WO2013119947A1 - Pepmixes to generate multiviral ctls with broad specificity - Google Patents

Pepmixes to generate multiviral ctls with broad specificity Download PDF

Info

Publication number
WO2013119947A1
WO2013119947A1 PCT/US2013/025342 US2013025342W WO2013119947A1 WO 2013119947 A1 WO2013119947 A1 WO 2013119947A1 US 2013025342 W US2013025342 W US 2013025342W WO 2013119947 A1 WO2013119947 A1 WO 2013119947A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
ctls
antigen
virus
peptides
Prior art date
Application number
PCT/US2013/025342
Other languages
French (fr)
Inventor
Anne Marie LEEN
Juan Fernando Vera VALDES
Cliona M. Rooney
Ulrike Gerdemann
Original Assignee
Baylor College Of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baylor College Of Medicine filed Critical Baylor College Of Medicine
Priority to ES13746524T priority Critical patent/ES2748652T3/en
Priority to US14/377,825 priority patent/US20150010519A1/en
Priority to EP19178235.8A priority patent/EP3591047B1/en
Priority to DK13746524.1T priority patent/DK2812431T3/en
Priority to PL13746524T priority patent/PL2812431T3/en
Priority to EP22166731.4A priority patent/EP4089167A1/en
Priority to EP13746524.1A priority patent/EP2812431B1/en
Publication of WO2013119947A1 publication Critical patent/WO2013119947A1/en
Priority to US15/905,176 priority patent/US11118164B2/en
Priority to US17/443,261 priority patent/US20210348127A1/en
Priority to US17/659,624 priority patent/US11981923B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464838Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/025Papovaviridae, e.g. papillomavirus, polyomavirus, SV40, BK virus, JC virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/03Herpetoviridae, e.g. pseudorabies virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/11Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/115Paramyxoviridae, e.g. parainfluenza virus
    • C07K14/135Respiratory syncytial virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • A61K2039/55527Interleukins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/577Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 tolerising response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2304Interleukin-4 (IL-4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2307Interleukin-7 (IL-7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2315Interleukin-15 (IL-15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16211Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
    • C12N2710/16234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention generally concerns the fields of immunology, cell biology, molecular biology, and medicine.
  • hematopoietic stem cell transplant may cure hematological malignancies and genetic disorders
  • extension to donors other than HLA -matched siblings has resulted in the emergence of viral infections as major contributors to post-transplant morbidity and mortality ' "4 .
  • CMV cytomegalovirus
  • EBV Epstein-Barr virus
  • HSV herpes-simplex virus
  • Adv Adenovirus
  • BK BK
  • HHV human herpesvirus
  • RSV Respiratory Syncytial virus
  • parainfluenza and influenza .
  • pharmacological agents are standard therapy for some, they have substantial toxicities, generate resistant variants, are frequently ineffective and do not provide long-term protection 5 ' 6 .
  • T cell therapy is restricted by (i) the limited spectrum of viruses that can be effectively targeted in a single T cell line, and (ii) the logistics of manufacture.
  • Antigenic competition between high and low frequency T cells as well as between multiple antigens expressed at different levels and competing for presentation on shared antigen presenting cells (APCs) may favor generation of lines dominated by responses to a single virus or to a restricted spectrum of viral antigens I3>14 , thus limiting the antiviral coverage provided by a single T cell product.
  • APCs shared antigen presenting cells
  • our current manufacturing process is complex, requiring infectious virus material (EBV/Adv), production of a clinical grade vector, and prolonged (10-12 weeks) in vitro culture 8"10 ' 15 .
  • T cell products for adoptive transfer.
  • streptamer selection to directly isolate virus-specific CD8+ T cells from peripheral blood 16 , as well as the selection of cells based on cytokine production (IFN) or expression of activation markers (e.g. CD154) following antigen exposure 17"19 .
  • IFN cytokine production
  • CD154 activation markers
  • the present invention is directed to methods and compositions that concern immune system components that are modified to immunogenically recognize particular targets.
  • the present invention concerns the development of cytotoxic T- lymphocytes (CTLs) that target a biological moiety that elicits an immune response in an individual.
  • CTLs cytotoxic T- lymphocytes
  • the present invention concerns the development of CTLs that target at least one antigen from a pathogen (including viral, bacterial, or fungal) or other disease-associated antigen.
  • the present invention concerns the development of CTLs that target antigens from at least one virus, for example.
  • the present invention concerns the development of CTLs that target at least one tumor antigen, for example.
  • the CTLs target antigens from two or more viruses (or two or more tumors, in alternative embodiments). In some embodiments, the CTLs target one or more, two or more, three or more, or four or more antigens from the same virus. In some embodiments, the CTLs target one antigen from more than one virus. In certain embodiments, the CTLs target one or more, two or more, three or more, or four or more antigens from different viruses.
  • the present invention provides significant and non-obvious improvements on methods for generating CTL lines with specificity against multiple tumor antigens or multiple viruses (for example).
  • the present invention obviates the need for dendritic cells in the preparation of such lines.
  • the antigen is presented to PBMCs in the form of one or more peptides that span some or all of the antigen.
  • the antigenic peptides may be provided to the PBMCs in a library of peptide mixtures, which may be referred to as pepmixes.
  • pepmixes a library of peptide mixtures
  • the invention allows for the pooling of a variety of pepmixes.
  • the collection of antigens may include both immunodominant and subdominant antigens, yet despite the presence of immunodominant antigens in the collection with subdominant antigens, CTLs specific antigens including subdominant antigens are surprisingly generated.
  • an individual is in need of the methods and/or compositions of the invention.
  • the individual is immunocompromised (which for example, may be defined as an individual whose ability to fight infectious disease or cancer with the immune system is compromised or entirely absent).
  • the immunocompromised individual has had a stem cell transplant, has had an organ transplant and/or has received one or more cancer treatments, including chemotherapy or radiation, for example.
  • the individual acquired or inherited immune deficiency disorder.
  • those that are immunocompromised by their disease and/or its treatment are provided methods and/or compositions if the invention.
  • polyclonal for example, CD4+ and CD8+
  • CTLs that are consistently specific for a variety of immunodominant and/or subdominant antigens derived from one or more viruses (for example, EBV, CMV, Adv, BK virus, HHV6, RSV and Influenza) that are frequent causes of post transplant disease or death.
  • viruses for example, EBV, CMV, Adv, BK virus, HHV6, RSV and Influenza
  • the invention uses standardized (synthetic) peptides as a stimulus and enhancement of cytokines to promote the survival and expansion of T cells, is readily adaptable to clinical implementation, and is useful as a safe and effective broad spectrum antiviral agent for all high risk transplant recipients, for example.
  • cytotoxic T-lymphocytes that target at least one antigen from two or more viruses, comprising the steps of : contacting a plurality of peripheral blood mononuclear cells with at least two libraries of peptides, said libraries of peptides each comprising peptides that correspond to a particular viral antigen; and expanding the plurality of cells in the presence of one or more cytokines.
  • the method occurs in the absence of exposing the libraries to isolated peptide-pulsed dendritic cells prior to expanding the CTLs.
  • the one or more cytokines are selected from the group consisting of IL4, IL7 and a combination thereof.
  • the peptides are further defined as peptides that overlap in sequence to span part or all of a viral antigen. For example, in certain aspects the peptides overlap by at least three, four, five, or six amino acids, and in some embodiments the peptides are at least six, seven, or eight or more amino acids in length.
  • viruses targeted in the invention are selected from the group consisting of EBV, CMV, Adenovirus, BK virus, HHV6, RSV, Influenza, Parainfluenza, Bocavirus, Coronavirus, LCMV, Mumps, Measles, Metapneumovirus, Parvovirus B, Rotavirus, West Nile Virus, JC, HHV7, and a combination thereof.
  • the virus is EBV and the antigen is selected from the group consisting of EBNA1 , LMP2, and BZLF1.
  • the virus is CMV and the antigen is selected from the group consisting of IE1 and pp65.
  • the virus is Adv and the antigen is selected from the group consisting of Hexon and penton.
  • the virus is BK virus and the antigen is selected from the group consisting of LT and VP-1.
  • the virus is HHV6 and the antigen is selected from the group consisting of U14 and U90.
  • the virus is RSV and the antigen is selected from the group consisting of N and F.
  • the virus is Influenza and the antigen is selected from the group consisting of MP1 and NP1.
  • the CTLs generated thereby are administered to an individual, for example, an immunocompromised individual.
  • the individual has had allogeneic stem cell transplant.
  • the cells are administered by injection, such as intravenous, intramuscular, intradermal, subcutaneous, intraperitoneal injection, and so forth, for example.
  • the individual has lymphoma or leukemia.
  • the CTLs are further defined as polyclonal CD4+ and CD8+ CTLs.
  • the PBMCs may be allogeneic to the individual or are autologous to the individual.
  • the methods of the invention further comprise the step of exposing the CTLs to one or more compositions that stimulate cell division, such as phytohemagglutinin; in some aspects the compound is a mitogen.
  • FIG. 1 Growth promoting cytokines enhance the activation and expansion of antigen-specific CTLs.
  • PBMC peripheral blood mononuclear cells
  • IL2 interleukin-2
  • IL15 interleukin-12
  • IL4+7 interleukin-4+7
  • Results are shown as mean cell numbers +/- SEM.
  • Panel B CD3+ T cell proliferation in the different culture conditions as evaluated by CFSE dilution.
  • Ml shows the percentage of cells that underwent at least 7 cell doublings on day 10 after stimulation. Bulk cultures were analyzed for T and NK-cell marker expression on day 10 after activation.
  • Panel C Mean expression +/- SEM in CTL lines generated from 5 donors are shown in Panel C.
  • Panel D shows cytokine production from CD3/CD4+ (helper) and CD3/CD8+ (cytotoxic) CTLs on day 9 after initiation in one representative donor (dot plots shown were gated on CD3+ cells).
  • Summary intracellular cytokine production results from three donors (mean +/- STDEV) are shown in Panel E.
  • Thl cytokines are shown in the left panel while prototypic Th2 cytokines are shown in the right panel (Panel F). Presence of regulatory T cells were evaluated by FoxP3 staining. Plots shown are gated on CD3+/CD4+ CTLs (Panel G).
  • FIG. 2 Peptide-stimulated and plasmid-activated CTLs share similar phenotypic and functional characteristics.
  • the breadth of T cell reactivity in plasmid and pepmix-activated pp65-specific CTLs was evaluated by IFN ELIspot on day 9 using a total of 22 mini peptide pools representing all pp65peptides.
  • Panel D shows the TCR avidity of plasmid vs. pepmix activated CTL generated from 2 representative donors.
  • pp65-CTLs were stimulated with serial dilutions of pp65 pepmix (pp65) or relevant (HLA-matched) epitope peptides (NLV, QAD). IFN release of stimulated CTLs was evaluated by ELIspot assay and maximum SFC/lxlO 5 cells was normalized to 100% for comparison purposes.
  • FIG. 3 Peptide length does not affect breadth of reactivity.
  • Panel A shows a schematic of three peptide libraries spanning a portion of Adv-Hexon that were used for CTL initiation. Peptide libraries consisted of 15aa, 20aa or 30aa peptides covering the immunogenic C-terminal 414aa of Adv-Hexon.
  • FIG. 4 Pepmix-activated trivirus-specific CTL lines show similar specificity to plasmid-activated T cells.
  • CTL lines were generated using DCs nucleofected with DNA plasmids encoding EBNA-1 , LMP2, BZLF-1 (EBV), Hexon, Penton (Adenovirus), IE-1 and pp65 (CMV) or direct PBMC stimulation with the corresponding pepmixes. Specificity was determined 10 days after initiation with IFN ELIspot as readout. Results are expressed as SFC/lxlO 5 input cells. Control was IFN release in response to stimulation with irrelevant pepmix.
  • FIG. 5 Generation of multivirus-specific CTLs.
  • Panel A shows a schematic of antigen pooling strategy for CTL initiation.
  • PBMCs were stimulated with pepmixes pooled by virus (A), divided into sub-pools - immunodominant and subdominant (B), divided into sub- pools encompassing antigens from latent or lytic viruses (C), and finally all antigens were pooled together in a mastermix (D). After activation PBMCs were pooled and transferred to the G- Rex 10 (15xl0 6 /G-Rex).
  • FIG. 6 Multivirus-specific CTLs can be expanded in vitro.
  • CTLs were restimulated using pepmix-pulsed PHA blasts.
  • CTL expansion was evaluated using trypan blue exclusion and results are shown as mean cell numbers +/- STDEV.
  • Panel B shows results from 1 representative donor illustrating the antigen specificity of CD3/CD8+ and CD3/CD8- (CD4+) CTLs after the 2nd round of stimulation using IFN ICS.
  • Panel C shows summary results from 6 donors after the 1st (day 9) and 2nd (day 16) stimulation, using IFN ELIspot as a readout. Results are expressed as SFC/lxlO 5 input cells +/- STDEV and the control was IFN release in response to stimulation with irrelevant pepmix. The cytotoxic abilities of the generated CTLs were evaluated by standard 4-6hr Cr 51 release assay using pepmix-pulsed PHA blasts as targets. Specific lysis after the 1 st and 2nd stimulation from 2 representative donors are shown in Panel D.
  • FIG. 7 Phenotype and specificity of Penton and LMP2-specific CTLs generated in the presence of different growth-promoting cytokines. Phenotypic analyses of CTLs on day 9 after initiation with Penton (upper left) or LMP2 (upper right panel) pepmixes and culture in the presence or absence of different cytokines. Results are presented as mean % positive cells +/- STDEV. CTLs of 3 donors were tested for specificity by IFN ELIspot. Results are expressed as SFC/lxlO 5 input cells +/- STDEV and the control was IFN release in response to stimulation with an irrelevant pepmix.
  • FIG. 8 CD3+ T cell expansion after addition of growth-promoting cytokines.
  • Total T cell numbers were calculated based on total cell numbers evaluated by cell counting using trypan blue exclusion and the percentage of CD3+ T cells detected on day 9 after CTL initiation assessed by flow cytometric analysis. Results from 5 donors are shown (mean cell numbers +/- SEM).
  • FIG. 9 TCR avidity is comparable in Hexon DC plasmid-activated and pepmix- stimulated PBMCs.
  • TCR avidity of Hexon-specific CTLs stimulated with plasmid nucleofected DCs or pepmix stimulated PBMCs was tested by serial dilution of Hexon pepmix or HLA-A1 restricted peptide TDL with IFN ELIspot as readout. Results are plotted as % of maximum SFC.
  • FIG. 10 Comparable expansion of CTLs stimulated with pooled vs. single pepmixes.
  • Cell expansion of CTL generated from 2 donors was evaluated using trypan blue exclusion 9 days after PBMC stimulation. Results are expressed as mean cell numbers +/- STDEV.
  • FIG. 1 1 Lack of alloreactivity in pepmix-stimulated PBMCs.
  • tumor antigen refers to an antigenic substance produced/expressed on tumor cells and which triggers an immune response in the host.
  • viral antigen refers to an antigen that is protein in nature and is closely associated with the virus particle.
  • a viral antigen is a coat proteins.
  • the present invention concerns the development of CTLs that target one or more antigens from at least one virus or at least one tumor antigen, for example.
  • the CTLs target one or more antigens from two or more viruses or two or more tumors.
  • the present invention concerns methods for generating CTL lines with specificity against multiple tumor antigens or multiple viruses in at least general embodiments.
  • the antigen is presented to PBMCs (for example) in the form of one or more peptides that span some or all of the antigen.
  • the antigenic peptides may be provided to the PBMCs in a library of peptide mixtures, which may be referred to as pepmixes, and multiple libraries of pepmixes may be provided to the same collection of PBMCs.
  • the collection includes both immunodominant and subdominant antigens.
  • the present invention is utilized in individuals after hematopoietic stem cell transplantation (HSCT) Severe and fatal viral infections remain common after HSCT.
  • HSCT hematopoietic stem cell transplantation
  • CTLs cytotoxic T lymphocytes
  • CMV cytotoxic T lymphocytes
  • Adenoviral antigens can treat infections that are impervious to conventional therapies, but broader implementation and extension to additional viruses are limited by competition between virus-derived antigens and time-consuming and laborious manufacturing procedures.
  • the invention provides a system that rapidly generates a single preparation of polyclonal (CD4+ and CD8+) CTLs that is consistently specific for 15 immunodominant and subdominant antigens derived from 7 viruses (EBV, CMV, Adv, BK, HHV6, RSV and Influenza) that commonly cause post-transplant morbidity and mortality.
  • CTLs can be rapidly produced (10 days) by a single stimulation of donor PBMCs with a peptide mixture spanning the target antigens in the presence of the potent pro-survival cytokines IL4 and IL7. This approach reduces the impact of antigenic competition with a consequent increase in the antigenic repertoire and frequency of virus-specific T cells.
  • the present invention can be readily introduced into clinical practice and is a cost-effective alternative to common anti-viral prophylactic agents for allogeneic HSCT recipients.
  • the generated CTLs are provided to an individual that has or is at risk of having a pathogenic infection, including a viral, bacterial, or fungal infection.
  • the individual may or may not have a deficient immune system.
  • the individual has a viral, bacterial, or fungal infection following organ or stem cell transplant (including hematopoietic stem cell transplantation), or has cancer or has been subjected to cancer treatment, for example.
  • the individual has infection following an acquired immune system deficiency.
  • the infection in the individual may be of any kind, but in specific embodiments the infection is the result of one or more viruses.
  • the pathogenic virus may be of any kind, but in specific embodiments it is from one of the following families: Adenoviridae, Picornaviridae, Herpesviridae, Hepadnaviridae, Flaviviridae, Retroviridae, Orthomyxoviridae, Paramyxoviridae, Papovaviridae, Polyomavirus, Rhabdoviridae, or Togaviridae.
  • the virus produces antigens that are immunodominant or subdominant or produces both kinds.
  • the virus is selected from the group consisting of EBV, CMV, Adenovirus, BK virus, HHV6, RSV, Influenza, Parainfluenza, Bocavirus, Coronavirus, LCMV, Mumps, Measles, Metapneumo virus, Parvovirus B, Rotavirus, West Nile Virus, Spanish influenza, and a combination thereof.
  • the infection is the result of a pathogenic bacteria, and the present invention is applicable to any type of pathogenic bacteria.
  • Exemplary pathogenic bacteria include at least Mycobacterium tuberculosis, Mycobacterium leprae, Clostridium botulinum, Bacillus anthracis, Yersinia pestis, Rickettsia prowazekii, Streptococcus, Pseudomonas, Shigella, Campylobacter, and Salmonella.
  • Exemplary pathogenic fungi include at least Candida, Aspergillus, Cryptococcus, Histoplasma, Pneumocystis, or Stachybotrys.
  • TAA-specific CTL are employed for the treatment and/or prevention of cancer
  • a variety of TAA may be targeted.
  • Tumor antigens are substances produced in tumor cells that trigger an immune response in a host.
  • Exemplary tumor antigens include at least the following: carcinoembryonic antigen (CEA) for bowel cancers; CA-125 for ovarian cancer; MUC-1 or epithelial tumor antigen (ETA) or CA15-3 for breast cancer; tyrosinase or melanoma- associated antigen (MAGE) for malignant melanoma; and abnormal products of ras, p53 for a variety of types of tumors; alphafetoprotein for hepatoma, ovarian, or testicular cancer; beta subunit of hCG for men with testicular cancer; prostate specific antigen for prostate cancer; beta 2 microglobulin for multiple myelom and in some lymphomas; CA19-9 for colorectal, bile duct, and pancreatic cancer; chromogranin A for lung and prostate cancer; TA90 for melanoma, soft tissue sarcomas, and breast, colon, and lung cancer.
  • Examples of tumor antigens are known in the following
  • tumor antigens include at least CEA, MHC, CTLA-4, gplOO, mesothelin, PD-L1 , TRP1, CD40, EGFP, Her2, TCR alpha, trp2, TCR, MUC1 , cdr2, ras, 4- IBB, CT26, GITR, OX40, TGF-a.
  • WT1 WT1 , MUC1, LMP2, HPV E6 E7, EGFRvIII, HER-2/neu, MAGE A3, p53 nonmutant, NY-ESO-1 , PSMA, GD2, Melan A/MART 1 , Ras mutant, gp 100, p53 mutant, Proteinase3 (PR1), bcr-abl, Tyrosinase, Survivin, PSA, hTERT, EphA2, PAP, ML- IAP, AFP, EpCAM, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, ALK, Androgen receptor, Cyclin Bl , Polysialic acid, MYCN, RhoC, TRP-2, GD3, Fucosyl GM1 , Mesothelin, PSCA, MAGE Al , sLe(a), CYP1B1 , PLAC1 , GM3, BORIS, Tn, GloboH, ETV6-AML, NY- BR
  • a library of peptides is provided to PBMCs ultimately to generate CTLs.
  • the library in particular cases comprises a mixture of peptides ("pepmixes") that span part or all of the same antigen.
  • Pepmixes utilized in the invention may be from commercially available peptide libraries made up of peptides that are 15 amino acids long and overlapping one another by 1 1 amino acids, in certain aspects. In some cases, they may be generated synthetically. Examples include those from JPT Technologies (Springfield, VA) or Miltenyi Biotec (Auburn, CA).
  • the peptides are at least 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, or 35 or more amino acids in length, for example, and in specific embodiments there is overlap of at least 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, or 34 amino acids in length, for example.
  • the mixture of different peptides may include any ratio of the different peptides, although in some embodiments each particular peptide is present at substantially the same numbers in the mixture as another particular peptide.
  • an "anti-cancer” agent is capable of negatively affecting cancer in a subject, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer.
  • these other compositions would be provided in a combined amount effective to kill or inhibit proliferation of the cell.
  • This process may involve contacting the cancer cells with the expression construct and the agent(s) or multiple factor(s) at the same time. This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes the expression construct and the other includes the second agent(s).
  • HS-tK herpes simplex-thymidine kinase
  • the present inventive therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks.
  • the other agent and present invention are applied separately to the individual, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and inventive therapy would still be able to exert an advantageously combined effect on the cell.
  • present invention is "A” and the secondary agent, such as radio- or chemotherapy, is "B":
  • Cancer therapies also include a variety of combination therapies with both chemical and radiation based treatments.
  • Combination chemotherapies include, for example, abraxane, altretamine, docetaxel, herceptin, methotrexate, novantrone, zoladex, cisplatin (CDDP), carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, busulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP 16), tamoxifen, raloxifene, estrogen receptor binding agents, taxol, gemcitabien, navelbine, farnesyl-protein tansferase inhibitors, transplatinum, 5-fluorouracil, vincristin, vinblastin and methot
  • ⁇ -rays X-rays
  • X-rays X-rays
  • UV-irradiation UV-irradiation
  • Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 wk), to single doses of 2000 to 6000 roentgens.
  • Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.
  • contacted and “exposed,” when applied to a cell are used herein to describe the process by which a therapeutic construct and a chemotherapeutic or radiotherapeutic agent are delivered to a target cell or are placed in direct juxtaposition with the target cell.
  • both agents are delivered to a cell in a combined amount effective to kill the cell or prevent it from dividing.
  • Immunotherapeutics generally, rely on the use of immune effector cells and molecules to target and destroy cancer cells.
  • the immune effector may be, for example, an antibody specific for some marker on the surface of a tumor cell.
  • the antibody alone may serve as an effector of therapy or it may recruit other cells to actually effect cell killing.
  • the antibody also may be conjugated to a drug or toxin (chemotherapeutic, radionuclide, ricin A chain, cholera toxin, pertussis toxin, etc.) and serve merely as a targeting agent.
  • the effector may be a lymphocyte carrying a surface molecule that interacts, either directly or indirectly, with a tumor cell target.
  • Various effector cells include cytotoxic T cells and NK cells.
  • Immunotherapy could be used as part of a combined therapy, in conjunction with the present cell therapy.
  • the general approach for combined therapy is discussed below.
  • the tumor cell must bear some marker that is amenable to targeting, i.e. , is not present on the majority of other cells.
  • Common tumor markers include carcinoembryonic antigen, prostate specific antigen, urinary tumor associated antigen, fetal antigen, tyrosinase (p97), gp68, TAG-72, HMFG, Sialyl Lewis Antigen, MucA, MucB, PLAP, estrogen receptor, laminin receptor, erb B and pi 55.
  • the secondary treatment is a gene therapy in which a therapeutic polynucleotide is administered before, after, or at the same time as the present invention clinical embodiments.
  • a variety of expression products are encompassed within the invention, including inducers of cellular proliferation, inhibitors of cellular proliferation, or regulators of programmed cell death.
  • Curative surgery is a cancer treatment that may be used in conjunction with other therapies, such as the treatment of the present invention, chemotherapy, radiotherapy, hormonal therapy, gene therapy, immunotherapy and/or alternative therapies.
  • Curative surgery includes resection in which all or part of cancerous tissue is physically removed, excised, and/or destroyed.
  • Tumor resection refers to physical removal of at least part of a tumor.
  • treatment by surgery includes laser surgery, cryosurgery, electrosurgery, and miscopically controlled surgery (Mohs' surgery). It is further contemplated that the present invention may be used in conjunction with removal of superficial cancers, precancers, or incidental amounts of normal tissue.
  • a cavity may be formed in the body.
  • Treatment may be accomplished by perfusion, direct injection or local application of the area with an additional anti-cancer therapy.
  • Such treatment may be repeated, for example, every 1 , 2, 3, 4, 5, 6, or 7 days, or every 1, 2, 3, 4, and 5 weeks or every 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , or 12 months.
  • These treatments may be of varying dosages as well.
  • agents may be used in combination with the present invention to improve the therapeutic efficacy of treatment.
  • additional agents include immunomodulatory agents, agents that affect the upregulation of cell surface receptors and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adhesion, or agents that increase the sensitivity of the hyperproliferative cells to apoptotic inducers.
  • Immunomodulatory agents include tumor necrosis factor; interferon alpha, beta, and gamma; IL-2 and other cytokines; F42K and other cytokine analogs; or MIP-1, MIP-lbeta, MCP-1, RANTES, and other chemokines.
  • cell surface receptors or their ligands such as Fas / Fas ligand, DR4 or DR5 / TRAIL would potentiate the apoptotic inducing abililties of the present invention by establishment of an autocrine or paracrine effect on hyperproliferative cells. Increases intercellular signaling by elevating the number of GAP junctions would increase the anti -hyperproliferative effects on the neighboring hyperproliferative cell population.
  • cytostatic or differentiation agents can be used in combination with the present invention to improve the anti-hyerproliferative efficacy of the treatments.
  • Inhibitors of cell adhesion are contemplated to improve the efficacy of the present invention.
  • cell adhesion inhibitors are focal adhesion kinase (FAKs) inhibitors and Lovastatin. It is further contemplated that other agents that increase the sensitivity of a hyperproliferative cell to apoptosis, such as the antibody c225, could be used in combination with the present invention to improve the treatment efficacy.
  • FAKs focal adhesion kinase
  • Lovastatin Lovastatin
  • Hormonal therapy may also be used in conjunction with the present invention or in combination with any other cancer therapy previously described.
  • the use of hormones may be employed in the treatment of certain cancers such as breast, prostate, ovarian, or cervical cancer to lower the level or block the effects of certain hormones such as testosterone or estrogen. This treatment is often used in combination with at least one other cancer therapy as a treatment option or to reduce the risk of metastases.
  • DNA methyltransferase inhibitors and/or histone deacetylase inhibitors.
  • Exemplary DNA methyltransferase inhibitors include, for example, 5-azacytidine, 5-aza-2'- deoxycytidine, l-beta-D-arabinofuranosyl-5-azacytosine and dihydro-5-azacytidine.
  • Exemplary HDAC inhibitors include hydroxamic acids, such as trichostatin A; cyclic tetrapeptides (such as trapoxin B), and the depsipeptides; benzamides; electrophilic ketones; and the aliphatic acid compounds such as phenylbutyrate and valproic acid.
  • compositions described herein may be comprised in a kit.
  • a library of pepmixes may be comprised in a kit, any type of cells may be provided in the kit, and/or reagents for manipulation of pepmixes and/or cells may be provided in the kit.
  • the components are provided in suitable container means.
  • kits may comprise a suitably aliquoted compositions of the present invention.
  • the components of the kits may be packaged either in aqueous media or in lyophilized form.
  • the container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which a component may be placed, and preferably, suitably aliquoted. Where there are more than one component in the kit, the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial.
  • the kits of the present invention also will typically include a means for containing the components in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.
  • the components of the kit may be provided as dried powder(s).
  • the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means.
  • the inventors stimulated PBMCs in the presence of different Thl , pro- proliferative and pro-survival cytokines. The inventors then compared the frequency and repertoire of responding cells to those generated by conventional activation in the absence of cytokines.
  • PBMCs were simulated with a pepmix (peptide library of overlapping 15mers) spanning the immunodominant CMV-pp65 antigen, then expanded without cytokines, or with media supplemented with (i) IL15 (5ng/ml), (ii) IL2 (20U/ml), or (iii) IL4 (1666U/ml) + IL7 (l Ong/ml). After 9-12 days the inventors assessed cell expansion, phenotype, specificity and function.
  • Optimal in vivo T cell persistence and activity requires both helper (CD4+) and cytotoxic (CD8+) T cells 23 .
  • the inventors therefore used phenotypic analyses to determine that the cells in the cytokine-supplemented cultures reflected the selective expansion of polyclonal T cells.
  • ICS intracellular cytokine staining
  • IL4 is a prototypic Th2 cytokine, therefore to more comprehensively evaluate the cytokine profile of the induced CTLs the supernatant of antigen-activated T cells was assessed using luminex array.
  • Figure IF shows that, in addition to IFNy, the IL4+7-supplemented lines produced the prototypic Thl cytokines GM-CSF, IL-2 and TNFa, at levels similar to that of IL2- induced CTLs.
  • levels of Th2 cytokines IL5 and IL13
  • IL4 in combination with IL7, induces selective expansion of polyclonal, Thl -polarized T cells that produce multiple effector cytokines upon stimulation (FIG. 8).
  • the inventors next compared the breadth of epitopes recognized by measuring responses to 1 10 20mer peptides (overlapping by 15aa) spanning CMV-pp65 and arranged into 22 pools such that each peptide was represented in 2 pools 24 .
  • FIG. 2C shows that both the recognition of a given peptide and the magnitude of the response thereto was little changed by the antigen source.
  • the inventors compared functional avidity by IFNy ELIspot using log dilutions of the pp65 pepmix or epitope peptides (A2-NLV and A24- QAD) as a stimulus. As shown in FIG. 2D, there was no significant difference in the avidity of the CTLs. This data was confirmed for other viral antigens using Adv-Hexon pepmix and viral antigen-encoding plasmid as a stimulus (FIG. 9).
  • CD4+ epitopes >20aa
  • CD8 epitopes 8-10aa
  • the inventors next determined whether longer peptides would induce higher frequencies of antigen- specific CD4+ T cells.
  • the inventors obtained three overlapping peptide libraries (#1 - 15mers overlapping by 1 1 , #2 - 20mers overlapping by 15, and #3 - 30mers overlapping by 15) spanning the C terminus (aa539-953) of Adv-Hexon; a region rich in both CD4+ and CD8+ epitopes 25 ' 26 (FIG. 3A).
  • the inventors directly stimulated PBMCs with each of the libraries and evaluated the phenotype, epitope specificity and breadth of the lines.
  • the inventors After successfully generating CTLs using peptides derived from a single viral antigen and culture in IL4+7, the inventors next prepared a single culture of CTLs simultaneously recognizing CMV, EBV, and Adv. For each virus the inventors targeted immunogenic antigens; CMV - IE1 and pp65, Adv - Hexon and Penton, and EBV - EBNA1 , LMP2 and BZLF1 8 ⁇ 9>17>, 8>27 - 31 and pulsed PBMCs with the relevant pepmixes before culture in IL4+7.
  • the inventors compared the antiviral reactivity of the resulting CTLs with those generated using our current clinical trivirus CTL protocol which uses DCs nucleofected with plasmids encoding the same antigens as a stimulus 20 ' 21 (FIG. 4).
  • IFNy ELIspot confirmed that pepmix-generated CTLs from 4 donors had antiviral activity against all three viruses and seven stimulating antigens.
  • the frequency of T cells reactive against EBV (EBNA1 , LMP2, BZLF1) and CMV (IE1, pp65) was comparable irrespective of the stimulus.
  • Table 1 Exemplary Antigens from Exemplary Viruses
  • FIG. 5C shows 8 additional CTL lines with consistent multivirus specificity.
  • the highest responses were seen against CMV-pp65 and Adv-Hexon (951.6 ⁇ 82.1 and 461.4 ⁇ 19.2 SFC/lxlO 5 CTL) while activity against HHV6-U90, EBV-BZLF1 and EBV-LMP2 was weakest (26.9 ⁇ 4.2, 35.6 ⁇ 5, 39.6 ⁇ 2.6 SFC/lxlO 5 CTL).
  • Adv-Penton, Influenza-MPl and RSV-F demonstrated intermediate response rates (191 ⁇ 13.7, 1 17.6 ⁇ 8.6, 90.1 ⁇ 10.3 SFC/lxlO 5 CTL, respectively) (FIG. 5C).
  • FIG. 5E shows the results for one representative donor in whom 63% of all Adv, 55% of CMV, 40% of EBV, 46% of RSV, 36% of Influenza and 28% of HHV6-specific CTLs produced both IFNy and TNFa after antigenic stimulation.
  • ICS for IFNy and/or TNFa showed that 67.7 ⁇ 13.3% of all T cells in multivirus cultures were antigen-specific.
  • FIG. 6A shows that the expanded CTLs remained polyclonal, with activity detected in both CD4+ and CD8+ compartments. Expansion was associated with an overall increase in the magnitude of the response directed against all of the stimulating antigens on day 16 relative to day 9 (FIG.
  • the inventors have shown that in at least some embodiments they can rapidly generate polyclonal, CD4+ and CD8+ T cells with specificities directed to a wide range of lytic and latent viruses responsible for infection in the immunocompromised host and after HSCT. These cells were Thl -polarized, had high avidity for a multiplicity of individual viral antigens, produced multiple effector cytokines upon stimulation, and killed virus-infected targets without alloreactivity. Because the inventors generated these T cells using combinations of clinically- available peptide-libraries and pro-survival cytokines, our approach should be well suited to clinical application.
  • CMV, EBV and Adv are the most frequently detected viral infections following allogeneic HSCT
  • recipients are also susceptible to numerous other viruses, including BK, JC, HHV6, HHV7, influenza, parainfluenza, coronavirus, and RSV, all of which may cause severe morbidity and mortality l ' 2 .
  • viruses are only seasonally detected (e.g. influenza, RSV) while others, such as HHV7, JC, and coronavirus, are infrequent, so that it is impracticable to cover all these pathogens post-transplant by generating individualized patient and single virus-specific T cell products.
  • the inventors sought to develop a strategy that would enable the production of a single CTL line with simultaneous specificity for a multiplicity of antigens.
  • the inventors chose to use a whole antigen source in the form of overlapping peptide libraries, but for optimal induction of polyclonal CTL the inventors compared peptides of different lengths (15mers, 20mers and 30mers) for stimulation. However, the inventors saw no difference in the phenotype, specificity or epitope breadth of our lines, highlighting the differences between delivering peptides as a vaccine, where one relies on endogenous APCs to take up and process antigen versus in vitro T cell activation using professional APCs within PBMCs at optimal effector: target ratios .
  • T cells are activated when they receive signals from TCR stimulation (signal 1), co-stimulation (signal 2), and cytokines (signal 3).
  • the "conventional CTLs” are activated in the absence of exogenous cytokines, a deficit that appears to adversely affect their proliferative capacity in vitro and also increases their susceptibility to activation induced cell death (AICD), likely resulting in a more restricted repertoire of epitope recognition.
  • AICD activation induced cell death
  • both the frequency and breadth of cells with viral specificity could be increased by supplementing cultures with inflammatory and pro-survival cytokines at initiation.
  • the inventors chose to test cytokines that support cell proliferation in vitro and in vivo (IL2, IL15) Je " , as well as combinations (IL4+7) that also support the retention of a central memory phenotype, and promote the survival of activated T cells by upregulation of anti-apoptotic molecules e.g. Bcl-2 40"43 .
  • CD3/28-activated CD8+ T cells cultured in an inflammatory cocktail consisting of IL1 +IL6+IL23 underwent significantly less cell death after activation as compared with cells activated in any of the cytokines alone or activated in the presence of IL12 46 .
  • PBMCs themselves could act as both a source of antigen presenting and responding cells.
  • B cells, monocytes and macrophages may all have the capacity to present antigen to T cells and these APCs can utilize endo- and exopeptidases to liberate class I or class II epitopes from 15mer peptides 48 ' 49 .
  • the inventors can avoid reliance on a single APC endogenously expressing multiple antigens at different levels as a shared T cell stimulator, and instead have a diverse group of APCs in which each cell has the potential to display a diverse repertoire of peptides, allowing sufficient access for both high and low frequency T cells.
  • antigenic competition both within the APC and between T cells could be alleviated.
  • the inventors generated a single culture of T cells with reactivity for 15 antigens derived from 7 latent and lytic viruses (EBV, CMV, BK, HHV6, Adv, Flu, and RSV) using pooled pepmixes as a stimulus and saw no evidence of competition. Additional pathogens can be included in this platform, although in some embodiments ultimately APC numbers can eventually become limiting; thus additions must be performed in a stepwise manner and one must evaluate changes in the frequency and breadth of T cell recognition of all peptides in the mix.
  • a second stimulation using pepmix-pulsed PHA blasts can expand the total number of CTLs without impairing their epitope specificity or breadth.
  • PBMCs were obtained from healthy volunteers with informed consent using a Baylor College of Medicine IRB-approved protocol. PBMCs were used to generate DCs, CTL lines and PHA blasts. PHA blasts were generated from PBMC (2xl 0 6 /ml) using PHA ⁇ g/ml) and maintained in CTL media (RPMI 1640, 45% Click's (Irvine Scientific, Santa Ana, CA), 2mM GlutaMAX TM-I, and 5% Human AB Serum) supplemented with IL2 (l OOU/ml, NIH, Bethesda, VA), which was replenished every 3 days.
  • CTL media RPMI 1640, 45% Click's (Irvine Scientific, Santa Ana, CA), 2mM GlutaMAX TM-I, and 5% Human AB Serum
  • pepmixes 15mers overlapping by l laa spanning EBV-LMP2, BZLF1 , EBNA1 ; Adv-Penton, Hexon; CMV-pp65, IE-1 ; BKV-VPl , large T; Influenza A-MPl (H3N2), NP (H3N2); RSV-F, N, JPT Technology, Berlin, Germany.
  • Pepmixes spanning HHV6 U14 and U90 were synthesized by Genemed Synthesis Inc., San Antonio, Texas USA.
  • the inventors compared 4 conditions; (i) no cytokine, (ii) IL7 (l Ong/ml) + IL4 (1666U/ml), (iii) IL15 (5ng/ml) (R&D Systems, Minneapolis, MN) and (iv) IL2 (20U/ml). Cytokines were added to CTLs at day 0 and replenished on day 5. In some embodiments, 400U of IL4 is employed. iv. CTL expansion
  • CTLs were restimulated at a S:R ratio of 1 : 1 with irradiated (30Gy) pepmix-pulsed autologous PHA blasts in CTL media with IL4+7 and IL15 (5ng/ml) on the day of restimulation and fed with IL15 twice weekly. Seven days later CTLs were harvested, and used for further studies.
  • CTLs were surface-stained with monoclonal antibodies to: CD3, CD4, CD8, CD 16, CD56, CD28, CD45RO, and CD62L (Becton Dickinson BD, Franklin Lakes, NJ).
  • Cells were washed once with phosphate-buffered saline (PBS) (Sigma, St Louis, MO) containing 2% FBS (HyClone, Thermo Fisher Scientific Inc, NH), pelleted, and antibodies added in saturating amounts ( ⁇ ). After 15min at 4°C in the dark, cells were washed twice and analyzed. Approximately 20,000 live cells were acquired using a FACSCalibur equipped with Cell Quest software ii. CFSE
  • PBMCs were isolated, pelleted and pulsed with pp65 pepmix (100ng/15xl0 6 PBMC) for 30-60 min.
  • PBMCs were washed twice using PBS+0.1% FBS and incubated for lOmin with 1501/20xl0 6 PBMC ⁇ CSFE.
  • FBS was added at a 1 : 1 ratio and incubated for lOmin at 37C°.
  • PBMCs were washed twice using PBS+2% FBS and plated at a concentration of lxl0 6 /ml in CTL media with cytokines. Dilution of CFSE was examined every 2-3 days by flow after surface staining with CD3, CD4, CD8 and CD56.
  • CTLs were harvested, resuspended at a concentration of 5xl0 6 /ml in CTL media and plated at 200 ⁇ 1 ⁇ 11 in a 96well plate. The cells were then stimulated with lOOng of test or control pepmix in the presence of Brefeldin A ( ⁇ g/ml), (BD) CD28 and CD49d ( ⁇ g/ml) for 5- 7 hours. Subsequently, CTLs were washed with PBS+2% FBS, pelleted, and surface stained with CD8, CD4 and CD3 ( ⁇ /antibody/tube).
  • the inventors used ELISpot to quantify IFNy-producing T cells and assess the breadth of reactivity in the CTL lines.
  • the populations were serially diluted from 4-1 xlO 5 cells/well, and antigen-specific activity measured after direct pepmix or peptide mini-pool stimulation. Each condition was run in triplicate. After 20 hours, plates were developed as previously described 22 , dried overnight at RT, then sent to Zellnet Consulting, New York, NY for quantification. SFC and input cell numbers were plotted, and a linear regression calculated after excluding plateau data points.
  • TCR avidity was assessed by IFN ELIspot. 2xl0 5 CTLs were stimulated with serial dilutions of pepmixes (pp65, Hexon) or 9mer peptides (NLV-pp65: NLVPMVATV HLA- A2 restricted, QYD-pp65: QYDPVAALF HLA-A24 restricted; TDL-Hexon: TDLGQNLLY HLA-A1 restricted). The frequency of T cells specific for each antigen/peptide was expressed as a percentage of the maximal SFC/input cell number. iv. Chromium release assay
  • the inventors measured the cytotoxic specificity in a standard 4hr Cr 51 release assay, using E:T ratios of 40: 1, 20:1, 10:1, and 5: 1. CTLs were used as effectors and the targets were PHA blasts pulsed with pepmixes. Autologous and allogeneic PHA blasts alone or loaded with an irrelevant pepmix were used as specificity and alloreactivity controls. The percentage of specific lysis was calculated as [(experimental release - spontaneous release)/(maximum release - spontaneous release)] x 100.
  • Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2003;31(6):481-486.
  • Kedl RM, Rees WA, Hildeman DA, et al. T cells compete for access to antigen-bearing antigen-presenting cells. J.Exp.Med. 2000;192(8): 1 105-1 1 13.
  • Feuchtinger T Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T- cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. British Journal of Haematology. 2006;134(l):64-76. 18. Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;1 16(20):4360-4367.
  • Gerdemann U Vera JF, Rooney CM, Leen AM. Generation of multivirus-specific T cells to prevent/treat viral infections after allogeneic hematopoietic stem cell transplant. J.Vis.Exp. 201 1 ;(51).
  • Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J.Clin.Invest. 2005; 1 15(5): 1 177-1187.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention concerns methods of generating CTLs that are able to target at least one antigen from two or more viruses. The method includes exposing mixtures of peptides for different antigens to the same plurality of PBMCs and, at least in certain aspects, expanding the cells in the presence of IL4 and IL7.

Description

DESCRIPTION
PEPMIXES TO GENERATE MULTIVIRAL CTLS WITH BROAD SPECIFICITY
[0001] This application claims priority to U.S. Provisional Patent Application Serial No.
61/596,875, filed February 9, 2012, which is incorporated by reference herein in its entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
[0002] This invention was made with government support under grants U54 HL081007 and NO 1-HB- 10-03 awarded by National Institutes of Health. The government has certain rights in the invention.
TECHNICAL FIELD
[0003] The present invention generally concerns the fields of immunology, cell biology, molecular biology, and medicine.
BACKGROUND OF THE INVENTION
[0004] Although hematopoietic stem cell transplant (HSCT) may cure hematological malignancies and genetic disorders, extension to donors other than HLA -matched siblings has resulted in the emergence of viral infections as major contributors to post-transplant morbidity and mortality '"4. With the advent of more intensive viral screening and improved detection, increasing numbers of viral pathogens have been implicated in these complications, expanding from cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes-simplex virus (HSV), Adenovirus (Adv), and BK to include human herpesvirus (HHV)-6, Respiratory Syncytial virus (RSV), parainfluenza, and influenza . While pharmacological agents are standard therapy for some, they have substantial toxicities, generate resistant variants, are frequently ineffective and do not provide long-term protection 5'6.
[0005] Restoration of virus-specific immunity offers an attractive alternative to conventional drugs. The inventors have shown that in vitro expanded virus-specific cytotoxic T lymphocytes (CTL) generated from stem cell donors with specificity for one (EBV), two (EBV and Adv) or three (EBV, CMV and Adv) viruses are safe and effectively prevent and treat viral infection or disease in the HSCT setting " . More recently, banked, partially HLA-matched virus-specific CTL (3rd party CTLs) are showing promise in allograft recipients with advanced viral disease 10"12.
[0006] Despite these encouraging clinical results broader implementation of T cell therapy is restricted by (i) the limited spectrum of viruses that can be effectively targeted in a single T cell line, and (ii) the logistics of manufacture. Antigenic competition between high and low frequency T cells as well as between multiple antigens expressed at different levels and competing for presentation on shared antigen presenting cells (APCs) may favor generation of lines dominated by responses to a single virus or to a restricted spectrum of viral antigens I3>14, thus limiting the antiviral coverage provided by a single T cell product. In addition, our current manufacturing process is complex, requiring infectious virus material (EBV/Adv), production of a clinical grade vector, and prolonged (10-12 weeks) in vitro culture 8"10'15. To address this latter problem some groups have evaluated more rapid approaches for producing T cell products for adoptive transfer. These include streptamer selection to directly isolate virus-specific CD8+ T cells from peripheral blood 16 , as well as the selection of cells based on cytokine production (IFN) or expression of activation markers (e.g. CD154) following antigen exposure 17"19. However, these approaches are expensive, require a large starting blood volume, which is not always available, particularly in the matched unrelated donor setting, and cannot be applied to viruses with low circulating T cell precursor frequencies.
[0007] There is a need in the art for a mechanism by which one can rapidly generate a single preparation of polyclonal CTLs that is consistently specific for immunodominant and/or subdominant antigens derived from more than one virus, including those that are frequent causes of post-transplant disease or death, for example.
BRIEF SUMMARY OF THE INVENTION
[0008] The present invention is directed to methods and compositions that concern immune system components that are modified to immunogenically recognize particular targets. In some embodiments, the present invention concerns the development of cytotoxic T- lymphocytes (CTLs) that target a biological moiety that elicits an immune response in an individual. In specific embodiments, the present invention concerns the development of CTLs that target at least one antigen from a pathogen (including viral, bacterial, or fungal) or other disease-associated antigen. In certain aspects of the invention, the present invention concerns the development of CTLs that target antigens from at least one virus, for example. In alternative embodiments, the present invention concerns the development of CTLs that target at least one tumor antigen, for example. In at least some cases, the CTLs target antigens from two or more viruses (or two or more tumors, in alternative embodiments). In some embodiments, the CTLs target one or more, two or more, three or more, or four or more antigens from the same virus. In some embodiments, the CTLs target one antigen from more than one virus. In certain embodiments, the CTLs target one or more, two or more, three or more, or four or more antigens from different viruses.
[0009] The present invention provides significant and non-obvious improvements on methods for generating CTL lines with specificity against multiple tumor antigens or multiple viruses (for example). In the generation of CTLs with such specificity, the present invention obviates the need for dendritic cells in the preparation of such lines. In some cases, the antigen is presented to PBMCs in the form of one or more peptides that span some or all of the antigen. The antigenic peptides may be provided to the PBMCs in a library of peptide mixtures, which may be referred to as pepmixes. In other aspects of the invention, in the preparation of the CTLs the invention allows for the pooling of a variety of pepmixes. In some cases, the collection of antigens may include both immunodominant and subdominant antigens, yet despite the presence of immunodominant antigens in the collection with subdominant antigens, CTLs specific antigens including subdominant antigens are surprisingly generated.
[00010] In some embodiments of the invention, an individual is in need of the methods and/or compositions of the invention. In specific embodiments, the individual is immunocompromised (which for example, may be defined as an individual whose ability to fight infectious disease or cancer with the immune system is compromised or entirely absent). In specific embodiments, the immunocompromised individual has had a stem cell transplant, has had an organ transplant and/or has received one or more cancer treatments, including chemotherapy or radiation, for example. In some cases, the individual acquired or inherited immune deficiency disorder. In some embodiments, those that are immunocompromised by their disease and/or its treatment are provided methods and/or compositions if the invention.
[00011] In some embodiments of the invention, there is a mechanism by which one can rapidly generate a single preparation of polyclonal (for example, CD4+ and CD8+) CTLs that are consistently specific for a variety of immunodominant and/or subdominant antigens derived from one or more viruses (for example, EBV, CMV, Adv, BK virus, HHV6, RSV and Influenza) that are frequent causes of post transplant disease or death. The invention is readily adaptable to clinical implementation and is useful as an "off the shelf broad spectrum antiviral agent. The invention uses standardized (synthetic) peptides as a stimulus and enhancement of cytokines to promote the survival and expansion of T cells, is readily adaptable to clinical implementation, and is useful as a safe and effective broad spectrum antiviral agent for all high risk transplant recipients, for example.
[00012] In some embodiments of the invention, there is a method of generating cytotoxic T-lymphocytes (CTLs) that target at least one antigen from two or more viruses, comprising the steps of : contacting a plurality of peripheral blood mononuclear cells with at least two libraries of peptides, said libraries of peptides each comprising peptides that correspond to a particular viral antigen; and expanding the plurality of cells in the presence of one or more cytokines. In specific embodiments, the method occurs in the absence of exposing the libraries to isolated peptide-pulsed dendritic cells prior to expanding the CTLs. In certain embodiments, the one or more cytokines are selected from the group consisting of IL4, IL7 and a combination thereof. In some embodiments, the peptides are further defined as peptides that overlap in sequence to span part or all of a viral antigen. For example, in certain aspects the peptides overlap by at least three, four, five, or six amino acids, and in some embodiments the peptides are at least six, seven, or eight or more amino acids in length.
[00013] In some embodiments of the invention, there viruses targeted in the invention are selected from the group consisting of EBV, CMV, Adenovirus, BK virus, HHV6, RSV, Influenza, Parainfluenza, Bocavirus, Coronavirus, LCMV, Mumps, Measles, Metapneumovirus, Parvovirus B, Rotavirus, West Nile Virus, JC, HHV7, and a combination thereof. In specific aspects, the virus is EBV and the antigen is selected from the group consisting of EBNA1 , LMP2, and BZLF1. In specific aspects, the virus is CMV and the antigen is selected from the group consisting of IE1 and pp65. In specific cases, the virus is Adv and the antigen is selected from the group consisting of Hexon and penton. In some embodiments, the virus is BK virus and the antigen is selected from the group consisting of LT and VP-1. In some embodiments, the virus is HHV6 and the antigen is selected from the group consisting of U14 and U90. In specific aspects, the virus is RSV and the antigen is selected from the group consisting of N and F. In certain embodiments, the virus is Influenza and the antigen is selected from the group consisting of MP1 and NP1.
[00014] In at least some methods of the invention, the CTLs generated thereby are administered to an individual, for example, an immunocompromised individual. In some cases, the individual has had allogeneic stem cell transplant. In specific embodiments, the cells are administered by injection, such as intravenous, intramuscular, intradermal, subcutaneous, intraperitoneal injection, and so forth, for example. In some embodiments, the individual has lymphoma or leukemia. In some embodiments, the CTLs are further defined as polyclonal CD4+ and CD8+ CTLs. The PBMCs may be allogeneic to the individual or are autologous to the individual. In some embodiments, the methods of the invention further comprise the step of exposing the CTLs to one or more compositions that stimulate cell division, such as phytohemagglutinin; in some aspects the compound is a mitogen.
[00015] The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[00016] For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
[00017] FIG. 1 : Growth promoting cytokines enhance the activation and expansion of antigen-specific CTLs. PBMC were stimulated with pp65 pepmix in the presence of IL2, IL15, IL4+7 or without exogenous cytokines. Cell expansion were evaluated after 9-11 days of culture by cell counting using trypan blue exclusion (n=5). Results are shown as mean cell numbers +/- SEM. (A). Panel B CD3+ T cell proliferation in the different culture conditions as evaluated by CFSE dilution. Ml shows the percentage of cells that underwent at least 7 cell doublings on day 10 after stimulation. Bulk cultures were analyzed for T and NK-cell marker expression on day 10 after activation. Mean expression +/- SEM in CTL lines generated from 5 donors are shown in Panel C. Panel D shows cytokine production from CD3/CD4+ (helper) and CD3/CD8+ (cytotoxic) CTLs on day 9 after initiation in one representative donor (dot plots shown were gated on CD3+ cells). Summary intracellular cytokine production results from three donors (mean +/- STDEV) are shown in Panel E. Finally the cytokine production profile of pp65- specific CTL initiated with or without cytokines was evaluated by multiplex assay using supernatant harvested 18h after antigenic restimulation (n=4). Thl cytokines are shown in the left panel while prototypic Th2 cytokines are shown in the right panel (Panel F). Presence of regulatory T cells were evaluated by FoxP3 staining. Plots shown are gated on CD3+/CD4+ CTLs (Panel G).
[00018] FIG. 2: Peptide-stimulated and plasmid-activated CTLs share similar phenotypic and functional characteristics. Panel A CTLs were stimulated either directly with a pp65 pepmix or using DCs nucleofected with a DNA plasmid encoding the same antigen. Cell expansion was evaluated by counting using trypan blue exclusion (n=4). Panel B shows the expression of cell surface markers (average +/- STDEV expression) on CTLs 1 1 days after stimulation (n=4). The breadth of T cell reactivity in plasmid and pepmix-activated pp65-specific CTLs was evaluated by IFN ELIspot on day 9 using a total of 22 mini peptide pools representing all pp65peptides. Data were normalized to 100% for maximum number of SFC per lxlO5 CTL. (Panel C). Panel D shows the TCR avidity of plasmid vs. pepmix activated CTL generated from 2 representative donors. To assess avidity pp65-CTLs were stimulated with serial dilutions of pp65 pepmix (pp65) or relevant (HLA-matched) epitope peptides (NLV, QAD). IFN release of stimulated CTLs was evaluated by ELIspot assay and maximum SFC/lxlO5 cells was normalized to 100% for comparison purposes.
[00019] FIG. 3: Peptide length does not affect breadth of reactivity. Panel A shows a schematic of three peptide libraries spanning a portion of Adv-Hexon that were used for CTL initiation. Peptide libraries consisted of 15aa, 20aa or 30aa peptides covering the immunogenic C-terminal 414aa of Adv-Hexon. B Phenotypic analysis of CTLs performed on day 10 after stimulation (n=6). Results are shown as mean +/- SEM. Breadth of reactivity was tested using IFNy ELIspot as a readout, with the 15mer Hexon overlapping peptide library divided into mini- pools such that each pool contained 5-6 contiguous peptides, as a stimulus. [00020] FIG. 4: Pepmix-activated trivirus-specific CTL lines show similar specificity to plasmid-activated T cells. CTL lines were generated using DCs nucleofected with DNA plasmids encoding EBNA-1 , LMP2, BZLF-1 (EBV), Hexon, Penton (Adenovirus), IE-1 and pp65 (CMV) or direct PBMC stimulation with the corresponding pepmixes. Specificity was determined 10 days after initiation with IFN ELIspot as readout. Results are expressed as SFC/lxlO5 input cells. Control was IFN release in response to stimulation with irrelevant pepmix.
[00021] FIG. 5: Generation of multivirus-specific CTLs. Panel A shows a schematic of antigen pooling strategy for CTL initiation. PBMCs were stimulated with pepmixes pooled by virus (A), divided into sub-pools - immunodominant and subdominant (B), divided into sub- pools encompassing antigens from latent or lytic viruses (C), and finally all antigens were pooled together in a mastermix (D). After activation PBMCs were pooled and transferred to the G- Rex 10 (15xl06/G-Rex). After 10 days the specificity of the CTL lines generated using these 4 pooling strategies were analyzed using IFN ELIspot assay as readout and individual pepmixes as a stimulus. Results from 2 representative donors are presented in Panel B showing no difference in the specificity of lines. Panel C confirms that multivirus CTL can be reproducibly generated by pooling all pepmixes into one mastermix for activation (n=8). Results are expressed as SFC/lxlO5 input cells +/- SEM. Control was IFN release in response to stimulation with an irrelevant pepmix. Antigen specificity of CD3/CD8+ (cytotoxic) and CD3+CD8- (helper) T cells was evaluated by intracellular IFN staining after overnight stimulation with the equivalent antigens. Results from one representative donor are shown in Panel D. Panel E shows that the lines are polyfunctional as assessed using ICS for IFN and TNF in one representative donor.
[00022] FIG. 6: Multivirus-specific CTLs can be expanded in vitro. On day 9 after initial stimulation CTLs were restimulated using pepmix-pulsed PHA blasts. Panel A shows the expansion of CTLs from initiation (day 0) to day 16, following a 2nd stimulation on day 9/10 (n=4). CTL expansion was evaluated using trypan blue exclusion and results are shown as mean cell numbers +/- STDEV. Panel B shows results from 1 representative donor illustrating the antigen specificity of CD3/CD8+ and CD3/CD8- (CD4+) CTLs after the 2nd round of stimulation using IFN ICS. Panel C shows summary results from 6 donors after the 1st (day 9) and 2nd (day 16) stimulation, using IFN ELIspot as a readout. Results are expressed as SFC/lxlO5 input cells +/- STDEV and the control was IFN release in response to stimulation with irrelevant pepmix. The cytotoxic abilities of the generated CTLs were evaluated by standard 4-6hr Cr51 release assay using pepmix-pulsed PHA blasts as targets. Specific lysis after the 1 st and 2nd stimulation from 2 representative donors are shown in Panel D.
[00023] FIG. 7: Phenotype and specificity of Penton and LMP2-specific CTLs generated in the presence of different growth-promoting cytokines. Phenotypic analyses of CTLs on day 9 after initiation with Penton (upper left) or LMP2 (upper right panel) pepmixes and culture in the presence or absence of different cytokines. Results are presented as mean % positive cells +/- STDEV. CTLs of 3 donors were tested for specificity by IFN ELIspot. Results are expressed as SFC/lxlO5 input cells +/- STDEV and the control was IFN release in response to stimulation with an irrelevant pepmix.
[00024] FIG. 8: CD3+ T cell expansion after addition of growth-promoting cytokines. Total T cell numbers were calculated based on total cell numbers evaluated by cell counting using trypan blue exclusion and the percentage of CD3+ T cells detected on day 9 after CTL initiation assessed by flow cytometric analysis. Results from 5 donors are shown (mean cell numbers +/- SEM).
[00025] FIG. 9: TCR avidity is comparable in Hexon DC plasmid-activated and pepmix- stimulated PBMCs. TCR avidity of Hexon-specific CTLs stimulated with plasmid nucleofected DCs or pepmix stimulated PBMCs was tested by serial dilution of Hexon pepmix or HLA-A1 restricted peptide TDL with IFN ELIspot as readout. Results are plotted as % of maximum SFC.
[00026] FIG. 10: Comparable expansion of CTLs stimulated with pooled vs. single pepmixes. Cell expansion of CTL generated from 2 donors was evaluated using trypan blue exclusion 9 days after PBMC stimulation. Results are expressed as mean cell numbers +/- STDEV.
[00027] FIG. 1 1 : Lack of alloreactivity in pepmix-stimulated PBMCs. The alloreactive potential of pepmix-activated CTL stimulatd either once (n=4) or twice (n=2) was tested by Cr51 release assay against a range of allogeneic HLA-mismatched PHA blasts as targets.
DETAILED DESCRIPTION OF THE INVENTION
I. Definitions
[00028] In keeping with long-standing patent law convention, the words "a" and "an" when used in the present specification in concert with the word comprising, including the claims, denote "one or more." Some embodiments of the invention may consist of or consist essentially of one or more elements, method steps, and/or methods of the invention. It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein.
[00029] The term "tumor antigen" as used herein refers to an antigenic substance produced/expressed on tumor cells and which triggers an immune response in the host.
[00030] The term "viral antigen" as used herein refers to an antigen that is protein in nature and is closely associated with the virus particle. In specific embodiments, a viral antigen is a coat proteins.
II. General Embodiments of the Invention
[00031] In certain aspects of the invention, the present invention concerns the development of CTLs that target one or more antigens from at least one virus or at least one tumor antigen, for example. In some cases, the CTLs target one or more antigens from two or more viruses or two or more tumors.
[00032] The present invention concerns methods for generating CTL lines with specificity against multiple tumor antigens or multiple viruses in at least general embodiments. In methods of producing CTLs the antigen is presented to PBMCs (for example) in the form of one or more peptides that span some or all of the antigen. The antigenic peptides may be provided to the PBMCs in a library of peptide mixtures, which may be referred to as pepmixes, and multiple libraries of pepmixes may be provided to the same collection of PBMCs. In some embodiments, the collection includes both immunodominant and subdominant antigens.
[00033] In some embodiments, the present invention is utilized in individuals after hematopoietic stem cell transplantation (HSCT) Severe and fatal viral infections remain common after HSCT. Adoptive transfer of cytotoxic T lymphocytes (CTLs) specific for EBV, CMV and Adenoviral antigens can treat infections that are impervious to conventional therapies, but broader implementation and extension to additional viruses are limited by competition between virus-derived antigens and time-consuming and laborious manufacturing procedures. The invention provides a system that rapidly generates a single preparation of polyclonal (CD4+ and CD8+) CTLs that is consistently specific for 15 immunodominant and subdominant antigens derived from 7 viruses (EBV, CMV, Adv, BK, HHV6, RSV and Influenza) that commonly cause post-transplant morbidity and mortality. CTLs can be rapidly produced (10 days) by a single stimulation of donor PBMCs with a peptide mixture spanning the target antigens in the presence of the potent pro-survival cytokines IL4 and IL7. This approach reduces the impact of antigenic competition with a consequent increase in the antigenic repertoire and frequency of virus-specific T cells. The present invention can be readily introduced into clinical practice and is a cost-effective alternative to common anti-viral prophylactic agents for allogeneic HSCT recipients.
III. Pathogens and Pathogenic Antigens
[00034] In some embodiments of the invention, the generated CTLs are provided to an individual that has or is at risk of having a pathogenic infection, including a viral, bacterial, or fungal infection. The individual may or may not have a deficient immune system. In some cases, the individual has a viral, bacterial, or fungal infection following organ or stem cell transplant (including hematopoietic stem cell transplantation), or has cancer or has been subjected to cancer treatment, for example. In some cases the individual has infection following an acquired immune system deficiency.
[00035] The infection in the individual may be of any kind, but in specific embodiments the infection is the result of one or more viruses. The pathogenic virus may be of any kind, but in specific embodiments it is from one of the following families: Adenoviridae, Picornaviridae, Herpesviridae, Hepadnaviridae, Flaviviridae, Retroviridae, Orthomyxoviridae, Paramyxoviridae, Papovaviridae, Polyomavirus, Rhabdoviridae, or Togaviridae. In some embodiments, the virus produces antigens that are immunodominant or subdominant or produces both kinds. In specific cases, the virus is selected from the group consisting of EBV, CMV, Adenovirus, BK virus, HHV6, RSV, Influenza, Parainfluenza, Bocavirus, Coronavirus, LCMV, Mumps, Measles, Metapneumo virus, Parvovirus B, Rotavirus, West Nile Virus, Spanish influenza, and a combination thereof.
[00036] In some aspects the infection is the result of a pathogenic bacteria, and the present invention is applicable to any type of pathogenic bacteria. Exemplary pathogenic bacteria include at least Mycobacterium tuberculosis, Mycobacterium leprae, Clostridium botulinum, Bacillus anthracis, Yersinia pestis, Rickettsia prowazekii, Streptococcus, Pseudomonas, Shigella, Campylobacter, and Salmonella. [00037] In some aspects the infection is the result of a pathogenic fungus, and the present invention is applicable to any type of pathogenic fungus. Exemplary pathogenic fungi include at least Candida, Aspergillus, Cryptococcus, Histoplasma, Pneumocystis, or Stachybotrys.
IV. Tumor Antigens
[00038] In embodiments wherein multiTAA-specific CTL are employed for the treatment and/or prevention of cancer, a variety of TAA may be targeted. Tumor antigens are substances produced in tumor cells that trigger an immune response in a host.
[00039] Exemplary tumor antigens include at least the following: carcinoembryonic antigen (CEA) for bowel cancers; CA-125 for ovarian cancer; MUC-1 or epithelial tumor antigen (ETA) or CA15-3 for breast cancer; tyrosinase or melanoma- associated antigen (MAGE) for malignant melanoma; and abnormal products of ras, p53 for a variety of types of tumors; alphafetoprotein for hepatoma, ovarian, or testicular cancer; beta subunit of hCG for men with testicular cancer; prostate specific antigen for prostate cancer; beta 2 microglobulin for multiple myelom and in some lymphomas; CA19-9 for colorectal, bile duct, and pancreatic cancer; chromogranin A for lung and prostate cancer; TA90 for melanoma, soft tissue sarcomas, and breast, colon, and lung cancer. Examples of tumor antigens are known in the art, for example in Cheever et al. , 2009, which is incorporated by reference herein in its entirety.
[00040] Specific examples of tumor antigens include at least CEA, MHC, CTLA-4, gplOO, mesothelin, PD-L1 , TRP1, CD40, EGFP, Her2, TCR alpha, trp2, TCR, MUC1 , cdr2, ras, 4- IBB, CT26, GITR, OX40, TGF-a. WT1 , MUC1, LMP2, HPV E6 E7, EGFRvIII, HER-2/neu, MAGE A3, p53 nonmutant, NY-ESO-1 , PSMA, GD2, Melan A/MART 1 , Ras mutant, gp 100, p53 mutant, Proteinase3 (PR1), bcr-abl, Tyrosinase, Survivin, PSA, hTERT, EphA2, PAP, ML- IAP, AFP, EpCAM, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, ALK, Androgen receptor, Cyclin Bl , Polysialic acid, MYCN, RhoC, TRP-2, GD3, Fucosyl GM1 , Mesothelin, PSCA, MAGE Al , sLe(a), CYP1B1 , PLAC1 , GM3, BORIS, Tn, GloboH, ETV6-AML, NY- BR-1, RGS5, SART3, STn, Carbonic anhydrase IX, PAX5, OY-TES1 , Sperm protein 17, LCK, HMWMAA, AKAP-4, SSX2, XAGE 1 , B7H3, Legumain, Tie 2, Page4, VEGFR2, MAD-CT-1 , FAP, PDGFR-β, MAD-CT-2, and Fos-related antigen 1 , for example.
V. Generation of Pepmix Libraries
[00041] In some embodiments of the invention, a library of peptides is provided to PBMCs ultimately to generate CTLs. The library in particular cases comprises a mixture of peptides ("pepmixes") that span part or all of the same antigen. Pepmixes utilized in the invention may be from commercially available peptide libraries made up of peptides that are 15 amino acids long and overlapping one another by 1 1 amino acids, in certain aspects. In some cases, they may be generated synthetically. Examples include those from JPT Technologies (Springfield, VA) or Miltenyi Biotec (Auburn, CA). In particular embodiments, the peptides are at least 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, or 35 or more amino acids in length, for example, and in specific embodiments there is overlap of at least 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, or 34 amino acids in length, for example. The mixture of different peptides may include any ratio of the different peptides, although in some embodiments each particular peptide is present at substantially the same numbers in the mixture as another particular peptide.
VI. Combination Therapy
[00042] In certain embodiments of the invention that concern CTLs generated against tumor antigens, methods of the present invention for clinical aspects are combined with other agents effective in the treatment of hyperproliferative disease, such as anti-cancer agents. An "anti-cancer" agent is capable of negatively affecting cancer in a subject, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer. More generally, these other compositions would be provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cancer cells with the expression construct and the agent(s) or multiple factor(s) at the same time. This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes the expression construct and the other includes the second agent(s).
[00043] Tumor cell resistance to chemotherapy and radiotherapy agents represents a major problem in clinical oncology. One goal of current cancer research is to find ways to improve the efficacy of chemo- and radiotherapy by combining it with gene therapy. For example, the herpes simplex-thymidine kinase (HS-tK) gene, when delivered to brain tumors by a retroviral vector system, successfully induced susceptibility to the antiviral agent ganciclovir51. In the context of the present invention, it is contemplated that cell therapy could be used similarly in conjunction with chemotherapeutic, radiotherapeutic, or immunotherapeutic intervention, in addition to other pro-apoptotic or cell cycle regulating agents.
[00044] Alternatively, the present inventive therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks. In embodiments where the other agent and present invention are applied separately to the individual, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and inventive therapy would still be able to exert an advantageously combined effect on the cell. In such instances, it is contemplated that one may contact the cell with both modalities within about 12-24 h of each other and, more preferably, within about 6-12 h of each other. In some situations, it may be desirable to extend the time period for treatment significantly, however, where several d (2, 3, 4, 5, 6 or 7) to several wk (1 , 2, 3, 4, 5, 6, 7 or 8) lapse between the respective administrations.
[00045] Various combinations may be employed, present invention is "A" and the secondary agent, such as radio- or chemotherapy, is "B":
[00046] A/B/A B/A/B B/B/A A/A/B A/B/B B/A/A A/B/B/B B/A/B/B
[00047] B/B/B/A B/B/A/B A/A/B/B A/B/A/B A/B/B/A B/B/A/A
[00048] B/A/B/A B/A/A/B A/A/A/B B/A/A/A A/B/A/A A/A/B/A
[00049] It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various standard therapies, as well as surgical intervention, may be applied in combination with the inventive cell therapy.
A. Chemotherapy
[00050] Cancer therapies also include a variety of combination therapies with both chemical and radiation based treatments. Combination chemotherapies include, for example, abraxane, altretamine, docetaxel, herceptin, methotrexate, novantrone, zoladex, cisplatin (CDDP), carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, busulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP 16), tamoxifen, raloxifene, estrogen receptor binding agents, taxol, gemcitabien, navelbine, farnesyl-protein tansferase inhibitors, transplatinum, 5-fluorouracil, vincristin, vinblastin and methotrexate, or any analog or derivative variant of the foregoing.
B. Radiotherapy
[00051] Other factors that cause DNA damage and have been used extensively include what are commonly known as γ-rays, X-rays, and/or the directed delivery of radioisotopes to tumor cells. Other forms of DNA damaging factors are also contemplated such as microwaves and UV-irradiation. It is most likely that all of these factors effect a broad range of damage on DNA, on the precursors of DNA, on the replication and repair of DNA, and on the assembly and maintenance of chromosomes. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 wk), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.
[00052] The terms "contacted" and "exposed," when applied to a cell, are used herein to describe the process by which a therapeutic construct and a chemotherapeutic or radiotherapeutic agent are delivered to a target cell or are placed in direct juxtaposition with the target cell. To achieve cell killing or stasis, both agents are delivered to a cell in a combined amount effective to kill the cell or prevent it from dividing.
C. Immunotherapy
[00053] Immunotherapeutics, generally, rely on the use of immune effector cells and molecules to target and destroy cancer cells. The immune effector may be, for example, an antibody specific for some marker on the surface of a tumor cell. The antibody alone may serve as an effector of therapy or it may recruit other cells to actually effect cell killing. The antibody also may be conjugated to a drug or toxin (chemotherapeutic, radionuclide, ricin A chain, cholera toxin, pertussis toxin, etc.) and serve merely as a targeting agent. Alternatively, the effector may be a lymphocyte carrying a surface molecule that interacts, either directly or indirectly, with a tumor cell target. Various effector cells include cytotoxic T cells and NK cells. [00054] Immunotherapy, thus, could be used as part of a combined therapy, in conjunction with the present cell therapy. The general approach for combined therapy is discussed below. Generally, the tumor cell must bear some marker that is amenable to targeting, i.e. , is not present on the majority of other cells. Many tumor markers exist and any of these may be suitable for targeting in the context of the present invention. Common tumor markers include carcinoembryonic antigen, prostate specific antigen, urinary tumor associated antigen, fetal antigen, tyrosinase (p97), gp68, TAG-72, HMFG, Sialyl Lewis Antigen, MucA, MucB, PLAP, estrogen receptor, laminin receptor, erb B and pi 55.
D. Genes
[00055] In yet another embodiment, the secondary treatment is a gene therapy in which a therapeutic polynucleotide is administered before, after, or at the same time as the present invention clinical embodiments. A variety of expression products are encompassed within the invention, including inducers of cellular proliferation, inhibitors of cellular proliferation, or regulators of programmed cell death.
E. Surgery
[00056] Approximately 60% of persons with cancer will undergo surgery of some type, which includes preventative, diagnostic or staging, curative and palliative surgery. Curative surgery is a cancer treatment that may be used in conjunction with other therapies, such as the treatment of the present invention, chemotherapy, radiotherapy, hormonal therapy, gene therapy, immunotherapy and/or alternative therapies.
[00057] Curative surgery includes resection in which all or part of cancerous tissue is physically removed, excised, and/or destroyed. Tumor resection refers to physical removal of at least part of a tumor. In addition to tumor resection, treatment by surgery includes laser surgery, cryosurgery, electrosurgery, and miscopically controlled surgery (Mohs' surgery). It is further contemplated that the present invention may be used in conjunction with removal of superficial cancers, precancers, or incidental amounts of normal tissue.
[00058] Upon excision of part of all of cancerous cells, tissue, or tumor, a cavity may be formed in the body. Treatment may be accomplished by perfusion, direct injection or local application of the area with an additional anti-cancer therapy. Such treatment may be repeated, for example, every 1 , 2, 3, 4, 5, 6, or 7 days, or every 1, 2, 3, 4, and 5 weeks or every 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , or 12 months. These treatments may be of varying dosages as well.
F. Other agents
[00059] It is contemplated that other agents may be used in combination with the present invention to improve the therapeutic efficacy of treatment. These additional agents include immunomodulatory agents, agents that affect the upregulation of cell surface receptors and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adhesion, or agents that increase the sensitivity of the hyperproliferative cells to apoptotic inducers. Immunomodulatory agents include tumor necrosis factor; interferon alpha, beta, and gamma; IL-2 and other cytokines; F42K and other cytokine analogs; or MIP-1, MIP-lbeta, MCP-1, RANTES, and other chemokines. It is further contemplated that the upregulation of cell surface receptors or their ligands such as Fas / Fas ligand, DR4 or DR5 / TRAIL would potentiate the apoptotic inducing abililties of the present invention by establishment of an autocrine or paracrine effect on hyperproliferative cells. Increases intercellular signaling by elevating the number of GAP junctions would increase the anti -hyperproliferative effects on the neighboring hyperproliferative cell population. In other embodiments, cytostatic or differentiation agents can be used in combination with the present invention to improve the anti-hyerproliferative efficacy of the treatments. Inhibitors of cell adhesion are contemplated to improve the efficacy of the present invention. Examples of cell adhesion inhibitors are focal adhesion kinase (FAKs) inhibitors and Lovastatin. It is further contemplated that other agents that increase the sensitivity of a hyperproliferative cell to apoptosis, such as the antibody c225, could be used in combination with the present invention to improve the treatment efficacy.
[00060] Hormonal therapy may also be used in conjunction with the present invention or in combination with any other cancer therapy previously described. The use of hormones may be employed in the treatment of certain cancers such as breast, prostate, ovarian, or cervical cancer to lower the level or block the effects of certain hormones such as testosterone or estrogen. This treatment is often used in combination with at least one other cancer therapy as a treatment option or to reduce the risk of metastases.
[00061] DNA methyltransferase inhibitors and/or histone deacetylase inhibitors. Exemplary DNA methyltransferase inhibitors include, for example, 5-azacytidine, 5-aza-2'- deoxycytidine, l-beta-D-arabinofuranosyl-5-azacytosine and dihydro-5-azacytidine. Exemplary HDAC inhibitors include hydroxamic acids, such as trichostatin A; cyclic tetrapeptides (such as trapoxin B), and the depsipeptides; benzamides; electrophilic ketones; and the aliphatic acid compounds such as phenylbutyrate and valproic acid.
VII. Kits of the Invention
[00062] Any of the compositions described herein may be comprised in a kit. In a non- limiting example, a library of pepmixes may be comprised in a kit, any type of cells may be provided in the kit, and/or reagents for manipulation of pepmixes and/or cells may be provided in the kit. The components are provided in suitable container means.
[00063] The kits may comprise a suitably aliquoted compositions of the present invention. The components of the kits may be packaged either in aqueous media or in lyophilized form. The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which a component may be placed, and preferably, suitably aliquoted. Where there are more than one component in the kit, the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial. The kits of the present invention also will typically include a means for containing the components in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.
[00064] However, the components of the kit may be provided as dried powder(s). When reagents and/or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means.
EXAMPLES
[00065] The following examples are presented in order to more fully illustrate the preferred embodiments of the invention. They should in no way, however, be construed as limiting the broad scope of the invention. EXAMPLE 1
IL2, IL15 AND IL4+7 PROMOTE THE EXPANSION OF PEPTIDE-ACTIVATED T
CELLS IN VITRO
[00066] To increase the range of viral antigens that could be recognized by a single CTL line and to mitigate the impact of antigenic competition in order to retain both high and low frequency T cells, the inventors stimulated PBMCs in the presence of different Thl , pro- proliferative and pro-survival cytokines. The inventors then compared the frequency and repertoire of responding cells to those generated by conventional activation in the absence of cytokines. In exploratory experiments PBMCs were simulated with a pepmix (peptide library of overlapping 15mers) spanning the immunodominant CMV-pp65 antigen, then expanded without cytokines, or with media supplemented with (i) IL15 (5ng/ml), (ii) IL2 (20U/ml), or (iii) IL4 (1666U/ml) + IL7 (l Ong/ml). After 9-12 days the inventors assessed cell expansion, phenotype, specificity and function.
[00067] Cultures supplemented with IL15 or IL4+7 showed the greatest overall expansion (5±0.6 and 3.7±0.5 fold increase, respectively) over 9 days (n=5). Cultures that were stimulated in the absence of cytokines did not expand (0.6±0.04), while the IL2 condition was intermediate (2.7±0.1) (FIG. 1A). To determine whether the superior cell numbers were a consequence of improved T cell proliferation, enhanced survival, or the combination, cells were labeled with CFSE on day 0 and then analyzed every 2-3 days to measure cell doubling, while live and apoptotic/necrotic cells were distinguished by Annexin-PI staining (not shown). Flow cytometric analysis demonstrated no difference in the number of cell divisions from day 0-5. However, from day 5 onward cells cultured in cytokines continued to divide, whereas in their absence, cell division was reduced and viability was consistently lower (FIG. IB). These data indicate that the improved survival of proliferating cells made the primary contribution to the observed increase in cell numbers in cytokine-supplemented cultures.
EXAMPLE 2
IL4+7 SUPPORT THE SELECTIVE EXPANSION OF POLYCLONAL, TH1-
POLARIZED T CELLS
[00068] Optimal in vivo T cell persistence and activity requires both helper (CD4+) and cytotoxic (CD8+) T cells 23. The inventors therefore used phenotypic analyses to determine that the cells in the cytokine-supplemented cultures reflected the selective expansion of polyclonal T cells. The inventors found the lowest frequency of CD3+ T cells in cultures supplemented with IL2 or IL15 (72.8±2.1% and 61.3±3.7%, respectively), which instead contained significantly higher numbers of CD56+ NK cells than other conditions (27.1±2.3% and 37.7±3.7%, respectively) (n=5). By contrast, IL4+7 cultures were comprised almost entirely of CD3+ T cells (92.6±0.4%), with both CD8+ T cells and significantly more CD4+ T cells (61 ±2.7%) than the other cytokine-supplemented conditions (IL2 26±4%, IL15 17.6±4.3%, p=0.024, p=0.004, respectively) (FIG. 1C). To confirm that both CD8+ and CD4+ T cells were antigen-specific and produced effector cytokines the inventors performed intracellular cytokine staining (ICS) for IFN. FIG. ID shows representative results from 1 donor, while FIG. IE shows summary results for 3 donors. The data confirm that IL4+7-supplemented cultures contained antigen-specific IFN-producing T cells in both compartments (CD4+ 39.3%±16.4%, CD8+ 22.2%±2.2%), at levels substantially higher than in other conditions (no cytokine: CD4+ 2.3%±3.9%, CD8+ 0.8%±0.5%; IL15: CD4+ 1.7%±1.4%, CD8+ 13.9%±2.8% and IL2: CD4+ 2.2%±3.1%, CD8+ 12.6%±2.6%, n=3). Similar results were obtained using pepmixes from subdominant Adv (Penton) and EBV (LMP2) viral antigens; indeed outgrowth of NK cells was even more evident in the IL2 and IL15-supplemented conditions (FIG. 7).
[00069] IL4 is a prototypic Th2 cytokine, therefore to more comprehensively evaluate the cytokine profile of the induced CTLs the supernatant of antigen-activated T cells was assessed using luminex array. Figure IF shows that, in addition to IFNy, the IL4+7-supplemented lines produced the prototypic Thl cytokines GM-CSF, IL-2 and TNFa, at levels similar to that of IL2- induced CTLs. In addition, levels of Th2 cytokines (IL5 and IL13) were not substantially different and there was no evidence of regulatory T cell outgrowth, as assessed by CD4/CD25/FoxP3+ staining (FIG. 1G). Thus, IL4, in combination with IL7, induces selective expansion of polyclonal, Thl -polarized T cells that produce multiple effector cytokines upon stimulation (FIG. 8). EXAMPLE 3
OVERLAPPING 15MER PEPTIDE LIBRARIES ACTIVATE T CELLS WITH SIMILAR SPECIFICITY AND AVIDITY TO THOSE GENERATED USING ENDOGENOUSLY-PROCESSED FULL LENGTH ANTIGEN.
[00070] To address concerns that pepmixes might reactivate low avidity T cells unable to recognize antigens that are naturally processed and presented by virus-infected cells, the inventors compared pp65 pepmix-activated CTLs with those generated using DCs nucleofected with a DNA plasmid encoding the same antigen 20'21. After activation, each set of cells was expanded in IL4+7. Expansion was similar between the groups, with 107±23.4xl 06 cells generated using pepmix-pulsed PBMCs (7.2 fold expansion) versus 130.3±46.9xl06 cells in the DC-stimulated cultures (8.7 fold expansion) (FIG. 2A) (n=3). Phenotypic analysis demonstrated that the pepmix-activated CTLs were predominantly CD4+ (74.3±19.3%), with a minor CD8+ component (22.8±19.2%), as were the plasmid-activated CTLs (CD4+ 70.6±14.2% and CD8+ 26.5±13.4%) and both expressed similar levels of the memory and activation markers CD62L, CD28 and CD45RO (61±46.7%, 86.5±3.5%, 92±7.1% pepmix vs. 77±28.3%, 85.5±0.7%, 87.5±13.4% plasmid) (FIG. 2B). The inventors next compared the breadth of epitopes recognized by measuring responses to 1 10 20mer peptides (overlapping by 15aa) spanning CMV-pp65 and arranged into 22 pools such that each peptide was represented in 2 pools 24. FIG. 2C shows that both the recognition of a given peptide and the magnitude of the response thereto was little changed by the antigen source. Finally, the inventors compared functional avidity by IFNy ELIspot using log dilutions of the pp65 pepmix or epitope peptides (A2-NLV and A24- QAD) as a stimulus. As shown in FIG. 2D, there was no significant difference in the avidity of the CTLs. This data was confirmed for other viral antigens using Adv-Hexon pepmix and viral antigen-encoding plasmid as a stimulus (FIG. 9).
EXAMPLE 4
15MER PEPTIDES ACTIVATE CD4+ AND CD8+ T CELLS AS EFFICIENTLY AS
LONG (20MER OR 30MER) PEPTIDES
[00071] Since CD4+ epitopes (>20aa) may be longer that CD8 epitopes (8-10aa) the inventors next determined whether longer peptides would induce higher frequencies of antigen- specific CD4+ T cells. The inventors obtained three overlapping peptide libraries (#1 - 15mers overlapping by 1 1 , #2 - 20mers overlapping by 15, and #3 - 30mers overlapping by 15) spanning the C terminus (aa539-953) of Adv-Hexon; a region rich in both CD4+ and CD8+ epitopes 25'26 (FIG. 3A). The inventors directly stimulated PBMCs with each of the libraries and evaluated the phenotype, epitope specificity and breadth of the lines.
[00072] Phenotypically the lines were comparable, with a predominance of CD4+ cells (mean 56±5.5% vs. 59±5.8% vs. 60±6%) and a minor CD8+ component (mean 21±0.2% vs. 20±0.1% vs. 16±0.2%), and similar levels of the memory and activation markers CD62L, CD28 and CD45RO (CD62L - 60±1.9% vs. 57±1.9% vs. 51+/-1.6%, CD28 - 88±0.6% vs. 84±2.1 %, vs. 89±0.6% and CD45RO - 58±1.7% vs. 60±1.6% vs. 60±1.2%) (15mer vs. 20mer vs. 30mer) (n=6). To learn whether the spectrum of epitopes recognized differed based on the stimulating library; the inventors rechallenged the induced CTLs with subpools of peptides from each library and found no consistent or statistically significant differences in the breadth of peptides recognized. Results for the 15mer minipool rechallenge are shown in FIG. 3C. Since 15mer pepmixes are readily available as both research and clinical products the inventors performed all subsequent experiments with this antigen source.
EXAMPLE 5
GENERATION OF A SINGLE T CELL CULTURE WITH SIMULTANEOUS SPECIFICITY FOR ADV, EBV AND CMV
[00073] After successfully generating CTLs using peptides derived from a single viral antigen and culture in IL4+7, the inventors next prepared a single culture of CTLs simultaneously recognizing CMV, EBV, and Adv. For each virus the inventors targeted immunogenic antigens; CMV - IE1 and pp65, Adv - Hexon and Penton, and EBV - EBNA1 , LMP2 and BZLF1 8·9>17>, 8>27-31 and pulsed PBMCs with the relevant pepmixes before culture in IL4+7. After 9-12 days the inventors compared the antiviral reactivity of the resulting CTLs with those generated using our current clinical trivirus CTL protocol which uses DCs nucleofected with plasmids encoding the same antigens as a stimulus 20'21 (FIG. 4). IFNy ELIspot confirmed that pepmix-generated CTLs from 4 donors had antiviral activity against all three viruses and seven stimulating antigens. The frequency of T cells reactive against EBV (EBNA1 , LMP2, BZLF1) and CMV (IE1, pp65) was comparable irrespective of the stimulus. In contrast, all 4 donors had significantly more Adv-reactive T cells (Hexon and Penton) in pepmix-stimulated cultures [Hexon - median 462.3, range 373-572.5 vs. median 1 12, range 53-421.5 SFC/2xl05 CTL; p=0.01, Penton - median 317, range 105.5-345 vs. median 51.25, range 4-134 SFC/2xl05 CTL, p=0.02, pepmix vs. plasmid, respectively].
EXAMPLE 6
EXTENSION TO ADDITIONAL VIRUSES
[00074] To determine whether the direct pepmix stimulation approach could be extended to generate multivirus-specific CTL lines targeting a broader spectrum of different clinically relevant viruses the inventors stimulated PBMCs with pepmixes spanning 2 or 3 T cell immunogenic antigens from CMV, Adv, EBV, BK, Influenza, RSV and HHV6 (Table 1).
Table 1 : Exemplary Antigens from Exemplary Viruses
Figure imgf000023_0001
[00075] To determine whether antigenic competition would preclude pooling the inventors segregated the pepmixes and stimulated PBMCs with minipools containing pepmixes from, A) each virus; B) immunodominant (CMV, RSV, Flu, HHV6) and sub-dominant (Adv, EBV, BK) viruses; C) lytic (Adv, RSV, Flu) and latent (EBV, CMV, HHV6, BK) viruses, or D) a mastermix of all pepmixes (FIG. 5A). There was no difference in either the rate of expansion (FIG. 10), the overall specificity or magnitude of the response directed against each antigen, irrespective of the composition of the stimulating pepmix pool (FIG. 5B). Thus, all further studies used the mastermix (condition D). FIG. 5C shows 8 additional CTL lines with consistent multivirus specificity. The highest responses were seen against CMV-pp65 and Adv-Hexon (951.6±82.1 and 461.4±19.2 SFC/lxlO5 CTL) while activity against HHV6-U90, EBV-BZLF1 and EBV-LMP2 was weakest (26.9±4.2, 35.6±5, 39.6±2.6 SFC/lxlO5 CTL). Adv-Penton, Influenza-MPl and RSV-F demonstrated intermediate response rates (191±13.7, 1 17.6±8.6, 90.1±10.3 SFC/lxlO5 CTL, respectively) (FIG. 5C). The lines were polyclonal and polyfunctional with activity against the stimulating viruses detectable in both CD4+ and CD8+ fractions (FIG. 5D), and reactive cells produced both IFNy and TNFa superior in vivo activity32'33. FIG. 5E shows the results for one representative donor in whom 63% of all Adv, 55% of CMV, 40% of EBV, 46% of RSV, 36% of Influenza and 28% of HHV6-specific CTLs produced both IFNy and TNFa after antigenic stimulation. ICS for IFNy and/or TNFa showed that 67.7±13.3% of all T cells in multivirus cultures were antigen-specific. This percentage is likely an underestimate since some virus-specific CTLs do not produce cytokines or produce effector cytokines other than IFNy and TNFa 33. Finally, even though these CTLs had received only a single stimulation there was no evidence of alloreactivity, assessed by Cr51 release assay using HLA -mismatched PHA blasts as targets (FIG. 10), an important consideration if these cells are to be used for the treatment of allogeneic HSCT recipients.
EXAMPLE 7
MULTIVIRUS-SPECIFIC CTL CAN BE EXPANDED IN VITRO
[00076] To discover whether multivirus-specific CTLs could be further expanded to provide numbers suited for third party or "off-the-shelf use, the inventors restimulated the cells with autologous PHA blasts pulsed with the same mastermix of pepmixes. Secondary expansion of a mean of 8.4±2 fold was obtained over 7 days, to a final cell number of 604.6± 23.7x106 (FIG. 6A). FIG. 6B shows that the expanded CTLs remained polyclonal, with activity detected in both CD4+ and CD8+ compartments. Expansion was associated with an overall increase in the magnitude of the response directed against all of the stimulating antigens on day 16 relative to day 9 (FIG. 6C) so that >80% of cells in the restimulated cultures produced IFNy and/or TNFa Similarly, these expanded cultures had greater cytolytic activity, ranging from >60% (CMV) to 14% (BK), demonstrating retained specificity for both sub-dominant and immunodominant antigens/viruses without alloreactivity (FIG. 1 1). EXAMPLE 8
SIGNIFICANCE OF CERTAIN EMBODIMENTS OF THE INVENTION
[00077] The inventors have shown that in at least some embodiments they can rapidly generate polyclonal, CD4+ and CD8+ T cells with specificities directed to a wide range of lytic and latent viruses responsible for infection in the immunocompromised host and after HSCT. These cells were Thl -polarized, had high avidity for a multiplicity of individual viral antigens, produced multiple effector cytokines upon stimulation, and killed virus-infected targets without alloreactivity. Because the inventors generated these T cells using combinations of clinically- available peptide-libraries and pro-survival cytokines, our approach should be well suited to clinical application.
[00078] While CMV, EBV and Adv are the most frequently detected viral infections following allogeneic HSCT, recipients are also susceptible to numerous other viruses, including BK, JC, HHV6, HHV7, influenza, parainfluenza, coronavirus, and RSV, all of which may cause severe morbidity and mortality l'2. Several of these viruses are only seasonally detected (e.g. influenza, RSV) while others, such as HHV7, JC, and coronavirus, are infrequent, so that it is impracticable to cover all these pathogens post-transplant by generating individualized patient and single virus-specific T cell products. Hence, the inventors sought to develop a strategy that would enable the production of a single CTL line with simultaneous specificity for a multiplicity of antigens.
[00079] In the current clinical trials of virus-specific T cells, the inventors have used EBV-LCL, adenovectors and/or viral antigen-encoding DNA plasmids to generate virus-directed T cells " ' ' . The use of full-length antigen ensures that CTL can be generated from all donors, irrespective of HLA, and that the antigen is physiologically processed by APCs and produces CTLs that recognize multiple CD4+ and CD8+ T cell epitopes and have sufficient avidity to kill virus-infected targets. The induction of lines that recognize multiple epitopes also minimizes virus escape due to epitope loss and produces potent and sustained anti-viral activity in vivo 34. However, the requirements for live virus/vectors are barriers to broader and late phase clinical studies, and also limit the number of pathogens to which a single T cell line can be directed 8 ' 9. The inventors therefore evaluated whether clinically applicable pepmixes could be used as an alternative. Though clinical studies using minimal epitope peptides as vaccines have resulted in immune tolerance or the activation of low avidity T cells 35, Melief and colleagues recently demonstrated improved results with long (22-45aa) peptides containing both CD4+ and CD8+ epitope sequences 36. They observed that these long peptides were processed endogenously, presented to T cells by APCs, and induced both helper and cytotoxic T cells, resulting in robust and effective CTL responses 36. Based on these data, the inventors chose to use a whole antigen source in the form of overlapping peptide libraries, but for optimal induction of polyclonal CTL the inventors compared peptides of different lengths (15mers, 20mers and 30mers) for stimulation. However, the inventors saw no difference in the phenotype, specificity or epitope breadth of our lines, highlighting the differences between delivering peptides as a vaccine, where one relies on endogenous APCs to take up and process antigen versus in vitro T cell activation using professional APCs within PBMCs at optimal effector: target ratios . Given the ready clinical availability of pepmixes containing 15mer peptides that cover all possible CD8+ and the majority of CD4+ epitopes, the inventors substituted this antigen source and were able to demonstrate equivalency to "conventionally generated" CTLs with respect to both epitope specificity and avidity 20,21.
[00080] The inventors next addressed how best to extend the breadth of antigen/epitope specificities that could be accommodated within a single CTL line. Physiologically, T cells are activated when they receive signals from TCR stimulation (signal 1), co-stimulation (signal 2), and cytokines (signal 3). The "conventional CTLs" are activated in the absence of exogenous cytokines, a deficit that appears to adversely affect their proliferative capacity in vitro and also increases their susceptibility to activation induced cell death (AICD), likely resulting in a more restricted repertoire of epitope recognition. Consistent with this possibility, both the frequency and breadth of cells with viral specificity could be increased by supplementing cultures with inflammatory and pro-survival cytokines at initiation. The inventors chose to test cytokines that support cell proliferation in vitro and in vivo (IL2, IL15) Je" , as well as combinations (IL4+7) that also support the retention of a central memory phenotype, and promote the survival of activated T cells by upregulation of anti-apoptotic molecules e.g. Bcl-2 40"43. Only lines supplemented with IL4+7 selectively promoted the expansion and survival of both CD4+ and CD8+ virus-specific T cells: of note, the induced cells were Thl -polarized despite exposure to IL4, a prototypic Th2 cytokine. Given the clinical availability of both cytokines and their safety in human clinical trials 44'45, IL4+7 fulfilled the requirements of the current study, however other pro-inflammatory cytokines capable of mimicking the milieu present during viral infection may produce similar benefits. For example, von Rossum and colleagues recently reported that CD3/28-activated CD8+ T cells cultured in an inflammatory cocktail consisting of IL1 +IL6+IL23 underwent significantly less cell death after activation as compared with cells activated in any of the cytokines alone or activated in the presence of IL12 46.
[00081] The direct stimulation of PBMCs with pepmixes and culture in cytokine- supplemented conditions also allowed us to overcome a second major barrier to increasing the spectrum of viruses targeted in a single CTL line, namely antigenic competition resulting from the use of a common APC to simultaneously present multiple antigenic components from different viruses 8'9. Antigenic competition results both from limited access of peptides to HLA molecules and physical constraints on the simultaneous stimulation of both high and low frequency T cells 13'14. To overcome these issues, investigators have used artificial APCs (AAPCs) that are engineered with molecules to provide the necessary TCR and co-stimulatory events required for immune synapse formation 47. However, to avoid the inevitable complexities and costs of introducing a gene-modified cellular product into the manufacturing process, the inventors evaluated whether patient PBMCs themselves could act as both a source of antigen presenting and responding cells. B cells, monocytes and macrophages may all have the capacity to present antigen to T cells and these APCs can utilize endo- and exopeptidases to liberate class I or class II epitopes from 15mer peptides 48'49. By taking advantage of these properties, the inventors can avoid reliance on a single APC endogenously expressing multiple antigens at different levels as a shared T cell stimulator, and instead have a diverse group of APCs in which each cell has the potential to display a diverse repertoire of peptides, allowing sufficient access for both high and low frequency T cells. Thus, antigenic competition both within the APC and between T cells could be alleviated. As proof of principle, the inventors generated a single culture of T cells with reactivity for 15 antigens derived from 7 latent and lytic viruses (EBV, CMV, BK, HHV6, Adv, Flu, and RSV) using pooled pepmixes as a stimulus and saw no evidence of competition. Additional pathogens can be included in this platform, although in some embodiments ultimately APC numbers can eventually become limiting; thus additions must be performed in a stepwise manner and one must evaluate changes in the frequency and breadth of T cell recognition of all peptides in the mix.
[00082] Critically for clinical feasibility, the approach was able to produce large numbers of virus-specific T cells. By seeding just 1.5xl07 PBMCs in the G-Rex and a single in vitro stimulation the inventors could regularly manufacture lxl 08 CTLs within 10 days, with a > 10- fold enrichment in virus-specific cells and a corresponding reduction in alloreactive T cells to levels observed in repetitively stimulated conventional CTLs, which have a proven safety record in vivo 7"9,50. Thus, using our new manufacturing technology the inventors predict that multivirus-specific CTL will be safe for infusion after a single exposure to pepmixes and will provide broad spectrum anti-viral protection without GvHD. Should additional cells be required, for example if banked virus-specific CTLs are established for 3rd party recipients, a second stimulation using pepmix-pulsed PHA blasts can expand the total number of CTLs without impairing their epitope specificity or breadth.
EXAMPLE 8
EXEMPLARY MATERIALS AND METHODS
A. Donors and Cell Lines
[00083] PBMCs were obtained from healthy volunteers with informed consent using a Baylor College of Medicine IRB-approved protocol. PBMCs were used to generate DCs, CTL lines and PHA blasts. PHA blasts were generated from PBMC (2xl 06/ml) using PHA ^g/ml) and maintained in CTL media (RPMI 1640, 45% Click's (Irvine Scientific, Santa Ana, CA), 2mM GlutaMAX TM-I, and 5% Human AB Serum) supplemented with IL2 (l OOU/ml, NIH, Bethesda, VA), which was replenished every 3 days.
B. CTL generation - Peptide stimulation i. Peptides/pepmixes
[00084] For PBMC stimulation the inventors used commercially available pepmixes (15mers overlapping by l laa spanning EBV-LMP2, BZLF1 , EBNA1 ; Adv-Penton, Hexon; CMV-pp65, IE-1 ; BKV-VPl , large T; Influenza A-MPl (H3N2), NP (H3N2); RSV-F, N, JPT Technology, Berlin, Germany. Pepmixes spanning HHV6 U14 and U90 were synthesized by Genemed Synthesis Inc., San Antonio, Texas USA. Peptide libraries spanning the 414aa C- terminus of Adv-Hexon were synthesized by Proimmune, Oxford, UK or Alta Bioscience, University of Birmingham, Edgbaston, Birmingham, UK. Lyophilized peptides were reconstituted at 5mg/ml in DMSO. ii. PBMC stimulation
[00085] 15xl06 fresh/frozen PBMCs were pelleted in a 15ml tube and pulsed for 30-
60min at 37°C with peptide libraries/pepmixes, either singly or pooled, at a concentration of 100ng/peptide/15xl06 PBMCs. After incubation cells were resuspended in CTL media alone or supplemented with cytokines (as outlined below) and transferred to a G-RexlO (Wilson Wolf Manufacturing Corporation, New Brighton, MN) (15xl 06/G-Rexl0) or plated out in a 24-well plate (2xl06/well). Media and cytokines were replenished on day 5, and cultures were split when they reached a density >50 l06/G-Rexl0 or >3xl06 cell/24-well. On day 9-12, CTLs were harvested, counted and used for phenotypic and functional studies. iii. Cytokines for promoting CTL activation and expansion
[00086] The inventors compared 4 conditions; (i) no cytokine, (ii) IL7 (l Ong/ml) + IL4 (1666U/ml), (iii) IL15 (5ng/ml) (R&D Systems, Minneapolis, MN) and (iv) IL2 (20U/ml). Cytokines were added to CTLs at day 0 and replenished on day 5. In some embodiments, 400U of IL4 is employed. iv. CTL expansion
[00087] For expansion CTLs were restimulated at a S:R ratio of 1 : 1 with irradiated (30Gy) pepmix-pulsed autologous PHA blasts in CTL media with IL4+7 and IL15 (5ng/ml) on the day of restimulation and fed with IL15 twice weekly. Seven days later CTLs were harvested, and used for further studies.
C. Flow Cytometry i. Inimunophenotyping
[00088] CTLs were surface-stained with monoclonal antibodies to: CD3, CD4, CD8, CD 16, CD56, CD28, CD45RO, and CD62L (Becton Dickinson BD, Franklin Lakes, NJ). Cells were washed once with phosphate-buffered saline (PBS) (Sigma, St Louis, MO) containing 2% FBS (HyClone, Thermo Fisher Scientific Inc, NH), pelleted, and antibodies added in saturating amounts (ΙΟμΙ). After 15min at 4°C in the dark, cells were washed twice and analyzed. Approximately 20,000 live cells were acquired using a FACSCalibur equipped with Cell Quest software ii. CFSE
[00089] To measure cell proliferation PBMCs were isolated, pelleted and pulsed with pp65 pepmix (100ng/15xl06 PBMC) for 30-60 min. Next PBMCs were washed twice using PBS+0.1% FBS and incubated for lOmin with 1501/20xl06 PBMC ΙΟμΜ CSFE. Subsequently FBS was added at a 1 : 1 ratio and incubated for lOmin at 37C°. After CFSE labeling PBMCs were washed twice using PBS+2% FBS and plated at a concentration of lxl06/ml in CTL media with cytokines. Dilution of CFSE was examined every 2-3 days by flow after surface staining with CD3, CD4, CD8 and CD56. iii. FoxP3 staining
[00090] To measure regulatory T cells Foxp3 staining was performed using the e- Bioscience FoxP3 staining kit. Briefly, CTLs were rested in CTL media for 48h, then lxlO6 CTLs were resuspended in PBS+2% FBS and surface stained for CD3, CD25 and CD4. After washing the cells were resuspended in 1ml Fixation/Permeabilizastion solution and incubated for lh at 4°C, then washed, resuspended in permeabilization buffer and incubated with 0.2μ1 isotype or ΙΟμΙ FoxP3 antibody (Clone PCH101) for 30min at 4°C. After a final wash cells were acquired using a FACSCalibur equipped with Cell Quest software. iv. Intracellular cytokine staining
[00091] CTLs were harvested, resuspended at a concentration of 5xl06/ml in CTL media and plated at 200μ1Λνε11 in a 96well plate. The cells were then stimulated with lOOng of test or control pepmix in the presence of Brefeldin A (^g/ml), (BD) CD28 and CD49d (^g/ml) for 5- 7 hours. Subsequently, CTLs were washed with PBS+2% FBS, pelleted, and surface stained with CD8, CD4 and CD3 (ΙΟμΙ/antibody/tube). After 15mins, cells were washed twice, pelleted, fixed and permeabilized with Cytofix/Cytoperm solution (BD) for 20mins at 4°C in the dark. After washing twice with PBS/2%FBS containing 0.1% saponin (Calbiochem, EMD Chemicals, NJ) cells were incubated with 20μ1 IFNy and/or TNFa antibodies (BD) for 30min at 4°C in the dark. Cells were then washed twice with cold PBS/2%FBS containing 0.1% saponin and at least 200,000 live cells from each population were analyzed with a FACSCalibur equipped with Cell Quest software (BD).
D. Functional studies i. Multiplex Assay
[00092] To assess cytokine production the inventors used a multiplex assays. 1x105 pp65- CTLs were restimulated using 500ng/ml pp65 or control pepmix. After 16hrs supernatant was collected and the cytokine profile assessed using the MILLIPLEX High Sensitivity Human Cytokine Magnetic Bead Panel (Millipore, Billerica, MA). Specifically, 50 μΐ supernatant was incubated overnight at 4°C with cytokine antibody beads. After incubation, samples were washed and incubated for lhr at room temperature (RT) with the biotinylated detection antibody. Finally Streptavidin-Phycoerythrin was added for 30min at RT, then samples were washed and analyzed using the Luminex 200 instrument. Samples were run in duplicate. ii. Enzyme-linked Immunospot Assay
[00093] The inventors used ELISpot to quantify IFNy-producing T cells and assess the breadth of reactivity in the CTL lines. The populations were serially diluted from 4-1 xlO5 cells/well, and antigen-specific activity measured after direct pepmix or peptide mini-pool stimulation. Each condition was run in triplicate. After 20 hours, plates were developed as previously described 22 , dried overnight at RT, then sent to Zellnet Consulting, New York, NY for quantification. SFC and input cell numbers were plotted, and a linear regression calculated after excluding plateau data points. iii. TCR avidity assessment
[00094] TCR avidity was assessed by IFN ELIspot. 2xl05 CTLs were stimulated with serial dilutions of pepmixes (pp65, Hexon) or 9mer peptides (NLV-pp65: NLVPMVATV HLA- A2 restricted, QYD-pp65: QYDPVAALF HLA-A24 restricted; TDL-Hexon: TDLGQNLLY HLA-A1 restricted). The frequency of T cells specific for each antigen/peptide was expressed as a percentage of the maximal SFC/input cell number. iv. Chromium release assay
[00095] The inventors measured the cytotoxic specificity in a standard 4hr Cr51 release assay, using E:T ratios of 40: 1, 20:1, 10:1, and 5: 1. CTLs were used as effectors and the targets were PHA blasts pulsed with pepmixes. Autologous and allogeneic PHA blasts alone or loaded with an irrelevant pepmix were used as specificity and alloreactivity controls. The percentage of specific lysis was calculated as [(experimental release - spontaneous release)/(maximum release - spontaneous release)] x 100. REFERENCES
All patents and publications mentioned in this specification are indicative of the level of those skilled in the art to which the invention pertains. All patents and publications herein are incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference in their entirety.
PUBLICATIONS
1. Schonberger S, Meisel R, Adams O, et al. Prospective, comprehensive and effective viral monitoring in children undergoing allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2010.
2. Verdeguer A, de Heredia CD, Gonzalez M, et al. Observational prospective study of viral infections in children undergoing allogeneic hematopoietic cell transplantation: a 3-year GETMON experience. Bone Marrow Transplant. 201 1 ;46(1): 1 19-124.
3. Lang P,Handgretinger R. Haploidentical SCT in children: an update and future perspectives. Bone Marrow Transplant. 2008;42 Suppl 2:S54-S59.
4. Sauter C, Abboud M, Jia X, et al. Serious infection risk and immune recovery after double- unit cord blood transplantation without antithymocyte globulin. Biol. Blood Marrow Transplant. 201 1 ; 17(10): 1460-1471.
5. Hantz S, Garnier-Geoffroy F, Mazeron MC, et al. Drug-resistant cytomegalovirus in transplant recipients: a French cohort study. J. Antimicrob. Chemother. 2010;65(12):2628-2640.
6. Ljungman P, Ribaud P, Eyrich M, et al. Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation: a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2003;31(6):481-486.
7. Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med. 1994;331 :679-680. 8. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat.Med. 2006;12(10): 1 160-1 166.
9. Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplant. Blood. 2009.
10. Barker JN, Doubrovina E, Sauter C, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;1 16(23):5045-5049.
1 1. Haque T, Wilkie GM, Taylor C, et al. Treatment of Epstein-Barr-virus-positive posttransplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet. 2002;360(9331):436-442.
12. Haque T, Wilkie GM, Jones MM, et al. Allogeneic cytotoxic T-cell therapy for EBV- positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007; 1 10(4): 1 123-1 131.
13. Kedl RM, Rees WA, Hildeman DA, et al. T cells compete for access to antigen-bearing antigen-presenting cells. J.Exp.Med. 2000;192(8): 1 105-1 1 13.
14. Kedl RM, Schaefer BC, Kappler JW, Marrack P. T cells down-modulate peptide-MHC complexes on APCs in vivo. Nat.Immunol. 2002;3(l):27-32.
15. Leen A, Ratnayake M, Foster A, et al. Contact-activated monocytes: efficient antigen presenting cells for the stimulation of antigen-specific T cells. J.Immunother.(1997.). 2007;30(1):96-107.
16. Cobbold M, Khan N, Pourgheysari B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J.Exp.Med. 2005;202(3):379-386.
17. Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T- cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. British Journal of Haematology. 2006;134(l):64-76. 18. Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;1 16(20):4360-4367.
19. Khanna N, Stuehler C, Conrad B, et al. Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD 154. Blood. 201 1 ;1 18(4): 1 121-1 131.
20. Gerdemann U, Vera JF, Rooney CM, Leen AM. Generation of multivirus-specific T cells to prevent/treat viral infections after allogeneic hematopoietic stem cell transplant. J.Vis.Exp. 201 1 ;(51).
21. Gerdemann U, Christin AC, Vera JF, et al. Nucleofection of DCs to Generate Multivirus- specific T Cells for Prevention or Treatment of Viral Infections in the Immunocompromised Host. Molecular Therapy. 2009.
22. Fujita Y, Leen AM, Sun J, et al. Exploiting cytokine secretion to rapidly produce multivirus- specific T cells for adoptive immunotherapy. J.Immunother. 2008;31(7):665-674.
23. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N.Engl.J.Med. 1995;333(16): 1038-1044.
24. Kern F, Faulhaber N, Frommel C, et al. Analysis of CD8 T cell reactivity to cytomegalovirus using protein- spanning pools of overlapping pentadecapeptides. Eur J Immunol. 2000;30(6): 1676-1682.
25. Leen AM, Sili U, Savoldo B, et al. Fiber-modified adenoviruses generate subgroup cross- reactive, adenovirus-specific cytotoxic T lymphocytes for therapeutic applications. Blood. 2004;103(3): 101 1-1019.
26. Leen AM, Christin A, Khalil M, et al. Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy. Journal of Virology. 2008;82(l):546-554.
27. Bunde T, Kirchner A, Hoffmeister B, et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1 -specific CD8 T cells. J. Exp. Med. 2005;201(7): 1031-1036. 28. Micklethwaite KP, Clancy L, Sandher U, et al. Prophylactic infusion of cytomegalovirus- specific cytotoxic T lymphocytes stimulated with Ad5D5pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood. 2008; 1 12(10):3974-3981.
29. Bollard CM, Gottschalk S, Huls MH, et al. In vivo expansion of LMP1 - and LMP2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leuk.Lymphoma. 2006;47(5):837-842.
30. Falco DA, Nepomuceno RR, Krams SM, et al. Identification of Epstein-Barr virus-specific CD8+ T lymphocytes in the circulation of pediatric transplant recipients. Transplantation. 2002;74(4):501-510.
31. Jones K, Nourse JP, Morrison L, et al. Expansion of EBNAl -specific effector T cells in posttransplantation lymphoproliferative disorders. Blood. 2010; 1 16(13):2245-2252.
32. Badr G, Bedard N, bdel-Hakeem MS, et al. Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. Journal of Virology. 2008;82(20): 10017-10031.
33. annanganat S, Ibegbu C, Chennareddi L, Robinson HL, Amara RR. Multiple-cytokine- producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. Journal of Virology. 2007;81(16):8468-8476.
34. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;1 15(5):925-935.
35. Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc.Natl.Acad.Sci.U.S.A. 1996;93(15):7855-7860.
36. Kenter GG, Welters MJ, Valentijn AR, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N.Engl.J.Med. 2009;361(19): 1838-1847.
37. Toes RE, van d, V, Schoenberger SP, et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. J.Immunol. 1998; 160(9):4449-4456. 38. Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J.Natl. Cancer Inst. 1994;86( 15): 1 159- 1 166.
39. Becker TC, Wherry EJ, Boone D, et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J.Exp.Med. 2002;195(12): 1541-1548.
40. Vella AT, Dow S, Potter TA, Kappler J, Marrack P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc.Natl.Acad.Sci.U.S.A. 1998;95(7):3810-3815.
41. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J.Exp.Med. 2002;195(12): 1523-1532.
42. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J.Clin.Invest. 2005; 1 15(5): 1 177-1187.
43. Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology. 2010;130(3):418-426.
44. Sportes C, Babb RR, Krumlauf MC, et al. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin.Cancer Res. 2010;16(2):727-735.
45. Majhail NS, Hussein M, Olencki TE, et al. Phase I trial of continuous infusion recombinant human interleukin-4 in patients with cancer. Invest New Drugs. 2004;22(4):421-426.
46. von RA, Krall R, Escalante N , Choy JC. Inflammatory cytokines determine the susceptibility of human CD8 T cells to Fas-mediated activation-induced cell death through modulation of FasL and c-FLIP(S) expression. J.Biol.Chem. 201 1 ;286(24):21 137-21 144.
47. Maus MV, Thomas AK, Leonard DG, et al. Ex vivo expansion of polyclonal and antigen- specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat.Biotechnol. 2002;20(2): 143-148. 48. Kessler JH, Khan S, Seifert U, et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat.Immunol. 201 l ;12(l ):45-53.
49. Larsen SL, Pedersen LO, Buus S, Stryhn A. T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides. J.Exp.Med. 1996;184(1): 183-189.
50. Melenhorst JJ, Leen AM, Bollard CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010; 1 16(22):4700-4702.
51. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM, In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors., Science. 1992 Jun 12;256(5063): 1550-2.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims

CLAIMS What is claimed is:
1. A method of generating cytotoxic T-lymphocytes (CTLs) that target at least one
antigen from two or more viruses, comprising the steps of : contacting a plurality of peripheral blood mononuclear cells with at least two libraries of
peptides, said libraries of peptides each comprising peptides that correspond to a particular viral antigen; and expanding the plurality of cells in the presence of one or more cytokines.
2. The method of claim 1 , wherein said method occurs in the absence of exposing the libraries to isolated peptide-pulsed dendritic cells prior to expanding the CTLs.
3. The method of claim 1 , wherein the one or more cytokines are selected from the group consisting of IL4, IL7 and a combination thereof.
4. The method of claim, wherein the peptides are further defined as peptides that overlap in sequence to span part or all of a viral antigen.
5. The method of claim 3, wherein the peptides overlap by at least three amino acids.
6. The method of claim 3, wherein the peptides are at least seven amino acids in length.
7. The method of claim 1, wherein the viruses are selected from the group consisting of
EBV, CMV, Adenovirus, BK virus, HHV6, RSV, Influenza, Parainfluenza, Bocavirus, Coronavirus, LCMV, Mumps, Measles, Metapneumovirus, Parvovirus B, Rotavirus, West Nile Virus, JC, HHV7, and a combination thereof.
8. The method of claim 1 , wherein the virus is EBV and the antigen is selected from the group consisting of EBNA1 , LMP2, and BZLF1.
9. The method of claim 1 , wherein the virus is CMV and the antigen is selected from the group consisting of IE1 and pp65.
10. The method of claim 1, wherein the virus is Adv and the antigen is selected from the group consisting of Hexon and penton.
1 1. The method of claim 1 , wherein the virus is BK virus and the antigen is selected from the group consisting of LT and VP- 1.
12. The method of claim 1, wherein the virus is HHV6 and the antigen is selected from the group consisting of U14, Ul 1 , U71 , U54, and U90.
13. The method of claim 1, wherein the virus is RSV and the antigen is selected from the group consisting of N and F.
14. The method of claim 1, wherein the virus is Influenza and the antigen is selected from the group consisting of MP1 and NP1.
15. The method of claim 1, wherein the CTLs are administered to an individual.
16. The method of claim 1, wherein the CTLs are administered to an
immunocompromised individual.
17. The method of claim 15, wherein the individual has had allogeneic stem cell
transplant.
18. The method of claim 14, wherein the cells are administered by injection.
19. The method of claim 17, wherein the injection is intravenous.
20. The method of claim 1 , wherein the CTLs are further defined as polyclonal CD4+ and
CD8+ CTLs.
21. The method of claim 14, wherein the PBMCs are allogeneic to the individual.
22. The method of claim 14, wherein the PBMCs are autologous to the individual.
23. The method of claim 1 , further comprising the step of exposing the CTLs to one or more compositions that stimulate cell division.
PCT/US2013/025342 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity WO2013119947A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES13746524T ES2748652T3 (en) 2012-02-09 2013-02-08 Pep mixes to generate multiviral CTLs with broad specificity
US14/377,825 US20150010519A1 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity
EP19178235.8A EP3591047B1 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity
DK13746524.1T DK2812431T3 (en) 2012-02-09 2013-02-08 PEPTID MIXTURES FOR GENERATION OF WIDE SPECIFIC MULTIVIRAL CTLS
PL13746524T PL2812431T3 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity
EP22166731.4A EP4089167A1 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity
EP13746524.1A EP2812431B1 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity
US15/905,176 US11118164B2 (en) 2012-02-09 2018-02-26 Pepmixes to generate multiviral CTLs with broad specificity
US17/443,261 US20210348127A1 (en) 2012-02-09 2021-07-23 Pepmixes to generate multiviral ctls with broad specificity
US17/659,624 US11981923B2 (en) 2012-02-09 2022-04-18 Pepmixes to generate multiviral CTLS with broad specificity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261596875P 2012-02-09 2012-02-09
US61/596,875 2012-02-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/377,825 A-371-Of-International US20150010519A1 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity
US15/905,176 Continuation US11118164B2 (en) 2012-02-09 2018-02-26 Pepmixes to generate multiviral CTLs with broad specificity

Publications (1)

Publication Number Publication Date
WO2013119947A1 true WO2013119947A1 (en) 2013-08-15

Family

ID=48948057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/025342 WO2013119947A1 (en) 2012-02-09 2013-02-08 Pepmixes to generate multiviral ctls with broad specificity

Country Status (9)

Country Link
US (4) US20150010519A1 (en)
EP (3) EP4089167A1 (en)
DK (2) DK2812431T3 (en)
ES (2) ES2928851T3 (en)
HR (1) HRP20221303T1 (en)
HU (1) HUE060369T2 (en)
PL (2) PL3591047T3 (en)
PT (2) PT3591047T (en)
WO (1) WO2013119947A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069512A1 (en) * 2015-10-22 2017-04-27 가톨릭대학교 산학협력단 Method for inducing and proliferating virus antigen-specific t cells
WO2017203370A3 (en) * 2016-05-23 2018-02-01 The Council Of The Queensland Institute Of Medical Research Cmv epitopes
EP3512531A4 (en) * 2016-09-16 2020-03-11 Baylor College of Medicine Platform for activation and expansion of virus-specific t-cells
WO2021034674A1 (en) 2019-08-16 2021-02-25 Baylor College Of Medicine Third party virus-specific t cell compositions, and methods of making and using the same in anti-viral prophylaxis
EP3955958A4 (en) * 2019-04-18 2023-01-25 Baylor College of Medicine Ebv-specific immune cells
EP3976068A4 (en) * 2019-05-31 2023-08-09 Children's National Medical Center Cytokine cocktails for selective expansion of t cell subsets
WO2023224599A1 (en) 2022-05-16 2023-11-23 Allovir, Inc. Multivirus-specific t cell compositions and their use in treating or preventing viral infection or disease in solid organ transplant recipients
WO2023225485A1 (en) 2022-05-16 2023-11-23 Allovir, Inc. Multivirus-specific t cell compositions and their use in treating or preventing viral infection or disease in solid organ transplant recipients
EP4061386A4 (en) * 2019-11-19 2024-01-10 Acibadem Labmed Saglik Hizmetleri Anonim Sirketi A method for producing multivirus specific t cells
US11931408B2 (en) 2015-09-18 2024-03-19 Baylor College Of Medicine Immunogenic antigen identification from a pathogen and correlation to clinical efficacy
US11963979B2 (en) 2011-12-12 2024-04-23 Allovir, Inc. Process for T cell expansion
US11981923B2 (en) 2012-02-09 2024-05-14 Baylor College Of Medicine Pepmixes to generate multiviral CTLS with broad specificity

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2470644T3 (en) 2009-08-24 2017-01-16 Baylor College Medicine GENERATION OF CTL LINES WITH SPECIFICITY AGAINST MORE TUMOR ANTIGEN OR MORE
US10351824B2 (en) 2011-12-12 2019-07-16 Cell Medica Limited Process of expanding T cells
AU2013274416B2 (en) * 2012-06-11 2019-07-04 Wilson Wolf Manufacturing, LLC Improved methods of cell culture for adoptive cell therapy
EP3484525A4 (en) * 2016-07-18 2020-07-29 The Council of the Queensland Institute of Medical Research Multivirus-specific t cell immunotherapy
US10821134B2 (en) 2017-05-17 2020-11-03 Board Of Regents, The University Of Texas System BK virus specific T cells
US20230028788A1 (en) * 2019-12-23 2023-01-26 Baylor College Of Medicine T cell performance assay as a prognostic factor for clinical outcome
WO2021189084A1 (en) 2020-03-20 2021-09-23 Baylor College Of Medicine Sars-cov2-specific t cell compositions and their use in treating and preventing coronavirus and other respiratory virus infections
CN113564116B (en) * 2021-07-21 2023-08-01 北京赛傲生物技术有限公司 Preparation method of specific antiviral adoptive immune cell CE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090305324A1 (en) * 2005-10-28 2009-12-10 Medical And Biological Laboratories Co., Ltd Cytotoxic t-cell epitope peptides that specifically attack epstein-barr virus-infected cells and uses thereof
US20110182870A1 (en) * 2009-08-24 2011-07-28 Leen Ann M Generation of ctl lines with specificity against multiple tumor antigens or multiple viruses

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641628A (en) 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
WO1994002156A1 (en) 1992-07-16 1994-02-03 The Board Of Trustees Of Leland Stanford Junior University Methods for using dendritic cells to activate t cells
US6821778B1 (en) 1993-12-01 2004-11-23 The Board Of Trustees Of Leland Stanford Junior University Methods for using dendritic cells to activate gamma/delta-T cell receptor-positive T cells
DK0749323T3 (en) 1994-03-08 2001-02-05 Dana Farber Cancer Inst Inc Methods for modulating T cell anergy
AUPM446594A0 (en) 1994-03-16 1994-04-14 Csl Limited Cytotoxic t-cell epitopes identified within epstein-barr virus
DK0772624T3 (en) 1994-04-06 2000-11-13 Immunex Corp Interleukin-15
AU691501B2 (en) 1994-05-16 1998-05-21 Boehringer Mannheim Gmbh Method of immunomodulation by means of adoptive transfer of antigen-specific cytotoxic T-cells
US6300090B1 (en) 1994-07-29 2001-10-09 The Rockefeller University Methods of use of viral vectors to deliver antigen to dendritic cells
US5827642A (en) 1994-08-31 1998-10-27 Fred Hutchinson Cancer Research Center Rapid expansion method ("REM") for in vitro propagation of T lymphocytes
ES2170195T3 (en) 1995-06-06 2002-08-01 Organon Teknika Bv PEPTIDES OF THE EPSTEIN-BARR VIRUS AND ANTIBODIES AGAINST THESE PEPTIDES.
FR2745185B1 (en) 1996-02-28 1998-05-15 Sanofi Sa USE OF IL-7 IN THE TREATMENT OF AUTOIMMUNE DISEASES, PARTICULARLY INSULIN-DEPENDENT DIABETES MELLITUS
US6699477B2 (en) 1996-05-24 2004-03-02 The Council Of The Queensland Institute Of Medical Research EBV CTL epitopes
US5962318A (en) 1996-11-15 1999-10-05 St. Jude Children's Research Hospital Cytotoxic T lymphocyte-mediated immunotherapy
WO1998033888A1 (en) 1997-01-31 1998-08-06 Epimmune, Inc. Peptides and peptide-loaded antigen presenting cells for the activation of ctl
AU7256498A (en) 1997-04-25 1998-11-24 Wistar Institute Of Anatomy And Biology, The Cytolytic t-cell clones against colorectal carcinoma and methods of use thereof
US7951383B2 (en) 1997-05-23 2011-05-31 The United States Of America As Represented By The Department Of Health And Human Services Attenuated parainfluenza virus (PIV) vaccines
AUPO784197A0 (en) 1997-07-10 1997-08-07 Csl Limited Treatment of nasopharyngeal carcinoma
ATE428769T1 (en) 1997-10-27 2009-05-15 Univ Rockefeller METHOD AND COMPOSITION FOR PRODUCING MATURE DENDRITIC CELLS
US20020155108A1 (en) 1998-05-04 2002-10-24 Biocrystal, Ltd. Method for ex vivo loading of antigen presenting cells with antigen, and a vaccine comprising the loaded cells
US6828147B1 (en) 1999-02-24 2004-12-07 The Wistar Institute Of Anatomy And Biology Method of modifying cytotoxic cells and uses thereof
WO2000050569A1 (en) 1999-02-24 2000-08-31 The Wistar Institute Of Anatomy And Biology Method of modifying cytotoxic cells and uses thereof
US7005131B1 (en) 1999-08-13 2006-02-28 The Rockefeller University Protective antigen of Epstein Barr Virus
US20150037297A1 (en) 1999-08-30 2015-02-05 David S Terman Sickled Erythrocytes and Progenitors Target Cytotoxics to Tumors
JP2003519473A (en) 1999-11-24 2003-06-24 アーネスト ジー. ホープ Anti-angiogenic cellular substances for cancer treatment
DE10009341A1 (en) 2000-02-22 2001-09-06 Florian Kern Method for antigen-specific stimulation of T lymphocytes
US20020155127A1 (en) 2000-06-02 2002-10-24 Danher Wang Genetic vaccine against human immunodeficiency virus
DK1297017T3 (en) 2000-06-19 2012-09-17 Dana Farber Cancer Inst Inc Compositions and Methods with Monoclonal and Polyclonal Antibodies Specific to T Cell Subpopulations
DK1326961T3 (en) 2000-09-15 2008-01-07 Ortho Mcneil Pharm Inc Compositions and Methods for Inducing Specific Cytolytic T Cell Reactions
EP1229043A1 (en) 2001-01-30 2002-08-07 Cyto-Barr B.V. Peptides derived from Epstein Barr virus (EBV) proteins LMP1, LMP2 and BARF1 antibody reagents reactive therewith
GB0107628D0 (en) 2001-03-27 2001-05-16 Avidex Ltd Substances
US20040022761A1 (en) 2001-05-11 2004-02-05 Banchereau Jacques F Compositions and methods for producing antigen-presenting cells
JP2005516581A (en) 2001-05-15 2005-06-09 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド Ex vivo priming to produce cytotoxic lymphocytes specific for non-tumor antigens to treat autoimmune and allergic diseases
DK1429597T3 (en) 2001-09-28 2006-05-01 Heinrich-Guenter Schumacher Cutting knife with one of the rails composed of a knife rail
US20030153073A1 (en) 2001-11-07 2003-08-14 Paul Rogers Expansion of T cells in vitro and expanded T cell populations
US20030148982A1 (en) 2001-11-13 2003-08-07 Brenner Malcolm K. Bi-spcific chimeric T cells
JP2005515192A (en) 2001-11-29 2005-05-26 ダンドリット バイオテック アクティーゼルスカブ Pharmaceutical composition for inducing an immune response in humans or animals
US20040096457A1 (en) 2001-12-11 2004-05-20 Huber Brigitte T Treatment and prevention of ebv infection and ebv-associated disorders
US7745140B2 (en) 2002-01-03 2010-06-29 The Trustees Of The University Of Pennsylvania Activation and expansion of T-cells using an engineered multivalent signaling platform as a research tool
AU2003202908A1 (en) 2002-01-03 2003-07-24 The Trustees Of The University Of Pennsylvania Activation and expansion of t-cells using an engineered multivalent signaling platform
TW200416043A (en) 2002-11-07 2004-09-01 Queensland Inst Med Res Epstein barr virus peptide epitopes, polyepitopes and delivery system therefor
AU2002953238A0 (en) 2002-12-09 2003-01-02 The Corporation Of The Trustees Of The Order Of The Sisters Of Mercy In Queensland In vitro immunization
IL158140A0 (en) 2003-09-25 2004-03-28 Hadasit Med Res Service Multiepitope polypeptides for cancer immunotherapy
CA2542116C (en) 2003-10-08 2015-01-27 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
US20050221481A1 (en) 2004-03-30 2005-10-06 Istituto Superiore Di Sanita' Amplification of T cells from human cord blood in serum-deprived culture stimulated with stem cell factor, interleukin-7 and interleukin-2
US7785806B2 (en) 2004-04-28 2010-08-31 Vaxdesign Corporation Method for determining the immunogenicity of an antigen
EP3363907A1 (en) 2004-05-27 2018-08-22 The Trustees of the University of Pennsylvania Novel artificial antigen presenting cells and uses therefor
US7785875B2 (en) 2004-07-03 2010-08-31 Mogam Biotechnology Research Institute Polynucleotide encoding HCV epitopes which can bind to various HLA supertypes, immunogenic composition comprising same and method of inducing an HCV-specific immune response using same
US20060045883A1 (en) 2004-08-26 2006-03-02 Jeffrey Molldrem Anti-cancer vaccines
JP4731867B2 (en) 2004-10-01 2011-07-27 国立大学法人三重大学 Method for inducing CD8 positive cytotoxic T lymphocytes
WO2006099448A2 (en) 2005-03-14 2006-09-21 University Of Iowa Research Foundation Accelerated cd8+ t-cell memory after dendritic cell vaccination
EP1712615A1 (en) 2005-04-15 2006-10-18 Txcell In vitro production of a cell population using feeder cells
ATE451618T1 (en) 2005-04-20 2009-12-15 Hoffmann La Roche METHOD FOR IDENTIFYING EPITOPES RELATED TO IMMUNOGENICITY IN BIOPARMACEUTICS
CA2608193A1 (en) 2005-05-11 2006-11-23 The Trustees Of The University Of Pennsylvania Methods for the rapid expansion of antigen specific t-cells
US20070003531A1 (en) 2005-06-30 2007-01-04 University Of Connecticut Methods for improving immunotherapy by enhancing survival of antigen-specific cytotoxic T lymphocytes
US20100035282A1 (en) 2005-08-03 2010-02-11 Maria Chiara Bonini Use of common gamma chain cytokines for the visualization, isolation and genetic modification of memory t lymphocytes
JP5492418B2 (en) 2005-11-18 2014-05-14 ザ オハイオ ステート ユニバーシティー リサーチ ファウンデーション Viral gene products and vaccination methods for preventing virus-related diseases
GB0604170D0 (en) 2006-03-02 2006-04-12 Antitope Ltd T cell assays
EP1989544B1 (en) 2006-03-02 2011-06-22 Antitope Limited T cell assays
US20070243549A1 (en) 2006-04-12 2007-10-18 Biocept, Inc. Enrichment of circulating fetal dna
WO2008025992A2 (en) 2006-09-01 2008-03-06 Cambridge Enterprise Limited Methods of expanding non-effector cd8 t-cell populations
WO2008066749A2 (en) 2006-11-22 2008-06-05 The Board Of Trustees Of The University Of Arkansas Multi-epitope peptide-loaded dendritic cell immunotherapy for cancer
CA2671967A1 (en) 2006-12-07 2008-06-19 Wilson Wolf Manufacturing Corporation Highly efficient devices and methods for culturing cells
WO2008073312A2 (en) 2006-12-08 2008-06-19 Attenuon, Llc Urokinase-type plasminogen activator receptor epitope, monoclonal antibodies derived therefrom and methods of use thereof
DE102006060824B4 (en) 2006-12-21 2011-06-01 Johannes-Gutenberg-Universität Mainz Detection of Individual T Cell Response Patterns Against Tumor-associated Antigens (TAA) in Tumor Patients as a Basis for Individual Therapeutic Vaccination of Patients
CA2700618A1 (en) 2007-09-27 2009-04-02 The Board Of Trustees Of The University Of Arkansas Inhibition of dendritic cell-driven regulatory t cell activation and potentiation of tumor antigen-specific t cell responses by interleukin-15 and map kinase inhibitor
EP2060583A1 (en) 2007-10-23 2009-05-20 Ganymed Pharmaceuticals AG Identification of tumor-associated markers for diagnosis and therapy
WO2009053109A1 (en) 2007-10-24 2009-04-30 Anne Letsch Antigen-specific t-cell preparations from bone marrow
WO2009059011A2 (en) 2007-11-01 2009-05-07 Mayo Foundation For Medical Education And Research Hla-dr binding peptides and their uses
EP2065462A1 (en) 2007-11-27 2009-06-03 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Ex vivo method for producing a preparation containing CD4+ T cells specific for EBV structural antigens
WO2010030947A1 (en) 2008-09-11 2010-03-18 University Of Florida Research Foundation, Inc. System and method for producing t cells
CN101824400B (en) 2009-03-05 2012-08-08 中国科学院微生物研究所 Method for amplifying and multiplying T cells with antigenic specificity
WO2011024482A1 (en) 2009-08-29 2011-03-03 株式会社バイオメッドコア Method for measurement of ability of inducing antigen-specific t cells
GB0917090D0 (en) 2009-09-29 2009-11-11 Ucl Biomedica Plc T-cell receptor
US8956860B2 (en) 2009-12-08 2015-02-17 Juan F. Vera Methods of cell culture for adoptive cell therapy
EP2510086A4 (en) 2009-12-08 2013-05-22 Wolf Wilson Mfg Corp Improved methods of cell culture for adoptive cell therapy
US20130115617A1 (en) 2009-12-08 2013-05-09 John R. Wilson Methods of cell culture for adoptive cell therapy
CA2797868C (en) 2010-05-14 2023-06-20 The General Hospital Corporation Compositions and methods of identifying tumor specific neoantigens
US9114100B2 (en) 2010-05-17 2015-08-25 Duke University Methods of treatment using ex vivo expansion of cord blood T cells
WO2012017033A1 (en) 2010-08-04 2012-02-09 Ieo-Istituto Europeo Di Oncologia S.R.L. Method of antigen loading for immunotherapy
US8741642B2 (en) 2010-10-22 2014-06-03 Virginia Commonwealth University Methods for producing autologous immune cells resistant to myeloid-derived suppressor cells effects
EP2453243A1 (en) 2010-11-11 2012-05-16 Cosmo S.p.A. Method for the diagnosis and/or follow up of the evolution of a tumor
US20130045491A1 (en) 2011-07-19 2013-02-21 Derya Unutmaz Methods for activating t cells
SG11201400513PA (en) 2011-09-08 2014-06-27 Yeda Res & Dev Anti third party central memory t cells, methods of producing same and use of same in transplantation and disease treatment
GB201121308D0 (en) 2011-12-12 2012-01-25 Cell Medica Ltd Process
US10351824B2 (en) 2011-12-12 2019-07-16 Cell Medica Limited Process of expanding T cells
HRP20221303T1 (en) 2012-02-09 2022-12-23 Baylor College Of Medicine Pepmixes to generate multiviral ctls with broad specificity
US20130217122A1 (en) 2012-02-21 2013-08-22 The Trustees Of The University Of Pennsylvania Expansion of Interferon-Gamma-Producing T-Cells Using Glypican-3 Peptide Library
JP6445427B2 (en) 2012-05-08 2018-12-26 ウエスタン ユニバーシティ オブ ヘルス サイエンシズ A standardized ex vivo platform for antigen-specific expansion of the CD4 + T cell population
AU2014351871B2 (en) 2013-11-22 2020-02-13 Cellectis Method for generating batches of allogeneic T-cells with averaged potency
WO2015110397A2 (en) 2014-01-21 2015-07-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for testing t cell priming efficacy in a subject
BR112017009475B1 (en) 2014-11-05 2021-10-05 Memorial Sloan Kettering Cancer Center METHODS OF SELECTING A T-CELL LINEAGE AND A T-CELL LINEAGE, COMPUTER SYSTEM TO SELECT A T-CELL LINEAGE, COMPUTER-READABLE MEDIA, USE OF A T-CELL POPULATION AND METHOD FOR OBTAINING A T-CELL LINEAGE
WO2016073595A1 (en) 2014-11-05 2016-05-12 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services T cells and dendritic cells for polyomavirus therapy
AU2016235388B2 (en) 2015-03-20 2022-02-03 Children's National Medical Center Generating virus or other antigen-specific T cells from a naive T cell population
EP3313419B1 (en) 2015-06-26 2020-08-19 Memorial Sloan Kettering Cancer Center Methods of treating cmv retinitis by t cell therapy
WO2017049291A1 (en) 2015-09-18 2017-03-23 Baylor College Of Medicine Immunogenic antigen identification from a pathogen and correlation to clinical efficacy
SG11201809534UA (en) 2016-05-25 2018-12-28 Council Queensland Inst Medical Res Methods of treating autoimmune disease using allogeneic t cells
MX2019000180A (en) 2016-06-28 2019-11-05 Geneius Biotechnology Inc T cell compositions for immunotherapy.
AU2017326173B2 (en) 2016-09-16 2022-08-18 Baylor College Of Medicine Platform for activation and expansion of virus-specific T-cells
TW201814042A (en) 2016-09-26 2018-04-16 新加坡商泰莎治療私人有限公司 T cell expansion method
EP3641807A4 (en) 2017-06-22 2021-04-21 The Westmead Institute For Medical Research Adoptive t cell therapy 2
CA3074734A1 (en) 2017-09-06 2019-03-14 Nant Holdings Ip, Llc Hla tissue matching and methods therefor
GB201808651D0 (en) 2018-05-25 2018-07-11 Rolls Royce Plc Rotor blade arrangement
MX2021011622A (en) 2019-03-25 2022-01-04 Baylor College Medicine Multi-respiratory virus antigen-specific t cells and methods of making and using the same therapeutically.
TWI777160B (en) 2019-05-08 2022-09-11 美商百歐恩泰美國公司 T cell manufacturing compositions and methods
US20220305118A1 (en) 2019-06-20 2022-09-29 Janssen Sciences Ireland Unlimited Company Carbohydrate nanocarrier delivery of hepatitis b virus (hbv) vaccines
US20220257654A1 (en) 2019-07-23 2022-08-18 Baylor College Of Medicine Antigen-specific t cell banks and methods of making and using the same therapeutically
AU2020322790A1 (en) 2019-07-29 2022-03-03 Baylor College Of Medicine Antigen-specific T cell banks and methods of making and using the same therapeutically
WO2021034674A1 (en) 2019-08-16 2021-02-25 Baylor College Of Medicine Third party virus-specific t cell compositions, and methods of making and using the same in anti-viral prophylaxis
US20230028788A1 (en) 2019-12-23 2023-01-26 Baylor College Of Medicine T cell performance assay as a prognostic factor for clinical outcome
WO2021189084A1 (en) 2020-03-20 2021-09-23 Baylor College Of Medicine Sars-cov2-specific t cell compositions and their use in treating and preventing coronavirus and other respiratory virus infections
EP3974029A1 (en) 2020-09-25 2022-03-30 Universidad Autónoma de Madrid Memory t cells as adoptive cell therapy for viral infections
WO2023159088A1 (en) 2022-02-15 2023-08-24 Marker Therapeutics, Inc. Compositions and methods for antigen-specific t cell expansion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090305324A1 (en) * 2005-10-28 2009-12-10 Medical And Biological Laboratories Co., Ltd Cytotoxic t-cell epitope peptides that specifically attack epstein-barr virus-infected cells and uses thereof
US20110182870A1 (en) * 2009-08-24 2011-07-28 Leen Ann M Generation of ctl lines with specificity against multiple tumor antigens or multiple viruses

Non-Patent Citations (51)

* Cited by examiner, † Cited by third party
Title
BADR G; BEDARD N; BDEL-HAKEEM MS ET AL.: "Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells", JOURNAL OF VIROLOGY, vol. 82, no. 20, 2008, pages 10017 - 10031
BARKER JN; DOUBROVINA E; SAUTER C ET AL.: "Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes.", BLOOD, vol. 116, no. 23, 2010, pages 5045 - 5049, XP055245031, DOI: doi:10.1182/blood-2010-04-281873
BECKER TC; WHERRY EJ; BOONE D ET AL.: "Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells", J.EXP.MED., vol. 195, no. 12, 2002, pages 1541 - 1548
BOLLARD CM; GOTTSCHALK S; HULS MH ET AL.: "In vivo expansion of LMP 1- and LMP2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation", LEUK.LYMPHOMA., vol. 47, no. 5, 2006, pages 837 - 842, XP009072468, DOI: doi:10.1080/10428190600604724
BUNDE T; KIRCHNER A; HOFFMEISTER B ET AL.: "Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells", J.EXP.MED., vol. 201, no. 7, 2005, pages 1031 - 1036
CHETOUI N; BOISVERT M; GENDRON S; AOUDJIT F.: "Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway", IMMUNOLOGY, vol. 130, no. 3, 2010, pages 418 - 426
COBBOLD M; KHAN N; POURGHEYSARI B ET AL.: "Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers", J.EXP.MED., vol. 202, no. 3, 2005, pages 379 - 386
CULVER KW; RAM Z; WALLBRIDGE S; ISHII H; OLDFIELD EH; BLAESE RM: "In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors.", SCIENCE, vol. 256, no. 5063, 12 June 1992 (1992-06-12), pages 1550 - 2
FALCO DA; NEPOMUCENO RR; KRAMS SM ET AL.: "Identification of Epstein-Barr virus-specific CD8+ T lymphocytes in the circulation of pediatric transplant recipients", TRANSPLANTATION, vol. 74, no. 4, 2002, pages 501 - 510, XP009176149, DOI: doi:10.1097/00007890-200208270-00012
FEUCHTINGER T; MATTHES-MARTIN S; RICHARD C ET AL.: "Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation", BRITISH JOURNAL OF HAEMATOLOGY, vol. 134, no. 1, 2006, pages 64 - 76
FEUCHTINGER T; OPHERK K; BETHGE WA ET AL.: "Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation.", BLOOD, vol. 116, no. 20, 2010, pages 4360 - 4367, XP055247973, DOI: doi:10.1182/blood-2010-01-262089
FUJITA Y; LEEN AM; SUN J ET AL.: "Exploiting cytokine secretion to rapidly produce multivirus-specific T cells for adoptive immunotherapy", J.IMMUNOTHER, vol. 31, no. 7, 2008, pages 665 - 674, XP055200614, DOI: doi:10.1097/CJI.0b013e318181b4bd
GERDEMANN U; CHRISTIN AC; VERA JF ET AL.: "Nucleofection of DCs to Generate Multivirus-specific T Cells for Prevention or Treatment of Viral Infections in the Immunocompromised Host.", MOLECULAR THERAPY, 2009
GERDEMANN U; VERA JF; ROONEY CM; LEEN AM: "Generation of multivirus-specific T cells to prevent/treat viral infections after allogeneic hematopoietic stem cell transplant", J.VIS.EXP., 2011
HANTZ S; GARNIER-GEOFFROY F; MAZERON MC ET AL.: "Drug-resistant cytomegalovirus in transplant recipients: a French cohort study", J.ANTIMICROB.CHEMOTHER, vol. 65, no. 12, 2010, pages 2628 - 2640
HAQUE T; WILKIE GM; JONES MM ET AL.: "Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial.", BLOOD, vol. 110, no. 4, 2007, pages 1123 - 1131, XP055204405, DOI: doi:10.1182/blood-2006-12-063008
HAQUE T; WILKIE GM; TAYLOR C ET AL.: "Treatment of Epstein-Barr-virus-positive posttransplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells", LANCET, vol. 360, no. 9331, 2002, pages 436 - 442, XP004798212, DOI: doi:10.1016/S0140-6736(02)09672-1
HESLOP HE; BRENNER MK; ROONEY CM: "Donor T cells to treat EBV-associated lymphoma", N ENGL J MED, vol. 331, 1994, pages 679 - 680
HESLOP HE; SLOBOD KS; PULE MA ET AL.: "Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients", BLOOD, vol. 115, no. 5, 2010, pages 925 - 935
JONES K; NOURSE JP; MORRISON L ET AL.: "Expansion of EBNA1-specific effector T cells in posttransplantation lymphoproliferative disorders", BLOOD, vol. 116, no. 13, 2010, pages 2245 - 2252
KANNANGANAT S; IBEGBU C; CHENNAREDDI L; ROBINSON HL; AMARA RR.: "Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells", JOURNAL OF VIROLOGY, vol. 81, no. 16, 2007, pages 8468 - 8476
KEDL RM; REES WA; HILDEMAN DA ET AL.: "T cells compete for access to antigen-bearing antigen-presenting cells", J.EXP.MED., vol. 192, no. 8, 2000, pages 1105 - 1113
KEDL RM; SCHAEFER BC; KAPPLER JW; MARRACK P.: "T cells down-modulate peptide-MHC complexes on APCs in vivo", NAT.IMMUNOL, vol. 3, no. L, 2002, pages 27 - 32
KENTER GG; WELTERS MJ; VALENTIJN AR ET AL.: "Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia.", N.ENGL.J.MED, vol. 361, no. 19, 2009, pages 1838 - 1847, XP008157144, DOI: doi:10.1056/NEJMoa0810097
KERN F; FAULHABER N; FROMMEL C ET AL.: "Analysis of CD8 T cell reactivity to cytomegalovirus using protein- spanning pools of overlapping pentadecapeptides", EUR J IMMUNOL., vol. 30, no. 6, 2000, pages 1676 - 1682, XP001024972, DOI: doi:10.1002/1521-4141(200006)30:6<1676::AID-IMMU1676>3.0.CO;2-V
KESSLER JH; KHAN S; SEIFERT U ET AL.: "Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes", NAT.IMMUNOL., vol. 12, no. 1, 2011, pages 45 - 53
KHANNA N; STUEHLER C; CONRAD B ET AL.: "Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD 154", BLOOD, vol. 118, no. 4, 2011, pages 1121 - 1131, XP055004674, DOI: doi:10.1182/blood-2010-12-322610
LANG P; HANDGRETINGER R.: "Haploidentical SCT in children: an update and future perspectives", BONE MARROW TRANSPLANT., vol. 42, no. 2, 2008, pages S54 - S59
LARSEN SL; PEDERSEN LO; BUUS S; STRYHN A.: "T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides.", J.EXP.MED., vol. 184, no. 1, 1996, pages 183 - 189
LEEN A; RATNAYAKE M; FOSTER A ET AL.: "Contact-activated monocytes: efficient antigen presenting cells for the stimulation of antigen-specific T cells", J.IMMUNOTHER., vol. 30, no. 1, 1997, pages 96 - 107
LEEN AM; CHRISTIN A; KHALIL M ET AL.: "Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy.", JOURNAL OF VIROLOGY., vol. 82, no. L, 2008, pages 546 - 554
LEEN AM; CHRISTIN A; MYERS GD ET AL.: "Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplant", BLOOD, 2009
LEEN AM; MYERS GD; SILI U ET AL.: "Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals", NAT.MED., vol. 12, no. 10, 2006, pages 1160 - 1166, XP055034512, DOI: doi:10.1038/nm1475
LEEN AM; SILI U; SAVOLDO B ET AL.: "Fiber-modified adenoviruses generate subgroup cross-reactive, adenovirus-specific cytotoxic T lymphocytes for therapeutic applications.", BLOOD, vol. 103, no. 3, 2004, pages 1011 - 1019
LJUNGMAN P; RIBAUD P; EYRICH M ET AL.: "Cidofovir for adenovirus infections after allogeneic hematopoietic stem cell transplantation: a survey by the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation", BONE MARROW TRANSPLANT, vol. 31, no. 6, 2003, pages 481 - 486
MAJHAIL NS; HUSSEIN M; OLENCKI TE ET AL.: "Phase I trial of continuous infusion recombinant human interleukin-4 in patients with cancer.", INVEST NEW DRUGS, vol. 22, no. 4, 2004, pages 421 - 426
MAUS MV; THOMAS AK; LEONARD DG ET AL.: "Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB", NAT.BIOTECHNOL., vol. 20, no. 2, 2002, pages 143 - 148, XP002225278, DOI: doi:10.1038/nbt0202-143
MELCHIONDA F; FRY TJ; MILLIRON MJ; MCKIRDY MA; TAGAYA Y; MACKALL CL.: "Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool", J.CLIN.INVEST., vol. 115, no. 5, 2005, pages 1177 - 1187, XP003013445, DOI: doi:10.1172/JCI200523134
MELENHORST JJ; LEEN AM; BOLLARD CM ET AL.: "Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects", BLOOD, vol. 116, no. 22, 2010, pages 4700 - 4702
MICKLETHWAITE KP; CLANCY L; SANDHER U ET AL.: "Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation", BLOOD, vol. 112, no. 10, 2008, pages 3974 - 3981, XP055302597, DOI: doi:10.1182/blood-2008-06-161695
ROSENBERG SA; YANNELLI JR; YANG JC ET AL.: "Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2", J.NATL.CANCER INST., vol. 86, no. 15, 1994, pages 1159 - 1166, XP009082760, DOI: doi:10.1093/jnci/86.15.1159
SAUTER C; ABBOUD M; JIA X ET AL.: "Serious infection risk and immune recovery after double-unit cord blood transplantation without antithymocyte globulin", BIOL.BLOOD MARROW TRANSPLANT., vol. 17, no. 10, 2011, pages 1460 - 1471, XP028295036, DOI: doi:10.1016/j.bbmt.2011.02.001
SCHONBERGER S; MEISEL R; ADAMS O ET AL.: "Prospective, comprehensive and effective viral monitoring in children undergoing allogeneic hematopoietic stem cell transplantation", BIOL.BLOOD MARROW TRANSPLANT, 2010
SPORTES C; BABB RR; KRUMLAUF MC ET AL.: "Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy", CLIN.CANCER RES., vol. 16, no. 2, 2010, pages 727 - 735
TAN JT; ERNST B; KIEPER WC; LEROY E; SPRENT J; SURH CD.: "Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells", J.EXP.MED., vol. 195, no. 12, 2002, pages 1523 - 1532, XP055453473, DOI: doi:10.1084/jem.20020066
TOES RE; OFFRINGA R; BLOM RJ; MELIEF CJ; KAST WM.: "Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction.", PROC.NATL.ACAD.SCI.U.S.A., vol. 93, no. 15, 1996, pages 7855 - 7860, XP001038340, DOI: doi:10.1073/pnas.93.15.7855
TOES RE; VAN D, V; SCHOENBERGER SP ET AL.: "Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells", J.IMMUNOL., vol. 160, no. 9, 1998, pages 4449 - 4456, XP002939910
VELLA AT; DOW S; POTTER TA; KAPPLER J; MARRACK P.: "Cytokine-induced survival of activated T cells in vitro and in vivo.", PROC.NATL.ACAD.SCI.U.S.A., vol. 95, no. 7, 1998, pages 3810 - 3815
VERDEGUER A; DE HEREDIA CD; GONZALEZ M ET AL.: "Observational prospective study of viral infections in children undergoing allogeneic hematopoietic cell transplantation: a 3-year GETMON experience", BONE MARROW TRANSPLANT, vol. 46, no. 1, 2011, pages 119 - 124
VON RA; KRALL R; ESCALANTE NK; CHOY JC.: "Inflammatory cytokines determine the susceptibility of human CD8 T cells to Fas-mediated activation-induced cell death through modulation of FasL and c-FLIP(S) expression", J.BIOL.CHEM., vol. 286, no. 24, 2011, pages 21137 - 21144
WALTER EA; GREENBERG PD; GILBERT MJ ET AL.: "Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor.", N.ENGL.J.MED., vol. 333, no. 16, 1995, pages 1038 - 1044, XP000605697, DOI: doi:10.1056/NEJM199510193331603

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963979B2 (en) 2011-12-12 2024-04-23 Allovir, Inc. Process for T cell expansion
US11981923B2 (en) 2012-02-09 2024-05-14 Baylor College Of Medicine Pepmixes to generate multiviral CTLS with broad specificity
US11931408B2 (en) 2015-09-18 2024-03-19 Baylor College Of Medicine Immunogenic antigen identification from a pathogen and correlation to clinical efficacy
WO2017069512A1 (en) * 2015-10-22 2017-04-27 가톨릭대학교 산학협력단 Method for inducing and proliferating virus antigen-specific t cells
US11473059B2 (en) 2015-10-22 2022-10-18 Lucas Bio Co. Ltd. Method for enrichment and expansion of virus antigen-specific T cells
WO2017203370A3 (en) * 2016-05-23 2018-02-01 The Council Of The Queensland Institute Of Medical Research Cmv epitopes
EP3512531A4 (en) * 2016-09-16 2020-03-11 Baylor College of Medicine Platform for activation and expansion of virus-specific t-cells
EP3955958A4 (en) * 2019-04-18 2023-01-25 Baylor College of Medicine Ebv-specific immune cells
EP3976068A4 (en) * 2019-05-31 2023-08-09 Children's National Medical Center Cytokine cocktails for selective expansion of t cell subsets
WO2021034674A1 (en) 2019-08-16 2021-02-25 Baylor College Of Medicine Third party virus-specific t cell compositions, and methods of making and using the same in anti-viral prophylaxis
EP4061386A4 (en) * 2019-11-19 2024-01-10 Acibadem Labmed Saglik Hizmetleri Anonim Sirketi A method for producing multivirus specific t cells
WO2023225485A1 (en) 2022-05-16 2023-11-23 Allovir, Inc. Multivirus-specific t cell compositions and their use in treating or preventing viral infection or disease in solid organ transplant recipients
WO2023224599A1 (en) 2022-05-16 2023-11-23 Allovir, Inc. Multivirus-specific t cell compositions and their use in treating or preventing viral infection or disease in solid organ transplant recipients

Also Published As

Publication number Publication date
HRP20221303T1 (en) 2022-12-23
HUE060369T2 (en) 2023-02-28
US11118164B2 (en) 2021-09-14
EP2812431A1 (en) 2014-12-17
US20210348127A1 (en) 2021-11-11
EP2812431B1 (en) 2019-07-17
PL3591047T3 (en) 2022-12-05
US20180187152A1 (en) 2018-07-05
EP3591047A1 (en) 2020-01-08
PL2812431T3 (en) 2020-02-28
EP3591047B1 (en) 2022-08-03
DK3591047T3 (en) 2022-10-24
EP2812431A4 (en) 2015-08-19
DK2812431T3 (en) 2019-10-14
US20220251508A1 (en) 2022-08-11
US20150010519A1 (en) 2015-01-08
ES2928851T3 (en) 2022-11-23
PT3591047T (en) 2022-10-20
PT2812431T (en) 2019-10-18
EP4089167A1 (en) 2022-11-16
US11981923B2 (en) 2024-05-14
ES2748652T3 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
US11981923B2 (en) Pepmixes to generate multiviral CTLS with broad specificity
KR102501827B1 (en) Platform for activation and expansion of virus-specific T-cells
Navabi et al. A clinical grade poly I: C-analogue (Ampligen®) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro
IL275017B1 (en) Compositions comprising allogeneic th1 cells producing ifn-gamma and capable of increasing ifn-gamma and il-12 in a patient for use treating infectious diseases
Aspord et al. Induction of antiviral cytotoxic T cells by plasmacytoid dendritic cells for adoptive immunotherapy of posttransplant diseases
US20220226448A1 (en) One-step artificial antigen presenting cell-based vaccines
Kacani et al. Maturation of dendritic cells in the presence of living, apoptotic and necrotic tumour cells derived from squamous cell carcinoma of head and neck
Velek Immunogenicity of dendritic cell-based HPV16 E6/E7 peptide vaccines: CTL activation and protective effects
Soler et al. Triiodothyronine-stimulated dendritic cell vaccination boosts antitumor immunity against murine colon cancer
CA3028168C (en) Compositions and methods for activating antigen presenting cells with chimeric poliovirus
CA3100931A1 (en) Method for the in vitro differentiation and maturation of dendritic cells for therapeutic use
Chen et al. EBV LMP2A-specific T cell immune responses elicited by dendritic cells loaded with LMP2A protein
HARFUDDIN CHARACTERISATION OF THE ANTI-VIRAL T-CELL RESPONSE INDUCED BY HUMAN CD137 LIGAND DENDRITIC CELLS
NZ791258A (en) Platform for activation and expansion of virus-specific t-cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013746524

Country of ref document: EP