WO2013117171A1 - 一种控制信道资源传输方法、基站及用户设备 - Google Patents

一种控制信道资源传输方法、基站及用户设备 Download PDF

Info

Publication number
WO2013117171A1
WO2013117171A1 PCT/CN2013/071607 CN2013071607W WO2013117171A1 WO 2013117171 A1 WO2013117171 A1 WO 2013117171A1 CN 2013071607 W CN2013071607 W CN 2013071607W WO 2013117171 A1 WO2013117171 A1 WO 2013117171A1
Authority
WO
WIPO (PCT)
Prior art keywords
cce
resource
cces
preset
port
Prior art date
Application number
PCT/CN2013/071607
Other languages
English (en)
French (fr)
Inventor
高驰
刘江华
吴强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13746059.8A priority Critical patent/EP2806680B1/en
Publication of WO2013117171A1 publication Critical patent/WO2013117171A1/zh
Priority to US14/455,050 priority patent/US9571238B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • Control channel resource transmission method base station and user equipment
  • the present invention relates to the field of communications, and in particular, to a control channel resource transmission method, a base station, and a user equipment.
  • a base station such as an eNB (evolved Node Base) transmits a PDSCH (Physical Downlink) for each scheduled user equipment according to a scheduling result.
  • Shared Channel, physical downlink shared channel) and corresponding PDCCH Physical Downlink Control Channel.
  • the PDSCH carries the data that the eNB sends to the scheduled user equipment, and the PDCCH carries the scheduling information of the corresponding PDSCH.
  • the scheduling information is mainly used to indicate the transmission format information of the PDSCH corresponding thereto.
  • the PDCCH and the PDSCH are time division multiplexed in one subframe.
  • the PDCCH is transmitted in the first few OFDM (Orthogonal Frequency Division Multiplexing) symbols of the subframe, and the remaining OFDM symbols are used to transmit the PDSCH.
  • the PDCCHs of all the scheduled user equipments are multiplexed together, and then transmitted in the PDCCH region, and the PDSCH is transmitted in the PDSCH region, where both the PDCCH and the PDSCH have specific time and frequency domains, and the PDCCH region refers to The area occupied by the PDCCH in the time domain and the frequency domain, and the PDSCH area is the area occupied by the PDSCH in the time domain and the frequency domain.
  • technologies such as MU-MIMO (Multiple User Multiple Input Multiple Output) and CoMP (Coordinated Multi-Point) are required to improve system performance.
  • the use of these technologies enables simultaneous scheduling of the number of user equipments; however, the capacity of the PDCCH is limited, limiting the number of user equipments that can be scheduled in one subframe. Therefore, the PDCCH is enhanced in the prior art, and a part of resources are allocated in the original PDSCH region to transmit an enhanced PDCCH, that is, an Enhanced-Physical Downlink Control Channel, so that the capacity of the PDCCH control channel can be improved.
  • the number of simultaneously scheduled user equipments is increased, where the E-PDCCH is composed of an E-CCE (Enhance-Control Channel Element).
  • E-PDCCH resource unit is an RB pair (Resource Block Pair).
  • Each RB pair occupies 12 subcarriers in the frequency domain, and occupies one subframe in the time domain, that is, 2 slots.
  • the available resources of the E-PDCCH are a set of REs (Resource Elements) other than the PDCCH domain and the various RS (Reference Signals) occupied by each RB pair. Carry multiple E-CCEs. Due to the uneven distribution of various RSs in the RB pair, the number of resources occupied by each E-CCE may be different or different, which may result in unbalanced performance of each E-CCE and affect E-CCE scheduling or receiving performance.
  • the present invention provides a method for transmitting a control channel resource, a base station, and a user equipment, which can ensure equal performance of each E-CCE on a resource set for transmission of control channel resources, thereby ensuring scheduling and receiving performance of the E-CCE.
  • An aspect of the present invention provides a control channel resource transmission method, including: mapping one or more enhanced control channel elements E-CCEs into a resource set, where each of the E-CCEs is mapped to a corresponding first resource And the first resource sub-set occupies a first time-domain symbol set in the time domain, and occupies a first preset frequency-domain sub-carrier set in the frequency domain, where the second resource is configured.
  • the subset occupies a second set of time domain symbols in the time domain, and occupies a second preset frequency domain subcarrier set in the frequency domain, so that each of the E-CCEs occupy the same resource size or each of the Es The E-CCE is carried on the resource set for transmission; the resource set carrying the E-CCE is sent to the user equipment.
  • Another aspect of the present invention provides a control channel resource transmission method, including: demodulating one or more enhanced control channel elements E-CCE mapped in a resource set, where each of the E-CCEs corresponds to And demodulating the E-CCE on the first resource subset and the second resource subset, where the first resource subset occupies the first time domain symbol set in the time domain, and occupies the first preset in the frequency domain a frequency domain subcarrier set, where the second resource subset occupies a second time domain symbol set in the time domain, and occupies a second preset frequency domain subcarrier set in the frequency domain, so that each of the E-CCEs The difference in the size of the occupied resources or the difference in the size of the resources occupied by the E-CCEs is less than a preset threshold, and the E-CCE is carried on the resource set for transmission; according to the demodulated E-CCE receiving base station The transmitted resource set carrying the E-CCE.
  • a base station including: a mapping unit, configured to map one or more enhanced control channel elements E-CCE into a resource set, where each of the E-CCEs is mapped to a corresponding one
  • the first resource subset occupies a first time domain symbol set in the time domain, and occupies a first preset frequency domain subcarrier set in the frequency domain
  • the second resource subset occupies a second time domain symbol set in the time domain, and occupies a second preset frequency domain subcarrier set in the frequency domain, so that each of the E-CCEs occupy the same resource size or each
  • the E-CCE is carried on the resource set for transmission
  • the sending unit is configured to send the resource that carries the E-CCE to the user equipment, where the E-CCE is different from the preset threshold.
  • a user equipment including: a demodulation unit, configured to demodulate one or more enhanced control channel elements E-CCE mapped in a resource set, where each of the Es Demodulating the E-CCE on the first resource subset and the second resource subset corresponding to the CCE, the first resource subset occupies the first time domain symbol set in the time domain, and occupies the frequency domain a preset frequency domain subcarrier set, where the second resource subset occupies a second time domain symbol set in the time domain, and occupies a second preset frequency domain subcarrier set in the frequency domain, so that each of the The E-CCE is allocated on the resource set for transmission, and the receiving unit is configured to perform demodulation according to the difference between the resource size of the E-CCE and the resource size occupied by each of the E-CCEs.
  • a demodulation unit configured to demodulate one or more enhanced control channel elements E-CCE mapped in a resource set, where each of the Es Demodulating the E-CCE on the first resource subset
  • the E-CCE receives the resource set that is sent by the base station and carries the E-CCE.
  • the control channel resource transmission method, the base station and the user equipment provided by the present invention the base station maps one or more E-CCEs to a corresponding first resource subset and second resource subset, respectively, in a resource set, and each of the first resources Both the sub-set and the second subset of resources occupy a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by each of the E-CCEs is less than a preset. Threshold, the user equipment demodulates the E-CCE on a set of resources according to the same common rule and receives it.
  • FIG. 1 is a schematic flowchart of a method for transmitting a control channel resource according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a pilot symbol distribution in a resource set provided in the prior art
  • FIG. 4 is a schematic flowchart of another method for controlling a channel resource according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of another E-CCE multiplexing according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of multiplexing multiple E-CCEs on a resource set according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of multiple E-CCE multiplexing according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a method for transmitting a control channel resource according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of a method for transmitting a control channel resource according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a user equipment according to an embodiment of the present invention
  • FIG. 12 is another schematic diagram of an embodiment of the present invention. Schematic diagram of the structure of the household equipment.
  • control channel resource transmission method provided by the embodiment of the present invention, as shown in FIG. 1, the method steps include:
  • the base station maps one or more E-CCEs into a resource set, where each E-CCE is mapped to a corresponding first resource subset and a second resource subset, where the first resource subset is in the time domain.
  • the first time domain symbol set is occupied
  • the first preset frequency domain subcarrier set is occupied in the frequency domain
  • the second resource subset occupies the second time domain symbol set in the time domain, and occupies the second in the frequency domain.
  • the E-CCE is carried on the resource set for transmission.
  • the E-CCE is carried on the resource set for the transmission of the E-CCE.
  • the base station sets the first preset frequency domain subcarrier set and the second preset frequency of the two resource sub-sets of each E-CCE according to different pilot symbol distribution conditions.
  • the number of subcarriers and the location of the subcarriers in the domain are set, so that the E-CCEs on the one set of resources are equal in resources, or the difference in resources occupied by each E-CCE is less than a preset threshold, such as each E-CCE.
  • the number of occupied REs is equal or the number of REs occupied by each E-CCE is less than 5.
  • the RS included in the RB pair includes DMRS (Demodulation Reference Signal) and P CRS. (Cell-specific Reference Signal, cell pilot signal).
  • DMRS Demodulation Reference Signal
  • P CRS Cell-specific Reference Signal, cell pilot signal.
  • E-CCE1 is placed on subcarriers 1 to 6
  • E-CCE2 is placed on subcarriers 7 to 12.
  • the number of REs occupied by E-CCE1 and E-CCE2 is not the same.
  • the E-CCE1 and E-CCE2 can be mapped to the RB pair in a diagonal manner, such as the number of REs occupied by each E-CCE. As shown in FIG.
  • E-CCE1 occupies the 1st to 6th subcarriers in the first time slot of the E-PDCCH available RE and the 7th to 12th subcarriers in the second time slot, so that the E-CCE occupies
  • the E-PDCCH may use the first to first subcarriers on the first slot and the first to sixth subcarriers on the second slot in the RE.
  • the RS includes a DMRS (Demodulation Reference Signal) and a CRS (Cell-specific Reference Signal). In this way, the mapped E-CCE1 and E-CCE2 occupy the same number of REs.
  • the base station sends a resource set carrying the E-CCE to the user equipment. It is worth noting that the base station determines the number and location of antenna ports corresponding to each E-CCE in the current resource set according to the current transmission mode or a preset transmission rule, and transmits the corresponding E-CCE through the preset antenna port.
  • the channel used by the user equipment in demodulating the E-CCE is also used for channel estimation using the DMRS corresponding to the transmitted antenna port.
  • the base station respectively maps one or more E-CCEs to a corresponding first resource subset and second resource subset in a resource set, and each first resource subset and The second resource subset occupies a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by the E-CCEs is less than a preset threshold.
  • the device demodulates the E-CCE on a set of resources according to the same common rule and receives it.
  • mapping position of the base station to each E-CCE is preset according to the current system, the resources occupied by each E-CCE are the same or similar, thereby ensuring each E on a resource set of control channel resource transmission. - CCE performance is balanced to ensure E-CCE scheduling and reception performance.
  • a method for mapping a control channel resource according to another embodiment of the present invention.
  • a resource set is a resource block pair RB pair, and each of the E-CCEs is mapped to a corresponding first resource subset that is occupied in a time domain.
  • One time domain symbol set is the first time slot shot, and the second time domain symbol set is the second time slot shot example, but is not limited thereto.
  • the method steps include :
  • the S20K base station maps one or more E-CCEs into one RB pair, and maps each E-CCE to a corresponding first resource subset and a second resource subset, where the first resource subset is in the time domain.
  • the first time-domain symbol set occupies the first time slot of the RB pair
  • the second preset sub-carrier set belongs to the second time slot of the RB pair
  • the first resource subset occupies the first preset frequency in the frequency domain.
  • the domain subcarrier set, the second resource subset occupies the second preset frequency domain subcarrier set in the frequency domain, and the first time slot and the second time slot do not overlap, and the first preset frequency domain subcarrier set and The second preset frequency domain subcarrier sets do not coincide.
  • the E-CCE is transmitted by the REs carried on the RB pair, and the E-CCEs constitute the E-PDCCH, so the occupied resource size of each E-CCE can be per E-
  • the number of REs occupied by the CCE is compared. Due to differences in system configuration or actual transmission conditions, the number and location of REs occupied by various RSs affect the number of REs occupied by each E-CCE. Therefore, in different systems, When determining the number of E-CCEs included in each RB pair, you can pre-set the number of sub-carriers occupied by different E-CCEs to ensure that the E-CCEs occupy the same RE or the E-CCEs.
  • the difference between the number of REs is less than the preset threshold, thereby ensuring stable performance of the E-CCE.
  • the method shown in FIG. 5 and FIG. 6 can make the number of REs occupied by the four E-CCEs the same or similar.
  • the number of REs occupied by the DMRS is 12, and the PDCCH region occupies the first 3 OFDM of the first slot. Symbol, and there is a CRS.
  • each E-CCE is mapped to the corresponding first resource subset and the first On the second resource subset, the first resource subset occupies the first time slot in the time domain, and each of the first preset frequency domain subcarrier sets is occupied in the frequency domain, and the second resource subset is occupied in the time domain. Two time slots occupy the following second preset frequency domain subcarrier set in the frequency domain.
  • the first preset subcarrier set of the E-CCE1 is the first to third subcarriers on the first time slot of the E-PDCCH available RE
  • the second preset subcarrier set of the E-CCE1 is the second time slot.
  • the first to the 9th subcarriers of the E-CCE2; the first preset subcarrier set of the E-CCE2 is the 10th 12th subcarrier on the 1st time slot of the E-PDCCH available RE, and the second preset sub of the E-CCE2
  • the carrier set is the 4th to the 6th subcarriers on the 2nd time slot;
  • the first preset subcarrier set of the E-CCE3 is the ninth to the 9th subcarriers in the 1st time slot of the E-PDCCH available RE,
  • the number of REs occupied by E-CCE1 and E-CCE3 is 27, and the number of REs occupied by E-CCE2 and E-CCE4 is 25. It may be assumed that REs occupied by each E-CCE are assumed. If the difference is less than the threshold 5, it is not difficult to see that each E-CCE occupies a similar number of REs and has a relatively balanced performance. Or, as shown in Figure 6, the number of REs occupied by the DMRS is 24, and there is no PDCCH domain. According to the method shown in the figure, four E-CCEs are mapped into the RB pair, and are still recorded as E-CCE1, E-CCE2, E-CCE3, and E-CCE4.
  • the first preset subcarrier set of the E-CCE1 401 is the first to third subcarriers in the first slot of the E-PDCCH available RE
  • the second preset subcarrier set of the E-CCE1 is the second.
  • the ninth to the 9th subcarriers on the slot; the first preset subcarrier set of the E-CCE2 is the 10th to 12th subcarriers on the 1st time slot of the E-PDCCH available RE, and the second preamble of the E-CCE2
  • Let the subcarrier set be the 4th to 6th subcarriers on the 2nd time slot;
  • the first preset subcarrier set of the E-CCE3 is the ⁇ 9 to 9th of the 1st time slot in the E-PDCCH available RE
  • the 4th to 6th subcarriers on the time slot and the second preset subcarrier set of the E-CCE4 are the 10th to 12th subcarriers on the 2nd time slot. It can be calculated that the number of REs occupied by E-CCE 1, E-CCE2, E-CCE3, and E-CCE4 thus mapped is equal. It can be seen that E-CCE1 ⁇ E-CCE4 can be made by mapping the E-CCE1 E-CCE4 to the different subcarriers on the RB pair in the first time slot and the second time slot respectively. The number of REs occupied is equal Or as close as possible and the mapping method is simple, so that the transmission performance of E-CCE1 and E-CCE2 is relatively balanced.
  • the above example is only a mapping method including four E-CCEs, and there may be three E-CCEs.
  • the mapping method, and the time-frequency resource location actually occupied by the pilot also undergoes a certain transformation, as shown in FIG. 7 and is not limited thereto.
  • Only the first preset frequency domain to which each E-CCE is mapped needs to be guaranteed.
  • the set of subcarriers and the second set of preset frequency domain subcarriers do not coincide at all, and the first time domain symbol set mapped to each E-CCE does not coincide with the second time domain symbol set, and the first preset frequency is not coincident.
  • the number of subcarriers occupied by the domain subcarrier set and the second preset frequency domain subcarrier set are respectively preset according to the system configuration and the distribution of the pilot symbol RS in the actual transmission condition, so as to ensure that each E-CCE occupies
  • the number of REs is the same or the difference is less than a preset threshold.
  • the base station sends an RB pair that carries the E-CCE to the user equipment. Further, the base station sends the bearer to the user equipment by using a single antenna port, or multiple antenna multiplexing or spatial diversity.
  • the RB pair of the E-CCE is different.
  • the antenna port used by each E-CCE that constitutes the E-PDCCH is set according to different system configurations and actual transmission conditions, such as pre-E-CCE for each E-CCE on port 7 ⁇ 10. Set the corresponding antenna port.
  • the RB pair contains two E-CCEs, denoted as E-CCE1 and E-CCE2. If the current E-PDCCH is transmitted through a single antenna port, the time-frequency resource occupied by the E-CCE1 is transmitted.
  • the port port 7 of the E-CCE is transmitted as the preset port of the E-CCE1.
  • the port 8 of the E-CCE transmitted on the time-frequency resource location occupied by the E-CCE2 is sent as the preset port of the E-CCE2.
  • E-CCE1 uses port 8
  • E-CCE2 uses port 7. If the E-PDCCH on the current RB pair is transmitted in the multi-antenna multiplexing mode, the port 7 and port 8 of the E-CCE transmitted on the time-frequency resource location occupied by the E-CCE1 are used as the preset ports of the E-CCE1.
  • Port 9 and port 10 of the E-CCE transmitted on the time-frequency resource location occupied by E-CCE2 are sent as the preset ports of E-CCE2.
  • E-CCE1 uses port 9 and port 10
  • E-CCE2 uses port 7 and port 8.
  • the port 7 and port 9 of the E-CCE transmitted on the time-frequency resource position occupied by the E-CCE1 are transmitted as the preset port of the E-CCE1; and the time-frequency resource occupied by the E-CCE2 is transmitted.
  • Port 8 and port 10 of the E-CCE are sent as the default ports of the E-CCE2.
  • each E-CCE transmission needs to be transmitted by N antenna ports, where W ⁇ 2
  • the port 7 and port 8 of the E-CCE transmitted at the time-frequency resource location occupied by the E-CCE1 serve as the two preset ports of the E-CCE1; the E-CCE transmitted at the time-frequency resource location occupied by the E-CCE2 Port 9 and port 10 are the two default ports for E-CCE2, or E-CCE1 can also use port8 and port 10, while E-CCE2 uses port 7 and port.
  • the selection of the above antenna port is for example only and is not limited.
  • the time-frequency resource location of the E-CCE transmitted in the entire RB pair may also be sent by using two fixed preset ports, for example, fixed port 7 and port 8 are Preset port, send £-0 £ and £-0 £2 through 011 7 and 011 8; or, always use port 7 and port at the time-frequency resource location of the E-CCE transmitted in the entire RB pair 9 is a fixed preset port.
  • the RB pair includes four E-CCEs, it is referred to as E-CCE1, E-CCE2, E-CCE3, and E-CCE4.
  • the port 7 of the E-CCE transmitted on the time-frequency resource location occupied by the E-CCE1 is sent as the preset port of the E-CCE1; similarly, the E-CCE2 Use port 8, E-CCE3 uses port 9, E-CCE4 uses port 10. It should be noted that the one-to-one mapping relationship of the ports 7-10 occupied by the E-CCE1 to E-CCE4 can be arbitrarily changed, and there is no limitation. If the current E-PDCCH is transmitted in a spatial diversity manner, that is, each E-CCE transmission needs to be transmitted using two antenna ports.
  • the frequency resource locations of the E-CCEs transmitted in the entire RB pair are always sent using port 7 and port 8, that is, port 7 and port 8 are fixed as two preset ports to E-CCE1, E-CCE2, E- CCE3 and E-CCE4 are sent.
  • the frequency resource location of the E-CCE transmitted in the entire RB pair can also be always transmitted using port 7 and port 9, and is not limited thereto.
  • the base station respectively maps one or more E-CCEs to a corresponding first resource subset and second resource subset in a resource set, and each first resource subset and The second resource subset occupies a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by the E-CCEs is less than a preset threshold.
  • the device demodulates the E-CCE on a set of resources according to the same common rule and receives it.
  • mapping position of the base station to each E-CCE is preset according to the current system, the resources occupied by each E-CCE are the same or similar, thereby ensuring each E on a resource set of control channel resource transmission. - CCE performance is balanced to ensure E-CCE scheduling and reception performance.
  • the user equipment demodulates one or more E-CCEs mapped in a resource set, where the E-CCE is demodulated on the first resource subset and the second resource subset corresponding to each E-CCE, respectively.
  • the first resource subset occupies the first time domain symbol set in the time domain, and occupies the first preset frequency domain subcarrier set in the frequency domain
  • the second resource subset occupies the second time domain symbol set in the time domain.
  • the second preset frequency domain subcarrier set is occupied in the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by each E-CCE is less than a preset threshold, and the E-CCE is carried on the E-CCE. Transfer on the collection of resources.
  • the base station demodulates the E-CCE according to the same rules known to the base station, such as the number and distribution of the well-known E-CCEs, and various RS distributions, among which the base station demodulates the E-CCE.
  • the rules that are well known to both parties are described in detail in the method of mapping the above embodiments, and are not developed here.
  • the user equipment receives, according to the demodulated E-CCE, a resource set that carries the E-CCE sent by the base station. Further, the base station determines, according to the current transmission mode and the preset transmission rule, the antenna port used by each E-CCE in the current resource set, and transmits the corresponding E-CCE through the preset antenna port, so the user equipment is The channel used for demodulating the E-CCE is also channel estimation corresponding to the DMRS corresponding to the transmitted antenna port.
  • the base station maps one or more E-CCEs to the corresponding first resource subset and the second resource subset respectively in a resource set, and each first resource subset And the second resource subset occupies a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by each of the E-CCEs is less than a preset threshold.
  • the user equipment demodulates the E-CCE on a set of resources according to the same common rule and receives it.
  • mapping the mapping position of the base station to each E-CCE is preset according to the current system, the resources occupied by each E-CCE are the same or similar, thereby ensuring each E on a resource set of control channel resource transmission. - CCE performance is balanced to ensure E-CCE scheduling and reception performance.
  • the method for mapping the control channel resources provided by the embodiment of the present invention is described by using the RB pair as an example, and is not limited thereto. As shown in FIG. 9, the method steps include:
  • the user equipment demodulates the corresponding E-CCEs in the first resource sub-set and the second resource sub-set corresponding to each E-CCE in an RB pair, where the first preset frequency domain sub-carrier set Belonging to a collection of resources In the first time slot, the first resource subset occupies the first time slot of the RB pair in the time domain, and occupies the first preset frequency domain subcarrier set in the frequency domain, and the second resource subset occupies in the time domain.
  • the second time slot of the RB pair occupies a second preset frequency domain subcarrier set in the frequency domain, where the first preset frequency domain subcarrier set does not coincide with the second preset frequency domain subcarrier set, the first time The slot does not coincide with the second time slot, and the E-CCE is carried on the RB pair for transmission.
  • the base station uses a single antenna port to transmit, and the antenna port port7 of the E-CCE transmitted on the time-frequency resource location occupied by the E-CCE1 is used as the preset port of the E-CCE1, correspondingly, the user equipment
  • the channel used for demodulating the E-CCE1 is also used for channel estimation by the DMRS corresponding to the port 7; the base station uses the port 8 of the E-CCE transmitted at the time-frequency resource position occupied by the E-CCE2 as the E-CCE2.
  • the preset port is sent.
  • the channel used by the user equipment to demodulate the E-CCE2 is also used for channel estimation by the DMRS corresponding to the port 8.
  • E-CCE1 uses port 8
  • E-CCE2 uses port 7.
  • the port 7 and port 8 of the E-CCE transmitted on the time-frequency resource position occupied by the E-CCE1 are transmitted as the preset port of the E-CCE1, and accordingly, the user equipment
  • the channel used in demodulating the E-CCE1 is also channel estimation using the DMRS corresponding to port 7 and port 8.
  • the base station sends the port 9 and port 10 of the E-CCE transmitted on the time-frequency resource position occupied by the E-CCE2 as the preset port of the E-CCE2, and accordingly, the user equipment uses the E-CCE2 when demodulating the E-CCE2.
  • the channel is also channel estimated using the DMRS corresponding to port 9 and port 10.
  • E-CCE1 uses port 9 and port 10
  • E-CCE2 uses port 7 and port 8. If the base station transmits in space diversity mode, that is, each E-CCE transmission needs to be transmitted by using at least two antenna ports, it is assumed that each E-CCE transmission needs to be transmitted by using two antenna ports, and the base station will occupy E-CCE1.
  • Port 7 and port 8 of the E-CCE transmitted at the time-frequency resource location serve as two preset ports of the E-CCE1; correspondingly, the channel used by the user equipment to demodulate the E-CCE1 is also used by port 7 and The DMRS corresponding to port 8 performs channel estimation; the base station uses port 9 and 0!1 10 of the E-CCE transmitted at the time-frequency resource position occupied by E-CCE2 as two preset ports of £-0 £, correspondingly The channel used by the user equipment to demodulate the E-CCE2 is also used for channel estimation by using the DMRS corresponding to port 9 and port 10.
  • the base station transmits in the space diversity manner, and the time-frequency resource location of the E-CCE transmitted in the entire RB pair is always sent by using two fixed preset ports, for example, the fixed port 9 and the port 10 are preset ports, correspondingly
  • the channel used by the user equipment to demodulate the information transmitted on the time-frequency resource is also used for channel estimation by using the DMRS corresponding to port 9 and port 10. It should be noted that, since the user equipment is configured to demodulate the mapped E-CCE by using a preset rule that is known to the base station, the mapping position of the E-CCE is consistent with the method preset by the base station, and details are not described herein again.
  • the user equipment receives the RB pair that carries the E-CCE sent by the base station according to the demodulated E-CCE.
  • the control channel resource transmission method provided by the embodiment of the present invention, the base station maps one or more E-CCEs to the corresponding first resource subset and the second resource subset respectively in a resource set, and each first resource subset And the second resource subset occupies a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by each of the E-CCEs is less than a preset threshold.
  • the user equipment demodulates the E-CCE on a set of resources according to the same common rule and receives it.
  • the mapping position of the base station to each E-CCE is preset according to the current system, the resources occupied by each E-CCE are the same or similar, thereby ensuring each E on a resource set of control channel resource transmission. - CCE performance is balanced to ensure E-CCE scheduling and reception performance.
  • the base station 50 provided by the embodiment of the present invention, as shown in FIG.
  • a mapping unit 501 configured to map one or more E-CCEs into a resource set, where each E-CCE is mapped to a corresponding first On a resource subset and a second resource subset, the first resource subset occupies the first time domain symbol set in the time domain, and occupies the first preset frequency domain subcarrier set in the frequency domain, and the second resource subset The second time domain symbol set is occupied in the time domain, and the second preset frequency domain subcarrier set is occupied in the frequency domain, so that each E-CCE occupies the same resource size or the resource size occupied by each E-CCE. The difference is less than the preset threshold, and the E-CCE is carried on the resource set for transmission.
  • the sending unit 502 is configured to send, to the user equipment, a resource set that carries the E-CCE. Further, the sending unit 502 is specifically configured to send, by using a single antenna port, the resource set mapped with the E-CCE to the user equipment 60, where the only preset port used by each E-CCE is sent. Or for transmitting, by the multi-antenna multiplexing, to the user equipment 60, a resource set mapped with an E-CCE to form an E-PDCCH, where each E-CCE uses one or more preset ports to transmit.
  • the base station 50 can be operated by using the method provided by the foregoing embodiment, and the working method is the same as that provided by the embodiment, and details are not described herein again.
  • the base station maps one or more E-CCEs to a corresponding first resource subset and second resource subset, respectively, in a resource set, and each of the first resource subset and the second resource sub-
  • the set occupies a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by the E-CCEs is less than a preset threshold, so that the user equipment follows
  • the same common rule demodulates the E-CCE on a set of resources and receives it.
  • the user equipment 60 provided by the embodiment of the present invention, as shown in FIG. 11, includes: a demodulation unit 601, configured to demodulate one or more E-CCEs mapped in a resource set, where each E- The first resource subset and the second resource subset corresponding to the CCE demodulate the E-CCE, and the first resource subset occupies the first time domain symbol set in the time domain, and occupies the first preset frequency domain in the frequency domain.
  • the receiving unit 602 is configured to receive, according to the demodulated E-CCE, a resource set that carries the E-CCE sent by the base station.
  • the demodulation unit 601 is specifically configured to perform demodulation using a unique preset port of each E-CCE, and the receiving unit 602 is specifically configured to send, according to the E-CCE demodulated by the single antenna port, the receiving base station 50.
  • the mapping has a set of resources in which the E-CCE constitutes an E-PDCCH.
  • the demodulation unit 601 is specifically configured to perform demodulation by using one or more preset ports of each E-CCE
  • the receiving unit 602 is specifically configured to send, according to the E-CCE, which is demodulated by multiple antenna multiplexing, by the receiving base station 50.
  • the mapping has a set of resources in which the E-CCE constitutes an E-PDCCH.
  • the demodulation unit 601 is specifically configured to perform demodulation by using two preset ports of each E-CCE, Or demodulating all the E-CCEs by using two fixed preset ports; the receiving unit 602 is specifically configured to: according to the E-CCE demodulated by the spatial diversity manner, the mapping sent by the receiving base station 50 has an E-CCE component E- The resource set of the PDCCH.
  • the user equipment 60 as shown in FIG. 12, further includes: a channel estimation unit 603, configured to demodulate each E-CCE by using a demodulation unit before the receiving unit receives the resource set carrying the E-CCE sent by the base station. The channel estimation is performed by the demodulation pilot DMRS corresponding to the preset port.
  • the user equipment 60 can be operated by using the method provided by the foregoing embodiment, and the working method is the same as that provided by the embodiment, and details are not described herein again.
  • the base station maps one or more E-CCEs to the corresponding first resource subset and the second resource subset, respectively, in a resource set, and each of the first resource subset and the second resource The subset occupies a specific area in the time domain and the frequency domain, so that the occupied resource size of each E-CCE is the same or the difference between the resource sizes occupied by the respective E-CCEs is less than a preset threshold, so that the user
  • the device demodulates the E-CCE on a set of resources according to the same common rule and receives it.

Abstract

本发明实施例提供一种控制信道资源传输方法、基站及用户设备,涉及通信领域,能够保证一个资源集合上的各个E-CCE性能均衡,进而保证E-CCE的调度与接收性能。一种控制信道资源传输方法,包括:基站将一个以上增强控制信道单元E-CCE映射到一个资源集合中,其中,分别将每个E-CCE映射到对应的第一资源子集合和第二资源子集合上,以使得每个E-CCE的占用的资源大小相同或各个E-CCE占用的资源大小之差小于预设阈值,E-CCE承载于资源集合上进行传输;向用户设备发送承载E-CCE的资源集合;用户设对资源集合解调,并接收。本发明实施例用于资源的传输。

Description

一种控制信道资源传输方法、 基站及用户设备
本申请要求于 2012年 2月 10日提交中国专利局、 申请号为 CN 201210030103.3、 发明名称为"一种控制信道资源传输方法、基站及用户设备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信领域, 尤其涉及一种控制信道资源传输方法、 基站及用户设备。 背景技术 在长期演进(Long Term Evolution, 简称 LTE )通信系统的下行传输中, 基站, 如 eNB ( evolved Node Base, 演进型基站) 根据调度的结果为每个被调度的用户设备发送 PDSCH (Physical Downlink Shared Channel, 物理下行共享信道) 以及对应的 PDCCH (Physical Downlink Control Channel, 物理下行控制信道)。 其中, PDSCH承载着 eNB发送给被调度的用户设备的数据, PDCCH承载着其对 应的 PDSCH的调度信息。 该调度信息主要用来指示与其对应的 PDSCH的传输格式信 息。 PDCCH和 PDSCH是时分复用在一个子帧中。其中 PDCCH是在子帧的前几个 OFDM (Orthogonal Frequency Division Multiplexing , 正交频分复用)符号中传输的, 剩余的 OFDM符号则用来传输 PDSCH。 在一个子帧中, 所有被调度的用户设备的 PDCCH复 用在一起, 然后在 PDCCH区域发送, 而 PDSCH在 PDSCH区域发送, 其中, PDCCH 和 PDSCH都有特定的时域和频域, PDCCH区域指 PDCCH在时域和频域上占用的区域, PDSCH区域为 PDSCH在时域和频域上占用的区域。 在 LTE系统的进一步演进中,由于需要支持 MU-MIMO( Multiple User Multiple Input Multiple Output, 多用户设备多输入多输出) 以及 CoMP(Coordinated Multi-Point, 多点 协作传输)来提高系统的性能等技术的使用, 而这些技术使得同时调度用户设备数的增 力口; 但是 PDCCH的容量有限, 限制了一个子帧所能调度用户设备的个数。 所以, 现有 技术对 PDCCH进行了增强, 在原有的 PDSCH 区域划分出一部分资源来传输增强的 PDCCH, 即 E-PDCCH (Enhanced-Physical Downlink Control Channel), 这样就可以提高 PDCCH控制信道的容量,即提高同时调度用户设备的个数,其中, E-PDCCH是由 E-CCE (Enhance-Control Channel Element , 增强控制信道单元) 组成。 但是由于在在 LTE的系统中, 承载 E-PDCCH资源单位是 RB pair (Resource Block pair, 资源块对)。 每一个 RB pair在频域上占 12个子载波, 时域上占用一个子帧, 即 2 个时隙 (slot)。 而 E-PDCCH的可用的资源是每个 RB pair中除去 PDCCH域和各种 RS (Reference Signal, 导频符号) 占用之外的 RE (Resource Element, 资源单元) 的集合, 每个 RB pair中可以承载多个 E-CCE。 由于各种 RS在 RB pair中的分布不均匀, 可能导 致各个 E-CCE所占的资源数不同或差别较大, 从而导致各个 E-CCE的性能不均衡, 影 响 E-CCE调度或接收性能。 发明内容 本发明提供一种控制信道资源传输方法、 基站及用户设备, 能够保证控制信道资源 传输的一个资源集合上的各个 E-CCE性能均衡, 进而保证 E-CCE的调度与接收性能。 本发明一方面提供一种控制信道资源传输方法, 包括: 将一个以上增强控制信道单元 E-CCE 映射到一个资源集合中, 其中, 分别将每个 所述 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 所述第一资源子集合 在时域上占用第一个时域符号集合, 在频域上占用第一预设频域子载波集合, 所述第二 资源子集合在时域上占用第二个时域符号集合, 在频域上占用第二预设频域子载波集 合, 以使得每个所述 E-CCE的占用的资源大小相同或各个所述 E-CCE占用的资源大小 之差小于预设阈值, 所述 E-CCE承载于所述资源集合上进行传输; 向用户设备发送承载所述 E-CCE的所述资源集合。 本发明另一方面, 提供一种控制信道资源传输方法, 包括: 对映射在一个资源集合中的一个以上增强控制信道单元 E-CCE进行解调, 其中, 分别在每个所述 E-CCE对应的第一资源子集合和第二资源子集合上解调所述 E-CCE, 所述第一资源子集合在时域上占用第一个时域符号集合,在频域上占用第一预设频域子 载波集合, 所述第二资源子集合在时域上占用第二个时域符号集合, 在频域上占用第二 预设频域子载波集合,以使得每个所述 E-CCE的占用的资源大小相同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 所述 E-CCE承载于所述资源集合上进行传输; 根据解调的所述 E-CCE接收基站发送的承载所述 E-CCE的所述资源集合。 本发明另一方面, 提供一种基站, 包括: 映射单元, 用于将一个以上增强控制信道单元 E-CCE 映射到一个资源集合中, 其 中, 分别将每个所述 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 所述 第一资源子集合在时域上占用第一个时域符号集合,在频域上占用第一预设频域子载波 集合, 所述第二资源子集合在时域上占用第二个时域符号集合, 在频域上占用第二预设 频域子载波集合, 以使得每个所述 E-CCE的占用的资源大小相同或各个所述 E-CCE占 用的资源大小之差小于预设阈值, 所述 E-CCE承载于所述资源集合上进行传输; 发送单元, 用于向用户设备发送承载所述 E-CCE的所述资源集合。 本发明另一方面, 提供一种用户设备, 包括: 解调单元, 用于对映射在一个资源集合中的一个以上增强控制信道单元 E-CCE进 行解调, 其中, 分别在每个所述 E-CCE对应的第一资源子集合和第二资源子集合上解 调所述 E-CCE, 所述第一资源子集合在时域上占用第一个时域符号集合, 在频域上占用 第一预设频域子载波集合, 所述第二资源子集合在时域上占用第二个时域符号集合, 在 频域上占用第二预设频域子载波集合, 以使得每个所述 E-CCE 的占用的资源大小相同 或各个所述 E-CCE占用的资源大小之差小于预设阈值, 所述 E-CCE承载于所述资源集 合上进行传输; 接收单元, 用于根据解调的所述 E-CCE接收基站发送的承载所述 E-CCE的所述资 源集合。 本发明提供的控制信道资源传输方法、 基站及用户设备, 基站在一个资源集合中分 别将一个以上 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 每个第一资 源子集合和第二资源子集都在时域和频域上占用特定的区域, 以使得每个 E-CCE 的占 用的资源大小相同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 用户设备按 照同样的共知规则在一个资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的 映射位置根据当前系统情况进行了预先设定, 使得每个 E-CCE 的占用的资源大小相同 或相近, 从而保证控制信道资源传输的一个资源集合上的各个 E-CCE性能均衡, 进而 确保 E-CCE的调度与接收性能。 附图说明 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其 他的附图。 图 1为本发明实施例提供的控制信道资源传输方法流程示意图; 图 2为现有技术中提供的一个资源集合中的导频符号分布的结构示意图; 图 3为本发明实施例提供的多个 E-CCE复用在一个资源集合的结构示意图; 图 4为本发明实施例提供的另 控制信道资源传说方法流程示意图; 图 5为本发明实施例提供的另 多个 E-CCE复用在一个资源集合上的结构示意图; 图 6为本发明实施例提供的又 多个 E-CCE复用在一个资源集合上的结构示意图; 图 7为本发明实施例提供的再 多个 E-CCE复用在一个资源集合上的结构示意图; 图 8为本发明实施例提供的另 控制信道资源传输方法流程示意图; 图 9为本发明实施例提供的又 控制信道资源传输方法流程示意图; 图 10为本发明实施例提供的基站的结构示意图; 图 11为本发明实施例提供的用户设备的结构示意图; 图 12为本发明实施例提供的另一用户设备的结构示意图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。 本发明实施例提供的控制信道资源传输方法, 如图 1所示, 该方法步骤包括:
5101、 基站将一个以上 E-CCE映射到一个资源集合中, 其中, 分别将每个 E-CCE 映射到对应的第一资源子集合和第二资源子集合上,第一资源子集合在时域上占用第一 个时域符号集合, 在频域上占用第一预设频域子载波集合, 第二资源子集合在时域上占 用第二个时域符号集合, 在频域上占用第二预设频域子载波集合, 以使得每个 E-CCE 的占用的资源大小相同或各个 E-CCE占用的资源大小之差小于预设阈值, E-CCE承载 于资源集合上进行传输。 值得指出的是,基站根据系统配置和实际传输情况,依据不同的导频符号分布情况, 每个 E-CCE 的两个资源子集合的第一预设频域子载波集合和第二预设频域子载波集合 包含的子载波个数及位置进行设定, 使得一个资源集合上映射的各个 E-CCE 占用资源 相等, 或者各个 E-CCE占用资源差小于一个预设阈值, 如各个 E-CCE占用的 RE个数 相等或各个 E-CCE占用的 RE个数差小于 5。 示例性的, 当基站需要在一个资源集合, 如一个 RB pair上映射承载着 E-CCE1和 E-CCE2, RB pair中所包含的 RS包括 DMRS (Demodulation Reference Signal, 解调导 频) 禾 P CRS ( Cell-specific Reference Signal , 小区导频信号)。 如果简单地将 E-CCE1 放在子载波 1〜6上, E-CCE2放在子载波 7〜12上, 如图 2所示, 则可见 E-CCE1和 E-CCE2所占用的 RE个数不相同。为了获得均衡的 E-CCE性能, 使得各个 E-CCE所占 的资源大小如占用的 RE个数尽量相近, 可以按照对角化的方式将 E-CCE1和 E-CCE2 映射到 RB pair中, 如图 3所示, 使 E-CCE1占用 E-PDCCH可用 RE中的第 1个时隙上 的第 1~6子载波和第 2个时隙上的第 7~12子载波, 使 E-CCE占用 E-PDCCH可用 RE 中的第 1个时隙上的第 Ί〜Υ1子载波和第 2个时隙上的第 1~6子载波。 其中, RS包括 DMRS ( Demodulation Reference Signal , 解调导频) 禾口 CRS ( Cell-specific Reference Signal , 小区导频信号)。 这样一来, 映射的 E-CCE1和 E-CCE2所占用的 RE数相等。
5102、 基站向用户设备发送承载 E-CCE的资源集合。 值得指出的是, 基站根据当前传输方式或预先设定的传输规则, 确定当前资源集合 中的各个 E-CCE 对应使用的天线端口个数及位置, 通过预设天线端口传输相应的 E-CCE,以使得用户设备在解调该 E-CCE时所使用的信道亦使用发送的天线端口所对应 的 DMRS进行信道估计。 本发明实施例提供的控制信道资源传输方法,基站在一个资源集合中分别将一个以 上 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 每个第一资源子集合和 第二资源子集都在时域和频域上占用特定的区域, 以使得每个 E-CCE 的占用的资源大 小相同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 用户设备按照同样的共 知规则在一个资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的映射位置根 据当前系统情况进行了预先设定, 使得每个 E-CCE 的占用的资源大小相同或相近, 从 而保证控制信道资源传输的一个资源集合上的各个 E-CCE性能均衡, 进而确保 E-CCE 的调度与接收性能。 本发明另一实施例提供的控制信道资源映射方法,本实施例以资源集合为资源块对 RB pair, 每个所述 E-CCE映射到对应的第一资源子集合在时域上占用的第一个时域符 号集合为第 1个时隙 shot, 第二个时域符号集合为第 2个时隙 shot举例说明, 但并不以 此做任何限定, 如图 4所示, 该方法步骤包括:
S20K 基站将一个以上 E-CCE映射到一个 RB pair中, 分别将每个 E-CCE映射到 对应的第一资源子集合和第二资源子集合上, 其中, 第一资源子集合在时域上占用第一 个时域符号集合为 RB pair的第 1个时隙,第二预设子载波集合属于 RB pair的第 2个时 隙, 第一资源子集合在频域上占用第一预设频域子载波集合, 第二资源子集合在频域上 占用第二预设频域子载波集合, 且第 1个时隙与第 2个时隙不重合, 第一预设频域子载 波集合与第二预设频域子载波集合不重合。 值得指出的是,在 LTE系统中, E-CCE是承载于 RB pair上的 RE进行传输的, E-CCE 组成 E-PDCCH,所以每个 E-CCE的占用的资源大小可以按照每个 E-CCE占用的 RE个 数比较得到, 由于系统配置或实际传输情况存在差异, 各种 RS占用的 RE个数与位置 会影响到每个 E-CCE的占用的 RE个数, 所以不同的系统中, 确定每个 RB pair包含的 E-CCE 个数时, 可以预先设定不同 E-CCE 占用的子载波位置与个数, 从而保证每个 E-CCE的占用的 RE相同或各个 E-CCE占用的 RE个数之差小于预设阈值, 进而保证 E-CCE性能稳定。 示例性的, 每个 RB pair中复用 4个 E-CCE时, 如图 5和图 6所示方法可以使得 4 个 E-CCE所占用的 RE个数相同或相近。 如图 5, DMRS占用的 RE个数为 12, PDCCH域占用第一个时隙的前 3个 OFDM 符号,并存在 CRS。根据图示方法将 4个 E-CCE记作 E-CCE1、E-CCE2、E-CCE3、E-CCE4 映射到 RB pair中,其中每个 E-CCE映射到对应的第一资源子集合和第二资源子集合上, 第一资源子集合在时域上占用第 1个时隙,在频域上各自占用如下第一预设频域子载波 集合, 第二资源子集合在时域上占用第 2个时隙, 在频域上占用如下第二预设频域子载 波集合。
E-CCE1 的第一预设子载波集合为 E-PDCCH可用 RE中的第 1个时隙上的第 1~3 子载波、 E-CCE1的第二预设子载波集合为第 2个时隙上的第 Ί〜9子载波; E-CCE2的 第一预设子载波集合为 E-PDCCH可用 RE中的第 1个时隙上的第 10 12子载波、 E-CCE2 的第二预设子载波集合为第 2个时隙上的第 4~6子载波; E-CCE3的第一预设子载波集 合为 E-PDCCH可用 RE中的第 1个时隙上的第 Ί〜9子载波、 E-CCE3的第二预设子载波 集合为第 2个时隙上的第 1~3子载波; E-CCE4的第一预设子载波集合为 E-PDCCH可 用 RE中的第 1个时隙上的第 4~6子载波、 E-CCE4的第二预设子载波集合为第 2个时 隙上的第 10~12子载波。 通过图示不难算出, 这样映射的 E-CCE1和 E-CCE3所占用的 RE数为 27, E-CCE2和 E-CCE4所占用的 RE数为 25,不妨假设各个 E-CCE占用的 RE 个数差小于阈值 5,那么不难看出, 每个 E-CCE的占用的 RE个数相近, 性能较为均衡。 或者, 如图 6所示, DMRS占用的 RE个数为 24, 没有 PDCCH域。 根据如图所示 方法将 4个 E-CCE映射到 RB pair中, 依然记作 E-CCE1、 E-CCE2、 E-CCE3、 E-CCE4。
E-CCE1 401的第一预设子载波集合为 E-PDCCH可用 RE中的第 1个时隙上的第 1~3 子载波、 E-CCE1的第二预设子载波集合为第 2个时隙上的第 Ί〜9子载波; E-CCE2的 第一预设子载波集合为 E-PDCCH可用 RE中的第 1个时隙上的第 10~12子载波、 E-CCE2 的第二预设子载波集合为第 2个时隙上的第 4~6子载波; E-CCE3的第一预设子载波集 合为 E-PDCCH可用 RE中的第 1个时隙上的第 Ί〜9子载波、 E-CCE3的第二预设子载波 集合为第 2个时隙上的第 1~3子载波; E-CCE4的第一预设子载波集合为 E-PDCCH可 用 RE中的第 1个时隙上的第 4~6子载波、 E-CCE4的第二预设子载波集合为第 2个时 隙上的第 10~ 12子载波。可以算出,通过这样映射的 E-CCE 1、 E-CCE2、 E-CCE3和 E-CCE4 所占用的 RE数相等。 由此可以看出,通过上述将 E-CCE1〜E-CCE4在第 1个时隙和第 2个时隙上分别映 射到 RB pair上不同子载波的方法, 可以使得 E-CCE1〜E-CCE4所占用的 RE个数相等 或尽量相近且映射方法简单, 从而使 E-CCE1和 E-CCE2的传输性能比较均衡, 上述举 例仅以包含 4个 E-CCE的一种映射方式举例,也可以存在包括 3个 E-CCE的映射方法, 且导频实际占用的时频资源位置也会发生一定的变换,如图 7所示并不以此做任何限定, 只需要保证每个 E-CCE 映射到的第一预设频域子载波集合和第二预设频域子载波集合 完全不重合, 每个 E-CCE 映射到的第一个时域符号集合与第二个时域符号集合也不重 合, 且第一预设频域子载波集合和第二预设频域子载波集合占用的子载波个数根据系统 配置和实际传输情况下的导频符号 RS的分布情况而分别预先设定, 以保证各个 E-CCE 占用的 RE个数相同或相差小于预设阈值。
S202、 基站向用户设备发送承载 E-CCE的 RB pair。 进一步的, 基站通过单天线口、 或多天线复用或空间分集方式向用户设备发送承载
E-CCE的 RB pair, 不同的是, 每个组成 E-PDCCH的 E-CCE使用的天线端口根据不同 的系统配置和实际传输情况而设置, 如在 port7~10上为每个 E-CCE预先设定对应的天 线端口。 示例性的, RB pair上包含 2个 E-CCE、 记作 E-CCE1、 E-CCE2。 如当前 E-PDCCH通过单天线口发送, 则将 E-CCE1所占的时频资源位置上传输的
E-CCE的天线端口 port7作为 E-CCE1的预设端口进行发送; 将 E-CCE2所占的时频资 源位置上传输的 E-CCE的 port 8作为 E-CCE2的预设端口进行发送。反之亦然, E-CCE1 使用 port 8, 而 E-CCE2使用 port 7。 如果当前 RB pair上的 E-PDCCH通多天线复用的方式发送, 则将 E-CCE1所占的 时频资源位置上传输的 E-CCE的 port7和 port 8作为 E-CCE1的预设端口进行发送; 将 E-CCE2所占的时频资源位置上传输的 E-CCE的 port 9和 port 10作为 E-CCE2的预设端 口进行发送。反之亦然, E-CCE1使用 port 9和 port 10,而 E-CCE2使用 port 7和 port 8。 或, 则将 E-CCE1所占的时频资源位置上传输的 E-CCE的 port7和 port 9作为 E-CCE1 的预设端口进行发送; 将 E-CCE2所占的时频资源位置上传输的 E-CCE的 port 8和 port 10作为 E-CCE2的预设端口进行发送。 如果当前 E-PDCCH通过空间分集方式传输, 即每个 E-CCE传输需要用 N个天线 端口进行传输, 其中 W≥2, 如每个 E-CCE传输需要用 2个天线端口进行传输, 则将 E-CCE1所占的时频资源位置上传输的 E-CCE的 port 7和 port 8作为 E-CCE1的 2个预 设端口;将 E-CCE2所占的时频资源位置上传输的 E-CCE的 port 9和 port 10作为 E-CCE2 的 2个预设端口, 或 E-CCE1也可以使用 port8和 port 10,而 E-CCE2使用 port 7和 port
9等其他的方式进行设定, 反之亦然。 上述天线端口的选择仅用来举例, 并不做任何限 定。 又或者, 当前 E-PDCCH通过空间分集方式传输时, 整个 RB pair内传输 E-CCE的 时频资源位置上也可以始终使用两个固定的预设端口进行发送, 如固定 port 7和 port 8 为预设端口, 将£-0 £1和£-0 £2都通过 011 7和 011 8进行发送; 或, 整个 RB pair 内传输 E-CCE的时频资源位置上也可以始终使用 port 7和 port 9为固定的预设端口。 进一步的,若 RB pair上包含 4个 E-CCE、记作 E-CCE1、E-CCE2、E-CCE3、E-CCE4。 则如果当前 E-PDCCH通过单天线口传输, 则将 E-CCE1所占的时频资源位置上传 输的 E-CCE的 port 7作为 E-CCE1的预设端口进行发送; 同样地, E-CCE2使用 port 8, E-CCE3使用 port 9, E-CCE4使用 port 10。需要说明的是, E-CCE1〜E-CCE4所占的 port 7-10的一一映射关系可以任意变化, 并不存在任何的限定。 如果当前 E-PDCCH通过空间分集方式传输,即每个 E-CCE传输需要用 2个天线端 口进行发送。 则将整个 RB pair内传输 E-CCE的频资源位置上始终使用 port 7和 port 8 进行发送,即将 port 7和 port 8作为固定的两个预设端口对 E-CCE1、 E-CCE2、 E-CCE3、 E-CCE4进行发送。 同样地, 整个 RB pair内传输 E-CCE的频资源位置上也可以始终使 用 port 7和 port 9进行传输, 并不以此做任何限定。 本发明实施例提供的控制信道资源传输方法,基站在一个资源集合中分别将一个以 上 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 每个第一资源子集合和 第二资源子集都在时域和频域上占用特定的区域, 以使得每个 E-CCE 的占用的资源大 小相同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 用户设备按照同样的共 知规则在一个资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的映射位置根 据当前系统情况进行了预先设定, 使得每个 E-CCE 的占用的资源大小相同或相近, 从 而保证控制信道资源传输的一个资源集合上的各个 E-CCE性能均衡, 进而确保 E-CCE 的调度与接收性能。 本发明又一实施例提供的控制信道资源映射方法, 如图 8所示, 该方法步骤包括:
5301、 用户设备对映射在一个资源集合中的一个以上 E-CCE进行解调, 其中, 分 别在每个 E-CCE对应的第一资源子集合和第二资源子集合上解调 E-CCE, 第一资源子 集合在时域上占用第一个时域符号集合, 在频域上占用第一预设频域子载波集合, 第二 资源子集合在时域上占用第二个时域符号集合, 在频域上占用第二预设频域子载波集 合, 以使得每个 E-CCE的占用的资源大小相同或各个 E-CCE占用的资源大小之差小于 预设阈值, E-CCE承载于资源集合上进行传输。 值得指出的是,基站根据系统配置和实际传输情况,依据与基站共知的相同的规则, 如共知的 E-CCE的个数及分布情况、各种 RS分布等解调 E-CCE,其中双方共知的规则 在上述实施例映射的方法中详细描述, 在此不再展开。
5302、 用户设备根据解调的 E-CCE接收基站发送的承载 E-CCE的资源集合。 进一步的, 由于基站根据当前传输方式以及预先设定的传输规则, 确定当前资源集 合中的各个 E-CCE使用的天线端口, 并通过该预设天线端口传输相应的 E-CCE, 所以 用户设备在解调该 E-CCE时所使用的信道也是对应发送的天线端口所对应的 DMRS进 行信道估计。 本发明实施例提供的控制信道资源传输方法, 由于基站在一个资源集合中分别将一 个以上 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 每个第一资源子集 合和第二资源子集都在时域和频域上占用特定的区域, 以使得每个 E-CCE 的占用的资 源大小相同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 用户设备按照同样 的共知规则在一个资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的映射位 置根据当前系统情况进行了预先设定, 使得每个 E-CCE的占用的资源大小相同或相近, 从而保证控制信道资源传输的一个资源集合上的各个 E-CCE性能均衡,进而确保 E-CCE 的调度与接收性能。 本发明再一实施例提供的控制信道资源映射方法, 本实施例以资源集合为 RB pair 为例进行说明, 并不以此做任何限定, 如图 9所示, 该方法步骤包括:
S401、用户设备在一个 RB pair中分别在每个 E-CCE对应的第一资源子集合和第二 资源子集合上解调对应的各个 E-CCE, 其中, 第一预设频域子载波集合属于资源集合的 第 1个时隙, 第一资源子集合在时域上占用 RB pair的第 1个时隙, 在频域上占用第一 预设频域子载波集合, 第二资源子集合在时域上占用 RB pair的第 2个时隙, 在频域上 占用第二预设频域子载波集合,第一预设频域子载波集合与第二预设频域子载波集合不 重合, 第 1个时隙与第 2个时隙也不重合, 且 E-CCE承载于 RB pair上进行传输。 示例性的, 如果基站使用单天线口传输, 且将 E-CCE1所占的时频资源位置上传输 的 E-CCE的天线端口 port7作为 E-CCE1的预设端口进行发送, 相应地, 用户设备在解 调该 E-CCE1 时所使用的信道也是用 port 7所对应的 DMRS 进行信道估计; 基站将 E-CCE2所占的时频资源位置上传输的 E-CCE的 port 8作为 E-CCE2的预设端口进行发 送, 相应地, 用户设备在解调该 E-CCE2时所使用的信道也是用 port 8所对应的 DMRS 进行信道估计。 反之亦然, E-CCE1使用 port 8, 而 E-CCE2使用 port 7。 如果基站使用多天线复用的方式传输, 且将 E-CCE1所占的时频资源位置上传输的 E-CCE的 port7和 port 8作为 E-CCE1的预设端口进行发送, 相应地, 用户设备在解调 该 E-CCE1时所使用的信道也是用 port 7和 port 8所对应的 DMRS进行信道估计。基站 将 E-CCE2所占的时频资源位置上传输的 E-CCE的 port 9和 port 10作为 E-CCE2的预 设端口进行发送, 相应地, 用户设备在解调该 E-CCE2时所使用的信道也是用 port 9和 port 10所对应的 DMRS进行信道估计。 反之亦然, E-CCE1使用 port 9和 port 10, 而 E-CCE2使用 port 7禾 P port 8。 如果基站通过空间分集方式传输, 即每个 E-CCE传输需要用至少 2个天线端口进 行传输, 不妨假设每个 E-CCE传输需要用 2个天线端口进行传输, 且基站将 E-CCE1 所占的时频资源位置上传输的 E-CCE的 port 7和 port 8作为 E-CCE1的两个预设端口; 相应地, 用户设备在解调该 E-CCE1 时所使用的信道也是用 port 7和 port 8所对应的 DMRS进行信道估计; 基站将 E-CCE2所占的时频资源位置上传输的 E-CCE的 port 9 和 0!1 10作为£-0 £2的两个预设端口, 相应地, 用户设备在解调该 E-CCE2时所使用 的信道也是用 port 9和 port 10所对应的 DMRS进行信道估计。 或者, 基站通过空间分集方式传输, 且将整个 RB pair内传输 E-CCE的时频资源位 置上始终使用两个固定的预设端口进行发送,如固定 port 9和 port 10为预设端口,相应 地, 用户设备在解调该时频资源上所传输的信息时所使用的信道也是用 port 9和 port 10 所对应的 DMRS进行信道估计。 需要说明的是, 由于用户设备是使用与基站共知的预设规则解调映射的 E-CCE的, 那么 E-CCE的映射位置与基站预设的方法一致, 此处不再赘述。
S402、 用户设备根据解调的 E-CCE接收基站发送的承载 E-CCE的 RB pair。 本发明实施例提供的控制信道资源传输方法, 由于基站在一个资源集合中分别将一 个以上 E-CCE 映射到对应的第一资源子集合和第二资源子集合上, 每个第一资源子集 合和第二资源子集都在时域和频域上占用特定的区域, 以使得每个 E-CCE 的占用的资 源大小相同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 用户设备按照同样 的共知规则在一个资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的映射位 置根据当前系统情况进行了预先设定, 使得每个 E-CCE的占用的资源大小相同或相近, 从而保证控制信道资源传输的一个资源集合上的各个 E-CCE性能均衡,进而确保 E-CCE 的调度与接收性能。 本发明实施例提供的基站 50, 如图 10所示, 包括: 映射单元 501, 用于将一个以上 E-CCE映射到一个资源集合中, 其中, 分别将每个 E-CCE映射到对应的第一资源子集合和第二资源子集合上,第一资源子集合在时域上占 用第一个时域符号集合, 在频域上占用第一预设频域子载波集合, 第二资源子集合在时 域上占用第二个时域符号集合, 在频域上占用第二预设频域子载波集合, 以使得每个 E-CCE的占用的资源大小相同或各个 E-CCE占用的资源大小之差小于预设阈值, E-CCE 承载于资源集合上进行传输。 发送单元 502, 用于向用户设备发送承载 E-CCE的资源集合。 进一步的,发送单元 502,具体用于通过单天线口向用户设备 60发送映射有 E-CCE 的资源集合, 其中, 每个 E-CCE分别使用的唯一预设端口进行发送。 或者用于通过多天线复用向用户设备 60发送映射有 E-CCE组成 E-PDCCH的资源 集合, 其中, 每个 E-CCE分别使用的一个以上预设端口进行发送。 或者具体用于通过空间分集方式向用户设备 60发送映射有 E-CCE组成 E-PDCCH 的资源集合, 其中, 各个 E-CCE分别使用的两个预设端口进行传输或所有 E-CCE都使 用固定的两个预设端口进行发送。 本基站 50可以使用上述实施例提供的方法进行工作, 工作方法与实施例提供的方 法相同, 在此不再赘述。 本发明实施例提供的基站, 基站在一个资源集合中分别将一个以上 E-CCE 映射到 对应的第一资源子集合和第二资源子集合上, 每个第一资源子集合和第二资源子集都在 时域和频域上占用特定的区域, 以使得每个 E-CCE 的占用的资源大小相同或各个所述 E-CCE占用的资源大小之差小于预设阈值,以使得用户设备按照同样的共知规则在一个 资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的映射位置根据当前系统情 况进行了预先设定, 使得每个 E-CCE 的占用的资源大小相同或相近, 从而保证控制信 道资源传输的一个资源集合上的各个 E-CCE性能均衡, 进而确保 E-CCE的调度与接收 性能。 本发明实施例提供的用户设备 60, 如图 11所示, 包括: 解调单元 601, 用于对映射在一个资源集合中的一个以上 E-CCE进行解调, 其中, 分别在每个 E-CCE对应的第一资源子集合和第二资源子集合上解调 E-CCE, 第一资源 子集合在时域上占用第一个时域符号集合, 在频域上占用第一预设频域子载波集合, 第 二资源子集合在时域上占用第二个时域符号集合,在频域上占用第二预设频域子载波集 合, 以使得每个 E-CCE的占用的资源大小相同或各个 E-CCE占用的资源大小之差小于 预设阈值, E-CCE承载于资源集合上进行传输。 接收单元 602, 用于根据解调的所述 E-CCE接收基站发送的承载 E-CCE的资源集 合。 示例性的,解调单元 601,具体用于分别使用各个 E-CCE的唯一预设端口进行解调; 接收单元 602, 具体用于根据通过单天线口解调的 E-CCE, 接收基站 50发送的映 射有 E-CCE组成 E-PDCCH的资源集合。 或者,解调单元 601,具体用于分别使用各个 E-CCE的一个以上预设端口进行解调; 接收单元 602, 具体用于根据通过多天线复用解调的 E-CCE, 接收基站 50发送的 映射有 E-CCE组成 E-PDCCH的资源集合。 再或者, 解调单元 601, 具体用于分别使用各个 E-CCE的两个预设端口进行解调, 或使用固定的两个预设端口对所有 E-CCE进行解调; 接收单元 602, 具体用于根据通过空间分集方式解调的 E-CCE, 接收基站 50发送 的映射有 E-CCE组成 E-PDCCH的资源集合。 进一步的, 用户设备 60, 如图 12所示, 还包括: 信道估计单元 603, 用于在接收单元接收基站发送的承载 E-CCE的资源集合之前, 使用解调单元解调每个 E-CCE时的预设端口对应的解调导频 DMRS进行信道估计。 本用户设备 60可以使用上述实施例提供的方法进行工作, 工作方法与实施例提供 的方法相同, 在此不再赘述。 本发明实施例提供的基站, 由于基站在一个资源集合中分别将一个以上 E-CCE 映 射到对应的第一资源子集合和第二资源子集合上, 每个第一资源子集合和第二资源子集 都在时域和频域上占用特定的区域,, 以使得每个 E-CCE的占用的资源大小相同或各个 所述 E-CCE 占用的资源大小之差小于预设阈值, 以使得用户设备按照同样的共知规则 在一个资源集合上解调 E-CCE, 并接收。 由于基站对每个 E-CCE的映射位置根据当前 系统情况进行了预先设定, 使得每个 E-CCE 的占用的资源大小相同或相近, 从而保证 控制信道资源传输的一个资源集合上的各个 E-CCE性能均衡, 进而确保 E-CCE的调度 与接收性能。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应 涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围 为准。

Claims

权利要求
1、 一种控制信道资源传输方法, 其特征在于, 包括: 将一个以上增强控制信道单元 E-CCE映射到一个资源集合中, 其中, 分别 将每个所述 E-CCE映射到对应的第一资源子集合和第二资源子集合上, 所述第 —资源子集合在时域上占用第一个时域符号集合, 在频域上占用第一预设频域 子载波集合, 所述第二资源子集合在时域上占用第二个时域符号集合, 在频域 上占用第二预设频域子载波集合, 以使得每个所述 E-CCE的占用的资源大小相 同或各个所述 E-CCE 占用的资源大小之差小于预设阈值, 所述 E-CCE承载于 所述资源集合上进行传输; 向用户设备发送承载所述 E-CCE的所述资源集合。
2、 根据权利要求 1所述方法, 其特征在于, 每个所述第一资源子集合的所 述第一个时域符号集合与所述第二资源子集合的所述第二个时域符号集合不重 合
3、 根据权利要求 1所述方法, 其特征在于, 每个所述第一资源子集合的所 述第一预设频域子载波集合与所述第二资源子集合的所述第二预设频域子载波 集合不重合。
4、 根据权利要求 1至 3任一所述方法, 其特征在于, 所述第一资源子集合 的所述第一频域预设子载波集合和所述第二资源子集合的所述第二预设频域子 载波集合包含的子载波个数根据当前系统中导频符号 RS 在资源集合中的分布 而分别设定。
5、 根据权利要求 1所述方法, 其特征在于, 所述向用户设备发送承载所述 E-CCE的所述资源集合包括: 通过单天线口向所述用户设备发送承载所述 E-CCE 的所述资源集合, 其 中, 每个所述 E-CCE分别使用的唯一预设端口进行发送。
6、 根据权利要求 1所述方法, 其特征在于, 所述向用户设备发送承载所述
E-CCE的所述资源集合包括: 通过多天线复用向所述用户设备发送承载所述 E-CCE的所述资源集合,其 中, 每个所述 E-CCE分别使用一个以上预设端口进行发送。
7、 根据权利要求 1所述方法, 其特征在于, 所述向用户设备发送承载所述 E-CCE的所述资源集合包括: 通过空间分集方式向所述用户设备发送承载所述 E-CCE的所述资源集合, 其中, 各个所述 E-CCE分别使用 N个预设端口进行传输,或所有所述 E-CCE都 使用固定的 N个预设端口进行发送, 其中 N为大于或等于 2的整数。
8、 根据权利要求 7所述方法, 其特征在于, 所有所述 E-CCE都使用固定 的 N个预设端口进行发送包括: 所有所述 E-CCE都使用端口 7和端口 8进行发送, 或所有所述 E-CCE都 使用端口 7和端口 9进行发送。
9、 一种控制信道资源传输方法, 其特征在于, 包括: 对映射在一个资源集合中的一个以上增强控制信道单元 E-CCE进行解调, 其中, 分别在每个所述 E-CCE对应的第一资源子集合和第二资源子集合上解调 所述 E-CCE, 所述第一资源子集合在时域上占用第一个时域符号集合, 在频域 上占用第一预设频域子载波集合, 所述第二资源子集合在时域上占用第二个时 域符号集合, 在频域上占用第二预设频域子载波集合, 以使得每个所述 E-CCE 的占用的资源大小相同或各个所述 E-CCE占用的资源大小之差小于预设阈值, 所述 E-CCE承载于所述资源集合上进行传输; 根据解调的所述 E-CCE接收基站发送的承载所述 E-CCE的所述资源集合。
10、 根据权利要求 9所述方法, 其特征在于, 每个所述第一资源子集合的 所述第一个时域符号集合与所述第二资源子集合的所述第二个时域符号集合不 重合。
1 1、 根据权利要求 9所述方法, 其特征在于, 每个所述第一资源子集合的 所述第一预设频域子载波集合与所述第二资源子集合的所述第二预设频域子载 波集合不重合。
12、 根据权利要求 9至 1 1任一所述方法, 其特征在于, 所述第一资源子集 合的所述第一预设频域子载波集合和所述第二资源子集合的所述第二预设频域 子载波集合包含的子载波个数根据当前系统中导频符号 RS 在资源集合中的分 布而分别确定。
13、 根据权利要求 9所述方法, 其特征在于, 所述根据解调的所述 E-CCE 接收基站发送的承载所述 E-CCE的所述资源集合包括: 根据通过单天线口解调的所述 E-CCE , 接收所述基站发送的承载所述 E-CCE的所述资源集合, 其中, 各个所述 E-CCE分别使用的唯一预设端口进行 解调。
14、 根据权利要求 9所述方法, 其特征在于, 所述根据解调的所述 E-CCE 接收基站发送的承载所述 E-CCE的所述资源集合包括: 根据通过多天线复用解调的所述 E-CCE , 接收所述基站发送的承载所述 E-CCE的所述资源集合, 其中, 各个所述 E-CCE分别使用一个以上预设端口进 行解调。
15、 根据权利要求 9所述方法, 其特征在于, 所述根据解调的所述 E-CCE 接收基站发送的承载所述 E-CCE的所述资源集合包括: 根据通过空间分集方式解调的所述 E-CCE, 接收所述基站发送的承载所述 E-CCE的所述资源集合, 其中, 各个所述 E-CCE分别使用 N个预设端口进行 解调, 或所有所述 E-CCE都使用固定的 N个预设端口进行解调, 其中 N为大 于或等于 2的整数。
16、 根据权利要求 15所述方法, 其特征在于, 所有所述 E-CCE都使用固 定的 N个预设端口进行解调包括: 所有所述 E-CCE都使用端口 7和端口 8进行解调, 或所有所述 E-CCE都 使用端口 7和端口 9进行解调。
17、 根据权利要求 13至 16任一所述方法, 其特征在于, 所述接收基站发 送的承载所述 E-CCE的所述资源集合之前, 还包括: 使用每个所述 E-CCE解调时的预设端口对应的解调导频 DMRS进行信道 估计。
18、 一种基站, 其特征在于, 包括: 映射单元,用于将一个以上增强控制信道单元 E-CCE映射到一个资源集合 中, 其中, 分别将每个所述 E-CCE映射到对应的第一资源子集合和第二资源子 集合上, 所述第一资源子集合在时域上占用第一个时域符号集合, 在频域上占 用第一预设频域子载波集合, 所述第二资源子集合在时域上占用第二个时域符 号集合, 在频域上占用第二预设频域子载波集合, 以使得每个所述 E-CCE的占 用的资源大小相同或各个所述 E-CCE占用的资源大小之差小于预设阈值, 所述 E-CCE承载于所述资源集合上进行传输; 发送单元, 用于向用户设备发送承载所述 E-CCE的所述资源集合。
19、 根据权利要求 18所述基站, 其特征在于, 包括: 所述发送单元, 具体用于通过单天线口向所述用户设备发送承载所述 E-CCE的所述资源集合, 其中, 每个所述 E-CCE分别使用的唯一预设端口进行 发送。
20、 根据权利要求 18所述基站, 其特征在于, 包括: 所述发送单元, 具体用于通过多天线复用向所述用户设备发送承载所述 E-CCE的所述资源集合, 其中, 每个所述 E-CCE分别使用一个以上预设端口进 行发送。
21、 根据权利要求 18所述基站, 其特征在于, 包括: 所述发送单元, 具体用于通过空间分集方式向所述用户设备发送承载所述 E-CCE的所述资源集合, 其中, 各个所述 E-CCE分别使用 N个预设端口进行 传输,或所有所述 E-CCE都使用固定的 N个预设端口进行发送, 其中 N为大于 或等于 2的整数。
22、 一种用户设备, 其特征在于, 包括: 解调单元, 用于对映射在一个资源集合中的一个以上增强控制信道单元 E-CCE进行解调, 其中, 分别在每个所述 E-CCE对应的第一资源子集合和第二 资源子集合上解调所述 E-CCE, 所述第一资源子集合在时域上占用第一个时域 符号集合, 在频域上占用第一预设频域子载波集合, 所述第二资源子集合在时 域上占用第二个时域符号集合, 在频域上占用第二预设频域子载波集合, 以使 得每个所述 E-CCE的占用的资源大小相同或各个所述 E-CCE 占用的资源大小 之差小于预设阈值, 所述 E-CCE承载于所述资源集合上进行传输; 接收单元, 用于根据解调的所述 E-CCE 接收基站发送的承载所述 E-CCE 的所述资源集合。
23、 根据权利要求 22所述用户设备, 其特征在于, 包括: 所述解调单元, 具体用于分别使用各个所述 E-CCE的唯一预设端口进行解 调; 所述接收单元, 具体用于根据通过单天线口解调的所述 E-CCE, 接收所述 基站发送的承载所述 E-CCE的所述资源集合。
24、 根据权利要求 22所述用户设备, 其特征在于, 包括: 所述解调单元, 具体用于分别使用各个所述 E-CCE的一个以上预设端口进 行解调; 所述接收单元, 具体用于根据通过多天线复用解调的所述 E-CCE, 接收所 述基站发送的承载所述 E-CCE的所述资源集合。
25、 根据权利要求 22所述用户设备, 其特征在于, 包括: 所述解调单元,具体用于分别使用各个所述 E-CCE的 N个预设端口进行解 调, 或使用固定的 N个预设端口对所有所述 E-CCE进行解调, 其中 N为大于 或等于 2的整数; 所述接收单元, 具体用于根据通过空间分集方式解调的所述 E-CCE, 接收 所述基站发送的承载所述 E-CCE的所述资源集合。
26、 根据权利要求 22至 25任一所述用户设备, 其特征在于, 还包括: 信道估计单元, 用于在所述接收单元接收所述基站发送的承载所述 E-CCE 的所述资源集合之前, 使用所述解调单元解调每个所述 E-CCE时的所述预设端 口对应的解调导频 DMRS进行信道估计。
PCT/CN2013/071607 2012-02-10 2013-02-16 一种控制信道资源传输方法、基站及用户设备 WO2013117171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13746059.8A EP2806680B1 (en) 2012-02-10 2013-02-16 Method, base station, and user equipment for transmitting control channel resources
US14/455,050 US9571238B2 (en) 2012-02-10 2014-08-08 Control channel resource transmission method, base station and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210030103.3A CN103249087B (zh) 2012-02-10 2012-02-10 一种控制信道资源传输方法、基站及用户设备
CN201210030103.3 2012-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/455,050 Continuation US9571238B2 (en) 2012-02-10 2014-08-08 Control channel resource transmission method, base station and user equipment

Publications (1)

Publication Number Publication Date
WO2013117171A1 true WO2013117171A1 (zh) 2013-08-15

Family

ID=48928252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071607 WO2013117171A1 (zh) 2012-02-10 2013-02-16 一种控制信道资源传输方法、基站及用户设备

Country Status (4)

Country Link
US (1) US9571238B2 (zh)
EP (1) EP2806680B1 (zh)
CN (1) CN103249087B (zh)
WO (1) WO2013117171A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836377A (zh) * 2019-08-12 2020-10-27 维沃移动通信有限公司 一种调度方法、网络设备及终端

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160270038A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues
CN106535333B (zh) * 2015-09-11 2019-12-13 电信科学技术研究院 一种物理下行控制信道传输方法及装置
CN108141336B (zh) * 2015-09-29 2020-10-30 Lg电子株式会社 用于接收dci的方法和ue以及用于发送dci的方法和基站
CN111328150B (zh) * 2015-12-24 2023-04-07 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置
CN107370586B (zh) * 2016-05-13 2021-02-05 电信科学技术研究院 一种信道传输方法及装置
CN109891966B (zh) * 2016-11-03 2023-05-30 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
CN108419293B (zh) * 2017-02-10 2021-05-18 华为技术有限公司 传输下行控制信息的方法和装置
CN108631979B (zh) * 2017-03-24 2022-09-06 中兴通讯股份有限公司 一种解调导频的处理方法及装置
CN112512122B (zh) * 2017-05-04 2022-04-08 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN110999386B (zh) * 2017-08-11 2022-04-12 华为技术有限公司 一种通信方法及相关设备
US20220346099A1 (en) * 2021-04-21 2022-10-27 Qualcomm Incorporated Configuring a time domain control resource set for single carrier waveforms

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222260A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输控制信令的设备和方法
WO2008111808A1 (en) * 2007-03-13 2008-09-18 Samsung Electronics Co., Ltd. Methods for transmitting multiple acknowledgments in single carrier fdma systems
CN101478379A (zh) * 2009-01-20 2009-07-08 中兴通讯股份有限公司 物理上行控制信道的发送方法及用户设备
WO2010101411A2 (en) * 2009-03-03 2010-09-10 Lg Electronics Inc. Method and apparatus for transmitting harq ack/nack signal in multi-antenna system
US20110116455A1 (en) * 2009-05-04 2011-05-19 Qualcomm Incorporated Transmission of feedback information for data transmissions on multiple carriers
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2589892C2 (ru) * 2011-02-11 2016-07-10 Интердиджитал Пэйтент Холдингз, Инк Системы и способы для расширенного канала управления
US9008035B2 (en) * 2011-09-29 2015-04-14 Futurewei Technologies, Inc. Wireless communication control channel systems and methods
WO2013058624A1 (en) * 2011-10-20 2013-04-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information in a wireless communication system
US9179456B2 (en) * 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222260A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输控制信令的设备和方法
WO2008111808A1 (en) * 2007-03-13 2008-09-18 Samsung Electronics Co., Ltd. Methods for transmitting multiple acknowledgments in single carrier fdma systems
CN101478379A (zh) * 2009-01-20 2009-07-08 中兴通讯股份有限公司 物理上行控制信道的发送方法及用户设备
WO2010101411A2 (en) * 2009-03-03 2010-09-10 Lg Electronics Inc. Method and apparatus for transmitting harq ack/nack signal in multi-antenna system
US20110116455A1 (en) * 2009-05-04 2011-05-19 Qualcomm Incorporated Transmission of feedback information for data transmissions on multiple carriers
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2806680A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836377A (zh) * 2019-08-12 2020-10-27 维沃移动通信有限公司 一种调度方法、网络设备及终端
CN111836377B (zh) * 2019-08-12 2023-09-22 维沃移动通信有限公司 一种调度方法、网络设备及终端

Also Published As

Publication number Publication date
CN103249087B (zh) 2016-08-10
EP2806680A1 (en) 2014-11-26
CN103249087A (zh) 2013-08-14
US9571238B2 (en) 2017-02-14
EP2806680A4 (en) 2014-12-10
EP2806680B1 (en) 2019-10-16
US20140355559A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
WO2013117171A1 (zh) 一种控制信道资源传输方法、基站及用户设备
CA2853003C (en) Method and apparatus for transmitting and receiving control information in a wireless communication system
CN103348750B (zh) Dl控制信道结构增强
JP6307434B2 (ja) 無線通信システムで制御情報送信のための方法及び装置
CN102611524B (zh) 一种传输信息的方法、系统及设备
US9942888B2 (en) Sending method and apparatus for enhanced physical downlink control channel
WO2015018246A1 (zh) 一种物理下行共享信道传输的方法、系统和网络侧设备
WO2014073671A1 (ja) 端末装置、通信方法および集積回路
WO2014032544A1 (zh) 一种物理下行共享信道的传输方法及系统
WO2011134377A1 (zh) 一种配置解调参考信号的方法、装置及系统
WO2014048076A1 (zh) 控制信息发送方法、接收方法和设备
CN104798329A (zh) 用于发送数据的方法和设备以及用于发送数据的方法和设备
CN106031065A (zh) 一种非正交多址接入传输方法、基站及ue
WO2013067937A1 (zh) 上行参考信号的发送方法、用户设备和基站
WO2013097120A1 (zh) 下行控制信道的搜索空间的映射方法和装置
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
WO2014169839A1 (zh) 同步信号的处理方法、装置及系统、信道估计方法及装置
KR102317129B1 (ko) 복조 참조 신호 오버헤드 감소를 위한 시스템 및 방법
WO2013020491A1 (zh) 一种导频信号发送方法和设备
WO2014048249A1 (zh) 一种下行控制信息的处理装置及方法
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
WO2014086313A1 (zh) 信道状态信息参考信号的传输方法和设备
WO2013063988A1 (zh) 一种传输信息的方法、系统和设备
WO2014169824A1 (zh) 一种物理多播信道的配置、发送和接收方法及系统
WO2014015699A1 (zh) 新载波参考信号发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013746059

Country of ref document: EP