WO2013123655A1 - Fused optical fiber raman frequency shifter and fully distributed optical fiber sensor for raman amplifier - Google Patents

Fused optical fiber raman frequency shifter and fully distributed optical fiber sensor for raman amplifier Download PDF

Info

Publication number
WO2013123655A1
WO2013123655A1 PCT/CN2012/071483 CN2012071483W WO2013123655A1 WO 2013123655 A1 WO2013123655 A1 WO 2013123655A1 CN 2012071483 W CN2012071483 W CN 2012071483W WO 2013123655 A1 WO2013123655 A1 WO 2013123655A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
raman
optical fiber
laser
sensor
Prior art date
Application number
PCT/CN2012/071483
Other languages
French (fr)
Chinese (zh)
Inventor
张在宣
康娟
张文平
李晨霞
余向东
王剑锋
张文生
金尚忠
Original Assignee
中国计量学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2012100388287A priority Critical patent/CN102589459A/en
Priority to CN201210038828.7 priority
Application filed by 中国计量学院 filed Critical 中国计量学院
Publication of WO2013123655A1 publication Critical patent/WO2013123655A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like

Abstract

A fused optical fiber Raman frequency shifter and a fully distributed optical fiber sensor for a Raman amplifier. A laser light emitted by an optical fiber pulsed laser device (11) is frequency-shifted by 13.2 THz via the optical fiber Raman frequency shifter to generate a 1660 nm wave band broad spectrum Raman laser light that serves as a broad spectrum light source for the fully distributed fiber optical sensor and is emitted into a sensor optical fiber (17). Deformation and breakage of an optical fiber are detected by utilizing the principle that the reverse Rayleigh scattered light intensity of the sensor optical fiber (17) is modulated by optical fiber strain. An anti-Stokes Raman scattered light of 1550 nm wave frequency generated in the sensor optical fiber (17) is amplified via the optical fiber Raman amplifier. By deducting the effect of strain from the intensity ratio between the anti-Stokes Raman scattered light and the Rayleigh scattered light, temperature information of each optical fiber section is acquired, thus allowing detections of strain and temperature to be free of cross effects. The fully distributed optical fiber sensor utilizes optical time-domain reflectometry to position a detection point on the sensor optical fiber, is applicable in monitoring petrochemical pipelines, tunnels, large-scale civil engineering projects that are of an ultra-long range of within 100 kilometers and in disaster prediction monitoring.

Description

融合光纤拉曼频移器和拉曼放大器的全分布式光纤传感器 技术领域  Fully distributed fiber optic sensor incorporating fiber Raman frequency shifter and Raman amplifier
本发明涉及光纤传感器领域,尤其涉及一种分布式光纤瑞利与拉曼散射光子 应变、 温度传感器。  The invention relates to the field of optical fiber sensors, and in particular to a distributed optical fiber Rayleigh and Raman scattering photon strain and temperature sensor.
背景技术 Background technique
近年来发展起来的光纤传感网能实现大型土木工程、 电力工程、 石化工业、 交通桥梁、 隧道、 地铁站、 大坝说、 大堤和矿业工程等安全健康监控和灾害的预 报和监测。 光纤传感器有两大类: 一类是以光纤光栅 (FBG) 和光纤法白 (F-P ) 等点式传感器 "挂" (布设) 在光纤上, 采用光时域技术组成的准分布式光纤 传感器网络, 准分布式光纤传感器网的主要书问题是在点式传感器之间的光纤仅 是传输介质, 因而存在检测 "盲区" ; 另一类利用光纤的本征特性, 光纤瑞利、 拉曼和布里渊散射效应, 采用光时域 (0TDR) 技术组成的全分布光纤传感器网, 测量应变和温度。 全分布光纤传感器网中的光纤既是传输介质又是传感介质,不 存在检测盲区。  The fiber optic sensor network developed in recent years can realize safety and health monitoring and disaster forecasting and monitoring of large civil engineering, power engineering, petrochemical industry, traffic bridges, tunnels, subway stations, dams, levees and mining projects. There are two types of fiber optic sensors: one is a fiber-optic grating (FBG) and a fiber-optic white (FP) point sensor that is "hanged" (layout) on a fiber, using a quasi-distributed fiber optic sensor network composed of optical time domain technology. The main problem with quasi-distributed fiber-optic sensor networks is that the fiber between the point sensors is only the transmission medium, so there is a detection "blind zone"; the other class uses the intrinsic properties of the fiber, fiber Rayleigh, Raman and Buri The scatter effect, a fully distributed fiber optic sensor network consisting of optical time domain (0TDR) technology, measures strain and temperature. The optical fiber in the fully distributed optical fiber sensor network is both a transmission medium and a sensing medium, and there is no detection dead zone.
张在宣提出的《全分布式光纤瑞利与拉曼散射光子应变、温度传感器》 (中 国发明专利, 专利号: 200910099463.7, 2010年 9月 29日授权) 提供了一种结 构简单、 信噪比好, 可靠性好的分布式光纤瑞利与拉曼散射光子应变、 温度传 感器, 适用于中、 短程 0_15km全分布式光纤传感网的检测范围。 但已不能完全 满足近年来石油管道、 传输电力电缆的安全健康监测, 对远程、 超远程全分布 式光纤瑞利、 拉曼和布里渊散射应变、 温度传感网的迫切需求。  Zhang Zaixuan's "Full Distributed Optical Fiber Rayleigh and Raman Scattering Photon Strain, Temperature Sensor" (Chinese invention patent, patent number: 200910099463.7, authorized on September 29, 2010) provides a simple structure and good signal-to-noise ratio. The distributed optical fiber Rayleigh and Raman scattering photon strain and temperature sensor with good reliability are suitable for the detection range of medium and short-range 0_15km fully distributed optical fiber sensing networks. However, it has not been able to fully meet the safety and health monitoring of petroleum pipelines and transmission power cables in recent years, and the urgent need for remote and ultra-long-range fully distributed fiber Rayleigh, Raman and Brillouin scattering strain and temperature sensing networks.
发明内容 Summary of the invention
本发明的目的是针对现有技术的不足, 提供一种融合光纤拉曼频移器和拉 曼放大器的全分布式光纤传感器, 本发明为结构简单、 信噪比好、 可靠性好的 超远程 100km分布式光纤瑞利与拉曼散射光子应变、 温度传感器。  The object of the present invention is to provide a fully distributed optical fiber sensor combining a fiber Raman frequency shifter and a Raman amplifier for the deficiencies of the prior art. The present invention has a simple structure, good signal to noise ratio, and good reliability. 100km distributed fiber Rayleigh and Raman scattering photon strain, temperature sensor.
本发明的目的是通过以下技术方案来实现的: 一种融合光纤拉曼频移器和 拉曼放大器的全分布式光纤传感器, 包括光纤脉冲激光器, 光纤拉曼频移器由 单模光纤和 1660nm激光片组成, 光纤波分复用器, 光纤耦合器, 光纤拉曼激光 器, 传感光纤, 光纤窄带反射滤光器, 光电接收模块, 数字信号处理器和工控 机。 光纤脉冲激光器发出激光进入光纤拉曼频移器, 经频移 13.2THZ到 1660nm 波段, 作为宽光谱光源激光进入光纤波分复用器, 光纤波分复用器具有四个端 口, 它的输入端口与光纤拉曼频移器输出端口相连, COM输出端口经光纤窄带 反射滤光器和光纤耦合器与传感光纤相连; 光纤拉曼激光器, 光纤耦合器与传 感光纤组成 C波段光纤拉曼放大器, 在传感光纤中产生的 1660nm波段宽光谱 反向瑞利散射光经 1450nm光纤窄带反射滤光器和光纤波分复用器的一个输出 端口与光电接收模块的一个输入端口相连, 经光电转换放大后输入数字信号处 理器的一个端口; 在传感光纤中产生的, 经拉曼放大器放大的 1550nm波段宽 光谱反向反斯托克斯拉曼散射光经 1450nm光纤窄带反射滤光器和光纤波分复 用器的另一个输出端口与光电接收模块的另一个输入端口相连, 经光电转换放 大后输入数字信号处理器的另一个端口, 数字信号处理器与工控机相连。 经数 字信号处理器与工控机解调, 利用光纤瑞利散射强度受光纤应变调制的原理, 检测光纤的形变和断裂, 基于光纤反斯托克斯拉曼光强度受光纤温度调制的原 理, 采用光纤反斯托克斯拉曼光强度与光纤瑞利散射光强度比检测光纤温度, 并扣除应变的影响, 相互间不存在交叉效应。 The object of the present invention is achieved by the following technical solutions: A fully distributed optical fiber sensor incorporating a fiber Raman frequency shifter and a Raman amplifier, including a fiber pulse laser, a fiber Raman frequency shifter from a single mode fiber and 1660 nm Laser chip composition, fiber-optic wavelength division multiplexer, fiber coupler, fiber Raman laser, sensing fiber, fiber narrow-band reflection filter, photoelectric receiving module, digital signal processor and industrial computer. The fiber-optic pulsed laser emits laser light into the fiber Raman frequency shifter and is frequency-shifted from 13.2THZ to 1660nm. As a broad-spectrum light source, the laser enters the fiber-optic wavelength division multiplexer. The fiber-optic wavelength division multiplexer has four ends. Port, its input port is connected to the fiber Raman frequency shifter output port, and the COM output port is connected to the sensing fiber through the fiber narrow-band reflection filter and the fiber coupler; the fiber Raman laser, the fiber coupler and the sensing fiber are composed C-band fiber Raman amplifier, the 1660nm wide-spectrum reverse Rayleigh scattered light generated in the sensing fiber passes through a 1450nm fiber narrow-band reflection filter and an output port of the fiber-optic wavelength division multiplexer and an input of the photoelectric receiving module The port is connected, and is input to a port of the digital signal processor after photoelectric conversion amplification; the wide-spectrum reverse anti-Stokes Raman scattered light generated by the Raman amplifier and amplified by the Raman amplifier is passed through the 1450 nm fiber narrow band. The other output port of the reflection filter and the fiber-optic wavelength division multiplexer is connected to the other input port of the photoelectric receiving module, is photoelectrically converted and amplified, and is input to another port of the digital signal processor, and the digital signal processor is connected to the industrial computer. . Demodulation by digital signal processor and industrial computer, using fiber optic Rayleigh scattering intensity by fiber strain modulation principle, detecting fiber deformation and fracture, based on the principle that fiber optic anti-Stokes Raman light intensity is modulated by fiber temperature, The optical fiber anti-Stokes Raman light intensity and the fiber Rayleigh scattered light intensity ratio detect the fiber temperature, and the effect of strain is subtracted, and there is no cross effect between them.
所述的融合光纤拉曼频移器的超远程全分布式光纤传感器, 其特征是高功 率脉冲激光器的中心波长为 1550nm,光谱宽度为 O.lnm,激光脉冲宽度为 10-30ns 可调, 峰值功率为 1-lkW可调, 重复频率为 500Hz-800Hz可调。  The ultra-long-range fully distributed optical fiber sensor of the fused fiber Raman frequency shifter is characterized in that the center wavelength of the high-power pulse laser is 1550 nm, the spectral width is 0.1 nm, and the laser pulse width is adjustable from 10 to 30 ns. The power is adjustable from 1-lkW and the repetition frequency is adjustable from 500Hz to 800Hz.
所述的融合光纤拉曼频移器的超远程全分布式光纤传感器, 其特征是采用 光纤拉曼频移器, 它由 lkm单模光纤和 1660nm带通滤光片组成, 滤光片中心 波长为 1660nm,光谱带宽 28nm,透过率 98% ,对 1550nm激光的隔离度 >45dB。 光纤拉曼频移器将 1550nm波段光纤激光器频移 13.2THz到 1660nm波段, 并拓 宽了激光的光谱带宽, 作为全分布式光纤传感器的宽光谱光源。  The ultra-long-range fully distributed optical fiber sensor of the fused fiber Raman frequency shifter is characterized in that the fiber Raman frequency shifter is composed of a lkm single mode fiber and a 1660 nm band pass filter, and the filter center wavelength It is 1660 nm, the spectral bandwidth is 28 nm, the transmittance is 98%, and the isolation to the 1550 nm laser is >45 dB. The fiber Raman frequency shifter shifts the 1550nm band fiber laser from 13.2THz to 1660nm and broadens the spectral bandwidth of the laser as a broad spectrum source for fully distributed fiber optic sensors.
所述的融合光纤拉曼频移器, 拉曼放大器的全分布式光纤传感器, 其特征 是光纤波分复用器, 它具有 1660nm激光输入端口, COM输出端口, 1550nm输 出端口和 1660nm输出端口等四个端口。  The fused fiber Raman frequency shifter, the fully distributed fiber sensor of the Raman amplifier, is characterized by a fiber wavelength division multiplexer having a 1660 nm laser input port, a COM output port, a 1550 nm output port, and a 1660 nm output port. Four ports.
所述的融合光纤拉曼频移器, 拉曼放大器的全分布式光纤传感器, 其特征 是光纤耦合器的一端与光纤拉曼激光器相连, 另外两端分别与传感光纤和光纤 窄带反射滤光器相连。  The fused fiber Raman frequency shifter, the fully distributed optical fiber sensor of the Raman amplifier, is characterized in that one end of the fiber coupler is connected to the fiber Raman laser, and the other ends are respectively separated from the sensing fiber and the fiber narrowband reflection filter. Connected.
所述的融合光纤拉曼频移器, 拉曼放大器的全分布式光纤传感器, 其特征 是光纤拉曼激光器的中心波长为 1450.0nm, 光谱带宽 O.lnm, 输出功率  The fused fiber Raman frequency shifter, the fully distributed fiber sensor of the Raman amplifier, characterized in that the center wavelength of the fiber Raman laser is 1450.0 nm, the spectral bandwidth is O.lnm, and the output power is
100-1200mW可调, 由光纤耦合器, 光纤拉曼激光器和传感光纤构成 C波段光 纤拉曼放大器。 The 100-1200mW is adjustable, and the C-band fiber Raman amplifier is composed of a fiber coupler, a fiber Raman laser and a sensing fiber.
所述的融合光纤拉曼频移器, 拉曼放大器的全分布式光纤传感器, 其特征 是传感光纤采用 100km通信用 G652单模光纤或 LEAF光纤, 特殊场合采用碳 涂覆单模光纤。 The fused fiber Raman frequency shifter, the fully distributed fiber sensor of the Raman amplifier, is characterized in that the sensing fiber adopts G652 single mode fiber or LEAF fiber for 100 km communication, and carbon is used for special occasions. A single mode fiber is coated.
碳涂覆单模光纤是一种在拉丝过程中, 于裸光纤表面上沉积一层无定形碳 的特殊光纤。 这种碳密封涂覆的技术解决了光纤由于静态疲劳引起的机械强度 下降, 以及由于氢气扩散进石英玻璃体内引起的传输损耗增加等长期可靠性问 题。 这种碳涂覆光纤可以在苛刻恶劣的环境中长期可靠的工作。 碳涂覆光纤是 在光纤的包层表面加一层 35〜70nm厚的致密碳膜, 然后再涂覆一层紫外固化有 机涂料,致密碳膜可大大增强在恶劣环境下对裸光纤的保护, 保障其耐久性,传 感光纤铺设在现场, 该光纤不带电, 抗电磁干扰, 耐辐射, 耐腐蚀, 可靠性好, 光纤既是传输介质又是传感介质。  A carbon coated single mode fiber is a special fiber that deposits a layer of amorphous carbon on the surface of a bare fiber during the drawing process. This carbon seal coating technology solves the long-term reliability problems such as a decrease in mechanical strength of the optical fiber due to static fatigue and an increase in transmission loss due to diffusion of hydrogen into the quartz glass. This carbon-coated fiber can work reliably for long periods of time in harsh environments. Carbon coated fiber is a layer of 35~70nm thick carbon film on the surface of the cladding of the fiber, and then coated with a layer of UV-curable organic coating. The dense carbon film can greatly enhance the protection of bare fiber in harsh environments. To ensure its durability, the sensing fiber is laid on site. The fiber is uncharged, resistant to electromagnetic interference, radiation resistant, corrosion resistant and reliable. The optical fiber is both a transmission medium and a sensing medium.
所述的融合光纤拉曼频移器, 拉曼放大器的全分布式光纤传感器其特征是 光纤窄带反射滤光器的中心波长为 1450.0nm, 光谱带宽 0.5nm, 反射率 99%。  The fused fiber Raman frequency shifter, the fully distributed fiber sensor of the Raman amplifier is characterized in that the fiber narrow-band reflection filter has a center wavelength of 1450.0 nm, a spectral bandwidth of 0.5 nm, and a reflectance of 99%.
所述的融合光纤拉曼频移器, 拉曼放大器的全分布式光纤传感器, 其特征 是光电接收模块采用两路低噪音的 InGaAs光电雪崩二极管和低噪音宽带前置放 大器集成芯片 MAX4107和三级主放大器组成。  The fused fiber Raman frequency shifter, the fully distributed fiber sensor of the Raman amplifier, is characterized in that the photoelectric receiving module adopts two low-noise InGaAs photoelectric avalanche diodes and a low-noise broadband preamplifier integrated chip MAX4107 and three-stage. The main amplifier is composed.
光纤拉曼频移器工作原理:  Fiber Raman frequency shifter works:
当入射激光 V。与光纤分子产生非线性相互作用散射, 放出一个声子称为斯 托克斯拉曼散射光子, 吸收一个声子称为反斯托克斯拉曼散射光子△ V, 光纤 分子的声子频率为 13. 2THz, 入射激光 v。, 产生了频移:  When incident laser light V. A nonlinear interaction scattering with the fiber molecule, releasing a phonon called a Stokes Raman scattered photon, absorbing a phonon called the anti-Stokes Raman scattering photon ΔV, the phonon frequency of the fiber molecule is 13. 2THz, incident laser v. , produced a frequency shift:
v = V。士 Δ V ; ( 1 ) 叫做光纤拉曼频移, 可制作成光纤拉曼频移器。 如果入射激光超过一定的阈值, 在光纤里的斯托克斯波 v = v。- Δ V在光纤介质内快速增加, 大部分泵浦光的功 率都可以转换成斯托克斯光, 这种受激拉曼散射现象成为光纤拉曼频移器的工 作原理。 光纤拉曼频移器由 1km单模光纤它可以将 1550nm光纤脉冲激光器和 1660nm带通滤光片组成, 将 1550nm光纤脉冲激光转换为 1660nm波段宽光谱 拉曼激光。  v = V. Shi Δ V ; ( 1 ) is called fiber Raman frequency shift and can be made into fiber Raman frequency shifter. If the incident laser exceeds a certain threshold, the Stokes wave in the fiber is v = v. - Δ V increases rapidly in the fiber medium, and most of the pump light can be converted into Stokes light. This stimulated Raman scattering phenomenon becomes the working principle of the fiber Raman frequency shifter. The fiber Raman frequency shifter consists of a 1km single-mode fiber that combines a 1550nm fiber pulsed laser with a 1660nm bandpass filter to convert a 1550nm fiber pulsed laser into a 1660nm wide-spectrum Raman laser.
分布式光纤拉曼放大器工作原理  Distributed Fiber Raman Amplifier Working Principle
放大器的开关增益为:  The switching gain of the amplifier is:
G A = exp( g R PQ Leff I Aeff ) ; (2 ) 其中, ^ = /。 #是放大器的泵浦光输入功率, 是拉曼增益系数 Λ#是光纤 的有效截面, Leff 为光纤的有效作用长度 (考虑了光纤对泵浦的吸收损耗), 其 表达式如下: G A = exp( g R P Q L eff IA eff ); (2) where ^ = /. # is the pump light input power of the amplifier, is the Raman gain coefficient Λ # is the effective cross section of the fiber, L eff is the effective length of the fiber (taking into account the absorption loss of the fiber to the pump), the expression is as follows:
Leff = [1 - exp( -a L )] ( 3 ) 对于光纤拉曼放大器, 泵浦功率只有超过某一阈值时, 才有可能会对信号 产生受激拉曼放大,在光纤里的斯托克斯波 v = V。- Δ V在光纤介质内快速增加, 大部分泵浦光的功率都可以转换成斯托克斯光, 并有拉曼放大作用, 增益可以 抑制光纤的传输损耗, 提高全分布式光纤应变、 温度传感器的工作距离, 这种 受激拉曼散射现象用来增加全分布式光纤传感器的工作距离, 通常光纤拉曼放 大器的增益可达 25dB, 相当于增加传感器的工作距离近 60km。 L eff = [1 - exp( -a L )] ( 3 ) For fiber Raman amplifiers, when the pump power exceeds a certain threshold, it is possible to generate stimulated Raman amplification of the signal, and the Stokes wave in the fiber is v = V. - Δ V increases rapidly in the fiber medium. Most of the pump light can be converted into Stokes light and has Raman amplification. The gain can suppress the transmission loss of the fiber and improve the strain and temperature of the fully distributed fiber. The working distance of the sensor, this stimulated Raman scattering phenomenon is used to increase the working distance of the fully distributed fiber sensor. Generally, the gain of the fiber Raman amplifier can reach 25dB, which is equivalent to increasing the working distance of the sensor by nearly 60km.
分布式光纤瑞利散射光子传感器测量形变的原理:  The principle of distributed fiber Rayleigh scattering photon sensor for measuring deformation:
光纤脉冲激光器发出激光脉冲通过集成型光纤波分复用器射入传感光纤, 激光与光纤分子的相互作用, 产生与入射光子同频率的瑞利散射光,瑞利散射光 在光纤中传输存损耗, 随光纤长度而指数式衰减, 背向端利散射光强用下式表 The fiber pulse laser emits laser pulses into the sensing fiber through the integrated fiber-optic wavelength division multiplexer. The interaction between the laser and the fiber molecules produces Rayleigh scattered light at the same frequency as the incident photons. Rayleigh scattered light is transmitted in the fiber. Loss, exponentially decay with length of the fiber, backscattered light intensity using the following formula
7J :7J:
ay = · ^o4 exP (- 2a0L) ; (4 ) 上式中, /。为入射到光纤处的光强, Z为光纤长度, /为背向瑞利散射光在 光纤长度 Z处的光强, 《。为入射光波长处的光纤传输损耗。 Ay = · ^o 4 ex P (- 2a 0 L) ; (4) In the above formula, /. For the intensity of light incident on the fiber, Z is the length of the fiber, / is the intensity of the light at the length Z of the fiber that is back-scattered by Rayleigh. The transmission loss of the fiber at the wavelength of the incident light.
由于光纤将传感光纤铺设在检测现场, 当现场环境产生形变或裂紋时, 造 成铺设在现场的光纤发生弯曲, 光纤产生局部损耗, 形成光纤的附加损耗 Δ«, 则总损耗《 = «。^«, 局域处的光强有一个跌落, 光强由 /(/)减少为 /'(/), 形变造 成的附加损耗通过光强的改变进行测量:  Since the optical fiber is used to lay the sensing fiber on the inspection site, when the field environment is deformed or cracked, the optical fiber laid in the field is bent, the optical fiber generates local loss, and the additional loss of the optical fiber Δ« is formed, and the total loss is "= «. ^«, There is a drop in the intensity at the local area, and the light intensity is reduced from /(/) to /'(/). The additional loss caused by the deformation is measured by the change in light intensity:
A =— log-^¾ ; ( 5 ) A =- log-^3⁄4 ; ( 5 )
21 Β Γ (ΐ) 形变或裂紋大小与光纤损耗的关系采用仿真模型计算并在实验室进行摸拟 试验测量获得。 21 Β Γ (ΐ) The relationship between deformation or crack size and fiber loss is calculated using a simulation model and experimentally measured in the laboratory.
分布式光纤拉曼散射光子传感器测量温度的原理:  The principle of distributed fiber Raman scattering photon sensor for measuring temperature:
当入射激光与光纤分子产生非线性相互作用散射, 放出一个声子称为斯托 克斯拉曼散射光子, 吸收一个声子称为反斯托克斯拉曼散射光子, 光纤分子的 声子频率为 13. 2THz。 光纤分子能级上的粒子数热分布服从波尔兹曼 (Boltzmann) 定律, 在光纤里反斯托克斯背向拉曼散射光强为:  When the incident laser and the fiber molecule produce nonlinear interaction scattering, a phonon is emitted as a Stokes Raman scattered photon, and a phonon is absorbed as an anti-Stokes Raman scattered photon. The phonon frequency of the fiber molecule It is 13. 2THz. The heat distribution of the number of particles at the molecular level of the fiber obeys Boltzmann's law. The anti-Stokes back Raman scattering intensity in the fiber is:
= » )eXp[- («。+ «。) ] ; (6 ) 它受到光纤温度的调制, 温度调制函数^: = » )e X p[- («.+ «.) ] ; (6 ) It is modulated by the temperature of the fiber, temperature modulation function ^:
R a (r ) = [e xp ( A V / — 1] ; ( 7 ) h是波朗克 (Planck ) 常数, Δ v是一光纤分子的声子频率, 为 13. 2THz, k是波尔兹曼常数, T是凯尔文 (Kelvin) 绝对温度。 在本发明中采用光纤瑞利通道做参考信号, 用反斯托克斯拉曼散射光和瑞 散射光利光强度的比值来检测温度:R a (r ) = [e xp ( AV / — 1] ; ( 7 ) h is the Planck constant, Δ v is the phonon frequency of a fiber molecule, 13. 2 THz, k is Boltz Mann constant, T is the absolute temperature of Kelvin. In the present invention, the fiber Rayleigh channel is used as a reference signal, and the ratio of the anti-Stokes Raman scattered light to the Rayleigh scattered light intensity is used to detect the temperature:
l =4 . exp[( v/ fcD - I] 1 . exp[-(«fl - «。)* L] l = ( 3⁄4 4 . exp[( v/ fcD - I] 1 . exp[-(« fl - «.)* L]
"Γ) νο ; ( 8 ) 由光纤拉曼光时域反射 (0TDR ) 曲线在光纤检测点的反斯托克斯拉曼散射 光和瑞散射光利光强度比, 扣除应变的影响得到光纤各段的温度信息。 " Γ ) ν ο ; ( 8 ) Optical fiber Raman optical time domain reflection (0TDR) curve at the fiber detection point of the anti-Stokes Raman scattered light and ray scattering light intensity ratio, after subtracting the effect of strain to obtain each fiber The temperature information of the segment.
本发明的有益效果在于: 本发明的融合光纤拉曼频移器和拉曼放大器的全 分布式光纤传感器融合光纤拉曼频移器, 将激光移到 1660nm波段并具有 28nm 宽的光谱, 抑制了相干噪声并将传感光纤中带有温度信息的反斯托克斯拉曼光, 移到 1550nm光纤低损耗波段, 提高了传感器系统的信噪比; 融合了 C波段光 纤拉曼放大器, 放大了 1550nm波段的反斯托克斯拉曼光, 增益近 25dB, 相当 于增加了 60km测量长度, 在测量现场温度的同时能测量现场的形变、裂缝和温 度并且互不交叉。 铺设在防灾现场的传感光纤是绝缘的, 不带电的, 抗电磁干 扰, 耐辐射, 耐腐蚀的, 是本质安全型的, 光纤既是传输介质又是传感介质, 是本征型的传感光纤, 并具有 50年以上的长寿命, 本发明适用于超远程 100km 全分布式光纤应变、 温度传感网。  The invention has the beneficial effects of: the fully distributed optical fiber sensor fused fiber Raman frequency shifter of the fused fiber Raman frequency shifter and the Raman amplifier of the invention, the laser is moved to the 1660 nm band and has a spectrum of 28 nm width, which suppresses Coherent noise and anti-Stokes Raman light with temperature information in the sensing fiber is moved to the low-loss band of 1550nm fiber, which improves the signal-to-noise ratio of the sensor system. It combines the C-band fiber Raman amplifier and amplifies it. The anti-Stokes Raman light in the 1550nm band has a gain of nearly 25dB, which is equivalent to an increase of 60km in measurement length. It can measure the deformation, crack and temperature of the site while measuring the temperature of the site and does not cross each other. The sensing fiber laid on the disaster prevention site is insulated, uncharged, resistant to electromagnetic interference, radiation resistant, and corrosion resistant. It is intrinsically safe. Optical fiber is both a transmission medium and a sensing medium. It is an intrinsic type. The optical fiber has a long life of more than 50 years, and the invention is applicable to an ultra-long-range 100km fully distributed optical fiber strain and temperature sensing network.
附图说明 DRAWINGS
图 1是融合光纤拉曼频移器和拉曼放大器的全分布式光纤传感器的示意图; 图中, 光纤脉冲激光器 11、 单模光纤 12、 1660nm激光片 13、 光纤波分复 用器 14、 光纤耦合器 15、 光纤拉曼激光器 16、 传感光纤 17、 光纤窄带反射滤 光器 18、 光电接收模块 19、 数字信号处理器 20、 工控机 21。  1 is a schematic diagram of a fully distributed optical fiber sensor incorporating a fiber Raman frequency shifter and a Raman amplifier; in the figure, a fiber pulse laser 11, a single mode fiber 12, a 1660 nm laser chip 13, a fiber wavelength division multiplexer 14, an optical fiber The coupler 15, the fiber Raman laser 16, the sensing fiber 17, the fiber narrowband reflection filter 18, the photoelectric receiving module 19, the digital signal processor 20, and the industrial computer 21.
具体实施方式 detailed description
下面根据附图详细描述本发明, 本发明的目的和效果将变得更加明显。 参照图 1,本发明融合光纤拉曼频移器和拉曼放大器的全分布式光纤传感器 包括: 光纤脉冲激光器 11、 单模光纤 12、 1660nm激光片 13、 光纤波分复用器 14、 光纤耦合器 15、 光纤拉曼激光器 16、 传感光纤 17、 光纤窄带反射滤光器 18、光电接收模块 19、数字信号处理器 20和工控机 21。单模光纤 12和 1660nm 激光片 13组成光纤拉曼频移器; 光纤脉冲激光器 11发出激光进入光纤拉曼频 移器, 经频移 13.2THZ到 1660nm波段, 作为宽光谱光源激光进入光纤波分复用 器 14, 光纤波分复用器 14具有四个端口, 它的输入端口与光纤拉曼频移器输出 端口相连, COM输出端口经光纤窄带反射滤光器 18和光纤耦合器 15与传感光 纤 17相连;光纤拉曼激光器 16、光纤耦合器 15与传感光纤 17组成 C波段光纤 拉曼放大器, 在传感光纤 17 中产生的 1660nm波段宽光谱反向瑞利散射光经 1450nm光纤窄带反射滤光器 18和光纤波分复用器 14的一个输出端口与光电接 收模块 19的一个输入端口相连, 经光电转换放大后输入数字信号处理器 20的 一个端口; 在传感光纤 17中产生的, 经拉曼放大器放大的 1550nm波段宽光谱 反向反斯托克斯拉曼散射光经 1450nm光纤窄带反射滤光器 18和光纤波分复用 器 14的另一个输出端口与光电接收模块 19的另一个输入端口相连, 经光电转 换放大后输入数字信号处理器 20的另一个端口, 数字信号处理器 20与工控机 21相连。 The invention will be described in detail below with reference to the drawings, and the objects and effects of the invention will become more apparent. Referring to FIG. 1, the fully distributed optical fiber sensor of the fusion fiber Raman frequency shifter and the Raman amplifier of the present invention comprises: a fiber pulse laser 11, a single mode fiber 12, a 1660 nm laser chip 13, a fiber wavelength division multiplexer 14, and a fiber coupling. The optical fiber Raman laser 16, the sensing fiber 17, the optical fiber narrowband reflection filter 18, the photoelectric receiving module 19, the digital signal processor 20, and the industrial computer 21. The single-mode fiber 12 and the 1660 nm laser chip 13 constitute a fiber Raman frequency shifter; the fiber pulse laser 11 emits laser light into the fiber Raman frequency shifter, and the frequency shift is 13.2THZ to 1660nm band, and the laser enters the fiber wave division as a wide-spectrum light source. The device 14 has a fiber-optic wavelength division multiplexer 14 having four ports, an input port connected to the fiber Raman frequency shifter output port, and a COM output port via the fiber narrow-band reflection filter 18 and the fiber coupler 15 and sensing. The optical fiber 17 is connected; the optical fiber Raman laser 16, the fiber coupler 15 and the sensing fiber 17 form a C-band fiber The Raman amplifier, the 1660 nm band wide spectral reverse Rayleigh scattered light generated in the sensing fiber 17 passes through a 1450 nm fiber narrow-band reflection filter 18 and an output port of the fiber-optic wavelength division multiplexer 14 and a photo-receiving module 19 The input port is connected, and is input to a port of the digital signal processor 20 after photoelectric conversion amplification; the wide-spectrum reverse anti-Stokes Raman scattered light of the 1550 nm band amplified by the Raman amplifier generated in the sensing fiber 17 The other output port of the 1450 nm fiber narrow-band reflection filter 18 and the fiber-optic wavelength division multiplexer 14 is connected to the other input port of the photo-receiving module 19, and is photoelectrically converted and amplified and input to the other port of the digital signal processor 20, The signal processor 20 is connected to the industrial computer 21.
所述的光纤脉冲激光器 11的中心波长为 1550nm, 光谱宽度为 0.2nm, 激光 脉冲宽度为 10ns, 峰值功率为 100W可调, 重复频率为 500Hz-800KHz可调。  The fiber laser 11 has a center wavelength of 1550 nm, a spectral width of 0.2 nm, a laser pulse width of 10 ns, a peak power of 100 W, and a repetition rate of 500 Hz to 800 KHz.
所述的光纤拉曼频移器, 它由 1km单模光纤 12和 1660nm激光片 13组成, 滤光片中心波长为 1660nm, 光谱带宽 28nm, 透过率 98%, 对 1550nm激光的隔 离度 >45dB。  The fiber Raman frequency shifter is composed of a 1 km single mode fiber 12 and a 1660 nm laser chip 13. The center wavelength of the filter is 1660 nm, the spectral bandwidth is 28 nm, the transmittance is 98%, and the isolation of the 1550 nm laser is >45 dB. .
所述的光纤波分复用器 14,它具有 1660nm激光输入端口, COM输出端口, 1550nm输出端口和 1660nm输出端口等四个端口。  The fiber-optic wavelength division multiplexer 14 has four ports of a 1660 nm laser input port, a COM output port, a 1550 nm output port, and a 1660 nm output port.
所述光纤耦合器 15的一端与光纤拉曼激光器 16相连, 另外两端分别与传 感光纤 17和光纤窄带反射滤光器 18相连。  One end of the fiber coupler 15 is connected to the fiber Raman laser 16, and the other ends are connected to the sensing fiber 17 and the fiber narrow band reflection filter 18, respectively.
所述的光纤拉曼激光器 16的中心波长为 1450.0nm, 光谱带宽 O.lnm, 输出 功率 100-1200mW可调, 由光纤耦合器 15、 光纤拉曼激光器 16和传感光纤 17 构成 C波段光纤拉曼放大器。  The fiber Raman laser 16 has a center wavelength of 1450.0 nm, a spectral bandwidth of 0.1 nm, and an output power of 100-1200 mW, and is composed of a fiber coupler 15, a fiber Raman laser 16, and a sensing fiber 17 to form a C-band fiber pull. Man amplifier.
所述的传感光纤 17采用 100km通信用 G652单模光纤或 LEAF光纤, 特殊 场合采用碳涂覆单模光纤。  The sensing fiber 17 is a G652 single mode fiber or a LEAF fiber for 100 km communication, and a carbon coated single mode fiber for special occasions.
所述的光纤窄带反射滤光器 18的中心波长为 1450.0nm, 光谱带宽 0.5nm, 反射率 99%。  The fiber narrow-band reflection filter 18 has a center wavelength of 1450.0 nm, a spectral bandwidth of 0.5 nm, and a reflectance of 99%.
所述的光电接收模块 19采用两路低噪音的 InGaAs光电雪崩二极管和低噪 音宽带前置放大器集成芯片 MAX4107和三级主放大器组成。  The photoelectric receiving module 19 is composed of two low-noise InGaAs photoelectric avalanche diodes and a low-noise broadband preamplifier integrated chip MAX4107 and a three-stage main amplifier.
所述的数字信号处理器 20采用 Alazar Tech.公司 ATS 9642型 16位两通道 高速宽带信号采集处理卡。  The digital signal processor 20 uses an Alazar Tech. ATS 9642 16-bit two-channel high-speed broadband signal acquisition and processing card.
本发明的工作过程如下: 工作时, 光脉冲激光器发出激光脉冲进入光纤拉 曼频移器, 光纤拉曼频移器将 1550nm波段的光纤脉冲激光器频移 13.2THz到 1660nm波段, 作为全分布式光纤传感器的宽光谱光源。 宽光谱激光脉冲通过光 纤波分复用器, 光纤窄带反射滤光片和光纤耦合器进入传感光纤, 在传感光纤 中产生的 1660nm波段反向瑞利散射经波分复用器, 光电接收模块, 将光信号转 换成模拟电信号并放大, 由瑞利散射光的强度比得到应变的信息; 由光纤拉曼 激光器, 光纤耦合器和传感光纤构成 C波段光纤拉曼放大器, 传感光纤中产生 的 1550nm波段反斯托克斯拉曼散射经光纤拉曼放大器放大, 经波分复用器, 带 有温度信息的被放大的反斯托克斯拉曼散射光经光电接收模块, 由反斯托克斯 拉曼散射光与瑞利散射光的强度比, 扣除应变的影响得到光纤各段的温度信息, 应变与温度的检测不存在交叉效应, 利用光时域反射对传感光纤上的检测点定 位 (光纤雷达定位)。 通过数字信号处理器与应变、 温度解调软件解调并对应变 与温度测进行定标, 在 60秒内得到 100km传感光纤上各点应变与温度变化量, 测温精度 ±2° C, 由计算机通讯接口、 通讯协议进行远程网络传输, 当传感光纤 上检测点达到设定的应变或温度报警设定值时, 向报警控制器发出报警信号。 The working process of the invention is as follows: During operation, the optical pulse laser emits a laser pulse into the fiber Raman frequency shifter, and the fiber Raman frequency shifter shifts the fiber pulse laser of the 1550 nm band by 13.2 THz to 1660 nm as a fully distributed fiber. Wide spectrum source of the sensor. The broad-spectrum laser pulse enters the sensing fiber through the fiber-optic wavelength division multiplexer, the fiber narrow-band reflection filter and the fiber coupler, and the 1660 nm band reverse Rayleigh scattering generated in the sensing fiber is passed through the wavelength division multiplexer, and the photoelectric receiving Module, turn the light signal Switching to an analog electrical signal and amplifying, the information of the intensity of the Rayleigh scattered light is obtained; the fiber Raman laser, the fiber coupler and the sensing fiber form a C-band fiber Raman amplifier, and the 1550 nm band generated in the sensing fiber Anti-Stokes Raman scattering is amplified by a fiber Raman amplifier, via a wavelength division multiplexer, amplified anti-Stokes Raman scattered light with temperature information via an optoelectronic receiver module, by anti-Stokes The intensity ratio of Raman scattered light and Rayleigh scattered light, the temperature information of each segment of the fiber is obtained by subtracting the influence of strain, and there is no cross-effect between the strain and temperature detection, and the detection point on the sensing fiber is positioned by the optical time domain reflection ( Fiber-optic radar positioning). The digital signal processor and the strain and temperature demodulation software demodulate and calibrate the strain and temperature measurement, and obtain the strain and temperature change at each point on the 100km sensing fiber in 60 seconds. The temperature measurement accuracy is ±2° C. Remote network transmission is carried out by computer communication interface and communication protocol. When the detection point on the sensing fiber reaches the set strain or temperature alarm setting value, an alarm signal is sent to the alarm controller.

Claims

权 利 要 求 书 Claim
1.一种融合光纤拉曼频移器和拉曼放大器的全分布式光纤传感器,其特征在 于, 它包括: 光纤脉冲激光器 (11)、、 单模光纤 (12)、 1660nm激光片 (13)、 光纤波分复用器(14)、光纤耦合器(15)、光纤拉曼激光器(16)、传感光纤(17)、 光纤窄带反射滤光器 (18)、 光电接收模块 (19)、 数字信号处理器 (20) 和工 控机 (21); 其中, 单模光纤 (12) 和 1660nm激光片 (13) 组成光纤拉曼频移 器, 光纤拉曼激光器 (16)、 光纤耦合器 (15) 与传感光纤 (17) 组成 C波段光 纤拉曼放大器; 光纤脉冲激光器 (11) 发出激光进入光纤拉曼频移器, 经频移 13.2THZ到 1660nm波段, 作为宽光谱光源激光进入光纤波分复用器 (14), 光 纤波分复用器(14)具有四个端口, 它的 1660nm激光输入端口与光纤拉曼频移 器输出端口相连, COM输出端口经光纤窄带反射滤光器(18)和光纤耦合器(15) 与传感光纤(17)相连; 在传感光纤(17) 中产生的 1660nm波段宽光谱反向瑞 利散射光经光纤窄带反射滤光器(18)和光纤波分复用器(14) 的 1660nm输出 端口与光电接收模块 (19) 的一个输入端口相连, 经光电转换放大后输入数字 信号处理器 (20) 的一个端口; 在传感光纤 (17) 中产生的经拉曼放大器放大 的 1550nm波段宽光谱反向反斯托克斯拉曼散射光经光纤窄带反射滤光器 (18) 和光纤波分复用器 (14) 的 1550nm输出端口与光电接收模块 (19) 的另一个 输入端口相连, 经光电转换放大后输入数字信号处理器 (20) 的另一个端口, 数字信号处理器 (20) 与工控机 (21) 相连。 A fully distributed optical fiber sensor incorporating a fiber Raman frequency shifter and a Raman amplifier, comprising: a fiber laser (11), a single mode fiber (12), and a 1660 nm laser chip (13) , fiber-optic wavelength division multiplexer (14), fiber coupler (15), fiber Raman laser (16), sensing fiber (17), fiber narrow-band reflection filter (18), photoelectric receiving module (19), A digital signal processor (20) and an industrial computer (21); wherein, the single mode fiber (12) and the 1660 nm laser chip (13) constitute a fiber Raman frequency shifter, a fiber Raman laser (16), and a fiber coupler (15) And the sensing fiber (17) constitutes a C-band fiber Raman amplifier; the fiber pulse laser (11) emits laser light into the fiber Raman frequency shifter, which is frequency shifted by 13.2THZ to 1660nm band, and the laser enters the fiber wavelength division as a broad-spectrum light source. The multiplexer (14), the fiber-optic wavelength division multiplexer (14) has four ports, its 1660 nm laser input port is connected to the fiber Raman frequency shifter output port, and the COM output port is passed through the fiber narrow-band reflection filter (18). ) and fiber coupling (15) is connected to the sensing fiber (17); the 1660 nm band wide spectral reverse Rayleigh scattered light generated in the sensing fiber (17) is passed through the fiber narrowband reflection filter (18) and the fiber wavelength division multiplexer The 1660nm output port of (14) is connected to an input port of the optoelectronic receiving module (19), and is photoelectrically amplified and input to a port of the digital signal processor (20); the Raman generated in the sensing fiber (17) Amplifier-amplified 1550nm wide-spectrum reverse anti-Stokes Raman scattered light via fiber optic narrowband reflection filter (18) and fiber-optic wavelength division multiplexer (14) 1550nm output port with optoelectronic receiver module (19) The other input port is connected, photoelectrically converted and amplified, and then input to another port of the digital signal processor (20), and the digital signal processor (20) is connected to the industrial computer (21).
2.根据权利要求 1 所述的融合光纤拉曼频移器和拉曼放大器的全分布式光 纤传感器, 其特征在于, 所述光纤脉冲激光器 (11) 的中心波长为 1550nm, 光 谱宽度为 0.2nm, 激光脉冲宽度为 10-30ns可调, 峰值功率为 100W可调, 重复 频率为 500Hz-800KHz可调。  2 . The fully distributed optical fiber sensor of a fused fiber Raman frequency shifter and a Raman amplifier according to claim 1 , wherein the fiber laser (11) has a center wavelength of 1550 nm and a spectral width of 0.2 nm. The laser pulse width is adjustable from 10-30ns, the peak power is adjustable to 100W, and the repetition frequency is adjustable from 500Hz to 800KHz.
3.根据权利要求 1所述的融合光纤拉曼频移器和拉曼放大器的全分布式光 纤传感器, 其特征在于, 所述光纤拉曼频移器由 1km单模光纤(12)和 1660nm 激光片 (13) 组成, 滤光片中心波长为 1660nm, 光谱带宽 28nm, 透过率 98%, 对 1550nm激光的隔离度 >45dB。  3. The fully distributed optical fiber sensor of a fused fiber Raman frequency shifter and a Raman amplifier according to claim 1, wherein said fiber Raman frequency shifter comprises a 1 km single mode fiber (12) and a 1660 nm laser. The composition of the film (13), the filter center wavelength is 1660nm, the spectral bandwidth is 28nm, the transmittance is 98%, and the isolation of the 1550nm laser is >45dB.
4.根据权利要求 1所述的融合光纤拉曼频移器和拉曼放大器的全分布式光 纤传感器, 其特征在于, 所述光纤波分复用器 (14), 它具有 1660nm激光输入 端口, COM输出端口, 1550nm输出端口和 1660nm输出端口等四个端口。  4. The fully distributed optical fiber sensor of a fused fiber Raman frequency shifter and a Raman amplifier according to claim 1, wherein said fiber wavelength division multiplexer (14) has a 1660 nm laser input port. Four ports, such as COM output port, 1550nm output port and 1660nm output port.
5.根据权利要求 1所述的融合光纤拉曼频移器和拉曼放大器的全分布式光 纤传感器, 其特征在于, 所述光纤拉曼激光器 (16) 的中心波长为 1450.0nm, 光谱带宽 O.lnm, 输出功率 100-1200mW可调。 5. The fully distributed light of a fused fiber Raman frequency shifter and a Raman amplifier according to claim The fiber sensor is characterized in that the fiber Raman laser (16) has a center wavelength of 1450.0 nm, a spectral bandwidth of 0.1 nm, and an output power of 100-1200 mW.
6.根据权利要求 1 所述的融合光纤拉曼频移器和拉曼放大器的全分布式光 纤传感器, 其特征在于, 所述传感光纤 (17 ) 采用 100km通信用 G652单模光 纤、 LEAF光纤或碳涂覆单模光纤。  The fully distributed optical fiber sensor of the fused fiber Raman frequency shifter and the Raman amplifier according to claim 1, wherein the sensing fiber (17) uses G652 single mode fiber and LEAF fiber for 100 km communication. Or carbon coated single mode fiber.
7.根据权利要求 1所述的融合光纤拉曼频移器和拉曼放大器的全分布式光 纤传感器,其特征在于,所述光纤窄带反射滤光器(18 )的中心波长为 1450.0nm, 光谱带宽 0.5nm, 反射率 99%。  The fully distributed optical fiber sensor of the fused fiber Raman frequency shifter and the Raman amplifier according to claim 1, wherein the fiber narrow-band reflection filter (18) has a center wavelength of 1450.0 nm, and a spectrum The bandwidth is 0.5 nm and the reflectivity is 99%.
8.根据权利要求 1所述的融合光纤拉曼频移器,拉曼放大器的全分布式光纤 传感器, 其特征在于, 所述光电接收模块 (19)采用两路低噪音的 InGaAs光电 雪崩二极管和低噪音宽带前置放大器集成芯片 MAX4107和三级主放大器组成。  8 . The fused fiber Raman frequency shifter of claim 1 , the fully distributed fiber sensor of the Raman amplifier, wherein the photo receiving module ( 19 ) uses two low-noise InGaAs photoelectric avalanche diodes and Low noise wideband preamplifier integrated chip MAX4107 and three main amplifier.
PCT/CN2012/071483 2012-02-21 2012-02-23 Fused optical fiber raman frequency shifter and fully distributed optical fiber sensor for raman amplifier WO2013123655A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012100388287A CN102589459A (en) 2012-02-21 2012-02-21 Fully-distributed optical fiber sensor in combination of optical fiber Raman frequency shifter and Raman amplifier
CN201210038828.7 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013123655A1 true WO2013123655A1 (en) 2013-08-29

Family

ID=46478452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071483 WO2013123655A1 (en) 2012-02-21 2012-02-23 Fused optical fiber raman frequency shifter and fully distributed optical fiber sensor for raman amplifier

Country Status (2)

Country Link
CN (1) CN102589459A (en)
WO (1) WO2013123655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523319A (en) * 2014-02-19 2015-08-26 Ap Sensing Gmbh Distributed optical sensing with two-step evaluation
EP3688847A4 (en) * 2017-09-29 2021-08-18 Prisma Photonics Ltd. Tailor distributed amplification for fiber sensing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019102567B3 (en) * 2019-02-01 2020-03-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Sensor device for measuring direct and alternating currents
CN112378430B (en) * 2020-10-29 2022-04-22 太原理工大学 Distributed optical fiber Raman sensing device and method based on chaotic laser

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317230A (en) * 1996-09-13 1998-03-18 Ando Electric Fiber optic strain measurement
JPH11271028A (en) * 1998-03-24 1999-10-05 Nippon Telegr & Teleph Corp <Ntt> Measuring apparatus for strain of optical fiber
CN102080954A (en) * 2010-11-26 2011-06-01 中国计量学院 Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor
CN102080953A (en) * 2010-11-26 2011-06-01 中国计量学院 Ultra-long-range (ULR) full-distributed optical Rayleigh and Raman scattering sensor fused with optical Raman frequency shifter
CN201885733U (en) * 2010-11-26 2011-06-29 中国计量学院 Ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor fused with optical fiber Raman frequency shifter
CN201935670U (en) * 2010-11-26 2011-08-17 中国计量学院 Ultra long-range 100km full-distributed optical fiber Rayleigh and Raman scattering sensor
CN102322809A (en) * 2011-08-09 2012-01-18 中国计量学院 Pulse coding ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor
CN102322886A (en) * 2011-08-09 2012-01-18 中国计量学院 Pulse coding extra-long distance fully-distributed fiber Rayleigh and Raman scattering sensor of fusion fiber Raman frequency shift device
CN102359830A (en) * 2011-09-06 2012-02-22 中国计量学院 Multiple Raman scattering effect fused ultra remote fiber temperature measurement sensor
CN202452952U (en) * 2012-02-21 2012-09-26 中国计量学院 Optical fiber Raman frequency shifter and fully-distributed optical fiber sensor of Raman amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825498B (en) * 2010-04-13 2012-03-21 中国计量学院 Distributed optical fiber Raman temperature sensor (DOFRTS) with self-correction of dispersion and loss spectra

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317230A (en) * 1996-09-13 1998-03-18 Ando Electric Fiber optic strain measurement
JPH11271028A (en) * 1998-03-24 1999-10-05 Nippon Telegr & Teleph Corp <Ntt> Measuring apparatus for strain of optical fiber
CN102080954A (en) * 2010-11-26 2011-06-01 中国计量学院 Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor
CN102080953A (en) * 2010-11-26 2011-06-01 中国计量学院 Ultra-long-range (ULR) full-distributed optical Rayleigh and Raman scattering sensor fused with optical Raman frequency shifter
CN201885733U (en) * 2010-11-26 2011-06-29 中国计量学院 Ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor fused with optical fiber Raman frequency shifter
CN201935670U (en) * 2010-11-26 2011-08-17 中国计量学院 Ultra long-range 100km full-distributed optical fiber Rayleigh and Raman scattering sensor
CN102322809A (en) * 2011-08-09 2012-01-18 中国计量学院 Pulse coding ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor
CN102322886A (en) * 2011-08-09 2012-01-18 中国计量学院 Pulse coding extra-long distance fully-distributed fiber Rayleigh and Raman scattering sensor of fusion fiber Raman frequency shift device
CN102359830A (en) * 2011-09-06 2012-02-22 中国计量学院 Multiple Raman scattering effect fused ultra remote fiber temperature measurement sensor
CN202452952U (en) * 2012-02-21 2012-09-26 中国计量学院 Optical fiber Raman frequency shifter and fully-distributed optical fiber sensor of Raman amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2523319A (en) * 2014-02-19 2015-08-26 Ap Sensing Gmbh Distributed optical sensing with two-step evaluation
US9726546B2 (en) 2014-02-19 2017-08-08 Ap Sensing Gmbh Distributed optical sensing with two-step evaluation
GB2523319B (en) * 2014-02-19 2017-08-16 Ap Sensing Gmbh Distributed optical sensing with two-step evaluation
EP3688847A4 (en) * 2017-09-29 2021-08-18 Prisma Photonics Ltd. Tailor distributed amplification for fiber sensing

Also Published As

Publication number Publication date
CN102589459A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
US9157811B2 (en) Dispersion and loss spectrum auto-correction distributed optical fiber raman temperature sensor
CN101592475B (en) Fully distributed fiber Rayleigh and Raman scattering photon strain and temperature sensor
CN201885733U (en) Ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor fused with optical fiber Raman frequency shifter
CN102080954B (en) Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor
WO2013020286A1 (en) Chaotic laser-related fully distributed optical fiber raman and rayleigh photon sensor
CN203605976U (en) Distributed type optical fiber temperature and stress sensing device
CN108180853B (en) Brillouin optical time domain reflection strain detection device based on chaotic modulation
CN102080953A (en) Ultra-long-range (ULR) full-distributed optical Rayleigh and Raman scattering sensor fused with optical Raman frequency shifter
CN201876324U (en) Double-light source light path structure of distributed optical fiber Raman temperature sensor
WO2013123655A1 (en) Fused optical fiber raman frequency shifter and fully distributed optical fiber sensor for raman amplifier
CN201935670U (en) Ultra long-range 100km full-distributed optical fiber Rayleigh and Raman scattering sensor
CN102359830B (en) Multiple Raman scattering effect fused ultra remote fiber temperature measurement sensor
CN110186547A (en) Pipe safety condition detection apparatus and method
CN202177385U (en) Ultra-long-range fully-distributed type optical Rayleigh and Raman scattering sensor of pulse coding
WO2019218690A1 (en) Distributed fiber raman temperature-measuring apparatus and method based on ase noise
CN104729751A (en) Distributed optical fiber temperature and stress sensor based on Brillouin scattering
WO2013123656A1 (en) Fully distributed optical fiber sensor for optical fiber raman frequency shifter of fused raman amplification effect
CN201417140Y (en) Distributed optical-fiber Rayleigh/Raman-scattering-photon strain/temperature sensor
CN102322886A (en) Pulse coding extra-long distance fully-distributed fiber Rayleigh and Raman scattering sensor of fusion fiber Raman frequency shift device
CN102322811A (en) Chaotic laser relevant full-distribution fiber Raman and Rayleigh photon sensor
CN102322809A (en) Pulse coding ultra-long-range fully-distributed optical fiber Rayleigh and Raman scattering sensor
Silva et al. Cavity ring‐down technique for remote sensing
CN202452952U (en) Optical fiber Raman frequency shifter and fully-distributed optical fiber sensor of Raman amplifier
CN202453115U (en) Full-distribution optical fiber sensor for optical fiber Raman frequency shifter with Raman amplification effect
CN105352626B (en) A kind of demodulation method and device of Concatenate optical fiber Raman temperature system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 12869443

Country of ref document: EP

Kind code of ref document: A1