WO2013121463A1 - Pump device and pump system - Google Patents

Pump device and pump system Download PDF

Info

Publication number
WO2013121463A1
WO2013121463A1 PCT/JP2012/001023 JP2012001023W WO2013121463A1 WO 2013121463 A1 WO2013121463 A1 WO 2013121463A1 JP 2012001023 W JP2012001023 W JP 2012001023W WO 2013121463 A1 WO2013121463 A1 WO 2013121463A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
pump
fluid
pump chamber
Prior art date
Application number
PCT/JP2012/001023
Other languages
French (fr)
Japanese (ja)
Inventor
勇治 野々村
常男 大坂
竜二 糸山
Original Assignee
アルバック機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバック機工株式会社 filed Critical アルバック機工株式会社
Priority to US14/378,735 priority Critical patent/US20160003228A1/en
Priority to EP12868917.1A priority patent/EP2816233B1/en
Priority to CA2863775A priority patent/CA2863775A1/en
Priority to PCT/JP2012/001023 priority patent/WO2013121463A1/en
Publication of WO2013121463A1 publication Critical patent/WO2013121463A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1037Flap valves
    • F04B53/1047Flap valves the valve being formed by one or more flexible elements
    • F04B53/106Flap valves the valve being formed by one or more flexible elements the valve being a membrane
    • F04B53/1065Flap valves the valve being formed by one or more flexible elements the valve being a membrane fixed at its centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/03Pressure in the compression chamber

Definitions

  • the present invention relates to a pump device used as, for example, a booster blower or a booster pump, and a pump system including the pump device.
  • booster blowers or booster pumps are widely known as devices that raise a gas such as fuel gas or oxygen, or a liquid such as cooling water or hydraulic oil to a desired pressure.
  • a roots pump, a diaphragm pump, or the like is used for this type of pump device.
  • Patent Document 1 listed below describes a diaphragm pump used as a booster for fuel gas in a fuel cell system.
  • an object of the present invention is to provide a pump device and a pump system capable of restricting fluid discharge when operation is stopped.
  • a pump device includes a casing, a movable member, a first valve, a second valve, and a third valve.
  • the casing includes a suction port, a discharge port, and a pump chamber that can communicate with the suction port and the discharge port.
  • the movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
  • the first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
  • the second valve is attached between the pump chamber and the discharge port, and allows the fluid flow from the pump chamber to the discharge port when the fluid in the pump chamber is equal to or higher than the first pressure. Allow.
  • the third valve is attached to the casing, and when the fluid between the suction port and the discharge port is equal to or lower than a second pressure larger than the first pressure, the suction port to the discharge port. Restrict the flow of fluid toward
  • a pump system includes a pump device, a pressure source, and a processing unit.
  • the pump device includes a casing, a movable member, a first valve, a second valve, and a third valve.
  • the casing includes a suction port that communicates with the pressure source, a discharge port that communicates with the processing unit, and a pump chamber that can communicate with the suction port and the discharge port.
  • the movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
  • the first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
  • the second valve is attached between the pump chamber and the discharge port, and allows the fluid to flow from the pump chamber toward the discharge port at a pressure equal to or higher than the first pressure.
  • the third valve is attached to the casing and restricts the flow of the fluid from the suction port toward the discharge port and below a second pressure greater than the first pressure.
  • the pressure source is connected to the suction port, and supplies a fluid having the second pressure or less to the pump device.
  • the processing unit is connected to the discharge port and processes fluid discharged from the pump device.
  • FIG. 1 It is a partial exploded perspective view of the pump apparatus which concerns on the 3rd Embodiment of this invention. It is a figure explaining an effect
  • a pump device includes a casing, a movable member, a first valve, a second valve, and a third valve.
  • the casing includes a suction port, a discharge port, and a pump chamber that can communicate with the suction port and the discharge port.
  • the movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
  • the first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
  • the second valve is attached between the pump chamber and the discharge port, and allows the fluid flow from the pump chamber to the discharge port when the fluid in the pump chamber is equal to or higher than the first pressure. Allow.
  • the third valve is attached to the casing, and when the fluid between the suction port and the discharge port is equal to or lower than a second pressure larger than the first pressure, the suction port to the discharge port. Restrict the flow of fluid toward
  • the movable member periodically changes the volume of the pump chamber, thereby alternately sucking the fluid into the pump chamber and discharging the fluid from the pump chamber.
  • the fluid may be a gas or a liquid.
  • the fluid is introduced from the suction port into the pump chamber through the first valve.
  • the fluid introduced into the pump chamber is compressed to a pressure equal to or higher than the first pressure by the movable member in the pump chamber, so that the second valve is opened and discharged from the discharge port.
  • the fluid is discharged from the discharge port at a pressure equal to or higher than the first pressure.
  • the second valve opens when the pressure in the pump chamber reaches or exceeds the first pressure, and allows the fluid to flow from the pump chamber to the discharge port. Therefore, for example, when the pump device is stopped, if fluid is introduced into the pump chamber from the suction port at a pressure equal to or higher than the first pressure, the second valve is opened and a fluid flow toward the discharge port is formed. become.
  • the pump device has a third valve.
  • the third valve restricts the flow of fluid below the second pressure that is greater than the first pressure. Accordingly, when the pump device is stopped, even if a fluid having a pressure not lower than the first pressure and not higher than the second pressure is introduced from the suction port into the pump chamber, the flow of the fluid is inhibited by the third valve, and the discharge is prevented. The discharge of fluid from the outlet is suppressed. Thereby, inadvertent discharge of the fluid at the time of operation stop is suppressed.
  • the pump device since inadvertent discharge of the fluid when the pump device is stopped can be suppressed, the pump device can also be applied to a pump system in which a fluid pressure source is connected to the suction port. As a result, it is possible to eliminate the possibility that the system may malfunction due to fluid leaking from the discharge port when the operation is stopped.
  • the second pressure can be set as appropriate, and is set based on, for example, the pressure of the fluid introduced into the suction port or the allowable flow rate of the fluid discharged in the operation stop state. “Limiting the flow” includes the meaning of “blocking the flow” and the meaning of “decreasing the flow rate without blocking the flow”.
  • the third valve is attached to the casing.
  • the third valve may be attached to the suction port side or may be attached to the discharge port side.
  • the third valve is disposed closer to the discharge port than the second valve.
  • the third valve may have a structure that can completely block the flow of fluid below the second pressure, and the opening degree is stepwise between the first pressure and the second pressure.
  • the structure may change.
  • the third valve can be constituted by, for example, an electromagnetic valve.
  • the third valve employs a valve structure in which the opening degree increases in accordance with the pressure.
  • the third valve includes a valve seat, and a valve member that can be seated on the valve seat and whose opening degree changes continuously according to a pressure not lower than the first pressure and not higher than the second pressure.
  • a valve having such a valve structure for example, an umbrella valve is applicable. Thereby, low flow control of the fluid discharged from the said pump apparatus is attained.
  • the casing may further include a space part in which a part of the flow path communicating between the second valve and the third valve is expanded.
  • the space portion functions as a buffer space for buffering the pulsation of the discharged fluid. Thereby, the pulsation of the fluid can be reduced, and the fluid can be discharged at a stable flow rate.
  • the drive of the pump device is controlled based on the discharge flow rate, stable drive control of the pump device is possible.
  • the pump device can be configured with a diaphragm pump.
  • the movable member includes a deformable diaphragm that partitions the pump chamber. Thereby, a small pump device can be provided.
  • a pump system includes a pump device, a pressure source, and a processing unit.
  • the pump device includes a casing, a movable member, a first valve, a second valve, and a third valve.
  • the casing includes a suction port that communicates with the pressure source, a discharge port that communicates with the processing unit, and a pump chamber that can communicate with the suction port and the discharge port.
  • the movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
  • the first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
  • the second valve is attached between the pump chamber and the discharge port, and allows the fluid to flow from the pump chamber toward the discharge port at a pressure equal to or higher than the first pressure.
  • the third valve is attached to the casing and restricts the flow of the fluid from the suction port toward the discharge port and below a second pressure greater than the first pressure.
  • the pressure source is connected to the suction port, and supplies a fluid having the second pressure or less to the pump device.
  • the processing unit is connected to the discharge port and processes fluid discharged from the pump device.
  • the third valve causes the fluid to flow.
  • the flow is hindered, and the discharge of fluid from the discharge port is restricted.
  • inadvertent discharge of the fluid at the time of operation stop is suppressed.
  • the processing unit is not particularly limited, and includes various devices for generating energy and power using a fluid discharged from a pump device, such as a reformer, a combustor, a generator, a cylinder device, and various engines.
  • a pump device such as a reformer, a combustor, a generator, a cylinder device, and various engines.
  • FIG. 1 is a diagram showing an outline of a pump system according to an embodiment of the present invention.
  • the pump system 1 according to the present embodiment includes a pressure source 2, a pump device 3, a processing unit 4, and a control unit 5.
  • the pressure source 2 is connected to the suction side (primary side) of the pump device 3, and the processing unit 4 is connected to the discharge side (secondary side) of the pump device 3.
  • the pressure source 2 may be a container such as a tank or a cylinder that contains a fluid (gas or liquid) having a predetermined pressure, or may be a pressure generation source such as a compressor.
  • the pump device 3 functions as a booster blower or a booster pump that increases the fluid of the pressure P1 introduced from the pressure source 2 to a predetermined pressure P2 and supplies the fluid to the processing unit 4.
  • the processing unit 4 processes the fluid supplied from the pump device 3 to generate energy, power, and the like.
  • the control unit 5 controls the operation of the pump device 3, but may control the entire system including the processing unit 4.
  • the pump system 1 is applied to a fuel cell system, for example.
  • the pressure source 2 corresponds to a fuel tank
  • the pump device 3 boosts the fuel gas (for example, city gas (methane), LPG (liquefied propane gas)) and supplies it to the processing unit 4.
  • the processing unit 4 includes a reformer that converts fuel gas into hydrogen, a fuel cell that stores hydrogen, a power generation unit that reacts hydrogen and oxygen, and the like.
  • FIG. 2 is a cross-sectional view showing the structure of the pump device 3.
  • the pump device 3 is constituted by a diaphragm pump.
  • the pump device 3 has a metal casing 10 and a drive unit 20.
  • the casing 10 includes a pump body 11, a pump head 12, and a pump head cover 13.
  • the drive unit 20 includes a motor 21 and a motor case 22.
  • the pump body 11 forms an operation space 105 in which the movable member 30 is accommodated in the casing 10.
  • the movable member 30 includes a diaphragm 31, a fixture 32 fixed to the diaphragm 31, and a connecting rod 33 that couples the fixture 32 to the motor 21.
  • the diaphragm 31 is formed of a disc-shaped rubber material, and the peripheral edge thereof is sandwiched between the pump body 11 and the pump head 12.
  • the fixture 32 is fixed to the central portion of the diaphragm 31, and is composed of a plurality of parts assembled so as to sandwich the diaphragm 31 from above and below.
  • the connecting rod 33 is integrated with the fixture 32 so as to penetrate the central portion of the diaphragm 31.
  • the connecting rod 33 is connected to the peripheral surface of the eccentric cam 35 attached to the rotating shaft 210 of the motor 21 via the bearing 34.
  • the pump head 12 has a suction port 101 and a discharge port 102 and is disposed on the upper surface of an annular pedestal 110.
  • the pedestal 110 is attached to the opening end of the upper portion of the pump body 11 and sandwiches the peripheral edge of the diaphragm 31 together with the pump head 12.
  • the pump head 12 forms a pump chamber 100 between the diaphragm 31 and the pump head 12.
  • the pump head 12 has a suction passage T1 that communicates between the suction port 101 and the pump chamber 100, and a discharge passage T2 that communicates between the pump chamber 100 and the discharge port 102.
  • the pump chamber 100 can communicate with the suction port 101 and the discharge port 102 via the suction passage T1 and the discharge passage T2, respectively.
  • a suction valve 41 (first valve) and a discharge valve 42 (second valve) are respectively attached to the suction passage T1 and the discharge passage T2.
  • the suction valve 41 is attached to the pump head 12 so as to close the suction hole h1 that forms the suction passage T1.
  • the suction valve 41 is constituted by a reed valve attached to the end of the suction hole h1 facing the pump chamber 100, and allows the flow of fluid from the suction port 101 toward the pump chamber 100.
  • the valve opening pressure of the suction valve 41 (minimum pressure required to open the suction valve 41) is not particularly limited, and has a valve opening pressure at which a predetermined flow rate of gas is introduced into the pump chamber 100 during operation of the pump device. It only has to be. Accordingly, the valve opening pressure of the suction valve 41 may be a pressure lower than the pressure of the gas supplied from the pressure source 2 to the pump device 3.
  • the discharge valve 42 is attached to the pump head 12 so as to close the discharge hole h2 forming the discharge passage T2.
  • the discharge valve 42 is constituted by a reed valve attached to the end of the discharge hole h ⁇ b> 2 on the side opposite to the pump chamber 100, and allows the flow of fluid from the pump chamber 100 toward the discharge port 102.
  • the valve opening pressure of the discharge valve 42 (minimum pressure required to open the discharge valve 42) is not particularly limited, and is set to a pressure at which a target discharge pressure can be obtained. Is set to a large pressure (first pressure).
  • the pump head cover 13 is attached to the top of the pump head 12.
  • the suction passage T1 and the discharge passage T2 are formed by combining the pump head 12 and the pump head cover 13, respectively.
  • the pump body 11, the pump head 12, and the pump head cover 13 are integrally fixed using a plurality of screw members B.
  • the motor 21 is composed of a DC brushless motor capable of controlling the rotational speed, and is accommodated in a cylindrical motor case 22.
  • the motor 21 includes a rotating shaft 210, a stator 211, and a rotor 212.
  • the stator 211 is fixed to the inner surface of the motor case 22, and the rotor 212 is fixed around the rotating shaft 210.
  • the rotating shaft 210 is supported by the motor case 22 via bearings 23 and 24, and is attached to the rotation center of the eccentric cam 35 at the tip thereof.
  • the eccentric cam 35 is formed so that the rotation center thereof is eccentric with respect to the inner race of the bearing 34. Accordingly, when the rotating shaft 210 rotates around the axis by driving the motor 21, the eccentric cam 35 rotates together with the rotating shaft 210, so that the movable member 30 reciprocates in the vertical direction inside the operation space 105. Thereby, the volume of the pump chamber 100 changes periodically, and a predetermined pump function is obtained.
  • the reciprocating amount (stroke amount) of the movable member 30 is determined by the eccentric amount of the eccentric cam 35.
  • the pump device 3 further includes a valve mechanism 50 (third valve).
  • the valve mechanism 50 is attached to the discharge port 102.
  • the valve mechanism 50 has a function of restricting the outflow of gas from the gas discharge port 102 when the operation of the pump device 3 is stopped.
  • FIG. 3 is a cross-sectional perspective view showing the configuration of the valve mechanism 50
  • FIG. 4 is a cross-sectional view thereof.
  • the valve mechanism 50 includes a rubber valve member 51 and a metal housing 52 that houses the valve member 51.
  • the housing 52 has a first end 521 connected to the discharge port 102 of the casing 10 and a second end 522 connected to a conduit (not shown) communicating with the processing unit 4.
  • a seal ring 54 is mounted around the first end portion 521, and the first end portion 521 is hermetically attached to the inside of the discharge port 102 by the seal ring 54.
  • an internal passage 523 communicating between the first end 521 and the second end 522 is formed inside the housing 52.
  • a wall portion 53 having a central portion and a plurality of holes 531 around the center portion is formed perpendicularly to the wall surface of the internal passage 523 at the substantially central portion of the internal passage 523, and the first end is formed through these holes 531.
  • the portion 521 and the second end portion 522 can communicate with each other.
  • the valve member 51 is composed of an umbrella valve. That is, the valve member 51 is formed in a substantially disc shape, and the shaft portion 511 formed at the center thereof is mounted in the center hole of the wall portion 53 so as to be disposed in the internal passage 523.
  • the peripheral edge portion 512 of the valve member 51 is in elastic contact with the valve seat 532 formed on the surface of the wall portion 53 facing the second end portion 522, and the first end from the second end portion 522 side. The flow of the fluid to the part 521 side is blocked. That is, the valve member 51 functions as a backflow prevention valve.
  • the valve member 51 opens the valve at a predetermined pressure or higher with respect to the forward fluid flow from the first end portion 521 side to the second end portion 522 side. Allow. In this case, as shown in FIG. 4, the valve member 51 is separated from the valve seat 532 by the elastic deformation of the peripheral portion 512 toward the second end portion 522, and the shutoff state of the internal passage 523 by the valve member 51 is released. Is done. Under a fluid pressure lower than the predetermined pressure, the peripheral edge 512 is seated on the valve seat 532, and the shut-off state of the internal passage 523 is maintained.
  • valve member 51 a rubber material having resistance to various process gases is used.
  • methane, propane, or the like it is resistant to hydrocarbon gases such as nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), and fluoro rubber (FKM).
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • FKM fluoro rubber
  • the thickness and size of the valve member 51 are not particularly limited, and are individually set to thicknesses and sizes that can ensure valve opening pressure that can meet various specifications.
  • valve opening pressure of the valve member 51 (minimum pressure necessary for opening the valve member 51) is set to a pressure that is at least higher than the valve opening pressure (first pressure) of the discharge valve 42.
  • the valve opening pressure of the valve member 51 is determined with reference to the gas pressure P1 supplied from the pressure source 2 of the pump system 1.
  • the valve opening pressure of the valve member 51 is set to a pressure higher than the gas pressure P1 of the pressure source 2.
  • valve opening pressure of the valve member may be set to a pressure lower than the gas pressure P2 of the pressure source 2.
  • the pump device 3 is driven by starting the motor 21 of the drive unit 20.
  • the number of rotations of the motor 21 is controlled by the control unit 5 so as to be a constant discharge flow rate based on, for example, a flow meter installed on the discharge side of the pump device 3.
  • the motor 21 reciprocates the movable member 30 with a predetermined stroke in the operation space 105 by rotating the eccentric cam 35 via the rotating shaft 210. Thereby, the diaphragm 31 which divides the pump chamber 100 moves up and down, and the volume of the pump chamber 100 changes periodically.
  • the movable member 30 alternately changes the volume of the pump chamber 100 to alternately suck gas into the pump chamber 100 and discharge gas from the pump chamber 100. That is, fuel gas having a pressure P1 (for example, 2 kPa (gauge pressure)) is introduced into the pump chamber 100 from the pressure source 2 connected to the suction port 101 via the suction valve 41. The fuel gas introduced into the pump chamber 100 is pressurized by being compressed by the movable member in the pump chamber 100 to open the discharge valve 42 and the valve mechanism 50. By repeating the above operation, a fuel gas having a pressure P2 (for example, 15 kPa (gauge pressure)) is discharged from the discharge port 102 to the processing unit 4.
  • P1 for example, 2 kPa (gauge pressure)
  • P2 for example, 15 kPa (gauge pressure
  • the discharge valve 42 opens when the pressure in the pump chamber 100 reaches or exceeds the valve opening pressure of the discharge valve 42, and allows the gas flow from the pump chamber 100 to the discharge port 102. Accordingly, when gas is introduced into the pump chamber 100 from the suction port 101 at a pressure equal to or higher than the opening pressure of the discharge valve 42 when the pump device 3 is stopped, the flow of gas toward the discharge port 102 by opening the discharge valve 42. Will be formed.
  • the valve mechanism 50 is attached to the discharge port 102.
  • the valve mechanism 50 has a valve opening pressure higher than the gas pressure (P1) of the pressure source 2. Accordingly, even when the gas having the pressure P1 is introduced from the suction port 101 to the pump chamber 100 when the pump device 3 is stopped, the gas flow is blocked by the valve mechanism 50, and the gas flow from the discharge port 102 to the processing unit 4 is prevented. Outflow is prevented. In this way, inadvertent discharge of gas when the operation is stopped is suppressed, so that the possibility of problems occurring in the system can be solved.
  • the valve mechanism 50 has a structure capable of continuously changing the opening according to the introduction pressure. As a result, the valve mechanism 50 can be opened according to the discharge pressure when the operation of the pump device 6 is resumed, and a necessary flow rate of gas can be quickly supplied to the processing unit 4.
  • FIG. 5 shows the change over time in the discharge flow rate of the pump device 3 when the operation and stop of the pump device 3 are repeated under the experimental conditions shown in FIG.
  • a is a buffer tank
  • b is a pressure gauge
  • c is a suction pipe
  • d is a blower, which corresponds to the pump device 3 of this embodiment.
  • e is a pressure gauge
  • f is a discharge pipe
  • g is a fixed orifice
  • h is a flow meter.
  • the minimum value of the discharge flow rate was 0, and it was confirmed that the gas closing function by the valve mechanism 50 was functioning normally when the operation of the pump device 3 was stopped. It was also confirmed that the discharge flow rate of the pump device 6 was stably maintained at a constant value and the reproducibility was high.
  • FIG. 7 shows an experimental result showing a change in the discharge flow rate of the pump device 6 with respect to the rotation speed control voltage (Vsp) input to the motor 21 of the pump device 6.
  • Vsp rotation speed control voltage
  • FIG. 8 shows a pump device according to a second embodiment of the present invention.
  • configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the pump device 6 of the present embodiment is different from the first embodiment described above in the configuration of the valve mechanism 60 attached to the discharge port 102.
  • the valve mechanism 60 has a valve member 61 that constitutes an umbrella valve, and is installed in the internal passage of the housing 62 in the same form as the first embodiment shown in FIGS. 3 and 4.
  • the valve mechanism 60 of the present embodiment has a function of restricting the outflow of gas that is equal to or higher than the valve opening pressure (first pressure) of the discharge valve 42 and equal to or lower than the gas pressure P1 (second pressure) of the pressure source 2. This is common to the first embodiment.
  • the valve mechanism 60 in the present embodiment allows the outflow of gas from the discharge port 102 to the processing unit 4 when the operation of the pump device 6 is stopped, but has a function of suppressing the outflow amount to a predetermined value or less. Different from the first embodiment.
  • valve opening pressure of the valve member 61 of the present embodiment is set to a pressure lower than the gas pressure P1 of the pressure source 2. Since the valve mechanism 60 of the present embodiment has a structure capable of continuously changing the opening degree according to the gas pressure, the gas flowing out to the processing unit 4 side according to the gas pressure introduced into the valve mechanism 60. It is possible to control the flow rate.
  • the pressure required to fully open the valve member 61 is set to a pressure higher than the gas pressure P1 of the pressure source 2 (for example, a discharge pressure (P2) or less during normal operation of the pump device 3).
  • the valve mechanism 60 can control the flow rate of the gas not less than the valve opening pressure (first pressure) of the discharge valve 42 and not more than the gas pressure P1 (second pressure) of the pressure source 2.
  • the gas flow rate supplied from the pressure source 2 can be reduced to a predetermined flow rate and supplied to the processing unit 4.
  • a throttle valve such as an orifice on the upstream side or the downstream side of the pump device 6, and the number of system components can be reduced.
  • This embodiment is suitably used for a system that needs to supply a gas having a predetermined flow rate or less to the processing unit 4 even when the operation of the pump device 6 is stopped.
  • FIG. 9 shows a pump device according to a third embodiment of the present invention.
  • configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the pump device 7 of the present embodiment has a casing 70 including a pump body 11, a pump head 72, and a pump head cover 73.
  • the pump head 72 is formed with a suction port 101 and a discharge port 102, respectively.
  • the valve mechanism 50 described in the first embodiment is attached to the discharge port 102.
  • the pump head 72 is formed with a suction passage T1, a discharge passage T2, and a buffer tank 721, respectively. At least a part of these passages is exposed to the outside from the upper surface of the pump head 72, and is shielded from the outside air by being covered with a pump head cover 73 via a seal member.
  • diaphragm pumps structurally generate pulsation in the discharge gas.
  • the pump rotation speed is controlled based on the measured value of the flow rate of the discharge gas, if the pulsation is large, the accurate flow rate cannot be measured, and the pump drive control becomes unstable. Further, when the discharge gas is a fuel gas, the pulsation may cause unstable combustion or incomplete combustion.
  • the pump device 7 of the present embodiment has a buffer tank 721 between the discharge passage T2 and the discharge port 102.
  • the buffer tank 721 forms a space 74 between the discharge valve 42 (discharge passage T ⁇ b> 2) and the valve mechanism 50 in which a part of the flow path connecting these is expanded.
  • the buffer tank 721 has a function of buffering the pulsation of the gas discharged from the discharge valve 42.
  • the pulsation of the gas discharged from the valve mechanism 50 can be reduced, and the gas can be discharged at a stable flow rate. Further, when the drive of the pump device 7 is controlled based on the discharge flow rate, stable drive control of the pump device 7 is possible. Furthermore, since the pump and the buffer tank are integrated, there is no need to provide a separate buffer tank in the gas flow path of the pump system, and the system configuration can be simplified.
  • the volume of the space 74 of the buffer tank 721 is determined based on the pulsation (pressure width) of the gas discharged from the discharge valve 42.
  • FIG. 10 shows a result of an experiment conducted by the present inventors and shows a relationship between the buffer volume (cc) and the pressure width of the gas discharged from the discharge port 102. As shown in FIG. 10, the larger the volume of the space 74, the smaller the pressure width. For example, the pulsation width can be suppressed to 0.75 kPa or less by setting the volume of the space 74 to 120 cc or more.
  • FIG. 10 shows a pump device according to a fourth embodiment of the present invention.
  • configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the pump device 8 of the present embodiment includes a casing 80, a drive unit 20, and a buffer tank 81.
  • the casing 80 has a suction port 101 and a discharge port 102, pressurizes the gas sucked from the suction port 101 in a pump chamber (not shown), and discharges the boosted gas from the discharge port 102 via the buffer tank 81. To do.
  • FIG. 11 is a cross-sectional view of the buffer tank 81 and the discharge port 102.
  • a space 74 having a predetermined volume is formed inside the buffer tank 81 to reduce pulsation of the discharge gas.
  • the discharge port 102 communicates with the space 74, and a valve member 51 is attached inside the discharge port 102.
  • the valve member 51 has the same configuration as that of the first embodiment, and has a function of restricting the outflow of gas having a predetermined pressure or less.
  • FIG. 13 to 18 show the appearance of the pump device 8.
  • FIG. 13 is a front view
  • FIG. 14 is a rear view
  • FIG. 15 is a plan view
  • FIG. 16 is a bottom view
  • valve mechanism that restricts the flow of fluid below a predetermined pressure is attached to the discharge port.
  • the present invention is not limited to this. It may be provided.
  • valve member constituting the valve mechanism is not limited to the umbrella valve, and may be constituted by, for example, a ball valve or a butterfly valve.
  • the pump device is a diaphragm pump.
  • the present invention is not limited to this, and the present invention can also be applied to other pump devices such as a roots pump.
  • the movable member that changes the volume of the pump chamber corresponds to rotors that are arranged to face each other.

Abstract

[Problem] To provide a pump device configured so that the discharge of fluid can be limited while the operation of the pump device is stopped. [Solution] A pump device (3) is provided with a casing (10), a movable member (30), a suction valve (41), a discharge valve (42), and a valve mechanism (50). The casing (10) has a pump chamber (100) which can connect to a suction opening (101) and to a discharge opening (102). The movable member (30) can move within the casing (10) and alternately performs the suction of fluid into the pump chamber (100) and the discharge of the fluid from the pump chamber (100). The discharge valve (42) is mounted between the pump chamber (100) and the discharge opening (102) and permits fluid having a pressure higher than or equal to a first pressure to flow from the pump chamber (100) toward the discharge opening (102). The valve mechanism (50) is mounted to the casing (10) and limits the flow of fluid flowing from the suction opening (101) toward the discharge opening (102), the fluid having a pressure lower than or equal to a second pressure which is higher than the first pressure.

Description

ポンプ装置及びポンプシステムPump device and pump system
 本発明は、例えば昇圧ブロワあるいは昇圧ポンプとして用いられるポンプ装置及びこれを備えたポンプシステムに関する。 The present invention relates to a pump device used as, for example, a booster blower or a booster pump, and a pump system including the pump device.
 燃料ガスや酸素等の気体、冷却水や作動油等の液体などを所望の圧力に上昇させる機器として、昇圧ブロワあるいは昇圧ポンプと称されるポンプ装置が広く知られている。この種のポンプ装置には、ルーツポンプやダイアフラムポンプ等が用いられており、例えば下記特許文献1には、燃料電池システムにおける燃料ガスの昇圧ブロワとして用いられるダイアフラムポンプが記載されている。 2. Description of the Related Art Pump devices called booster blowers or booster pumps are widely known as devices that raise a gas such as fuel gas or oxygen, or a liquid such as cooling water or hydraulic oil to a desired pressure. For this type of pump device, a roots pump, a diaphragm pump, or the like is used. For example, Patent Document 1 listed below describes a diaphragm pump used as a booster for fuel gas in a fuel cell system.
特開2009-47084号公報JP 2009-47084 A
 従来の昇圧ブロワは、導入される流体圧を減圧して吐出する機能を備えていなかった。このため、昇圧ブロワの吸入口に所定の圧力以上の流体を供給する圧力源が接続されるポンプシステムにおいては、昇圧ブロワの運転停止時に吸入口へ導入された流体が昇圧ブロワから吐出され、場合によってはシステムに不具合を生じさせる可能性があった。 Conventional pressure boosters did not have the function of reducing the fluid pressure introduced and discharging. For this reason, in a pump system in which a pressure source that supplies fluid of a predetermined pressure or higher is connected to the suction port of the booster blower, the fluid introduced to the suction port when the booster blower is stopped is discharged from the booster blower. Depending on the situation, there was a possibility of causing a problem in the system.
 以上のような事情に鑑み、本発明の目的は、運転停止時に流体の吐出を制限することができるポンプ装置及びポンプシステムを提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a pump device and a pump system capable of restricting fluid discharge when operation is stopped.
 上記目的を達成するため、本発明の一形態に係るポンプ装置は、ケーシングと、可動部材と、第1の弁と、第2の弁と、第3の弁とを具備する。
 上記ケーシングは、吸入口と、吐出口と、上記吸入口及び上記吐出口と各々連通可能なポンプ室とを有する。
 上記可動部材は、上記ケーシングの内部を移動可能であり、上記ポンプ室への流体の吸入と上記ポンプ室からの上記流体の排出とを交互に行う。
 上記第1の弁は、上記吸入口と上記ポンプ室との間に取り付けられ、上記吸入口から上記ポンプ室への上記流体の流れを許容する。
 上記第2の弁は、上記ポンプ室と上記吐出口との間に取り付けられ、上記ポンプ室の流体が第1の圧力以上である場合に上記ポンプ室から上記吐出口への上記流体の流れを許容する。
 上記第3の弁は、上記ケーシングに取り付けられ、上記吸入口と上記吐出口との間の上記流体が上記第1の圧力よりも大きい第2の圧力以下の場合に上記吸入口から上記吐出口へ向かう上記流体の流れを制限する。
In order to achieve the above object, a pump device according to an aspect of the present invention includes a casing, a movable member, a first valve, a second valve, and a third valve.
The casing includes a suction port, a discharge port, and a pump chamber that can communicate with the suction port and the discharge port.
The movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
The first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
The second valve is attached between the pump chamber and the discharge port, and allows the fluid flow from the pump chamber to the discharge port when the fluid in the pump chamber is equal to or higher than the first pressure. Allow.
The third valve is attached to the casing, and when the fluid between the suction port and the discharge port is equal to or lower than a second pressure larger than the first pressure, the suction port to the discharge port. Restrict the flow of fluid toward
 また上記目的を達成するため、本発明の一形態に係るポンプシステムは、ポンプ装置と、圧力源と、処理部とを具備する。
 上記ポンプ装置は、ケーシングと、可動部材と、第1の弁と、第2の弁と、第3の弁とを有する。
 上記ケーシングは、上記圧力源と連絡する吸入口と、上記処理部と連絡する吐出口と、上記吸入口及び上記吐出口と各々連通可能なポンプ室とを有する。
 上記可動部材は、上記ケーシングの内部を移動可能であり、上記ポンプ室への流体の吸入と上記ポンプ室からの上記流体の排出とを交互に行う。
 上記第1の弁は、上記吸入口と上記ポンプ室との間に取り付けられ、上記吸入口から上記ポンプ室へ向かう上記流体の流れを許容する。
 上記第2の弁は、上記ポンプ室と上記吐出口との間に取り付けられ、上記ポンプ室から上記吐出口へ向かう、第1の圧力以上の上記流体の流れを許容する。
 上記第3の弁は、上記ケーシングに取り付けられ、上記吸入口から上記吐出口へ向かう、上記第1の圧力よりも大きい第2の圧力以下の上記流体の流れを制限する。
 上記圧力源は、上記吸入口に接続され、上記第2の圧力以下の流体を上記ポンプ装置へ供給する。
 上記処理部は、上記吐出口に接続され、上記ポンプ装置から吐出される流体を処理する。
In order to achieve the above object, a pump system according to an embodiment of the present invention includes a pump device, a pressure source, and a processing unit.
The pump device includes a casing, a movable member, a first valve, a second valve, and a third valve.
The casing includes a suction port that communicates with the pressure source, a discharge port that communicates with the processing unit, and a pump chamber that can communicate with the suction port and the discharge port.
The movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
The first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
The second valve is attached between the pump chamber and the discharge port, and allows the fluid to flow from the pump chamber toward the discharge port at a pressure equal to or higher than the first pressure.
The third valve is attached to the casing and restricts the flow of the fluid from the suction port toward the discharge port and below a second pressure greater than the first pressure.
The pressure source is connected to the suction port, and supplies a fluid having the second pressure or less to the pump device.
The processing unit is connected to the discharge port and processes fluid discharged from the pump device.
本発明の一実施形態に係るポンプシステムの概略を示す図である。It is a figure showing the outline of the pump system concerning one embodiment of the present invention. 本発明の一実施形態に係るポンプ装置の断面図である。It is sectional drawing of the pump apparatus which concerns on one Embodiment of this invention. 上記ポンプ装置に組み込まれる弁機構の構成を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of the valve mechanism integrated in the said pump apparatus. 上記弁機構の断面図である。It is sectional drawing of the said valve mechanism. 上記ポンプ装置の運転及び停止を繰り返したときのポンプ装置の吐出流量の時間変化を示す一実験結果である。It is one experimental result which shows the time change of the discharge flow rate of a pump apparatus when the driving | operation and stop of the said pump apparatus are repeated. 図5に示す実験に用いた配管構成図である。It is the piping block diagram used for the experiment shown in FIG. 上記ポンプ装置の一作用を説明する図である。It is a figure explaining one effect | action of the said pump apparatus. 本発明の第2の実施形態に係るポンプ装置の断面図である。It is sectional drawing of the pump apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るポンプ装置の一部分解斜視図である。It is a partial exploded perspective view of the pump apparatus which concerns on the 3rd Embodiment of this invention. 図9に示すポンプ装置の一作用を説明する図である。It is a figure explaining an effect | action of the pump apparatus shown in FIG. 本発明の第4の実施形態に係るポンプ装置の斜視図である。It is a perspective view of the pump apparatus which concerns on the 4th Embodiment of this invention. 図11に示すポンプ装置の要部断面図である。It is principal part sectional drawing of the pump apparatus shown in FIG. 図11に示すポンプ装置の正面図である。It is a front view of the pump apparatus shown in FIG. 図11に示すポンプ装置の背面図である。It is a rear view of the pump apparatus shown in FIG. 図11に示すポンプ装置の平面図である。It is a top view of the pump apparatus shown in FIG. 図11に示すポンプ装置の底面図である。It is a bottom view of the pump apparatus shown in FIG. 図11に示すポンプ装置の右側面図である。It is a right view of the pump apparatus shown in FIG. 図11に示すポンプ装置の左側面図である。It is a left view of the pump apparatus shown in FIG.
 本発明の一実施形態に係るポンプ装置は、ケーシングと、可動部材と、第1の弁と、第2の弁と、第3の弁とを具備する。
 上記ケーシングは、吸入口と、吐出口と、上記吸入口及び上記吐出口と各々連通可能なポンプ室とを有する。
 上記可動部材は、上記ケーシングの内部を移動可能であり、上記ポンプ室への流体の吸入と上記ポンプ室からの上記流体の排出とを交互に行う。
 上記第1の弁は、上記吸入口と上記ポンプ室との間に取り付けられ、上記吸入口から上記ポンプ室への上記流体の流れを許容する。
 上記第2の弁は、上記ポンプ室と上記吐出口との間に取り付けられ、上記ポンプ室の流体が第1の圧力以上である場合に上記ポンプ室から上記吐出口への上記流体の流れを許容する。
 上記第3の弁は、上記ケーシングに取り付けられ、上記吸入口と上記吐出口との間の上記流体が上記第1の圧力よりも大きい第2の圧力以下の場合に上記吸入口から上記吐出口へ向かう上記流体の流れを制限する。
A pump device according to an embodiment of the present invention includes a casing, a movable member, a first valve, a second valve, and a third valve.
The casing includes a suction port, a discharge port, and a pump chamber that can communicate with the suction port and the discharge port.
The movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
The first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
The second valve is attached between the pump chamber and the discharge port, and allows the fluid flow from the pump chamber to the discharge port when the fluid in the pump chamber is equal to or higher than the first pressure. Allow.
The third valve is attached to the casing, and when the fluid between the suction port and the discharge port is equal to or lower than a second pressure larger than the first pressure, the suction port to the discharge port. Restrict the flow of fluid toward
 上記ポンプ装置において、可動部材は、ポンプ室の容積を周期的に変化させることで、ポンプ室への流体の吸入とポンプ室からの流体の排出とを交互に行う。流体は、気体でもよいし、液体でもよい。流体の吸入時、吸入口から第1の弁を介してポンプ室へ流体が導入される。流体の排出時、ポンプ室へ導入された流体は、ポンプ室において可動部材により第1の圧力以上に圧縮されることで第2の弁を開放し吐出口から吐出される。以上の動作が繰り返されることで、吐出口から第1の圧力以上の圧力で流体が吐出される。 In the above pump device, the movable member periodically changes the volume of the pump chamber, thereby alternately sucking the fluid into the pump chamber and discharging the fluid from the pump chamber. The fluid may be a gas or a liquid. When the fluid is sucked, the fluid is introduced from the suction port into the pump chamber through the first valve. When the fluid is discharged, the fluid introduced into the pump chamber is compressed to a pressure equal to or higher than the first pressure by the movable member in the pump chamber, so that the second valve is opened and discharged from the discharge port. By repeating the above operation, the fluid is discharged from the discharge port at a pressure equal to or higher than the first pressure.
 第2の弁は、ポンプ室内の圧力が上記第1の圧力以上に達した時点で開弁し、ポンプ室から吐出口への流体の流れを許容する。従って例えばポンプ装置の運転停止時に、吸入口より第1の圧力以上の圧力で流体がポンプ室へ導入されると、第2の弁を開放して吐出口へ向かう流体の流れが形成されることになる。 The second valve opens when the pressure in the pump chamber reaches or exceeds the first pressure, and allows the fluid to flow from the pump chamber to the discharge port. Therefore, for example, when the pump device is stopped, if fluid is introduced into the pump chamber from the suction port at a pressure equal to or higher than the first pressure, the second valve is opened and a fluid flow toward the discharge port is formed. become.
 そこで上記ポンプ装置は、第3の弁を有する。第3の弁は、第1の圧力よりも大きい第2の圧力以下の流体の流れを制限する。従ってポンプ装置の運転停止時、吸入口から第1の圧力以上、第2の圧力以下の圧力を有する流体がポンプ室へ導入された場合でも、第3の弁により流体の流れが阻害され、吐出口からの流体の吐出が抑えられる。これにより運転停止時における流体の不用意な吐出が抑制される。 Therefore, the pump device has a third valve. The third valve restricts the flow of fluid below the second pressure that is greater than the first pressure. Accordingly, when the pump device is stopped, even if a fluid having a pressure not lower than the first pressure and not higher than the second pressure is introduced from the suction port into the pump chamber, the flow of the fluid is inhibited by the third valve, and the discharge is prevented. The discharge of fluid from the outlet is suppressed. Thereby, inadvertent discharge of the fluid at the time of operation stop is suppressed.
 また上記ポンプ装置によれば、ポンプ装置の運転停止時における流体の不用意な吐出を抑制できるため、吸入口に流体圧源が接続されるポンプシステムにも適用することができる。これにより、運転停止時に吐出口から流体が漏出することによってシステムに不具合が生じるおそれを解消することができる。 Further, according to the above pump device, since inadvertent discharge of the fluid when the pump device is stopped can be suppressed, the pump device can also be applied to a pump system in which a fluid pressure source is connected to the suction port. As a result, it is possible to eliminate the possibility that the system may malfunction due to fluid leaking from the discharge port when the operation is stopped.
 上記第2の圧力は適宜設定可能であり、例えば、吸入口に導入される流体の圧力、あるいは、運転停止状態で吐出される流体の許容流量等を基準として設定される。「流れを制限する」には、「流れを遮断する」という意味と、「流れを遮断せずともその流量を低下させる」という意味とが含まれる。 The second pressure can be set as appropriate, and is set based on, for example, the pressure of the fluid introduced into the suction port or the allowable flow rate of the fluid discharged in the operation stop state. “Limiting the flow” includes the meaning of “blocking the flow” and the meaning of “decreasing the flow rate without blocking the flow”.
 第3の弁は、ケーシングに取り付けられる。第3の弁は、吸入口側に取り付けられてもよいし、吐出口側に取り付けられてもよい。一実施形態では、第3の弁は、第2の弁よりも吐出口側に配置される。これにより、ポンプ室へ導入される流体の流れを阻害することなく安定したポンプ性能を確保することができる。 The third valve is attached to the casing. The third valve may be attached to the suction port side or may be attached to the discharge port side. In one embodiment, the third valve is disposed closer to the discharge port than the second valve. Thereby, the stable pump performance can be ensured without obstructing the flow of the fluid introduced into the pump chamber.
 第3の弁は、上記第2の圧力以下の流体の流れを完全に遮断できる構造であってもよいし、上記第1の圧力と上記第2の圧力との間で段階的に開度が変化する構造であってもよい。前者の場合、第3の弁は、例えば電磁弁等で構成することができる。 The third valve may have a structure that can completely block the flow of fluid below the second pressure, and the opening degree is stepwise between the first pressure and the second pressure. The structure may change. In the former case, the third valve can be constituted by, for example, an electromagnetic valve.
 一方、後者の場合、第3の弁は、圧力に応じて開度が大きくなる弁構造が採用される。例えば第3の弁は、弁座と、上記弁座に着座可能であり上記第1の圧力以上第2の圧力以下の圧力に応じて開度が連続的に変化する弁部材とを有する。このような弁構造を有する弁として、例えばアンブレラバルブが適用可能である。これにより、上記ポンプ装置から吐出される流体の低流量制御が可能となる。 On the other hand, in the latter case, the third valve employs a valve structure in which the opening degree increases in accordance with the pressure. For example, the third valve includes a valve seat, and a valve member that can be seated on the valve seat and whose opening degree changes continuously according to a pressure not lower than the first pressure and not higher than the second pressure. As a valve having such a valve structure, for example, an umbrella valve is applicable. Thereby, low flow control of the fluid discharged from the said pump apparatus is attained.
 上記ケーシングは、上記第2の弁と上記第3の弁との間を連絡する流路の一部が拡張された空間部をさらに有してもよい。上記空間部は、吐出される流体の脈動を緩衝するバッファ空間として機能する。これにより流体の脈動を低減でき、安定した流量で流体を吐出することができる。また、吐出流量に基づいてポンプ装置の駆動を制御する場合においては、ポンプ装置の安定した駆動制御が可能となる。 The casing may further include a space part in which a part of the flow path communicating between the second valve and the third valve is expanded. The space portion functions as a buffer space for buffering the pulsation of the discharged fluid. Thereby, the pulsation of the fluid can be reduced, and the fluid can be discharged at a stable flow rate. In addition, in the case where the drive of the pump device is controlled based on the discharge flow rate, stable drive control of the pump device is possible.
 上記ポンプ装置はダイアフラムポンプで構成することができる。この場合、上記可動部材は、上記ポンプ室を区画する変形可能なダイアフラムを含む。これにより、小型のポンプ装置を提供することができる。 The pump device can be configured with a diaphragm pump. In this case, the movable member includes a deformable diaphragm that partitions the pump chamber. Thereby, a small pump device can be provided.
 本発明の一実施形態に係るポンプシステムは、ポンプ装置と、圧力源と、処理部とを具備する。
 上記ポンプ装置は、ケーシングと、可動部材と、第1の弁と、第2の弁と、第3の弁とを有する。
 上記ケーシングは、上記圧力源と連絡する吸入口と、上記処理部と連絡する吐出口と、上記吸入口及び上記吐出口と各々連通可能なポンプ室とを有する。
 上記可動部材は、上記ケーシングの内部を移動可能であり、上記ポンプ室への流体の吸入と上記ポンプ室からの上記流体の排出とを交互に行う。
 上記第1の弁は、上記吸入口と上記ポンプ室との間に取り付けられ、上記吸入口から上記ポンプ室へ向かう上記流体の流れを許容する。
 上記第2の弁は、上記ポンプ室と上記吐出口との間に取り付けられ、上記ポンプ室から上記吐出口へ向かう、第1の圧力以上の上記流体の流れを許容する。
 上記第3の弁は、上記ケーシングに取り付けられ、上記吸入口から上記吐出口へ向かう、上記第1の圧力よりも大きい第2の圧力以下の上記流体の流れを制限する。
 上記圧力源は、上記吸入口に接続され、上記第2の圧力以下の流体を上記ポンプ装置へ供給する。
 上記処理部は、上記吐出口に接続され、上記ポンプ装置から吐出される流体を処理する。
A pump system according to an embodiment of the present invention includes a pump device, a pressure source, and a processing unit.
The pump device includes a casing, a movable member, a first valve, a second valve, and a third valve.
The casing includes a suction port that communicates with the pressure source, a discharge port that communicates with the processing unit, and a pump chamber that can communicate with the suction port and the discharge port.
The movable member is movable in the casing, and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber.
The first valve is attached between the suction port and the pump chamber, and allows the fluid to flow from the suction port to the pump chamber.
The second valve is attached between the pump chamber and the discharge port, and allows the fluid to flow from the pump chamber toward the discharge port at a pressure equal to or higher than the first pressure.
The third valve is attached to the casing and restricts the flow of the fluid from the suction port toward the discharge port and below a second pressure greater than the first pressure.
The pressure source is connected to the suction port, and supplies a fluid having the second pressure or less to the pump device.
The processing unit is connected to the discharge port and processes fluid discharged from the pump device.
 上記ポンプシステムによれば、ポンプ装置の運転停止時、圧力源から第1の圧力以上、第2の圧力以下の圧力を有する流体がポンプ室へ導入された場合でも、第3の弁により流体の流れが阻害され、吐出口からの流体の吐出が制限される。これにより運転停止時における流体の不用意な吐出が抑制される。また、運転停止時に吐出口から流体が漏出することによってシステムに不具合が生じるおそれを解消することができる。 According to the above pump system, even when a fluid having a pressure not lower than the first pressure and not higher than the second pressure is introduced from the pressure source into the pump chamber when the pump device is stopped, the third valve causes the fluid to flow. The flow is hindered, and the discharge of fluid from the discharge port is restricted. Thereby, inadvertent discharge of the fluid at the time of operation stop is suppressed. In addition, it is possible to eliminate the possibility that the system may malfunction due to fluid leaking from the discharge port when the operation is stopped.
 上記処理部は特に限定されず、ポンプ装置から吐出される流体を用いてエネルギーや動力を生成するための各種機器、例えば、改質器、燃焼器、発電機、シリンダ装置、各種エンジンを含む。 The processing unit is not particularly limited, and includes various devices for generating energy and power using a fluid discharged from a pump device, such as a reformer, a combustor, a generator, a cylinder device, and various engines.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
[ポンプシステム]
 図1は、本発明の一実施形態に係るポンプシステムの概略を示す図である。本実施形態のポンプシステム1は、圧力源2と、ポンプ装置3と、処理部4、制御部5とを有する。
<First Embodiment>
[Pump system]
FIG. 1 is a diagram showing an outline of a pump system according to an embodiment of the present invention. The pump system 1 according to the present embodiment includes a pressure source 2, a pump device 3, a processing unit 4, and a control unit 5.
 圧力源2はポンプ装置3の吸入側(一次側)に接続され、処理部4はポンプ装置3の吐出側(二次側)に接続される。圧力源2は、所定圧の流体(気体または液体)を収容するタンク、ボンベ等の容器でもよいし、コンプレッサ等の圧力発生源であってもよい。ポンプ装置3は、圧力源2から導入される圧力P1の流体を所定の圧力P2に高めて処理部4へ供給する昇圧ブロワあるいは昇圧ポンプとして機能する。処理部4は、ポンプ装置3から供給された流体を処理し、エネルギーや動力等を生成する。制御部5は、ポンプ装置3の運転を制御するが、処理部4を含むシステム全体を制御してもよい。 The pressure source 2 is connected to the suction side (primary side) of the pump device 3, and the processing unit 4 is connected to the discharge side (secondary side) of the pump device 3. The pressure source 2 may be a container such as a tank or a cylinder that contains a fluid (gas or liquid) having a predetermined pressure, or may be a pressure generation source such as a compressor. The pump device 3 functions as a booster blower or a booster pump that increases the fluid of the pressure P1 introduced from the pressure source 2 to a predetermined pressure P2 and supplies the fluid to the processing unit 4. The processing unit 4 processes the fluid supplied from the pump device 3 to generate energy, power, and the like. The control unit 5 controls the operation of the pump device 3, but may control the entire system including the processing unit 4.
 ポンプシステム1は、例えば燃料電池システムに適用される。この場合、圧力源2は、燃料タンクに相当し、ポンプ装置3は燃料ガス(例えば都市ガス(メタン)、LPG(液化プロパンガス))を昇圧して処理部4へ供給する。処理部4には、燃料ガスを水素に転換する改質器、水素を蓄える燃料電池、水素と酸素を反応させる発電部等が含まれる。 The pump system 1 is applied to a fuel cell system, for example. In this case, the pressure source 2 corresponds to a fuel tank, and the pump device 3 boosts the fuel gas (for example, city gas (methane), LPG (liquefied propane gas)) and supplies it to the processing unit 4. The processing unit 4 includes a reformer that converts fuel gas into hydrogen, a fuel cell that stores hydrogen, a power generation unit that reacts hydrogen and oxygen, and the like.
[ポンプ装置]
 次に、図2を参照してポンプ装置3の詳細を説明する。図2は、ポンプ装置3の構造を示す断面図である。本実施形態においてポンプ装置3は、ダイアフラムポンプで構成される。
[Pump device]
Next, the details of the pump device 3 will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the structure of the pump device 3. In the present embodiment, the pump device 3 is constituted by a diaphragm pump.
 ポンプ装置3は、金属製のケーシング10と、駆動部20とを有する。ケーシング10は、ポンプ本体11と、ポンプヘッド12と、ポンプヘッドカバー13とを有する。駆動部20は、モータ21と、モータケース22とを有する。 The pump device 3 has a metal casing 10 and a drive unit 20. The casing 10 includes a pump body 11, a pump head 12, and a pump head cover 13. The drive unit 20 includes a motor 21 and a motor case 22.
 ポンプ本体11は、ケーシング10の内部に、可動部材30を収容する動作空間105を形成する。可動部材30は、ダイアフラム31と、ダイアフラム31に固定された固定具32と、固定具32をモータ21に連結するコネクティングロッド33とを有する。 The pump body 11 forms an operation space 105 in which the movable member 30 is accommodated in the casing 10. The movable member 30 includes a diaphragm 31, a fixture 32 fixed to the diaphragm 31, and a connecting rod 33 that couples the fixture 32 to the motor 21.
 ダイアフラム31は、円盤形状のゴム材料で形成されており、その周縁部がポンプ本体11とポンプヘッド12との間に挟持されている。固定具32は、ダイアフラム31の中央部に固定されており、ダイアフラム31を上下から挟むように組み付けられた複数の部品で構成されている。コネクティングロッド33は、ダイアフラム31の中心部を貫通するように固定具32と一体化される。コネクティングロッド33は、軸受34を介して、モータ21の回転軸210に取り付けられた偏心カム35の周面に連結される。 The diaphragm 31 is formed of a disc-shaped rubber material, and the peripheral edge thereof is sandwiched between the pump body 11 and the pump head 12. The fixture 32 is fixed to the central portion of the diaphragm 31, and is composed of a plurality of parts assembled so as to sandwich the diaphragm 31 from above and below. The connecting rod 33 is integrated with the fixture 32 so as to penetrate the central portion of the diaphragm 31. The connecting rod 33 is connected to the peripheral surface of the eccentric cam 35 attached to the rotating shaft 210 of the motor 21 via the bearing 34.
 ポンプヘッド12は、吸入口101と、吐出口102とを有し、環状の台座110の上面に配置されている。台座110は、ポンプ本体11の上部の開口端部に取り付けられ、ポンプヘッド12と共にダイアフラム31の周縁部を挟持する。ポンプヘッド12は、ダイアフラム31との間にポンプ室100を形成する。 The pump head 12 has a suction port 101 and a discharge port 102 and is disposed on the upper surface of an annular pedestal 110. The pedestal 110 is attached to the opening end of the upper portion of the pump body 11 and sandwiches the peripheral edge of the diaphragm 31 together with the pump head 12. The pump head 12 forms a pump chamber 100 between the diaphragm 31 and the pump head 12.
 ポンプヘッド12は、吸入口101とポンプ室100との間を連絡する吸入通路T1と、ポンプ室100と吐出口102との間を連絡する吐出通路T2とをそれぞれ有する。ポンプ室100は、吸入通路T1及び吐出通路T2を介して、吸入口101及び吐出口102にそれぞれ連通可能である。吸入通路T1及び吐出通路T2には、吸入弁41(第1の弁)及び吐出弁42(第2の弁)がそれぞれ取り付けられている。 The pump head 12 has a suction passage T1 that communicates between the suction port 101 and the pump chamber 100, and a discharge passage T2 that communicates between the pump chamber 100 and the discharge port 102. The pump chamber 100 can communicate with the suction port 101 and the discharge port 102 via the suction passage T1 and the discharge passage T2, respectively. A suction valve 41 (first valve) and a discharge valve 42 (second valve) are respectively attached to the suction passage T1 and the discharge passage T2.
 吸入弁41は、吸入通路T1を形成する吸入孔h1を閉塞するようにポンプヘッド12に取り付けられる。吸入弁41は、ポンプ室100に臨む吸入孔h1の端部に取り付けられたリード弁で構成され、吸入口101からポンプ室100へ向かう流体の流れを許容する。吸入弁41の開弁圧(吸入弁41の開放に必要な最低圧力)は特に限定されず、ポンプ装置の動作時にポンプ室100へ所定流量のガスが導入される程度の開弁圧を有していればよい。従って吸入弁41の開弁圧は、圧力源2からポンプ装置3へ供給されるガスの圧力よりも低い圧力であってもよい。 The suction valve 41 is attached to the pump head 12 so as to close the suction hole h1 that forms the suction passage T1. The suction valve 41 is constituted by a reed valve attached to the end of the suction hole h1 facing the pump chamber 100, and allows the flow of fluid from the suction port 101 toward the pump chamber 100. The valve opening pressure of the suction valve 41 (minimum pressure required to open the suction valve 41) is not particularly limited, and has a valve opening pressure at which a predetermined flow rate of gas is introduced into the pump chamber 100 during operation of the pump device. It only has to be. Accordingly, the valve opening pressure of the suction valve 41 may be a pressure lower than the pressure of the gas supplied from the pressure source 2 to the pump device 3.
 一方、吐出弁42は、吐出通路T2を形成する吐出孔h2を閉塞するようにポンプヘッド12に取り付けられる。吐出弁42は、ポンプ室100とは反対側の吐出孔h2の端部に取り付けられたリード弁で構成され、ポンプ室100から吐出口102へ向かう流体の流れを許容する。吐出弁42の開弁圧(吐出弁42の開放に必要な最低圧力)は特に限定されず、目的とする吐出圧力が得られる圧力に設定され、本実施形態では吸入弁41の開弁圧よりも大きな圧力(第1の圧力)に設定される。 On the other hand, the discharge valve 42 is attached to the pump head 12 so as to close the discharge hole h2 forming the discharge passage T2. The discharge valve 42 is constituted by a reed valve attached to the end of the discharge hole h <b> 2 on the side opposite to the pump chamber 100, and allows the flow of fluid from the pump chamber 100 toward the discharge port 102. The valve opening pressure of the discharge valve 42 (minimum pressure required to open the discharge valve 42) is not particularly limited, and is set to a pressure at which a target discharge pressure can be obtained. Is set to a large pressure (first pressure).
 ポンプヘッドカバー13は、ポンプヘッド12の上部に取り付けられる。吸入通路T1及び吐出通路T2は、ポンプヘッド12とポンプヘッドカバー13とが組み合わされることでそれぞれ形成される。ポンプ本体11、ポンプヘッド12及びポンプヘッドカバー13は、複数本のネジ部材Bを用いて一体的に固定される。 The pump head cover 13 is attached to the top of the pump head 12. The suction passage T1 and the discharge passage T2 are formed by combining the pump head 12 and the pump head cover 13, respectively. The pump body 11, the pump head 12, and the pump head cover 13 are integrally fixed using a plurality of screw members B.
 モータ21は、回転数制御が可能な直流ブラシレスモータで構成され、円筒状のモータケース22の内部に収容される。モータ21は、回転軸210と、ステータ211と、ロータ212とを有する。ステータ211はモータケース22の内面に固定され、ロータ212は回転軸210の周囲に固定されている。回転軸210は、軸受23,24を介してモータケース22に支持されており、その先端部には偏心カム35の回転中心に取り付けられている。 The motor 21 is composed of a DC brushless motor capable of controlling the rotational speed, and is accommodated in a cylindrical motor case 22. The motor 21 includes a rotating shaft 210, a stator 211, and a rotor 212. The stator 211 is fixed to the inner surface of the motor case 22, and the rotor 212 is fixed around the rotating shaft 210. The rotating shaft 210 is supported by the motor case 22 via bearings 23 and 24, and is attached to the rotation center of the eccentric cam 35 at the tip thereof.
 偏心カム35は、その回転中心が軸受34のインナレースに対して偏心するように形成されている。従ってモータ21の駆動により回転軸210がその軸回りに回転すると、偏心カム35が回転軸210と共に回転することで、可動部材30が動作空間105の内部において上下方向に往復移動する。これにより、ポンプ室100の容積が周期的に変化し、所定のポンプ機能が得られることになる。可動部材30の往復移動量(ストローク量)は、偏心カム35の偏心量によって決定される。 The eccentric cam 35 is formed so that the rotation center thereof is eccentric with respect to the inner race of the bearing 34. Accordingly, when the rotating shaft 210 rotates around the axis by driving the motor 21, the eccentric cam 35 rotates together with the rotating shaft 210, so that the movable member 30 reciprocates in the vertical direction inside the operation space 105. Thereby, the volume of the pump chamber 100 changes periodically, and a predetermined pump function is obtained. The reciprocating amount (stroke amount) of the movable member 30 is determined by the eccentric amount of the eccentric cam 35.
 ポンプ装置3は、弁機構50(第3の弁)をさらに有する。本実施形態において弁機構50は、吐出口102に取り付けられる。弁機構50は、ポンプ装置3の運転停止時におけるガスの吐出口102からのガスの流出を制限する機能を有する。 The pump device 3 further includes a valve mechanism 50 (third valve). In the present embodiment, the valve mechanism 50 is attached to the discharge port 102. The valve mechanism 50 has a function of restricting the outflow of gas from the gas discharge port 102 when the operation of the pump device 3 is stopped.
 図3は弁機構50の構成を示す断面斜視図、図4はその断面図をそれぞれ示している。弁機構50は、ゴム製の弁部材51と、弁部材51を収容する金属製のハウジング52とを有する。 FIG. 3 is a cross-sectional perspective view showing the configuration of the valve mechanism 50, and FIG. 4 is a cross-sectional view thereof. The valve mechanism 50 includes a rubber valve member 51 and a metal housing 52 that houses the valve member 51.
 ハウジング52は、ケーシング10の吐出口102に接続される第1の端部521と、処理部4に連絡する管路(図示略)に接続される第2の端部522とを有する。第1の端部521の周囲にはシールリング54が装着されており、このシールリング54によって第1の端部521が吐出口102の内部に気密に取り付けられる。 The housing 52 has a first end 521 connected to the discharge port 102 of the casing 10 and a second end 522 connected to a conduit (not shown) communicating with the processing unit 4. A seal ring 54 is mounted around the first end portion 521, and the first end portion 521 is hermetically attached to the inside of the discharge port 102 by the seal ring 54.
 ハウジング52の内部には、第1の端部521と第2の端部522との間を連絡する内部通路523が形成されている。内部通路523のほぼ中央部には、中心部とその周囲に複数の孔531を有する壁部53が内部通路523の壁面に垂直に形成されており、これらの孔531を介して第1の端部521と第2の端部522との間が連通可能とされる。 Inside the housing 52, an internal passage 523 communicating between the first end 521 and the second end 522 is formed. A wall portion 53 having a central portion and a plurality of holes 531 around the center portion is formed perpendicularly to the wall surface of the internal passage 523 at the substantially central portion of the internal passage 523, and the first end is formed through these holes 531. The portion 521 and the second end portion 522 can communicate with each other.
 弁部材51は、アンブレラバルブで構成される。すなわち弁部材51はほぼ円盤状に形成され、その中心部に形成された軸部511が壁部53の中心孔に装着されることで内部通路523に配置される。弁部材51の周縁部512は、第2の端部522に臨む壁部53の表面に形成された弁座532に弾性的に接触しており、第2の端部522側から第1の端部521側への流体の流れを阻止する。すなわち弁部材51は、逆流防止弁として機能する。 The valve member 51 is composed of an umbrella valve. That is, the valve member 51 is formed in a substantially disc shape, and the shaft portion 511 formed at the center thereof is mounted in the center hole of the wall portion 53 so as to be disposed in the internal passage 523. The peripheral edge portion 512 of the valve member 51 is in elastic contact with the valve seat 532 formed on the surface of the wall portion 53 facing the second end portion 522, and the first end from the second end portion 522 side. The flow of the fluid to the part 521 side is blocked. That is, the valve member 51 functions as a backflow prevention valve.
 一方、弁部材51は、第1の端部521側から第2の端部522側への順方向の流体の流れに対しては、所定の圧力以上で開弁することで当該流体の流れを許容する。この場合、弁部材51は、図4に示すように周縁部512が第2の端部522側へ弾性変形することで弁座532から離間し、弁部材51による内部通路523の遮断状態が解除される。上記所定の圧力より低い流体圧の下では、周縁部512は弁座532へ着座し、内部通路523の遮断状態が維持される。 On the other hand, the valve member 51 opens the valve at a predetermined pressure or higher with respect to the forward fluid flow from the first end portion 521 side to the second end portion 522 side. Allow. In this case, as shown in FIG. 4, the valve member 51 is separated from the valve seat 532 by the elastic deformation of the peripheral portion 512 toward the second end portion 522, and the shutoff state of the internal passage 523 by the valve member 51 is released. Is done. Under a fluid pressure lower than the predetermined pressure, the peripheral edge 512 is seated on the valve seat 532, and the shut-off state of the internal passage 523 is maintained.
 弁部材51には、各種プロセスガスに対して耐性を有するゴム材料が用いられる。例えば、プロセスガスにメタンやプロパン等が用いられる場合には、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)、フッ素ゴム(FKM)など、メタンやプロパン等の炭化水素系ガスに対して耐性を有するゴム材料が弁部材51に用いられる。弁部材51の厚み、大きさは特に限定されず、各種仕様に対応できる開弁圧を確保することができる厚み、大きさに個々に設定される。 For the valve member 51, a rubber material having resistance to various process gases is used. For example, when methane, propane, or the like is used as the process gas, it is resistant to hydrocarbon gases such as nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), and fluoro rubber (FKM). A rubber material having the following is used for the valve member 51. The thickness and size of the valve member 51 are not particularly limited, and are individually set to thicknesses and sizes that can ensure valve opening pressure that can meet various specifications.
 すなわち弁部材51の開弁圧(弁部材51の開放に必要な最低圧力)は、少なくとも、吐出弁42の開弁圧(第1の圧力)よりも高い圧力に設定される。そして弁部材51は、その開弁圧よりも高い所定の圧力(第2の圧力)以下のガスの流れを制限する。 That is, the valve opening pressure of the valve member 51 (minimum pressure necessary for opening the valve member 51) is set to a pressure that is at least higher than the valve opening pressure (first pressure) of the discharge valve 42. And the valve member 51 restrict | limits the gas flow below a predetermined pressure (2nd pressure) higher than the valve opening pressure.
 弁部材51の開弁圧は、ポンプシステム1の圧力源2から供給されるガス圧P1を参照して決定される。本実施形態では、弁部材51の開弁圧は、圧力源2のガス圧P1よりも高い圧力に設定される。これにより圧力源2のガス圧P1が吐出弁42の開弁圧よりも大きい場合であっても、ポンプ装置3の運転停止時における吐出口102から処理部4へのガスの流出を遮断し、処理部4へのガスの流出を確実に防止することができる。 The valve opening pressure of the valve member 51 is determined with reference to the gas pressure P1 supplied from the pressure source 2 of the pump system 1. In the present embodiment, the valve opening pressure of the valve member 51 is set to a pressure higher than the gas pressure P1 of the pressure source 2. Thereby, even if the gas pressure P1 of the pressure source 2 is larger than the valve opening pressure of the discharge valve 42, the outflow of gas from the discharge port 102 to the processing unit 4 when the operation of the pump device 3 is stopped is shut off. The outflow of gas to the processing unit 4 can be reliably prevented.
 なお後述するように、上記弁部材の開弁圧は、圧力源2のガス圧P2よりも低い圧力に設定されてもよい。 As will be described later, the valve opening pressure of the valve member may be set to a pressure lower than the gas pressure P2 of the pressure source 2.
[ポンプ装置の動作]
 次に、以上のように構成されるポンプ装置3の典型的な動作例を説明する。
[Operation of pump device]
Next, a typical operation example of the pump device 3 configured as described above will be described.
 ポンプ装置3は、駆動部20のモータ21を起動させることで駆動される。モータ21の回転数は、例えばポンプ装置3の吐出側に設置された流量計に基づいて一定の吐出流量となるように制御部5によって制御される。モータ21は、回転軸210を介して偏心カム35を回転させることで、可動部材30を動作空間105において所定ストロークで往復移動させる。これにより、ポンプ室100を区画するダイアフラム31が上下移動し、ポンプ室100の容積が周期的に変化する。 The pump device 3 is driven by starting the motor 21 of the drive unit 20. The number of rotations of the motor 21 is controlled by the control unit 5 so as to be a constant discharge flow rate based on, for example, a flow meter installed on the discharge side of the pump device 3. The motor 21 reciprocates the movable member 30 with a predetermined stroke in the operation space 105 by rotating the eccentric cam 35 via the rotating shaft 210. Thereby, the diaphragm 31 which divides the pump chamber 100 moves up and down, and the volume of the pump chamber 100 changes periodically.
 可動部材30は、ポンプ室100の容積を周期的に変化させることで、ポンプ室100へのガスの吸入とポンプ室100からのガスの排出を交互に行う。すなわち、吸入口101に接続された圧力源2から吸入弁41を介して、圧力P1(例えば2kPa(ゲージ圧))の燃料ガスがポンプ室100へ導入される。ポンプ室100へ導入された燃料ガスは、ポンプ室100において可動部材により圧縮されることで昇圧され、吐出弁42及び弁機構50を開放させる。以上の動作が繰り返されることで、吐出口102から処理部4へ圧力P2(例えば15kPa(ゲージ圧))の燃料ガスが吐出される。 The movable member 30 alternately changes the volume of the pump chamber 100 to alternately suck gas into the pump chamber 100 and discharge gas from the pump chamber 100. That is, fuel gas having a pressure P1 (for example, 2 kPa (gauge pressure)) is introduced into the pump chamber 100 from the pressure source 2 connected to the suction port 101 via the suction valve 41. The fuel gas introduced into the pump chamber 100 is pressurized by being compressed by the movable member in the pump chamber 100 to open the discharge valve 42 and the valve mechanism 50. By repeating the above operation, a fuel gas having a pressure P2 (for example, 15 kPa (gauge pressure)) is discharged from the discharge port 102 to the processing unit 4.
 ここで、吐出弁42は、ポンプ室100内の圧力が吐出弁42の開弁圧以上に達した時点で開弁し、ポンプ室100から吐出口102へのガスの流れを許容する。従ってポンプ装置3の運転停止時に、吸入口101より吐出弁42の開弁圧以上の圧力でガスがポンプ室100へ導入されると、吐出弁42を開放して吐出口102へ向かうガスの流れが形成されることになる。 Here, the discharge valve 42 opens when the pressure in the pump chamber 100 reaches or exceeds the valve opening pressure of the discharge valve 42, and allows the gas flow from the pump chamber 100 to the discharge port 102. Accordingly, when gas is introduced into the pump chamber 100 from the suction port 101 at a pressure equal to or higher than the opening pressure of the discharge valve 42 when the pump device 3 is stopped, the flow of gas toward the discharge port 102 by opening the discharge valve 42. Will be formed.
 そこで本実施形態のポンプ装置3においては、吐出口102に弁機構50が取り付けられている。弁機構50は、圧力源2のガス圧(P1)よりも高い開弁圧を有する。従ってポンプ装置3の運転停止時、吸入口101から圧力P1のガスがポンプ室100へ導入された場合でも、弁機構50によりガスの流れが阻止され、吐出口102から処理部4へのガスの流出が防止される。このように運転停止時におけるガスの不用意な吐出が抑制されるため、システムに不具合が生じるおそれを解消することができる。 Therefore, in the pump device 3 of this embodiment, the valve mechanism 50 is attached to the discharge port 102. The valve mechanism 50 has a valve opening pressure higher than the gas pressure (P1) of the pressure source 2. Accordingly, even when the gas having the pressure P1 is introduced from the suction port 101 to the pump chamber 100 when the pump device 3 is stopped, the gas flow is blocked by the valve mechanism 50, and the gas flow from the discharge port 102 to the processing unit 4 is prevented. Outflow is prevented. In this way, inadvertent discharge of gas when the operation is stopped is suppressed, so that the possibility of problems occurring in the system can be solved.
 また本実施形態において弁機構50は、導入圧に応じて開度を連続的に変化させることができる構造を有する。これによりポンプ装置6の運転再開時に吐出圧に応じて弁機構50を開放でき、迅速に必要流量のガスを処理部4へ供給することができる。 In the present embodiment, the valve mechanism 50 has a structure capable of continuously changing the opening according to the introduction pressure. As a result, the valve mechanism 50 can be opened according to the discharge pressure when the operation of the pump device 6 is resumed, and a necessary flow rate of gas can be quickly supplied to the processing unit 4.
 図5は、図6に示した実験条件においてポンプ装置3の運転及び停止を繰り返したときのポンプ装置3の吐出流量の時間変化を示している。図6において、aはバッファタンク、bは圧力計、cは吸入配管、dはブロワであり、本実施形態のポンプ装置3に相当する。eは圧力計、fは吐出配管、gは固定オリフィス、hは流量計である。 FIG. 5 shows the change over time in the discharge flow rate of the pump device 3 when the operation and stop of the pump device 3 are repeated under the experimental conditions shown in FIG. In FIG. 6, a is a buffer tank, b is a pressure gauge, c is a suction pipe, and d is a blower, which corresponds to the pump device 3 of this embodiment. e is a pressure gauge, f is a discharge pipe, g is a fixed orifice, and h is a flow meter.
 図5に示すように、吐出流量の最小値は0であり、ポンプ装置3の運転停止時、弁機構50によるガスの閉切り機能が正常に働いていることが確認された。また、ポンプ装置6の吐出流量は一定値に安定に維持され、再現性が高いことも確認された。 As shown in FIG. 5, the minimum value of the discharge flow rate was 0, and it was confirmed that the gas closing function by the valve mechanism 50 was functioning normally when the operation of the pump device 3 was stopped. It was also confirmed that the discharge flow rate of the pump device 6 was stably maintained at a constant value and the reproducibility was high.
 図7は、ポンプ装置6のモータ21に入力される回転数制御電圧(Vsp)に対するポンプ装置6の吐出流量の変化を示す一実験結果である。ポンプ装置6が組み込まれる配管システムは、図6に示した配管例と同様とした。 FIG. 7 shows an experimental result showing a change in the discharge flow rate of the pump device 6 with respect to the rotation speed control voltage (Vsp) input to the motor 21 of the pump device 6. The piping system in which the pump device 6 was incorporated was the same as the piping example shown in FIG.
 図7に示すように、ポンプ装置の運転開始後、所定の回転数に達した時点でガスの吐出が開始され、その流量はポンプ装置の駆動回転数にほぼ比例して上昇することが確認された。このように本実施形態によれば、ガスの閉切り機能と安定した吐出流量制御を実現することができる。 As shown in FIG. 7, after starting the operation of the pump device, gas discharge is started when a predetermined number of revolutions is reached, and it is confirmed that the flow rate increases almost in proportion to the driving number of revolutions of the pump device. It was. Thus, according to this embodiment, a gas closing function and stable discharge flow rate control can be realized.
<第2の実施形態>
 図8は、本発明の第2の実施形態に係るポンプ装置を示している。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Second Embodiment>
FIG. 8 shows a pump device according to a second embodiment of the present invention. Hereinafter, configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態のポンプ装置6は、吐出口102に取り付けられる弁機構60の構成が上述の第1の実施形態と異なる。弁機構60は、アンブレラバルブを構成する弁部材61を有し、図3及び図4に示した第1の実施形態と同様な形態でハウジング62の内部通路に設置されている。 The pump device 6 of the present embodiment is different from the first embodiment described above in the configuration of the valve mechanism 60 attached to the discharge port 102. The valve mechanism 60 has a valve member 61 that constitutes an umbrella valve, and is installed in the internal passage of the housing 62 in the same form as the first embodiment shown in FIGS. 3 and 4.
 本実施形態の弁機構60は、吐出弁42の開弁圧(第1の圧力)以上、かつ、圧力源2のガス圧P1(第2の圧力)以下のガスの流出を制限する機能を有する点で、第1の実施形態と共通する。しかし本実施形態における弁機構60は、ポンプ装置6の運転停止時、吐出口102から処理部4へのガスの流出は許容するが、その流出量を所定以下に抑制する機能を有する点で、第1の実施形態と異なる。 The valve mechanism 60 of the present embodiment has a function of restricting the outflow of gas that is equal to or higher than the valve opening pressure (first pressure) of the discharge valve 42 and equal to or lower than the gas pressure P1 (second pressure) of the pressure source 2. This is common to the first embodiment. However, the valve mechanism 60 in the present embodiment allows the outflow of gas from the discharge port 102 to the processing unit 4 when the operation of the pump device 6 is stopped, but has a function of suppressing the outflow amount to a predetermined value or less. Different from the first embodiment.
 すなわち本実施形態の弁部材61の開弁圧は、圧力源2のガス圧P1よりも低い圧力に設定される。本実施形態の弁機構60は、ガス圧に応じて開度を連続的に変化させることができる構造であるため、弁機構60に導入されるガス圧に応じて処理部4側へ流出するガスの流量を制御することができる。 That is, the valve opening pressure of the valve member 61 of the present embodiment is set to a pressure lower than the gas pressure P1 of the pressure source 2. Since the valve mechanism 60 of the present embodiment has a structure capable of continuously changing the opening degree according to the gas pressure, the gas flowing out to the processing unit 4 side according to the gas pressure introduced into the valve mechanism 60. It is possible to control the flow rate.
 この場合、弁部材61を全開させるのに必要な圧力は、圧力源2のガス圧P1よりも大きい圧力(例えば、ポンプ装置3の通常運転時の吐出圧(P2)以下)に設定される。これにより吐出弁42の開弁圧(第1の圧力)以上、かつ、圧力源2のガス圧P1(第2の圧力)以下のガスの流量を弁機構60によって制御することが可能となる。 In this case, the pressure required to fully open the valve member 61 is set to a pressure higher than the gas pressure P1 of the pressure source 2 (for example, a discharge pressure (P2) or less during normal operation of the pump device 3). As a result, the valve mechanism 60 can control the flow rate of the gas not less than the valve opening pressure (first pressure) of the discharge valve 42 and not more than the gas pressure P1 (second pressure) of the pressure source 2.
 本実施形態によれば、ポンプ装置6の運転停止時において圧力源2から供給されるガス流量を所定流量に絞って処理部4へ供給することができる。これによりポンプ装置6の上流側あるいは下流側にオリフィス等の絞り弁を別途設ける必要がなくなり、システムの部品点数の削減を図ることができる。本実施形態は、ポンプ装置6の運転停止時にも処理部4へ所定流量以下のガスを供給する必要があるシステムに好適に用いられる。 According to the present embodiment, when the operation of the pump device 6 is stopped, the gas flow rate supplied from the pressure source 2 can be reduced to a predetermined flow rate and supplied to the processing unit 4. As a result, it is not necessary to separately provide a throttle valve such as an orifice on the upstream side or the downstream side of the pump device 6, and the number of system components can be reduced. This embodiment is suitably used for a system that needs to supply a gas having a predetermined flow rate or less to the processing unit 4 even when the operation of the pump device 6 is stopped.
<第3の実施形態>
 図9は、本発明の第3の実施形態に係るポンプ装置を示している。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Third Embodiment>
FIG. 9 shows a pump device according to a third embodiment of the present invention. Hereinafter, configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態のポンプ装置7は、ポンプ本体11と、ポンプヘッド72と、ポンプヘッドカバー73とを含むケーシング70を有する。ポンプヘッド72には、吸入口101と吐出口102とがそれぞれ形成されている。吐出口102には、第1の実施形態で説明した弁機構50が取り付けられる。 The pump device 7 of the present embodiment has a casing 70 including a pump body 11, a pump head 72, and a pump head cover 73. The pump head 72 is formed with a suction port 101 and a discharge port 102, respectively. The valve mechanism 50 described in the first embodiment is attached to the discharge port 102.
 またポンプヘッド72には、吸入通路T1と、吐出通路T2と、バッファタンク721とがそれぞれ形成されている。これら通路の少なくとも一部はポンプヘッド72の上面から外部へ露出されており、シール部材を介してポンプヘッドカバー73で覆われることで外気と遮断される。 The pump head 72 is formed with a suction passage T1, a discharge passage T2, and a buffer tank 721, respectively. At least a part of these passages is exposed to the outside from the upper surface of the pump head 72, and is shielded from the outside air by being covered with a pump head cover 73 via a seal member.
 一般的に、ダイアフラム型のポンプは、構造的に、吐出ガスに脈動が発生する。ポンプの駆動回転数を吐出ガスの流量の測定値に基づいて制御する場合、脈動が大きいと正確な流量を測定することができず、ポンプの駆動制御が不安定となる。また、吐出ガスが燃料ガスの場合、脈動によって燃焼が不安定になり、あるいは不完全燃焼を招くおそれがある。 Generally, diaphragm pumps structurally generate pulsation in the discharge gas. When the pump rotation speed is controlled based on the measured value of the flow rate of the discharge gas, if the pulsation is large, the accurate flow rate cannot be measured, and the pump drive control becomes unstable. Further, when the discharge gas is a fuel gas, the pulsation may cause unstable combustion or incomplete combustion.
 そこで本実施形態のポンプ装置7は、吐出通路T2と吐出口102との間にバッファタンク721を有する。バッファタンク721は、吐出弁42(吐出通路T2)と弁機構50との間にこれらを連絡する流路の一部を拡張した空間部74を形成する。バッファタンク721は、吐出弁42から吐出されるガスの脈動を緩衝する機能を有する。 Therefore, the pump device 7 of the present embodiment has a buffer tank 721 between the discharge passage T2 and the discharge port 102. The buffer tank 721 forms a space 74 between the discharge valve 42 (discharge passage T <b> 2) and the valve mechanism 50 in which a part of the flow path connecting these is expanded. The buffer tank 721 has a function of buffering the pulsation of the gas discharged from the discharge valve 42.
 本実施形態のポンプ装置7によれば、弁機構50から吐出されるガスの脈動を低減し、安定した流量でガスを吐出することができる。また、吐出流量に基づいてポンプ装置7の駆動を制御する場合においては、ポンプ装置7の安定した駆動制御が可能となる。さらにポンプとバッファタンクとが一体化されているため、ポンプシステムのガス流路に別途バッファタンクを設ける必要がなくなり、システムの構成の簡素化を図ることができる。 According to the pump device 7 of the present embodiment, the pulsation of the gas discharged from the valve mechanism 50 can be reduced, and the gas can be discharged at a stable flow rate. Further, when the drive of the pump device 7 is controlled based on the discharge flow rate, stable drive control of the pump device 7 is possible. Furthermore, since the pump and the buffer tank are integrated, there is no need to provide a separate buffer tank in the gas flow path of the pump system, and the system configuration can be simplified.
 バッファタンク721の空間部74の容積は、吐出弁42から吐出されるガスの脈動(圧力幅)に基づいて定められる。図10は、本発明者らが行った一実験結果であり、バッファ容積(cc)と吐出口102から吐出されるガスの圧力幅との関係を示している。図10に示すように、空間部74の容積が大きいほど圧力幅を小さくできる。例えば、空間部74の容積を120cc以上とすることで、脈動幅を0.75kPa以下に抑えることができる。 The volume of the space 74 of the buffer tank 721 is determined based on the pulsation (pressure width) of the gas discharged from the discharge valve 42. FIG. 10 shows a result of an experiment conducted by the present inventors and shows a relationship between the buffer volume (cc) and the pressure width of the gas discharged from the discharge port 102. As shown in FIG. 10, the larger the volume of the space 74, the smaller the pressure width. For example, the pulsation width can be suppressed to 0.75 kPa or less by setting the volume of the space 74 to 120 cc or more.
<第4の実施形態>
 図10は、本発明の第4の実施形態に係るポンプ装置を示している。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Fourth Embodiment>
FIG. 10 shows a pump device according to a fourth embodiment of the present invention. Hereinafter, configurations different from those of the first embodiment will be mainly described, and configurations similar to those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態のポンプ装置8は、ケーシング80と、駆動部20と、バッファタンク81とを有する。ケーシング80は、吸入口101と、吐出口102とを有し、吸入口101から吸入されたガスを図示しないポンプ室で昇圧し、バッファタンク81を介して、昇圧したガスを吐出口102から吐出する。 The pump device 8 of the present embodiment includes a casing 80, a drive unit 20, and a buffer tank 81. The casing 80 has a suction port 101 and a discharge port 102, pressurizes the gas sucked from the suction port 101 in a pump chamber (not shown), and discharges the boosted gas from the discharge port 102 via the buffer tank 81. To do.
 図11は、バッファタンク81及び吐出口102の断面図である。バッファタンク81の内部には所定容積の空間部74が形成され、吐出ガスの脈動を低減する。吐出口102は空間部74に連通しており、吐出口102の内部には、弁部材51が取り付けられている。弁部材51は、第1の実施形態と同様な構成を有し、所定圧力以下のガスの流出を制限する機能を有する。 FIG. 11 is a cross-sectional view of the buffer tank 81 and the discharge port 102. A space 74 having a predetermined volume is formed inside the buffer tank 81 to reduce pulsation of the discharge gas. The discharge port 102 communicates with the space 74, and a valve member 51 is attached inside the discharge port 102. The valve member 51 has the same configuration as that of the first embodiment, and has a function of restricting the outflow of gas having a predetermined pressure or less.
 以上のように構成される本実施形態においても上述の各実施形態と同様の作用効果を得ることができる。本実施形態のポンプ装置8によれば、弁機構としての弁部材51がケーシング80に支持されているため、部品点数の削減を図ることができる。 Also in the present embodiment configured as described above, the same operational effects as those of the above-described embodiments can be obtained. According to the pump device 8 of the present embodiment, since the valve member 51 as the valve mechanism is supported by the casing 80, the number of parts can be reduced.
 なお図13~図18はポンプ装置8の外観を示しており、図13は正面図、図14は背面図、図15は平面図、図16は底面図、図17は右側面図、図18は左側面図である。 13 to 18 show the appearance of the pump device 8. FIG. 13 is a front view, FIG. 14 is a rear view, FIG. 15 is a plan view, FIG. 16 is a bottom view, FIG. Is a left side view.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
 例えば以上の実施形態では、所定圧力以下の流体の流れを制限する弁機構は吐出口に取り付けられたが、これに限られず、例えば吐出弁と吐出口の間の吐出通路上に上記弁機構が設けられてもよい。 For example, in the above embodiment, the valve mechanism that restricts the flow of fluid below a predetermined pressure is attached to the discharge port. However, the present invention is not limited to this. It may be provided.
 また上記弁機構を構成する弁部材は、アンブレラバルブに限られず、例えばボール弁やバタフライバルブ等で構成されてもよい。 Further, the valve member constituting the valve mechanism is not limited to the umbrella valve, and may be constituted by, for example, a ball valve or a butterfly valve.
 さらに以上の実施形態では、ポンプ装置はダイアフラムポンプで構成されたが、これに限られず、ルーツポンプ等の他のポンプ装置にも本発明は適用可能である。ルーツポンプの場合、ポンプ室の容積を変化させる可動部材としては、相互に対向して配置されるロータに対応する。 In the above embodiment, the pump device is a diaphragm pump. However, the present invention is not limited to this, and the present invention can also be applied to other pump devices such as a roots pump. In the case of a roots pump, the movable member that changes the volume of the pump chamber corresponds to rotors that are arranged to face each other.
 1…ポンプシステム
 2…圧力源
 3,6,7,8…ポンプ装置
 4…処理部
 10,70,80…ケーシング
 20…駆動部
 30…可動部材
 31…ダイアフラム
 41…吸入弁
 42…吐出弁
 50,60…弁機構
 51,61…弁部材
 74…空間部
 100…ポンプ室
 101…吸入口
 102…吐出口
DESCRIPTION OF SYMBOLS 1 ... Pump system 2 ... Pressure source 3, 6, 7, 8 ... Pump apparatus 4 ... Processing part 10, 70, 80 ... Casing 20 ... Drive part 30 ... Movable member 31 ... Diaphragm 41 ... Suction valve 42 ... Discharge valve 50, DESCRIPTION OF SYMBOLS 60 ... Valve mechanism 51, 61 ... Valve member 74 ... Space part 100 ... Pump chamber 101 ... Inlet port 102 ... Discharge port

Claims (9)

  1.  吸入口と、吐出口と、前記吸入口及び前記吐出口と各々連通可能なポンプ室とを有するケーシングと、
     前記ケーシングの内部を移動可能であり、前記ポンプ室への流体の吸入と前記ポンプ室からの前記流体の排出とを交互に行う可動部材と、
     前記吸入口と前記ポンプ室との間に取り付けられ、前記吸入口から前記ポンプ室への前記流体の流れを許容する第1の弁と、
     前記ポンプ室と前記吐出口との間に取り付けられ、前記ポンプ室の流体が第1の圧力以上である場合に前記ポンプ室から前記吐出口への前記流体の流れを許容する第2の弁と、
     前記ケーシングに取り付けられ、前記吸入口と前記吐出口との間の前記流体が前記第1の圧力よりも大きい第2の圧力以下の場合に前記吸入口から前記吐出口へ向かう前記流体の流れを制限する第3の弁と
     を具備するポンプ装置。
    A casing having a suction port, a discharge port, and a pump chamber capable of communicating with each of the suction port and the discharge port;
    A movable member that is movable inside the casing and alternately sucks fluid into the pump chamber and discharges the fluid from the pump chamber;
    A first valve attached between the suction port and the pump chamber and allowing the fluid to flow from the suction port to the pump chamber;
    A second valve attached between the pump chamber and the discharge port and allowing the fluid to flow from the pump chamber to the discharge port when the fluid in the pump chamber is at or above a first pressure; ,
    The flow of fluid from the suction port toward the discharge port when the fluid between the suction port and the discharge port is not more than a second pressure greater than the first pressure is attached to the casing. And a third valve for limiting.
  2.  請求項1に記載のポンプ装置であって、
     前記第3の弁は、前記第2の弁よりも前記吐出口側に配置される
     ポンプ装置。
    The pump device according to claim 1,
    The third valve is disposed closer to the discharge port than the second valve.
  3.  請求項2に記載のポンプ装置であって、
     前記第3の弁は、前記第1の圧力以上前記第2の圧力以下の圧力に応じて開度が連続的に変化する弁部材を含む
     ポンプ装置。
    The pump device according to claim 2,
    The third valve includes a valve member whose opening degree changes continuously in accordance with a pressure not lower than the first pressure and not higher than the second pressure.
  4.  請求項3に記載のポンプ装置であって、
     前記弁部材は、アンブレラ弁である
     ポンプ装置。
    The pump device according to claim 3,
    The valve member is an umbrella valve.
  5.  請求項2に記載のポンプ装置であって、
     前記ケーシングは、前記第2の弁と前記第3の弁との間を連絡する流路の一部が拡張された空間部をさらに有する
     ポンプ装置。
    The pump device according to claim 2,
    The casing further includes a space portion in which a part of a flow path communicating between the second valve and the third valve is expanded.
  6.  請求項1に記載のポンプ装置であって、
     前記可動部材は、
     前記ポンプ室を区画する変形可能なダイアフラムを含む
     ポンプ装置。
    The pump device according to claim 1,
    The movable member is
    A pump device comprising a deformable diaphragm that partitions the pump chamber.
  7.   前記圧力源と連絡する吸入口と、前記処理部と連絡する吐出口と、前記吸入口及び前記吐出口と各々連通可能なポンプ室とを有するケーシングと、
      前記ケーシングの内部を移動可能であり、前記ポンプ室への前記流体の吸入と前記ポンプ室からの前記流体の排出とを交互に行う可動部材と、
      前記吸入口と前記ポンプ室との間に取り付けられ、前記吸入口から前記ポンプ室へ向かう前記流体の流れを許容する第1の弁と、
      前記ポンプ室と前記吐出口との間に取り付けられ、前記ポンプ室から前記吐出口へ向かう、第1の圧力以上の前記流体の流れを許容する第2の弁と、
      前記ケーシングに取り付けられ、前記吸入口から前記吐出口へ向かう、前記第1の圧力よりも大きい第2の圧力以下の前記流体の流れを制限する第3の弁と
     を有するポンプ装置と、
     前記吸入口に接続され、前記第2の圧力以下の流体を前記ポンプ装置へ供給する圧力源と、
     前記吐出口に接続され、前記ポンプ装置から吐出される流体を処理する処理部と
     を具備するポンプシステム。
    A casing having a suction port communicating with the pressure source, a discharge port communicating with the processing section, and a pump chamber capable of communicating with the suction port and the discharge port,
    A movable member that is movable in the casing and alternately sucks the fluid into the pump chamber and discharges the fluid from the pump chamber;
    A first valve attached between the suction port and the pump chamber and allowing the flow of the fluid from the suction port toward the pump chamber;
    A second valve attached between the pump chamber and the discharge port and allowing the flow of the fluid at a pressure equal to or higher than a first pressure toward the discharge port from the pump chamber;
    A pump device, which is attached to the casing and has a third valve for restricting the flow of the fluid below the second pressure that is greater than the first pressure and that is directed from the suction port to the discharge port;
    A pressure source connected to the suction port for supplying fluid below the second pressure to the pump device;
    A pump system comprising: a processing unit that is connected to the discharge port and processes fluid discharged from the pump device.
  8.  請求項7に記載のポンプシステムであって、
     前記第3の弁は、前記第2の圧力以下の前記流体の流れを遮断する弁部材を含む
     ポンプシステム。
    The pump system according to claim 7,
    The third valve includes a valve member that blocks the flow of the fluid below the second pressure.
  9.  請求項7に記載のポンプシステムであって、
     前記第3の弁は、前記第1の圧力以上前記第2の圧力以下の圧力に応じて開度が連続的に変化する弁部材を含む
     ポンプシステム。
    The pump system according to claim 7,
    The third valve includes a valve member whose opening degree continuously changes in accordance with a pressure not lower than the first pressure and not higher than the second pressure.
PCT/JP2012/001023 2012-02-16 2012-02-16 Pump device and pump system WO2013121463A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/378,735 US20160003228A1 (en) 2012-02-16 2012-02-16 Pump device and pump system
EP12868917.1A EP2816233B1 (en) 2012-02-16 2012-02-16 Pump device and pump system
CA2863775A CA2863775A1 (en) 2012-02-16 2012-02-16 Pump device and pump system
PCT/JP2012/001023 WO2013121463A1 (en) 2012-02-16 2012-02-16 Pump device and pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001023 WO2013121463A1 (en) 2012-02-16 2012-02-16 Pump device and pump system

Publications (1)

Publication Number Publication Date
WO2013121463A1 true WO2013121463A1 (en) 2013-08-22

Family

ID=48983635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001023 WO2013121463A1 (en) 2012-02-16 2012-02-16 Pump device and pump system

Country Status (4)

Country Link
US (1) US20160003228A1 (en)
EP (1) EP2816233B1 (en)
CA (1) CA2863775A1 (en)
WO (1) WO2013121463A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3224593A4 (en) * 2014-11-27 2018-10-10 Provtagaren AB Pump control for low flow volumes
DK201570293A1 (en) * 2015-05-19 2016-12-12 Nel Hydrogen As Diaphragm compressor with an oblong shaped chamber
JP7144727B2 (en) * 2018-08-08 2022-09-30 セイコーエプソン株式会社 Diaphragm compressor, projector, cooler, and fluid compression method
CN208950819U (en) * 2018-09-30 2019-06-07 深圳市大疆软件科技有限公司 Diaphragm pump and agriculture unmanned plane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307177A (en) * 2002-04-12 2003-10-31 Japan Steel Works Ltd:The Hydrogen compressing device
JP2003343427A (en) * 2002-05-24 2003-12-03 Nikkiso Co Ltd Reciprocating pump
JP2005023788A (en) * 2003-06-30 2005-01-27 Kohoku Kogyo Kk Pump
JP2008261233A (en) * 2007-04-10 2008-10-30 Nippon Soken Inc High pressure fuel pump
JP2009047084A (en) 2007-08-21 2009-03-05 Ulvac Kiko Inc Diaphragm pump
JP2011099386A (en) * 2009-11-06 2011-05-19 Hitachi Industrial Equipment Systems Co Ltd Booster compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB470354A (en) * 1936-03-04 1937-08-13 Exactor Control Company Ltd Improvements relating to fuel pumps, particularly for engine priming
US2593255A (en) * 1946-10-26 1952-04-15 George F Bowman High-pressure diaphragm pump
ATE35442T1 (en) * 1983-04-08 1988-07-15 Cash Eng Co Pty Ltd COMPRESSOR CONTROL SYSTEM.
US4681518A (en) * 1985-02-19 1987-07-21 The Coca-Cola Company Single-acting, gas operated pump
JPH03127089U (en) * 1990-03-31 1991-12-20
US5507318A (en) * 1994-10-04 1996-04-16 Walbro Corporation Umbrella check valves
US7205060B2 (en) * 2004-08-06 2007-04-17 Ultracell Corporation Method and system for controlling fluid delivery in a fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307177A (en) * 2002-04-12 2003-10-31 Japan Steel Works Ltd:The Hydrogen compressing device
JP2003343427A (en) * 2002-05-24 2003-12-03 Nikkiso Co Ltd Reciprocating pump
JP2005023788A (en) * 2003-06-30 2005-01-27 Kohoku Kogyo Kk Pump
JP2008261233A (en) * 2007-04-10 2008-10-30 Nippon Soken Inc High pressure fuel pump
JP2009047084A (en) 2007-08-21 2009-03-05 Ulvac Kiko Inc Diaphragm pump
JP2011099386A (en) * 2009-11-06 2011-05-19 Hitachi Industrial Equipment Systems Co Ltd Booster compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816233A4

Also Published As

Publication number Publication date
US20160003228A1 (en) 2016-01-07
CA2863775A1 (en) 2013-08-22
EP2816233B1 (en) 2017-10-18
EP2816233A4 (en) 2015-12-23
EP2816233A1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5770458B2 (en) Pump system
CN104884799B (en) The suction of liquefied gas at low temp and discharge valve body, reciprocating pump and fuel gas feeding device
KR101430848B1 (en) Pump
JP5316655B2 (en) Fluid pressure adjusting device and fuel supply device
US9534519B2 (en) Variable displacement vane pump with integrated fail safe function
JP6161568B2 (en) Bi-fuel engine
WO2013121463A1 (en) Pump device and pump system
US20100037867A1 (en) System for Metering a Fuel Supply
JP7304711B2 (en) Throttle body or actuation device, especially for supplying high pressure gas, provided with an outlet
JP5519415B2 (en) Pressure regulator
JP5138662B2 (en) Steam compressor
JP2012097640A (en) Fuel supply apparatus
JP2001248518A (en) Variable delivery rate fuel supplying system
WO2017009994A1 (en) Triple gear pump and fluid supplying device
JP7437911B2 (en) fluid control device
KR100727786B1 (en) Fuel pump structure for vehicles and fuel feed device
JP2012036817A (en) Fluid pressure adjusting device and fuel supply device
CN216665940U (en) Self-priming pump with reflux valve
JP5640465B2 (en) Fluid pressure adjusting device and fuel supply device using the same
JP2011163130A (en) Fuel supply device
US11512700B2 (en) Low pressure sealing liquid entry area in a compressor type liquid ring pump
JP2024052765A (en) Fluid Control Device
JP2021143647A (en) Pressure adjustment device
GB2584005A (en) Vacuum pump exhaust reed valve with pressure bleed
JP2008163785A (en) Fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2863775

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012868917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012868917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14378735

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP