WO2013121753A1 - モーターのステーター・コア及び製造方法 - Google Patents

モーターのステーター・コア及び製造方法 Download PDF

Info

Publication number
WO2013121753A1
WO2013121753A1 PCT/JP2013/000677 JP2013000677W WO2013121753A1 WO 2013121753 A1 WO2013121753 A1 WO 2013121753A1 JP 2013000677 W JP2013000677 W JP 2013000677W WO 2013121753 A1 WO2013121753 A1 WO 2013121753A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
yoke
displacement
motor
annular member
Prior art date
Application number
PCT/JP2013/000677
Other languages
English (en)
French (fr)
Inventor
一夫 岩田
洋平 亀田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to KR1020147024019A priority Critical patent/KR20140128369A/ko
Priority to US14/378,397 priority patent/US20150042199A1/en
Priority to EP13748841.7A priority patent/EP2816708B1/en
Priority to CN201380009144.7A priority patent/CN104137390A/zh
Publication of WO2013121753A1 publication Critical patent/WO2013121753A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator core for a motor and a manufacturing method thereof.
  • FIG. 19 is a front view of the main part showing a state in which the stator core is baked into the core case
  • FIG. 20 is a front view of the main part of the stator core
  • FIG. FIG. 22 is a cross-sectional view showing a state in which the stator core is baked into the core case.
  • stator case cores 101A, 101B, and 101C of the motor core cores 103A, 103B, and 103C are joined in an annular shape, and the core case 105A, which is an annular member, is formed by shrinkage. It is stored and fixed in 105B and 105C.
  • stator core 101A shown in FIGS. 19 and 20 is provided with a slit 101Aa so as not to generate compressive stress, and the stator cores 103B and 103C shown in FIGS. 21 and 22 have holes 103Ba that reduce the compressive stress. , 103Ca are formed.
  • the slits 101Aa and the holes 103Ba and 103Ca cause an increase in magnetic resistance at the portions, and thus there is a problem of deteriorating magnetic characteristics.
  • FIG. 23 is a front view of a principal part showing a state of stress generation in a state where the stator core is baked into the core case
  • FIG. 24 is a state of magnetic flux formation in the state where the stator core is baked into the core case. It is a principal part front view shown.
  • the radial thickness a of the yoke portion 101Da included in the stator core 101D is formed to be smaller than the radial thickness b of the core case 105D.
  • the problem to be solved is that the reduction of the compressive stress due to the slits and holes causes an increase in the magnetic resistance and the magnetic characteristics are lowered, and the setting of the thickness of the annular member and the yoke part has a difficulty in reducing the magnetic resistance. It is.
  • the present invention comprises an annular yoke portion and a tooth portion projecting radially inwardly on the inner periphery of the yoke portion, and the outer peripheral edge of the yoke portion is attached to the inner peripheral surface of the annular member in order to further improve the magnetic characteristics.
  • a stator core of a motor wherein the yoke portion is displaced by receiving a pressing force radially inward from the annular member, and is deformed according to the displacement of the displacement portion to generate a tensile stress.
  • the displacement portion is the yoke portion Before the attachment to the annular member, the displacement is performed by attaching the yoke portion to the annular member so as to protrude radially outward from the inner diameter of the inner peripheral surface of the annular member after the attachment. That And butterflies.
  • a stator core manufacturing method for manufacturing a stator core of the motor comprising: a divided body processing step for processing a plurality of stator core divided bodies including the displacement portion and the deformation portion; and the plurality of stator cores
  • the divided body is annularly arranged by facing each divided edge in the circumferential direction, and attached to the inner circumferential surface of the annular member with a fastening margin radially inward, and the deformed portion is deformed by the displacement of the displaced portion.
  • the stator core manufacturing method is characterized by comprising an assembling step.
  • a stator core manufacturing method for manufacturing a stator core of the motor, the core processing step including the displacement portion and the deformation portion to form a ring-shaped stator core before being attached to the annular member A stator core manufacturing method comprising: mounting the stator core on an inner periphery of the annular member with a radially inward tightening allowance, and causing the deformation portion to be deformed by displacement of the displacement portion.
  • the deformable portion can be deformed in accordance with the displacement of the displaceable portion that has been displaced by receiving the pressing force from the annular member inward in the radial direction, and tensile stress can be generated.
  • this tensile stress it is possible to form a tensile stress region in which the magnetic flux passes between the teeth portion and the yoke portion, or to cancel the compressive stress of the yoke portion generated by the pressing force from the annular member.
  • the magnetic resistance of the yoke portion can be reduced or the compressive stress of the yoke portion can be reduced or reduced to zero by the tensile stress region of the yoke portion of the stator core.
  • stator core manufacturing method of the present invention has the above-described configuration, a plurality of stator core divided bodies are manufactured, and the plurality of stator core divided bodies are annularly arranged in the circumferential direction so as to have a diameter on the inner periphery of the annular member.
  • stator core manufacturing method of the present invention has the above-described configuration, a stator core semi-finished product is manufactured, and the stator core semi-finished product is attached to the inner periphery of the annular member with a tightening margin radially inward.
  • a tensile stress region can be formed, or the compressive stress can be reduced or zero.
  • Example 1 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 1 It is a surrounding side view of a stator core.
  • Example 1 It is sectional drawing which shows lamination
  • Example 1 It is a principal part front view which shows the stator core division body processed by a division body manufacturing process.
  • Example 1 It is a principal part front view which shows the alignment state of the stator core division
  • Example 1 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 2 It is a principal part front view which shows the alignment state of the stator core division
  • Example 2 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 3 It is a principal part front view which shows the matching state of the stator core division body before shrinking.
  • Example 3 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 4 It is a principal part front view which shows the matching state of the stator core division body before shrinking.
  • Example 4 It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 5 It is process drawing which shows a stator core manufacturing method.
  • Example 5 It is a principal part front view which shows the state of the stator core before shrinking.
  • Example 5 It is a principal part front view which shows the stator core before shrinkage shrinkage with the motor case before shrinkage shrinkage.
  • Example 5 It is a principal part front view which shows the stator core before shrinkage shrinkage with the motor case before shrinkage shrinkage.
  • Example 6) It is a principal part front view which shows the state which shrink-fitted the stator core to the motor case.
  • Example 6) It is a principal part front view which shows the state which shrink-fitted the stator core to the core case.
  • (Conventional example) It is a principal part front view of a stator core.
  • (Conventional example) It is a principal part front view which shows the state which shrink-fitted the stator core to the core case.
  • (Conventional example) It is sectional drawing which shows the state which shrink-fitted the stator core to the core case.
  • (Conventional example) It is a principal part front view which shows the stress generation
  • (Conventional example) It is a principal part front view which shows the magnetic flux formation state in the state where the stator core was shrunk into the core case.
  • annular yoke portion 3 and a tooth portion 5 projecting radially inwardly on the inner periphery of the yoke portion 3 are provided.
  • the stator core 1 of the motor attached to the peripheral surface 7a, wherein the yoke portion 3 is displaced in response to a pressing force from the annular member 7 inward in the radial direction, and is deformed according to the displacement of the displacement portion D.
  • a tensile stress region ⁇ 1 is generated to form a tensile stress region A through which magnetic flux passes between the teeth portion 5 or a compressive stress ⁇ 2 generated by the pressing force from the annular member 7 is offset.
  • the displacement part D protrudes radially outward from the inner diameter of the inner peripheral surface 7a of the annular member 7 after being attached before the yoke part 3 is attached to the annular member 7, and the annular member 7 of the yoke part 3 is projected. It changes depending on the installation with tightening allowance. It was realized by the stator core 1 of the motor that performed the position.
  • FIG. 1 is a front view of a main part showing a state in which the stator core is baked into a motor case
  • FIG. 2 is a peripheral side view of the stator core
  • FIG. 3 is a partially omitted cross-section showing lamination of the stator core.
  • the stator core 1 is formed of, for example, a magnetic electromagnetic steel plate, and has an annular yoke portion 3 and a plurality of teeth portions projecting radially inwardly on the inner periphery of the yoke portion 3. It consists of five.
  • the outer peripheral edge 3a of the yoke part 3 is formed in a substantially circular shape, and the inner peripheral edges 3b and 3c are linearly formed symmetrically in the circumferential direction between the tooth parts 5 and intersect at an angle.
  • stator cores 1 are laminated, and the outer peripheral edge of each laminated yoke part 3 is attached to the inner peripheral surface 7a of the motor case 7 which is an annular member with a tightening margin. This attachment is performed, for example, by shrinking.
  • the yoke portion 3 is attached with an allowance to the inner side in the radial direction of the motor case 7, and the outer peripheral edge 3a and the inner peripheral surface 7a are joined without a gap and have substantially the same curvature.
  • the yoke part 3 has a displacement part D and a deformation part T.
  • the displacement portion D is displaced by receiving a pressing force from the motor case 7 inward in the radial direction.
  • the deformation portion T is deformed according to the displacement of the displacement portion D and generates a tensile stress ⁇ 1 in the yoke portion 3.
  • a tensile stress area A through which magnetic flux passes between each tooth portion 5 is formed by the tensile stress ⁇ 1.
  • the compressive stress ⁇ 2 generated by the pressing force from the motor case 7 can be offset by the generated tensile stress ⁇ 1, and the compressive stress can be reduced or made zero.
  • the stator core 1 is composed of a plurality of stator core divided bodies 9.
  • Each stator core divided body 9 is obtained by dividing the yoke portion 3 into a plurality of circumferential directions by dividing lines 11 extending from the inner periphery to the outer periphery.
  • Each stator core divided body 9 is configured for each tooth portion 5 provided with a yoke portion constituting portion 9a.
  • Each stator core divided body 9 is annularly arranged at each dividing line 11 with each dividing edge 11a, 11b facing each other in the circumferential direction.
  • the yoke portion 3 has an outer portion 13 and an inner portion 15 that are radially inner and outer divided by the dividing line 11.
  • Each outer portion 13 is disposed so as to protrude along one circumferential direction side of the yoke portion constituting portion 9a, and the inner portion 15 is located on the inner diameter side of the outer portion 13 along the other circumferential side of the yoke portion constituting portion 9a. It is arranged to protrude.
  • each outer portion 13 extends in the circumferential direction on the outer peripheral side of each yoke portion constituting portion 9a, and one side 13a of the outer portion 13 on one side in the circumferential direction of each tooth portion 5 is the other side 13b.
  • the length is set longer than.
  • a convex portion 17 in the circumferential direction is provided on one side 13a of each outer portion 13 on the radially inner edge side.
  • each convex part 17 is fitted into each concave part 19 without a gap.
  • the fitting of the concavo-convex portions 19 and 17 between the outer portions 13 constitutes an engaging portion provided between the stator / core divided bodies 9, and the deformed portion T of one stator / core divided body 9 is formed. The other stator / core divided body 9 is engaged to cause deformation.
  • each outer portion 13 and the radially outer edge 15a of each inner portion 15 face each other without a gap, and the leading edge 15b of each inner portion 15 faces each tooth portion 5 without a gap in the circumferential direction.
  • the dividing line 11 is formed to reach the inner and outer peripheries of the yoke portion 3. That is, the dividing line 11 is between the adjacent one side 13a and the other side 13b of each outer part 13 between the adjacent parts of each stator / core divided body 9, between each convex part 17 and each concave part 19, and the diameter of each outer part 13. It extends between the inner edge 13 c in the direction and the radially outer edge 15 a of each inner part 15, and between the tip edge 15 b of each inner part 15 and each tooth part 5.
  • FIG. 4 is a process diagram showing a stator core manufacturing method
  • FIG. 5 is a front view of a main part showing a stator core divided body processed in the divided body machining step
  • FIG. 6 is a stator core divided before shrinking. It is a principal part front view which shows the alignment state of a body with the motor case before shrink shrinkage.
  • the stator core manufacturing method of the present embodiment includes a divided body processing step S1 and an assembly step S2 for manufacturing the stator core 1 of the motor.
  • the divided body machining step S1 forms a plurality of circumferentially divided stator cores 9 as shown in FIG. 5 divided by the dividing line 11 shown in FIG.
  • Each stator core divided body 9 is formed with an outer portion 13 having a yoke portion constituting portion 9a, an outer portion 15, a convex portion 17, and a concave portion 19, and includes a displacement portion D and a deformation portion T.
  • each outer portion 13 is formed in an arc shape having a larger curvature than the inner diameter of the inner peripheral surface 7a that has been shrink-fitted after attachment before attachment to the motor case 7.
  • a straight edge portion 13ca on the convex portion 17 side and a straight edge portion 13cb on the one side of each tooth portion 5 are formed and intersected with each other.
  • a linear edge 15aa on the concave portion 19 side and a linear edge 15ab on the tip edge 15b side of each inner portion 15 are formed on the radially outer edge 15a of each inner portion 15 and set to intersect each other.
  • the inner peripheries 3b and 3c of the yoke part 3 are formed on the radially inner edge 15c of each inner part 15.
  • stator / core divided bodies 9 are annularly arranged with the divided edges 11a and 11b facing in the circumferential direction.
  • each outer portion 13 of each stator / core divided body 9 aligned as a ring is used as a displacement portion D in FIG.
  • a gap is also formed between the one side 13a tip 13aa of each outer part 13 and the other side 13b tip 13ba of each outer part 13 adjacent thereto.
  • the straight edge 13cb of the radially inner edge 13c of each outer part 13 is between the straight edge 15ab of the radially outer edge 15a of each inner part 15 before shrinkage of the motor case 7 to which the yoke part 3 is fixed.
  • a gap is formed in
  • each inner portion 15 has a gap with respect to one side of each tooth portion 5 before shrinkage shrinkage of the motor case 7, and also has a gap between the convex portion 17 and the concave portion 19. Yes.
  • Each stator core divided body 9 arranged annularly in the circumferential direction is attached to the inner circumference of the motor case 7 with a shrinkage inward in the radial direction by shrinkage, and the state shown in FIG. 1 is obtained.
  • each outer portion 13 receives a pressing force radially inward from the motor case 7 and is displaced radially inward, and the outer portion 13 is indicated by an arrow through the engagement of the concave and convex portions 19 and 17.
  • the deformed portion T is deformed, and the radially outer edge 13d is in a state along the inner peripheral surface 7a after shrinkage shrinkage.
  • each stator core divided body 9 is annularly arranged before shrinking into the motor case 7, between the tip edge 15b of each inner portion 15 and each tooth portion 5, between the convex portion 17 and the concave portion 19,
  • the assembling can also be performed by performing the facing without a gap in the circumferential direction.
  • the yoke portion 3 is a displacement portion D that is displaced by receiving a pressing force radially inward from the motor case 7 and is deformed according to the displacement of the displacement portion D.
  • a deformation portion T that generates a tensile stress ⁇ 1 and forms a tensile stress region A through which a magnetic flux passes between the teeth portion 5 or cancels a compressive stress ⁇ 2 generated by a pressing force from the motor case 7;
  • the displacement portion D protrudes radially outward from the inner diameter dimension of the inner peripheral surface 7a of the motor case 7 after being attached before the yoke portion 3 is attached to the motor case 7. Fastening to case 7 Displacement was performed by mounting with a margin.
  • the yoke portion 3 is deformed according to the displacement of the displacement portion D of the deformation portion T, and the tensile stress ⁇ 1 is generated on the inner diameter side as shown in FIG. A tensile stress region A through which magnetic flux passes can be formed.
  • the compressive stress ⁇ 2 generated by the pressing force from the motor case 7 can be offset by the generated tensile stress ⁇ 1, and the compressive stress can be reduced or made zero.
  • a stator core divided body 9 having a tooth portion 5 and a yoke portion constituting portion 9a divided into a plurality of circumferential directions by division at a dividing line 11 over the inner and outer circumferences of the yoke portion 3 is provided.
  • the body 9 is annularly arranged with the divided edges 11a and 11b of each division facing each other in the circumferential direction, and the deformed portion T of one stator / core divided body 9 is interposed between the stator / core divided bodies 9 in the other stator.
  • -Engagement parts 17 and 19 which are engaged with the core divided body 9 and cause deformation are provided.
  • the stator core 1 can be constituted by each stator core divided body 9, and in each stator core divided body 9 arranged annularly in the divided circumferential direction, the displacement portion D caused by each uneven portion 17, 19 is formed.
  • the displacement can be surely performed, and it can be securely fixed to the motor case 7, and the above-mentioned effect can be obtained.
  • the yoke part 3 has an outer part 13 and an inner part 15 that are radially outer and formed in the circumferential direction in each division, and the outer part 13 protrudes along one circumferential direction side of the yoke part constituting part 9a.
  • the inner portion 15 is arranged so as to protrude along the other circumferential side of the yoke portion constituting portion 9a on the inner diameter side with respect to the outer portion 13, and the radially outer edge 13d side of the outer portion 13 is a displacement portion.
  • D is made to project radially outward before attaching the yoke part 3 to the motor case 7, and the radially inner edge 13 c side of the outer part 13 is the deformed part T to the motor case 7 of the yoke part 3. Before the attachment, there is a gap between the inner edge 15 and the outer edge 15a in the radial direction. Deform It was.
  • the displacement portion D of the outer portion 13 is displaced by receiving a pressing force radially inward, and the deformation portion T is deformed.
  • a tensile stress ⁇ 1 is generated on the radial inner edge 13c side, and a magnetic flux is generated between each tooth portion 5 with this tensile stress ⁇ 1.
  • a tensile stress region A can be formed.
  • the compressive stress ⁇ 2 generated on the radial outer edge 13d side of each outer portion 13 generated by the pressing force from the motor case 7 is canceled by the generated tensile stress ⁇ 1, and the compressive stress is reduced or made zero. it can.
  • Each inner portion 15 has a circumferential clearance with respect to each tooth portion 5 before being attached to the motor case, and is opposed to the clearance without any gap by being attached to the motor case, or the outer portion 13 When compressive stress is generated on the outer diameter side, the compressive stress is smaller (including zero) than that on the outer diameter side.
  • each outer portion 13 When each outer portion 13 is assembled from the curved protruding state of FIG. 6 to the state of FIG. 1, the radially outer edge 13 d of each outer portion 13 is frictionally engaged with the inner peripheral surface 7 a of the motor case 7 and securely fixed. Is done. By fixing by this frictional engagement, it is possible to reduce the tightening margin due to shrinkage to the motor case 7 and to reduce the compressive stress ⁇ 2 acting on the outer portion 13.
  • FIGS. 7 and 8 relate to a second embodiment of the present invention
  • FIG. 7 is a front view of a main part showing a state in which the stator core is baked into the motor case
  • FIG. It is a principal part front view which shows the alignment state of a division body with the motor case before shrinkage shrinkage.
  • the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, the corresponding components are denoted by A, and redundant description is omitted.
  • the stator core 1A of the present embodiment also includes outer portions 13A and inner portions 15A.
  • the outer portion 13 ⁇ / b> A is integrally disposed so as to protrude to one side in the circumferential direction of the yoke portion constituting portion 9 ⁇ / b> Aa on the outer diameter side of each tooth portion 5.
  • the inner portion 15A is integrally disposed so as to protrude to the other circumferential side of the yoke portion constituting portion 9Aa.
  • the inclined surfaces 13Aaa and 13Aba constitute the engaging portion.
  • the inclined surface 13Aaa is formed at the distal end of the outer portion 13A, and the inclined surface 13Aba is formed at the proximal end of the outer portion 13A.
  • the dividing line 11A is formed so as to reach the inner periphery of the yoke portion 3A. That is, the dividing line 11A includes the inclined surfaces 13Aaa and 13Aba between the outer portions 13A, the radial inner edges 13Ac of the outer portions 13A and the radial outer edges 15Aa of the inner portions 15A, and the leading edges 15Ab of the inner portions 15A. It has the division
  • each outer portion 13A continues in a circular shape along the inner peripheral surface 7a of the motor case 7 and has substantially the same curvature as the inner peripheral surface 7a.
  • stator core divided body 9A provided with the displacement portion D and the deformed portion T is formed in the divided body processing step S1, and in the assembly step S2, each stator core divided body 9A is formed as shown in FIG.
  • the respective divided edges 11Aa and 11Ab are arranged in an annular shape so as to face each other in the circumferential direction.
  • the inner diameter dimension of the inner peripheral surface 7a of the motor case 7 in other words, that is, the outer dimension of the outer peripheral edge 3Aa of the yoke portion 3A protrudes radially outward. With this protrusion, a gap is formed between the radial outer edge 13Ad and the inner peripheral surface 7aa before shrinkage shrinkage of the motor case as shown in FIG.
  • each outer portion 13A forms a gap with the radially outer edge 15Aa of each inner portion 15A before shrinkage shrinkage of the motor case 7 of the yoke portion 3A as a part of the deformed portion T. .
  • This gap is set, for example, by making the curvature of the radially inner edge 13Ac slightly larger than the curvature of the radially outer edge 15Aa.
  • each inner portion 15A has a gap with respect to one side of each tooth portion 5 before being attached to the motor case 7 by shrinkage.
  • Each stator core divided body 9 ⁇ / b> A arranged annularly in the circumferential direction is attached to the inner circumferential surface 7 a of the motor case 7 with shrinkage to the inside in the radial direction by shrinkage, resulting in the state of FIG. 7.
  • each outer portion 13 ⁇ / b> A receives a pressing force radially inward from the motor case 7 and is displaced radially inward, and the engagement of the inclined surfaces 13 ⁇ / b> Aaa and 13 ⁇ / b> Aba while deforming the deformation portion T by a relative displacement due to the thrust P a along the focus and tilt the radial outer edge 13Ad a state along the inner peripheral surface 7a.
  • each stator core division body 9A is annularly arranged before shrinking into the motor case 7, the front edge 15Ab of each inner portion 15A and each tooth portion 5 are opposed to each other with no gap in the circumferential direction. It is also possible to perform the assembly.
  • each stator core division body 9A can be assembled
  • a tensile stress ⁇ 1 is generated on the radially inner edge 13Ac side by the deformation according to the displacement of the displacement portion D of the deformable portion T, and a tensile force that passes the magnetic flux between each tooth portion 5 by this tensile stress ⁇ 1.
  • a stress region A can be formed.
  • the compressive stress ⁇ 2 generated on the radial outer edge 13Ad side of each outer portion 13A generated by the pressing force from the motor case 7 is offset by the generated tensile stress ⁇ 1, and the compressive stress is reduced or made zero. it can.
  • a slight gap may be formed between the radially inner edge 13Ac of each outer portion 13A and the radially outer edge 15Aa of each inner portion 15A after assembly. This gap is along the direction in which the magnetic flux passes and has no effect.
  • FIGS. 9 and 10 relate to a third embodiment of the present invention
  • FIG. 9 is a front view of a main part showing a state in which the stator core is baked into the motor case
  • FIG. 10 is a view of the stator core before staking. It is a principal part front view which shows the alignment state of a division body. Note that the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, the corresponding components are denoted by the same reference numerals B, and redundant description is omitted.
  • the stator core 1B of the present embodiment is also composed of a plurality of stator core divided bodies 9B provided with a displacement portion D and a deformation portion T.
  • Each stator core divided body 9B is formed by dividing the yoke portion 3B into a plurality of circumferential directions by dividing lines 11B extending over the inner and outer circumferences.
  • the outer peripheral edge 3Ba of the yoke portion 3B has the same curvature as the inner peripheral surface 7a of the motor case 7, and each stator Inner peripheral edges 3Bb and 3Bc are formed on both sides in the circumferential direction of the core divided body 9B.
  • Each stator core divided body 9B is configured for each tooth portion 5 including a yoke portion constituting portion 9Ba.
  • Each stator / core divided body 9B is annularly arranged at each dividing line 11B so that the divided edges 11Ba and 11Bb face each other in the circumferential direction without any gap.
  • Each stator core divided body 9B includes a pair of slits 21a and 21b without gaps in each yoke part constituting part 9Ba, and rotating parts 23a and 23b between the slits 21a and 21b and adjacent to each yoke part constituting part 9Ba. It has.
  • Each slit 21a, 21b is formed from the radial outer edge 13Bd to the intermediate portion in the radial direction. Holes 21aa and 21ba are formed in the inner ends of the slits 21a and 21b. Semi-circular portions 25a, 25b corresponding to the holes 21aa, 21ba in the radial direction are formed in the inner peripheral edges 3Bb, 3Bc on both sides in the circumferential direction of each stator core divided body 9B. Between the holes 21aa and 21ba and the semicircular portions 25a and 25b, a deformed portion T is formed.
  • the concavo-convex portions 17B and 19B provided on the divided edges 11Ba and 11Bb between the circumferential portions of the rotating portions 23a and 23b constitute the engaging portions.
  • stator core divided body 9B having the displacement portion D and the deformed portion T is formed in the divided body processing step S1, and in the assembly step S2, each stator core divided body 9B is formed as shown in FIG. However, each division
  • the yoke portion constituting portions 9Ba of the stator core divided bodies 9B that are annularly arranged are formed between the slits 21a and 21b that are a part of the radial outer edge 13Bd.
  • 9 is the inner diameter of the inner peripheral surface 7a contracted by shrinkage in FIG. 9 after assembly, in other words, from the outer dimension of the outer peripheral edge 3Ba of the yoke 3B after mounting by shrinkage. Is also protruded radially outward.
  • the slits 21a and 21b open in the circumferential direction, and the rotating portions 23a and 23b form gaps corresponding to the slits 21a and 21b between the adjacent rotating portions 23b and 23a by the open state of the slits 21a and 21b. It is in the state before rotation.
  • the attachment to the motor case 7 of FIG. 9 by shrinking shrinkage exerts a pressing force radially inward from the motor case 7 to cause the displacement portion D to be displaced via the slits 21a and 21b.
  • the rotating portions 23b and 23a are rotated so as to close the gap 21b and the gap, and the deformation portion T is deformed.
  • each yoke portion constituting portion 9Ba is frictionally engaged with the inner peripheral surface 7a of the motor case 7 as shown in FIG.
  • the divided body 9B can be stably assembled in an annular shape.
  • the tensile stress ⁇ 1 is generated by deformation according to the displacement of the displacement portion D of the deformation portion T, and the tensile stress region A through which the magnetic flux passes between each tooth portion 5 can be formed by the tensile stress ⁇ 1.
  • the compressive stress ⁇ 2 generated by the pressing force from the motor case 7 can be offset by the generated tensile stress ⁇ 1, and the compressive stress can be reduced or made zero.
  • FIGS. 11 and 12 relate to a fourth embodiment of the present invention
  • FIG. 11 is a front view of a main part showing a state in which the stator core is baked into the motor case
  • FIG. 12 is a view of the stator core before staking. It is a principal part front view which shows the alignment state of a division body.
  • the basic configuration is the same as that of the third embodiment.
  • the same components are denoted by the same reference numerals, and the corresponding components are denoted by the same reference characters B instead of C, and redundant description is omitted. .
  • a single slit 21C was formed in the center of each yoke portion constituting portion 9Ca of each stator core divided body 9C.
  • the semicircular portions 25Ca and 25Cb constituting the deformed portion T between the holes 21Ca are provided at the corner portions between the yoke portion constituting portions 9Ca and the tooth portions 5.
  • both sides of the slit 21C are configured as rotating portions 23Ca and 23Cb, and the slit 21C side of the rotating portions 23Ca and 23Cb is configured as a displacement portion D.
  • the yoke portion constituting portions 9Ca of the stator / core divided bodies 9C arranged in a ring form the displacement portions D on the slits 21C side of the rotating portions 23Ca and 23Cb. 11, the inner diameter of the inner peripheral surface 7a contracted by shrinkage in FIG. 11, in other words, protrudes radially outward from the outer dimension of the outer peripheral edge 3Ca of the yoke portion 3C after being attached by shrinkage. .
  • the slit 21C opens in the circumferential direction, and the rotating part 23Ca, 23Cb opens before the rotation so as to form a gap corresponding to the slit 21C between the adjacent rotating part 23Cb, 23Ca by the open state of the slit 21C. It is in a state.
  • the attachment by shrinkage to the motor case 7 in FIG. 11 causes a pressing force radially inward from the motor case 7 to act, causing the displacement portion D to be displaced via the slit 21C, and the slit 21C and the gap to be formed.
  • the rotating portions 23Cb and 23Ca are rotated so as to be closed, and the deformation portion T is deformed.
  • each yoke portion constituting portion 9Ca is frictionally engaged with the inner peripheral surface 7a of the motor case 7 as shown in FIG.
  • the divided body 9C can be stably assembled in an annular shape.
  • the tensile stress ⁇ 1 is generated by deformation according to the displacement of the displacement portion D of the deformation portion T, and the tensile stress region A through which the magnetic flux passes between each tooth portion 5 can be formed by the tensile stress ⁇ 1.
  • the compressive stress ⁇ 2 generated by the pressing force from the motor case 7 can be offset by the generated tensile stress ⁇ 1, and the compressive stress can be reduced or made zero.
  • FIGS. 13 to 16 relate to a fifth embodiment of the present invention
  • FIG. 13 is a front view of the main part of the stator core
  • FIG. 14 is a process diagram showing a method for manufacturing the stator core
  • FIG. FIG. 16 is a front view of an essential part showing the stator core before shrinkage and the motor case before shrinkage shrinkage.
  • the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals, the corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • the yoke portion 3D has a ring shape continuous in the circumferential direction.
  • the present embodiment does not include the uneven portions 19 and 17 that are the engaging portions of the first embodiment, and the inner portion 15D is formed in a ring shape continuous in the circumferential direction.
  • the stator core manufacturing method of the present embodiment includes a core machining step S10 and an assembly step S11 for manufacturing the stator core 1D of the motor.
  • the stator core 1D shown in FIG. 15 is formed.
  • the stator core 1D includes an outer portion 13D, an inner portion 15D, a yoke portion 3D, and a teeth portion 5D, and the radially outer edge 13Dd side of each outer portion 13D protrudes radially outward.
  • each outer portion 13D of the stator core 1D is the inner diameter dimension of the inner peripheral surface 7a contracted by shrinkage in FIG. 13 after assembly, in other words, attached by shrinkage.
  • the outer dimension of the outer peripheral edge 3Da of the rear yoke portion 3D is projected outward in the radial direction.
  • the stator core 1Da shown in FIG. 15 is stacked in the plate thickness direction and arranged on the inner periphery of the motor case 7 as shown in FIG. At this time, the inner portion 15D and the teeth portion 5D are integrated, and no gap is formed between them, but the gaps of the other portions are the same as in the first embodiment.
  • the stator core 1D disposed on the inner periphery of the motor case 7 is attached with a tightening inward in the radial direction by shrinkage, and the state shown in FIG. 13 is obtained.
  • the deforming portion T When the deforming portion T is deformed in accordance with the displacement of the displacement portion D of the outer portion 13D, the outer portion 13D is pressed against the inner peripheral surface 7a of the motor case 7 and frictionally engaged, and the stator core 1D is securely fixed. Can be done.
  • a tensile stress ⁇ 1 is generated on the radial inner edge 13Dc side by deformation corresponding to the displacement of the displacement portion D of the deformation portion T, and the tensile stress ⁇ 1 allows the magnetic flux to pass between each tooth portion 5.
  • a stress region A can be formed.
  • the compressive stress ⁇ 2 generated on the radial outer edge 13Dd side of each outer portion 13D generated by the pressing force from the motor case 7 is offset by the generated tensile stress ⁇ 1, and the compressive stress is reduced or made zero. it can.
  • this embodiment can achieve the same effects as those of the first embodiment.
  • stator core 1Da is not divided, it is easy to handle, has a small number of parts, and can be easily assembled and managed.
  • a slight gap may be formed between the radially inner edge 13Dc of each outer portion 13D and the radially outer edge 15Da of each inner portion 15D. This gap is along the direction in which the magnetic flux passes and has no effect.
  • FIGS. 17 and 18 relate to a sixth embodiment of the present invention.
  • FIG. 17 is a front view of a main part showing the stator core before shrinkage together with the motor case before shrinkage shrinkage.
  • FIG. 18 is the stator core. It is a principal part front view which shows the state which baked and was stuffed into the motor case. Note that the basic configuration is the same as that of the fifth embodiment, and the reference numeral D is substituted for E, and redundant description is omitted.
  • the yoke portion 3E has a ring shape continuous in the circumferential direction as in the fifth embodiment.
  • the circumferential length of the outer part 13E was formed longer than that of Example 5.
  • each outer portion 13E strongly abuts the adjacent other circumferential portion 13Eb tip 13Eba of each adjacent outer portion 13E, and at the same time a thrust is generated on the contact surface, simultaneously, each outer portion 13E is circled. Circumferential compressive stress is generated.
  • Compressive stress is generated in the circumferential direction of the outer portion 13E according to this compressive stress. Due to the compressive stress, a force is generated to cause each outer portion 13E itself to extend in the circumferential direction. By this force, the inner portion 15E is also stretched in the circumferential direction, and a tensile stress is generated as a whole. By increasing the magnetic permeability of the yoke portion 3E by this tensile stress and reducing the iron loss, the output / efficiency of the motor can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 磁気特性をより向上可能としたモーターのステーター・コア及び製造方法を提供 する。 環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなりヨーク部3の外周縁3aがモーター・ケース7の内周面7aに取り付けられるモーターのステーター・コア1であって、ヨーク部3は、モーター・ケース7から径方向内側へ押圧力を受けて変位した変位部Dと、この変位部Dの変位に応じ変形して引張応力σ1を発生させティース部5との間で磁束を通す引張応力域Aを形成した、又はモーター・ケース7からの押圧力で発生する圧縮応力σ2を相殺した変形部Tとを有し、変位部Dは、ヨーク部3のモーター・ケース7への取り付け前に、取り付けられた後のモーター・ケース7の内周面7aの内径寸法よりも径方向外側へ突出し、ヨーク部3のモーター・ケース7への締め代を持った取り付けにより変位を行ったことを特徴とする。

Description

モーターのステーター・コア及び製造方法
 この発明は、モーターのステーター・コア及び製造方法に関する。
 従来、特許文献1,2,3に記載された図19~図24に記載されたものがある。
 図19は、ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図、図20は、ステーター・コアの要部正面図、図21は、ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図、図22は、ステーター・コアをコア・ケースに焼きバメした状態を示す断面図である。
 図19~図24では、何れも、モーターのステーター・コア101A,101B,101Cのステーター・コア分割体103A,103B,103Cが、環状に接合され、焼きバメにより環状部材であるコア・ケース105A,105B,105Cに収納固定されている。
 ここで、焼きバメ時に、各ステーター・コア分割体103A,103B,103Cの周方向に発生する圧縮応力により鉄損が増大してモーターの出力効率が低下するという問題がある。
 この問題に対し、図19、図20のステーター・コア101Aでは、圧縮応力が発生しないようにスリット101Aaをいれ、図21、図22のステーター・コア103B,103Cでは、圧縮応力を軽減する孔103Ba,103Caを形成している。
 しかし、スリット101Aaや孔103Ba,103Caは、その部分で磁気抵抗の増大を招くため、磁気特性を低下させる問題がある。
 一方、スリットや孔を形成せずに、ステーター・コアが受ける押圧力を低減させるものとして、特許文献4に記載された図23、図24に示す例がある。図23は、ステーター・コアをコア・ケースに焼きバメした状態での応力発生状態を示す要部正面図、図24は、ステーター・コアをコア・ケースに焼きバメした状態での磁束形成状態を示す要部正面図である。
 図23、図24では、ステーター・コア101Dが有するヨーク部101Daの半径方向厚さaを、コア・ケース105Dの半径方向厚さbよりも小さく形成したものである。
 このような厚さa、bの設定により、図23のように、コア・ケース105Dに引張応力を発生させ、図24のように、コア・ケース105Dに磁束を通すようにした。
 しかし、ティース部107Dにより近いヨーク部101Daに大きな圧縮応力が働くことになり、ティース部107D及びコア・ケース105D間に存在するヨーク部101Daでの磁気抵抗の低下に難点があった。
特開2005-51941号公報 特開2009-261162号公報 特開2002-136013号公報 特開2011-125180号公報
 解決しようとする問題点は、スリットや孔による圧縮応力の低減は、磁気抵抗の増大を招いて磁気特性を低下させ、環状部材及びヨーク部の厚み設定では磁気抵抗の低下に難点があった点である。
 本発明は、磁気特性をより向上可能とするため、環状のヨーク部及びこのヨーク部の内周に径方向内側へ突出するティース部からなりヨーク部の外周縁が環状部材の内周面に取り付けられたモーターのステーター・コアであって、前記ヨーク部は、前記環状部材から径方向内側へ押圧力を受けて変位した変位部と、この変位部の変位に応じ変形して引張応力を発生させ前記ティース部との間で磁束を通す引張応力域を形成し、又は前記環状部材からの押圧力で発生する圧縮応力を相殺した変形部とを有し、前記変位部は、前記ヨーク部の前記環状部材への取り付け前に前記取り付けられた後の環状部材の内周面の内径寸法よりも径方向外側へ突出し、前記ヨーク部の前記環状部材への締め代を持った取り付けにより前記変位を行ったことを特徴とする。
 前記モーターのステーター・コアを製造するためのステーター・コア製造方法であって、前記変位部及び変形部を備える複数のステーター・コア分割体を加工する分割体加工工程と、前記複数のステーター・コア分割体を前記各分割縁の周方向での対向により環状に配置し前記環状部材の内周面に径方向内側への締め代を持って取り付け前記変位部の変位による前記変形部の変形を行わせる組付け工程とを備えたことをステーター・コア製造方法の特徴とする。
 前記モーターのステーター・コアを製造するためのステーター・コア製造方法であって、前記変位部及び変形部を備え前記環状部材への取り付け前のリング状のステーター・コアを形成するコア加工工程と、前記ステーター・コアを前記環状部材の内周に径方向内側への締め代を持って取り付け前記変位部の変位による前記変形部の変形を行わせる組付け工程とを備えたことをステーター・コア製造方法の特徴とする。
 本発明のモーターのステーター・コアは、上記構成であるため、環状部材から径方向内側へ押圧力を受けて変位した変位部の変位に応じ変形部が変形して引張応力を発生させることができる。この引張応力により、ティース部との間で磁束を通す引張応力域をヨーク部に形成し、又は環状部材からの押圧力で発生するヨーク部の圧縮応力を相殺することができる。
 このため、ステーター・コアのヨーク部の引張応力域により、ヨーク部の磁気抵抗を低減させ、或いはヨーク部の圧縮応力を低減し又は零として磁気抵抗を低減させることができる。
 したがって、磁束の多くがヨーク部の引張応力域を通り、又は圧縮応力が零のヨーク部全体を通ることができ、鉄損などの磁気損失を少なくすることができる。
 本発明のステーター・コア製造方法は、上記構成であるから、複数のステーター・コア分割体を製造し、この複数のステーター・コア分割体を周方向に環状に合わせて環状部材の内周に径方向内側への締め代を持って取り付けることで、引張応力域を形成し、又は圧縮応力を低減し又は零にすることができる。
 本発明のステーター・コア製造方法は、上記構成であるから、ステーター・コア半製品を製造し、ステーター・コア半製品を前記環状部材の内周に径方向内側への締め代を持って取り付けることで、引張応力域を形成し、又は圧縮応力を低減し又は零にすることができる。
ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例1) ステーター・コアの周側面図である。(実施例1) ステーター・コアの積層を示す断面図である。(実施例1) ステーター・コア製造方法を示す工程図である。(実施例1) 分割体加工工程で加工されるステーター・コア分割体を示す要部正面図である。(実施例1) 焼きバメ前におけるステーター・コア分割体の合わせ状態を焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。(実施例1) ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例2) 焼きバメ前におけるステーター・コア分割体の合わせ状態を焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。(実施例2) ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例3) 焼きバメ前におけるステーター・コア分割体の合わせ状態を示す要部正面図である。(実施例3) ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例4) 焼きバメ前におけるステーター・コア分割体の合わせ状態を示す要部正面図である。(実施例4) ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例5) ステーター・コア製造方法を示す工程図である。(実施例5) 焼きバメ前のステーター・コアの状態を示す要部正面図である。(実施例5) 焼きバメ前のステーター・コアを焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。(実施例5) 焼きバメ前のステーター・コアを焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。(実施例6) ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。(実施例6) ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図である。(従来例) ステーター・コアの要部正面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態を示す要部正面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態を示す断面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態での応力発生状態を示す要部正面図である。(従来例) ステーター・コアをコア・ケースに焼きバメした状態での磁束形成状態を示す要部正面図である。(従来例)
 磁気特性をより向上可能にするという目的を、環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなりヨーク部3の外周縁3aが環状部材7の内周面7aに取り付けられるモーターのステーター・コア1であって、ヨーク部3は、環状部材7から径方向内側へ押圧力を受けて変位した変位部Dと、この変位部Dの変位に応じ変形して引張応力σ1を発生させティース部5との間で磁束を通す引張応力域Aを形成した、又は環状部材7からの押圧力で発生する圧縮応力σ2を相殺した変形部Tとを有し、変位部Dは、ヨーク部3の環状部材7への取り付け前に、取り付けられた後の環状部材7の内周面7aの内径寸法よりも径方向外側へ突出し、ヨーク部3の環状部材7への締め代を持った取り付けにより変位を行ったモーターのステーター・コア1により実現した。
 図1は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図、図2は、ステーター・コアの周側面図、図3は、ステーター・コアの積層を示す一部省略断面図である。
 図1~図3のように、ステーター・コア1は、例えば磁性体の電磁鋼板で形成され、円環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出する複数のティース部5からなっている。ヨーク部3の外周縁3aは、ほぼ円形に形成され、ティース部5間で内周縁3b、3cは、周方向対称に直線的に形成され、角度をもって交差している。
 ステーター・コア1は、多数枚が積層され、積層状態の各ヨーク部3の外周縁が環状部材であるモーター・ケース7の内周面7aに締め代を持って取り付けられている。この取り付けは、例えば焼きバメにより行われる。ヨーク部3は、モーター・ケース7の径方向内側への締め代を持って取り付けられ、外周縁3aと内周面7aとは、隙間なく接合し、ほぼ同一の曲率となっている。
 ヨーク部3は、変位部D及び変形部Tを有している。
 変位部Dは、モーター・ケース7から径方向内側へ押圧力を受けて変位したものである。
 変形部Tは、変位部Dの変位に応じ変形したものでヨーク部3に引張応力σ1を発生させている。この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成する。発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 ステーター・コア1は、複数のステーター・コア分割体9で構成されている。各ステーター・コア分割体9は、ヨーク部3が内外周に渡る分割線11により周方向複数に分割されたものである。
 各ステーター・コア分割体9は、ヨーク部構成部9aを備えたティース部5毎に構成されている。各ステーター・コア分割体9が各分割線11で各分割縁11a、11bを周方向へ対向させ環状に配置されている。
 ヨーク部3は、分割線11による分割で径方向内外のアウター部13及びインナー部15を有している。
 各アウター部13は、ヨーク部構成部9aの周方向一側に沿って突出するように配置され、インナー部15は、アウター部13よりも内径側でヨーク部構成9aの周方向他側に沿って突出するように配置されている。
 本実施例では、各アウター部13が各ヨーク部構成部9aの外周側で周方向に渡っており、各ティース部5の周方向一側におけるアウター部13の一側13aは、同他側13bよりも長さが長く設定されている。
 各アウター部13の一側13aでは、径方向内縁側に、周方向への凸部17が突設されている。各アウター部13の他側13bの内径側には、インナー部15の外径側との間に凹部19を形成している。
 各アウター部13の一側13a先端13aaが隣接する各アウター部13の他側13b先端13baに隙間なく対向し、各凸部17が各凹部19に隙間なく嵌合している。この各アウター部13間での凹凸部19、17の嵌合は、各ステーター・コア分割体9間に設けられた係合部を構成し、一方のステーター・コア分割体9の変形部Tを他方のステーター・コア分割体9に係合させて変形の起因とする。
 各アウター部13の径方向内縁13cと各インナー部15の径方向外縁15aとが隙間なく対向し、各インナー部15の先端縁15bが各ティース部5に周方向へ隙間なく対向している。
 分割線11は、ヨーク部3内外周に至って形成されている。すなわち、分割線11は、各ステーター・コア分割体9の隣接間で、各アウター部13の一側13a及び他側13b間から、各凸部17及び各凹部19間、各アウター部13の径方向内縁13c及び各インナー部15の径方向外縁15a間、各インナー部15の先端縁15b及び各ティース部5間に渡っている。
 各アウター部13の径方向外縁13dは、モーター・ケース7の内周面7aに沿って変形し、内周面7aとほぼ同一の曲率となっている。但し、各径方向外縁13d間と内周面7aとの間に、多少の隙間が形成されることもある。
[ステーター・コア製造方法]
 図4は、ステーター・コア製造方法を示す工程図、図5は、分割体加工工程で加工されるステーター・コア分割体を示す要部正面図、図6は、焼きバメ前におけるステーター・コア分割体の合わせ状態を焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。
 図4のように、本実施例のステーター・コア製造方法は、モーターのステーター・コア1を製造するための分割体加工工程S1及び組付け工程S2を備えている。
 分割体加工工程S1は、図1で示す分割線11により分割された図5のような周方向複数のステーター・コア分割体9、・・・を形成する。
 各ステーター・コア分割体9には、ヨーク部構成部9a、アウター部15、凸部17及び凹部19を有するアウター部13がそれぞれ形成され、変位部D及び変形部Tを備えている。
 各アウター部13の径方向外縁13dは、モーター・ケース7への取り付け前に、取り付け後の焼きバメ収縮した内周面7aの内径よりも曲率の大きな弧状に形成される。各アウター部13の径方向内縁13cには、凸部17側の直線縁部13caと各ティース部5一側の直線縁部13cbとが形成され、相互に交差設定される。
 各インナー部15の径方向外縁15aには、凹部19側の直線縁部15aaと各インナー部15の先端縁15b側の直線縁部15abとが形成され、相互に交差設定される。
 各インナー部15の径方向内縁15cに、前記ヨーク部3の内周縁3b、3cが形成される。
 組付け工程S2では、図6のように、各ステーター・コア分割体9が、各分割縁11a、11bを周方向に対向させて環状に配置される。
 モーター・ケース7への焼きバメによる取り付け前に、環状に合わせた各ステーター・コア分割体9の各アウター部13の径方向外縁13d側は、変位部Dとして、組付け後の図1における焼きバメ収縮した内周面7aの内径寸法、換言すれば、焼きバメによる取り付け後のヨーク部3の外周縁3aの外形寸法よりも径方向外側へ突出する。この突出で、各径方向外縁13dとモーター・ケース7の焼きバメ収縮前の内周面7aaとの間に隙間が形成される。
 各アウター部13の一側13a先端13aaと隣接する各アウター部13の他側13b先端13baとの間にも隙間が形成される。
 各アウター部13の径方向内縁13cの直線縁部13cbは、ヨーク部3が固定されるモーター・ケース7炊きバメ収縮前に、各インナー部15の径方向外縁15aの直線縁部15abとの間に隙間を形成する。
 各インナー部15の先端縁15bは、モーター・ケース7の焼きバメ収縮前に、各ティース部5の一側に対して隙間を有し、凸部17、凹部19間にも隙間を有している。
 周方向へ環状に配置された各ステーター・コア分割体9は、モーター・ケース7の内周に焼きバメにより径方向内側への締め代を持って取り付けられ、図1の状態となる。
 すなわち、各アウター部13の変位部Dがモーター・ケース7から径方向内側への押圧力を受けて径方向内側へ変位し、凹凸部19、17の係合を介してアウター部13が矢印のように変形して変形部Tを変形させ、径方向外縁13dが焼きバメ収縮後の内周面7aに沿う状態となる。
 この状態で、径方向外縁13d及び内周面7a間の隙間、及び直線縁部13cbと直線縁部15abとの間の隙間が吸収される。
 変位部Dの変位により、各インナー部15の先端縁15b及び各ティース部5間の隙間、凹凸部19、17間の隙間もなくなる。
 なお、モーター・ケース7への焼きバメ前に各ステーター・コア分割体9を環状に配置したとき、各インナー部15の先端縁15b及び各ティース部5間、凸部17及び凹部19間を、周方向に隙間のない対向を行わせて前記組み付けを行わせることもできる。
 アウター部13の変位部Dの変位に応じて変形部Tが変形すると、アウター部13の径方向外縁13dが内周面7aに摩擦係合する。
 [実施例1の作用効果]
 本発明の実施例1では、環状のヨーク部3及びこのヨーク部3の内周に径方向内側へ突出するティース部5からなりヨーク部3の外周縁3aがモーター・ケース7の内周面7aに取り付けられるモーターのステーター・コア1であって、ヨーク部3は、モーター・ケース7から径方向内側へ押圧力を受けて変位した変位部Dと、この変位部Dの変位に応じ変形して引張応力σ1を発生させティース部5との間で磁束を通す引張応力域Aを形成した、又はモーター・ケース7からの押圧力で発生する圧縮応力σ2を相殺した変形部Tとを有し、変位部Dは、ヨーク部3のモーター・ケース7への取り付け前に、取り付けられた後のモーター・ケース7の内周面7aの内径寸法よりも径方向外側へ突出し、ヨーク部3のモーター・ケース7への締め代を持った取り付けにより変位を行った。
 このように、変形部Tの変位部Dの変位に応じた変形でヨーク部3では、図1のように、内径側で引張応力σ1が発生し、この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成することができる。
 また、発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 したがって、磁束の多くが引張応力域Aを含めたヨーク部3の内径側を通り、又は圧縮応力σ2が低減し又は零のヨーク部3全体を通ることができ、鉄損などの磁気損失を少なくすることができる。このため、磁束を効率よく通すことができ、モーターの出力効率をより向上させることができる。
 ヨーク部3での内外周に渡る分割線11での分割により周方向複数に分割されティース部5及びヨーク部構成部9aを備えたステーター・コア分割体9を有し、この各ステーター・コア分割体9を各分割による分割縁11a、11b相互を周方向に対向させて環状に配置し、各ステーター・コア分割体9間に、一方のステーター・コア分割体9の変形部Tを他方のステーター・コア分割体9に係合させて変形の起因とする係合部17、19を設けた。
 このため、ステーター・コア1を各ステーター・コア分割体9で構成でき、分割周方向へ環状に配置した各ステーター・コア分割体9において、各凹凸部17、19を起因とした変位部Dの変位を確実に行わせ、モーター・ケース7へ確実に固定し、上記効果を奏することができる。
 ヨーク部3は、各分割で周方向へ形成した径方向外内のアウター部13及びインナー部15を有し、アウター部13を、ヨーク部構成部9aの周方向一側に沿って突出するように配置し、インナー部15を、アウター部13よりも内径側でヨーク部構成部9aの周方向他側に沿って突出するように配置し、アウター部13の径方向外縁13d側は、変位部Dとしてヨーク部3のモーター・ケース7への取り付け前に径方向外側への突出を行わせ、アウター部13の径方向内縁13c側は、変形部Tとしてヨーク部3のモーター・ケース7への取り付け前にインナー部15の径方向外縁15aとの間に隙間を有し、ヨーク部3のモーター・ケース7への焼きバメによる締め代を持った取り付けにより変位部Dの変位及び変形部Tの変形を行わせた。
 したがって、モーター・ケース7への焼きバメによる取り付けでアウター部13の変位部Dが径方向内側へ押圧力を受けて変位し、変形部Tが変形する。
 この変形部Tの変位部Dの変位に応じた変形で、各アウター部13では、径方向内縁13c側で引張応力σ1が発生し、この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成することができる。
 また、発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する各アウター部13の径方向外縁13d側で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 したがって、磁束の多くが各アウター部13の引張応力域A及びインナー部15を通り、又は圧縮応力σ2が低減し又は零のヨーク部3全体を通ることができ、鉄損などの磁気損失を少なくすることができる。このため、磁束を効率よく通すことができ、モーターの出力効率をより向上させることができる。
 各インナー部15は、モーター・ケースへの取り付け前に各ティース部5に対して周方向の隙間を有しモーター・ケースへの取り付けにより隙間なく対向して圧縮応力零の状態又はアウター部13の外径側に圧縮応力が発生したときは外径側よりも圧縮応力が小さい状態(零を含む)となる。
 このため、各アウター部13の磁束の通りを確実に向上させることができる。
 各アウター部13が図6の湾曲突出状態から図1の状態へ組付けられると、各アウター部13の径方向外縁13dがモーター・ケース7の内周面7aに摩擦係合して確実に固定される。この摩擦係合による固定で、モーター・ケース7への焼きバメによる締め代を減少させ、アウター部13に働く圧縮応力σ2を低減することもできる。
 図7、図8は、本発明の実施例2に係り、図7は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図、図8は、焼きバメ前におけるステーター・コア分割体の合わせ状態を焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。なお、基本的な構成は実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には同符号にAを付し、重複した説明は省略する。
 図7のように、本実施例のステーター・コア1Aも、各アウター部13A及びインナー部15Aを備えている。
 アウター部13Aは、各ティース部5の外径側のヨーク部構成部9Aaの周方向一側に突出するように一体に配置されている。インナー部15Aは、ヨーク部構成部9Aaの周方向他側へ突出するように一体に配置されている。
 本実施例では、傾斜面13Aaa、13Abaが係合部を構成する。傾斜面13Aaaは、アウター部13Aの先端に形成され、傾斜面13Abaは、アウター部13Aの基端に形成されている。
 図7のモーター・ケース7への焼きバメ状態では、各アウター部13Aの径方向内縁13Acと各インナー部15の径方向外縁15Aaとが隙間なく対向し、各インナー部15Aの先端縁15Abが各ティース部5に隙間なく対向している。
 分割線11Aは、ヨーク部3A内外周に至って形成されている。すなわち、分割線11Aは、各アウター部13A間の傾斜面13Aaa、13Abaから、各アウター部13Aの径方向内縁13Ac及び各インナー部15Aの径方向外縁15Aa間、各インナー部15Aの先端縁15Ab及び各ティース部5間に渡る分割縁11Aa、11Abを有している。
 各アウター部13Aの径方向外縁13Adは、モーター・ケース7の内周面7aに沿って円形状に連続し、内周面7aとほぼ同一の曲率となっている。
 製造に際しては、分割体加工工程S1において、変位部D及び変形部Tを備えたステーター・コア分割体9Aを形成し、組付け工程S2では、図8のように、各ステーター・コア分割体9Aが、各分割縁11Aa、11Abを周方向に対向させて環状に配置される。
 図8のモーター・ケース7への焼きバメによる取り付け前に、環状に合わせた各ステーター・コア分割体9Aの各アウター部13Aの径方向外縁13Ad側は、変位部Dとして組付け後の図7におけるモーター・ケース7の内周面7aの内径寸法、換言すれば、ヨーク部3Aの外周縁3Aaの外形寸法よりも径方向外側へ突出する。この突出で、図8のように、径方向外縁13Adとモーター・ケースの焼きバメ収縮前の内周面7aaとの間に隙間が形成される。
 各アウター部13Aの径方向内縁13Acは、変形部Tの一部としてヨーク部3Aのモーター・ケース7の焼きバメ収縮前に、各インナー部15Aの径方向外縁15Aaとの間に隙間を形成する。この隙間は、例えば径方向内縁13Acの曲率を径方向外縁15Aaの曲率よりも若干大きくすることで設定される。
 各インナー部15Aの先端縁15Abは、モーター・ケース7への焼きバメによる取り付け前に、各ティース部5の一側に対して隙間を有している。
 周方向へ環状に配置された各ステーター・コア分割体9Aは、モーター・ケース7の内周面7aに焼きバメにより径方向内側への締め代を持って取り付けられ、図7の状態となる。
 すなわち、モーター・ケース7の焼きバメ収縮により、各アウター部13Aの変位部Dがモーター・ケース7から径方向内側への押圧力を受けて径方向内側へ変位し、傾斜面13Aaa、13Abaの係合及び傾斜に沿った推力Pによる相対的なずれにより変形部Tを変形させながら径方向外縁13Adが内周面7aに沿う状態となる。
 この状態で、径方向外縁13Ad及び内周面7a間の隙間、及び径方向内縁13Acと径方向外縁15Aaとの間の隙間、各インナー部15Aの先端縁15Ab及び各ティース部5間の隙間が吸収される。
 なお、モーター・ケース7への焼きバメ前に各ステーター・コア分割体9Aを環状に配置したとき、各インナー部15Aの先端縁15Ab及び各ティース部5間を、周方向に隙間のない対向を行わせて前記組み付けを行わせることもできる。
 アウター部13Aの変位部Dの変位に応じて変形部Tが変形すると、図8のように、アウター部13Aは、モーター・ケース7の内周面7aに摩擦係合する。このため、各ステーター・コア分割体9Aを、環状に安定して組み付けることができる。
 変形部Tの変位部Dの変位に応じた変形で各アウター部13Aでは、径方向内縁13Ac側で引張応力σ1が発生し、この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成することができる。
 また、発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する各アウター部13Aの径方向外縁13Ad側で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 こうして、本実施例でも、実施例1同様の作用効果を奏することができる。
 なお、実際には、組付け後、各アウター部13Aの径方向内縁13Acと各インナー部15Aの径方向外縁15Aaとの間に若干の隙間が形成されることもある。この隙間は磁束の通る方向に沿ったものとなり、影響はない。
 図9、図10は、本発明の実施例3に係り、図9は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図、図10は、焼きバメ前におけるステーター・コア分割体の合わせ状態を示す要部正面図である。なお、基本的な構成は実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には同符号にBを付し、重複した説明は省略する。
 本実施例のステーター・コア1Bも、変位部D及び変形部Tを備えた複数のステーター・コア分割体9Bで構成されている。各ステーター・コア分割体9Bは、ヨーク部3Bが内外周に渡る分割線11Bにより周方向複数に分割されて形成されたものである。
 図9のモーター・ケース7への焼きバメ状態では、ヨーク部3Bの外周縁3Baが、モーター・ケース7の内周面7aと同一の曲率となっており、径方向内縁には、各ステータ
ー・コア分割体9Bの周方向両側で内周縁3Bb、3Bcが形成されている。
 各ステーター・コア分割体9Bは、ヨーク部構成部9Baを備えたティース部5毎に構成されている。各ステーター・コア分割体9Bが各分割線11Bで各分割縁11Ba、11Bbを周方向へ隙間なく対向させ環状に配置されている。
 各ステーター・コア分割体9Bは、各ヨーク部構成部9Baに、隙間のない一対のスリット21a、21bと、このスリット21a、21b及び各ヨーク部構成部9Baの隣接間の回転部23a、23bとを備えている。
 各スリット21a、21bは、径方向外縁13Bdから径方向の中間部まで形成されている。この各スリット21a、21bの内端部に、孔21aa、21baが形成されている。各ステーター・コア分割体9Bの周方向両側の内周縁3Bb、3Bcには、孔21aa、21baに径方向に対応した半円部25a、25bが形成されている。孔21aa、21ba及び半円部25a、25b間は、変形部Tを構成している。
 本実施例では、各回転部23a、23bの周方向対向間の分割縁11Ba、11Bbに設けた凹凸部17B、19Bが係合部を構成する。
 製造に際しては、分割体加工工程S1において、変位部D及び変形部Tを備えたステーター・コア分割体9Bを形成し、組付け工程S2では、図10のように、各ステーター・コア分割体9Bが、各分割縁11Ba、11Bbを周方向に対向させて環状に配置される。
 図10のモーター・ケース7への焼きバメによる取り付け前に、環状に合わせた各ステーター・コア分割体9Bの各ヨーク部構成部9Baは、径方向外縁13Bdの一部であるスリット21a、21b間の中央部側を変位部Dとして、組付け後の図9における焼きバメ収縮した内周面7aの内径寸法、換言すれば、焼きバメによる取り付け後のヨーク部3Bの外周縁3Baの外形寸法よりも径方向外側へ突出させている。
 また、スリット21a、21bは、周方向に開き、このスリット21a、21bの開き状態により回転部23a、23bは、隣接する回転部23b、23aとの間にスリット21a、21bに対応した隙間を形成するように回転前の状態となっている。
 図9のモーター・ケース7への焼きバメによる取り付けで、モーター・ケース7からの径方向内側への押圧力が働き、スリット21a、21bを介した変位部Dの変位を行わせ、スリット21a、21b及び隙間を閉じるように回転部23b、23aを回転させて変形部Tの変形を行わせる。
 変位部Dの変位に応じて変形部Tが変形すると、図9のように、各ヨーク部構成部9Baの中央部がモーター・ケース7の内周面7aに摩擦係合し、各ステーター・コア分割体9Bを、環状に安定して組み付けることができる。
 変形部Tの変位部Dの変位に応じた変形で、引張応力σ1が発生し、この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成することができる。
 また、発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 こうして、本実施例でも、実施例1同様の作用効果を奏することができる。
 図11、図12は、本発明の実施例4に係り、図11は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図、図12は、焼きバメ前におけるステーター・コア分割体の合わせ状態を示す要部正面図である。なお、基本的な構成は実施例3と同様であり、同一構成部分には同符号を付し、対応する構成部分には同符号のBをCに代えて付し、重複した説明は省略する。
 本実施例のステーター・コア1Cは、各ステーター・コア分割体9Cの各ヨーク部構成部9Caの中央に単一のスリット21Cを形成した。孔21Caとの間に変形部Tを構成する半円部25Ca、25Cbは、各ヨーク部構成部9Ca及び各ティース部5間のコーナー部に設けた。
 したがって、スリット21Cの両側が回転部23Ca、23Cbとして構成され、回転部23Ca、23Cbのスリット21C側が、変位部Dとして構成される。
 図12のモーター・ケース7への焼きバメによる取り付け前に、環状に合わせた各ステーター・コア分割体9Cの各ヨーク部構成部9Caは、回転部23Ca、23Cbのスリット21C側を変位部Dとして、組付け後の図11における焼きバメ収縮した内周面7aの内径寸法、換言すれば、焼きバメによる取り付け後のヨーク部3Cの外周縁3Caの外形寸法よりも径方向外側へ突出させている。
 また、スリット21Cは、周方向に開き、このスリット21Cの開き状態により回転部23Ca、23Cbは、隣接する回転部23Cb、23Caとの間にスリット21Cに対応した隙間を形成するように回転前の状態となっている。
 図11のモーター・ケース7への焼きバメによる取り付けにより、モーター・ケース7からの径方向内側への押圧力が働き、スリット21Cを介した変位部Dの変位を行わせ、スリット21C及び隙間を閉じるように回転部23Cb、23Caを回転させて変形部Tの変形が行われる。
 変位部Dの変位に応じて変形部Tが変形すると、図11のように、各ヨーク部構成部9Caの中央部がモーター・ケース7の内周面7aに摩擦係合し、各ステーター・コア分割体9Cを、環状に安定して組み付けることができる。
 変形部Tの変位部Dの変位に応じた変形で、引張応力σ1が発生し、この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成することができる。
 また、発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 こうして、本実施例でも、実施例1同様の作用効果を奏することができる
 図13~図16は、本発明の実施例5に係り、図13は、ステーター・コアの要部正面図、図14は、ステーター・コア製造方法を示す工程図、図15は、取付前のステーター・コアを示す要部正面図、図16は、焼きバメ前のステーター・コアを焼きバメ収縮前のモーター・ケースと共に示す要部正面図である。なお、基本的な構成は実施例1と同様であり、同一構成部分には同符号を付し、対応する構成部分には同符号にDを付し、重複説明は省略する。
 図13のように、本実施例5のステーター・コア1Dは、ヨーク部3Dを、周方向に連続したリング状とした。
 本実施例は、実施例1の係合部である凹凸部19、17を備えず、インナー部15Dが周方向に連続したリング状に形成されたものである。
 図14のように、本実施例のステーター・コア製造方法は、モーターのステーター・コア1Dを製造するためのコア加工工程S10及び組付け工程S11を備えている。
 コア加工工程S10では、図15で示すステーター・コア1Dを形成する。ステーター・コア1Dは、アウター部13D及びインナー部15Dとヨーク部3D及びティース部5Dとを備え、各アウター部13Dの径方向外縁13Dd側が、径方向外側へ突出している。
 図16のように、ステーター・コア1Dの各アウター部13Dの径方向外縁13Dd側は、組付け後の図13における焼きバメ収縮した内周面7aの内径寸法、換言すれば、焼きバメによる取り付け後のヨーク部3Dの外周縁3Daの外形寸法よりも径方向外側へ突出させている。
 組付け工程S11では、図15のステーター・コア1Daを板厚方向に積層し、図16のようにモーター・ケース7の内周に配置する。このとき、インナー部15Dとティース部5Dとは一体であり、両者間に隙間は形成されないが、その他の各部の隙間は、実施例1と同様である。
 モーター・ケース7の内周に配置されたステーター・コア1Dは、焼きバメにより径方向内側への締め代を持って取り付けられ、図13の状態となる。
 アウター部13Dの変位部Dの変位に応じて変形部Tが変形すると、アウター部13Dがモーター・ケース7の内周面7aに押し付けられて摩擦係合し、各ステーター・コア1Dの固定を確実に行わせることができる。
 変形部Tの変位部Dの変位に応じた変形で各アウター部13Dでは、径方向内縁13Dc側で引張応力σ1が発生し、この引張応力σ1で各ティース部5との間で磁束を通す引張応力域Aを形成することができる。
 また、発生した引張応力σ1によりモーター・ケース7からの押圧力で発生する各アウター部13Dの径方向外縁13Dd側で発生する圧縮応力σ2を相殺し、圧縮応力を低減し又は零にすることもできる。
 したがって、本実施例でも、実施例1と同様な作用効果を奏することができる。
 しかも、ステーター・コア1Daは、分割されていないため、取り扱いが容易であり、部品点数も少なく、組み立て、部品管理が容易となる。
 なお、組付け後、各アウター部13Dの径方向内縁13Dcと各インナー部15Dの径方向外縁15Daとの間に若干の隙間が形成されることもある。この隙間は磁束の通る方向に沿ったものとなり、影響はない。
  図17、図18は、本発明の実施例6に係り、図17は、焼きバメ前のステーター・コアを焼きバメ収縮前のモーター・ケースと共に示す要部正面図、図18は、ステーター・コアをモーター・ケースに焼きバメした状態を示す要部正面図である。なお、基本的な構成は実施例5と同一であり、符号のDをEに代えて付し、重複説明は省略する。 図17、図18のように、本実施例6のステーター・コア1Eは、実施例5と同様に、ヨーク部3Eを、周方向に連続したリング状とした。
 本実施例のヨーク部3Eでは、アウター部13Eの周方向長を実施例5よりも長く形成した。
 図18のように、ステーター・コア1Eをモーター・ケース7に焼きバメ等により締め代を持って固定すると、実施例5同様に各アウター部13Eの径方向外縁13Ed側が、径方向内側へ押圧される。この押圧でモーター・ケース7の内周面7aに対し半径方向外径側への推力が発生し、同時にアウター部13Eが周方向へ真っ直ぐに伸びようとする。
 これによって、各アウター部13Eの周方向一側13Ea先端13Eaaが隣接する各アウター部13Eの周方向他側13Eb先端13Ebaに強く当接し、その接触面に推力が発生すると同時に各アウター部13Eに円周方向の圧縮応力が発生する。
 この圧縮応力に応じてアウター部13Eの円周方向に圧縮応力が発生する。その圧縮応力によって各アウター部13E自身が円周方向へ伸びようとする力が発生する。この力によってインナー部15Eも円周方向に伸ばされて全体に引張応力が発生する。この引張応力によってヨーク部3Eの透磁率を高めて、鉄損を低減させることにより、モータの出力・効率を上昇させることができる。
 その他、実施例5と同様の作用効果を奏することができる。
 1、1A、1B、1C、1D ステーター・コア
 1Da コア半製品
 3、3A、3B、3C、3D ヨーク部
 5 ティース部
 7 モーター・ケース(環状部材)
 7a 内周面
 9、9A、9B、9C ステーター・コア分割体
 11a、11b 分割縁
 13、13A、13D アウター部
 13Aaa、13Aba 傾斜面(係合部)
 15、15A、15D インナー部
 17、17B、17C 凹部(係合部)
 19、19B、19C 突部(係合部)
 21a、21b、21C スリット
 23a、23b 回転部
 D 変位部
 T 変形部
 S1 分割体加工工程
 S2、S11 組付け工程
 S10 コア半製品加工工程 

Claims (14)

  1.  環状のヨーク部及びこのヨーク部の内周に径方向内側へ突出するティース部からなりヨーク部の外周縁が環状部材の内周面に取り付けられたモーターのステーター・コアであって、
     前記ヨーク部は、前記環状部材から径方向内側へ押圧力を受けて変位した変位部と、この変位部の変位に応じ変形して引張応力を発生させ前記ティース部との間で磁束を通す引張応力域を形成し、又は前記環状部材からの押圧力で発生する圧縮応力を相殺した変形部とを有し、
     前記変位部は、前記ヨーク部の前記環状部材への取り付け前に前記取り付けられた後の環状部材の内周面の内径寸法よりも径方向外側へ突出し、前記ヨーク部の前記環状部材への締め代を持った取り付けにより前記変位を行った、
     ことを特徴とするモーターのステーター・コア。
  2.  請求項1記載のモーターのステーター・コアであって、
     前記ヨーク部での内外周に渡る分割により周方向複数に分割され前記変位部及び変形部を備えたヨーク部構成部を前記ティース部外径側に有するステーター・コア分割体を有し、
     前記取り付け前に前記各ステーター・コア分割体を前記各分割による分割縁相互を周方向に対向させて環状に配置して前記締め代を持った取り付けを行った、
     ことを特徴とするモーターのステーター・コア。
  3.  請求項2記載のモーターのステーター・コアであって、
     前記各ステーター・コア分割体は、前記各分割で周方向へ形成した径方向外内のアウター部及びインナー部を有し、
     前記アウター部を、前記ヨーク部構成部の周方向一側に沿って突出するように配置し、
     前記インナー部を、前記アウター部よりも内径側で前記ヨーク部構成部の周方向他側に沿って突出するように配置し、
     前記アウター部の径方向外縁側は、前記変位部として前記ヨーク部の前記環状部材への取り付け前に前記径方向外側への突出を行わせ、
     前記アウター部の径方向内縁側は、前記変形部として前記ヨーク部の前記環状部材への取り付け前に前記インナー部の径方向外縁との間に隙間を有し、
     前記ヨーク部の前記環状部材への締め代を持った取り付けにより前記変位部の変位及び前記変形部の変形を行わせた、
     ことを特徴とするモーターのステーター・コア。
  4.  請求項1~3の何れかに記載のモーターのステーター・コアであって、
     前記環状に配置した各ステーター・コア分割体間に、一方のステーター・コア分割体の変形部を他方のステーター・コア分割体に係合させて前記変形の起因とする係合部を設けた、
     ことを特徴とするモーターのステーター・コア。
  5.  請求項4記載のモーターのステーター・コアであって、
     前記係合部は、前記各アウター部間に設けられた凹凸部、又は前記各アウター部間に設けられ前記各アウター部の先端を前記各アウター部の基部側に当接させつつ径方向外側へのずれを許容する傾斜面である、
     ことを特徴とするモーターのステーター・コア。
  6.  請求項3記載のモーターのステーター・コアであって、
     前記取り付け前に環状に配置したヨーク部構成部の各インナー部は、前記各ティース部との間に周方向の隙間を有し前記環状部材への取り付けにより隙間なく対向して圧縮応力零の状態又は前記アウター部の外径側に圧縮応力が発生したときは外径側よりも圧縮応力が小さい状態となる、
     ことを特徴とするモーターのステーター・コア。
  7.  請求項2記載のモーターのステーター・コアであって、
     前記各ヨーク部構成部は、径方向外縁から径方向の中間部まで形成されたスリットとこのスリット及びヨーク部構成部の隣接間に回転部とを備え、
     前記環状部材への取り付け前に前記スリットの周方向への開き状態により前記各ヨーク部構成部の径方向外縁の一部は、前記変位部として前記突出を行ない、
     前記環状部材への取り付け前に前記スリットの周方向への開き状態により前記回転部は、周方向に隣接する回転部との間で前記スリットに対応した隙間を形成する回転前の状態となり、
     前記環状部材への取り付けにより前記スリットによる前記変位部の変位を行わせ、前記スリット及び隙間を閉じるように前記回転部を回転させて前記変形部の変形を行わせた、
     ことを特徴とするモーターのステーター・コア。
  8.  請求項7記載のモーターのステーター・コアであって、
     前記環状に配置した各ステーター・コア分割体間に、前記一方の回転部を他方の回転部に係合させて前記回転の起因とする係合部を設けた、
     ことを特徴とするモーターのステーター・コア。
  9.  請求項1記載のモーターのステーター・コアであって、
     前記ヨーク部は、周方向に連続したリング状である、
     ことを特徴とするモーターのステーター・コア。
  10.  請求項9記載のモーターのステーター・コアであって、
     前記ヨーク部は、径方向外内のアウター部及びインナー部を有し、
     前記アウター部は、前記ヨーク部構成部の周方向一側に沿って突出するように配置し、
     前記インナー部は、周方向に連続したリング状であり、
     前記アウター部の径方向外縁側は、前記変位部として前記ヨーク部の前記環状部材への取り付け前に前記径方向外側への突出を行わせ、
     前記アウター部の径方向内縁側は、前記変形部として前記ヨーク部の前記環状部材への取り付け前に前記インナー部との間に隙間を有し
     前記ヨーク部の前記環状部材への締め代を持った取り付けにより前記変位部の前記変位及び前記変形部の変形を行わせた、
     ことを特徴とするモーターのステーター・コア。
  11.  請求項10記載のモーターのステーター・コアであって、
     前記各アウター部の周方向一側先端が隣接する各アウター部の周方向他側先端に強く当接するように形成し、
     前記インナー部に、引張応力を発生させた、
     ことを特徴とするモーターのステーター・コア。
  12.  請求項2~8の何れか1項記載のモーターのステーター・コアを製造するためのステーター・コア製造方法であって、
     前記変位部及び変形部を備える複数のステーター・コア分割体を加工する分割体加工工程と、
     前記複数のステーター・コア分割体を前記各分割縁の周方向での対向により環状に配置し前記環状部材の内周面に径方向内側への締め代を持って取り付け前記変位部の変位による前記変形部の変形を行わせる組付け工程と、
     を備えたことを特徴とするステーター・コア製造方法。
  13.  請求項9~11記載のモーターのステーター・コアを製造するためのステーター・コア製造方法であって、
     前記変位部及び変形部を備え前記環状部材への取り付け前のリング状のステーター・コアを形成するコア加工工程と、
     前記ステーター・コアを前記環状部材の内周に径方向内側への締め代を持って取り付け前記変位部の変位による前記変形部の変形を行わせる組付け工程と、
     を備えたことを特徴とするステーター・コア製造方法。
  14.  請求項12又は13記載のステーター・コア製造方法であって、
     前記環状部材への取り付けは、焼きバメである、
     ことを特徴とするステーター・コア製造方法。
PCT/JP2013/000677 2012-02-14 2013-02-07 モーターのステーター・コア及び製造方法 WO2013121753A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147024019A KR20140128369A (ko) 2012-02-14 2013-02-07 모터의 스테이터 코어 및 제조방법
US14/378,397 US20150042199A1 (en) 2012-02-14 2013-02-07 Stator core for motor and manufacturing method therefor
EP13748841.7A EP2816708B1 (en) 2012-02-14 2013-02-07 Stator core for motor and manufacturing method therefor
CN201380009144.7A CN104137390A (zh) 2012-02-14 2013-02-07 马达的定子铁芯及制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-029968 2012-02-14
JP2012029968A JP5993580B2 (ja) 2012-02-14 2012-02-14 モーターのステーター・コア及び製造方法

Publications (1)

Publication Number Publication Date
WO2013121753A1 true WO2013121753A1 (ja) 2013-08-22

Family

ID=48983889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000677 WO2013121753A1 (ja) 2012-02-14 2013-02-07 モーターのステーター・コア及び製造方法

Country Status (6)

Country Link
US (1) US20150042199A1 (ja)
EP (1) EP2816708B1 (ja)
JP (1) JP5993580B2 (ja)
KR (1) KR20140128369A (ja)
CN (1) CN104137390A (ja)
WO (1) WO2013121753A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077346B1 (ko) * 2013-10-11 2020-02-13 현대모비스 주식회사 영구자석모터의 프릭션을 저감시키는 스테이터 코어
KR101655161B1 (ko) * 2014-11-24 2016-09-07 현대자동차 주식회사 계자권선형 구동모터의 회전자
EP3454455A1 (en) * 2017-09-11 2019-03-13 KONE Corporation Method for manufacturing a magnetic core of an electric machine, an electric machine utilizing the magnetic core thereof, and a magnetic core
CN111224473A (zh) 2018-11-23 2020-06-02 福特全球技术公司 一种电机的定子铁芯
JP7167849B2 (ja) * 2019-05-21 2022-11-09 株式会社デンソー ステータアセンブリ、及び、モータ
ES2914811T3 (es) * 2019-05-27 2022-06-16 Magnax Bv Estator para una máquina de flujo axial
KR102030455B1 (ko) * 2019-06-17 2019-11-08 엘지이노텍 주식회사 모터
EP3920374A4 (en) 2019-07-02 2022-03-16 Samsung Electronics Co., Ltd. ENGINE AND COMPRESSOR WITH SUCH ENGINE
EP4304051A1 (de) * 2022-07-06 2024-01-10 Hilti Aktiengesellschaft Stator mit steckbaren zähnen

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174319A (ja) * 1996-12-17 1998-06-26 Shinko Electric Co Ltd 回転電機の固定子
JPH11355984A (ja) * 1998-06-10 1999-12-24 Japan Servo Co Ltd 小型電動機
JP2002136013A (ja) 2000-10-27 2002-05-10 Nissan Motor Co Ltd 磁石モータ
JP2005051941A (ja) 2003-07-30 2005-02-24 Toyota Motor Corp 分割ステータコア
JP2006333657A (ja) * 2005-05-27 2006-12-07 Mitsuba Corp モータ
JP2009261162A (ja) 2008-04-18 2009-11-05 Toyota Motor Corp 分割ステータコア
JP2009539338A (ja) * 2006-06-02 2009-11-12 ブローゼ ファールツォイクタイレ ゲーエムベーハー アンド シーオー.ケイジー,ヴールツバーグ 自動車のアクチュエータ駆動用電気モーターおよび電気モーターの製造方法
JP2010093960A (ja) * 2008-10-08 2010-04-22 Nippon Steel Corp 分割型固定子及び電動機
JP2010148329A (ja) * 2008-12-22 2010-07-01 Mazda Motor Corp 回転電機のステータコア構造
JP2011015592A (ja) * 2009-07-06 2011-01-20 Toyota Motor Corp 分割ステータとその製造方法
JP2011125180A (ja) 2009-12-14 2011-06-23 Toyota Motor Corp ステータ
JP2011254623A (ja) * 2010-06-02 2011-12-15 Aisin Seiki Co Ltd 回転電機および回転電機のステータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786854B2 (ja) * 2001-08-30 2006-06-14 株式会社三井ハイテック 積層鉄心の製造方法
CN100508330C (zh) * 2003-08-07 2009-07-01 日本电产芝浦株式会社 电动机铁心、电动机
US6919665B2 (en) * 2003-09-30 2005-07-19 Nidec Shibaura Corporation Stator core, an electric motor in which it is utilized, and method of manufacturing a stator core

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174319A (ja) * 1996-12-17 1998-06-26 Shinko Electric Co Ltd 回転電機の固定子
JPH11355984A (ja) * 1998-06-10 1999-12-24 Japan Servo Co Ltd 小型電動機
JP2002136013A (ja) 2000-10-27 2002-05-10 Nissan Motor Co Ltd 磁石モータ
JP2005051941A (ja) 2003-07-30 2005-02-24 Toyota Motor Corp 分割ステータコア
JP2006333657A (ja) * 2005-05-27 2006-12-07 Mitsuba Corp モータ
JP2009539338A (ja) * 2006-06-02 2009-11-12 ブローゼ ファールツォイクタイレ ゲーエムベーハー アンド シーオー.ケイジー,ヴールツバーグ 自動車のアクチュエータ駆動用電気モーターおよび電気モーターの製造方法
JP2009261162A (ja) 2008-04-18 2009-11-05 Toyota Motor Corp 分割ステータコア
JP2010093960A (ja) * 2008-10-08 2010-04-22 Nippon Steel Corp 分割型固定子及び電動機
JP2010148329A (ja) * 2008-12-22 2010-07-01 Mazda Motor Corp 回転電機のステータコア構造
JP2011015592A (ja) * 2009-07-06 2011-01-20 Toyota Motor Corp 分割ステータとその製造方法
JP2011125180A (ja) 2009-12-14 2011-06-23 Toyota Motor Corp ステータ
JP2011254623A (ja) * 2010-06-02 2011-12-15 Aisin Seiki Co Ltd 回転電機および回転電機のステータ

Also Published As

Publication number Publication date
EP2816708B1 (en) 2016-09-21
KR20140128369A (ko) 2014-11-05
JP2013169042A (ja) 2013-08-29
CN104137390A (zh) 2014-11-05
US20150042199A1 (en) 2015-02-12
EP2816708A1 (en) 2014-12-24
EP2816708A4 (en) 2015-11-11
JP5993580B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2013121753A1 (ja) モーターのステーター・コア及び製造方法
JP5740436B2 (ja) 回転電機のステータコア
CN106877536B (zh) 电动机的永磁体转子
WO2007141907A1 (ja) 分割型鉄心及びその製造方法、固定子鉄心
WO2010001776A1 (ja) 永久磁石式回転機の回転子構造
WO2019111777A1 (ja) 固定子鉄心、固定子鉄心の製造方法
WO2018180692A1 (ja) ロータ、及びモータ
JP5326642B2 (ja) 回転電機及び回転電機の製造方法
WO2012046408A1 (ja) モーターのステーター・コア及び製造方法
WO2013121754A1 (ja) モーターのステーター・コア及び製造方法
JP6305620B2 (ja) 回転電機の固定子および、回転電機の固定子の製造方法
JP2007228720A (ja) コア
WO2015173932A1 (ja) 回転電機の電機子鉄心および電機子の製造方法
JPH1198724A (ja) 回転機器のステータ
US11804763B2 (en) Axial gap motor
JP2005278238A (ja) 電動機のステータコア
JP2020010553A (ja) ステータコア
JP6410963B2 (ja) 回転電機
JP2007259676A (ja) 固定子
JP5293313B2 (ja) ステータ用鉄心
WO2024105797A1 (ja) 回転電機
JP7435591B2 (ja) 固定子コア
JP7183487B1 (ja) 同期リラクタンスモータの回転子
WO2023228563A1 (ja) ステータ
JP5130242B2 (ja) ステータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14378397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024019

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013748841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013748841

Country of ref document: EP