layers were washed with water and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (toluene) to obtain compound (T-20) (2.76 g; 79.1%).
  • silica gel chromatography toluene
  • Step 6 Under a nitrogen atmosphere, compound (T-3) (1.56 g) and compound (T-20) (0.750 g) were placed in a reactor, and DME (ethylene glycol dimethyl ether) (60.0 ml) was added. Dissolved and cooled to -70 ° C. KHMDS (1.00M; THF solution; 4.01 ml) was slowly added thereto, and the mixture was stirred for 1 hour and further stirred for 1 hour while returning to room temperature. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
  • DME ethylene glycol dimethyl ether
  • Step 5 Compound (T-26) (43.1 g; 98.4%) was obtained in the same manner as in Step 1 of Example 1, using compound (T-25) (32.1 g) as a starting material. It was.
  • Step 6 Compound (T-27) (35.3 g; 75.3%) was obtained in the same manner as in Step 2 of Example 2, using compound (T-26) (43.1 g) as a starting material. It was.
  • Step 7 Compound (T-28) (34.1 g; 97.4%) was obtained in the same manner as in Step 3 of Example 3 using compound (T-27) (33.5 g) as a starting material. It was.
  • Step 8 Compound (T-29) (3.20 g; 15.0%) was obtained in the same manner as in Step 4 of Example 3 using compound (T-28) (31.0 g) as a starting material. It was.
  • Step 1 Compound (T-33) (30.3 g; 88.6%) was obtained in the same manner as in Step 1 of Example 1, using Compound (T-32) (24.2 g) as a starting material. It was.
  • Step 2 Compound (T-34) (20.4 g; 61.4%) was obtained in the same manner as in Step 2 of Example 2, using compound (T-33) (30.3 g) as a starting material. It was.
  • Step 3 Compound (T-35) (20.1 g; 93.9%) was obtained in the same manner as in Step 3 of Example 3 using compound (T-34) (20.4 g) as a starting material. It was.
  • Step 4 Compound (T-36) (5.82 g; 43.6%) was obtained in the same manner as in Step 4 of Example 4 using compound (T-35) (20.1 g) as a starting material. It was.
  • Step 5 Compound (T-37) (4.81 g; 100%) was obtained in the same manner as in Step 5 of Example 5 using compound (T-36) (5.82 g) as a starting material.
  • Step 6 Under a nitrogen atmosphere, compound (T-38) (25.0 g), toluene (50.0 ml), and 2,2,4-trimethylpentane (50.0 ml) were placed in a reactor, and the mixture was heated to 60 ° C. Heated. Propane dithiol (10.9 ml) was added thereto and stirred for 1 hour, and then trifluoromethanesulfonic acid (19.4 ml) was slowly added and stirred for 1 hour. Subsequently, the mixture was further heated under reflux for 2 hours while removing the distilled water. The reaction mixture was cooled to room temperature, concentrated under reduced pressure, and the residue was purified by recrystallization from t-butyl methyl ether to obtain compound (T-39) (40.8 g; 86.8%). .
  • Step 7 Under a nitrogen atmosphere, compound (T-40) (2.41 g), triethylamine (1.91 ml), and dichloromethane (150 ml) were placed in a reactor and cooled to -70 ° C. A solution of compound (T-39) (5.00 g) in dichloromethane (150 ml) was slowly added thereto and stirred for 1 hour. Next, hydrogen fluoride triethylamine complex (5.13 ml) was slowly added and stirred for 30 minutes. Subsequently, bromine (2.70 ml) was slowly added and further stirred for 1 hour. The reaction mixture was poured into ice water, neutralized with sodium hydrogen carbonate, and the aqueous layer was extracted with dichloromethane.
  • Step 8 Under a nitrogen atmosphere, compound (T-41) (2.09 g) and diethyl ether (60.0 ml) were placed in a reactor and cooled to -70 ° C. N-Butyllithium (1.65M; n-hexane solution; 3.12 ml) was slowly added thereto and stirred for 2 hours. Next, a solution of compound (T-37) (1.18 g) in diethyl ether (5.00 ml) was slowly added and stirred for 12 hours while returning to room temperature. The reaction mixture was poured into a saturated aqueous ammonium chloride solution, and the aqueous layer was extracted with ethyl acetate.
  • Step 9 Under a nitrogen atmosphere, Compound (T-42) (1.80 g) and dichloromethane (16.0 ml) were placed in a reactor and cooled to -70 ° C. Triethylsilane (0.540 ml) and boron trifluoride diethyl ether complex (0.430 ml) were slowly added thereto and stirred for 2 hours while raising the temperature to 0 ° C. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure and the residue was purified by silica gel chromatography (heptane). Further purification by recrystallization from a mixed solvent of heptane and Solmix (registered trademark) A-11 (volume ratio, 1: 1) gave compound (No. 1-3-3-115) (0.900 g; 51. 4%).
  • Step 2 Compound (1-2-18) (0.541 g; 35.4%) was prepared in the same manner as in Step 9 of Example 7 using compound (T-45) (1.59 g) as a starting material. Got.
  • Step 1 Under a nitrogen atmosphere, compound (T-46) (2.56 g), compound (T-20) (1.50 g), and DME (30.0 ml) were placed in a reactor and cooled to ⁇ 70 ° C. did. KHMDS (1.00M; THF solution; 8.03 ml) was slowly added thereto, and the mixture was stirred for 1 hour and further stirred for 1 hour while returning to room temperature. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure and the residue was purified by silica gel chromatography (heptane). Further purification by recrystallization from Solmix (registered trademark) A-11 gave Compound (No. 1-1-42) (0.673 g; 29.0%).
  • Step 1 Compound (T-48) (22.8 g; 100%) was obtained in the same manner as in Step 1 of Example 1, using Compound (T-47) (17.8 g) as a starting material.
  • Step 3 Compound (T-50) (14.1 g; 79.2%) was obtained in the same manner as in Step 3 of Example 3 using compound (T-49) (17.1 g) as a starting material. It was.
  • Step 4 Compound (T-51) (4.46 g; 46.4%) was obtained in the same manner as in Step 4 of Example 4 using compound (T-50) (13.0 g) as a starting material. It was.
  • Step 5 Compound (T-52) (3.62 g; 92.8%) was obtained in the same manner as in Step 5 of Example 5 using compound (T-51) (4.64 g) as a starting material. It was.
  • Step 6 Under a nitrogen atmosphere, methyltriphenylphosphine bromide (2.52 g) and THF (26.0 ml) were placed in a reactor and cooled to ⁇ 30 ° C. Potassium t-butoxide (0.760 g) was slowly added thereto and stirred for 30 minutes. Next, a solution of compound (T-52) (1.80 g) in THF (10.0 ml) was slowly added, and the mixture was further stirred for 3 hours while returning to room temperature. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate.
  • Step 1 Under a nitrogen atmosphere, compound (T-52) (1.80 g), compound (T-53) (1.82 g), and DME (36.0 ml) were placed in a reactor and cooled to -70 ° C. did. KHMDS (1.00M; THF solution; 7.64 ml) was slowly added thereto, and the mixture was stirred for 4 hours while returning to room temperature. The reaction mixture was poured into ice water, and the aqueous layer was extracted with toluene. The combined organic layers were washed with brine and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure and the residue was purified by silica gel chromatography (heptane). Further purification by recrystallization from Solmix (registered trademark) A-11 gave Compound (No. 1-1-5) (0.443 g; 23.7%).
  • T NI Maximum temperature
  • 15.4
  • ⁇ n 0.070
  • viscosity ( ⁇ ) 19.5 mPa ⁇ s.
  • the following compounds (No. 1-1-1) to (No. 1-1-68) and compounds (No. 1-2-1) were synthesized in the same manner as the synthesis methods described in Examples 1 to 12. ) To (No. 1-2-120) and compounds (No. 1-3-1) to (No. 1-3-3-140) could be synthesized.
  • Comparative Example 1 As a comparative compound, compound (S-1) was synthesized. This compound is described in EP 480217A, and has trifluoromethyl vinyl in which fluorine is replaced with hydrogen from the compound of the present invention.
  • Table 1 summarizes the physical properties of the compound (No. 1-1-1) obtained in Example 1 and the comparative compound (S-1). From Table 1, it was found that the compound (No. 1-1-1) was superior to the comparative compound (S-1) in that the dielectric anisotropy was large.
  • Comparative Example 2 As a comparative compound, compound (S-2) was synthesized. This compound is described in JP-A-2005-298466, and has perfluoropropenyl in which hydrogen of the compound of the present invention is replaced by fluorine.
  • Table 2 summarizes the physical properties of the compound (No. 1-1-1) obtained in Example 1 and the comparative compound (S-2). From Table 2, it was found that the compound (No. 1-1-1) was superior to the comparative compound (S-2) in that the dielectric anisotropy was large. It is worthy of special mention that the compound (No. 1-1-1) has a large dielectric anisotropy despite one less fluorine substituent than the comparative compound (S-2).
  • Example of composition (1) The liquid crystal composition of the present invention will be described in detail with reference to examples. The present invention is not limited by the following examples. The compounds in Examples were represented by symbols based on the definitions in Table 3 below. In Table 3, the configuration regarding 1,4-cyclohexylene is trans.
  • the number in parentheses after the symbol corresponds to the compound number.
  • the symbol ( ⁇ ) means other liquid crystal compounds.
  • the ratio (percentage) of the liquid crystal compound is a weight percentage (% by weight) based on the total weight of the liquid crystal composition.
  • Example 15 1-BHH-FVCF3 (1-2-1) 3% 3-GHH-FVCF3 (1-2-24) 3% 5-HB-F (2-2) 12% 6-HB-F (2-2) 9% 7-HB-F (2-2) 7% 2-HHB-OCF3 (3-1) 7% 3-HHB-OCF3 (3-1) 7% 4-HHB-OCF3 (3-1) 5% 5-HHB-OCF3 (3-1) 5% 3-HH2B-OCF3 (3-4) 4% 3-HHB (F, F) -OCF2H (3-3) 4% 3-HHB (F, F) -OCF3 (3-3) 5% 3-HH2B (F) -F (3-5) 3% 3-HBB (F) -F (3-23) 10% 5-HBB (F) -F (3-23) 10% 5-HBBH-3 (14-1) 3% 3-HB (F) BH-3 (14-2) 3%
  • the liquid crystalline compound of the present invention has high stability to heat, light, etc., high clearing point, low minimum temperature of liquid crystal phase, small viscosity, appropriate optical anisotropy, large dielectric anisotropy, appropriate elastic constant. And excellent compatibility with other liquid crystal compounds.
  • the liquid crystal composition of the present invention contains this compound and has a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, and a suitable elasticity. Have a constant. This composition is excellent in these properties with a good balance.
  • the liquid crystal display element of the present invention contains this composition and has a wide temperature range in which the element can be used, a short response time, a large voltage holding ratio, a large contrast ratio, and a long lifetime. Therefore, it can be widely used for liquid crystal display elements used in personal computers and televisions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal Substances (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Pyrane Compounds (AREA)

Abstract

 熱、光などに対する高い安定性、高い透明点、液晶相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、適切な弾性定数、他の液晶性化合物との優れた相溶性を有する液晶性化合物、この化合物を含有する液晶組成物、この組成物を用いた液晶表示素子を提供する。式(1)で表される化合物である。(1) 例えば、R1は、炭素数1~10のアルキルであり;環A1、環A2、環A3、環A4、および環B1は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;Z1、Z2、Z3、およびZ4は単結合であり;l、m、n、およびoは独立して、0または1であり、l、m、n、およびoの和が1以上である。

Description

テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子
 本発明は、液晶性化合物、液晶組成物および液晶表示素子に関する。さらに詳しくは、テトラフルオロプロペニルを有する液晶性化合物、この化合物を含有し、ネマチック相を有する組成物、およびこの組成物を用いた液晶表示素子に関する。
 液晶表示素子は、パソコン、テレビなどのディスプレイに広く利用されている。この素子は、液晶性化合物の光学的異方性、誘電率異方性などを利用したものである。液晶表示素子の動作モードとしては、PC(phase change)モード、TN(twisted nematic)モード、STN(super twisted nematic)モード、BTN(bistable twisted nematic)モード、ECB(electrically controlled birefringence)モード、OCB(opticallycompensated bend)モード、IPS(in-plane switching)モード、VA(vertical alignment)モード、PSA(polymer sustained alignment)などのモードが知られている。
 このような液晶表示素子では、適切な物性を有する液晶組成物が使われている。液晶表示素子の特性をさらに向上させるには、この組成物に含まれる液晶性化合物が、下記の(1)~(8)で示す物性を有するのが好ましい。
(1)熱、光などに対する高い安定性、
(2)高い透明点、
(3)液晶相の低い下限温度、
(4)小さな粘度(η)、
(5)適切な光学的異方性(Δn)、
(6)大きな誘電率異方性(Δε)、
(7)適切な弾性定数(K)、
(8)他の液晶性化合物との優れた相溶性。
 液晶性化合物の物性が素子の特性に及ぼす効果は、次のとおりである。
 (1)のように、熱、光などに対する高い安定性を有する化合物は、素子の電圧保持率を大きくする。これによって、素子の寿命が長くなる。(2)のように、高い透明点を有する化合物は、素子の使用可能な温度範囲を広げる。(3)のように、ネマチック相、スメクチック相などのような液晶相の低い下限温度、特にネマチック相の低い下限温度を有する化合物も、素子の使用可能な温度範囲を広げる。(4)のように、粘度の小さな化合物は、素子の応答時間を短くする。
 (5)のように、適切な光学的異方性を有する化合物は、素子のコントラストを向上させる。素子の設計に応じて、大きな光学的異方性または小さな光学的異方性、すなわち適切な光学的異方性を有する化合物が必要である。素子のセルギャップを小さくすることにより応答時間を短くする場合には、大きな光学的異方性を有する化合物が適している。(6)のように大きな誘電率異方性を有する化合物は、素子のしきい値電圧を下げる。これによって、素子の消費電力が小さくなる。
 (7)に関しては、大きな弾性定数を有する化合物は、素子の応答時間を短くする。小さな弾性定数を有する化合物は、素子のしきい値電圧を下げる。したがって、向上させたい特性に応じて適切な弾性定数が必要になる。(8)のように他の液晶性化合物との優れた相溶性を有する化合物は、異なった物性を有する液晶性化合物と混合して組成物の物性を調節することが容易となる。
 これまでに、大きな誘電率異方性を有する液晶性化合物が種々合成された。特許文献1、および非特許文献1にはトリフルオロプロペニルを有する化合物(S-1)が記載されている。しかし、この化合物は誘電率異方性が充分に大きくないので、この化合物を含有する液晶組成物は、市販の素子が必要とするしきい値電圧を満たすことができないようである。
Figure JPOXMLDOC01-appb-C000011
 特許文献2には、ペンタフルオロプロペニルを有する化合物(S-2)が示されている。しかし、この化合物も誘電率異方性が充分に大きくない。
 さらに、特許文献3にもペンタフルオロプロペニルやジフルオロエチレンオキシを有する化合物(S-3)および(S-4)が開示されている。しかし、この化合物も誘電率異方性が充分に大きくない上に、(1)の熱、光などに対する高い安定性が不十分であった。
Figure JPOXMLDOC01-appb-C000012
 このような状況から、上記の特性(1)~(8)に関して優れた性質を有する化合物の開発が望まれている。
欧州特許出願公開第480217号明細書 特開2005-298466号公報 特開平8-40952号公報
Journal of Fluorine Chemistry. 2006, 127, 610
 本発明の第一の目的は、熱、光などに対する高い安定性、高い透明点、液晶相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、適切な弾性定数、他の液晶性化合物との優れた相溶性を有する液晶性化合物である。この目的は、特に大きな誘電率異方性を有する化合物である。
 第二の目的は、この化合物を含有し、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、および適切な弾性定数を有する液晶組成物である。この目的は、これらの特性にバランスよく優れた液晶組成物である。
 第三の目的は、この組成物を含有し、素子を使用できる広い温度範囲、短い応答時間、大きな電圧保持率、大きなコントラスト比、および長い寿命を有する液晶表示素子である。
 本発明は、式(1)で表される化合物、この化合物を含有する液晶組成物、およびこの組成物を用いた液晶表示素子に関する。
Figure JPOXMLDOC01-appb-C000013
式(1)において、
 R1は、炭素数1~15のアルキルであり、このアルキルにおいて、少なくとも1つの-CH2-は-O-または-S-で置き換えられてもよく、少なくとも1つの-(CH22-は-CH=CH-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;
 環A1、環A2、環A3、環A4、および環B1は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり;
 Z1、Z2、Z3、およびZ4は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2O-、-OCH2-、または-CF=CF-であり;
 l、m、n、およびoは独立して、0または1であり、l、m、nおよびoの和が1以上である。
 本発明の液晶性化合物は、熱、光などに対する高い安定性、高い透明点、液晶相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、適切な弾性定数、他の液晶性化合物との優れた相溶性を有する。この化合物は、特に大きな誘電率異方性を有する。
 本発明の液晶組成物は、この化合物を含有し、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、および適切な弾性定数を有する。この組成物は、これらの特性にバランスよく優れている。
 本発明の液晶表示素子は、この組成物を含有し、素子を使用できる広い温度範囲、短い応答時間、大きな電圧保持率、大きなコントラスト比、および長い寿命を有する。
 この明細書における用語の使い方は次のとおりである。液晶性化合物は、ネマチック相、スメクチック相などの液晶相を有する化合物、および液晶相を有しないが液晶組成物の成分として有用な化合物の総称である。液晶性化合物、液晶組成物、液晶表示素子をそれぞれ化合物、組成物、素子と略すことがある。液晶表示素子は、液晶表示パネルおよび液晶表示モジュールの総称である。透明点は、液晶性化合物における液晶相-等方相の転移温度である。液晶相の下限温度は、液晶性化合物における固体-液晶相(スメクチック相、ネマチック相など)の転移温度である。ネマチック相の上限温度は、液晶組成物におけるネマチック相-等方相の転移温度であり、上限温度と略すことがある。ネマチック相の下限温度を下限温度と略すことがある。式(1)で表わされる化合物を化合物(1)と略すことがある。この略記は式(2)などで表される化合物にも適用することがある。式(1)から式(14)において、六角形で囲んだA1、B1、C1などの記号はそれぞれ環A1、環B1、環C1などに対応する。百分率で表した化合物の量は、組成物の全重量に基づいた重量百分率(重量%)である。複数のR1が、異なる式に使用されている。これらの化合物において、任意の2つのR1が表わす2つの基は、同一であってもよいし、異なってもよい。このルールは、環A1、Z1などの記号にも適用される。
 「少なくとも1つの“A”は、“B”で置き換えられてもよい」の表現は、“A”が1つのとき、“A”の位置は任意であり、“A”の数が2つ以上のときも、それらの位置は制限なく選択できることを意味する。「少なくとも1つのAが、B、CまたはDで置き換えられてもよい」という表現は、任意のAがBで置き換えられる場合、任意のAがCで置き換えられる場合、および任意のAがDで置き換えられる場合、さらに複数のAがB、C、Dの少なくとも2つで置き換えられる場合を含むことを意味する。例えば、少なくとも1つの-CH2-が-O-または-CH=CH-で置き換えられてもよいアルキルには、
アルキル、アルケニル、アルコキシ、アルコキシアルキル、アルコキシアルケニル、アルケニルオキシアルキルが含まれる。なお、連続する2つの-CH2-が-O-で置き換えられて、-O-O-のようになることは好ましくない。アルキルなどにおいて、メチル部分(-CH2-H)の-CH2-が-O-で置き換えられて-O-Hになることも好ましくない。
 本発明は、下記の内容を包含する。
 [1] 式(1)で表される化合物。
式(1)において、
 R1は、炭素数1~15のアルキルであり、このアルキルにおいて、少なくとも1つの-CH2-は-O-または-S-で置き換えられてもよく、少なくとも1つの-(CH22-は-CH=CH-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;
 環A1、環A2、環A3、環A4、および環B1は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり;
 Z1、Z2、Z3、およびZ4は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2O-、-OCH2-、または-CF=CF-であり;
 l、m、n、およびoは独立して、0または1であり、l、m、nおよびoの和が1以上である。
 [2] 項[1]に記載の式(1)において、環B1が、1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンである、項[1]に記載の化合物。
 [3] 項[1]に記載の式(1)において、R1が、炭素数1~15のアルキル、炭素数2~15のアルケニル、炭素数1~14のアルコキシ、または炭素数2~14のアルケニルオキシであり;Z1、Z2、Z3、およびZ4が独立して、単結合、-(CH22-、-CH=CH-、-COO-、-OCO-、-CF2O-、-OCF2-、または-CF=CF-である、項[1]に記載の化合物。
 [4] 項[1]に記載の式(1)において、R1が、炭素数1~15のアルキルまたは炭素数2~15のアルケニルであり;Z1、Z2、Z3、およびZ4が独立して、単結合、-(CH22-、-CH=CH-、-COO-、または-CF2O-である、項[1]に記載の化合物。
 [5] 項[1]に記載の式(1)において、R1が、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;環A1、環A2、環A3、および環A4が独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり、環B1が1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであり、;Z1、Z2、Z3、およびZ4が独立して、単結合、-(CH22-、または-CH=CH-である、項[1]に記載の化合物。
 [6] 式(1-1)~(1-3)のいずれか1つで表される、項[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
式(1-1)~(1-3)において、
 R1は、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;
 環A1、環A2、および環A3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;
 環B1は1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであり;
 Z1、Z2、およびZ3は独立して、単結合、-(CH22-、または-CH=CH-である。
 [7] 式(1-4)~(1-19)のいずれか1つで表される、項[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
式(1-4)~(1-19)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1、L2、L3、およびL4は水素またはフッ素である。
 [8] 式(1-20)~(1-31)のいずれか1つで表される、項[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000017
式(1-20)~(1-31)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1は水素またはフッ素である。
 [9] 式(1-32)~(1-39)のいずれか1つで表される、項[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000018
式(1-32)~(1-39)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1、L2、L3、L4、L5、L6、およびL7は独立して、
水素またはフッ素である。
 [10] 式(1-40)~(1-47)のいずれか1つで表される、項[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
式(1-40)~(1-47)において、R1は炭素数1~10のアルキルであり;L1、L2、およびL3は独立して、水素またはフッ素である。
 [11] 項[1]~[10]のいずれか1項に記載の化合物を少なくとも1つ含有する液晶組成物。
 [12] 式(2)~(4)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[11]に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000020
式(2)~(4)において、
 R2は独立して、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて少なくとも1つの水素はフッ素で置き換えられてもよく、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
 X1は、フッ素、塩素、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-CF=F2、-OCF2CHF2、または-OCF2CHFCF3であり;
 環C1、環C2、および環C3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
 Z5およびZ6は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-COO-、-CF2O-、-OCF2-、-CH2O-、または-(CH24-であり;
 L8およびL9は独立して、水素またはフッ素である。

 [13] 式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[11]に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000021
式(5)において、
 R3は、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて、少なくとも1つの水素はフッ素で置き換えられてもよく、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
 X2は-C≡Nまたは-C≡C-C≡Nであり;
 環D1、環D2、および環D3は独立して、1,4-シクロヘキシレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
 Z7は、単結合、-(CH22-、-C≡C-、-COO-、-CF2O-、-OCF2-、または-CH2O-であり;
 L10およびL11は独立して、水素またはフッ素であり;
 rは、0、1または2であり、sは0または1であり、rとsの和は、0、1、2または3である。
 [14] 式(6)~(11)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[11]に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000022
式(6)~(11)において、
 R4およびR5は独立して、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて、少なくとも1つの水素はフッ素で置き換えられてもよく、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
 環E1、環E2、環E3、および環E4は独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、またはデカヒドロナフタレン-2,6-ジイルであり;
 Z8、Z9、Z10、およびZ11は独立して、単結合、-(CH22-、-COO-、-CH2O-、-OCF2-、または-OCF2(CH22-であり;
 L12およびL13は独立して、フッ素または塩素であり;
 t、u、v、w、x、およびyは独立して0または1であり、u、v、w、およびxの和は、1または2である。
 [15] 式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[11]に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000023
式(12)~(14)において、
 R6およびR7は独立して、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
 環F1、環F2、および環F3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、またはピリミジン-2,5-ジイル、であり;
 Z12およびZ13は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、または-COO-である。
 [16] 項[13]に記載の式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[12]に記載の液晶組成物。
 [17] 項[15]に記載の式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[12]に記載の液晶組成物。
 [18] 項[15]に記載の式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[13]に記載の液晶組成物。
 [19] 項[15]に記載の式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、項[14]に記載の液晶組成物。
 [20] 少なくとも1つの光学活性化合物および/または重合可能な化合物をさらに含有する、項[11]~[19]のいずれか1項に記載の液晶組成物。
 [21] 少なくとも1つの酸化防止剤および/または紫外線吸収剤をさらに含有する、項[11]~[20]のいずれか1項に記載の液晶組成物。
[22] 項[11]~[21]のいずれか1項に記載の液晶組成物を含有する液晶表示素子。
 本発明の化合物、液晶組成物、液晶表示素子について、順に説明する。
1-1.本発明の化合物
 本発明の化合物(1)、化合物(1)の好ましい例について説明をする。化合物(1)における末端基、環構造、結合基、および置換基の好ましい例は、化合物(1)の下位式にも適用される。
Figure JPOXMLDOC01-appb-C000024
 式(1)において、R1は、炭素数1~15のアルキルであり、このアルキルにおいて、少なくとも1つの-CH2-は-O-または-S-で置き換えられてもよく、少なくとも1つの-(CH22-は-CH=CH-で置き換えられてもよく、これらの基において、少なくとも1つの水素はハロゲンで置き換えられてもよい。
 このようなR1の例は、アルキル、アルコキシ、アルコキシアルキル、アルコキシアルコキシ、アルキルチオ、アルキルチオアルコキシ、アルケニル、アルケニルオキシ、アルケニルオキシアルキル、アルコキシアルケニル、およびアルケニルチオである。これらの基において分岐よりも直鎖の方が好ましい。R1が分岐の基であっても光学活性であるときは好ましい。
 アルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。-CH=CHCH3、-CH=CHC25、-CH=CHC37、-CH=CHC49、-C24CH=CHCH3、および-C24CH=CHC25のような奇数位に二重結合をもつアルケニルにおいてはトランス配置が好ましい。-CH2CH=CHCH3、-CH2CH=CHC25、および-CH2CH=CHC37のような偶数位に二重結合をもつアルケニルにおいてはシス配置が好ましい。好ましい立体配置を有するアルケニル化合物は、高い透明点または液晶相の広い温度範囲を有する。Mol. Cryst. Liq. Cryst., 1985, 131, 109およびMol. Cryst. Liq. Cryst., 1985, 131, 327に詳細な説明がある。
 アルキルの例は、-CH3、-C25、-C37、-C49、-C511、-C613、-C715、-C817、-C919、-C1021、-C1123、-C1225、-C1327、-C1429、および-C1531である。
 アルコキシの例は、-OCH3、-OC25、-OC37、-OC49、-OC511、-OC613および-OC715、-OC817、-OC919、-OC1021、-OC1123、-OC1225、-OC1327、および-OC1429である。
 アルコキシアルキルの例は、-CH2OCH3、-CH2OC25、-CH2OC37、-(CH22-OCH3、-(CH22-OC25、-(CH22-OC37、-(CH23-OCH3、-(CH24-OCH3、および-(CH25-OCH3である。
 アルケニルの例は、-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC25、-CH2CH=CHCH3、-(CH22-CH=CH2、-CH=CHC37、-CH2CH=CHC25、-(CH22-CH=CHCH3、および-(CH23-CH=CH2である。
 アルケニルオキシの例は、-OCH2CH=CH2、-OCH2CH=CHCH3、および-OCH2CH=CHC25である。
 少なくとも1つの水素がハロゲンで置き換えられたアルキルの例は、-CH2F、-CHF2、-CF3、-(CH22-F、-CF2CH2F、-CF2CHF2、-CH2CF3、-CF2CF3、-(CH23-F、-(CF23-F、-CF2CHFCF3、-CHFCF2CF3、-(CH24-F、-(CF24-F、-(CH25-F、-(CF25-F、-CH2Cl、-CHCl2、-CCl3、-(CH22-Cl、-CCl2CH2Cl、-CCl2CHCl2、-CH2CCl3、-CCl2CCl3、-(CH23-Cl、-(CCl23-Cl、-CCl2CHClCCl3、-CHClCCl2CCl3、-(CH24-Cl、-(CCl24-Cl、-(CH25-Cl、および-(CCl25-Clである。
 少なくとも1つの水素がハロゲンで置き換えられたアルコキシの例は、-OCH2F、-OCHF2、-OCF3、-O-(CH22-F、-OCF2CH2F、-OCF2CHF2、-OCH2CF3、-O-(CH23-F、-O-(CF23-F、-OCF2CHFCF3、-OCHFCF2CF3、-O(CH24-F、-O-(CF24-F、-O-(CH25-F、-O-(CF25-F、-OCH2Cl、-OCHCl2、-OCCl3、-O-(CH22-Cl、-OCCl2CH2Cl、-OCCl2CHCl2、-OCH2CCl3、-O-(CH23-Cl、-O-(CCl23-Cl、-OCCl2CHClCCl3、-OCHClCCl2CCl3、-O(CH24-Cl、-O-(CCl24-Cl、-O-(CH25-Cl、および-O-(CCl25-Clである。
 少なくとも1つの水素がハロゲンで置き換えられたアルケニルの例は、-CH=CHF、-CH=CF2、-CF=CHF、-CH=CHCH2F、-CH=CHCF3、-(CH22-CH=CF2、-CH2CH=CHCF3、-CH=CHCF2CF3、-CH=CHCl、-CH=CCl2、-CCl=CHCl、-CH=CHCH2Cl、-CH=CHCCl3、-(CH22-CH=CCl2、-CH2CH=CHCCl3、および-CH=CHCCl2CCl3である。
 R1は、炭素数1~15のアルキル、炭素数2~15のアルケニル、炭素数1~14のアルコキシ、炭素数2~14のアルケニルオキシが好ましく、さらには、炭素数1~15のアルキル、炭素数2~15のアルケニルがより好ましく、特に炭素数1~10のアルキル、炭素数2~10のアルケニルが好ましい。
 R1のより好ましい例は、-CH3、-C25、-C37、-C49、-C511、-C613、-C715、-C817、-C919、-C1021、-CH=CH2、-CH=CHCH3、-CH2CH=CH2、-CH=CHC25、-CH2CH=CHCH3、-(CH22-CH=CH2、-CH=CHC37、-CH2CH=CHC25、-(CH22-CH=CHCH3、および-(CH23-CH=CH2である。
 式(1)において、環A1、環A2、環A3、環A4、および環B1は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルである。
 環A1、環A2、環A3、および環A4の好ましい例は、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、およびテトラヒドロピラン-2,5-ジイルである。少なくとも1つの水素がハロゲンに置き換えられた1,4-フェニレンの好ましい例は、基(15-1)~(15-18)である。
Figure JPOXMLDOC01-appb-C000025
 2-フルオロ-1,4-フェニレンは、左右対称ではない。ラテラル位のフッ素が左末端基の側に位置する場合(左向き;15-1)と、右末端基の側に位置する場合(右向き;15-2)とがある。好ましい2-フルオロ-1,4-フェニレンは、右向き(15-2)である。2,6-ジフルオロ-1,4-フェニレン(15-4および15-6)も左右対称ではない。好ましい2,6-ジフルオロ-1,4-フェニレンは、右向き(15-4)である。その他の基においても、左右対称ではない場合は、右向きが好ましい。
 少なくとも1つの水素がハロゲンに置き換えられた1,4-フェニレンのさらに好ましい例は、2-フルオロ-1,4-フェニレンおよび2,6-ジフルオロ-1,4-フェニレンである。
 1,3-ジオキサン-2,5-ジイルは、左右対称ではない。-O-が左末端基の側に位置する場合(左向き;15-19)と、右末端基の側に位置する場合(右向き;15-20)とがある。好ましい1,3-ジオキサン-2,5-ジイルは、右向き(15-20)である。テトラヒドロピラン-2,5-ジイル(15-21および15-22)も左右対称ではない。好ましいテトラヒドロピラン-2,5-ジイルは、右向き(15-22)である。ピリミジン-2,5-ジイルおよびピリジン-2,5-ジイルにおいても、右向き(15-24および15-26)が好ましい。すなわち、右向きとは、OやNがテトラフルオロプロペニルの方にあることである。
Figure JPOXMLDOC01-appb-C000026
 環A1、環A2、環A3、および環A4のより好ましい例は、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、およびテトラヒドロピラン-2,5-ジイルである。
 環B1の好ましい例は、1,4-シクロヘキシレン、1,4-フェニレン、ハロゲンで置き換えられた1,4-フェニレンである。ハロゲンで置き換えられた1,4-フェニレンとしては、前記環A1、環A2、環A3、および環A4と同様である。
 式(1)において、Z1、Z2、Z3、およびZ4は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2O-、-OCH2-、または-CF=CF-である。
 Z1、Z2、Z3、およびZ4の好ましい例は、単結合、-(CH22-、-CH=CH-、-COO-、および-CF2O-である。Z1、Z2、Z3、およびZ4のより好ましい例は、単結合、-(CH22-、および-CH=CH-である。Z1、Z2、Z3、およびZ4の全てが単結合である場合、あるいは単結合と1つの-(CH22-、または1つの-CH=CH-との組み合わせが特に好ましい。
 式(1)において、l、m、n、およびoは独立して、0または1であり、その和は1以上である。l、m、n、およびoの和の好ましい例は、1、2、および3である。l、m、n、およびoの和のより好ましい例は、1および2である。
1-2.化合物(1)の物性とその調整
 化合物(1)において、R1、環A1、環A2、環A3、環A4、環B1、Z1、Z2、Z3、およびZ4の種類とl、m、n、およびoの和を適切に組み合わせることによって、透明点、光学的異方性、誘電率異方性などの物性を任意に調整することが可能である。化合物の物性に大きな差異がないので、化合物(1)は、2H(重水素)、13Cなどの同位体を天然存在比の量より多く含んでもよい。R1などの種類が化合物(1)の物性に及ぼす主要な効果を以下に説明する。
 左末端基R1が直鎖であるときは、液晶相の温度範囲が広く、そして粘度が小さい。R1が分岐鎖であるときは、他の液晶性化合物との相溶性がよい。R1が光学活性である化合物は、キラルドーパントとして有用である。この化合物を組成物に添加することによって、液晶表示素子に発生するリバース・ツイスト・ドメイン(reverse twisted domain)を防止することができる。R1が光学活性でない化合物は、組成物の成分として有用である。R1がアルケニルであるとき、好ましい立体配置は、前記したように二重結合の位置に依存する。好ましい立体配置を有するアルケニル化合物は、高い上限温度または液晶相の広い温度範囲を有する。
 環A1、環A2、環A3、および環A4の総てが1,4-シクロヘキシレンであるときは、透明点が高く、粘度が小さい。環A1、環A2、環A3、および環A4の少なくとも1つが1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであるときは、光学的異方性が比較的大きく、そして配向秩序パラメーター(orientational order parameter)が比較的大きい。環A1、環A2、環A3および環A4の総てが、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、またはこれらの組み合わせであるときは、光学的異方性が特に大きい。環A1、環A2、環A3、および環A4の少なくとも1つが1,3-ジオキサン-2,5-ジイルであるときは、誘電率異方性が大きい。環A1、環A2、環A3、および環A4の少なくとも1つがテトラヒドロピラン-2,5-ジイルであるときは、他の液晶性化合物との相溶性が良好である。
 環B1が1,4-シクロヘキシレンであるときは、熱、光などに対する安定性が高く、粘度が小さい。環B1が1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであるときは、透明点が高く、光学的異方性が大きく、誘電率異方性が大きい。
 結合基Z1、Z2、Z3、およびZ4が、単結合、-(CH22-、-CH=CH-、-CF2O-、-OCF2-、または-CF=CF-であるときは、粘度が小さい。結合基が、単結合、-(CH22-、または-CH=CH-であるときは、粘度がより小さい。結合基が-CH=CH-であるときは、液晶相の温度範囲が広く、そして弾性定数(K)が大きい。結合基が-C≡C-であるときは、光学的異方性が大きい。特に、結合基が-CF2O-または-COO-であるときは、誘電率異方性が大きい。
 l、m、n、およびoの和が1であるときは、粘度が小さく、他の液晶性化合物との相溶性が良好である。l、m、n、およびoの和が2であるときは、粘度が小さく、透明点が高い。l、m、n、およびoの和が3または4であるときは、粘度が小さく、透明点が特に高い。
 以上のように、環構造、末端基、結合基などの種類と環構造の数を適切に選択することによって目的の物性を有する化合物を得ることができる。したがって、化合物(1)は、PC、TN、STN、ECB、OCB、IPS、VAのようなモードの液晶表示素子に用いられる液晶組成物の成分として有用である。
1-3.化合物(1)の例
 化合物(1)の好ましい例は、化合物(1-1)~(1-3)である。より好ましい例は、化合物(1-4)~(1-19)、化合物(1-20)~(1-31)、および化合物(1-32)~(1-39)である。最も好ましい例は、化合物(1-40)~(1-47)である。
Figure JPOXMLDOC01-appb-C000027
 式(1-1)~(1-3)において、R1は、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;環A1、環A2、および環A3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;環B1は1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであり;Z1、Z2、およびZ3は独立して、単結合、-(CH22-、または-CH=CH-である。
Figure JPOXMLDOC01-appb-C000028
 式(1-4)~(1-19)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1、L2、L3、およびL4は水素またはフッ素である。
Figure JPOXMLDOC01-appb-C000029
 式(1-20)~(1-31)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1は水素またはフッ素である。
Figure JPOXMLDOC01-appb-C000030
 式(1-32)~(1-39)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1、L2、L3、L4、L5、L6、およびL7は水素またはフッ素である。
 本発明の液晶性化合物は、前記R1、環A1、環A2、環A3、環A4、および環B1、Z1、Z2、Z3、およびZ4とともに、テトラフルオロプロペニルを有しているので熱、光などに対する高い安定性、高い透明点、液晶相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、適切な弾性定数、他の液晶性化合物との優れた相溶性などにバランスよく優れ、しかも特に大きな誘電率異方性を有する。
 化合物(1-4)~(1-19)は、熱、光などに対する高い安定性、高い透明点、および小さな粘度という観点から好ましい。化合物(1-20)~(1-31)は、高い透明点および優れた相溶性という観点から好ましい。化合物(1-32)~(1-39)は、高い透明点、大きな光学的異方性、および大きな誘電率異方性という観点から好ましい。
Figure JPOXMLDOC01-appb-C000031
これらの式において、R1は炭素数1~10のアルキルであり;L1、L2、およびL3は独立して、水素またはフッ素である。
1-4.化合物(1)の合成
 化合物(1)の合成法について説明する。化合物(1)は有機合成化学の方法を適切に組み合わせることにより合成できる。出発物に目的の末端基、環および結合基を導入する方法は、「オーガニックシンセシス」(Organic Syntheses, John Wiley & Sons, Inc)、「オーガニック・リアクションズ」(Organic Reactions, John Wiley & Sons, Inc)、「コンプリヘンシブ・オーガニック・シンセシス」(Comprehensive Organic Synthesis, Pergamon Press)、「新実験化学講座」(丸善)などの成書に記載されている。
1-4-1.結合基の生成
 化合物(1)における結合基を生成する方法の例は、下記のスキームのとおりである。このスキームにおいて、MSG1(またはMSG2)は、少なくとも1つの環を有する一価の有機基である。複数のMSG1(またはMSG2)が表わす一価の有機基は、同一であってもよいし、または異なってもよい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(I)単結合の生成
 所定の環を有するホウ酸(16)と公知の方法で合成されるハロゲン化合物(17)とを、炭酸塩水溶液中、テトラキス(トリフェニルホスフィン)パラジウムのような触媒の存在下で反応させて化合物(1A)を合成する。この化合物(1A)は、公知の方法で合成される化合物(18)にn-ブチルリチウムを、次いで塩化亜鉛を反応させ、ジクロロビス(トリフェニルホスフィン)パラジウムのような触媒の存在下で化合物(17)を反応させることによっても合成される。
(II)-COO-と-OCO-の生成
 化合物(18)にn-ブチルリチウムを、次いで二酸化炭素を反応させてカルボン酸(19)を得る。化合物(19)と、公知の方法で合成されるフェノール(20)とをDCC(N,N’-ジシクロヘキシルカルボジイミド)とDMAP(4-ジメチルアミノピリジン)の存在下で脱水させて-COO-を有する化合物(1B)を合成する。この方法によって-OCO-を有する化合物も合成する。
(III)-CF2O-と-OCF2-の生成
 化合物(1B)をローソン試薬のような硫黄化剤で処理して化合物(21)を得る。化合物(21)をフッ化水素ピリジン錯体とNBS(N-ブロモスクシンイミド)でフッ素化し、-CF2O-を有する化合物(1C)を合成する。M. Kuroboshi et al., Chem. Lett., 1992,827.を参照。化合物(1C)は化合物(21)を(ジエチルアミノ)サルファートリフルオリド(DAST)でフッ素化しても合成される。W. H. Bunnelle et al.,J. Org. Chem. 1990, 55, 768.を参照。この方法によって-OCF2-を有する化合物も合成する。Peer. Kirsch et al., Angew. Chem. Int. Ed. 2001, 40, 1480.に記載の方法によってこれらの結合基を生成させることも可能である。
(IV)-CH=CH-の生成
 化合物(18)をn-ブチルリチウムで処理した後、N,N-ジメチルホルムアミド(DMF)などのホルムアミドと反応させてアルデヒド(23)を得る。公知の方法で合成されるホスホニウム塩(22)をカリウムtert-ブトキシドのような塩基で処理して発生させたリンイリドを、アルデヒド(23)に反応させて化合物(1D)を合成する。反応条件によってはシス体が生成するので、必要に応じて公知の方法によりシス体をトランス体に異性化する。
(V)-(CH22-の生成
 化合物(1D)をパラジウム炭素のような触媒の存在下で水素化することにより、化合物(1E)を合成する。
(VI)-C≡C-の生成
 ジクロロパラジウムとハロゲン化銅との触媒存在下で、化合物(18)に2-メチル-3-ブチン-2-オールを反応させたのち、塩基性条件下で脱保護して化合物(24)を得る。ジクロロビストリフェニルホスフィンパラジウムとハロゲン化銅との触媒存在下、化合物(24)を化合物(17)と反応させて、化合物(1F)を合成する。
(VII)-CH2O-と-OCH2-の生成
 化合物(23)を水素化ホウ素ナトリウムなどの還元剤で還元して化合物(25)を得る。これを臭化水素酸などでハロゲン化して化合物(26)を得る。炭酸カリウムなどの存在下で、化合物(26)を化合物(20)と反応させて化合物(1G)を合成する。
(VIII)-CF=CF-の生成
 化合物(18)をn-ブチルリチウムで処理したあと、テトラフルオロエチレンを反応させて化合物(27)を得る。化合物(17)をn-ブチルリチウムで処理したあと化合物(27)と反応させて化合物(1H)を合成する。
 以上を組み合わせて臭化物(28)を合成する。
1-4-2.環A1、環A2、環A3、環A4、および環B1の生成
 1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、2,3,5,6-テトラフルオロ-1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイルなどの環に関しては出発物が市販されているか、または合成法がよく知られている。このような環に相当する、MSG化合物(16)~(18)を使用する。
1-4-3.化合物(1)を合成する方法
 化合物(1)を合成する方法の例は、次のとおりである。公知の方法により合成される臭化物(28)とメルカプトフェニルテトラゾール(29)をKOHなどの塩基の存在下で反応させてスルフィド(30)を得る。このスルフィド(30)をMCPBA(メタクロロ過安息香酸)などの酸化剤で酸化してスルホン(31)を得る。スルホン(31)にLDA(リチウムジイソプロピルアミド)、ついでNFSI(N-フルオロベンゼンスルホンイミド)を反応させてフッ素化スルホン(32)を得る。このフッ素化スルホン(32)を、KHMDS(ヘキサメチルジシラザンカリウム)の存在下、トリフルオロアセトアルデヒド(33)と反応させて化合物(1)を合成する。なお、この反応に用いるトリフルオロアセトアルデヒド(33)は、エチルヘミアセタール(34)を濃硫酸中で加熱することにより得られる。
Figure JPOXMLDOC01-appb-C000034
 これらの化合物において、R1、環A1、環A2、環A3、環A4、環B1、Z1、Z2、Z3、Z4、l、m、n、およびoの定義は、前記と同じである。
2.組成物(1)
 本発明の液晶組成物(1)について説明をする。この組成物(1)は、少なくとも1つの化合物(1)を成分として含む。組成物(1)は、2つ以上の化合物(1)を含んでいてもよい。液晶性化合物の成分が化合物(1)のみであってもよい。組成物(1)は、化合物(1)の少なくとも1つを1~99重量%の範囲で含有することが、優良な特性を発現させるために好ましい。より好ましい割合は、5~60重量%の範囲である。組成物(1)は、化合物(1)と、化合物(1)以外の種々の液晶性化合物とを含んでもよい。
 好ましい組成物は、以下に示す成分B、C、D、およびEから選択された化合物を含む。組成物(1)を調製するときには、例えば、化合物(1)の誘電率異方性を考慮して成分を選択することもできる。成分を適切に選択した組成物は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、および適切な弾性定数を有する。
 成分Bは、化合物(2)、(3)および(4)である。成分Cは化合物(5)である。成分Dは、化合物(6)、(7)、(8)、(9)、(10)、および(11)である。
 成分Eは、化合物(12)、(13)および(14)である。これらの成分について、順に説明する。
 成分Bは、式(2)~(4)の右末端にハロゲンまたはフッ素含有基を有する化合物である。(末端の一方が、ベンゼン環に結合したフッ素含有基である)
 成分Bの好ましい例として、化合物(2-1)~(2-16)、化合物(3-1)~(3-112)、化合物(4-1)~(4-54)を挙げることができる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 これらの化合物(成分B)において、R2およびX1の定義は、前記と同じである。
 成分Bは、誘電率異方性が正であり、熱、光などに対する安定性が非常に優れているので、TFTモード用またはPSAモード用の組成物を調製する場合に用いられる。成分Bの含有量は、組成物の全重量に対して1~99重量%の範囲が適するが、好ましくは10~97重量%の範囲、より好ましくは40~95重量%の範囲である。この組成物は、化合物(12)、(13)、および(14)(成分E)をさらに添加することにより粘度を調整することができる。
 成分Cは、式(5)の右末端基が-C≡Nまたは-C≡C-C≡Nである化合物(5)である。
(末端の一方が、ベンゼン環に結合したシアノ含有基である)
 成分Cの好ましい例として、化合物(5-1)~(5-64)を挙げることができる。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 これらの化合物(成分C)において、R3およびX2の定義は、前記と同じである。
 成分Cは、誘電率異方性が正であり、その値が大きいのでSTNモード用、TNモード用またはPSAモード用の組成物を調製する場合に主として用いられる。この成分Cを添加することにより、組成物の誘電率異方性を大きくすることができる。成分Cは、液晶相の温度範囲を広げる、粘度を調整する、または光学的異方性を調整する、という効果がある。成分Cは、素子の電圧-透過率曲線の調整にも有用である。
 STNモード用またはTNモード用の組成物を調製する場合には、成分Cの含有量は、組成物の全重量に対して1~99重量%の範囲が適しているが、好ましくは10~97重量%の範囲、より好ましくは40~95重量%の範囲である。この組成物は、成分Eを添加することにより液晶相の温度範囲、粘度、光学的異方性、誘電率異方性などを調整できる
 成分Dは、化合物(6)、(7)、(8)、(9)、(10)、および(11)である。これらの化合物は、2、3-ジフルオロ-1,4-フェニレンのように、ラテラル位が2つのハロゲンで置換されたベンゼン環を有する。
 成分Dの好ましい例として、化合物(6-1)~(6-6)、化合物(7-1)~(7-15)、化合物(8-1)、化合物(9-1)~(9-3)、化合物(10-1)~(10-11)、および化合物(11-1)~(11-10)を挙げることができる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 これらの化合物(成分D)において、R4およびR5の定義は、前記と同じである。
 成分Dは、誘電率異方性が負の化合物である。成分Dは、主としてVAモード用またはPSAモード用の組成物を調製する場合に用いられる。成分Dの含有量を増加させると組成物の誘電率異方性が大きくなるが、粘度が大きくなる。そこで、誘電率異方性の要求値を満たす限り、含有量は少ないほうが好ましい。したがって、誘電率異方性の絶対値が5程度であることを考慮すると、充分な電圧駆動をさせるには、含有量が40重量%以上であることが好ましい。
 成分Dのうち、化合物(6)は2環化合物であるので、主として、粘度の調整、光学的異方性の調整、または誘電率異方性の調整の効果がある。化合物(7)および(8)は3環化合物であるので、上限温度を高くする、光学的異方性を大きくする、または誘電率異方性を大きくするという効果がある。化合物(9)、(10)および(11)は、誘電率異方性を大きくするという効果がある。
 VAモード用またはPSAモード用の組成物を調製する場合には、成分Dの含有量は、組成物の全重量に対して、好ましくは40重量%以上であり、より好ましくは50~95重量%の範囲である。成分Dを添加することにより、組成物の弾性定数を調整し、素子の電圧-透過率曲線を調整することが可能となる。成分Dを誘電率異方性が正である組成物に添加する場合は、成分Dの含有量が組成物の全重量に対して30重量%以下が好ましい。
 成分Eは、2つの末端基がアルキルなどである化合物である。成分Eの好ましい例として、化合物(12-1)~(12-11)、化合物(13-1)~(13-19)、および化合物(14-1)~(14-6)を挙げることができる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 これらの化合物(成分E)において、R6およびR7の定義は、前記と同じである。
 成分Eは、誘電率異方性の絶対値が小さいので、中性に近い化合物である。化合物(12)は、主として粘度の調整または光学的異方性の調整の効果がある。化合物(13)および(14)は、上限温度を高くすることによってネマチック相の温度範囲を広げる効果、または光学的異方性の調整の効果がある。
 成分Eの含有量を増加させると組成物の粘度が小さくなるが、誘電率異方性が小さくなる。そこで、誘電率異方性の要求値を満たす限り、含有量は多いほうが好ましい。したがって、VAモード用またはPSAモード用の組成物を調製する場合には、成分Eの含有量は、組成物の全重量に対して、好ましくは30重量%以上、より好ましくは40重量%以上である。
液晶組成物の調製
 組成物(1)の調製は、必要な成分を高い温度で溶解させるなどの方法により行われる。用途に応じて、この組成物に添加物を添加してよい。添加物の例は、光学活性化合物、重合可能な化合物、重合開始剤、酸化防止剤、紫外線吸収剤などである。このような添加物は当業者によく知られており、文献に記載されている。
 組成物(1)は、少なくとも1つの光学活性化合物をさらに含有してもよい。光学活性化合物として、公知のキラルド-プ剤を添加することができる。このキラルド-プ剤は液晶のらせん構造を誘起して必要なねじれ角を与えることによって逆ねじれを防ぐ、という効果を有する。キラルド-プ剤の好ましい例として、下記の光学活性化合物(Op-1)~(Op-13)を挙げることができる。
Figure JPOXMLDOC01-appb-C000050
 組成物(1)は、このような光学活性化合物を添加して、らせんピッチを調整する。らせんピッチは、TFTモード用およびTNモード用の組成物であれば40~200μmの範囲に調整するのが好ましい。STNモード用の組成物であれば6~20μmの範囲に調整するのが好ましい。BTNモード用の組成物の場合は、1.5~4μmの範囲に調整するのが好ましい。らせんピッチの温度依存性を調整する目的で2つ以上の光学活性化合物を添加してもよい。
 組成物(1)は、重合可能な化合物を添加することによってPSAモード用に使用することもできる。重合可能な化合物の例はアクリレート、メタクリレート、ビニル、ビニルオキシ、プロペニルエーテル、エポキシ、ビニルケトン、オキセタンなどである。重合可能な化合物は、好ましくは光重合開始剤などの適切な開始剤存在下でUV照射などにより重合する。重合のための適切な条件、開始剤の適切なタイプ、および適切な量は、当業者には既知であり、文献に記載されている。
 酸化防止剤は、大きな電圧保持率を維持するために有効である。酸化防止剤の好ましい例は、2,6-ジ-tert-ブチル-4-アルキルフェノールなどである。紫外線吸収剤は、上限温度の低下を防ぐために有効である。紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。
 組成物(1)は、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系、テトラジン系などの二色性色素を添加すれば、GH(guest host)モード用に使用することもできる。
 光学活性化合物、重合可能な化合物、酸化防止剤、紫外線吸収剤、色素などの添加量は特に制限されない。
 この組成物を含有する素子は大きな電圧保持率を有する。この組成物は、AM素子、特に透過型のAM素子に適する。成分化合物の割合を制御することによって、またはその他の液晶性化合物を混合することによって、約0.08から約0.25の範囲の光学異方性を有する組成物、さらには約0.10から約0.30の範囲の光学異方性を有する組成物を調製してもよい。この組成物は、ネマチック相を有する組成物としての使用、光学活性な化合物を添加することによって光学活性な組成物としての使用が可能である。
 発明の液晶組成物の好ましいネマチック相の下限温度は、少なくとも約-20℃以下であり、より好ましいネマチック相の下限温度は約-30℃以下であり、特により好ましいネマチック相の下限温度は約-40℃以下である。本発明の液晶組成物の好ましいネマチック相の上限温度は、少なくとも約70℃以上であり、より好ましいネマチック相の上限温度は約80℃以上であり、特により好ましいネマチック相の上限温度は約90℃以上である。本発明の液晶組成物の589nmで25℃における好ましい光学異方性は、約0.07から約0.20の範囲であり、より好ましい光学異方性は約0.07から約0.16の範囲であり、特により好ましい光学異方性は約0.08から約0.13の範囲である。本発明の液晶組成物の25℃における好ましい誘電率異方性は、少なくとも約2以上であり、より好ましい誘電率異方性は約3以上であり、特により好ましい誘電率異方性は約3.5以上である。
3.液晶表示素子
 組成物(1)は、PCモード、TNモード、STNモード、OCBモード、PSAモードなどの動作モードを有し、アクティブマトリックス(AM方式)で駆動する液晶表示素子に使用できる。組成物(1)は、PCモード、TNモード、STNモード、OCBモード、VAモード、IPSモードなどの動作モードを有し、パッシブマトリクス(PM)方式で駆動する液晶表示素子にも使用することができる。これらのAM方式およびPM方式の素子は、反射型、透過型、半透過型のいずれのタイプにも適用ができる。
 組成物(1)は、ネマチック液晶をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)素子、液晶中に三次元網目状高分子を形成して作製した
ポリマ-分散型液晶表示素子(PDLCD)、ポリマ-ネットワ-ク液晶表示素子(PNLCD)にも使用できる。
 実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例によっては制限されない。特に断りのない限り、「%」は「重量%」を意味する。
 合成した化合物は、NMR分析などの方法により同定した。
NMR分析
 測定装置は、DRX-500(ブルカーバイオスピン(株)社製)を用いた。1H-NMRの測定では、試料をCDCl3などの重水素化溶媒に溶解させ、測定は、室温で、500MHz、積算回数16回の条件で行った。テトラメチルシランを内部標準として用いた。19F-NMRの測定では、CFCl3を内部標準として用い、積算回数24回で行った。核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。
[測定試料]
 相構造および転移温度を測定するときには、液晶性化合物そのものを試料として用いた。ネマチック相の上限温度、粘度、光学的異方性、誘電率異方性などの物性を測定するときには、化合物を母液晶に混合して調製した組成物を試料として用いた。
 化合物を母液晶と混合した試料を用いる場合には、次の方法で測定を行った。化合物15重量%と母液晶85重量%とを混合して試料を調製した。この試料の測定値から、次の式で表わされる外挿法にしたがって、外挿値を計算し、この値を記載した。〈外挿値〉=(100×〈試料の測定値〉-〈母液晶の重量%〉×〈母液晶の測定値〉)/〈化合物の重量%〉
 化合物と母液晶との割合がこの割合であっても、結晶(または、スメクチック相)が25℃で析出する場合には、化合物と母液晶との割合を10重量%:90重量%、5重量%:95重量%、1重量%:99重量%の順に変更をしていき、結晶(または、スメクチック相)が25℃で析出しなくなった割合で試料の物性を測定した。なお、特に断りのない限り、化合物と母液晶との割合は、15重量%:85重量%である。
 母液晶としては、下記の母液晶(i)を用いた。母液晶(i)の成分の割合を重量%で示す。
Figure JPOXMLDOC01-appb-C000051
[測定方法]
 物性の測定は下記の方法で行った。それらの多くは、日本電子機械工業会規格(Standard of Electronic Industries Association of Japan)、EIAJ・ED-2521Aに記載された方法、またはこれを修飾した方法である。測定に用いたTN素子には、TFTを取り付けなかった。
(1)相構造
 偏光顕微鏡を備えた融点測定装置のホットプレート(メトラー社FP-52型ホットステージ)に試料(化合物)を置き、3℃/分の速度で加熱しながら相状態とその変化を偏光顕微鏡で観察し、相の種類を特定した。
(2)転移温度(℃)
 パーキンエルマー社製走査熱量計DSC-7システム、またはDiamond DSCシステムを用いて、3℃/分速度で昇降温し、試料(化合物)の相変化に伴う吸熱ピーク、または発熱ピークの開始点を外挿により求め、転移温度を決定した。化合物が固体からスメクチック相、ネマチック相などの液晶相に転移する温度を「液晶相の下限温度」と略すことがある。化合物が液晶相から液体に転移する温度を「透明点」と略すことがある。
 結晶はCと表した。結晶の種類区別がつく場合は、それぞれC1またはC2と表した。スメクチック相はS、ネマチック相はNと表した。スメクチック相の中で、スメクチックA相、スメクチックB相、スメクチックC相、またはスメクチックF相の区別がつく場合は、それぞれSA、SB、SC、またはSFと表した。液体(アイソトロピック)はIと表した。転移温度は、例えば、「C 50.0 N 100.0 I」のように表記した。これは、結晶からネマチック相への転移温度(CN)が50.0℃であり、ネマチック相から液体への転移温度(透明点)が100.0℃であることを示す。
(3)低温相溶性
 化合物の割合が、20重量%、15重量%、10重量%、5重量%、3重量%、および1重量%となるように母液晶と化合物とを混合した試料を調製し、試料をガラス瓶に入れた。このガラス瓶を、-10℃または-20℃のフリーザー中に一定期間保管したあと、結晶またはスメクチック相が析出しているかどうか観察をした。
(4)ネマチック相の上限温度(TNIまたはNI;℃)
 偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。
(5)ネマチック相の下限温度(TC;℃)
 ネマチック相を有する試料を0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、TCを≦-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。
(6)粘度(バルク粘度;η;20℃で測定;mPa・s)
 E型回転粘度計を用いて測定した。
(7)粘度(回転粘度;γ1;25℃で測定;mPa・s)
 測定は、M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995) に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。このTN素子に16Vから19.5Vの範囲で0.5V毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)と
ピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文、40頁の計算式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度を測定した素子を用い、下に記載した方法で求めた。
(8)光学的異方性(屈折率異方性;25℃で測定;Δn)
 測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。光学的異方性(Δn)の値は、Δn=n∥-n⊥の式から計算した。
(9)誘電率異方性(Δε;25℃で測定)
 2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(10V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。
(10)弾性定数(K;25℃で測定;pN)
 測定には横河・ヒューレットパッカード株式会社製のHP4284A型LCRメータを用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである水平配向素子に試料を入れた。このセルに0ボルトから20ボルト電荷を印加し、静電容量および印加電圧を測定した。測定した静電容量(C)と印加電圧(V)の値を「液晶デバイスハンドブックク」(日刊工業新聞社)、75頁にある式(2.98)、式(2.101)を用いてフィッティングし、式(2.99)からK11およびK33の値を得た。次に171頁にある式(3.18)に、先ほど求めたK11およびK33の値を用いてK22を算出した。弾性定数は、このようにして求めたK11、K22、およびK33の平均値である。
(11)しきい値電圧(Vth;25℃で測定;V)
 測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプである。2枚のガラス基板の間隔(セルギャップ)が約0.45/Δn(μm)であり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に印加する電圧(32Hz、矩形波)は0Vから10Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が90%になったときの電圧である。
〔原料〕
 ソルミックス(登録商標)A-11は、エタノール(85.5%),メタノール(13.4%)とイソプロパノール(1.1%)の混合物であり、日本アルコール販売(株)から入手した。テトラヒドロフランをTHFと略すことがある。N-フルオロベンゼンスルホンイミドをNFSIと略すことがある。
[実施例1]
化合物(No.1-1-1)の合成
Figure JPOXMLDOC01-appb-C000052
第1工程
 窒素雰囲気下、化合物(T-1)(21.0g)、メルカプトフェニルテトラゾール(13.7g)、およびTBAHS(テトラブチルアンモニウム硫酸水素塩)(1.18g)を反応器に入れ、トルエン(80.0ml)に溶解させた。そこへ、水酸化カリウム(5.56g)の水(40.0ml)溶液をゆっくりと加え、70℃で8時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮して、化合物(T-2)(27.8g;100%)を得た。
第2工程
 窒素雰囲気下、化合物(T-2)(27.8g)を反応器に入れ、ソルミックス(登録商標)A-11(400ml)に溶解させ、0℃に冷却した。そこへ、七モリブデン酸六アンモニウム四水和物(8.62g)の35%過酸化水素水(67.8g)溶液をゆっくりと加え、室温に戻しつつ24時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を飽和亜硫酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、トルエン:酢酸エチル=9:1)で精製した。さらにトルエンからの再結晶により精製して、化合物(T-3)(17.0g;56.6%)を得た。
第3工程
 窒素雰囲気下、化合物(T-3)(8.49g)を反応器に入れて、トルエン(250ml)に溶解させ、-70℃に冷却した。そこへ、LDA(1.12M;THF溶液;24.6ml)をゆっくりと加え、12分間攪拌した。次に、NFSI(9.32g)を加え、50分間攪拌し、室温に戻しつつさらに50分間攪拌した。反応混合物を-70℃に再び冷却したのち、トリフルオロアセトアルデヒド(7.77g)のTHF(50.0ml)溶液、およびKHMDS(1.00M;THF溶液;39.4ml)をゆっくりと加え、1時間攪拌し、室温に戻しつつさらに3時間攪拌した。なお、反応に用いたトリフルオロアセトアルデヒドは、トリフルオロアセトアルデヒドエチルヘミアセタール(14.2g)と濃硫酸(100ml)を混合し、80℃で攪拌することにより得られた。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにソルミックス(登録商標)A-11からの再結晶により精製して、化合物(No.1-1-1)(1.74g;27.5%)を得た。
 化学シフトδ(ppm;CDCl3):4.93(dq,J=34.4Hz,J=7.5Hz,1H)、2.16-2.04(m,1H)、1.98-1.91(m,2H)、1.86-1.66(m,6H)、1.35-1.19(m,4H)、1.19-1.10(m,3H)、1.10-0.91(m,6H)、0.91-0.79(m,5H).
 化合物(No.1-1-1)の物性は、次のとおりであった。
 転移温度:C 68.4 (SB 65.7) I.
 上限温度(TNI)=22.4℃;誘電率異方性(Δε)=13.2;光学的異方性(Δn)=0.050;粘度(η)=16.2mPa・s.
[実施例2]
化合物(No.1-2-3)の合成
Figure JPOXMLDOC01-appb-C000053
第1工程
 窒素雰囲気下、化合物(T-4)(16.0g)、メルカプトフェニルテトラゾール(8.31g)、およびTBAHS(テトラブチルアンモニウム硫酸水素塩)(0.720g)を反応器に入れ、トルエン(80.0ml)に溶解させた。そこへ、水酸化カリウム(3.39g)の水(40.0ml)溶液をゆっくりと加え、70℃で8時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮して、化合物(T-5)(20.1g;100%)を得た。
第2工程
 窒素雰囲気下、化合物(T-5)(21.6g)を反応器に入れ、クロロホルム(300ml)に溶解させ、-10℃に冷却した。そこへ、MCPBA(23.6g)のクロロホルム(300ml)溶液をゆっくりと加え、室温に戻しつつ24時間攪拌した。反応混合物を2N水酸化ナトリウム水溶液に注ぎ込み、水層をジクロロメタンで抽出した。一緒にした有機層を2N水酸化ナトリウム水溶液、飽和亜硫酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(トルエン)で精製した、さらにトルエンからの再結晶により精製して、化合物(T-6)(18.2g;78.8%)を得た。
第3工程
 窒素雰囲気下、化合物(T-6)(10.0g)を反応器に入れて、トルエン(400ml)に溶解させ、-70℃に冷却した。そこへ、LDA(1.12M;THF溶液;24.6ml)をゆっくりと加え、12分間攪拌した。次に、NFSI(9.34g)を加え、50分間攪拌し、室温に戻しつつさらに50分間攪拌した。反応混合物を-70℃に再び冷却したのち、トリフルオロアセトアルデヒド(7.51g)のTHF(50.0ml)溶液、およびKHMDS(1.00M;THF溶液;39.5ml)をゆっくりと加え、1時間攪拌し、室温に戻しつつさらに3時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにヘプタンとソルミックス(登録商標)A-11との混合溶媒(体積比、1:1)からの再結晶により精製して、化合物(No.1-2-3)(2.27g;29.0%)を得た。
 化学シフトδ(ppm;CDCl3):7.13-7.03(m,4H)、4.95(dq,J=34.4Hz,J=7.5Hz,1H)、2.55(t,J=7.6Hz,2H)、2.42(tt,J=12.1Hz,J=3.5Hz,1H)、2.18-2.05(m,1H)、2.01-1.78(m,8H)、1.68-1.57(m,2H)、1.49-1.36(m,2H)、1.33-1.21(m,2H)、1.21-1.12(m,6H)、0.94(t,J=7.3Hz,3H).
 化合物(No.1-2-3)の物性は、次のとおりであった。
 転移温度:C 105 SB 134 N 147 I.
 上限温度(TNI)=100℃;誘電率異方性(Δε)=13.8;光学的異方性(Δn)=0.102;粘度(η)=52.3mPa・s.
[実施例3]
化合物(No.1-2-43)の合成
Figure JPOXMLDOC01-appb-C000054
第1工程
 化合物(T-7)(18.2g)を原料として用い、実施例1の第1工程と同様の手法により、化合物(T-8)(22.4g;100%)を得た。
第2工程
 化合物(T-8)(22.4g)を原料として用い、実施例2の第2工程と同様の手法により、化合物(T-9)(21.4g;89.9%)を得た。
第3工程
 窒素雰囲気下、化合物(T-9)(18.3g)を反応器に入れて、トルエン(730ml)に溶解させ、-70℃に冷却した。そこへ、LDA(1.12M;THF溶液;41.7ml)をゆっくりと加え、12分間攪拌した。次に、NFSI(15.8g)を加え、50分間攪拌し、室温に戻しつつさらに50分間攪拌した。反応混合物を飽和塩化アンモニウム水溶液に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(トルエン)で精製した。さらにトルエンからの再結晶により精製して、化合物(T-10)(12.6g;66.6%)を得た。
第4工程
 窒素雰囲気下、化合物(T-10)(13.2g)を反応器に入れて、DMF(N,N-ジメチルホルムアミド)(200ml)およびDMPU(N,N'-ジメチルプロピレン尿素)(200ml)に溶解させ、-70℃に冷却した。そこへ、KHMDS(1.00M;THF溶液;46.6ml)、およびトリフルオロアセトアルデヒド(13.2g)のTHF(10.0ml)溶液をゆっくりと加え、1時間攪拌し、室温に戻しつつさらに3時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、ヘプタン:トルエン=10:1)で精製した。さらにソルミックス(登録商標)A-11からの再結晶により精製して、化合物(No.1-2-43)(1.68g;16.5%)を得た。
 化学シフトδ(ppm;CDCl3):7.56-7.52(m,2H)、7.52-7.46(m,2H)、7.45-7.40(m,1H)、7.32-7.27(m,4H)、5.69(dq,J=32.2Hz,J=7.3Hz,1H)、2.65(t,J=7.9Hz,2H)、1.75-1.65(m,2H)、0.98(t,J=7.5Hz,3H).
 化合物(No.1-2-43)の物性は、次のとおりであった。
 転移温度:C 91.4 N 108 I.
 上限温度(TNI)=84.4℃;誘電率異方性(Δε)=45.1;光学的異方性(Δn)=0.239;粘度(η)=69.8mPa・s.
[実施例4]
化合物(No.1-2-30)の合成
Figure JPOXMLDOC01-appb-C000055
第1工程
 化合物(T-11)(17.6g)を原料として用い、実施例1の第1工程と同様の手法により、化合物(T-12)(21.8g;99.1%)を得た。
第2工程
 化合物(T-12)(20.3g)を原料として用い、実施例2の第2工程と同様の手法により、化合物(T-13)(16.4g;75.9%)を得た。
第3工程
 化合物(T-13)(15.4g)を原料として用い、実施例3の第3工程と同様の手法により、化合物(T-14)(10.9g;68.6%)を得た。
第4工程
 窒素雰囲気下、化合物(T-14)(9.86g)を反応器に入れて、THF(400ml)に溶解させ、-70℃に冷却した。そこへトリフルオロアセトアルデヒド(13.3g)のTHF(10.0ml)溶液、およびKHMDS(1.00M;THF溶液;36.9ml)をゆっくりと加え、1時間攪拌し、室温に戻しつつさらに3時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、ヘプタン:酢酸エチル=10:1)で精製した。さらにイソプロパノールと酢酸エチルとの混合溶媒(体積比、1:1)からの再結晶により精製して、化合物(No.1-2-30)(2.62g;34.9%)を得た。
 化学シフトδ(ppm;CDCl3):4.94(dq,J=34.3Hz,J=7.4Hz,1H)、4.19-4.12(m,3H)、3.38(dd,J=11.5Hz,J=11.5Hz,2H)、2.18-2.05(m,1H)、2.00-1.89(m,4H)、1.78-1.60(m,5H)、1.55-1.46(m,1H)、1.33-1.09(m,9H)、1.02-0.90(m,3H)、0.90-0.76(m,5H).
 化合物(No.1-2-30)の物性は、次のとおりであった。なお、上限温度、粘度、光学的異方性、誘電率異方性の測定には、化合物と母液晶との割合が5重量%:95重量%である試料を用いた。
 転移温度:C 74.4 SB 183 I.
 上限温度(TNI)=134℃;誘電率異方性(Δε)=14.1;光学的異方性(Δn)=0.103;粘度(η)=80.0mPa・s.
[実施例5]
化合物(No.1-2-71)の合成
Figure JPOXMLDOC01-appb-C000056
第1工程
 化合物(T-15)(18.1g)を原料として用い、実施例1の第1工程と同様の手法により、化合物(T-16)(24.1g;97.2%)を得た。
第2工程
 化合物(T-16)(24.1g)を原料として用い、実施例2の第2工程と同様の手法により、化合物(T-17)(16.3g;62.2%)を得た。
第3工程
 化合物(T-17)(16.3g)を原料として用い、実施例3の第3工程と同様の手法により、化合物(T-18)(13.0g;76.2%)を得た。
第4工程
 化合物(T-18)(13.0g)を原料として用い、実施例4の第4工程と同様の手法により、化合物(T-19)(4.39g;49.1%)を得た。
第5工程
 窒素雰囲気下、化合物(T-19)(4.39g)、蟻酸(21.9ml)、TBAB(テトラブチルアンモニウムブロミド)(1.50g)、およびトルエン(45.0ml)を反応器に入れて、室温で12時間撹拌した。反応混合物を水に注ぎ込み、炭酸水素ナトリウムを用いて中和した後、水層をトルエンで抽出した。一緒にした有機層を水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(トルエン)で精製して、化合物(T-20)(2.76g;79.1%)を得た。
第6工程
 窒素雰囲気下、化合物(T-3)(1.56g)、および化合物(T-20)(0.750g)を反応器に入れて、DME(エチレングリコールジメチルエーテル)(60.0ml)に溶解させ、-70℃に冷却した。そこへKHMDS(1.00M;THF溶液;4.01ml)をゆっくりと加え、1時間攪拌し、室温に戻しつつさらに1時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにヘプタンとソルミックス(登録商標)A-11との混合溶媒(体積比、1:1)からの再結晶により精製して、化合物(No.1-2-71)(0.550g;38.5%)を得た。
 化学シフトδ(ppm;CDCl3):5.37-5.23(m,2H)、4.94(dq,J=34.3Hz,J=7.5Hz,1H)、2.18-2.05(m,1H)、1.98-1.91(m,2H)、1.91-1.65(m,12H)、1.35-1.24(m,4H)、1.18-1.06(m,5H)、1.05-0.91(m,8H)、0.91-0.79(m,5H).
 化合物(No.1-2-71)の物性は、次のとおりであった。なお、上限温度、粘度、光学的異方性、誘電率異方性の測定には、化合物と母液晶との割合が3重量%:97重量%である試料を用いた。
 転移温度:C 78.3 SG 150 SB 172 N 229 I.
 上限温度(TNI)=168℃;誘電率異方性(Δε)=12.1;光学的異方性(Δn)=0.137;粘度(η)=60.0mPa・s.
[実施例6]
化合物(No.1-2-116)の合成
Figure JPOXMLDOC01-appb-C000057
第1工程
 窒素雰囲気下、水素化ナトリウム(10.1g)、およびTHF(300ml)を反応器に入れて、0℃に冷却した。そこへ化合物(T-21)(30.0g)のTHF(200ml)溶液をゆっくりと加え、室温に戻しつつ1時間撹拌した。反応混合物を0℃に再び冷却したのち、クロロメチルメチルエーテル(18.7g)のTHF(30.0ml)溶液をゆっくりと加え、室温に戻しつつさらに12時間攪拌した。反応混合物を氷水に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(トルエン)で精製して、化合物(T-22)(30.5g;79.2%)を得た。
第2工程
 窒素雰囲気下、化合物(T-22)(30.5g)、およびトルエン(500ml)を反応器に入れて、-70℃に冷却した。そこへDIBAL(水素化ジイソブチルアルミニウム)(1.00M;トルエン溶液;161ml)をゆっくりと加え室温に戻しつつ12時間撹拌した。反応混合物を1N塩酸に注ぎ込み、不溶物を濾別したのち、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、トルエン:酢酸エチル=5:1)で精製して、化合物(T-23)(29.8g;96.1%)を得た。
第3工程
 窒素雰囲気下、水素化ホウ素ナトリウム(5.86g)、メタノール(150ml)、およびTHF(50.0ml)を反応器に入れて、0℃に冷却した。そこへ化合物(T-23)(29.8g)のTHF(100ml)溶液をゆっくりと加え室温に戻しつつ2時間撹拌した。反応混合物を氷水に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮して、化合物(T-24)(30.1g;100%)を得た。
第4工程
 窒素雰囲気下、化合物(T-24)(30.1g)、トリフェニルホスフィン(42.5g)、およびジクロロメタン(300ml)を反応器に入れて、0℃に冷却した。そこへ四臭化炭素(53.8g)のジクロロメタン(280ml)溶液をゆっくりと加え室温に戻しつつ3時間撹拌した。反応混合物を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、ヘプタン:トルエン=1:1)で精製して、化合物(T-25)(32.1g;81.5%)を得た。
第5工程
 化合物(T-25)(32.1g)を原料として用い、実施例1の第1工程と同様の手法により、化合物(T-26)(43.1g;98.4%)を得た。
第6工程
 化合物(T-26)(43.1g)を原料として用い、実施例2の第2工程と同様の手法により、化合物(T-27)(35.3g;75.3%)を得た。
第7工程
 化合物(T-27)(33.5g)を原料として用い、実施例3の第3工程と同様の手法により、化合物(T-28)(34.1g;97.4%)を得た。
第8工程
 化合物(T-28)(31.0g)を原料として用い、実施例3の第4工程と同様の手法により、化合物(T-29)(3.20g;15.0%)を得た。
第9工程
 窒素雰囲気下、化合物(T-29)(3.20g)、エタノール(50.0ml)、および2N塩酸(15.0ml)を反応器に入れて、60℃で6時間撹拌した。反応混合物を氷水に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、トルエン:酢酸エチル=5:1)で精製して、化合物(T-30)(2.71g;100%)を得た。
第10工程
 窒素雰囲気下、化合物(T-30)(2.71g)、化合物(T-31)(4.85g)、炭酸カリウム(4.64g)、TBAB(0.722g)、およびDMF(80.0ml)を反応器に入れて、90℃で2時間撹拌した。反応混合物を氷水に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、ヘプタン:トルエン=20:1)で精製した。さらにソルミックス(登録商標)A-11からの再結晶により精製して、化合物(No.1-2-116)(3.26g;55.7%)を得た。
 化学シフトδ(ppm;CDCl3):7.51-7.48(m,2H)、7.33-7.28(m,2H)、7.25-7.20(m,2H)、7.01-6.96(m,2H)、5.62(dq,J=32.0Hz,J=7.3Hz,1H)、2.65(t,J=7.8Hz,2H)、1.74-1.65(m,2H)、0.97(t,J=7.5Hz,3H).
 化合物(No.1-2-116)の物性は、次のとおりであった。
 転移温度:C 59.4 I.
 上限温度(TNI)=23.7℃;誘電率異方性(Δε)=55.2;光学的異方性(Δn)=0.144;粘度(η)=54.3mPa・s.
[実施例7]
化合物(No.1-3-115)の合成
Figure JPOXMLDOC01-appb-C000058
第1工程
 化合物(T-32)(24.2g)を原料として用い、実施例1の第1工程と同様の手法により、化合物(T-33)(30.3g;88.6%)を得た。
第2工程
 化合物(T-33)(30.3g)を原料として用い、実施例2の第2工程と同様の手法により、化合物(T-34)(20.4g;61.4%)を得た。
第3工程
 化合物(T-34)(20.4g)を原料として用い、実施例3の第3工程と同様の手法により、化合物(T-35)(20.1g;93.9%)を得た。
第4工程
 化合物(T-35)(20.1g)を原料として用い、実施例4の第4工程と同様の手法により、化合物(T-36)(5.82g;43.6%)を得た。
第5工程
 化合物(T-36)(5.82g)を原料として用い、実施例5の第5工程と同様の手法により、化合物(T-37)(4.81g;100%)を得た。
第6工程
 窒素雰囲気下、化合物(T-38)(25.0g)、トルエン(50.0ml)、および2,2,4-トリメチルペンタン(50.0ml)を反応器に入れて、60℃に加熱した。そこへプロパンジチオール(10.9ml)を加え1時間撹拌したのち、トリフルオロメタンスルホン酸(19.4ml)をゆっくりと加え1時間撹拌した。続いて留出してくる水を除去しつつ、さらに2時間加熱還流を行った。反応混合物を室温まで冷却したのち、減圧下で濃縮し、残渣をt-ブチルメチルエーテルからの再結晶により精製して、化合物(T-39)(40.8g;86.8%)を得た。
第7工程
 窒素雰囲気下、化合物(T-40)(2.41g)、トリエチルアミン(1.91ml)、およびジクロロメタン(150ml)を反応器に入れて、-70℃に冷却した。そこへ化合物(T-39)(5.00g)のジクロロメタン(150ml)溶液をゆっくりと加え1時間撹拌した。次にフッ化水素トリエチルアミン錯体(5.13ml)をゆっくりと加え30分間撹拌した。続いて臭素(2.70ml)をゆっくりと加えさらに1時間撹拌した。反応混合物を氷水に注ぎ込み、炭酸水素ナトリウムを用いて中和したのち、水層をジクロロメタンで抽出した。一緒にした有機層を水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製して、化合物(T-41)(3.61g;76.6%)を得た。
第8工程
 窒素雰囲気下、化合物(T-41)(2.09g)、およびジエチルエーテル(60.0ml)を反応器に入れて、-70℃に冷却した。そこへn-ブチルリチウム(1.65M;n-ヘキサン溶液;3.12ml)をゆっくりと加え2時間撹拌した。次に化合物(T-37)(1.18g)のジエチルエーテル(5.00ml)溶液をゆっくりと加え室温に戻しつつ12時間撹拌した。反応混合物を飽和塩化アンモニウム水溶液に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(トルエン)で精製して、化合物(No.T-42)(1.91g;70.7%)を得た。
第9工程
 窒素雰囲気下、化合物(T-42)(1.80g)、およびジクロロメタン(16.0ml)を反応器に入れて、-70℃に冷却した。そこへトリエチルシラン(0.540ml)、および三フッ化ホウ素ジエチルエーテル錯体(0.430ml)をゆっくりと加え0℃まで昇温しつつ2時間撹拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにヘプタンとソルミックス(登録商標)A-11との混合溶媒(体積比、1:1)からの再結晶により精製して、化合物(No.1-3-115)(0.900g;51.4%)を得た。
 化学シフトδ(ppm;CDCl3):7.16-7.10(m,1H)、6.93-6.85(m,2H)、5.00(dq,J=34.3Hz,J=7.4Hz,1H)、2.82(tt,J=11.7Hz,J=3.3Hz,1H)、2.33-2.22(m,1H)、2.10-1.95(m,7H)、1.89-1.80(m,2H)、1.80-1.68(m,4H)、1.57-1.45(m,4H)、1.40-1.26(m,4H)、1.20-1.11(m,3H)、1.10-0.92(m,6H)、0.92-0.80(m,5H).
 化合物(No.1-3-115)の物性は、次のとおりであった。なお、上限温度、粘度、光学的異方性、誘電率異方性の測定には、化合物と母液晶との割合が10重量%:90重量%である試料を用いた。
 転移温度:C 150 SB 159 N 276 I.
 上限温度(TNI)=174℃;誘電率異方性(Δε)=14.9;光学的異方性(Δn)=0.127;粘度(η)=77.2mPa・s.
[実施例8]
化合物(No.1-1-13)の合成
Figure JPOXMLDOC01-appb-C000059
第1工程
 窒素雰囲気下、化合物(T-20)(1.09g)、化合物(T-43)(0.690g)、6N塩酸(1.65ml)、およびアセトン(5.00ml)を反応器に入れて、3時間加熱還流を行った。反応混合物を食塩水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を飽和炭酸水素ナトリウム水溶液、食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(体積比、ヘプタン:酢酸エチル=7:1)で精製した。さらにヘプタンとソルミックス(登録商標)A-11との混合溶媒(体積比、1:1)からの再結晶により精製して、化合物(No.1-1-13)(0.842g;54.0%)を得た。
 化学シフトδ(ppm;CDCl3):4.94(dq,J=34.3Hz,J=7.5Hz,1H)、4.18(d,J=5.1Hz,1H)、4.07(dd,J=11.8Hz,J=4.7Hz,2H)、3.28(dd,J=11.5Hz,J=11.5Hz,2H)、2.18-2.06(m,1H)、2.02-1.90(m,5H)、1.56-1.47(m,1H)、1.34-1.09(m,6H)、1.05-0.96(m,2H)、0.89(t,J=7.4Hz,3H).
 化合物(No.1-1-13)の物性は、次のとおりであった。
 転移温度:C 64.7 I.
 上限温度(TNI)=-26.3℃;誘電率異方性(Δε)=23.8;光学的異方性(Δn)=0.024;粘度(η)=42.9mPa・s.
[実施例9]
化合物(No.1-2-18)の合成
Figure JPOXMLDOC01-appb-C000060
第1工程
 窒素雰囲気下、化合物(T-44)(1.00g)、およびTHF(15.0ml)を反応器に入れて、-70℃に冷却した。そこへsec-ブチルリチウム(1.06M;シクロヘキサン、n-ヘキサン溶液;4.75ml)をゆっくりと加え2時間撹拌した。次に化合物(T-37)(1.18g)のTHF(5.00ml)溶液をゆっくりと加え室温に戻しつつ2時間撹拌した。反応混合物を飽和塩化アンモニウム水溶液に注ぎ込み、水層を酢酸エチルで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(トルエン)で精製して、化合物(T-45)(1.59g;80.3%)を得た。
第2工程
 化合物(T-45)(1.59g)を原料として用い、実施例7の第9工程と同様の手法により、化合物(1-2-18)(0.541g;35.4%)を得た。
 化学シフトδ(ppm;CDCl3):7.49-7.45(m,2H)、7.34-7.30(m,1H)、7.26-7.21(m,4H)、5.02(dq,J=34.2Hz,J=7.4Hz,1H)、2.88(tt,J=11.9Hz,J=3.4Hz,1H)、2.62(t,J=7.9Hz,2H)、2.35-2.24(m,1H)、2.13-2.00(m,4H)、1.73-1.45(m,6H)、0.97(t,J=7.3Hz,3H).
 化合物(No.1-2-18)の物性は、次のとおりであった。
 転移温度:C 128 I.
 上限温度(TNI)=76.4℃;誘電率異方性(Δε)=20.5;光学的異方性(Δn)=0.157;粘度(η)=73.9mPa・s.
[実施例10]
化合物(No.1-1-42)の合成
Figure JPOXMLDOC01-appb-C000061
第1工程
 窒素雰囲気下、化合物(T-46)(2.56g)、化合物(T-20)(1.50g)、およびDME(30.0ml)を反応器に入れて、-70℃に冷却した。そこへKHMDS(1.00M;THF溶液;8.03ml)をゆっくりと加え、1時間攪拌し、室温に戻しつつさらに1時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにソルミックス(登録商標)A-11からの再結晶により精製して、化合物(No.1-1-42)(0.673g;29.0%)を得た。
 化学シフトδ(ppm;CDCl3):5.37-5.24(m,2H)、4.95(dq,J=34.5Hz,J=7.5Hz,1H)、2.17-2.05(m,1H)、1.97-1.65(m,10H)、1.37-1.23(m,4H)、1.20-0.98(m,7H)、0.95-0.84(m,5H).
 化合物(No.1-1-42)の物性は、次のとおりであった。
 転移温度:C 52.2 SB 65.7 I.
 上限温度(TNI)=24.4℃;誘電率異方性(Δε)=11.9;光学的異方性(Δn)=0.057;粘度(η)=13.5mPa・s.
[実施例11]
化合物(No.1-1-4)の合成
Figure JPOXMLDOC01-appb-C000062
第1工程
 化合物(T-47)(17.8g)を原料として用い、実施例1の第1工程と同様の手法により、化合物(T-48)(22.8g;100%)を得た。
第2工程
 化合物(T-48)(22.8g)を原料として用い、実施例2の第2工程と同様の手法により、化合物(T-49)(17.1g;69.8%)を得た。
第3工程
 化合物(T-49)(17.1g)を原料として用い、実施例3の第3工程と同様の手法により、化合物(T-50)(14.1g;79.2%)を得た。
第4工程
 化合物(T-50)(13.0g)を原料として用い、実施例4の第4工程と同様の手法により、化合物(T-51)(4.46g;46.4%)を得た。
第5工程
 化合物(T-51)(4.64g)を原料として用い、実施例5の第5工程と同様の手法により、化合物(T-52)(3.62g;92.8%)を得た。
第6工程
 窒素雰囲気下、メチルトリフェニルホスフィンブロミド(2.52g)、およびTHF(26.0ml)を反応器に入れて、-30℃に冷却した。そこへカリウムt-ブトキシド(0.760g)をゆっくりと加え、30分間攪拌した。次に化合物(T-52)(1.80g)のTHF(10.0ml)溶液をゆっくりと加え、室温に戻しつつさらに3時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにソルミックス(登録商標)A-11からの再結晶により精製して、化合物(No.1-1-4)(0.657g;36.7%)を得た。
 化学シフトδ(ppm;CDCl3):5.81-5.72(m,1H)、5.02-4.85(m,3H)、2.16-2.04(m,1H)、2.00-1.70(m,9H)、1.31-1.19(m,2H)、1.13-0.98(m,8H).
 化合物(No.1-1-4)の物性は、次のとおりであった。
 転移温度:C 38.9 SB 47.7 I.
 上限温度(TNI)=0.4℃;誘電率異方性(Δε)=10.8;光学的異方性(Δn)=0.050;粘度(η)=13.6mPa・s.
[実施例12]
化合物(No.1-1-5)の合成
Figure JPOXMLDOC01-appb-C000063
第1工程
 窒素雰囲気下、化合物(T-52)(1.80g)、化合物(T-53)(1.82g)、およびDME(36.0ml)を反応器に入れて、-70℃に冷却した。そこへKHMDS(1.00M;THF溶液;7.64ml)をゆっくりと加え、室温に戻しつつ4時間攪拌した。反応混合物を氷水に注ぎ込み、水層をトルエンで抽出した。一緒にした有機層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルクロマトグラフィー(ヘプタン)で精製した。さらにソルミックス(登録商標)A-11からの再結晶により精製して、化合物(No.1-1-5)(0.443g;23.7%)を得た。
 化学シフトδ(ppm;CDCl3):5.43-5.32(m,2H)、4.93(dq,J=34.4Hz,J=7.5Hz,1H)、2.15-2.03(m,1H)、1.99-1.91(m,2H)、1.88-1.68(m,7H)、1.64(d,J=4.7Hz,3H)、1.30-1.19(m,2H)、1.12-0.97(m,8H).
 化合物(No.1-1-5)の物性は、次のとおりであった。
 転移温度:SB 101 I.
 上限温度(TNI)=33.7℃;誘電率異方性(Δε)=15.4;光学的異方性(Δn)=0.070;粘度(η)=19.5mPa・s.
 実施例1~12に記載された合成方法と同様の方法により、以下に示す化合物(No.1-1-1)~(No.1-1-68)、化合物(No.1-2-1)~(No.1-2-120)、および化合物(No.1-3-1)~(No.1-3-140)を合成することができた。
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
[比較例1]
 比較化合物として、化合物(S-1)を合成した。この化合物は、EP480217Aに記載されたものであり、本発明の化合物からフッ素が水素に置き換わったトリフルオロメチルビニルを有するものである。
Figure JPOXMLDOC01-appb-C000081
 化学シフトδ(ppm;CDCl3):6.31(m,1H)、5.53(m,1H)、2.04-1.95(m,1H)、1.84-1.65(m,9H)、1.35-1.26(m,2H)、1.20-0.91(m,10H)、0.91-0.80(m,5H).
 比較化合物(S-1)の物性は、次のとおりであった。
 転移温度:C 55.7 SB 62.8 I.
 上限温度(TNI)=25.0℃;誘電率異方性(Δε)=7.40;光学的異方性(Δn)=0.057;粘度(η)=8.70mPa・s.
Figure JPOXMLDOC01-appb-T000082
 実施例1で得られた化合物(No.1-1-1)と比較化合物(S-1)の物性を表1にまとめた。表1から、化合物(No.1-1-1)は、比較化合物(S-1)と比較して、誘電率異方性が大きい点で優れていることが分かった。
[比較例2]
 比較化合物として、化合物(S-2)を合成した。この化合物は、特開2005-298466号公報に記載され、本発明の化合物の水素がフッ素に置き換わった、パーフルオロプロペニルを有するものである。
Figure JPOXMLDOC01-appb-C000083
 化学シフトδ(ppm;CDCl3):2.65-2.50(m,1H)、1.90-1.67(m,8H)、1.55-1.44(m,2H)、1.35-1.28(m,2H)、1.20-0.80(m,14H).
 比較化合物(S-2)の物性は、次のとおりであった。
 転移温度:C 49.5 SB 62.6 I.
 上限温度(TNI)=27.7℃;誘電率異方性(Δε)=8.10;光学的異方性(Δn)=0.057;粘度(η)=7.30mPa・s.
Figure JPOXMLDOC01-appb-T000084
 実施例1で得られた化合物(No.1-1-1)と比較化合物(S-2)の物性を表2にまとめた。表2から、化合物(No.1-1-1)は、比較化合物(S-2)と比較して、誘電率異方性が大きい点で優れていることが分かった。化合物(No.1-1-1)は比較化合物(S-2)よりもフッ素置換基が1つ少ないにも拘らず、誘電率異方性が大きいということは、特筆に値する。
〔組成物(1)の実施例〕
 実施例により本発明の液晶組成物を詳細に説明する。本発明は下記の実施例によって限定されない。実施例における化合物は、下記の表3の定義に基づいて記号により表した。表3において、1,4-シクロヘキシレンに関する立体配置はトランスである。実施例において記号の後にあるかっこ内の番号は化合物の番号に対応する。(-)の記号はその他の液晶性化合物を意味する。液晶性化合物の割合(百分率)は、液晶組成物の全重量に基づいた重量百分率(重量%)である。最後に、組成物の特性値をまとめた。特性は、先に記載した方法にしたがって測定し、測定値を外挿することなくそのまま記載した。
Figure JPOXMLDOC01-appb-T000085
[実施例13]
3-HH-FVCF3             (1-1-1)  3%
5-HB-CL                (2-2)   16%
3-HH-4                 (12-1)  12%
3-HH-5                 (12-1)   4%
3-HHB-F                (3-1)    4%
3-HHB-CL               (3-1)    3%
4-HHB-CL               (3-1)    4%
3-HHB(F)-F             (3-2)   10%
4-HHB(F)-F             (3-2)    7%
5-HHB(F)-F             (3-2)    8%
7-HHB(F)-F             (3-2)    8%
5-HBB(F)-F             (3-23)   4%
1O1-HBBH-5             (14-1)   3%
3-HHBB(F,F)-F          (4-6)    2%
4-HHBB(F,F)-F          (4-6)    3%
5-HHBB(F,F)-F          (4-6)    3%
3-HH2BB(F,F)-F         (4-15)   3%
4-HH2BB(F,F)-F         (4-15)   3%
NI=112.6℃;Δn=0.090;Δε=4.0;Vth=2.45V;η=19.2mPa・s.
[実施例14]
3-BHH-FVCF3            (1-2-3)  3%
3-dhHH-FVCF3           (1-2-27) 3%
3-HHB(F,F)-F           (3-3)    8%
3-H2HB(F,F)-F          (3-15)   8%
4-H2HB(F,F)-F          (3-15)   8%
5-H2HB(F,F)-F          (3-15)   5%
3-HBB(F,F)-F           (3-24)  20%
5-HBB(F,F)-F           (3-24)  20%
3-H2BB(F,F)-F          (3-27)  10%
5-HHBB(F,F)-F          (4-6)    3%
5-HHEBB-F              (4-17)   2%
3-HH2BB(F,F)-F         (4-15)   3%
1O1-HBBH-4             (14-1)   4%
1O1-HBBH-5             (14-1)   3%
[実施例15]
1-BHH-FVCF3            (1-2-1)  3%
3-GHH-FVCF3            (1-2-24) 3%
5-HB-F                 (2-2)   12%
6-HB-F                 (2-2)    9%
7-HB-F                 (2-2)    7%
2-HHB-OCF3             (3-1)    7%
3-HHB-OCF3             (3-1)    7%
4-HHB-OCF3             (3-1)    5%
5-HHB-OCF3             (3-1)    5%
3-HH2B-OCF3            (3-4)    4%
3-HHB(F,F)-OCF2H       (3-3)    4%
3-HHB(F,F)-OCF3        (3-3)    5%
3-HH2B(F)-F            (3-5)    3%
3-HBB(F)-F             (3-23)  10%
5-HBB(F)-F             (3-23)  10%
5-HBBH-3               (14-1)   3%
3-HB(F)BH-3            (14-2)   3%
[実施例16]
3-HGH-FVCF3            (1-2-30) 3%
3-BB(F)B(F,F)-FVCF3    (1-2-43) 5%
5-HB-CL                (2-2)   11%
3-HH-4                 (12-1)   8%
3-HHB-1                (13-1)   5%
3-HHB(F,F)-F           (3-3)    8%
3-HBB(F,F)-F           (3-24)  15%
5-HBB(F,F)-F           (3-24)  15%
3-HHEB(F,F)-F          (3-12)  10%
4-HHEB(F,F)-F          (3-12)   3%
5-HHEB(F,F)-F          (3-12)   3%
2-HBEB(F,F)-F          (3-39)   3%
3-HBEB(F,F)-F          (3-39)   5%
5-HBEB(F,F)-F          (3-39)   3%
3-HHBB(F,F)-F          (4-6)    3%
NI=72.0℃;Δn=0.092;Δε=7.7;Vth=1.45V;η=18.5mPa・s.
[実施例17]
3-BB(F)B(F,F)-FVCF3    (1-2-43) 4%
5-HB(F)HH-FVCF3        (1-3-2)  3%
3-HB-CL                (2-2)    6%
5-HB-CL                (2-2)    4%
3-HHB-OCF3             (3-1)    5%
3-H2HB-OCF3            (3-13)   5%
5-H4HB-OCF3            (3-19)  10%
V-HHB(F)-F             (3-2)    5%
3-HHB(F)-F             (3-2)    5%
5-HHB(F)-F             (3-2)    5%
3-H4HB(F,F)-CF3        (3-21)   8%
5-H4HB(F,F)-CF3        (3-21)  10%
5-H2HB(F,F)-F          (3-15)   5%
5-H4HB(F,F)-F          (3-21)   5%
2-H2BB(F)-F            (3-26)   5%
3-H2BB(F)-F            (3-26)  10%
3-HBEB(F,F)-F          (3-39)   5%
[実施例18]
3-HH-FVCF3             (1-1-1)  3%
3-BB(F)-FVCF3          (1-1-25) 4%
5-HB-CL                (2-2)    3%
7-HB(F)-F              (2-3)    6%
3-HH-4                 (12-1)   9%
3-HH-EMe               (12-2)  20%
3-HHEB-F               (3-10)   8%
5-HHEB-F               (3-10)   8%
3-HHEB(F,F)-F          (3-12)  10%
4-HHEB(F,F)-F          (3-12)   5%
4-HGB(F,F)-F           (3-103)  3%
5-HGB(F,F)-F           (3-103)  6%
2-H2GB(F,F)-F          (3-106)  4%
3-H2GB(F,F)-F          (3-106)  4%
5-GHB(F,F)-F           (3-109)  7%
[実施例19]
5-HH-FVCF3             (1-1-3)  3%
5-HGH-FVCF3            (1-2-31) 3%
2-HB-C                 (5-1)    5%
3-HB-C                 (5-1)   10%
3-HB-O2                (12-5)  15%
2-BTB-1                (12-10)  3%
3-HHB-1                (13-1)   7%
3-HHB-F                (3-1)    4%
3-HHB-O1               (13-1)   5%
3-HHB-3                (13-1)  12%
3-HHEB-F               (3-10)   4%
5-HHEB-F               (3-10)   4%
2-HHB(F)-F             (3-2)    7%
3-HHB(F)-F             (3-2)    7%
5-HHB(F)-F             (3-2)    7%
3-HHB(F,F)-F           (3-3)    4%
[実施例20]
3-BHH-FVCF3            (1-2-3)  5%
3-HHB(F,F)-F           (3-3)    9%
3-H2HB(F,F)-F          (3-15)   8%
4-H2HB(F,F)-F          (3-15)   8%
5-H2HB(F,F)-F          (3-15)   8%
3-HBB(F,F)-F           (3-24)  20%
5-HBB(F,F)-F           (3-24)  16%
3-H2BB(F,F)-F          (3-27)  10%
5-HHBB(F,F)-F          (4-6)    3%
5-HHEBB-F              (4-17)   2%
3-HH2BB(F,F)-F         (4-15)   3%
1O1-HBBH-4             (14-1)   4%
1O1-HBBH-5             (14-1)   4%
NI=100.1℃;Δn=0.115;Δε=9.1;Vth=1.79V;η=35.6mPa・s.
上記組成物100部にOp-05を0.25部添加したときのピッチは62.3μmであった。
[実施例21]
3-HHVH-FVCF3           (1-2-71) 3%
3-HB-O2                (12-5)   7%
2-HHB(F)-F             (3-2)   10%
3-HHB(F)-F             (3-2)   10%
5-HHB(F)-F             (3-2)   10%
2-HBB(F)-F             (3-23)   9%
3-HBB(F)-F             (3-23)   9%
5-HBB(F)-F             (3-23)  16%
2-HBB-F                (3-22)   4%
3-HBB-F                (3-22)   4%
5-HBB-F                (3-22)   3%
3-HBB(F,F)-F           (3-24)   5%
5-HBB(F,F)-F           (3-24)  10%
NI=92.5℃;Δn=0.119;Δε=6.4;η=26.4mPa・s.
[実施例22]
3-BB(F,F)XB(F,F)-FVCF3 (1-2-116)5%
1V2-BEB(F,F)-C         (5-15)   6%
3-HB-C                 (5-1)   18%
2-BTB-1                (12-10) 10%
5-HH-VFF               (12-1)  30%
3-HHB-1                (13-1)   4%
VFF-HHB-1              (13-1)   8%
VFF2-HHB-1             (13-1)  11%
3-H2BTB-3              (13-17)  4%
3-H2BTB-4              (13-17)  4%
NI=74.1℃;Δn=0.125;Δε=9.1;η=13.6mPa・s.
[実施例23]
3-HHXB(F)H-FVCF3       (1-3-115)3%
3-HH-4                 (12-1)   4%
3-HBB(F,F)-F           (3-24)  33%
5-HBB(F,F)-F           (3-24)  32%
3-H2HB(F,F)-F          (3-15)  10%
4-H2HB(F,F)-F          (3-15)  10%
5-H2HB(F,F)-F          (3-15)   8%
NI=64.1℃;Δn=0.104;Δε=8.8;η=30.2mPa・s.
[実施例24]
3-GH-FVCF3              (1-1-13)5%
7-HB(F,F)-F             (2-4)   3%
3-HB-O2                 (12-5)  7%
2-HHB(F)-F              (3-2)  10%
3-HHB(F)-F              (3-2)  10%
5-HHB(F)-F              (3-2)  10%
2-HBB(F)-F              (3-23)  9%
3-HBB(F)-F              (3-23)  9%
5-HBB(F)-F              (3-23) 16%
2-HBB-F                 (3-22)  4%
3-HBB-F                 (3-22)  4%
5-HBB-F                 (3-22)  3%
5-HBB(F,F)-F            (3-24) 10%
NI=81.5℃;Δn=0.110;Δε=6.4;η=25.2mPa・s.
[実施例25]
3-BB(F)H-FVCF3          (1-2-18)5%
1V2-BEB(F,F)-C          (5-15)  6%
3-HB-C                  (5-1)  18%
2-BTB-1                 (12-10)10%
5-HH-VFF                (12-1) 30%
3-HHB-1                 (13-1)  4%
VFF-HHB-1               (13-1)  8%
VFF2-HHB-1              (13-1) 11%
3-H2BTB-3               (13-17) 4%
3-H2BTB-4               (13-17) 4%
NI=76.7℃;Δn=0.126;Δε=7.3;η=14.6mPa・s.
[実施例26]
3-HVH-FVCF3             (1-1-42)3%
3-HH-4                  (12-1)  4%
3-HBB(F,F)-F            (3-24) 30%
5-HBB(F,F)-F            (3-24) 32%
3-H2HB(F,F)-F           (3-15) 10%
4-H2HB(F,F)-F           (3-15) 10%
5-H2HB(F,F)-F           (3-15)  8%
3-HHBB(F,F)-F           (4-6)   3%
NI=63.9℃;Δn=0.103;Δε=8.7;η=29.3mPa・s.
[実施例27]
V-HH-FVCF3              (1-1-4) 5%
7-HB(F,F)-F             (2-4)   3%
3-HB-O2                 (12-5)  7%
2-HHB(F)-F              (3-2)  10%
3-HHB(F)-F              (3-2)  10%
5-HHB(F)-F              (3-2)  10%
2-HBB(F)-F              (3-23)  9%
3-HBB(F)-F              (3-23)  9%
5-HBB(F)-F              (3-23) 16%
2-HBB-F                 (3-22)  4%
3-HBB-F                 (3-22)  4%
5-HBB-F                 (3-22)  3%
5-HBB(F,F)-F            (3-24) 10%
NI=82.9℃;Δn=0.112;Δε=5.8;η=23.7mPa・s.
[実施例28]
1V-HH-FVCF3             (1-1-5) 5%
1V2-BEB(F,F)-C          (5-15)  6%
3-HB-C                  (5-1)  18%
2-BTB-1                 (12-10)10%
5-HH-VFF                (12-1) 30%
3-HHB-1                 (13-1)  4%
VFF-HHB-1               (13-1)  8%
VFF2-HHB-1              (13-1) 11%
3-H2BTB-3               (13-17) 4%
3-H2BTB-4               (13-17) 4%
NI=74.6℃;Δn=0.121;Δε=7.1;η=11.9mPa・s.
 いずれの実施例も、上限温度が低く、粘度も低く、適切な光学的異方性を有し、かつ大きな誘電率異方性を示すものであった。
 本発明の液晶性化合物は、熱、光などに対する高い安定性、高い透明点、液晶相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、適切な弾性定数、他の液晶性化合物との優れた相溶性を有する。本発明の液晶組成物は、この化合物を含有し、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学的異方性、大きな誘電率異方性、および適切な弾性定数を有する。この組成物は、これらの特性にバランスよく優れている。本発明の液晶表示素子は、この組成物を含有し、素子を使用できる広い温度範囲、短い応答時間、大きな電圧保持率、大きなコントラスト比、および長い寿命を有する。したがって、パソコン、テレビなどに用いる液晶表示素子に広く利用できる。

Claims (22)

  1.  式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)において、
     R1は、炭素数1~15のアルキルであり、このアルキルにおいて、少なくとも1つの-CH2-は-O-または-S-で置き換えられてもよく、少なくとも1つの-(CH22-は-CH=CH-で置き換えられてもよく、少なくとも1つの水素はハロゲンで置き換えられてもよく;
     環A1、環A2、環A3、環A4、および環B1は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり;
     Z1、Z2、Z3、およびZ4は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2O-、-OCH2-、または-CF=CF-であり;
     l、m、n、およびoは独立して、0または1であり、l、m、nおよびoの和が1以上である。
  2.  請求項1に記載の式(1)において、
     環B1が、1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンである、請求項1に記載の化合物。
  3.  請求項1に記載の式(1)において、R1が、炭素数1~15のアルキル、炭素数2~15のアルケニル、炭素数1~14のアルコキシ、または炭素数2~14のアルケニルオキシであり;Z1、Z2、Z3、およびZ4が独立して、単結合、-(CH22-、-CH=CH-、-COO-、-OCO-、-CF2O-、-OCF2-、または-CF=CF-である、請求項1に記載の化合物。
  4.  請求項1に記載の式(1)において、R1が、炭素数1~15のアルキルまたは炭素数2~15のアルケニルであり;Z1、Z2、Z3、およびZ4が独立して、単結合、-(CH22-、-CH=CH-、-COO-、または-CF2O-である、請求項1に記載の化合物。
  5.  請求項1に記載の式(1)において、R1が、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;環A1、環A2、環A3、および環A4が独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり、環B1が、1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであり、;Z1、Z2、Z3、およびZ4が独立して、単結合、-(CH22-、または-CH=CH-である、請求項1に記載の化合物。
  6.  式(1-1)~(1-3)のいずれか1つで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    式(1-1)~(1-3)において、
     R1は、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;
     環A1、環A2、および環A3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;
     環B1は1,4-シクロヘキシレン、1,4-フェニレン、または少なくとも1つの水素がハロゲンで置き換えられた1,4-フェニレンであり;
     Z1、Z2、およびZ3は独立して、単結合、-(CH22-、または-CH=CH-である。
  7.  (1-4)~(1-19)のいずれか1つで表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-C000003
     式(1-4)~(1-19)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1、L2、L3、およびL4は水素またはフッ素である。
  8.  式(1-20)~(1-31)のいずれか1つで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    式(1-20)~(1-31)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1は水素またはフッ素である。
  9.  式(1-32)~(1-39)のいずれか1つで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    式(1-32)~(1-39)において、R1は炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり;L1、L2、L3、L4、L5、L6、およびL7は独立して、水素またはフッ素である。
  10.  式(1-40)~(1-47)のいずれか1つで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    式(1-40)~(1-47)において、R1は炭素数1~10のアルキルであり;L1、L2、およびL3は独立して、水素またはフッ素である。
  11.  請求項1~10のいずれか1項に記載の化合物を少なくとも1つ含有する液晶組成物。
  12.  式(2)~(4)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項11に記載の液晶組成物。

    Figure JPOXMLDOC01-appb-C000007
    式(2)~(4)において、
     R2は独立して、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて少なくとも1つの水素はフッ素で置き換えられてもよく、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
     X1は、フッ素、塩素、-OCF3、-OCHF2、-CF3、-CHF2、-CH2F、-CF=F2、-OCF2CHF2、または-OCF2CHFCF3であり;
     環C1、環C2、および環C3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
     Z5およびZ6は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、-COO-、-CF2O-、-OCF2-、-CH2O-、または-(CH24-であり;
     L8およびL9は独立して、水素またはフッ素である。
  13.  式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項11に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000008
    式(5)において、
     R3は、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて、少なくとも1つの水素はフッ素で置き換えられてもよく、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
     X2は-C≡Nまたは-C≡C-C≡Nであり;
     環D1、環D2、および環D3は独立して、1,4-シクロヘキシレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、1,3-ジオキサン-2,5-ジイル、テトラヒドロピラン-2,5-ジイル、またはピリミジン-2,5-ジイルであり;
     Z7は、単結合、-(CH22-、-C≡C-、-COO-、-CF2O-、-OCF2-、または-CH2O-であり;
     L10およびL11は独立して、水素またはフッ素であり;
     rは、0、1または2であり、sは0または1であり、rとsの和は、0、1、2または3である。
  14.  式(6)~(11)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項11に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000009
    式(6)~(11)において、
     R4およびR5は独立して、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、アルキルおよびアルケニルにおいて、少なくとも1つの水素はフッ素で置き換えられてもよく、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
     環E1、環E2、環E3、および環E4は独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、少なくとも1つの水素がフッ素で置き換えられてもよい1,4-フェニレン、テトラヒドロピラン-2,5-ジイル、またはデカヒドロナフタレン-2,6-ジイルであり;
     Z8、Z9、Z10、およびZ11は独立して、単結合、-(CH22-、-COO-、-CH2O-、-OCF2-、または-OCF2(CH22-であり;
     L12およびL13は独立して、フッ素または塩素であり;
     t、u、v、w、x、およびyは独立して0または1であり、u、v、w、およびxの和は、1または2である。
  15.  式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項11に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000010
    式(12)~(14)において、
     R6およびR7は独立して、炭素数1~10のアルキルまたは炭素数2~10のアルケニルであり、このアルキルおよびアルケニルにおいて、少なくとも1つの-CH2-は-O-で置き換えられてもよく;
     環F1、環F2、および環F3は独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,5-ジフルオロ-1,4-フェニレン、またはピリミジン-2,5-ジイル、であり;
     Z12およびZ13は独立して、単結合、-(CH22-、-CH=CH-、-C≡C-、または-COO-である。
  16.  請求項13に記載の式(5)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項12に記載の液晶組成物。
  17.  請求項15に記載の式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項12に記載の液晶組成物。
  18.  請求項15に記載の式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項13に記載の液晶組成物。
  19.  請求項15に記載の式(12)~(14)で表される化合物の群から選択される少なくとも1つの化合物をさらに含有する、請求項14に記載の液晶組成物。
  20.  少なくとも1つの光学活性化合物および/または重合可能な化合物をさらに含有する、請求項11~19のいずれか1項に記載の液晶組成物。
  21.  少なくとも1つの酸化防止剤および/または紫外線吸収剤をさらに含有する、請求項11~20のいずれか1項に記載の液晶組成物。
  22.  請求項11~21のいずれか1項に記載の液晶組成物を含有する液晶表示素子。
PCT/JP2013/052814 2012-02-23 2013-02-07 テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子 WO2013125356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380021138.3A CN104245646B (zh) 2012-02-23 2013-02-07 具有四氟丙烯基的液晶性化合物、液晶组合物以及液晶显示组件
JP2014500643A JP6098632B2 (ja) 2012-02-23 2013-02-07 テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子
US14/379,752 US9347003B2 (en) 2012-02-23 2013-02-07 Liquid crystal compound having tetrafluoropropenyl, liquid crystal composition, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037697 2012-02-23
JP2012037697 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125356A1 true WO2013125356A1 (ja) 2013-08-29

Family

ID=49005544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052814 WO2013125356A1 (ja) 2012-02-23 2013-02-07 テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子

Country Status (5)

Country Link
US (1) US9347003B2 (ja)
JP (1) JP6098632B2 (ja)
CN (1) CN104245646B (ja)
TW (1) TWI544061B (ja)
WO (1) WO2013125356A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055285A (ja) * 2012-08-17 2014-03-27 Jnc Corp 液晶組成物および液晶表示素子
JP2014205791A (ja) * 2013-04-15 2014-10-30 Jnc株式会社 液晶組成物および液晶表示素子
JP2017039710A (ja) * 2015-08-20 2017-02-23 Jnc株式会社 両端にアルケニルを有する化合物、液晶組成物および液晶表示素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766502B2 (ja) * 2016-07-28 2020-10-14 Jnc株式会社 ポリフルオロ−2−ブテノキシ基を有する液晶性化合物、液晶組成物、および液晶表示素子
JP6900852B2 (ja) * 2017-09-11 2021-07-07 Jnc株式会社 フルオロビフェニルを有する誘電率異方性が負の液晶性化合物、液晶組成物および液晶表示素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500343A (ja) * 1991-06-05 1994-01-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ビニル化合物および液晶媒体
JPH0840952A (ja) * 1994-08-03 1996-02-13 Asahi Glass Co Ltd ジフルオロエチレン化合物の製造方法
JPH0859525A (ja) * 1994-08-19 1996-03-05 Asahi Glass Co Ltd トランス−ジフルオロエチレン化合物の製造方法
JPH08176033A (ja) * 1994-12-17 1996-07-09 Merck Patent Gmbh ベンゼン誘導体
JPH10504032A (ja) * 1994-08-06 1998-04-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ベンゼン誘導体及び液晶媒体
JP2005298466A (ja) * 2003-05-14 2005-10-27 Chisso Corp パーフルオロプロペニルを有する化合物、液晶組成物および液晶表示素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480217A3 (en) 1990-10-11 1992-11-19 Merck Patent Gesellschaft Mit Beschraenkter Haftung Mesogenic compounds
EP1477546B1 (en) * 2003-05-14 2006-05-24 Chisso Petrochemical Corporation Perfluoropropenyl-containing compound, liquid crystal composition and liquid crystal display element
JP5458577B2 (ja) 2007-01-24 2014-04-02 Jnc株式会社 液晶性化合物、液晶組成物および液晶表示素子
US8889035B2 (en) * 2012-08-17 2014-11-18 Jnc Corporation Liquid crystal composition and liquid crystal display device
JP5999015B2 (ja) * 2013-04-15 2016-09-28 Jnc株式会社 液晶組成物および液晶表示素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500343A (ja) * 1991-06-05 1994-01-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ビニル化合物および液晶媒体
JPH0840952A (ja) * 1994-08-03 1996-02-13 Asahi Glass Co Ltd ジフルオロエチレン化合物の製造方法
JPH10504032A (ja) * 1994-08-06 1998-04-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ベンゼン誘導体及び液晶媒体
JPH0859525A (ja) * 1994-08-19 1996-03-05 Asahi Glass Co Ltd トランス−ジフルオロエチレン化合物の製造方法
JPH08176033A (ja) * 1994-12-17 1996-07-09 Merck Patent Gmbh ベンゼン誘導体
JP2005298466A (ja) * 2003-05-14 2005-10-27 Chisso Corp パーフルオロプロペニルを有する化合物、液晶組成物および液晶表示素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055285A (ja) * 2012-08-17 2014-03-27 Jnc Corp 液晶組成物および液晶表示素子
JP2014205791A (ja) * 2013-04-15 2014-10-30 Jnc株式会社 液晶組成物および液晶表示素子
JP2017039710A (ja) * 2015-08-20 2017-02-23 Jnc株式会社 両端にアルケニルを有する化合物、液晶組成物および液晶表示素子

Also Published As

Publication number Publication date
JP6098632B2 (ja) 2017-03-22
JPWO2013125356A1 (ja) 2015-07-30
US9347003B2 (en) 2016-05-24
TWI544061B (zh) 2016-08-01
TW201339286A (zh) 2013-10-01
US20150069297A1 (en) 2015-03-12
CN104245646A (zh) 2014-12-24
CN104245646B (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6213553B2 (ja) ジフルオロメチレンオキシを有する液晶性化合物、液晶組成物および液晶表示素子
JP6213556B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
TWI458715B (zh) 具有含氮雜環之5環液晶化合物、液晶組成物以及液晶顯示元件
JP5850023B2 (ja) 末端にcf2ocf3を有する液晶化合物、液晶組成物および液晶表示素子
JP6493678B2 (ja) 液晶性化合物、液晶組成物および液晶表示素子
WO2009150963A1 (ja) シクロヘキサン環を有する5環液晶化合物、液晶組成物および液晶表示素子
JPWO2008105286A1 (ja) Cf2o結合基を有する5環液晶化合物、液晶組成物および液晶表示素子
JP6455511B2 (ja) Cf2o結合基とトラン骨格を有する液晶化合物、液晶組成物および液晶表示素子
JP6587033B2 (ja) 液晶媒体をホモジニアス配向させる低分子極性化合物を含む液晶媒体を含有する液晶表示素子
JP6524699B2 (ja) ビニレン基を有する液晶性化合物、液晶組成物および液晶表示素子
JP6019728B2 (ja) 複数のcf2o結合基を有する4環化合物、液晶組成物および液晶表示素子
JP6311531B2 (ja) 3,3−ジフルオロ−1−プロペニルオキシを有する化合物、液晶組成物および液晶表示素子
JP2014156460A (ja) 3,3,3−トリフルオロ−1−プロペニルオキシを有する化合物、液晶組成物および液晶表示素子
WO2015129412A1 (ja) テトラフルオロフルオレンを有する液晶性化合物、液晶組成物、および液晶表示素子
JP6098632B2 (ja) テトラフルオロプロペニルを有する液晶性化合物、液晶組成物、および液晶表示素子
JP2014019646A (ja) フルオロビニル基を有する液晶化合物、液晶組成物および液晶表示素子
JP7248025B2 (ja) 重合性極性化合物、液晶組成物、および液晶表示素子
JP5962164B2 (ja) 複数のcf2o結合基を有する3環化合物、液晶組成物および液晶表示素子
TWI753222B (zh) 化合物、液晶組成物及液晶顯示元件
JP7225736B2 (ja) 化合物、液晶組成物、および液晶表示素子
JP7238786B2 (ja) 化合物、液晶組成物、および液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14379752

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13752344

Country of ref document: EP

Kind code of ref document: A1