WO2013115204A1 - Information processing system, information processing method, information processing device, and control method and control program therefor, and communication terminal, and control method and control program therefor - Google Patents

Information processing system, information processing method, information processing device, and control method and control program therefor, and communication terminal, and control method and control program therefor Download PDF

Info

Publication number
WO2013115204A1
WO2013115204A1 PCT/JP2013/051955 JP2013051955W WO2013115204A1 WO 2013115204 A1 WO2013115204 A1 WO 2013115204A1 JP 2013051955 W JP2013051955 W JP 2013051955W WO 2013115204 A1 WO2013115204 A1 WO 2013115204A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
local feature
landscape
local
landscape element
Prior art date
Application number
PCT/JP2013/051955
Other languages
French (fr)
Japanese (ja)
Inventor
野村 俊之
山田 昭雄
岩元 浩太
亮太 間瀬
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013556426A priority Critical patent/JP6131859B2/en
Publication of WO2013115204A1 publication Critical patent/WO2013115204A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]

Definitions

  • This invention relates to the technique for identifying the landscape element containing the building in the image
  • Patent Document 1 discloses a technique in which feature amounts extracted from a plurality of images of a building are compared with feature amounts in a database, the degree of match is comprehensively evaluated, and related information on a specified building is obtained. Is described.
  • Patent Document 2 describes a technique for improving the recognition speed by clustering feature amounts when a query image is recognized using a model dictionary generated in advance from a model image.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • a system provides: M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • First local feature quantity storage means for storing the quantity in association with each other; N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • the image in the video A landscape element recognition means for recognizing that the landscape element exists in It is characterized by providing.
  • the method according to the present invention comprises: M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • An information processing method in an information processing system including first local feature storage means for storing a quantity in association with each other, N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a second local feature generation step of generating the second local feature of A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number.
  • an apparatus provides: N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • Second local feature quantity generating means for generating the second local feature quantity of First transmission means for transmitting the m second local feature amounts to an information processing apparatus that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
  • First receiving means for receiving information indicating a landscape element included in the captured image from the information processing apparatus; It is characterized by providing.
  • the method according to the present invention comprises: N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a second local feature generation step of generating the second local feature of A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
  • a program provides: N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a second local feature generation step of generating the second local feature of A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
  • an apparatus provides: M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • First local feature quantity storage means for storing the quantity in association with each other; N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points.
  • Second receiving means for receiving the second local feature amount from the communication terminal; A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number.
  • the method according to the present invention comprises: M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • a method for controlling an information processing apparatus including first local feature storage means for storing a quantity in association with each other, N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points.
  • a second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number.
  • a program provides: M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • a control program for an information processing device including first local feature storage means for storing the amount in association with each other, N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points.
  • a smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number.
  • a landscape element including a building in an image in a video can be recognized in real time.
  • FIG. 1 It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 4th Embodiment of this invention. It is a sequence diagram which shows the operation
  • landscape element used in the present specification includes a landscape element that forms a natural landscape such as a mountain, a building that forms an artificial landscape, and the like.
  • the information processing system 100 is a system that recognizes landscape elements in real time.
  • the information processing system 100 includes a first local feature quantity storage unit 110, a second local feature quantity generation unit 130, and a landscape element recognition unit 140.
  • storage part 110 was produced
  • the m first local feature quantities 112 made up of feature vectors are stored in association with each other.
  • the second local feature quantity generation unit 130 extracts n feature points 131 from the image 101 in the video captured by the imaging unit 120.
  • the second local feature value generation unit 130 for n local regions 132 including each of the n feature points, n second local feature values 133 each consisting of a feature vector from 1 dimension to j dimension. Is generated.
  • the landscape element recognition unit 140 selects a smaller number of dimensions from the dimension number i of the feature vector of the first local feature 112 and the dimension j of the feature vector of the second local feature 133. Then, the landscape element recognition unit 140 adds the m first local feature amounts including the feature vectors up to the selected number of dimensions to the n second local feature amounts 133 including the feature vectors up to the selected number of dimensions.
  • a landscape element including a building in an image in a video can be recognized in real time.
  • a landscape element in a video is recognized by collating a local feature generated from a landscape image captured by a communication terminal with a local feature stored in the local feature DB of the landscape element recognition server. To do. Then, the recognized landscape element is notified by adding its name, related information, and / or link information.
  • the name, related information, and / or link information can be notified in association with a landscape element including a building in the image in the image in real time.
  • FIG. 2 is a block diagram illustrating a configuration of the information processing system 200 according to the present embodiment.
  • the information processing system 200 in FIG. 2 includes a communication terminal 210 having an imaging function, a landscape element recognition server 220 that recognizes a landscape element from a landscape captured by the communication terminal 210, and a communication terminal.
  • 210 includes related information and a related information providing server 230 that provides the related information.
  • the communication terminal 210 displays the captured landscape on the display unit. And each name of the landscape element recognized by the landscape element recognition server 220 based on the local feature-value produced
  • the landscape element recognition server 220 includes a local feature DB 221 that stores a landscape element and a local feature in association with each other, a related information DB 222 that stores related information in association with a landscape element, and link information that corresponds to a landscape element.
  • the landscape element recognition server 220 returns the name of the landscape element recognized based on the collation with the local feature amount of the local feature amount DB 221 from the local feature amount of the landscape received from the communication terminal 210.
  • related information such as introduction corresponding to the landscape element recognized from the related information DB 222 is searched and returned to the communication terminal 210.
  • the link information to the related information provision server 230 corresponding to the landscape element recognized from the link information DB 223 is searched and returned to the communication terminal 210.
  • the name of the landscape element, the related information corresponding to the landscape element, and the link information for the landscape element may be provided separately or may be provided simultaneously.
  • the related information providing server 230 has a related information DB 231 that stores related information corresponding to landscape elements. Access is made based on the link information provided corresponding to the landscape element recognized by the landscape element recognition server 220. And the related information corresponding to the recognized landscape element is searched from the related information DB 231 and returned to the communication terminal 210 that transmitted the local feature amount of the landscape including the landscape information. Therefore, although one related information providing server 230 is shown in FIG. 2, as many related information providing servers 230 are connected to the link destination. In that case, selection of an appropriate link destination by the landscape element recognition server 220 or a plurality of link destinations is displayed on the communication terminal 210 and selection by the user is performed.
  • FIG. 2 the example which superimposes and displays a name on the landscape element in the imaged landscape was illustrated.
  • the display of the related information corresponding to the landscape element and the link information for the landscape element will be described with reference to FIG.
  • FIG. 3 is a diagram illustrating a display screen example of the communication terminal 210 in the information processing system 200 according to the present embodiment.
  • the upper part of FIG. 3 is an example of a display screen that displays related information corresponding to a landscape element.
  • the display screen 310 of FIG. 3 includes a captured landscape image 311 and operation buttons 312.
  • a landscape element is recognized by collation with the local feature-value produced
  • FIG. As a result, on the display screen 320 in the upper right diagram, a video 321 in which a landscape video, a landscape element name, and related information are superimposed is displayed.
  • the related information may be output by voice through the speaker 322.
  • the lower part of FIG. 3 is an example of a display screen that displays link information corresponding to a landscape element.
  • a landscape element is recognized by collating the local feature amount generated from the video in the lower left figure with the local feature amount DB 221 of the landscape element recognition server 220.
  • an image 331 in which a landscape image, a landscape element name, and link information are superimposed is displayed.
  • the linked related information providing server 230 is accessed, and the related information retrieved from the related information DB 231 is displayed on the communication terminal 210, or the communication terminal 210 receives audio. Output.
  • FIGS. 4 and 5 Operation procedure of information processing system 200 in the present embodiment will be described with reference to FIGS. 4 and 5.
  • the display example of only the recognized landscape element name is not shown in FIGS. 4 and 5
  • the landscape element name may be transmitted to the communication terminal 210 after the landscape element recognition.
  • the display of a landscape element name, related information, and link information can be realized by combining FIG. 4 and FIG.
  • FIG. 4 is a sequence diagram showing an operation procedure of related information notification in the information processing system 200 according to the present embodiment.
  • step S400 an application and / or data is downloaded from the landscape element recognition server 220 to the communication terminal 210.
  • step S401 the application is activated and initialized to perform the processing of this embodiment.
  • step S403 the communication terminal captures a landscape and acquires a video.
  • step S405 a local feature amount is generated from the landscape image.
  • step S407 the local feature amount is encoded together with the feature point coordinates.
  • the encoded local feature is transmitted from the communication terminal to the landscape element recognition server 220 in step S409.
  • the landscape element recognition server 220 refers to the local feature DB 221 generated and stored for the landscape element image in step S411 to recognize the landscape element in the landscape. Then, in step S413, the related information is acquired with reference to the related information DB 222 corresponding to the recognized landscape element. In step S415, the landscape element name and the related information are transmitted from the landscape element recognition server 220 to the communication terminal 210.
  • step S417 the communication terminal 210 notifies the received landscape element name and related information (see the upper part of FIG. 3).
  • the landscape element name is displayed, and the related information is displayed or output as audio.
  • FIG. 5 is a sequence diagram showing an operation procedure of link information notification in the information processing system 200 according to the present embodiment.
  • the same step number is attached
  • steps S400 and S401 although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
  • the landscape element recognition server 220 that recognizes the landscape element in the landscape from the local feature amount of the video received from the communication terminal 210 in step S411 corresponds to the recognized landscape element with reference to the link information DB 223 in step S513. Get link information.
  • the landscape element name and the link information are transmitted from the landscape element recognition server 220 to the communication terminal 210.
  • step S517 the communication terminal 210 displays the received landscape element name and link information superimposed on the landscape video (see the lower part of FIG. 3).
  • step S519 an instruction from the user of link information is awaited. If there is a user's link destination instruction, in step S521, the related information providing server 230 that is the link destination is accessed with a landscape element ID.
  • step S523 the related information providing server 230 acquires related information (including document data and audio data) from the related information DB 231 using the received landscape element ID.
  • step S525 the related information is returned to the access source communication terminal 210.
  • the communication terminal 210 that has received the reply of the related information displays or outputs the received related information in step S527.
  • FIG. 6 is a block diagram illustrating a functional configuration of the communication terminal 210 according to the present embodiment.
  • the imaging unit 601 inputs a landscape video as a query image.
  • the local feature value generation unit 602 generates a local feature value from the landscape video from the imaging unit 601.
  • the local feature amount transmission unit 603 encodes the generated local feature amount together with the feature point coordinates by the encoding unit 603a and transmits the encoded local feature amount to the landscape element recognition server 220 via the communication control unit 604.
  • the landscape element recognition result receiving unit 605 receives a landscape element recognition result from the landscape element recognition server 220 via the communication control unit 604. And the display screen production
  • the related information receiving unit 607 receives related information via the communication control unit 604. Then, the display screen generation unit 606 and the sound generation unit 698 generate a display screen and sound data of the received related information and notify the user. Note that the related information received by the related information receiving unit 607 includes related information from the landscape element recognition server 220 or related information from the related information providing server 230.
  • the link information receiving unit 609 receives link information from the related information providing server 230 via the communication control unit 604. Then, the display screen generation unit 606 generates a display screen of the received link information and notifies the user.
  • the link destination access unit 610 accesses the link destination related information providing server 230 based on the click of link information by an operation unit (not shown).
  • the landscape element recognition result receiving unit 605, the related information receiving unit 607, and the link information receiving unit 609 are not provided, but are provided as one information receiving unit that receives information received via the communication control unit 604. Also good.
  • FIG. 7 is a block diagram illustrating a functional configuration of the landscape element recognition server 220 according to the present embodiment.
  • the local feature receiving unit 702 decodes the local feature received from the communication terminal 210 via the communication control unit 701 by the decoding unit 702a.
  • the landscape element recognition unit 703 recognizes the landscape element by collating the received local feature amount with the local feature amount of the local feature amount DB 221 storing the local feature amount corresponding to the landscape element.
  • the landscape element recognition result transmission unit 704 transmits a landscape element recognition result (landscape element name) to the communication terminal 210.
  • the related information acquisition unit 705 refers to the related information DB 222 and acquires related information corresponding to the recognized landscape element.
  • the related information transmission unit 706 transmits the acquired related information to the communication terminal 210.
  • the landscape element recognition server 220 transmits related information, it is desirable to transmit the landscape element recognition result and the related information as a single transmission data as illustrated in FIG. 4 because communication traffic is reduced.
  • the link information acquisition unit 707 refers to the link information DB 223 and acquires link information corresponding to the recognized landscape element.
  • the link information transmission unit 708 transmits the acquired link information to the communication terminal 210.
  • the landscape element recognition server 220 transmits the landscape element recognition result, the related information, and the link information, it is possible to reduce the communication traffic by transmitting all the information after transmitting it as a single transmission data. desirable.
  • the configuration of the related information providing server 230 includes various linkable providers, and a description of the configuration is omitted.
  • FIG. 8 is a diagram illustrating a configuration of the local feature DB 221 according to the present embodiment. Note that the present invention is not limited to such a configuration.
  • the local feature DB 221 stores a first local feature 803, a second local feature 804, ..., an mth local feature 805 in association with the landscape element ID 801 and the name / direction 802.
  • Each local feature quantity stores a feature vector composed of 1-dimensional to 150-dimensional elements hierarchized by 25 dimensions corresponding to 5 ⁇ 5 subregions (see FIG. 11F).
  • the direction indicates a local feature when each landscape element is viewed from any direction.
  • it is desirable that local feature quantities from at least two directions such as a direction with few overlapping portions or a characteristic direction are stored in correspondence with the same landscape element.
  • m is a positive integer and may be a different number corresponding to the landscape element ID.
  • the feature point coordinates used for the matching process are stored together with the respective local feature amounts.
  • FIG. 9 is a diagram showing a configuration of the related information DB 222 according to the present embodiment. Note that the present invention is not limited to such a configuration.
  • the related information DB 222 stores related display data 903 and related audio data 904 that are related information in association with the landscape element ID 901 and the landscape element name 902.
  • the related information DB 222 may be provided integrally with the local feature DB 221.
  • FIG. 10 is a diagram showing a configuration of the link information DB 223 according to the present embodiment. Note that the present invention is not limited to such a configuration.
  • the link information DB 223 stores ink information, for example, a URL (Uniform Resource Locator) 1003 and display data 10904 on the display screen in association with the landscape element ID 1001 and the landscape element name 1002.
  • the link information DB 223 may be provided integrally with the local feature amount DB 221 and the related information DB 222.
  • the related information DB 231 of the related information providing server 230 is the same as the related information DB 222 of the landscape element recognition server 220, and a description thereof is omitted to avoid duplication.
  • FIG. 11A is a block diagram illustrating a configuration of a local feature value generation unit 702 according to the present embodiment.
  • the local feature quantity generation unit 702 includes a feature point detection unit 1111, a local region acquisition unit 1112, a sub region division unit 1113, a sub region feature vector generation unit 1114, and a dimension selection unit 1115.
  • the feature point detection unit 1111 detects a large number of characteristic points (feature points) from the image data, and outputs the coordinate position, scale (size), and angle of each feature point.
  • the local region acquisition unit 1112 acquires a local region where feature amount extraction is performed from the coordinate value, scale, and angle of each detected feature point.
  • the sub area dividing unit 1113 divides the local area into sub areas.
  • the sub-region dividing unit 1113 can divide the local region into 16 blocks (4 ⁇ 4 blocks) or divide the local region into 25 blocks (5 ⁇ 5 blocks).
  • the number of divisions is not limited. In the present embodiment, the case where the local area is divided into 25 blocks (5 ⁇ 5 blocks) will be described below as a representative.
  • the sub-region feature vector generation unit 1114 generates a feature vector for each sub-region of the local region.
  • a gradient direction histogram can be used as the feature vector of the sub-region.
  • the dimension selection unit 1115 selects a dimension to be output as a local feature amount (for example, thinning out) so that the correlation between feature vectors of adjacent sub-regions becomes low based on the positional relationship of the sub-regions.
  • the dimension selection unit 1115 can not only select a dimension but also determine a selection priority. That is, the dimension selection unit 1115 can select dimensions with priorities so that, for example, dimensions in the same gradient direction are not selected between adjacent sub-regions. Then, the dimension selection unit 1115 outputs a feature vector composed of the selected dimensions as a local feature amount.
  • the dimension selection part 1115 can output a local feature-value in the state which rearranged the dimension based on the priority.
  • 11B to 11F are diagrams showing processing of the local feature quantity generation unit 602 according to the present embodiment.
  • FIG. 11B is a diagram showing a series of processing of feature point detection / local region acquisition / sub-region division / feature vector generation in the local feature quantity generation unit 602.
  • Such a series of processes is described in US Pat. No. 6,711,293, David G. Lowe, “Distinctive image features from scale-invariant key points” (USA), International Journal of Computer Vision, 60 (2), 2004. Year, p. 91-110.
  • An image 1121 in FIG. 11B is a diagram illustrating a state in which feature points are detected from an image in the video in the feature point detection unit 1111 in FIG. 11A.
  • the starting point of the arrow of the feature point data 1121a indicates the coordinate position of the feature point
  • the length of the arrow indicates the scale (size)
  • the direction of the arrow indicates the angle.
  • the scale (size) and direction brightness, saturation, hue, and the like can be selected according to the target image.
  • FIG. 11B the case of six directions at intervals of 60 degrees will be described, but the present invention is not limited to this.
  • the local region acquisition unit 1112 in FIG. 11A generates a Gaussian window 1122a around the starting point of the feature point data 1121a, and generates a local region 1122 that substantially includes the Gaussian window 1122a.
  • the local region acquisition unit 1112 generates a square local region 1122, but the local region may be circular or have another shape. This local region is acquired for each feature point. If the local area is circular, there is an effect that the robustness is improved with respect to the imaging direction.
  • the sub-region dividing unit 1113 shows a state in which the scale and angle of each pixel included in the local region 1122 of the feature point data 1121a are divided into sub-regions 1123.
  • the gradient direction is not limited to 6 directions, but may be quantized to an arbitrary quantization number such as 4 directions, 8 directions, and 10 directions.
  • the sub-region feature vector generation unit 1114 may add up the magnitudes of the gradients instead of adding up the simple frequencies.
  • the sub-region feature vector generation unit 1114 when the sub-region feature vector generation unit 1114 aggregates the gradient histogram, the sub-region feature vector generation unit 1114 assigns weight values not only to the sub-region to which the pixel belongs, but also to sub-regions (such as adjacent blocks) that are close to each other according to the distance between the sub-regions. You may make it add. Further, the sub-region feature vector generation unit 1114 may add weight values to gradient directions before and after the quantized gradient direction. Note that the feature vector of the sub-region is not limited to the gradient direction histogram, and may be any one having a plurality of dimensions (elements) such as color information. In the present embodiment, it is assumed that a gradient direction histogram is used as the feature vector of the sub-region.
  • the dimension selection unit 1115 selects (decimates) a dimension (element) to be output as a local feature amount based on the positional relationship between the sub-regions so that the correlation between feature vectors of adjacent sub-regions becomes low. More specifically, the dimension selection unit 1115 selects dimensions such that at least one gradient direction differs between adjacent sub-regions, for example.
  • the dimension selection unit 1115 mainly uses adjacent subregions as adjacent subregions. However, the adjacent subregions are not limited to adjacent subregions. A sub-region within a predetermined distance may be a nearby sub-region.
  • FIG. 11C shows an example in which a dimension is selected from a feature vector 1131 of a 150-dimensional gradient histogram generated by dividing a local region into 5 ⁇ 5 block sub-regions and quantizing gradient directions into six directions 1131a.
  • FIG. 11C is a diagram showing a state of feature vector dimension number selection processing in the local feature value generation unit 602.
  • the dimension selection unit 1115 selects a feature vector 1132 of a half 75-dimensional gradient histogram from a feature vector 1131 of a 150-dimensional gradient histogram.
  • dimensions can be selected so that dimensions in the same gradient direction are not selected in adjacent left and right and upper and lower sub-region blocks.
  • the dimension selection unit 1115 selects the feature vector 1133 of the 50-dimensional gradient histogram from the feature vector 1132 of the 75-dimensional gradient histogram.
  • the dimension can be selected so that only one direction is the same (the remaining one direction is different) between the sub-region blocks positioned at an angle of 45 degrees.
  • the dimension selection unit 1115 selects the feature vector 1134 of the 25-dimensional gradient histogram from the feature vector 1133 of the 50-dimensional gradient histogram, the gradient direction selected between the sub-region blocks located at an angle of 45 degrees. Dimension can be selected so that does not match.
  • the dimension selection unit 1115 selects one gradient direction from each sub-region from the first dimension to the 25th dimension, selects two gradient directions from the 26th dimension to the 50th dimension, and starts from the 51st dimension. Three gradient directions are selected up to 75 dimensions.
  • the gradient directions should not be overlapped between adjacent sub-area blocks and that all gradient directions should be selected uniformly.
  • the dimensions be selected uniformly from the entire local region. Note that the dimension selection method illustrated in FIG. 11C is an example, and is not limited to this selection method.
  • FIG. 11D is a diagram illustrating an example of the selection order of feature vectors from sub-regions in the local feature value generation unit 602.
  • the dimension selection unit 1115 can determine the priority of selection so as to select not only the dimensions but also the dimensions that contribute to the features of the feature points in order. That is, for example, the dimension selection unit 1115 can select dimensions with priorities so that dimensions in the same gradient direction are not selected between adjacent sub-area blocks. Then, the dimension selection unit 1115 outputs a feature vector composed of the selected dimensions as a local feature amount. In addition, the dimension selection part 1115 can output a local feature-value in the state which rearranged the dimension based on the priority.
  • the dimension selection unit 1115 adds dimensions in the order of the sub-region blocks as shown in the matrix 1141 in FIG. 11D, for example, between 1 to 25 dimensions, 26 dimensions to 50 dimensions, and 51 dimensions to 75 dimensions. It may be selected.
  • the dimension selection unit 1115 can select the gradient direction by increasing the priority order of the sub-region blocks close to the center.
  • 11E is a diagram illustrating an example of element numbers of 150-dimensional feature vectors in accordance with the selection order of FIG. 11D.
  • the element number of the feature vector is 6 ⁇ p + q.
  • the matrix 1161 in FIG. 11F is a diagram showing that the 150-dimensional order according to the selection order in FIG. 11E is hierarchized in units of 25 dimensions.
  • the matrix 1161 in FIG. 11F is a diagram illustrating a configuration example of local feature amounts obtained by selecting the elements illustrated in FIG. 11E according to the priority order illustrated in the matrix 1141 in FIG. 11D.
  • the dimension selection unit 1115 can output dimension elements in the order shown in FIG. 11F. Specifically, for example, when outputting a 150-dimensional local feature amount, the dimension selection unit 1115 can output all 150-dimensional elements in the order shown in FIG. 11F.
  • the dimension selection unit 1115 When the dimension selection unit 1115 outputs, for example, a 25-dimensional local feature, the element 1171 in the first row (76th, 45th, 83rd,..., 120th) shown in FIG. 11F is shown in FIG. 11F. Can be output in order (from left to right). For example, when outputting a 50-dimensional local feature value, the dimension selection unit 1115 adds the elements 1172 in the second row shown in FIG. 11F in the order shown in FIG. To the right).
  • the local feature amount has a hierarchical structure arrangement. That is, for example, in the 25-dimensional local feature quantity and the 150-dimensional local feature quantity, the arrangement of the elements 1171 to 1176 in the first 25-dimensional local feature quantity is the same.
  • the dimension selection unit 1115 selects a dimension hierarchically (progressively), thereby depending on the application, communication capacity, terminal specification, etc. Feature quantities can be extracted and output.
  • the dimension selection unit 1115 can select images hierarchically, sort the dimensions based on the priority order, and output them, thereby collating images using local feature amounts of different dimensions. . For example, when images are collated using a 75-dimensional local feature value and a 50-dimensional local feature value, the distance between the local feature values can be calculated by using only the first 50 dimensions.
  • the priorities shown in the matrix 1141 in FIG. 11D to FIG. 11F are merely examples, and the order of selecting dimensions is not limited to this.
  • the order of blocks may be the order shown in the matrix 1142 in FIG. 11D or the matrix 1143 in FIG. 11D in addition to the example of the matrix 1141 in FIG. 11D.
  • the priority order may be determined so that dimensions are selected from all the sub-regions.
  • the vicinity of the center of the local region may be important, and the priority order may be determined so that the selection frequency of the sub-region near the center is increased.
  • the information indicating the dimension selection order may be defined in the program, for example, or may be stored in a table or the like (selection order storage unit) referred to when the program is executed.
  • the dimension selection unit 1115 may select a dimension by selecting one sub-region block. That is, 6 dimensions are selected in a certain sub-region, and 0 dimensions are selected in other sub-regions close to the sub-region. Even in such a case, it can be said that the dimension is selected for each sub-region so that the correlation between adjacent sub-regions becomes low.
  • the shape of the local region and sub-region is not limited to a square, and can be any shape.
  • the local region acquisition unit 1112 may acquire a circular local region.
  • the sub-region dividing unit 1113 can divide the circular local region into, for example, nine or seventeen sub-regions into concentric circles having a plurality of local regions.
  • the dimension selection unit 1115 can select a dimension in each sub-region.
  • the dimension of the feature vector generated while maintaining the information amount of the local feature value is hierarchically selected.
  • the This process enables real-time landscape element recognition and recognition result display while maintaining recognition accuracy.
  • the configuration and processing of the local feature value generation unit 602 are not limited to this example. Naturally, other processes that enable real-time landscape element recognition and recognition result display while maintaining recognition accuracy can be applied.
  • FIG. 11G is a block diagram showing the encoding unit 603a according to the present embodiment. Note that the encoding unit is not limited to this example, and other encoding processes can be applied.
  • the encoding unit 603a has a coordinate value scanning unit 1181 that inputs the coordinates of feature points from the feature point detection unit 1111 of the local feature quantity generation unit 602 and scans the coordinate values.
  • the coordinate value scanning unit 1181 scans the image according to a specific scanning method, and converts the two-dimensional coordinate values (X coordinate value and Y coordinate value) of the feature points into one-dimensional index values.
  • This index value is a scanning distance from the origin according to scanning. There is no restriction on the scanning direction.
  • the sorting unit 1182 has a sorting unit 1182 that sorts the index values of feature points and outputs permutation information after sorting.
  • the sorting unit 1182 sorts, for example, in ascending order. You may also sort in descending order.
  • a difference calculation unit 1183 that calculates a difference value between two adjacent index values in the sorted index value and outputs a series of difference values is provided.
  • the differential encoding unit 1184 that encodes a sequence of difference values in sequence order.
  • the sequence of the difference value may be encoded with a fixed bit length, for example.
  • the bit length may be specified in advance, but this requires the number of bits necessary to express the maximum possible difference value, so the encoding size is small. Don't be. Therefore, when encoding with a fixed bit length, the differential encoding unit 1184 can determine the bit length based on the input sequence of difference values.
  • the difference encoding unit 1184 obtains the maximum value of the difference value from the input series of difference values, obtains the number of bits (expression number of bits) necessary to express the maximum value, A series of difference values can be encoded with the obtained number of expression bits.
  • the local feature encoding unit 1185 that encodes the local feature of the corresponding feature point in the same permutation as the index value of the sorted feature point.
  • the local feature amount encoding unit 1185 encodes a local feature amount that is dimension-selected from 150-dimensional local feature amounts for one feature point, for example, one dimension with one byte, and the number of dimensions. Can be encoded.
  • FIG. 11 is a diagram illustrating processing of the landscape element recognition unit 703 according to the present embodiment.
  • FIG. 11H shows a state in which the local feature amount generated from the landscape image 311 of the landscape display screen 310 captured by the communication terminal 210 in FIG. 3 is collated with the local feature amount stored in the local feature amount DB 221 in advance.
  • local feature amounts are generated according to the present embodiment. Then, it is checked whether or not the local feature amounts 1191 to 1194 stored in the local feature amount DB 221 corresponding to each landscape element are in the local feature amounts generated from the video 311.
  • the landscape element recognition unit 703 associates each feature point where the local feature quantity stored in the local feature quantity DB 221 matches the local feature quantity like a thin line. Note that the landscape element recognition unit 703 determines that the feature points match when a predetermined ratio or more of the local feature amounts match. And if the positional relationship between the sets of associated feature points is a linear relationship, the landscape element recognition unit 703 recognizes that it is the target landscape element. If such recognition is performed, it is possible to recognize by size difference, orientation difference (difference in viewpoint), or inversion. In addition, since recognition accuracy is obtained if there are a predetermined number or more of associated feature points, it is possible to recognize a landscape element even if a part is hidden from view.
  • FIG. 11H four different landscape elements in the landscape that match the local feature amounts 1191 to 1194 of the four landscape elements in the local feature amount DB 221 are recognized with a precision corresponding to the accuracy of the local feature amount. .
  • FIG. 12A is a block diagram illustrating a hardware configuration of the communication terminal 210 according to the present embodiment.
  • a CPU 1210 is a processor for arithmetic control, and implements each functional component of the communication terminal 210 by executing a program.
  • the ROM 1220 stores fixed data and programs such as initial data and programs.
  • the communication control part 604 is a communication control part, and in this embodiment, it communicates with the landscape element recognition server 220 and the related information provision server 230 via a network.
  • the number of CPUs 1210 is not limited to one, and may be a plurality of CPUs or may include a GPU (GraphicsGraphProcessing Unit) for image processing.
  • the RAM 1240 is a random access memory that the CPU 1210 uses as a work area for temporary storage.
  • the RAM 1240 has an area for storing data necessary for realizing the present embodiment.
  • An input video 1241 indicates an input video imaged and input by the imaging unit 601.
  • the feature point data 1242 indicates feature point data including the feature point coordinates, scale, and angle detected from the input video 1241.
  • the local feature value generation table 1243 indicates a local feature value generation table that holds data until a local feature value is generated (see 12B).
  • the local feature amount 1244 is generated using the local feature amount generation table 1243 and indicates a local feature amount to be sent to the landscape element recognition server 220 via the communication control unit 604.
  • a landscape element recognition result 1245 indicates a landscape element recognition result returned from the landscape element recognition server 220 via the communication control unit 604.
  • the related information / link information 1246 indicates related information and link information returned from the landscape element recognition server 220 or related information returned from the related information providing server 230.
  • the display screen data 1247 indicates display screen data for notifying the user of information including a landscape element recognition result 1245 and related information / link information 1246. In the case of outputting audio, audio data may be included.
  • Input / output data 1248 indicates input / output data input / output via the input / output interface 1260.
  • Transmission / reception data 1249 indicates transmission / reception data transmitted / received via the communication control unit 604.
  • the storage 1250 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
  • a display format 1251 indicates a display format for displaying information including a landscape element recognition result 1245 and related information / link information 1246.
  • the storage 1250 stores the following programs.
  • the communication terminal control program 1252 indicates a communication terminal control program that controls the entire communication terminal 210.
  • the communication terminal control program 1252 includes the following modules.
  • the local feature generating module 1253 generates a local feature from the input video according to FIGS. 11B to 11F in the communication terminal control program 1252.
  • the local feature quantity generation module 1253 is composed of the illustrated module group, but detailed description thereof is omitted here.
  • the encoding module 1254 encodes the local feature generated by the local feature generating module 1253 for transmission.
  • the information reception notification module 1255 is a module for receiving a landscape element recognition result 1245 and related information / link information 1246 and notifying the user by display or voice.
  • the link destination access module 1256 is a module for accessing a link destination based on a user instruction to link information received and notified.
  • the input / output interface 1260 interfaces input / output data with input / output devices.
  • the input / output interface 1260 is connected to a display unit 1261, a touch panel or keyboard as the operation unit 1262, a speaker 1263, a microphone 1264, and an imaging unit 601.
  • the input / output device is not limited to the above example.
  • a GPS (Global Positioning System) position generation unit 1265 is mounted, and acquires the current position based on a signal from a GPS satellite.
  • FIG. 12A only data and programs essential to the present embodiment are shown, and data and programs not related to the present embodiment are not shown.
  • FIG. 12B is a diagram showing a local feature generation table 1243 in the communication terminal 210 according to the present embodiment.
  • a plurality of detected feature points 1202, feature point coordinates 1203, and local region information 1204 corresponding to the feature points are stored in association with the input image ID 1201.
  • a local feature quantity 1209 is generated for each detected feature point 1202 from the above data.
  • Data collected by combining these with the feature point coordinates is a local feature 1244 transmitted to the landscape element recognition server 220 generated from the captured landscape.
  • FIG. 13 is a flowchart illustrating a processing procedure of the communication terminal 210 according to the present embodiment. This flowchart is executed by the CPU 1210 of FIG. 12A using the RAM 1240, and implements each functional component of FIG.
  • step S1311 it is determined whether or not there is a video input for recognizing a landscape element.
  • step S1321 data reception is determined.
  • step S1331 it is determined whether the instruction is a link destination by the user. Otherwise, other processing is performed in step S1341. Note that description of normal transmission processing is omitted.
  • step S1313 If there is video input, the process proceeds to step S1313, and local feature generation processing is executed based on the input video (see FIG. 14A).
  • step S1315 local feature quantities and feature point coordinates are encoded (see FIGS. 14B and 14C).
  • step S1317 the encoded data is transmitted to the landscape element recognition server 220.
  • step S1323 it is determined whether or not the landscape element recognition result or related information is received from the landscape element recognition server 220 or the related information is received from the related information providing server 230. If it is reception from the landscape element recognition server 220, it will progress to step S1325 and will alert
  • FIG. 14A is a flowchart illustrating a processing procedure of local feature generation processing S1313 according to the present embodiment.
  • step S1411 the position coordinates, scale, and angle of the feature points are detected from the input video.
  • step S1413 a local region is acquired for one of the feature points detected in step S1411.
  • step S1415 the local area is divided into sub-areas.
  • step S1417 a feature vector for each sub-region is generated to generate a feature vector for the local region. The processing of steps S1411 to S1417 is illustrated in FIG. 11B.
  • step S1419 dimension selection is performed on the feature vector of the local region generated in step S1417.
  • the dimension selection is illustrated in FIGS. 11D to 11F.
  • step S1421 it is determined whether local feature generation and dimension selection have been completed for all feature points detected in step S1411. If not completed, the process returns to step S1413 to repeat the process for the next one feature point.
  • FIG. 14B is a flowchart illustrating a processing procedure of the encoding processing S1315 according to the present embodiment.
  • step S1431 the coordinate values of feature points are scanned in a desired order.
  • step S1433 the scanned coordinate values are sorted.
  • step S1435 a difference value of coordinate values is calculated in the sorted order.
  • step S1437 the difference value is encoded (see FIG. 14C).
  • step S1439 local feature amounts are encoded in the coordinate value sorting order. The difference value encoding and the local feature amount encoding may be performed in parallel.
  • FIG. 14C is a flowchart illustrating a processing procedure of difference value encoding processing S1437 according to the present embodiment.
  • step S1441 it is determined whether or not the difference value is within a range that can be encoded. If it is within the range which can be encoded, it will progress to step S1447 and will encode a difference value. Then, control goes to a step S1449. If it is not within the range that can be encoded (outside the range), the process proceeds to step S1443 to encode the escape code.
  • step S1445 the difference value is encoded by an encoding method different from the encoding in step S1447. Then, control goes to a step S1449.
  • step S1449 it is determined whether the processed difference value is the last element in the series of difference values. If it is the last, the process ends. When it is not the last, it returns to step S1441 again and the process with respect to the next difference value of the series of a difference value is performed.
  • FIG. 15 is a block diagram illustrating a hardware configuration of the landscape element recognition server 220 according to the present embodiment.
  • a CPU 1510 is a processor for arithmetic control, and implements each functional component of the landscape element recognition server 220 in FIG. 7 by executing a program.
  • the ROM 1520 stores fixed data and programs such as initial data and programs.
  • the communication control unit 701 is a communication control unit, and in this embodiment, communicates with the communication terminal 210 or the related information providing server 230 via a network. Note that the number of CPUs 1510 is not limited to one, and may be a plurality of CPUs or may include a GPU for image processing.
  • the RAM 1540 is a random access memory that the CPU 1510 uses as a work area for temporary storage.
  • the RAM 1540 has an area for storing data necessary for realizing the present embodiment.
  • the received local feature value 1541 indicates a local feature value including the feature point coordinates received from the communication terminal 210.
  • the read local feature value 1542 indicates the local feature value when including the feature point coordinates read from the local feature value DB 221.
  • the landscape element recognition result 1543 indicates the landscape element recognition result recognized from the collation between the received local feature value and the local feature value stored in the local feature value DB 221.
  • the related information 1544 indicates the related information searched from the related information DB 222 corresponding to the landscape element of the landscape element recognition result 1543.
  • the link information 1545 indicates link information retrieved from the link information DB 223 corresponding to the landscape element of the landscape element recognition result 1543.
  • Transmission / reception data 1546 indicates transmission / reception data transmitted / received via the communication control unit 701.
  • the storage 1550 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
  • the local feature DB 221 is a local feature DB similar to that shown in FIG.
  • the related information DB 222 is a related information DB similar to that shown in FIG.
  • the link information DB 223 shows the same link information DB as shown in FIG.
  • the storage 1550 stores the following programs.
  • the landscape element recognition server control program 1551 indicates a landscape element recognition server control program that controls the entire landscape element recognition server 220.
  • the local feature DB creation module 1552 generates a local feature from a landscape element image and stores it in the local feature DB 221.
  • the landscape element recognition module 1553 recognizes a landscape element by comparing the received local feature quantity with the local feature quantity stored in the local feature quantity DB 221.
  • the related information / link information acquisition module 1554 acquires related information and link information from the related information DB 222 and the link information DB 223 corresponding to the recognized landscape element.
  • FIG. 15 shows only data and programs essential to the present embodiment, and does not illustrate data and programs not related to the present embodiment.
  • FIG. 16 is a flowchart showing a processing procedure of the landscape element recognition server 220 according to the present embodiment. This flowchart is executed by the CPU 1510 of FIG. 15 using the RAM 1540, and implements each functional component of the landscape element recognition server 220 of FIG.
  • step S1611 it is determined whether or not a local feature DB is generated.
  • step S1621 it is determined whether a local feature amount is received from the communication terminal. Otherwise, other processing is performed in step S1641.
  • step S1613 If the local feature DB is generated, the process advances to step S1613 to execute a local feature DB generation process (see FIG. 17). If a local feature is received, the process advances to step S1623 to perform landscape element recognition processing (see FIGS. 18A and 18B).
  • step S1625 related information and link information corresponding to the recognized landscape element are acquired. Then, the recognized landscape element name, related information, and link information are transmitted to the communication terminal 210.
  • FIG. 17 is a flowchart showing a processing procedure of local feature DB generation processing S1613 according to the present embodiment.
  • step S1701 an image of a landscape element is acquired.
  • step S1703 the position coordinates, scale, and angle of the feature points are detected.
  • step S1705 a local region is acquired for one of the feature points detected in step S1703.
  • step S1707 the local area is divided into sub-areas.
  • step S1709 a feature vector for each sub-region is generated to generate a local region feature vector. The processing from step S1705 to S1709 is illustrated in FIG. 11B.
  • step S1711 dimension selection is performed on the feature vector of the local region generated in step S1709.
  • the dimension selection is illustrated in FIGS. 11D to 11F.
  • hierarchization is performed in dimension selection, but it is desirable to store all generated feature vectors.
  • step S1713 it is determined whether generation of local feature values and dimension selection have been completed for all feature points detected in step S1703. If not completed, the process returns to step S1705 to repeat the process for the next one feature point. When all the feature points are completed, the process proceeds to step S1715, and the local feature amount and the feature point coordinates are registered in the local feature amount DB 221 in association with the landscape element.
  • step S1717 it is determined whether there is an image of another landscape element. If there is an image of another landscape element, the process returns to step S1701 to acquire an image of another landscape element and repeat the process.
  • FIG. 18A is a flowchart showing a processing procedure of landscape element recognition processing S1623 according to the present embodiment.
  • step S1811 the local feature amount of one landscape element is acquired from the local feature amount DB 221. And in step S1813, collation with the local feature-value of a landscape element and the local feature-value received from the communication terminal 210 is performed (refer FIG. 18B).
  • step S1815 it is determined whether or not they match. If it matches, it will progress to step S1821 and will memorize
  • step S1817 it is determined whether or not all landscape elements registered in the local feature DB 221 have been collated. If there is any remaining, the process returns to step S1811 to repeat collation of the next landscape element. In such collation, the field may be limited in advance in order to reduce the load on the scene time recognition server or the rill time process by improving the processing speed.
  • FIG. 18B is a flowchart showing a processing procedure of collation processing S1813 according to the present embodiment.
  • step S1833 a smaller number of dimensions is selected between the dimension number i of the local feature quantity in the local feature quantity DB 221 and the dimension number j of the received local feature quantity.
  • step S1835 data of the selected number of dimensions of the p-th local feature amount of the landscape element stored in the local feature amount DB 221 is acquired. That is, the number of dimensions selected from the first one dimension is acquired.
  • step S1837 the p-th local feature value acquired in step S1835 and the local feature values of all feature points generated from the input video are sequentially checked to determine whether or not they are similar.
  • step S1839 it is determined whether or not the similarity exceeds the threshold value ⁇ from the result of collation between the local feature amounts.
  • step S1841 the matched features in the local feature amount, the input video, and the landscape element are determined. A pair with the positional relationship of the points is stored. Then, q, which is a parameter for the number of matched feature points, is incremented by one.
  • step S1843 the feature point of the landscape element is advanced to the next feature point (p ⁇ p + 1). If matching of all the feature points of the landscape element is not finished (p ⁇ m), the process returns to step S1835 to match. Repeat local feature verification.
  • the threshold value ⁇ can be changed according to the recognition accuracy required by the landscape element. Here, if a landscape element has a low correlation with other landscape elements, accurate recognition is possible even if the recognition accuracy is lowered.
  • step S1847 it is determined whether or not the ratio of the feature point number q that matches the local feature amount of the feature point of the input video among the feature point number p of the landscape element exceeds the threshold value ⁇ . If it exceeds, it will progress to step S1849 and will determine whether the positional relationship of the feature point of an input image
  • step S1841 the positional relationship between the feature point of the input video and the feature point of the landscape element stored as the local feature amount is matched in step S1841 is a positional relationship that is possible even by changes such as rotation, inversion, and change of the viewpoint position. Or whether the positional relationship cannot be changed. Since such a determination method is geometrically known, detailed description thereof is omitted. If it is determined in step S1851 that the linear conversion is possible, the process proceeds to step S953 to determine that the collated landscape element exists in the input video. Note that the threshold value ⁇ can be changed in accordance with the recognition accuracy required by the landscape element.
  • a landscape element that has a low correlation with other landscape elements or whose features can be judged even from a part. That is, a landscape element can be recognized as long as a part is hidden or not visible or a characteristic part is visible.
  • the process of storing all the landscape elements in the local feature DB 221 and collating all the landscape elements has a very large load. Therefore, for example, before recognizing a landscape element from an input video, it is conceivable that the user selects a landscape element range from a menu, searches the range from the local feature DB 221 and collates the range. Also, the load can be reduced by storing only the local feature amount in the range used by the user in the local feature amount DB 221.
  • the information processing system according to the present embodiment is different from the second embodiment in that related information is automatically accessed from a link destination even if the user does not perform a link destination access operation. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 19 is a sequence diagram showing an operation procedure of the information processing system according to the present embodiment.
  • operations similar to those in FIG. 5 of the second embodiment are denoted by the same step numbers, and description thereof is omitted.
  • steps S400 and S401 although there is a possibility that there is a difference between applications and data, download, activation and initialization are performed in the same manner as in FIGS.
  • the landscape element recognition server 220 that recognizes the landscape element in the landscape from the local feature amount of the video received from the communication terminal 210 in step S411 corresponds to the recognized landscape element with reference to the link information DB 223 in step S513. Get link information.
  • a link destination is selected in step S1915.
  • the selection of the link destination may be performed based on, for example, an instruction of a user who uses the communication terminal 210 or user recognition by the landscape element recognition server 220, but detailed description thereof is omitted here.
  • step S1917 access is performed with a landscape element ID that recognizes the linked related information providing server 230 based on the link information.
  • the communication terminal ID that has transmitted the local feature amount of the video by the link destination access is also transmitted.
  • the related information providing server 230 acquires landscape element related information (including document data and audio data) corresponding to the landscape element ID accompanying the access from the related information DB 231.
  • the related information is returned to the access source communication terminal 210.
  • the transmitted communication terminal ID is used.
  • the communication terminal 210 that has received the reply of the related information displays or outputs the received related information in step S527.
  • the landscape element recognition server 220 may receive the reply from the link destination and relay it to the communication terminal 210.
  • the communication terminal 210 may be configured such that when link information is received, automatic access to the link destination is performed and a reply from the link destination is notified.
  • the information processing system according to the present embodiment calculates the current location and / or moving direction / velocity of the user who is capturing a landscape based on the landscape element recognition process. It is different in point to do. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the current location and / or moving direction / speed of the user can be calculated based on the landscape element in the image in the video in real time.
  • Example of communication terminal display screen ⁇ 20A to 20C are diagrams illustrating display screen examples of the communication terminal 2010 in the information processing system according to the present embodiment.
  • FIG. 20A is a diagram illustrating an example of informing the user's current location.
  • the left figure of FIG. 20A shows the landscape display screen 2011 captured by the communication terminal 2010.
  • the central view of FIG. 20A shows a landscape display screen 2012 captured by the communication terminal 2010 by moving the imaging range clockwise from the left diagram.
  • FIG. 20A determines the present location (user's present location) 2014 of the communication terminal 2010 based on the angle which imaged each landscape element by the process in this embodiment combining the left figure and the center figure. Are superimposed on the display screen 2013.
  • the communication terminal 210 can measure the distance to a plurality of landscape elements, the current location 2014 can be determined by one video.
  • FIG. 20B is a diagram illustrating an example in which the moving direction and moving speed of the user on the ground are notified.
  • FIG. 20B shows the landscape display screen 2011 captured by the communication terminal 2010.
  • the central view of FIG. 20B shows a landscape display screen 2022 captured after the communication terminal 2010 has moved a certain distance in a certain direction.
  • a change in the angle of the building in the video can be seen.
  • FIG. 20B determines the moving direction and moving speed 2024 of the communication terminal 2010 based on the change of the angle which imaged each landscape element by the process in this embodiment combining the left figure and the center figure. And superimposed on the display screen 2023.
  • FIG. 20C is a diagram illustrating an example of informing the moving direction and moving speed of the user in the air.
  • FIG. 20C shows the display screen 2031 of the landscape in which the communication terminal 2010 images the ground from the air.
  • the central view of FIG. 20C shows a landscape display screen 2032 in which the communication terminal 2010 images the ground from the air after moving a certain distance in a certain direction. In FIG. 20C, it can be seen that the user is moving upward.
  • FIG. 20C determines the moving direction and moving speed 2034 of the communication terminal 2010 based on the change of the landscape element in the imaged landscape by the process in this embodiment combining the left figure and the center figure. And superimposed on the display screen 2033.
  • FIG. 21 is a sequence diagram illustrating an operation procedure for generating a local feature DB in the information processing system according to the present embodiment.
  • FIG. 21 is an example, and the present invention is not limited to this.
  • local feature DB generation as shown in FIG. 17 of the second embodiment may be used.
  • the operation procedure as shown in FIG. 21 is a process that is performed because it is desirable that the landscape element can be recognized from any direction.
  • step S2101 a specific landscape element as a target is imaged by an imaging device including one or a plurality of communication terminals 2010.
  • step S2103 the plurality of video data is transmitted to the landscape element recognition server 2420 together with the landscape element information.
  • the landscape element recognition server 2420 generates local feature amounts from the received video data in step S2105.
  • the generated local feature quantities are compared, and the local feature quantity having a small correlation is set as a local feature quantity stored in the local feature quantity DB 2221.
  • the local feature amount having a small correlation is a local feature amount to be stored separately in order to recognize the same landscape element.
  • step S2109 the selected local feature quantity with a small correlation is transmitted to the local feature quantity DB 2221 together with the landscape element information and the accuracy of the local feature quantity.
  • step S2111 the local feature DB 2221 stores the received local feature in association with the landscape element.
  • FIG. 22 is a sequence diagram showing an operation procedure for determining the current location and / or moving direction and moving speed in the information processing system according to the present embodiment.
  • the same step number is attached
  • steps S400 and S401 although there is a possibility that there is a difference between applications and data, download, activation and initialization are performed in the same manner as in FIGS.
  • the landscape element recognition server 2420 recognizes a landscape element in step S2211 by comparing with the local feature amount of the local feature amount DB 2221 from the local feature amount of the video received from the communication terminal 2010.
  • step S2221 the communication terminal 2010 acquires a video having a direction different from that in step S403.
  • step S2223 a local feature amount of the video acquired in step S2221 is generated.
  • step S2225 the generated local feature is encoded together with the feature point coordinates. And the encoded local feature-value is transmitted to the landscape element recognition server 2420.
  • the landscape element recognition server 2420 recognizes the landscape element in step S2229 by comparing with the local feature amount of the local feature amount DB 2221.
  • step S2231 it is determined whether or not there is an angle change between the landscape element recognized in step S2211 and the landscape element recognized in step S2229.
  • Such an angle change can be measured from the difference in the geometrical arrangement of the feature point coordinates in the process of recognizing the landscape element from the collation of the local feature amount (see FIGS. 11H, 27A, and 27B). If the angle change is equal to or greater than the predetermined threshold value, the process proceeds to step S2233, and also refers to the map DB 2222 to calculate the moving direction and moving speed of the communication terminal 2210 (user).
  • the moving direction and moving speed can be calculated as long as the elapsed time between the two video acquisitions (steps S403 and S2221), the angle change of at least one landscape element and the distance to the landscape element can be measured. is there. Or if a several landscape element is referred, the calculation of a more exact moving direction and moving speed is possible.
  • the landscape element recognition server 2420 transmits a user's moving direction and moving speed to the communication terminal 2010 in step S2235.
  • the communication terminal 2010 notifies the user's moving direction and moving speed (see FIG. 20B).
  • step S2239 determines whether the landscape element in the landscape video has changed.
  • the change of the landscape element is a case where the number of landscape elements that disappear from the video and the number of landscape elements that appear in the video exceed a predetermined threshold.
  • a landscape element changes, it progresses to step S2241 and refers to map DB2222, and calculates the present location of the communication terminal 2010 (user).
  • each recognized landscape element is imaged from the geometrical arrangement of the feature point coordinates in the process of recognizing the landscape element from the collation of the local feature amount at each landscape element recognition (steps S2211 and S2229).
  • Direction calculation is possible. Therefore, it is possible to reverse the imaged direction based on the position / angle calculation results of a plurality of landscape elements.
  • the landscape element recognition server 2420 transmits a user's present location to the communication terminal 2010 in step S2243.
  • the communication terminal 2010 notifies the user's current location (see FIG. 20A).
  • FIG. 22 shows an example in which the current location of the user is automatically calculated and notified from the change of the landscape element, and the movement direction and movement speed of the user are automatically calculated from the angle of the landscape element.
  • FIGS. 20A and 20B when the user consciously changes the imaging direction of the imaging unit 601, the current location is calculated, and when a predetermined time elapses while the imaging direction of the imaging unit 601 is maintained, the moving direction and the moving speed are calculated.
  • Such a user interface has been devised. However, it is also possible for the user to select the current location, the moving direction and the moving speed from the menu of the communication terminal.
  • FIG. 22 does not show the user's moving direction and moving speed notification operation procedure corresponding to FIG. 20C, but it is clear that the moving direction and moving speed are calculated from the movement of the landscape element in the video. is there.
  • FIG. 23 is a block diagram illustrating a functional configuration of the communication terminal according to the present embodiment.
  • the recognition result notification unit 2306 is a functional configuration unit including the display screen generation unit 606 in FIG.
  • the current location calculation result receiving unit 2307 receives the current location information of the user calculated from the landscape element recognition server 2420 via the communication control unit 604.
  • the current location notification unit 2308 notifies the user.
  • the moving direction / speed calculation result receiving unit 2309 receives the moving direction and moving speed information of the user calculated from the landscape element recognition server 2420 via the communication control unit 604. Then, the moving direction / speed notification unit 2310 notifies the user.
  • FIG. 24 is a block diagram illustrating a functional configuration of the landscape element recognition server according to the present embodiment.
  • the same reference numerals are assigned to the same functional components as those in FIG. 7 of the second embodiment, and the description thereof is omitted.
  • the landscape element storage unit 2405 stores the landscape element recognized by the landscape element recognition unit 703 in association with the imaging angle and the imaging time of the landscape element. Or memorize
  • the landscape element comparison unit 2406 compares the imaging angles of the landscape elements recognized as the same landscape element. Moreover, disappearance and appearance of landscape elements in the video are detected by comparing the landscape elements.
  • the movement direction / speed calculation unit 2407 refers to the map DB 2222 and calculates the movement direction and movement speed. Then, the movement direction / speed transmission unit 2408 transmits the calculated movement direction and movement speed to the communication terminal 2010 via the communication control unit 701.
  • the current location calculation unit 2409 calculates the current location from a wide range of landscape elements and imaging angles. Then, the current location transmission unit 2410 transmits the calculated current location to the communication terminal 2010 via the communication control unit 701.
  • FIG. 25 is a diagram illustrating a configuration of the local feature DB 2221 according to the present embodiment.
  • FIG. 25 differs from FIG. 8 in that a plurality of local feature quantities such as the first calculated local feature quantity 2503 and the second calculated local feature quantity are stored in association with the same landscape element ID 2501 and name 2502. In the point. As the plurality of local feature quantities, those having a small correlation between them are selected. Each local feature amount is composed of the first local feature amount to the m-th local feature amount 2505, as in FIG.
  • FIG. 26 is a diagram showing the configuration of the map DB 2222 according to this embodiment.
  • the map DB 2222 includes a map data storage unit 2610 and a landscape element position storage unit 2620.
  • the map data storage unit 2610 stores map data 2612 in association with the map ID 2611.
  • a coordinate 2622 composed of the IDI longitude of the landscape element, an address 2623, and a position 2626 on the map stored in the map data storage unit 2610 are stored in association with the landscape element ID 2621. Is done.
  • FIG. 27A and FIG. 27B are diagrams illustrating processing of the landscape element recognition unit according to the present embodiment.
  • FIG. 27A and FIG. 27B although one landscape element is demonstrated, it is the same also about many landscape elements in an image
  • FIG. 27A shows the processing of the landscape element recognition unit on the ground.
  • FIG. 27A is a diagram illustrating a state in which local feature amounts generated based on landscape element images 2791 to 2793 captured from the ground by the communication terminal 2010 are compared with local feature amounts stored in the local feature amount DB 2221 in advance. .
  • FIG. 27B shows the process of the landscape element recognition unit in the air.
  • FIG. 27B is a diagram illustrating a state in which the local feature amount generated based on the landscape element images 2794 to 2796 captured from the air by the communication terminal 2010 is collated with the local feature amount stored in the local feature amount DB 2221 in advance. .
  • FIG. 28 is a block diagram illustrating a hardware configuration of the communication terminal 2010 according to the present embodiment.
  • the same reference number is attached
  • the RAM 2840 is a random access memory used by the CPU 1210 as a work area for temporary storage. In the RAM 2840, an area for storing data necessary for realizing the present embodiment is secured.
  • the current location calculation result 2841 indicates the calculated current location of the user.
  • the movement direction / speed calculation result 2842 indicates the calculated movement direction and movement speed.
  • the display screen data 1247 indicates display screen data for notifying the user of information including the current location calculation result 2841 and the movement direction / speed calculation result 2842.
  • the storage 2850 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
  • the calculation result reception notification module 2851 is a module that receives the current location or moving direction and moving speed from the landscape element recognition server 2420 and notifies them.
  • FIG. 28 shows only data and programs essential to the present embodiment, and does not illustrate data and programs not related to the present embodiment.
  • FIG. 29 is a flowchart showing a processing procedure of the communication terminal 2010 according to the present embodiment.
  • the same step number is attached
  • step S2923 it is determined whether it is reception of a landscape element recognition result. If it is reception of a landscape element recognition result, it will progress to step S2925 and will alert
  • step S2927 it is determined whether it is reception of the present location calculation result. If it is reception of a present location calculation result, it will progress to step S2929 and will alert
  • step S2931 it is determined whether it is reception of a moving direction / speed calculation result. If the movement direction / speed calculation result is received, the process proceeds to step S2933 to notify the movement direction and the movement speed.
  • FIG. 30 is a block diagram illustrating a hardware configuration of the landscape element recognition server 2420 according to the present embodiment.
  • the same reference number is attached
  • the RAM 3040 is a random access memory that the CPU 1510 uses as a temporary storage work area.
  • the RAM 3040 has an area for storing data necessary for realizing the present embodiment.
  • the current location calculation table 3041 is a table that stores parameters for calculating the current location (see FIG. 31A).
  • the movement direction / speed calculation table 3042 is a table for storing parameters for calculating the movement direction and the movement speed (see FIG. 31B).
  • the storage 3050 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
  • the local feature DB 2221 indicates a local feature DB similar to that shown in FIG.
  • the map DB 2222 shows the same map DB as shown in FIG.
  • the storage 3050 stores the following programs.
  • the current location calculation module 3051 is a module that calculates the current location of the user from the landscape elements and the imaging directions of the landscape elements.
  • the moving direction / speed calculating module 3052 is a module for calculating the moving direction and moving speed of the user from the landscape element and the change in the imaging direction of the landscape element.
  • the recognition result / calculation result transmission module 3053 is a module that transmits the recognition result of the landscape element in the video and the calculation result of the current location or moving direction and moving speed to the communication terminal 2010.
  • FIG. 30 shows only data and programs essential to the present embodiment, and data and programs not related to the present embodiment are not shown.
  • FIG. 31A is a diagram showing a configuration of a current location calculation table 3041 according to the present embodiment.
  • the present location calculation table 3041 is associated with the communication terminal ID 3111, the first landscape element ID of the first landscape element 3112, the distance to the first landscape element, the imaging direction, the second landscape element ID of the second landscape element 3113, and the first 2
  • the distance to the landscape element and the imaging direction are stored.
  • the present location calculation result 3114 calculated based on the distance to these landscape elements and the imaging direction is stored.
  • FIG. 31B is a diagram showing a configuration of the movement direction / speed calculation table 3042 according to the present embodiment.
  • the movement direction / speed calculation table 3042 is associated with the communication terminal ID 3121, the first landscape element ID of the first landscape element 3122, the distance to the first landscape element in the previous video, the imaging direction, and the current video
  • the distance to the first landscape element and the imaging direction are stored.
  • video are memorize
  • the moving direction / speed calculation result 3124 calculated based on the distance to these landscape elements and the imaging direction is stored.
  • FIG. 32 is a flowchart showing the processing procedure of the landscape element recognition server 2420 according to this embodiment. This flowchart is executed by the CPU 1510 of FIG. 30 using the RAM 1540, and implements each functional component of the landscape element recognition server 2420 of FIG.
  • step S3213 the process proceeds to step S3213 to execute the local feature DB generation processing of the present embodiment (see FIG. 33). If a local feature is received, the process advances to step S1623 to perform landscape element recognition processing (see FIGS. 18A and 18B). In step S3225, the landscape element recognition result is transmitted to the communication terminal 2010.
  • step S3227 it is determined whether or not the present location calculation condition is satisfied.
  • the current location calculation condition is when the change (disappearance or appearance) of a landscape element exceeds a predetermined threshold. If the current location calculation condition is satisfied, the process advances to step S3229 to execute the current location calculation process (see FIG. 34A). In step S3231, the calculated current location information is transmitted to the communication terminal 2010.
  • step S3233 it is determined whether or not the conditions for calculating the moving direction / speed are satisfied.
  • the moving direction / speed calculation condition is a case where the change in the imaging angle of the landscape element exceeds a predetermined threshold. If the moving direction / speed calculation condition is satisfied, the process proceeds to step S3235 to execute the moving direction / speed calculating process (see FIG. 34B). In step S3237, the calculated current location information is transmitted to the communication terminal 2010.
  • FIG. 33 is a flowchart showing the processing procedure of the local feature DB generation processing S3213 according to the present embodiment.
  • the same step number is attached
  • step S3301 the local feature amount generated for a certain landscape element is stored. Next, it is determined whether there is another image obtained by imaging the same landscape element. If there is another image, the process returns to step S1701, and the generation of the local feature amount is repeated. If there is no other image, the process proceeds to step S3305, and a plurality of (at least two) local feature values having a small correlation are selected from the local feature values generated from the same landscape element stored in step S3301. Therefore, in step S1715, the local feature amount DB 2221 stores a plurality of local feature amounts having a small correlation in association with the landscape element.
  • FIG. 34A is a flowchart illustrating the processing procedure of the current location calculation processing S3229 according to the present embodiment.
  • step S3411 the map DB 2222 is referenced to acquire each landscape element position in the recognized continuous image.
  • step S3413 the orientation (imaging angle) of each landscape element is calculated from the arrangement of the feature points in the matching with the local feature amount of the corresponding landscape element in the local feature amount DB 2221.
  • the imaging present location (a communication terminal and a user's present location) is calculated from the position and direction of each landscape element.
  • collation in step S3413 since collation in step S3413 has already been performed in the landscape element recognition process, it is not necessary if the direction is calculated at that time.
  • FIG. 34B is a flowchart showing the processing procedure of the movement direction / speed calculation processing S3235 according to the present embodiment.
  • step S3421 the orientation (imaging angle) of at least two landscape elements in the first image is calculated with reference to the local feature DB 2221.
  • step S3423 the orientation (imaging angle) of the same landscape element in the second image is calculated with reference to the local feature DB 2221.
  • step S3425 the distance to the landscape element is calculated.
  • step S3427 the imaging position (the communication terminal and the current location of the user) is calculated based on the change in the direction of the landscape element (imaging angle) and the distance to the landscape element.
  • the direction since the calculation of the direction in steps S3421 and S3423 can be calculated by the landscape element recognition process, it is not necessary if the direction is calculated at that time.
  • the information processing system according to the present embodiment differs from the fourth embodiment in that the user performs navigation based on the calculation result of the user's current location and / or movement direction / speed. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the landscape element recognition server shows an example of performing the navigation
  • the role assignment can be changed as in a configuration in which navigation is performed by a navigation process mounted on a vehicle-mounted saviation system or a portable terminal. .
  • the user can be navigated in real time based on the landscape element in the image in the video.
  • FIG. 35 is a diagram showing a display screen example of the communication terminal 3510 in the information processing system according to the present embodiment.
  • the left diagram in FIG. 35 shows a landscape display screen 3511 captured by the communication terminal 3510.
  • the central view of FIG. 35 shows a landscape display screen 3512 imaged after a user having the communication terminal 3510 (or a vehicle in which the communication terminal 3510 is installed) has moved a certain distance along the road. In FIG. 35, it can be seen that the user is moving upward.
  • a landscape element in the video is recognized, and a landscape element name (XX building 3514 and XX park 3515) is superimposed on the video. Further, by combining the left figure and the center figure, the current location, the moving direction, and the moving speed of the communication terminal 3510 are calculated based on the change of the landscape element in the captured landscape. On the display screen 3513 on the right side of FIG. 35, navigation information indicating the route to the user's destination ( ⁇ building) is obtained by referring to the map DB 2222 based on the calculated current location, moving direction, and moving speed. And an instruction comment 3516 indicating the predicted time to the destination ( ⁇ building) is displayed in a superimposed manner.
  • FIG. 36 is a sequence diagram illustrating an operation procedure of the information processing system according to the present embodiment.
  • the same step number is attached
  • steps S400 and S401 although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
  • step S3603 the destination is set in the communication terminal 3510 by a user input.
  • steps S3605 and S3607 and steps S3609 and S3611 continuous video acquisition and local feature generation are performed. Note that continuous video acquisition is performed at predetermined time intervals. The predetermined time is appropriately determined depending on whether the user is walking or riding in a vehicle, or according to the temporarily measured user moving speed. Set or adjusted.
  • step S3613 the local feature amount and feature point coordinates of the continuous video are encoded.
  • step S3615 the local feature amount of the image continuous with the destination is transmitted from the communication terminal 3510 to the landscape element recognition server. Note that there are at least two continuous images of local feature values to be transmitted, and local feature values of three or more continuous images may be transmitted.
  • the landscape element recognition server refers to the local feature DB 2221, recognizes the landscape element in the video in step S3617, and calculates the angle at which the landscape element is imaged from the arrangement of the feature point coordinates in step S3619.
  • the landscape element recognition server refers to the map DB 2222, acquires the recognized landscape element position in step S3621, and calculates the current location of the user from the landscape element position and its imaging angle (for details, see 4 embodiment).
  • the user's current location is calculated from the recognized landscape elements XX building and xx park, the position on the map, and the imaging angle of each landscape element.
  • the moving direction and moving speed of the user are calculated from the change in the imaging angle of the landscape element between the two images (refer to the fourth embodiment for details). Since the current location of the user, the moving direction and the moving speed of the user are calculated, in step S3625, the route information to the destination and the estimated arrival time are calculated based on the information by referring to the map DB 2222.
  • the instruction comment is generated.
  • step S3627 the landscape element recognition server transmits an instruction comment and a local feature amount of the target for displaying the instruction comment as navigation information. Also, the calculated present location, moving direction and moving speed, and estimated arrival time are transmitted.
  • step S3629 the communication terminal 3510 collates the local feature amount of the previously generated video with the local feature amount indicating the target stored in the navigation local feature amount DB 3621. Then, an instruction comment is displayed on the target on the video. In the example of FIG. 35, an instruction comment “turn left, 6 minutes to ⁇ ⁇ building” indicating the road between XX building and XX park is displayed.
  • step S3631 it is determined whether or not the navigation is finished. If the navigation is continued, the process proceeds to step S3605 and the navigation is continued.
  • FIG. 37 is a diagram showing a configuration of the navigation local feature DB 3621 according to this embodiment.
  • the current location 3701 calculated by the landscape element recognition server, the destination ( ⁇ building) 3702 set by the communication terminal 3510, the movement direction 3703 calculated by the landscape element recognition server, and The moving speed 3704 is stored.
  • the instruction comment storage unit 3706 stores an instruction comment, a comment display condition, and a display position.
  • the local feature amount of XX building and the local feature amount of xx park are downloaded from the landscape element recognition server to the communication terminal 3510.
  • the instruction comment “turn left, (to) building ())” the appearance of the XX building and XX park in the video, which is the comment display condition, and the XX building and XX as position information of the display position Memorize between the parks.
  • the information processing system according to the present embodiment is different from the fifth embodiment in that the apparatus is automatically guided and controlled toward the target while recognizing the target. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the apparatus can be automatically guided and controlled in real time based on the landscape elements in the images in the video.
  • FIG. 38 is a diagram showing a display screen example of the communication terminal 3810 in the information processing system according to the present embodiment.
  • the display screen is for explaining the processing of the present embodiment. Since the present embodiment is automatic guidance control, the display screen need not be displayed.
  • the left diagram in FIG. 38 shows a landscape display screen 3811 captured by the communication terminal 3810.
  • the display screen 3811 shows a runway 3811a of an airfield that is a guidance target (target).
  • the central view of FIG. 35 shows a landscape display screen 3812 captured after the communication terminal 3810 has moved a certain distance in the air.
  • FIG. 38 it can be seen that the communication terminal 3810 is moving upward. And it is off the course to the right with respect to the target. If there is a display unit, a warning is displayed as shown in the figure, but if it is automatic guidance control, control is automatically performed to turn left and return to the course.
  • the present embodiment is characterized by real-time acquisition of the current location, moving direction, and moving speed for guidance control, and detailed description of guidance control is omitted.
  • the current position of the communication terminal 3810, the moving direction, and the moving speed are calculated based on the change of the landscape element in the captured landscape by combining the left diagram and the center diagram.
  • a display screen 3813 on the right side of FIG. 38 shows a runway 3813a of an airfield that has returned to the course and further approached. If there is a display, normal return is displayed as shown in the figure.
  • FIG. 39 is a sequence diagram showing an operation procedure of the information processing system according to the sixth embodiment of the present invention.
  • the same step number is attached
  • steps S400 and S401 although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
  • step S3911 the guidance control computer generates a local feature amount of the target landscape element according to the target landscape element instruction that specifies the target landscape element, and stores it in the local feature DB 2221. If the local feature amount of the target landscape element is already stored in the local feature amount DB 2221, it is only necessary to set the landscape element ID of the target landscape element.
  • step S3913 the guidance control computer recognizes the target landscape element by comparing the local feature amount of the video transmitted from the communication terminal 3810 with the local feature amount of the target landscape element stored in the local feature amount DB 2221.
  • step S3915 it is determined whether or not the recognized target landscape element is at a desired position in the video, and guidance control is performed to correct the position so that the desired position is not the desired position.
  • step S3917 it is determined whether or not the guidance control is finished. If not finished, the process returns to step S3913 and the automatic guidance control based on the local feature amount of the new video is continued.
  • FIG. 40 is a flowchart illustrating a processing procedure of the guidance control computer according to the present embodiment. This flowchart is executed using the RAM by the CPU of the guidance control computer. In the processing procedure of FIG. 40, steps similar to those in FIG. 16 of the second embodiment are denoted by the same step numbers and description thereof is omitted.
  • step S4011 it is determined whether or not it is an instruction for a target landscape element.
  • step S1621 it is determined whether a local feature amount is received from the communication terminal. Otherwise, other processing is performed in step S1631.
  • step S4013 If it is the setting of the target landscape element, the process proceeds to step S4013, and the local feature amount of the target landscape element is stored in the local feature amount DB 2221.
  • step S1623 the process proceeds to step S1623 to perform a target landscape element recognition process.
  • it is the same as that of the process sequence of FIG. 18A and FIG. 18B except recognizing only a target landscape element, and a detail is abbreviate
  • step S4025 it is determined whether or not it is recognized that the target landscape element is in the video. If it is not in the video, the process proceeds to step S4029, and position correction by guidance control is performed so that the target landscape element is in the video. On the other hand, if the target landscape element is in the video, the process proceeds to step S4027 to determine whether the position of the target landscape element in the video is a desired position. The desired position indicates a case where the desired position is within the center of the image or an area including a predetermined position. If it is in the desired position, the process ends without doing anything. However, if it is not at the desired position, the process proceeds to step S4029 to perform position correction by guidance control so that the target landscape element is at the desired position in the video.
  • the information processing system according to the present embodiment is different from the sixth embodiment in that the apparatus is automatically guided and controlled toward the target while recognizing the landscape of the route. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the apparatus can be automatically guided and controlled in real time based on the landscape elements in the images in the video.
  • the automatic guidance control of the sixth embodiment and the automatic guidance control of the present embodiment can be switched and used in accordance with conditions such as the distance between the device and the target and the altitude of the device. Further, it can be combined with conventional automatic guidance control using radio waves or lasers. In general, the guidance by radio waves is suitable for positions far from the ground, the guidance of this embodiment is suitable for altitudes where the landscape elements on the ground can be recognized, and the guidance of the sixth embodiment is suitable for distances and altitudes where the target can be seen. Alternatively, it is possible to switch the guidance method according to conditions such as whether the visibility is good or bad.
  • FIG. 41 is a diagram showing a display screen example of the communication terminal in the information processing system according to the present embodiment.
  • the display screen is for explaining the processing of the present embodiment. Since the present embodiment is automatic guidance control, the display screen need not be displayed.
  • the left diagram in FIG. 41 shows a landscape display screen 4111 in which the ground is imaged from the air imaged by the communication terminal 4110.
  • the display screen 4111 shows a landscape element area 4111a to be recognized.
  • the landscape element in the region 4111a is recognized by collation with the local feature amount in the local feature amount DB 2221. And it is compared with route screen DB4210 which memorize
  • route screen DB4210 which memorize
  • route screen DB4210 which memorize
  • FIG. 41 shows a landscape display screen 4112 obtained by imaging the ground from the air after the communication terminal 4110 has moved a certain distance in the air.
  • the display screen 4112 shows a landscape element region 4112a to be recognized.
  • the landscape element in the region 4112a is recognized by collation with the local feature amount in the local feature amount DB 2221. And it is compared with route screen DB4210 which memorize
  • the right diagram of FIG. 41 shows a landscape display screen 4113 in which the ground is imaged from the air after the communication terminal 4110 has further moved through the air by a certain distance.
  • the display screen 4113 shows a landscape element area 4113a to be recognized.
  • the landscape element in the region 4113a is recognized by collation with the local feature amount in the local feature amount DB 2221. And it is compared with route screen DB4210 which memorize
  • FIG. 42 is a sequence diagram illustrating an operation procedure of the information processing system according to the present embodiment.
  • the same step number is attached
  • steps S400 and S401 although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
  • step S4211 the guidance control computer generates a local feature amount of the landscape element in the course toward the target landscape element acquired from the target landscape element and the map DB 2222 if necessary according to the instruction of the target landscape element, Stored in the local feature DB 2221. If the local feature amount of the landscape element is already stored in the local feature amount DB 2221, it is only necessary to set the landscape element ID of each landscape element.
  • step S4213 the guidance control computer refers to the local feature value DB “2221 and map DB 2222, generates a route drawing representing videos at a plurality of locations on the course to the target landscape element, and generates a route screen DB 4210. The route image is retained.
  • step S4215 the guidance control computer recognizes the landscape element in the video by comparing the local feature quantity of the video transmitted from the communication terminal 4110 with the local feature quantity of the landscape element stored in the local feature DB 2221. .
  • step S4217 landscape recognition including a plurality of recognized landscape elements is performed, and route correction is performed by guidance control so as to match the image from the course up to the target landscape element stored in the route screen DB 4210.
  • step S4219 it is determined whether or not the guidance control is finished. If not finished, the process returns to step S4215 and the automatic guidance control based on the local feature amount of the new video is continued.
  • FIG. 43 is a diagram showing a configuration of the route screen DB 4210 according to the present embodiment.
  • the route screen DB 4210 includes a landscape element group storage unit 4310 that sequentially stores local feature quantities of a landscape element group to be imaged according to a route to the target landscape element, and a video to be imaged according to the route to the target landscape element. And a video storage unit 4320 for storing local feature amounts.
  • the landscape element group storage unit 4310 is associated with the route ID 4312 to the target landscape element 4311, and each of the first landscape element ID 4313 and the second landscape element ID 4314, which should be in the video, is a video with each local feature and each route. The relative position inside is memorized.
  • the video storage unit 4320 stores the local feature amount of the entire video to be associated with the route ID 4322 to the target landscape element 4321.
  • the automatic guidance control of this embodiment is performed using either or both of the landscape element group storage unit 4310 and the video storage unit 4320.
  • FIG. 44 is a flowchart showing a processing procedure of the guidance control computer according to the present embodiment. This flowchart is executed using the RAM by the CPU of the guidance control computer.
  • steps similar to those in FIG. 16 of the second embodiment or FIG. 40 of the sixth embodiment are denoted by the same step numbers, and description thereof is omitted.
  • step S4011 it is determined whether or not it is an instruction for a target landscape element.
  • step S1621 it is determined whether a local feature amount is received from the communication terminal. Otherwise, other processing is performed in step S1631.
  • step S4413 the route screen in the course of the course to the target landscape element is stored in the route screen DB 4210.
  • step S1623 the process proceeds to step S1623 to perform landscape element recognition processing.
  • step S4425 the arrangement of the recognized landscape elements in the video is analyzed with reference to the route screen DB 4210.
  • step S4437 a route correction process is performed if there is a deviation by comparing the route screen of the route screen DB 4210 with the screen in the video.
  • the information processing system according to the present embodiment is different from the first to seventh embodiments in that the communication terminal performs all processes including landscape element recognition. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • all processing can be performed only on the communication terminal based on the landscape element in the image in the video.
  • FIG. 45 is a block diagram showing a functional configuration of a communication terminal 4510 according to this embodiment. 45, the same reference numerals are given to the same functional components as those in FIG. 6 of the second embodiment or FIG. 23 of the fourth embodiment, and description thereof will be omitted.
  • the landscape element recognition unit 4501 recognizes the landscape element in the video by collating the local feature amount of the image generated by the local feature amount generation unit 602 with the local feature amount of the landscape element stored in the local feature amount DB 4502. .
  • the landscape element storage unit 4503 stores at least one previously recognized landscape element.
  • the landscape element comparison unit 4504 compares the landscape element stored in the landscape element storage unit 4503 with the landscape element currently recognized by the landscape element recognition unit 4501.
  • the moving direction / speed calculating unit 4505 refers to the map DB 4506 and calculates the moving method and moving speed of the user based on the change in the imaging angle of the landscape element.
  • the current location calculation unit 4507 refers to the map DB 4506 and calculates the current location of the user based on the imaging angles of a plurality of landscape elements.
  • the navigation information generation unit 4508 refers to the map DB 4506, and generates navigation information toward the destination based on the calculated current location of the user and the calculated moving method and moving speed of the user.
  • the navigation information notification unit 4509 notifies the user of the generated navigation information.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where a control program that realizes the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention with a computer, a control program installed in the computer, a medium storing the control program, and a WWW (World Wide Web) server that downloads the control program are also included in the scope of the present invention. include.
  • M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • First local feature quantity storage means for storing the quantity in association with each other; N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a landscape element recognition means for recognizing that the landscape element exists in An information processing system comprising: (Appendix 2) The information processing system according to supplementary note 1, wherein the landscape element includes a landscape element constituting a natural landscape and a building constituting an artificial landscape. (Appendix 3) The information processing system according to appendix 1 or 2, further comprising notification means for notifying a recognition result of the landscape element recognition means. (Appendix 4) The information processing system according to supplementary note 3, wherein the notification unit further notifies information related to the recognition result.
  • the notification means includes related information acquisition means for acquiring information related to the recognition result according to link information, The information processing system according to appendix 3, wherein the related information acquired according to link information is notified.
  • (Appendix 7) A position / angle calculation means for calculating the position and imaging angle of a plurality of landscape elements; Current location calculation means for calculating the current location from the position and imaging angle of the plurality of landscape elements;
  • the information processing system according to one.
  • (Appendix 12) A target landscape element indicating means for indicating a target landscape element; Route image holding means for holding a landscape element in an image in the course of the course up to the target landscape element in association with a local feature, Guidance control means for controlling the imaging position so that a desired landscape element exists at a predetermined position in the video imaged by the imaging means;
  • the information processing system according to any one of supplementary notes 1 to 8, further comprising:
  • the first local feature value and the second local feature value are a plurality of dimensions formed by dividing a local region including a feature point extracted from an image into a plurality of sub-regions, and comprising histograms of gradient directions in the plurality of sub-regions.
  • the information processing system according to any one of supplementary notes 1 to 12, wherein the information processing system is generated by generating a feature vector.
  • the first local feature amount and the second local feature amount are generated by deleting a dimension having a larger correlation between adjacent sub-regions from the generated plurality of dimension feature vectors.
  • the information processing system according to attachment 13. (Appendix 15)
  • the plurality of dimensions of the feature vector is a predetermined dimension so that it can be selected in order from the dimension that contributes to the feature of the feature point and from the first dimension in accordance with the improvement in accuracy required for the local feature amount.
  • the information processing system according to appendix 13 or 14, wherein the local area is arranged so as to make a round for each number.
  • the second local feature quantity generating means generates the second local feature quantity having a smaller number of dimensions for a landscape element having the lower correlation with other landscape elements, corresponding to the correlation of the landscape elements.
  • the first local feature quantity storage means stores the first local feature quantity having a smaller number of dimensions for a landscape element having a lower correlation with other landscape elements, corresponding to the correlation of the landscape elements.
  • the information processing system according to appendix 15 or 16 characterized by: (Appendix 18) M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • An information processing method using an information processing system including first local feature storage means for storing a quantity in association with each other, N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a second local feature generation step of generating the second local feature of A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number.
  • the image in the video Recognizing that the landscape element exists in An information processing method comprising: (Appendix 19) N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • Second local feature quantity generating means for generating the second local feature quantity of First transmission means for transmitting the m second local feature amounts to an information processing apparatus that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
  • First receiving means for receiving information indicating a landscape element included in the captured image from the information processing apparatus;
  • a communication terminal comprising: (Appendix 20) N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a control method for a communication terminal comprising: (Appendix 21) N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions.
  • a program for controlling a communication terminal, which causes a computer to execute. (Appendix 22) M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • First local feature quantity storage means for storing the quantity in association with each other; N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points.
  • Second receiving means for receiving the second local feature amount from the communication terminal; A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number.
  • An information processing apparatus comprising: (Appendix 23) M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • a method for controlling an information processing apparatus including first local feature storage means for storing a quantity in association with each other, N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points.
  • n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions
  • the image in the video Recognizing that the landscape element exists in A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
  • a method for controlling an information processing apparatus comprising: (Appendix 24) M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image.
  • a control program for an information processing device including first local feature storage means for storing the amount in association with each other, N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points.

Abstract

Provided is a technology for recognizing landscape elements such as buildings in an image in a video in real time. A landscape element, and m number of first local features, which comprise feature vectors having from 1 to i dimensions for each of m number of local regions including m number of feature points in an image of the landscape element, are associated and stored. Next, n number of feature points are extracted from an image in a captured video, and n number of second local features, which comprise feature vectors having from 1 to j dimensions for each of n number of local regions including the n number of feature points, are generated. The number of dimensions (i) of the feature vectors of the first local features or the number of dimensions (j) of the feature vectors of the second local features, whichever is the smaller number of dimensions, is selected. The landscape element is recognized to be present in the image from the video when a prescribed proportion or more of the m number of first local features up to the selected number of dimensions is determined to correspond to the n number of second local features up to the selected number of dimensions.

Description

情報処理システム、情報処理方法、情報処理装置およびその制御方法と制御プログラム、通信端末およびその制御方法と制御プログラムInformation processing system, information processing method, information processing apparatus and control method and control program thereof, communication terminal and control method and control program thereof
 本発明は、局所特徴量を使用して撮像した映像内の建造物を含む景観要素を同定するための技術に関する。 This invention relates to the technique for identifying the landscape element containing the building in the image | video imaged using the local feature-value.
 上記技術分野において、特許文献1には、建築物の複数の画像から抽出した特徴量をデータベースの特徴量と照合して、合致度を総合評価し、特定された建築物の関連情報を得る技術が記載されている。また、特許文献2には、あらかじめモデル画像から生成されたモデル辞書を使用して、クエリ画像を認識する場合に、特徴量をクラスタリングすることにより認識速度を向上させる技術が記載されている。 In the above technical field, Patent Document 1 discloses a technique in which feature amounts extracted from a plurality of images of a building are compared with feature amounts in a database, the degree of match is comprehensively evaluated, and related information on a specified building is obtained. Is described. Patent Document 2 describes a technique for improving the recognition speed by clustering feature amounts when a query image is recognized using a model dictionary generated in advance from a model image.
特開2010-045644号公報JP 2010-045644 A 特開2011-221688号公報JP 2011-221688 A
 しかしながら、上記文献に記載の技術では、リアルタイムに映像中の画像内の建築物を含む景観要素を認識することができなかった。 However, the technique described in the above document cannot recognize a landscape element including a building in an image in a video in real time.
 本発明の目的は、上述の課題を解決する技術を提供することにある。 An object of the present invention is to provide a technique for solving the above-described problems.
 上記目的を達成するため、本発明に係るシステムは、
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段と、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成手段と、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する景観要素認識手段と、
 を備えることを特徴とする。
In order to achieve the above object, a system according to the present invention provides:
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. First local feature quantity storage means for storing the quantity in association with each other;
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. Second local feature quantity generating means for generating the second local feature quantity of
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video A landscape element recognition means for recognizing that the landscape element exists in
It is characterized by providing.
 上記目的を達成するため、本発明に係る方法は、
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理システムにおける情報処理方法であって、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
 を備えることを特徴とする。
In order to achieve the above object, the method according to the present invention comprises:
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. An information processing method in an information processing system including first local feature storage means for storing a quantity in association with each other,
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
It is characterized by providing.
 上記目的を達成するため、本発明に係る装置は、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成手段と、
 前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信手段と、
 前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信手段と、
 を備えることを特徴とする。
In order to achieve the above object, an apparatus according to the present invention provides:
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. Second local feature quantity generating means for generating the second local feature quantity of
First transmission means for transmitting the m second local feature amounts to an information processing apparatus that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
First receiving means for receiving information indicating a landscape element included in the captured image from the information processing apparatus;
It is characterized by providing.
 上記目的を達成するため、本発明に係る方法は、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
 前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信ステップと、
 前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信ステップと、
 を含むことを特徴とする。
In order to achieve the above object, the method according to the present invention comprises:
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
A first receiving step of receiving information indicating a landscape element included in the captured image from the information processing apparatus;
It is characterized by including.
 上記目的を達成するため、本発明に係るプログラムは、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
 前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信ステップと、
 前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信ステップと、
 をコンピュータに実行させることを特徴とする。
In order to achieve the above object, a program according to the present invention provides:
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
A first receiving step of receiving information indicating a landscape element included in the captured image from the information processing apparatus;
Is executed by a computer.
 上記目的を達成するため、本発明に係る装置は、
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段と、
 通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信手段と、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識手段と、
 認識した前記景観要素を示す情報を前記通信端末に送信する第2送信手段と、
 を備えることを特徴とする。
In order to achieve the above object, an apparatus according to the present invention provides:
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. First local feature quantity storage means for storing the quantity in association with each other;
N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. Second receiving means for receiving the second local feature amount from the communication terminal;
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing means for recognizing that the landscape element exists in
Second transmission means for transmitting information indicating the recognized landscape element to the communication terminal;
It is characterized by providing.
 上記目的を達成するため、本発明に係る方法は、
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理装置の制御方法であって、
 通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信ステップと、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
 認識した前記景観要素を示す情報を前記通信端末に送信する第2送信ステップと、
 を含むことを特徴とする。
In order to achieve the above object, the method according to the present invention comprises:
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. A method for controlling an information processing apparatus including first local feature storage means for storing a quantity in association with each other,
N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. A second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal;
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
It is characterized by including.
 上記目的を達成するため、本発明に係るプログラムは、
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理装置の制御プログラムであって、
 通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信ステップと、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
 認識した前記景観要素を示す情報を前記通信端末に送信する第2送信ステップと、
 をコンピュータに実行させることを特徴とする。
In order to achieve the above object, a program according to the present invention provides:
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. A control program for an information processing device including first local feature storage means for storing the amount in association with each other,
N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. A second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal;
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
Is executed by a computer.
 本発明によれば、リアルタイムに映像中の画像内の建築物を含む景観要素を認識することができる。 According to the present invention, a landscape element including a building in an image in a video can be recognized in real time.
本発明の第1実施形態に係る情報処理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the information processing system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る情報処理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the information processing system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る情報処理システムにおける関連情報報知の動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the relevant information alerting | reporting in the information processing system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る情報処理システムにおけるリンク情報報知の動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the link information alerting | reporting in the information processing system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る通信端末の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the communication terminal which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る景観要素認識サーバの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the landscape element recognition server which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量DBの構成を示す図である。It is a figure which shows the structure of local feature-value DB which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る関連情報DBの構成を示す図である。It is a figure which shows the structure of related information DB which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るリンク情報DBの構成を示す図である。It is a figure which shows the structure of link information DB which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成部の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the local feature-value production | generation part which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成の手順を説明する図である。It is a figure explaining the procedure of the local feature-value production | generation which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成の手順を説明する図である。It is a figure explaining the procedure of the local feature-value production | generation which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成部でのサブ領域の選択順位を示す図である。It is a figure which shows the selection order of the sub area | region in the local feature-value production | generation part which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成部での特徴ベクトルの選択順位を示す図である。It is a figure which shows the selection order of the feature vector in the local feature-value production | generation part which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成部での特徴ベクトルの階層化を示す図である。It is a figure which shows hierarchization of the feature vector in the local feature-value production | generation part which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る符号化部の構成を示す図である。It is a figure which shows the structure of the encoding part which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る景観要素認識部の処理を示す図である。It is a figure which shows the process of the landscape element recognition part which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る通信端末のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the communication terminal which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る通信端末における局所特徴量生成テーブルを示す図である。It is a figure which shows the local feature-value production | generation table in the communication terminal which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る通信端末の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the communication terminal which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量生成処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the local feature-value production | generation process which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る符号化処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the encoding process which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る差分値の符号化処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the encoding process of the difference value which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る景観要素認識サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the landscape element recognition server which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る景観要素認識サーバの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the landscape element recognition server which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る局所特徴量DB生成処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of local feature-value DB production | generation processing which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る景観要素認識処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the landscape element recognition process which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る照合処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the collation process which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る情報処理システムの動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the information processing system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る情報処理システムにおける局所特徴量DB生成の動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of local feature-value DB production | generation in the information processing system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る情報処理システムにおける現在地決定および/または移動方向/動作決定の動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the present location determination and / or movement direction / motion determination in the information processing system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る通信端末の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the communication terminal which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る景観要素認識サーバの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the landscape element recognition server which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る局所特徴量DBの構成を示す図である。It is a figure which shows the structure of local feature-value DB which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る地図DBの構成を示す図である。It is a figure which shows the structure of map DB which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る景観要素認識部の処理を示す図である。It is a figure which shows the process of the landscape element recognition part which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る景観要素認識部の処理を示す図である。It is a figure which shows the process of the landscape element recognition part which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る通信端末のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the communication terminal which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る通信端末の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the communication terminal which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る景観要素認識サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the landscape element recognition server which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る現在地算出テーブルの構成を示す図である。It is a figure which shows the structure of the present location calculation table which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る移動方向/速度算出テーブルの構成を示す図である。It is a figure which shows the structure of the moving direction / speed calculation table which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る景観要素認識サーバの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the landscape element recognition server which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る局所特徴量DB生成処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of local feature-value DB production | generation processing which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る現在地算出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the present location calculation process which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る移動方向/速度算出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the movement direction / speed calculation process which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る情報処理システムの動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the information processing system which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係るナビゲーション用局所特徴量DBの構成を示す図である。It is a figure which shows the structure of local feature-value DB for navigation which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る情報処理システムの動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the information processing system which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る誘導制御コンピュータの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the guidance control computer which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。It is a figure which shows the example of a display screen of the communication terminal in the information processing system which concerns on 7th Embodiment of this invention. 本発明の第7実施形態に係る情報処理システムの動作手順を示すシーケンス図である。It is a sequence diagram which shows the operation | movement procedure of the information processing system which concerns on 7th Embodiment of this invention. 本発明の第7実施形態に係る経路画面DBの構成を示す図である。It is a figure which shows the structure of route screen DB which concerns on 7th Embodiment of this invention. 本発明の第7実施形態に係る誘導制御コンピュータの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the guidance control computer which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る通信端末の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the communication terminal which concerns on 8th Embodiment of this invention.
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素は単なる例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。なお、本明細書において使用される「景観要素」との文言は、山などの自然景観を構成する景観要素と、人工景観を構成する建造物などとを含む。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the constituent elements described in the following embodiments are merely examples, and are not intended to limit the technical scope of the present invention only to them. Note that the term “landscape element” used in the present specification includes a landscape element that forms a natural landscape such as a mountain, a building that forms an artificial landscape, and the like.
 [第1実施形態]
 本発明の第1実施形態としての情報処理システム100について、図1を用いて説明する。情報処理システム100は、景観要素をリアルタイムに認識するシステムである。
[First Embodiment]
An information processing system 100 as a first embodiment of the present invention will be described with reference to FIG. The information processing system 100 is a system that recognizes landscape elements in real time.
 図1に示すように、情報処理システム100は、第1局所特徴量記憶部110と、第2局所特徴量生成部130と、景観要素認識部140と、を含む。第1局所特徴量記憶部110は、景観要素111と、景観要素111の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量112とを、対応付けて記憶する。第2局所特徴量生成部130は、撮像部120が撮像した映像中の画像101からn個の特徴点131を抽出する。そして、第2局所特徴量生成部130は、n個の特徴点のそれぞれを含むn個の局所領域132について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量133を生成する。景観要素認識部140は、第1局所特徴量112の特徴ベクトルの次元数iおよび第2局所特徴量133の特徴ベクトルの次元数jのうち、より少ない次元数を選択する。そして、景観要素認識部140は、選択された次元数までの特徴ベクトルからなるn個の第2局所特徴量133に、選択された次元数までの特徴ベクトルからなるm個の第1局所特徴量112の所定割合以上が対応すると判定した場合に、映像中の画像101に景観要素111が存在すると認識する。 1, the information processing system 100 includes a first local feature quantity storage unit 110, a second local feature quantity generation unit 130, and a landscape element recognition unit 140. The 1st local feature-value memory | storage part 110 was produced | generated about each of the m local region containing each of the landscape element 111 and each of the m feature points of the image of the landscape element 111, respectively from 1 dimension to i dimension. The m first local feature quantities 112 made up of feature vectors are stored in association with each other. The second local feature quantity generation unit 130 extracts n feature points 131 from the image 101 in the video captured by the imaging unit 120. Then, the second local feature value generation unit 130, for n local regions 132 including each of the n feature points, n second local feature values 133 each consisting of a feature vector from 1 dimension to j dimension. Is generated. The landscape element recognition unit 140 selects a smaller number of dimensions from the dimension number i of the feature vector of the first local feature 112 and the dimension j of the feature vector of the second local feature 133. Then, the landscape element recognition unit 140 adds the m first local feature amounts including the feature vectors up to the selected number of dimensions to the n second local feature amounts 133 including the feature vectors up to the selected number of dimensions. When it is determined that the predetermined ratio of 112 or more corresponds, it is recognized that the landscape element 111 exists in the image 101 in the video.
 本実施形態によれば、リアルタイムに映像中の画像内の建築物を含む景観要素を認識することができる。 According to this embodiment, a landscape element including a building in an image in a video can be recognized in real time.
 [第2実施形態]
 次に、本発明の第2実施形態に係る情報処理システムについて説明する。本実施形態においては、通信端末により撮像した景観の映像から生成した局所特徴量と、景観要素認識サーバの局所特徴量DBに格納された局所特徴量との照合により、映像中の景観要素を認識する。そして、認識した景観要素に、その名称、関連情報、および/または、リンク情報を付加して報知する。
[Second Embodiment]
Next, an information processing system according to the second embodiment of the present invention will be described. In this embodiment, a landscape element in a video is recognized by collating a local feature generated from a landscape image captured by a communication terminal with a local feature stored in the local feature DB of the landscape element recognition server. To do. Then, the recognized landscape element is notified by adding its name, related information, and / or link information.
 本実施形態によれば、リアルタイムに映像中の画像内の建築物を含む景観要素に対応付けて、その名称、関連情報、および/または、リンク情報を報知できる。 According to this embodiment, the name, related information, and / or link information can be notified in association with a landscape element including a building in the image in the image in real time.
 《情報処理システムの構成》
 図2は、本実施形態に係る情報処理システム200の構成を示すブロック図である。
<Configuration of information processing system>
FIG. 2 is a block diagram illustrating a configuration of the information processing system 200 according to the present embodiment.
 図2の情報処理システム200は、ネットワーク240を介して接続された、撮像機能を有した通信端末210と、通信端末210が撮像した景観から景観要素を認識する景観要素認識サーバ220と、通信端末210に関連情報と提供する関連情報提供サーバ230と、を備える。 The information processing system 200 in FIG. 2 includes a communication terminal 210 having an imaging function, a landscape element recognition server 220 that recognizes a landscape element from a landscape captured by the communication terminal 210, and a communication terminal. 210 includes related information and a related information providing server 230 that provides the related information.
 通信端末210は、撮像された景観を表示部に表示する。そして、図2の表示画面211のように、撮像された景観に対して局所特徴量生成部で生成された局所特徴量に基づいて、景観要素認識サーバ220で認識した景観要素の各名称を、重畳表示する。なお、通信端末210は、図示のように、撮像機能を有した携帯電話や他の通信端末も含む複数の通信端末を代表するものである。 The communication terminal 210 displays the captured landscape on the display unit. And each name of the landscape element recognized by the landscape element recognition server 220 based on the local feature-value produced | generated by the local feature-value production | generation part with respect to the imaged landscape like the display screen 211 of FIG. Superimposed display. As shown in the figure, the communication terminal 210 represents a plurality of communication terminals including a mobile phone having an imaging function and other communication terminals.
 景観要素認識サーバ220は、景観要素と局所特徴量とを対応付けて記憶する局所特徴量DB221と、景観要素に対応して関連情報を記憶する関連情報DB222と、景観要素に対応してリンク情報を記憶するリンク情報DB223と、を有する。景観要素認識サーバ220は、通信端末210から受信した景観の局所特徴量から、局所特徴量DB221の局所特徴量との照合に基づいて認識した景観要素の名称を返信する。また、関連情報DB222から認識した景観要素に対応する紹介などの関連情報を検索して通信端末210に返信する。また、リンク情報DB223から認識した景観要素に対応する関連情報提供サーバ230へのリンク情報を検索して通信端末210に返信する。景観要素の名称と、景観要素に対応する関連情報と、景観要素に対するリンク情報とは、それぞれ別個に提供されても、複数が同時に提供されてもよい。 The landscape element recognition server 220 includes a local feature DB 221 that stores a landscape element and a local feature in association with each other, a related information DB 222 that stores related information in association with a landscape element, and link information that corresponds to a landscape element. A link information DB 223 for storing. The landscape element recognition server 220 returns the name of the landscape element recognized based on the collation with the local feature amount of the local feature amount DB 221 from the local feature amount of the landscape received from the communication terminal 210. In addition, related information such as introduction corresponding to the landscape element recognized from the related information DB 222 is searched and returned to the communication terminal 210. Moreover, the link information to the related information provision server 230 corresponding to the landscape element recognized from the link information DB 223 is searched and returned to the communication terminal 210. The name of the landscape element, the related information corresponding to the landscape element, and the link information for the landscape element may be provided separately or may be provided simultaneously.
 関連情報提供サーバ230は、景観要素に対応した関連情報を格納する関連情報DB231を有する。景観要素認識サーバ220が認識した景観要素に対応して提供されたリンク情報に基づいて、アクセスされる。そして、認識した景観要素に対応した関連情報を関連情報DB231から検索して、景観情報を含む景観の局所特徴量を送信した通信端末210に返信する。したがって、図2には、1つの関連情報提供サーバ230を示したが、リンク先に数だけの関連情報提供サーバ230が接続される。その場合には、景観要素認識サーバ220による適切なリンク先の選択、あるいは複数のリンク先を通信端末210に表示して、ユーザによる選択を行なうことになる。 The related information providing server 230 has a related information DB 231 that stores related information corresponding to landscape elements. Access is made based on the link information provided corresponding to the landscape element recognized by the landscape element recognition server 220. And the related information corresponding to the recognized landscape element is searched from the related information DB 231 and returned to the communication terminal 210 that transmitted the local feature amount of the landscape including the landscape information. Therefore, although one related information providing server 230 is shown in FIG. 2, as many related information providing servers 230 are connected to the link destination. In that case, selection of an appropriate link destination by the landscape element recognition server 220 or a plurality of link destinations is displayed on the communication terminal 210 and selection by the user is performed.
 なお、図2には、撮像した景観中の景観要素に名称を重畳表示する例を図示した。景観要素に対応する関連情報と、景観要素に対するリンク情報との表示については、図3に従って説明する。 In addition, in FIG. 2, the example which superimposes and displays a name on the landscape element in the imaged landscape was illustrated. The display of the related information corresponding to the landscape element and the link information for the landscape element will be described with reference to FIG.
 (通信端末の表示画面例)
 図3は、本実施形態に係る情報処理システム200における通信端末210の表示画面例を示す図である。
(Example of communication terminal display screen)
FIG. 3 is a diagram illustrating a display screen example of the communication terminal 210 in the information processing system 200 according to the present embodiment.
 図3の上段は、景観要素に対応する関連情報を表示する表示画面例である。図3の表示画面310は、撮像した景観の映像311と操作ボタン312とを含んでいる。上段左図の映像から生成した局所特徴量と、景観要素認識サーバ220の局所特徴量DB221との照合により景観要素を認識する。その結果、上段右図の表示画面320には、景観映像と、景観要素名称および関連情報とを重畳した映像321を表示する。同時に、スピーカ322により関連情報を音声出力してもよい。 The upper part of FIG. 3 is an example of a display screen that displays related information corresponding to a landscape element. The display screen 310 of FIG. 3 includes a captured landscape image 311 and operation buttons 312. A landscape element is recognized by collation with the local feature-value produced | generated from the image | video of the upper left figure, and local feature-value DB221 of the landscape element recognition server 220. FIG. As a result, on the display screen 320 in the upper right diagram, a video 321 in which a landscape video, a landscape element name, and related information are superimposed is displayed. At the same time, the related information may be output by voice through the speaker 322.
 図3の下段は、景観要素に対応するリンク情報を表示する表示画面例である。下段左図の映像から生成した局所特徴量と、景観要素認識サーバ220の局所特徴量DB221との照合により景観要素を認識する。その結果、下段右図の表示画面330には、景観映像と、景観要素名称およびリンク情報とを重畳した映像331を表示する。図示しないが、表示されたリンク情報をクリックすることにより、リンク先の関連情報提供サーバ230がアクセスされて、関連情報DB231から検索した関連情報を通信端末210に表示する、あるいは通信端末210から音声出力する。 The lower part of FIG. 3 is an example of a display screen that displays link information corresponding to a landscape element. A landscape element is recognized by collating the local feature amount generated from the video in the lower left figure with the local feature amount DB 221 of the landscape element recognition server 220. As a result, on the display screen 330 in the lower right diagram, an image 331 in which a landscape image, a landscape element name, and link information are superimposed is displayed. Although not shown, by clicking the displayed link information, the linked related information providing server 230 is accessed, and the related information retrieved from the related information DB 231 is displayed on the communication terminal 210, or the communication terminal 210 receives audio. Output.
 《情報処理システムの動作手順》
 以下、図4および図5を参照して、本実施形態における情報処理システム200の動作手順を説明する。なお、図4および図5には、認識された景観要素名のみの表示例は示していないが、景観要素認識後に景観要素名を通信端末210に送信すればよい。また、景観要素名と、関連情報と、リンク情報との表示は、図4と図5とを組み合わせれば実現できる。
<< Operation procedure of information processing system >>
Hereinafter, an operation procedure of the information processing system 200 in the present embodiment will be described with reference to FIGS. 4 and 5. In addition, although the display example of only the recognized landscape element name is not shown in FIGS. 4 and 5, the landscape element name may be transmitted to the communication terminal 210 after the landscape element recognition. Moreover, the display of a landscape element name, related information, and link information can be realized by combining FIG. 4 and FIG.
 (関連情報報知の動作手順)
 図4は、本実施形態に係る情報処理システム200における関連情報報知の動作手順を示すシーケンス図である。
(Related information notification procedure)
FIG. 4 is a sequence diagram showing an operation procedure of related information notification in the information processing system 200 according to the present embodiment.
 まず、必要であれば、ステップS400において、景観要素認識サーバ220からから通信端末210にアプリケーションおよび/またはデータのダウンロードを行なう。そして、ステップS401において、本実施形態の処理を行なうための、アプリケーションの起動と初期化が行なわれる。 First, if necessary, in step S400, an application and / or data is downloaded from the landscape element recognition server 220 to the communication terminal 210. In step S401, the application is activated and initialized to perform the processing of this embodiment.
 ステップS403において、通信端末は、景観を撮像して映像を取得する。ステップS405において、景観の映像から局所特徴量を生成する。続いて、ステップS407において局所特徴量を特徴点座標と共に符号化する。符号化された局所特徴量は、ステップS409において、通信端末から景観要素認識サーバ220に送信される。 In step S403, the communication terminal captures a landscape and acquires a video. In step S405, a local feature amount is generated from the landscape image. Subsequently, in step S407, the local feature amount is encoded together with the feature point coordinates. The encoded local feature is transmitted from the communication terminal to the landscape element recognition server 220 in step S409.
 景観要素認識サーバ220では、ステップS411において、景観要素の画像に対して生成され記憶された局所特徴量DB221を参照して、景観中の景観要素の認識を行なう。そして、ステップS413において、認識した景観要素に対応する関連情報DB222を参照して、関連情報を取得する。ステップS415において、景観要素名と関連情報とを、景観要素認識サーバ220から通信端末210に送信する。 The landscape element recognition server 220 refers to the local feature DB 221 generated and stored for the landscape element image in step S411 to recognize the landscape element in the landscape. Then, in step S413, the related information is acquired with reference to the related information DB 222 corresponding to the recognized landscape element. In step S415, the landscape element name and the related information are transmitted from the landscape element recognition server 220 to the communication terminal 210.
 通信端末210は、ステップS417において、受信した景観要素名と関連情報とを報知する(図3の上段参照)。なお、景観要素名は表示、関連情報は表示あるいは音声出力される。 In step S417, the communication terminal 210 notifies the received landscape element name and related information (see the upper part of FIG. 3). The landscape element name is displayed, and the related information is displayed or output as audio.
 (リンク情報報知の動作手順)
 図5は、本実施形態に係る情報処理システム200におけるリンク情報報知の動作手順を示すシーケンス図である。なお、図4と同様の動作手順には同じステップ番号を付して、説明は省略する。
(Operation procedure of link information notification)
FIG. 5 is a sequence diagram showing an operation procedure of link information notification in the information processing system 200 according to the present embodiment. In addition, the same step number is attached | subjected to the operation | movement procedure similar to FIG. 4, and description is abbreviate | omitted.
 ステップS400およびS401においては、アプリケーションやデータの相違の可能性はあるが、図4と同様にダウンロードおよび起動と初期化が行なわれる。 In steps S400 and S401, although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
 ステップS411において通信端末210から受信した映像の局所特徴量から、景観中の景観要素を認識した景観要素認識サーバ220は、ステップS513において、リンク情報DB223を参照して、認識した景観要素に対応するリンク情報を取得する。ステップS515において、景観要素名とリンク情報とを、景観要素認識サーバ220から通信端末210に送信する。 The landscape element recognition server 220 that recognizes the landscape element in the landscape from the local feature amount of the video received from the communication terminal 210 in step S411 corresponds to the recognized landscape element with reference to the link information DB 223 in step S513. Get link information. In step S515, the landscape element name and the link information are transmitted from the landscape element recognition server 220 to the communication terminal 210.
 通信端末210は、ステップS517において、受信した景観要素名とリンク情報とを景観映像に重畳して表示する(図3の下段参照)。そして、ステップS519において、リンク情報のユーザによる指示を待つ。ユーザのリンク先指示があれば、ステップS521において、リンク先である関連情報提供サーバ230に、景観要素IDを持ってアクセスする。 In step S517, the communication terminal 210 displays the received landscape element name and link information superimposed on the landscape video (see the lower part of FIG. 3). In step S519, an instruction from the user of link information is awaited. If there is a user's link destination instruction, in step S521, the related information providing server 230 that is the link destination is accessed with a landscape element ID.
 関連情報提供サーバ230は、ステップS523において、受信した景観要素IDを使用して関連情報DB231から関連情報(文書データや音声データを含む)を取得する。そして、ステップS525において、アクセス元の通信端末210に関連情報を返信する。 In step S523, the related information providing server 230 acquires related information (including document data and audio data) from the related information DB 231 using the received landscape element ID. In step S525, the related information is returned to the access source communication terminal 210.
 関連情報の返信を受けた通信端末210は、ステップS527において、受信した関連情報を表示あるいは音声出力する。 The communication terminal 210 that has received the reply of the related information displays or outputs the received related information in step S527.
 《通信端末の機能構成》
 図6は、本実施形態に係る通信端末210の機能構成を示すブロック図である。
<Functional configuration of communication terminal>
FIG. 6 is a block diagram illustrating a functional configuration of the communication terminal 210 according to the present embodiment.
 図6において、撮像部601は、クエリ画像として景観映像を入力する。局所特徴量生成部602は、撮像部601からの景観映像から局所特徴量を生成する。局所特徴量送信部603は、生成された局所特徴量を特徴点座標と共に、符号化部603aにより符号化し、通信制御部604を介して景観要素認識サーバ220に送信する。 6, the imaging unit 601 inputs a landscape video as a query image. The local feature value generation unit 602 generates a local feature value from the landscape video from the imaging unit 601. The local feature amount transmission unit 603 encodes the generated local feature amount together with the feature point coordinates by the encoding unit 603a and transmits the encoded local feature amount to the landscape element recognition server 220 via the communication control unit 604.
 景観要素認識結果受信部605は、通信制御部604を介して景観要素認識サーバ220から景観要素認識結果を受信する。そして、表示画面生成部606は、受信した景観要素認識結果の表示画面を生成して、ユーザに報知する。 The landscape element recognition result receiving unit 605 receives a landscape element recognition result from the landscape element recognition server 220 via the communication control unit 604. And the display screen production | generation part 606 produces | generates the display screen of the received landscape element recognition result, and alert | reports to a user.
 また、関連情報受信部607は、通信制御部604を介して関連情報を受信する。そして、表示画面生成部606および音声生成部698は、受信した関連情報の表示画面および音声データを生成して、ユーザに報知する。なお、関連情報受信部607が受信する関連情報は、景観要素認識サーバ220からの関連情報あるいは関連情報提供サーバ230からの関連情報を含む。 Also, the related information receiving unit 607 receives related information via the communication control unit 604. Then, the display screen generation unit 606 and the sound generation unit 698 generate a display screen and sound data of the received related information and notify the user. Note that the related information received by the related information receiving unit 607 includes related information from the landscape element recognition server 220 or related information from the related information providing server 230.
 また、リンク情報受信部609は、通信制御部604を介して関連情報提供サーバ230からリンク情報を受信する。そして、表示画面生成部606は、受信したリンク情報の表示画面を生成して、ユーザに報知する。リンク先アクセス部610は、図示しない操作部によるリンク情報のクリックに基づいて、リンク先の関連情報提供サーバ230にアクセスする。 Also, the link information receiving unit 609 receives link information from the related information providing server 230 via the communication control unit 604. Then, the display screen generation unit 606 generates a display screen of the received link information and notifies the user. The link destination access unit 610 accesses the link destination related information providing server 230 based on the click of link information by an operation unit (not shown).
 なお、景観要素認識結果受信部605と関連情報受信部607とリンク情報受信部609とは、それぞれ設けずに、通信制御部604を介して受信した情報を受信する1つの情報受信部として設けてもよい。 The landscape element recognition result receiving unit 605, the related information receiving unit 607, and the link information receiving unit 609 are not provided, but are provided as one information receiving unit that receives information received via the communication control unit 604. Also good.
 《景観要素認識サーバの機能構成》
 図7は、本実施形態に係る景観要素認識サーバ220の機能構成を示すブロック図である。
《Functional configuration of landscape element recognition server》
FIG. 7 is a block diagram illustrating a functional configuration of the landscape element recognition server 220 according to the present embodiment.
 図7において、局所特徴量受信部702は、通信制御部701を介して通信端末210から受信した局所特徴量を復号部702aで復号する。景観要素認識部703は、受信した局所特徴量を、景観要素に対応する局所特徴量を格納する局所特徴量DB221の局所特徴量と照合して、景観要素を認識する。景観要素認識結果送信部704は、景観要素の認識結果(景観要素名)を通信端末210に送信する。 In FIG. 7, the local feature receiving unit 702 decodes the local feature received from the communication terminal 210 via the communication control unit 701 by the decoding unit 702a. The landscape element recognition unit 703 recognizes the landscape element by collating the received local feature amount with the local feature amount of the local feature amount DB 221 storing the local feature amount corresponding to the landscape element. The landscape element recognition result transmission unit 704 transmits a landscape element recognition result (landscape element name) to the communication terminal 210.
 関連情報取得部705は、関連情報DB222を参照して、認識した景観要素に対応する関連情報を取得する。関連情報送信部706は、取得した関連情報を通信端末210に送信する。なお、景観要素認識サーバ220が関連情報を送信する場合は、図4のように、景観要素認識結果と関連情報とを1つの送信データで送信するのが、通信トラフィックの削減となるので望ましい。 The related information acquisition unit 705 refers to the related information DB 222 and acquires related information corresponding to the recognized landscape element. The related information transmission unit 706 transmits the acquired related information to the communication terminal 210. In addition, when the landscape element recognition server 220 transmits related information, it is desirable to transmit the landscape element recognition result and the related information as a single transmission data as illustrated in FIG. 4 because communication traffic is reduced.
 リンク情報取得部707は、リンク情報DB223を参照して、認識した景観要素に対応するリンク情報を取得する。リンク情報送信部708は、取得したリンク情報を通信端末210に送信する。なお、リンク情報を送信する場合は、図5のように、景観要素認識サーバ220が景観要素認識結果とリンク情報とを1つの送信データで送信するのが、通信トラフィックの削減となるので望ましい。 The link information acquisition unit 707 refers to the link information DB 223 and acquires link information corresponding to the recognized landscape element. The link information transmission unit 708 transmits the acquired link information to the communication terminal 210. In addition, when transmitting link information, it is desirable for the landscape element recognition server 220 to transmit a landscape element recognition result and link information by one transmission data like FIG. 5, since it reduces communication traffic.
 当然ながら、景観要素認識サーバ220が景観要素認識結果と関連情報とリンク情報とを送信する場合は、全情報を取得してから1つの送信データで送信するのが、通信トラフィックの削減となるので望ましい。 Naturally, when the landscape element recognition server 220 transmits the landscape element recognition result, the related information, and the link information, it is possible to reduce the communication traffic by transmitting all the information after transmitting it as a single transmission data. desirable.
 なお、関連情報提供サーバ230の構成については、種々のリンク可能なプロバイダを含み、その構成についての説明は省略する。 It should be noted that the configuration of the related information providing server 230 includes various linkable providers, and a description of the configuration is omitted.
 (局所特徴量DB)
 図8は、本実施形態に係る局所特徴量DB221の構成を示す図である。なお、かかる構成に限定されない。
(Local feature DB)
FIG. 8 is a diagram illustrating a configuration of the local feature DB 221 according to the present embodiment. Note that the present invention is not limited to such a configuration.
 局所特徴量DB221は、景観要素ID801と名/方角802に対応付けて、第1番局所特徴量803、第2番局所特徴量804、…、第m番局所特徴量805を記憶する。各局所特徴量は、5×5のサブ領域に対応して、25次元ずつに階層化された1次元から150次元の要素からなる特徴ベクトルを記憶する(図11F参照)。ここで、方角とは、各景観要素をいずれの方角から見た場合の局所特徴量かを示す。景観要素の認識エラーを防ぐためには、重なり部分の少ない方角や特徴ある方角などの少なくとも2方角からの局所特徴量が同じ景観要素に対応して記憶されるのが望ましい。 The local feature DB 221 stores a first local feature 803, a second local feature 804, ..., an mth local feature 805 in association with the landscape element ID 801 and the name / direction 802. Each local feature quantity stores a feature vector composed of 1-dimensional to 150-dimensional elements hierarchized by 25 dimensions corresponding to 5 × 5 subregions (see FIG. 11F). Here, the direction indicates a local feature when each landscape element is viewed from any direction. In order to prevent landscape element recognition errors, it is desirable that local feature quantities from at least two directions such as a direction with few overlapping portions or a characteristic direction are stored in correspondence with the same landscape element.
 なお、mは正の整数であり、景観要素IDに対応して異なる数でよい。また、本実施形態においては、それぞれの局所特徴量と共に照合処理に使用される特徴点座標が記憶される。 Note that m is a positive integer and may be a different number corresponding to the landscape element ID. In the present embodiment, the feature point coordinates used for the matching process are stored together with the respective local feature amounts.
 (関連情報DB)
 図9は、本実施形態に係る関連情報DB222の構成を示す図である。なお、かかる構成に限定されない。
(Related information DB)
FIG. 9 is a diagram showing a configuration of the related information DB 222 according to the present embodiment. Note that the present invention is not limited to such a configuration.
 関連情報DB222は、景観要素ID901と景観要素名902に対応付けて、関連情報である関連表示データ903と関連音声データ904とを記憶する。なお、関連情報DB222は、局所特徴量DB221と一体に設けてもよい。 The related information DB 222 stores related display data 903 and related audio data 904 that are related information in association with the landscape element ID 901 and the landscape element name 902. The related information DB 222 may be provided integrally with the local feature DB 221.
 (リンク情報DB)
 図10は、本実施形態に係るリンク情報DB223の構成を示す図である。なお、かかる構成に限定されない。
(Link information DB)
FIG. 10 is a diagram showing a configuration of the link information DB 223 according to the present embodiment. Note that the present invention is not limited to such a configuration.
 リンク情報DB223は、景観要素ID1001と景観要素名1002に対応付けて、インク情報である、例えばURL(Uniform Resource Locator)1003と表示画面への表示デー10904とを記憶する。なお、リンク情報DB223は、局所特徴量DB221や関連情報DB222と一体に設けてもよい。 The link information DB 223 stores ink information, for example, a URL (Uniform Resource Locator) 1003 and display data 10904 on the display screen in association with the landscape element ID 1001 and the landscape element name 1002. The link information DB 223 may be provided integrally with the local feature amount DB 221 and the related information DB 222.
 なお、関連情報提供サーバ230の関連情報DB231は、景観要素認識サーバ220の関連情報DB222と同様であり、重複を避けるため説明は省略する。 The related information DB 231 of the related information providing server 230 is the same as the related information DB 222 of the landscape element recognition server 220, and a description thereof is omitted to avoid duplication.
 《局所特徴量生成部》
 図11Aは、本実施形態に係る局所特徴量生成部702の構成を示すブロック図である。
<< Local feature generator >>
FIG. 11A is a block diagram illustrating a configuration of a local feature value generation unit 702 according to the present embodiment.
 局所特徴量生成部702は、特徴点検出部1111、局所領域取得部1112、サブ領域分割部1113、サブ領域特徴ベクトル生成部1114、および次元選定部1115を含んで構成される。 The local feature quantity generation unit 702 includes a feature point detection unit 1111, a local region acquisition unit 1112, a sub region division unit 1113, a sub region feature vector generation unit 1114, and a dimension selection unit 1115.
 特徴点検出部1111は、画像データから特徴的な点(特徴点)を多数検出し、各特徴点の座標位置、スケール(大きさ)、および角度を出力する。 The feature point detection unit 1111 detects a large number of characteristic points (feature points) from the image data, and outputs the coordinate position, scale (size), and angle of each feature point.
 局所領域取得部1112は、検出された各特徴点の座標値、スケール、および角度から、特徴量抽出を行う局所領域を取得する。 The local region acquisition unit 1112 acquires a local region where feature amount extraction is performed from the coordinate value, scale, and angle of each detected feature point.
 サブ領域分割部1113は、局所領域をサブ領域に分割する。たとえば、サブ領域分割部1113は、局所領域を16ブロック(4×4ブロック)に分割することも、局所領域を25ブロック(5×5ブロック)に分割することもできる。なお、分割数は限定されない。本実施形態においては、以下、局所領域を25ブロック(5×5ブロック)に分割する場合を代表して説明する。 The sub area dividing unit 1113 divides the local area into sub areas. For example, the sub-region dividing unit 1113 can divide the local region into 16 blocks (4 × 4 blocks) or divide the local region into 25 blocks (5 × 5 blocks). The number of divisions is not limited. In the present embodiment, the case where the local area is divided into 25 blocks (5 × 5 blocks) will be described below as a representative.
 サブ領域特徴ベクトル生成部1114は、局所領域のサブ領域ごとに特徴ベクトルを生成する。サブ領域の特徴ベクトルとしては、たとえば、勾配方向ヒストグラムを用いることができる。 The sub-region feature vector generation unit 1114 generates a feature vector for each sub-region of the local region. As the feature vector of the sub-region, for example, a gradient direction histogram can be used.
 次元選定部1115は、サブ領域の位置関係に基づいて、近接するサブ領域の特徴ベクトル間の相関が低くなるように、局所特徴量として出力する次元を選定する(たとえば、間引きする)。また、次元選定部1115は、単に次元を選定するだけではなく、選定の優先順位を決定することができる。すなわち、次元選定部1115は、たとえば、隣接するサブ領域間では同一の勾配方向の次元が選定されないように、優先順位をつけて次元を選定することができる。そして、次元選定部1115は、選定した次元から構成される特徴ベクトルを、局所特徴量として出力する。なお、次元選定部1115は、優先順位に基づいて次元を並び替えた状態で、局所特徴量を出力することができる。 The dimension selection unit 1115 selects a dimension to be output as a local feature amount (for example, thinning out) so that the correlation between feature vectors of adjacent sub-regions becomes low based on the positional relationship of the sub-regions. In addition, the dimension selection unit 1115 can not only select a dimension but also determine a selection priority. That is, the dimension selection unit 1115 can select dimensions with priorities so that, for example, dimensions in the same gradient direction are not selected between adjacent sub-regions. Then, the dimension selection unit 1115 outputs a feature vector composed of the selected dimensions as a local feature amount. In addition, the dimension selection part 1115 can output a local feature-value in the state which rearranged the dimension based on the priority.
 《局所特徴量生成部の処理》
 図11B~図11Fは、本実施形態に係る局所特徴量生成部602の処理を示す図である。
<< Processing of local feature generator >>
11B to 11F are diagrams showing processing of the local feature quantity generation unit 602 according to the present embodiment.
 まず、図11Bは、局所特徴量生成部602における、特徴点検出/局所領域取得/サブ領域分割/特徴ベクトル生成の一連の処理を示す図である。かかる一連の処理については、米国特許第6711293号明細書や、David G. Lowe著、「Distinctive image features from scale-invariant key points」、(米国)、International Journal of Computer Vision、60(2)、2004年、p. 91-110を参照されたい。 First, FIG. 11B is a diagram showing a series of processing of feature point detection / local region acquisition / sub-region division / feature vector generation in the local feature quantity generation unit 602. Such a series of processes is described in US Pat. No. 6,711,293, David G. Lowe, “Distinctive image features from scale-invariant key points” (USA), International Journal of Computer Vision, 60 (2), 2004. Year, p. 91-110.
 (特徴点検出部)
 図11Bの画像1121は、図11Aの特徴点検出部1111において、映像中の画像から特徴点を検出した状態を示す図である。以下、1つの特徴点データ1121aを代表させて局所特徴量の生成を説明する。特徴点データ1121aの矢印の起点が特徴点の座標位置を示し、矢印の長さがスケール(大きさ)を示し、矢印の方向が角度を示す。ここで、スケール(大きさ)や方向は、対象映像にしたがって輝度や彩度、色相などを選択できる。また、図11Bの例では、60度間隔で6方向の場合を説明するが、これに限定されない。
(Feature point detector)
An image 1121 in FIG. 11B is a diagram illustrating a state in which feature points are detected from an image in the video in the feature point detection unit 1111 in FIG. 11A. Hereinafter, the generation of local feature amounts will be described by using one feature point data 1121a as a representative. The starting point of the arrow of the feature point data 1121a indicates the coordinate position of the feature point, the length of the arrow indicates the scale (size), and the direction of the arrow indicates the angle. Here, as the scale (size) and direction, brightness, saturation, hue, and the like can be selected according to the target image. Further, in the example of FIG. 11B, the case of six directions at intervals of 60 degrees will be described, but the present invention is not limited to this.
 (局所領域取得部)
 図11Aの局所領域取得部1112は、例えば、特徴点データ1121aの起点を中心にガウス窓1122aを生成し、このガウス窓1122aをほぼ含む局所領域1122を生成する。図11Bの例では、局所領域取得部1112は正方形の局所領域1122を生成したが、局所領域は円形であっても他の形状であってもよい。この局所領域を各特徴点について取得する。局所領域が円形であれば、撮影方向に対してロバスト性が向上するという効果がある。
(Local area acquisition unit)
For example, the local region acquisition unit 1112 in FIG. 11A generates a Gaussian window 1122a around the starting point of the feature point data 1121a, and generates a local region 1122 that substantially includes the Gaussian window 1122a. In the example of FIG. 11B, the local region acquisition unit 1112 generates a square local region 1122, but the local region may be circular or have another shape. This local region is acquired for each feature point. If the local area is circular, there is an effect that the robustness is improved with respect to the imaging direction.
 (サブ領域分割部)
 次に、サブ領域分割部1113において、上記特徴点データ1121aの局所領域1122に含まれる各画素のスケールおよび角度をサブ領域1123に分割した状態が示されている。なお、図11Bでは4×4=16画素をサブ領域とする5×5=25のサブ領域に分割した例を示す。しかし、サブ領域は、4×4=16や他の形状、分割数であってもよい。
(Sub-region division part)
Next, the sub-region dividing unit 1113 shows a state in which the scale and angle of each pixel included in the local region 1122 of the feature point data 1121a are divided into sub-regions 1123. FIG. 11B shows an example in which 4 × 4 = 16 pixels are divided into 5 × 5 = 25 subregions. However, the sub-region may be 4 × 4 = 16, other shapes, or the number of divisions.
 (サブ領域特徴ベクトル生成部)
 サブ領域特徴ベクトル生成部1114は、サブ領域内の各画素のスケールを6方向の角度単位にヒストグラムを生成して量子化し、サブ領域の特徴ベクトル1124とする。すなわち、特徴点検出部1111が出力する角度に対して正規化された方向である。そして、サブ領域特徴ベクトル生成部1114は、サブ領域ごとに量子化された6方向の頻度を集計し、ヒストグラムを生成する。この場合、サブ領域特徴ベクトル生成部1114は、各特徴点に対して生成される25サブ領域ブロック×6方向=150次元のヒストグラムにより構成される特徴ベクトルを出力する。また、勾配方向を6方向に量子化するだけに限らず、4方向、8方向、10方向など任意の量子化数に量子化してよい。勾配方向をD方向に量子化する場合、量子化前の勾配方向をG(0~2πラジアン)とすると、勾配方向の量子化値Qq(q=0,…,D-1)は、例えば式(1)や式(2)などで求めることができるが、これに限られない。
(Sub-region feature vector generator)
The sub-region feature vector generation unit 1114 generates and quantizes the histogram of the scale of each pixel in the sub-region in units of angles in six directions, and sets it as a sub-region feature vector 1124. That is, the direction is normalized with respect to the angle output by the feature point detection unit 1111. Then, the sub-region feature vector generation unit 1114 aggregates the frequencies in the six directions quantized for each sub-region, and generates a histogram. In this case, the sub-region feature vector generation unit 1114 outputs a feature vector constituted by a histogram of 25 sub-region blocks × 6 directions = 150 dimensions generated for each feature point. In addition, the gradient direction is not limited to 6 directions, but may be quantized to an arbitrary quantization number such as 4 directions, 8 directions, and 10 directions. When the gradient direction is quantized in the D direction, if the gradient direction before quantization is G (0 to 2π radians), the quantized value Qq (q = 0,..., D−1) in the gradient direction can be expressed by, for example, Although it can obtain | require by (1), Formula (2), etc., it is not restricted to this.
 Qq=floor(G×D/2π)    …(1)
 Qq=round(G×D/2π)modD …(2)
 ここで、floor()は小数点以下を切り捨てる関数、round()は四捨五入を行う関数、modは剰余を求める演算である。また、サブ領域特徴ベクトル生成部1114は勾配ヒストグラムを生成するときに、単純な頻度を集計するのではなく、勾配の大きさを加算して集計してもよい。また、サブ領域特徴ベクトル生成部1114は勾配ヒストグラムを集計するときに、画素が属するサブ領域だけではなく、サブ領域間の距離に応じて近接するサブ領域(隣接するブロックなど)にも重み値を加算するようにしてもよい。また、サブ領域特徴ベクトル生成部1114は量子化された勾配方向の前後の勾配方向にも重み値を加算するようにしてもよい。なお、サブ領域の特徴ベクトルは勾配方向ヒストグラムに限られず、色情報など、複数の次元(要素)を有するものであればよい。本実施形態においては、サブ領域の特徴ベクトルとして、勾配方向ヒストグラムを用いることとして説明する。
Qq = floor (G × D / 2π) (1)
Qq = round (G × D / 2π) mod D (2)
Here, floor () is a function for rounding off the decimal point, round () is a function for rounding off, and mod is an operation for obtaining a remainder. Further, when generating the gradient histogram, the sub-region feature vector generation unit 1114 may add up the magnitudes of the gradients instead of adding up the simple frequencies. In addition, when the sub-region feature vector generation unit 1114 aggregates the gradient histogram, the sub-region feature vector generation unit 1114 assigns weight values not only to the sub-region to which the pixel belongs, but also to sub-regions (such as adjacent blocks) that are close to each other according to the distance between the sub-regions. You may make it add. Further, the sub-region feature vector generation unit 1114 may add weight values to gradient directions before and after the quantized gradient direction. Note that the feature vector of the sub-region is not limited to the gradient direction histogram, and may be any one having a plurality of dimensions (elements) such as color information. In the present embodiment, it is assumed that a gradient direction histogram is used as the feature vector of the sub-region.
 (次元選定部)
 次に、図11C~図11Fにしたがって、局所特徴量生成部602における、次元選定部1115に処理を説明する。
(Dimension selection part)
Next, processing will be described in the dimension selection unit 1115 in the local feature quantity generation unit 602 according to FIGS. 11C to 11F.
 次元選定部1115は、サブ領域の位置関係に基づいて、近接するサブ領域の特徴ベクトル間の相関が低くなるように、局所特徴量として出力する次元(要素)を選定する(間引きする)。より具体的には、次元選定部1115は、例えば、隣接するサブ領域間では少なくとも1つの勾配方向が異なるように次元を選定する。なお、本実施形態では、次元選定部1115は近接するサブ領域として主に隣接するサブ領域を用いることとするが、近接するサブ領域は隣接するサブ領域に限られず、例えば、対象のサブ領域から所定距離内にあるサブ領域を近接するサブ領域とすることもできる。 The dimension selection unit 1115 selects (decimates) a dimension (element) to be output as a local feature amount based on the positional relationship between the sub-regions so that the correlation between feature vectors of adjacent sub-regions becomes low. More specifically, the dimension selection unit 1115 selects dimensions such that at least one gradient direction differs between adjacent sub-regions, for example. In the present embodiment, the dimension selection unit 1115 mainly uses adjacent subregions as adjacent subregions. However, the adjacent subregions are not limited to adjacent subregions. A sub-region within a predetermined distance may be a nearby sub-region.
 図11Cは、局所領域を5×5ブロックのサブ領域に分割し、勾配方向を6方向1131aに量子化して生成された150次元の勾配ヒストグラムの特徴ベクトル1131から次元を選定する場合の一例を示す図である。図11Cの例では、150次元(5×5=25サブ領域ブロック×6方向)の特徴ベクトルから次元の選定が行われている。 FIG. 11C shows an example in which a dimension is selected from a feature vector 1131 of a 150-dimensional gradient histogram generated by dividing a local region into 5 × 5 block sub-regions and quantizing gradient directions into six directions 1131a. FIG. In the example of FIG. 11C, dimensions are selected from feature vectors of 150 dimensions (5 × 5 = 25 sub-region blocks × 6 directions).
  (局所領域の次元選定)
 図11Cは、局所特徴量生成部602における、特徴ベクトルの次元数の選定処理の様子を示す図である。
(Dimension selection of local area)
FIG. 11C is a diagram showing a state of feature vector dimension number selection processing in the local feature value generation unit 602.
 図11Cに示すように、次元選定部1115は、150次元の勾配ヒストグラムの特徴ベクトル1131から半分の75次元の勾配ヒストグラムの特徴ベクトル1132を選定する。この場合、隣接する左右、上下のサブ領域ブロックでは、同一の勾配方向の次元が選定されないように、次元を選定することができる。 As shown in FIG. 11C, the dimension selection unit 1115 selects a feature vector 1132 of a half 75-dimensional gradient histogram from a feature vector 1131 of a 150-dimensional gradient histogram. In this case, dimensions can be selected so that dimensions in the same gradient direction are not selected in adjacent left and right and upper and lower sub-region blocks.
 この例では、勾配方向ヒストグラムにおける量子化された勾配方向をq(q=0,1,2,3,4,5)とした場合に、q=0,2,4の要素を選定するブロックと、q=1,3,5の要素を選定するサブ領域ブロックとが交互に並んでいる。そして、図11Cの例では、隣接するサブ領域ブロックで選定された勾配方向を合わせると、全6方向となっている。 In this example, when the quantized gradient direction in the gradient direction histogram is q (q = 0, 1, 2, 3, 4, 5), a block for selecting elements of q = 0, 2, 4 and , Q = 1, 3, and 5 are alternately arranged with sub-region blocks for selecting elements. In the example of FIG. 11C, when the gradient directions selected in the adjacent sub-region blocks are combined, there are six directions.
 また、次元選定部1115は、75次元の勾配ヒストグラムの特徴ベクトル1132から50次元の勾配ヒストグラムの特徴ベクトル1133を選定する。この場合、斜め45度に位置するサブ領域ブロック間で、1つの方向のみが同一になる(残り1つの方向は異なる)ように次元を選定することができる。 Also, the dimension selection unit 1115 selects the feature vector 1133 of the 50-dimensional gradient histogram from the feature vector 1132 of the 75-dimensional gradient histogram. In this case, the dimension can be selected so that only one direction is the same (the remaining one direction is different) between the sub-region blocks positioned at an angle of 45 degrees.
 また、次元選定部1115は、50次元の勾配ヒストグラムの特徴ベクトル1133から25次元の勾配ヒストグラムの特徴ベクトル1134を選定する場合は、斜め45度に位置するサブ領域ブロック間で、選定される勾配方向が一致しないように次元を選定することができる。図11Cに示す例では、次元選定部1115は、1次元から25次元までは各サブ領域から1つの勾配方向を選定し、26次元から50次元までは2つの勾配方向を選定し、51次元から75次元までは3つの勾配方向を選定している。 In addition, when the dimension selection unit 1115 selects the feature vector 1134 of the 25-dimensional gradient histogram from the feature vector 1133 of the 50-dimensional gradient histogram, the gradient direction selected between the sub-region blocks located at an angle of 45 degrees. Dimension can be selected so that does not match. In the example shown in FIG. 11C, the dimension selection unit 1115 selects one gradient direction from each sub-region from the first dimension to the 25th dimension, selects two gradient directions from the 26th dimension to the 50th dimension, and starts from the 51st dimension. Three gradient directions are selected up to 75 dimensions.
 このように、隣接するサブ領域ブロック間で勾配方向が重ならないように、また全勾配方向が均等に選定されることが望ましい。また同時に、図11Cに示す例のように、局所領域の全体から均等に次元が選定されることが望ましい。なお、図11Cに示した次元選定方法は一例であり、この選定方法に限らない。 As described above, it is desirable that the gradient directions should not be overlapped between adjacent sub-area blocks and that all gradient directions should be selected uniformly. At the same time, as in the example shown in FIG. 11C, it is desirable that the dimensions be selected uniformly from the entire local region. Note that the dimension selection method illustrated in FIG. 11C is an example, and is not limited to this selection method.
  (局所領域の優先順位)
 図11Dは、局所特徴量生成部602における、サブ領域からの特徴ベクトルの選定順位の一例を示す図である。
(Local area priority)
FIG. 11D is a diagram illustrating an example of the selection order of feature vectors from sub-regions in the local feature value generation unit 602.
 次元選定部1115は、単に次元を選定するだけではなく、特徴点の特徴に寄与する次元から順に選定するように、選定の優先順位を決定することができる。すなわち、次元選定部1115は、例えば、隣接するサブ領域ブロック間では同一の勾配方向の次元が選定されないように、優先順位をつけて次元を選定することができる。そして、次元選定部1115は、選定した次元から構成される特徴ベクトルを、局所特徴量として出力する。なお、次元選定部1115は、優先順位に基づいて次元を並び替えた状態で、局所特徴量を出力することができる。 The dimension selection unit 1115 can determine the priority of selection so as to select not only the dimensions but also the dimensions that contribute to the features of the feature points in order. That is, for example, the dimension selection unit 1115 can select dimensions with priorities so that dimensions in the same gradient direction are not selected between adjacent sub-area blocks. Then, the dimension selection unit 1115 outputs a feature vector composed of the selected dimensions as a local feature amount. In addition, the dimension selection part 1115 can output a local feature-value in the state which rearranged the dimension based on the priority.
 すなわち、次元選定部1115は、1~25次元、26次元~50次元、51次元~75次元の間は、例えば図11Dのマトリクス1141に示すようなサブ領域ブロックの順番で次元を追加するように選定していってもよい。図11Dのマトリクス1141に示す優先順位を用いる場合、次元選定部1115は、中心に近いサブ領域ブロックの優先順位を高くして、勾配方向を選定していくことができる。 That is, the dimension selection unit 1115 adds dimensions in the order of the sub-region blocks as shown in the matrix 1141 in FIG. 11D, for example, between 1 to 25 dimensions, 26 dimensions to 50 dimensions, and 51 dimensions to 75 dimensions. It may be selected. When the priority order shown in the matrix 1141 in FIG. 11D is used, the dimension selection unit 1115 can select the gradient direction by increasing the priority order of the sub-region blocks close to the center.
 図11Eのマトリクス1151は、図11Dの選定順位にしたがって、150次元の特徴ベクトルの要素の番号の一例を示す図である。この例では、5×5=25ブロックをラスタスキャン順に番号p(p=0,1,…,25)で表し、量子化された勾配方向をq(q=0,1,2,3,4,5)とした場合に、特徴ベクトルの要素の番号を6×p+qとしている。 11E is a diagram illustrating an example of element numbers of 150-dimensional feature vectors in accordance with the selection order of FIG. 11D. In this example, 5 × 5 = 25 blocks are represented by numbers p (p = 0, 1,..., 25) in raster scan order, and the quantized gradient direction is represented by q (q = 0, 1, 2, 3, 4). , 5), the element number of the feature vector is 6 × p + q.
 図11Fのマトリクス1161は、図11Eの選定順位による150次元の順位が、25次元単位に階層化されていることを示す図である。すなわち、図11Fのマトリクス1161は、図11Dのマトリクス1141に示した優先順位にしたがって図11Eに示した要素を選定していくことにより得られる局所特徴量の構成例を示す図である。次元選定部1115は、図11Fに示す順序で次元要素を出力することができる。具体的には、次元選定部1115は、例えば150次元の局所特徴量を出力する場合、図11Fに示す順序で全150次元の要素を出力することができる。また、次元選定部1115は、例えば25次元の局所特徴量を出力する場合、図11Fに示す1行目(76番目、45番目、83番目、…、120番目)の要素1171を図11Fに示す順(左から右)に出力することができる。また、次元選定部1115は、例えば50次元の局所特徴量を出力する場合、図11Fに示す1行目に加えて、図11Fに示す2行目の要素1172を図11Fに示す順(左から右)に出力することができる。 The matrix 1161 in FIG. 11F is a diagram showing that the 150-dimensional order according to the selection order in FIG. 11E is hierarchized in units of 25 dimensions. In other words, the matrix 1161 in FIG. 11F is a diagram illustrating a configuration example of local feature amounts obtained by selecting the elements illustrated in FIG. 11E according to the priority order illustrated in the matrix 1141 in FIG. 11D. The dimension selection unit 1115 can output dimension elements in the order shown in FIG. 11F. Specifically, for example, when outputting a 150-dimensional local feature amount, the dimension selection unit 1115 can output all 150-dimensional elements in the order shown in FIG. 11F. When the dimension selection unit 1115 outputs, for example, a 25-dimensional local feature, the element 1171 in the first row (76th, 45th, 83rd,..., 120th) shown in FIG. 11F is shown in FIG. 11F. Can be output in order (from left to right). For example, when outputting a 50-dimensional local feature value, the dimension selection unit 1115 adds the elements 1172 in the second row shown in FIG. 11F in the order shown in FIG. To the right).
 ところで、図11Fに示す例では、局所特徴量は階層的な構造配列となっている。すなわち、例えば、25次元の局所特徴量と150次元の局所特徴量とにおいて、先頭の25次元分の局所特徴量における要素1171~1176の並びは同一となっている。このように、次元選定部1115は、階層的(プログレッシブ)に次元を選定することにより、アプリケーションや通信容量、端末スペックなどに応じて、任意の次元数の局所特徴量、すなわち任意のサイズの局所特徴量を抽出して出力することができる。また、次元選定部1115が、階層的に次元を選定し、優先順位に基づいて次元を並び替えて出力することにより、異なる次元数の局所特徴量を用いて、画像の照合を行うことができる。例えば、75次元の局所特徴量と50次元の局所特徴量を用いて画像の照合が行われる場合、先頭の50次元だけを用いることにより、局所特徴量間の距離計算を行うことができる。 Incidentally, in the example shown in FIG. 11F, the local feature amount has a hierarchical structure arrangement. That is, for example, in the 25-dimensional local feature quantity and the 150-dimensional local feature quantity, the arrangement of the elements 1171 to 1176 in the first 25-dimensional local feature quantity is the same. In this way, the dimension selection unit 1115 selects a dimension hierarchically (progressively), thereby depending on the application, communication capacity, terminal specification, etc. Feature quantities can be extracted and output. In addition, the dimension selection unit 1115 can select images hierarchically, sort the dimensions based on the priority order, and output them, thereby collating images using local feature amounts of different dimensions. . For example, when images are collated using a 75-dimensional local feature value and a 50-dimensional local feature value, the distance between the local feature values can be calculated by using only the first 50 dimensions.
 なお、図11Dのマトリクス1141から図11Fに示す優先順位は一例であり、次元を選定する際の順序はこれに限られない。例えば、ブロックの順番に関しては、図11Dのマトリクス1141の例の他に、図11Dのマトリクス1142や図11Dのマトリクス1143に示すような順番でもよい。また、例えば、全てのサブ領域からまんべんなく次元が選定されるように優先順位が定められることとしてもよい。また、局所領域の中央付近が重要として、中央付近のサブ領域の選定頻度が高くなるように優先順位が定められることとしてもよい。また、次元の選定順序を示す情報は、例えば、プログラムにおいて規定されていてもよいし、プログラムの実行時に参照されるテーブル等(選定順序記憶部)に記憶されていてもよい。 Note that the priorities shown in the matrix 1141 in FIG. 11D to FIG. 11F are merely examples, and the order of selecting dimensions is not limited to this. For example, the order of blocks may be the order shown in the matrix 1142 in FIG. 11D or the matrix 1143 in FIG. 11D in addition to the example of the matrix 1141 in FIG. 11D. Further, for example, the priority order may be determined so that dimensions are selected from all the sub-regions. Also, the vicinity of the center of the local region may be important, and the priority order may be determined so that the selection frequency of the sub-region near the center is increased. Further, the information indicating the dimension selection order may be defined in the program, for example, or may be stored in a table or the like (selection order storage unit) referred to when the program is executed.
 また、次元選定部1115は、サブ領域ブロックを1つ飛びに選択して、次元の選定を行ってもよい。すなわち、あるサブ領域では6次元が選定され、当該サブ領域に近接する他のサブ領域では0次元が選定される。このような場合においても、近接するサブ領域間の相関が低くなるようにサブ領域ごとに次元が選定されていると言うことができる。 Also, the dimension selection unit 1115 may select a dimension by selecting one sub-region block. That is, 6 dimensions are selected in a certain sub-region, and 0 dimensions are selected in other sub-regions close to the sub-region. Even in such a case, it can be said that the dimension is selected for each sub-region so that the correlation between adjacent sub-regions becomes low.
 また、局所領域やサブ領域の形状は、正方形に限られず、任意の形状とすることができる。例えば、局所領域取得部1112が、円状の局所領域を取得することとしてもよい。この場合、サブ領域分割部1113は、円状の局所領域を例えば複数の局所領域を有する同心円に9分割や17分割のサブ領域に分割することができる。この場合においても、次元選定部1115は、各サブ領域において、次元を選定することができる。 In addition, the shape of the local region and sub-region is not limited to a square, and can be any shape. For example, the local region acquisition unit 1112 may acquire a circular local region. In this case, the sub-region dividing unit 1113 can divide the circular local region into, for example, nine or seventeen sub-regions into concentric circles having a plurality of local regions. Even in this case, the dimension selection unit 1115 can select a dimension in each sub-region.
 以上、図11B~図11Fに示したように、本実施形態の局所特徴量生成部602によれば、局所特徴量の情報量を維持しながら生成された特徴ベクトルの次元が階層的に選定される。この処理により、認識精度を維持しながらリアルタイムでの景観要素認識と認識結果の表示が可能となる。なお、局所特徴量生成部602の構成および処理は本例に限定されない。認識精度を維持しながらリアルタイムでの景観要素認識と認識結果の表示が可能となる他の処理が当然に適用できる。 As described above, as shown in FIGS. 11B to 11F, according to the local feature value generation unit 602 of the present embodiment, the dimension of the feature vector generated while maintaining the information amount of the local feature value is hierarchically selected. The This process enables real-time landscape element recognition and recognition result display while maintaining recognition accuracy. Note that the configuration and processing of the local feature value generation unit 602 are not limited to this example. Naturally, other processes that enable real-time landscape element recognition and recognition result display while maintaining recognition accuracy can be applied.
 (符号化部)
 図11Gは、本実施形態に係る符号化部603aを示すブロック図である。なお、符号化部は本例に限定されず、他の符号化処理も適用可能である。
(Encoding part)
FIG. 11G is a block diagram showing the encoding unit 603a according to the present embodiment. Note that the encoding unit is not limited to this example, and other encoding processes can be applied.
 符号化部603aは、局所特徴量生成部602の特徴点検出部1111から特徴点の座標を入力して、座標値を走査する座標値走査部1181を有する。座標値走査部1181は、画像をある特定の走査方法にしたがって走査し、特徴点の2次元座標値(X座標値とY座標値)を1次元のインデックス値に変換する。このインデックス値は、走査に従った原点からの走査距離である。なお、走査方向については、制限はない。 The encoding unit 603a has a coordinate value scanning unit 1181 that inputs the coordinates of feature points from the feature point detection unit 1111 of the local feature quantity generation unit 602 and scans the coordinate values. The coordinate value scanning unit 1181 scans the image according to a specific scanning method, and converts the two-dimensional coordinate values (X coordinate value and Y coordinate value) of the feature points into one-dimensional index values. This index value is a scanning distance from the origin according to scanning. There is no restriction on the scanning direction.
 また、特徴点のインデックス値をソートし、ソート後の順列の情報を出力するソート部1182を有する。ここでソート部1182は、例えば昇順にソートする。また降順にソートしてもよい。 Also, it has a sorting unit 1182 that sorts the index values of feature points and outputs permutation information after sorting. Here, the sorting unit 1182 sorts, for example, in ascending order. You may also sort in descending order.
 また、ソートされたインデックス値における、隣接する2つのインデックス値の差分値を算出し、差分値の系列を出力する差分算出部1183を有する。 Also, a difference calculation unit 1183 that calculates a difference value between two adjacent index values in the sorted index value and outputs a series of difference values is provided.
 そして、差分値の系列を系列順に符号化する差分符号化部1184を有する。差分値の系列の符号化は、例えば固定ビット長の符号化でもよい。固定ビット長で符号化する場合、そのビット長はあらかじめ規定されていてもよいが、これでは考えられうる差分値の最大値を表現するのに必要なビット数を要するため、符号化サイズは小さくならない。そこで、差分符号化部1184は、固定ビット長で符号化する場合、入力された差分値の系列に基づいてビット長を決定することができる。具体的には、例えば、差分符号化部1184は、入力された差分値の系列から差分値の最大値を求め、その最大値を表現するのに必要なビット数(表現ビット数)を求め、求められた表現ビット数で差分値の系列を符号化することができる。 And, it has a differential encoding unit 1184 that encodes a sequence of difference values in sequence order. The sequence of the difference value may be encoded with a fixed bit length, for example. When encoding with a fixed bit length, the bit length may be specified in advance, but this requires the number of bits necessary to express the maximum possible difference value, so the encoding size is small. Don't be. Therefore, when encoding with a fixed bit length, the differential encoding unit 1184 can determine the bit length based on the input sequence of difference values. Specifically, for example, the difference encoding unit 1184 obtains the maximum value of the difference value from the input series of difference values, obtains the number of bits (expression number of bits) necessary to express the maximum value, A series of difference values can be encoded with the obtained number of expression bits.
 一方、ソートされた特徴点のインデックス値と同じ順列で、対応する特徴点の局所特徴量を符号化する局所特徴量符号化部1185を有する。ソートされたインデックス値と同じ順列で符号化することで、差分符号化部1184で符号化された座標値と、それに対応する局所特徴量とを1対1で対応付けることが可能となる。局所特徴量符号化部1185は、本実施形態においては、1つの特徴点に対する150次元の局所特徴量から次元選定された局所特徴量を、例えば1次元を1バイトで符号化し、次元数のバイトで符号化することができる。 On the other hand, it has a local feature encoding unit 1185 that encodes the local feature of the corresponding feature point in the same permutation as the index value of the sorted feature point. By encoding with the same permutation as the sorted index value, it is possible to associate the coordinate value encoded by the differential encoding unit 1184 and the corresponding local feature amount on a one-to-one basis. In this embodiment, the local feature amount encoding unit 1185 encodes a local feature amount that is dimension-selected from 150-dimensional local feature amounts for one feature point, for example, one dimension with one byte, and the number of dimensions. Can be encoded.
 (景観要素認識部)
 図11は、本実施形態に係る景観要素認識部703の処理を示す図である。
(Landscape Element Recognition Department)
FIG. 11 is a diagram illustrating processing of the landscape element recognition unit 703 according to the present embodiment.
 図11Hは、図3において、通信端末210の撮像した景観の表示画面310の景観の映像311から生成した局所特徴量を、あらかじめ局所特徴量DB221に格納された局所特徴量と照合する様子を示す図である。 FIG. 11H shows a state in which the local feature amount generated from the landscape image 311 of the landscape display screen 310 captured by the communication terminal 210 in FIG. 3 is collated with the local feature amount stored in the local feature amount DB 221 in advance. FIG.
 図11Hの左図の通信端末210で撮像された映像311からは、本実施形態に従い局所特徴量が生成される。そして、局所特徴量DB221に各景観要素に対応して格納された局所特徴量1191~1194が、映像311から生成された局所特徴量中にあるか否かが照合される。 From the video 311 captured by the communication terminal 210 in the left diagram of FIG. 11H, local feature amounts are generated according to the present embodiment. Then, it is checked whether or not the local feature amounts 1191 to 1194 stored in the local feature amount DB 221 corresponding to each landscape element are in the local feature amounts generated from the video 311.
 図11Hに示すように、景観要素認識部703は、局所特徴量DB221に格納されている局所特徴量と局所特徴量が合致する各特徴点を細線のように関連付ける。なお、景観要素認識部703は、局所特徴量の所定割合以上が一致する場合を特徴点の合致とする。そして、景観要素認識部703は、関連付けられた特徴点の集合間の位置関係が線形関係であれば、対象の景観要素であると認識する。このような認識を行なえば、サイズの大小や向きの違い(視点の違い)、あるいは反転などによっても認識が可能である。また、所定数以上の関連付けられた特徴点があれば認識精度が得られるので、一部が視界から隠れていても景観要素の認識が可能である。 As shown in FIG. 11H, the landscape element recognition unit 703 associates each feature point where the local feature quantity stored in the local feature quantity DB 221 matches the local feature quantity like a thin line. Note that the landscape element recognition unit 703 determines that the feature points match when a predetermined ratio or more of the local feature amounts match. And if the positional relationship between the sets of associated feature points is a linear relationship, the landscape element recognition unit 703 recognizes that it is the target landscape element. If such recognition is performed, it is possible to recognize by size difference, orientation difference (difference in viewpoint), or inversion. In addition, since recognition accuracy is obtained if there are a predetermined number or more of associated feature points, it is possible to recognize a landscape element even if a part is hidden from view.
 図11Hにおいては、局所特徴量DB221の4つの景観要素の局所特徴量1191~1194に合致する、景観内の異なる4つの景観要素が局所特徴量の精度に対応する精密さを持って認識される。 In FIG. 11H, four different landscape elements in the landscape that match the local feature amounts 1191 to 1194 of the four landscape elements in the local feature amount DB 221 are recognized with a precision corresponding to the accuracy of the local feature amount. .
 《通信端末のハードウェア構成》
 図12Aは、本実施形態に係る通信端末210のハードウェア構成を示すブロック図である。
<< Hardware configuration of communication terminal >>
FIG. 12A is a block diagram illustrating a hardware configuration of the communication terminal 210 according to the present embodiment.
 図12Aで、CPU1210は演算制御用のプロセッサであり、プログラムを実行することで通信端末210の各機能構成部を実現する。ROM1220は、初期データおよびプログラムなどの固定データおよびプログラムを記憶する。また、通信制御部604は通信制御部であり、本実施形態においては、ネットワークを介して景観要素認識サーバ220や関連情報提供サーバ230と通信する。なお、CPU1210は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPU(Graphics Processing Unit)を含んでもよい。 In FIG. 12A, a CPU 1210 is a processor for arithmetic control, and implements each functional component of the communication terminal 210 by executing a program. The ROM 1220 stores fixed data and programs such as initial data and programs. Moreover, the communication control part 604 is a communication control part, and in this embodiment, it communicates with the landscape element recognition server 220 and the related information provision server 230 via a network. Note that the number of CPUs 1210 is not limited to one, and may be a plurality of CPUs or may include a GPU (GraphicsGraphProcessing Unit) for image processing.
 RAM1240は、CPU1210が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM1240には、本実施形態の実現に必要なデータを記憶する領域が確保されている。入力映像1241は、撮像部601が撮像して入力した入力映像を示す。特徴点データ1242は、入力映像1241から検出した特徴点座標、スケール、角度を含む特徴点データを示す。局所特徴量生成テーブル1243は、局所特徴量を生成するまでのデータを保持する局所特徴量生成テーブルを示す(12B参照)。局所特徴量1244は、局所特徴量生成テーブル1243を使って生成され、通信制御部604を介して景観要素認識サーバ220に送る局所特徴量を示す。景観要素認識結果1245は、通信制御部604を介して景観要素認識サーバ220から返信された景観要素認識結果を示す。関連情報/リンク情報1246は、景観要素認識サーバ220から返信された関連情報やリンク情報、あるいは関連情報提供サーバ230から返信された関連情報を示す。表示画面データ1247は、ユーザに景観要素認識結果1245や関連情報/リンク情報1246を含む情報を報知するための表示画面データを示す。なお、音声出力をする場合には、音声データが含まれてもよい。入出力データ1248は、入出力インタフェース1260を介して入出力される入出力データを示す。送受信データ1249は、通信制御部604を介して送受信される送受信データを示す。 The RAM 1240 is a random access memory that the CPU 1210 uses as a work area for temporary storage. The RAM 1240 has an area for storing data necessary for realizing the present embodiment. An input video 1241 indicates an input video imaged and input by the imaging unit 601. The feature point data 1242 indicates feature point data including the feature point coordinates, scale, and angle detected from the input video 1241. The local feature value generation table 1243 indicates a local feature value generation table that holds data until a local feature value is generated (see 12B). The local feature amount 1244 is generated using the local feature amount generation table 1243 and indicates a local feature amount to be sent to the landscape element recognition server 220 via the communication control unit 604. A landscape element recognition result 1245 indicates a landscape element recognition result returned from the landscape element recognition server 220 via the communication control unit 604. The related information / link information 1246 indicates related information and link information returned from the landscape element recognition server 220 or related information returned from the related information providing server 230. The display screen data 1247 indicates display screen data for notifying the user of information including a landscape element recognition result 1245 and related information / link information 1246. In the case of outputting audio, audio data may be included. Input / output data 1248 indicates input / output data input / output via the input / output interface 1260. Transmission / reception data 1249 indicates transmission / reception data transmitted / received via the communication control unit 604.
 ストレージ1250には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。表示フォーマット1251は、景観要素認識結果1245や関連情報/リンク情報1246を含む情報を表示するための表示フォーマットを示す。 The storage 1250 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment. A display format 1251 indicates a display format for displaying information including a landscape element recognition result 1245 and related information / link information 1246.
 ストレージ1250には、以下のプログラムが格納される。通信端末制御プログラム1252は、本通信端末210の全体を制御する通信端末制御プログラムを示す。通信端末制御プログラム1252には、以下のモジュールが含まれている。局所特徴量生成モジュール1253は、通信端末制御プログラム1252において、入力映像から図11B~図11Fにしたがって局所特徴量を生成する。なお、局所特徴量生成モジュール1253は、図示のモジュール群から構成されるが、ここでは詳説は省略する。符号化モジュール1254は、局所特徴量生成モジュール1253により生成された局所特徴量を送信のために符号化する。情報受信報知モジュール1255は、景観要素認識結果1245や関連情報/リンク情報1246を受信して表示または音声によりユーザに報知するためのモジュールである。リンク先アクセスモジュール1256は、受信して報知したリンク情報へのユーザ指示に基づいて、リンク先をアクセスするためのモジュールである。 The storage 1250 stores the following programs. The communication terminal control program 1252 indicates a communication terminal control program that controls the entire communication terminal 210. The communication terminal control program 1252 includes the following modules. The local feature generating module 1253 generates a local feature from the input video according to FIGS. 11B to 11F in the communication terminal control program 1252. The local feature quantity generation module 1253 is composed of the illustrated module group, but detailed description thereof is omitted here. The encoding module 1254 encodes the local feature generated by the local feature generating module 1253 for transmission. The information reception notification module 1255 is a module for receiving a landscape element recognition result 1245 and related information / link information 1246 and notifying the user by display or voice. The link destination access module 1256 is a module for accessing a link destination based on a user instruction to link information received and notified.
 入出力インタフェース1260は、入出力機器との入出力データをインタフェースする。入出力インタフェース1260には、表示部1261、操作部1262であるタッチパネルやキーボード、スピーカ1263、マイク1264、撮像部601が接続される。入出力機器は上記例に限定されない。また、GPS(Global Positioning System)位置生成部1265が搭載され、GPS衛星からの信号に基づいて現在位置を取得する。 The input / output interface 1260 interfaces input / output data with input / output devices. The input / output interface 1260 is connected to a display unit 1261, a touch panel or keyboard as the operation unit 1262, a speaker 1263, a microphone 1264, and an imaging unit 601. The input / output device is not limited to the above example. In addition, a GPS (Global Positioning System) position generation unit 1265 is mounted, and acquires the current position based on a signal from a GPS satellite.
 なお、図12Aには、本実施形態に必須なデータやプログラムのみが示されており、本実施形態に関連しないデータやプログラムは図示されていない。 In FIG. 12A, only data and programs essential to the present embodiment are shown, and data and programs not related to the present embodiment are not shown.
 (局所特徴量生成テーブル)
 図12Bは、本実施形態に係る通信端末210における局所特徴量生成テーブル1243を示す図である。
(Local feature generation table)
FIG. 12B is a diagram showing a local feature generation table 1243 in the communication terminal 210 according to the present embodiment.
 局所特徴量生成テーブル1243には、入力画像ID1201に対応付けて、複数の検出された検出特徴点1202,特徴点座標1203および特徴点に対応する局所領域情報1204が記憶される。そして、各検出特徴点1202,特徴点座標1203および局所領域情報1204に対応付けて、複数のサブ領域ID1205,サブ領域情報1206,各サブ領域に対応する特徴ベクトル1207および優先順位を含む選定次元1208が記憶される。 In the local feature quantity generation table 1243, a plurality of detected feature points 1202, feature point coordinates 1203, and local region information 1204 corresponding to the feature points are stored in association with the input image ID 1201. A selection dimension 1208 including a plurality of sub-region IDs 1205, sub-region information 1206, a feature vector 1207 corresponding to each sub-region, and a priority order in association with each detected feature point 1202, feature point coordinates 1203 and local region information 1204. Is memorized.
 以上のデータから各検出特徴点1202に対して局所特徴量1209が生成される。これらを特徴点座標と組みにして集めたデータが、撮像した景観から生成した景観要素認識サーバ220に送信される局所特徴量1244である。 A local feature quantity 1209 is generated for each detected feature point 1202 from the above data. Data collected by combining these with the feature point coordinates is a local feature 1244 transmitted to the landscape element recognition server 220 generated from the captured landscape.
 《通信端末の処理手順》
 図13は、本実施形態に係る通信端末210の処理手順を示すフローチャートである。このフローチャートは、図12AのCPU1210によってRAM1240を用いて実行され、図6の各機能構成部を実現する。
<< Processing procedure of communication terminal >>
FIG. 13 is a flowchart illustrating a processing procedure of the communication terminal 210 according to the present embodiment. This flowchart is executed by the CPU 1210 of FIG. 12A using the RAM 1240, and implements each functional component of FIG.
 まず、ステップS1311において、景観要素の認識を行なうための映像入力があったか否かを判定する。また、ステップS1321においては、データ受信を判定する。また、ステップS1331においては、ユーザによるリンク先の指示かを判定する。いずれでもなければ、ステップS1341においてその他の処理を行なう。なお、通常の送信処理については説明を省略する。 First, in step S1311, it is determined whether or not there is a video input for recognizing a landscape element. In step S1321, data reception is determined. In step S1331, it is determined whether the instruction is a link destination by the user. Otherwise, other processing is performed in step S1341. Note that description of normal transmission processing is omitted.
 映像入力があればステップS1313に進んで、入力映像に基づいて局所特徴量生成処理を実行する(図14A参照)。次に、ステップS1315において、局所特徴量および特徴点座標を符号化する(図14Bおよび図14C参照)。ステップS1317においては、符号化されたデータを景観要素認識サーバ220に送信する。 If there is video input, the process proceeds to step S1313, and local feature generation processing is executed based on the input video (see FIG. 14A). Next, in step S1315, local feature quantities and feature point coordinates are encoded (see FIGS. 14B and 14C). In step S1317, the encoded data is transmitted to the landscape element recognition server 220.
 データ受信の場合はステップS1323に進んで、景観要素認識サーバ220からの景観要素認識結果や関連情報の受信か、または関連情報提供サーバ230からの関連情報の受信か否かを判定する。景観要素認識サーバ220からの受信であればステップS1325に進んで、受信した景観要素認識結果、関連情報、リンク情報を表示や音声出力で報知する。一方、関連情報提供サーバ230からの受信であればステップS1327に進んで、受信した関連情報を表示や音声出力で報知する。 In the case of data reception, the process proceeds to step S1323, and it is determined whether or not the landscape element recognition result or related information is received from the landscape element recognition server 220 or the related information is received from the related information providing server 230. If it is reception from the landscape element recognition server 220, it will progress to step S1325 and will alert | report the received landscape element recognition result, related information, and link information by a display or audio | voice output. On the other hand, if it is reception from the related information provision server 230, it will progress to step S1327 and will alert | report the received related information by a display or audio | voice output.
 (局所特徴量生成処理)
 図14Aは、本実施形態に係る局所特徴量生成処理S1313の処理手順を示すフローチャートである。
(Local feature generation processing)
FIG. 14A is a flowchart illustrating a processing procedure of local feature generation processing S1313 according to the present embodiment.
 まず、ステップS1411において、入力映像から特徴点の位置座標、スケール、角度を検出する。ステップS1413において、ステップS1411で検出された特徴点の1つに対して局所領域を取得する。次に、ステップS1415において、局所領域をサブ領域に分割する。ステップS1417においては、各サブ領域の特徴ベクトルを生成して局所領域の特徴ベクトルを生成する。ステップS1411からS1417の処理は図11Bに図示されている。 First, in step S1411, the position coordinates, scale, and angle of the feature points are detected from the input video. In step S1413, a local region is acquired for one of the feature points detected in step S1411. Next, in step S1415, the local area is divided into sub-areas. In step S1417, a feature vector for each sub-region is generated to generate a feature vector for the local region. The processing of steps S1411 to S1417 is illustrated in FIG. 11B.
 次に、ステップS1419において、ステップS1417において生成された局所領域の特徴ベクトルに対して次元選定を実行する。次元選定については、図11D~図11Fに図示されている。 Next, in step S1419, dimension selection is performed on the feature vector of the local region generated in step S1417. The dimension selection is illustrated in FIGS. 11D to 11F.
 ステップS1421においては、ステップS1411で検出した全特徴点について局所特徴量の生成と次元選定とが終了したかを判定する。終了していない場合はステップS1413に戻って、次の1つの特徴点について処理を繰り返す。
 (符号化処理)
 図14Bは、本実施形態に係る符号化処理S1315の処理手順を示すフローチャートである。
In step S1421, it is determined whether local feature generation and dimension selection have been completed for all feature points detected in step S1411. If not completed, the process returns to step S1413 to repeat the process for the next one feature point.
(Encoding process)
FIG. 14B is a flowchart illustrating a processing procedure of the encoding processing S1315 according to the present embodiment.
 まず、ステップS1431において、特徴点の座標値を所望の順序で走査する。次に、ステップS1433において、走査した座標値をソートする。ステップS1435において、ソートした順に座標値の差分値を算出する。ステップS1437においては、差分値を符号化する(図14C参照)。そして、ステップS1439において、座標値のソート順に局所特徴量を符号化する。なお、差分値の符号化と局所特徴量の符号化とは並列に行なってもよい。 First, in step S1431, the coordinate values of feature points are scanned in a desired order. Next, in step S1433, the scanned coordinate values are sorted. In step S1435, a difference value of coordinate values is calculated in the sorted order. In step S1437, the difference value is encoded (see FIG. 14C). In step S1439, local feature amounts are encoded in the coordinate value sorting order. The difference value encoding and the local feature amount encoding may be performed in parallel.
 (差分値の符号化処理)
 図14Cは、本実施形態に係る差分値の符号化処理S1437の処理手順を示すフローチャートである。
(Difference processing)
FIG. 14C is a flowchart illustrating a processing procedure of difference value encoding processing S1437 according to the present embodiment.
 まず、ステップS1441において、差分値が符号化可能な値域内であるか否かを判定する。符号化可能な値域内であればステップS1447に進んで、差分値を符号化する。そして、ステップS1449へ移行する。符号化可能な値域内でない場合(値域外)はステップS1443に進んで、エスケープコードを符号化する。そしてステップS1445において、ステップS1447の符号化とは異なる符号化方法で差分値を符号化する。そして、ステップS1449へ移行する。ステップS1449では、処理された差分値が差分値の系列の最後の要素であるかを判定する。最後である場合は、処理が終了する。最後でない場合は、再度ステップS1441に戻って、差分値の系列の次の差分値に対する処理が実行される。 First, in step S1441, it is determined whether or not the difference value is within a range that can be encoded. If it is within the range which can be encoded, it will progress to step S1447 and will encode a difference value. Then, control goes to a step S1449. If it is not within the range that can be encoded (outside the range), the process proceeds to step S1443 to encode the escape code. In step S1445, the difference value is encoded by an encoding method different from the encoding in step S1447. Then, control goes to a step S1449. In step S1449, it is determined whether the processed difference value is the last element in the series of difference values. If it is the last, the process ends. When it is not the last, it returns to step S1441 again and the process with respect to the next difference value of the series of a difference value is performed.
 《景観要素認識サーバのハードウェア構成》
 図15は、本実施形態に係る景観要素認識サーバ220のハードウェア構成を示すブロック図である。
<< Hardware configuration of landscape element recognition server >>
FIG. 15 is a block diagram illustrating a hardware configuration of the landscape element recognition server 220 according to the present embodiment.
 図15で、CPU1510は演算制御用のプロセッサであり、プログラムを実行することで図7の景観要素認識サーバ220の各機能構成部を実現する。ROM1520は、初期データおよびプログラムなどの固定データおよびプログラムを記憶する。また、通信制御部701は通信制御部であり、本実施形態においては、ネットワークを介して通信端末210あるいは関連情報提供サーバ230と通信する。なお、CPU1510は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPUを含んでもよい。 15, a CPU 1510 is a processor for arithmetic control, and implements each functional component of the landscape element recognition server 220 in FIG. 7 by executing a program. The ROM 1520 stores fixed data and programs such as initial data and programs. The communication control unit 701 is a communication control unit, and in this embodiment, communicates with the communication terminal 210 or the related information providing server 230 via a network. Note that the number of CPUs 1510 is not limited to one, and may be a plurality of CPUs or may include a GPU for image processing.
 RAM1540は、CPU1510が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM1540には、本実施形態の実現に必要なデータを記憶する領域が確保されている。受信した局所特徴量1541は、通信端末210から受信した特徴点座標を含む局所特徴量を示す。読出した局所特徴量1542は、局所特徴量DB221から読み出した特徴点座標を含むと局所特徴量を示す。景観要素認識結果1543は、受信した局所特徴量と局所特徴量DB221に格納された局所特徴量との照合から認識された、景観要素認識結果を示す。関連情報1544は、景観要素認識結果1543の景観要素に対応して関連情報DB222から検索された関連情報を示す。リンク情報1545は、景観要素認識結果1543の景観要素に対応してリンク情報DB223から検索されたリンク情報を示す。送受信データ1546は、通信制御部701を介して送受信される送受信データを示す。 The RAM 1540 is a random access memory that the CPU 1510 uses as a work area for temporary storage. The RAM 1540 has an area for storing data necessary for realizing the present embodiment. The received local feature value 1541 indicates a local feature value including the feature point coordinates received from the communication terminal 210. The read local feature value 1542 indicates the local feature value when including the feature point coordinates read from the local feature value DB 221. The landscape element recognition result 1543 indicates the landscape element recognition result recognized from the collation between the received local feature value and the local feature value stored in the local feature value DB 221. The related information 1544 indicates the related information searched from the related information DB 222 corresponding to the landscape element of the landscape element recognition result 1543. The link information 1545 indicates link information retrieved from the link information DB 223 corresponding to the landscape element of the landscape element recognition result 1543. Transmission / reception data 1546 indicates transmission / reception data transmitted / received via the communication control unit 701.
 ストレージ1550には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。局所特徴量DB221は、図8に示したと同様の局所特徴量DBを示す。関連情報DB222は、図9に示したと同様の関連情報DBを示す。リンク情報DB223は、図10に示したと同様のリンク情報DBを示す。 The storage 1550 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment. The local feature DB 221 is a local feature DB similar to that shown in FIG. The related information DB 222 is a related information DB similar to that shown in FIG. The link information DB 223 shows the same link information DB as shown in FIG.
 ストレージ1550には、以下のプログラムが格納される。景観要素認識サーバ制御プログラム1551は、本景観要素認識サーバ220の全体を制御する景観要素認識サーバ制御プログラムを示す。局所特徴量DB作成モジュール1552は、景観要素認識サーバ制御プログラム1551において、景観要素の画像から局所特徴量を生成して局所特徴量DB221に格納する。景観要素認識モジュール1553は、景観要素認識サーバ制御プログラム1551において、受信した局所特徴量と局所特徴量DB221に格納された局所特徴量とを照合して景観要素を認識する。関連情報/リンク情報取得モジュール1554は、認識した景観要素に対応して関連情報DB222やリンク情報DB223から関連情報やリンク情報を取得する。 The storage 1550 stores the following programs. The landscape element recognition server control program 1551 indicates a landscape element recognition server control program that controls the entire landscape element recognition server 220. In the landscape element recognition server control program 1551, the local feature DB creation module 1552 generates a local feature from a landscape element image and stores it in the local feature DB 221. In the landscape element recognition server control program 1551, the landscape element recognition module 1553 recognizes a landscape element by comparing the received local feature quantity with the local feature quantity stored in the local feature quantity DB 221. The related information / link information acquisition module 1554 acquires related information and link information from the related information DB 222 and the link information DB 223 corresponding to the recognized landscape element.
 なお、図15には、本実施形態に必須なデータやプログラムのみが示されており、本実施形態に関連しないデータやプログラムは図示されていない。 Note that FIG. 15 shows only data and programs essential to the present embodiment, and does not illustrate data and programs not related to the present embodiment.
 《景観要素認識サーバの処理手順》
 図16は、本実施形態に係る景観要素認識サーバ220の処理手順を示すフローチャートである。このフローチャートは、図15のCPU1510によりRAM1540を使用して実行され、図7の景観要素認識サーバ220の各機能構成部を実現する。
<< Processing procedure of landscape element recognition server >>
FIG. 16 is a flowchart showing a processing procedure of the landscape element recognition server 220 according to the present embodiment. This flowchart is executed by the CPU 1510 of FIG. 15 using the RAM 1540, and implements each functional component of the landscape element recognition server 220 of FIG.
 まず、ステップS1611において、局所特徴量DBの生成か否かを判定する。また、ステップS1621において、通信端末からの局所特徴量受信かを判定する。いずれでもなければ、ステップS1641において他の処理を行なう。 First, in step S1611, it is determined whether or not a local feature DB is generated. In step S1621, it is determined whether a local feature amount is received from the communication terminal. Otherwise, other processing is performed in step S1641.
 局所特徴量DBの生成であればステップS1613に進んで、局所特徴量DB生成処理を実行する(図17参照)。また、局所特徴量の受信であればステップS1623に進んで、景観要素認識処理を行なう(図18Aおよび図18B参照)。 If the local feature DB is generated, the process advances to step S1613 to execute a local feature DB generation process (see FIG. 17). If a local feature is received, the process advances to step S1623 to perform landscape element recognition processing (see FIGS. 18A and 18B).
 次に、ステップS1625において、認識した景観要素に対応する関連情報やリンク情報を取得する。そして、認識した景観要素名、関連情報、リンク情報を通信端末210に送信する。 Next, in step S1625, related information and link information corresponding to the recognized landscape element are acquired. Then, the recognized landscape element name, related information, and link information are transmitted to the communication terminal 210.
 (局所特徴量DB生成処理)
 図17は、本実施形態に係る局所特徴量DB生成処理S1613の処理手順を示すフローチャートである。
(Local feature DB generation processing)
FIG. 17 is a flowchart showing a processing procedure of local feature DB generation processing S1613 according to the present embodiment.
 まず、ステップS1701において、景観要素の画像を取得する。ステップS1703においては、特徴点の位置座標、スケール、角度を検出する。ステップS1705において、ステップS1703で検出された特徴点の1つに対して局所領域を取得する。次に、ステップS1707において、局所領域をサブ領域に分割する。ステップS1709においては、各サブ領域の特徴ベクトルを生成して局所領域の特徴ベクトルを生成する。ステップS1705からS1709の処理は図11Bに図示されている。 First, in step S1701, an image of a landscape element is acquired. In step S1703, the position coordinates, scale, and angle of the feature points are detected. In step S1705, a local region is acquired for one of the feature points detected in step S1703. Next, in step S1707, the local area is divided into sub-areas. In step S1709, a feature vector for each sub-region is generated to generate a local region feature vector. The processing from step S1705 to S1709 is illustrated in FIG. 11B.
 次に、ステップS1711において、ステップS1709において生成された局所領域の特徴ベクトルに対して次元選定を実行する。次元選定については、図11D~図11Fに図示されている。しかしながら、局所特徴量DB221の生成においては、次元選定における階層化を実行するが、生成された全ての特徴ベクトルを格納するのが望ましい。 Next, in step S1711, dimension selection is performed on the feature vector of the local region generated in step S1709. The dimension selection is illustrated in FIGS. 11D to 11F. However, in the generation of the local feature DB 221, hierarchization is performed in dimension selection, but it is desirable to store all generated feature vectors.
 ステップS1713においては、ステップS1703で検出した全特徴点について局所特徴量の生成と次元選定とが終了したかを判定する。終了していない場合はステップS1705に戻って、次の1つの特徴点について処理を繰り返す。全特徴点について終了した場合はステップS1715に進んで、景観要素に対応付けて局所特徴量と特徴点座標とを局所特徴量DB221に登録する。 In step S1713, it is determined whether generation of local feature values and dimension selection have been completed for all feature points detected in step S1703. If not completed, the process returns to step S1705 to repeat the process for the next one feature point. When all the feature points are completed, the process proceeds to step S1715, and the local feature amount and the feature point coordinates are registered in the local feature amount DB 221 in association with the landscape element.
 ステップS1717においては、他の景観要素の画像があるか否かを判定する。他の景観要素の画像があればステップS1701に戻って、他の景観要素の画像を取得して処理を繰り返す。 In step S1717, it is determined whether there is an image of another landscape element. If there is an image of another landscape element, the process returns to step S1701 to acquire an image of another landscape element and repeat the process.
 (景観要素認識処理)
 図18Aは、本実施形態に係る景観要素認識処理S1623の処理手順を示すフローチャートである。
(Landscape element recognition processing)
FIG. 18A is a flowchart showing a processing procedure of landscape element recognition processing S1623 according to the present embodiment.
 まず、ステップS1811において、局所特徴量DB221から1つの景観要素の局所特徴量を取得する。そして、ステップS1813において、景観要素の局所特徴量と通信端末210から受信した局所特徴量との照合を行なう(図18B参照)。 First, in step S1811, the local feature amount of one landscape element is acquired from the local feature amount DB 221. And in step S1813, collation with the local feature-value of a landscape element and the local feature-value received from the communication terminal 210 is performed (refer FIG. 18B).
 ステップS1815において、合致したか否かを判定する。合致していればステップS1821に進んで、合致した景観要素を、通信端末210が撮像した景観の映像中にあるとして記憶する。 In step S1815, it is determined whether or not they match. If it matches, it will progress to step S1821 and will memorize | store the matched landscape element as existing in the image | video of the landscape which the communication terminal 210 imaged.
 ステップS1817においては、局所特徴量DB221に登録されている全景観要素を照合したかを判定し、残りがあればステップS1811に戻って次の景観要素の照合を繰り返す。なお、かかる照合においては、処理速度の向上によるリルタイム処理あるいは景観要素認識サーバの負荷低減のため、あらかじめ分野の限定を行なってもよい。 In step S1817, it is determined whether or not all landscape elements registered in the local feature DB 221 have been collated. If there is any remaining, the process returns to step S1811 to repeat collation of the next landscape element. In such collation, the field may be limited in advance in order to reduce the load on the scene time recognition server or the rill time process by improving the processing speed.
 (照合処理)
 図18Bは、本実施形態に係る照合処理S1813の処理手順を示すフローチャートである。
 まず、ステップS1831において、初期化として、パラメータp=1,q=0を設定する。次に、ステップS1833において、局所特徴量DB221の局所特徴量の次元数iと、受信した局所特徴量の次元数jとの、より少ない次元数を選択する。
(Verification process)
FIG. 18B is a flowchart showing a processing procedure of collation processing S1813 according to the present embodiment.
First, in step S1831, parameters p = 1 and q = 0 are set as initialization. Next, in step S1833, a smaller number of dimensions is selected between the dimension number i of the local feature quantity in the local feature quantity DB 221 and the dimension number j of the received local feature quantity.
 ステップS1835~S1845のループにおいて、p>m(m=景観要素の特徴点数)となるまで各局所特徴量の照合を繰り返す。まず、ステップS1835において、局所特徴量DB221に格納された景観要素の第p番局所特徴量の選択された次元数のデータを取得する。すなわち、最初の1次元から選択された次元数を取得する。次に、ステップS1837において、ステップS1835において取得した第p番局所特徴量と入力映像から生成した全特徴点の局所特徴量を順に照合して、類似か否かを判定する。ステップS1839においては、局所特徴量間の照合の結果から類似度が閾値αを超えるか否かを判断し、超える場合はステップS1841において、局所特徴量と、入力映像と景観要素とにおける合致した特徴点の位置関係との組みを記憶する。そして、合致した特徴点数のパラメータであるqを1つカウントアップする。ステップS1843においては、景観要素の特徴点を次の特徴点に進め(p←p+1)、景観要素の全特徴点の照合が終わってない場合には(p≦m)、ステップS1835に戻って合致する局所特徴量の照合を繰り返す。なお、閾値αは、景観要素によって求められる認識精度に対応して変更可能である。ここで、他の景観要素との相関が低い景観要素であれば認識精度を低くしても、正確な認識が可能である。 In the loop from step S1835 to S1845, the collation of each local feature amount is repeated until p> m (m = the number of feature points of the landscape element). First, in step S1835, data of the selected number of dimensions of the p-th local feature amount of the landscape element stored in the local feature amount DB 221 is acquired. That is, the number of dimensions selected from the first one dimension is acquired. Next, in step S1837, the p-th local feature value acquired in step S1835 and the local feature values of all feature points generated from the input video are sequentially checked to determine whether or not they are similar. In step S1839, it is determined whether or not the similarity exceeds the threshold value α from the result of collation between the local feature amounts. If so, in step S1841, the matched features in the local feature amount, the input video, and the landscape element are determined. A pair with the positional relationship of the points is stored. Then, q, which is a parameter for the number of matched feature points, is incremented by one. In step S1843, the feature point of the landscape element is advanced to the next feature point (p ← p + 1). If matching of all the feature points of the landscape element is not finished (p ≦ m), the process returns to step S1835 to match. Repeat local feature verification. The threshold value α can be changed according to the recognition accuracy required by the landscape element. Here, if a landscape element has a low correlation with other landscape elements, accurate recognition is possible even if the recognition accuracy is lowered.
 景観要素の全特徴点との照合が終了すると、ステップS1845からS1847に進んで、ステップS1847~S1853において、景観要素が入力映像に存在するか否かが判定される。まず、ステップS1847において、景観要素の特徴点数pの内で入力映像の特徴点の局所特徴量と合致した特徴点数qの割合が、閾値βを超えたか否かを判定する。超えていればステップS1849に進んで、景観要素候補として、さらに、入力映像の特徴点と景観要素の特徴点との位置関係が、線形変換が可能な関係を有しているかを判定する。すなわち、ステップS1841において局所特徴量が合致したとして記憶した、入力映像の特徴点と景観要素の特徴点との位置関係が、回転や反転、視点の位置変更などの変化によっても可能な位置関係なのか、変更不可能な位置関係なのかを判定する。かかる判定方法は幾何学的に既知であるので、詳細な説明は省略する。ステップS1851において、線形変換可能か否かの判定結果により、線形変換可能であればステップS953に進んで、照合した景観要素が入力映像に存在すると判定する。なお、閾値βは、景観要素によって求められる認識精度に対応して変更可能である。ここで、他の景観要素との相関が低い、あるいは一部分からでも特徴が判断可能な景観要素であれば合致した特徴点が少なくても、正確な認識が可能である。すなわち、一部分が隠れて見えなくても、あるいは特徴的な一部分が見えてさえいれば、景観要素の認識が可能である。 When collation with all the feature points of the landscape element is completed, the process proceeds from step S1845 to S1847, and in steps S1847 to S1853, it is determined whether or not the landscape element exists in the input video. First, in step S1847, it is determined whether or not the ratio of the feature point number q that matches the local feature amount of the feature point of the input video among the feature point number p of the landscape element exceeds the threshold value β. If it exceeds, it will progress to step S1849 and will determine whether the positional relationship of the feature point of an input image | video and the feature point of a landscape element has the relationship in which linear transformation is possible further as a landscape element candidate. That is, the positional relationship between the feature point of the input video and the feature point of the landscape element stored as the local feature amount is matched in step S1841 is a positional relationship that is possible even by changes such as rotation, inversion, and change of the viewpoint position. Or whether the positional relationship cannot be changed. Since such a determination method is geometrically known, detailed description thereof is omitted. If it is determined in step S1851 that the linear conversion is possible, the process proceeds to step S953 to determine that the collated landscape element exists in the input video. Note that the threshold value β can be changed in accordance with the recognition accuracy required by the landscape element. Here, accurate recognition is possible even if there are few matched feature points as long as it is a landscape element that has a low correlation with other landscape elements or whose features can be judged even from a part. That is, a landscape element can be recognized as long as a part is hidden or not visible or a characteristic part is visible.
 ステップS1855においては、局所特徴量DB221に未照合の景観要素が残っているか否かを判定する。まだ景観要素が残っていれば、ステップS957において次の景観要素を設定して、パラメータp=1,q=0に初期化し、ステップS935に戻って照合を繰り返す。 In step S1855, it is determined whether or not unmatched landscape elements remain in the local feature DB 221. If a landscape element still remains, the next landscape element is set in step S957, initialized to parameters p = 1 and q = 0, and the process returns to step S935 to repeat matching.
 なお、かかる照合処理の説明からも明らかなように、あらゆる景観要素を局所特徴量DB221に記憶して、全景観要素を照合する処理は、負荷が非常に大きくなる。したがって、例えば、入力映像から景観要素を認識する前にユーザが景観要素の範囲をメニューから選択して、その範囲を局所特徴量DB221から検索して照合することが考えられる。また、局所特徴量DB221にユーザが使用する範囲の局所特徴量のみを記憶することによっても、負荷を軽減できる。 As is clear from the description of the matching process, the process of storing all the landscape elements in the local feature DB 221 and collating all the landscape elements has a very large load. Therefore, for example, before recognizing a landscape element from an input video, it is conceivable that the user selects a landscape element range from a menu, searches the range from the local feature DB 221 and collates the range. Also, the load can be reduced by storing only the local feature amount in the range used by the user in the local feature amount DB 221.
 [第3実施形態]
 次に、本発明の第3実施形態に係る情報処理システムについて説明する。本実施形態に係る情報処理システムは、上記第2実施形態と比べると、ユーザがリンク先アクセス操作をしなくても、自動的にリンク先から関連情報をアクセスする点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
[Third Embodiment]
Next, an information processing system according to the third embodiment of the present invention will be described. The information processing system according to the present embodiment is different from the second embodiment in that related information is automatically accessed from a link destination even if the user does not perform a link destination access operation. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態によれば、ユーザの操作なしに、リアルタイムに映像中の画像内の建築物を含む景観要素に対応付けて、リンク先の関連情報を報知できる。 According to this embodiment, it is possible to notify related information of a link destination in association with a landscape element including a building in an image in a video in real time without a user operation.
 《情報処理システムの動作手順》
 図19は、本実施形態に係る情報処理システムの動作手順を示すシーケンス図である。なお、図19において、第2実施形態の図5と同様の動作は同じステップ番号を付して、説明は省略する。
<< Operation procedure of information processing system >>
FIG. 19 is a sequence diagram showing an operation procedure of the information processing system according to the present embodiment. In FIG. 19, operations similar to those in FIG. 5 of the second embodiment are denoted by the same step numbers, and description thereof is omitted.
 ステップS400およびS401においては、アプリケーションやデータの相違の可能性はあるが、図4および図5と同様にダウンロードおよび起動と初期化が行なわれる。 In steps S400 and S401, although there is a possibility that there is a difference between applications and data, download, activation and initialization are performed in the same manner as in FIGS.
 ステップS411において通信端末210から受信した映像の局所特徴量から、景観中の景観要素を認識した景観要素認識サーバ220は、ステップS513において、リンク情報DB223を参照して、認識した景観要素に対応するリンク情報を取得する。 The landscape element recognition server 220 that recognizes the landscape element in the landscape from the local feature amount of the video received from the communication terminal 210 in step S411 corresponds to the recognized landscape element with reference to the link information DB 223 in step S513. Get link information.
 もし、取得したリンク情報が複数あれば、ステップS1915において、リンク先が選択される。リンク先の選択は、例えば、通信端末210を使用するユーザの指示や景観要素認識サーバ220によるユーザ認識に基づいて行なってよいが、ここでは詳細な説明は省略する。ステップS1917において、リンク情報に基づいてリンク先の関連情報提供サーバ230を認識した景観要素IDを持ってアクセスする。なお、図19の動作手順においては、リンク先アクセスで映像の局所特徴量を送信した通信端末IDも送信する。 If there are a plurality of acquired link information, a link destination is selected in step S1915. The selection of the link destination may be performed based on, for example, an instruction of a user who uses the communication terminal 210 or user recognition by the landscape element recognition server 220, but detailed description thereof is omitted here. In step S1917, access is performed with a landscape element ID that recognizes the linked related information providing server 230 based on the link information. In the operation procedure of FIG. 19, the communication terminal ID that has transmitted the local feature amount of the video by the link destination access is also transmitted.
 関連情報提供サーバ230は、アクセスに付随する景観要素IDに対応する景観要素関連情報(文書データや音声データを含む)を関連情報DB231から取得する。そして、ステップS525において、アクセス元の通信端末210に関連情報を返信する。ここで、ステップS1917において、送信された通信端末IDが使用される。 The related information providing server 230 acquires landscape element related information (including document data and audio data) corresponding to the landscape element ID accompanying the access from the related information DB 231. In step S525, the related information is returned to the access source communication terminal 210. Here, in step S1917, the transmitted communication terminal ID is used.
 関連情報の返信を受けた通信端末210は、ステップS527において、受信した関連情報を表示あるいは音声出力する。 The communication terminal 210 that has received the reply of the related information displays or outputs the received related information in step S527.
 なお、図19においては、景観要素認識サーバ220からのリンク先アクセスへの応答が、通信端末210に対して行なわれる場合を説明した。しかしながら、景観要素認識サーバ220がリンク先からの返信を受けて、通信端末210に中継する構成であってもよい。あるいは、通信端末210において、リンク情報を受信するとリンク先への自動アクセスを行ない、リンク先からの返信を報知する構成であってもよい。 In addition, in FIG. 19, the case where the response to the link destination access from the landscape element recognition server 220 is performed to the communication terminal 210 has been described. However, the landscape element recognition server 220 may receive the reply from the link destination and relay it to the communication terminal 210. Alternatively, the communication terminal 210 may be configured such that when link information is received, automatic access to the link destination is performed and a reply from the link destination is notified.
 [第4実施形態]
 次に、本発明の第4実施形態に係る情報処理システムについて説明する。本実施形態に係る情報処理システムは、上記第2実施形態および第3実施形態と比べると、景観要素の認識処理に基づいて景観を撮像しているユーザの現在地および/または移動方向/速度を算出する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
[Fourth Embodiment]
Next, an information processing system according to the fourth embodiment of the present invention will be described. Compared with the second embodiment and the third embodiment, the information processing system according to the present embodiment calculates the current location and / or moving direction / velocity of the user who is capturing a landscape based on the landscape element recognition process. It is different in point to do. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態によれば、リアルタイムに映像中の画像内の景観要素に基づいて、ユーザの現在地および/または移動方向/速度を算出できる。 According to the present embodiment, the current location and / or moving direction / speed of the user can be calculated based on the landscape element in the image in the video in real time.
 《通信端末の表示画面例》
 図20A乃至図20Cは、本実施形態に係る情報処理システムにおける通信端末2010の表示画面例を示す図である。
《Example of communication terminal display screen》
20A to 20C are diagrams illustrating display screen examples of the communication terminal 2010 in the information processing system according to the present embodiment.
 (現在地)
 まず、図20Aは、ユーザの現在地を報知する例を示した図である。
(Current location)
First, FIG. 20A is a diagram illustrating an example of informing the user's current location.
 図20Aの左図は、通信端末2010が撮像した景観の表示画面2011を示す。図20Aの中央図は、通信端末2010が、左図から時計回りに撮像範囲を移動して撮像した景観の表示画面2012を示す。 The left figure of FIG. 20A shows the landscape display screen 2011 captured by the communication terminal 2010. The central view of FIG. 20A shows a landscape display screen 2012 captured by the communication terminal 2010 by moving the imaging range clockwise from the left diagram.
 そして、図20Aの右図は、左図と中央図とを組み合わせて、本実施形態における処理により、各景観要素を撮像した角度に基づいて通信端末2010の現在地(ユーザの現在地)2014を決定して表示画面2013に重畳表示する。 And the right figure of FIG. 20A determines the present location (user's present location) 2014 of the communication terminal 2010 based on the angle which imaged each landscape element by the process in this embodiment combining the left figure and the center figure. Are superimposed on the display screen 2013.
 なお、通信端末210が複数の景観要素までの距離を測定可能であれば、1つの映像によっても現在地2014が決定可能である。 In addition, if the communication terminal 210 can measure the distance to a plurality of landscape elements, the current location 2014 can be determined by one video.
 (景観要素の角度変化による移動方向および移動速度)
 次に、図20Bは、地上におけるユーザの移動方向および移動速度を報知する例を示した図である。
(Moving direction and moving speed by changing the angle of landscape elements)
Next, FIG. 20B is a diagram illustrating an example in which the moving direction and moving speed of the user on the ground are notified.
 図20Bの左図は、通信端末2010が撮像した景観の表示画面2011を示す。図20Bの中央図は、通信端末2010が、ある方向にある距離だけ移動した後に撮像した景観の表示画面2022を示す。図20Bでは、映像内のビルの角度の変化が見られる。 The left figure of FIG. 20B shows the landscape display screen 2011 captured by the communication terminal 2010. The central view of FIG. 20B shows a landscape display screen 2022 captured after the communication terminal 2010 has moved a certain distance in a certain direction. In FIG. 20B, a change in the angle of the building in the video can be seen.
 そして、図20Bの右図は、左図と中央図とを組み合わせて、本実施形態における処理により、各景観要素を撮像した角度の変化に基づいて通信端末2010の移動方向および移動速度2024を決定して表示画面2023に重畳表示する。 And the right figure of FIG. 20B determines the moving direction and moving speed 2024 of the communication terminal 2010 based on the change of the angle which imaged each landscape element by the process in this embodiment combining the left figure and the center figure. And superimposed on the display screen 2023.
 (景観変化による移動方向および移動速度)
 また、図20Cは、空中におけるユーザの移動方向および移動速度を報知する例を示した図である。
(Moving direction and moving speed due to landscape changes)
FIG. 20C is a diagram illustrating an example of informing the moving direction and moving speed of the user in the air.
 図20Cの左図は、通信端末2010が空中から地上を撮像した景観の表示画面2031を示す。図20Cの中央図は、通信端末2010が、ある方向にある距離だけ移動した後に空中から地上を撮像した景観の表示画面2032を示す。図20Cでは、ユーザが上方に移動していることが見られる。 The left figure of FIG. 20C shows the display screen 2031 of the landscape in which the communication terminal 2010 images the ground from the air. The central view of FIG. 20C shows a landscape display screen 2032 in which the communication terminal 2010 images the ground from the air after moving a certain distance in a certain direction. In FIG. 20C, it can be seen that the user is moving upward.
 そして、図20Cの右図は、左図と中央図とを組み合わせて、本実施形態における処理により、撮像した景観中の景観要素の変化に基づいて通信端末2010の移動方向および移動速度2034を決定して表示画面2033に重畳表示する。 And the right figure of FIG. 20C determines the moving direction and moving speed 2034 of the communication terminal 2010 based on the change of the landscape element in the imaged landscape by the process in this embodiment combining the left figure and the center figure. And superimposed on the display screen 2033.
 《情報処理システムの動作手順》
 以下、図21および図22を参照して、本実施形態の情報処理システムの操作手順を示す。
<< Operation procedure of information processing system >>
Hereinafter, an operation procedure of the information processing system according to the present embodiment will be described with reference to FIGS. 21 and 22.
 (局所特徴量DB生成)
 図21は、本実施形態に係る情報処理システムにおける局所特徴量DB生成の動作手順を示すシーケンス図である。なお、図21は一例であって、これに限定されない。例えば、第2実施形態の図17に示したような局所特徴量DB生成であってもよい。本実施形態において、図21のような動作手順は、景観要素をあらゆる方角から撮像しても認識できることが望ましいために行なわれる処理である。
(Local feature DB generation)
FIG. 21 is a sequence diagram illustrating an operation procedure for generating a local feature DB in the information processing system according to the present embodiment. FIG. 21 is an example, and the present invention is not limited to this. For example, local feature DB generation as shown in FIG. 17 of the second embodiment may be used. In the present embodiment, the operation procedure as shown in FIG. 21 is a process that is performed because it is desirable that the landscape element can be recognized from any direction.
 まず、ステップS2101においては、1つあるいは複数の通信端末2010を含む撮像装置によって、対象とする特定の景観要素を撮像する。ステップS2103においては、この複数の映像データを景観要素情報と共に景観要素認識サーバ2420にそれぞれ送信する。 First, in step S2101, a specific landscape element as a target is imaged by an imaging device including one or a plurality of communication terminals 2010. In step S2103, the plurality of video data is transmitted to the landscape element recognition server 2420 together with the landscape element information.
 景観要素認識サーバ2420においては、ステップS2105において、受信した映像データからそれぞれの局所特徴量を生成する。次に、ステップS2107において、生成した局所特徴量を比較し、相関の小さい局所特徴量を局所特徴量DB2221に格納する局所特徴量とする。相関の小さい局所特徴量は、それぞれが同じ景観要素を認識するために別個に記憶すべき局所特徴量となる。 The landscape element recognition server 2420 generates local feature amounts from the received video data in step S2105. Next, in step S2107, the generated local feature quantities are compared, and the local feature quantity having a small correlation is set as a local feature quantity stored in the local feature quantity DB 2221. The local feature amount having a small correlation is a local feature amount to be stored separately in order to recognize the same landscape element.
 ステップS2109において、選択した相関の小さい局所特徴量を、景観要素情報や局所特徴量の精度と共に、局所特徴量DB2221に送信する。局所特徴量DB2221は、ステップS2111において、受信した局所特徴量を景観要素に対応付けて格納する。 In step S2109, the selected local feature quantity with a small correlation is transmitted to the local feature quantity DB 2221 together with the landscape element information and the accuracy of the local feature quantity. In step S2111, the local feature DB 2221 stores the received local feature in association with the landscape element.
 (現在地決定および/または移動方向と移動速度決定)
 図22は、本実施形態に係る情報処理システムにおける現在地決定および/または移動方向と移動速度決定の動作手順を示すシーケンス図である。なお、第2実施形態の図4および図5の動作手順と同様の手順には、同じステップ番号を付して、説明は省略する。
(Determining the current location and / or moving direction and moving speed)
FIG. 22 is a sequence diagram showing an operation procedure for determining the current location and / or moving direction and moving speed in the information processing system according to the present embodiment. In addition, the same step number is attached | subjected to the procedure similar to the operation | movement procedure of FIG. 4 and FIG. 5 of 2nd Embodiment, and description is abbreviate | omitted.
 ステップS400およびS401においては、アプリケーションやデータの相違の可能性はあるが、図4および図5と同様にダウンロードおよび起動と初期化が行なわれる。 In steps S400 and S401, although there is a possibility that there is a difference between applications and data, download, activation and initialization are performed in the same manner as in FIGS.
 景観要素認識サーバ2420は、ステップS2211において、通信端末2010から受信した映像の局所特徴量から、局所特徴量DB2221の局所特徴量と照合して、景観要素を認識する。 The landscape element recognition server 2420 recognizes a landscape element in step S2211 by comparing with the local feature amount of the local feature amount DB 2221 from the local feature amount of the video received from the communication terminal 2010.
 通信端末2010は、ステップS2221において、ステップS403とは異なる方角の映像を取得する。ステップS2223において、ステップS2221において取得した映像の局所特徴量を生成する。続いて、ステップS2225において、生成した局所特徴量を特徴点座標と共に符号化する。そして、符号化した局所特徴量を景観要素認識サーバ2420に送信する。 In step S2221, the communication terminal 2010 acquires a video having a direction different from that in step S403. In step S2223, a local feature amount of the video acquired in step S2221 is generated. Subsequently, in step S2225, the generated local feature is encoded together with the feature point coordinates. And the encoded local feature-value is transmitted to the landscape element recognition server 2420.
 景観要素認識サーバ2420では、ステップS2229において、局所特徴量DB2221の局所特徴量と照合して、景観要素を認識する。 The landscape element recognition server 2420 recognizes the landscape element in step S2229 by comparing with the local feature amount of the local feature amount DB 2221.
 ステップS2231においては、ステップS2211において認識した景観要素と、ステップS2229において認識した景観要素との間に、角度変化があったか否かを判定する。かかる角度変化は、局所特徴量の照合から景観要素を認識する処理における、特徴点座標の幾何学的配置の相違から測定可能である(図11H,図27A、図27B参照)。角度変化が所定閾値以上であればステップS2233に進んで、地図DB2222も参照して、通信端末2210(ユーザ)の移動方向および移動速度を算出する。なお、移動方向および移動速度は、2回の映像取得(ステップS403およびS2221)間の経過時間と、少なくとも1つの景観要素の角度変化と景観要素までの距離が測定可能であれば、算出可能である。あるいは、複数の景観要素を参照すれば、より正確な移動方向および移動速度の算出が可能である。 In step S2231, it is determined whether or not there is an angle change between the landscape element recognized in step S2211 and the landscape element recognized in step S2229. Such an angle change can be measured from the difference in the geometrical arrangement of the feature point coordinates in the process of recognizing the landscape element from the collation of the local feature amount (see FIGS. 11H, 27A, and 27B). If the angle change is equal to or greater than the predetermined threshold value, the process proceeds to step S2233, and also refers to the map DB 2222 to calculate the moving direction and moving speed of the communication terminal 2210 (user). The moving direction and moving speed can be calculated as long as the elapsed time between the two video acquisitions (steps S403 and S2221), the angle change of at least one landscape element and the distance to the landscape element can be measured. is there. Or if a several landscape element is referred, the calculation of a more exact moving direction and moving speed is possible.
 そして、景観要素認識サーバ2420は、ステップS2235において、ユーザの移動方向および移動速度を通信端末2010に送信する。通信端末2010は、ステップS2237において、ユーザの移動方向および移動速度を報知する(図20B参照)。 And the landscape element recognition server 2420 transmits a user's moving direction and moving speed to the communication terminal 2010 in step S2235. In step S2237, the communication terminal 2010 notifies the user's moving direction and moving speed (see FIG. 20B).
 景観要素の角度変化が所定閾値より小さければステップS2239に進んで、景観映像中の景観要素が変化したかを判定する。かかる景観要素の変化は、映像中から消滅する景観要素と映像中に出現する景観要素の数が所定閾値を超える場合とする。景観要素が変化した場合にはステップS2241に進んで、地図DB2222を参照して、通信端末2010(ユーザ)の現在地を算出する。ステップS2241における現在地算出は、各景観要素認識時(ズテップS2211とS2229)において局所特徴量の照合から景観要素を認識する処理における、特徴点座標の幾何学的配置から、認識した各景観要素を撮像した方角算出が可能である。したがって、複数の景観要素の位置/角度算出結果にもとづき撮像した方角を逆に辿れば可能である。 If the landscape element angle change is smaller than the predetermined threshold value, the process advances to step S2239 to determine whether the landscape element in the landscape video has changed. The change of the landscape element is a case where the number of landscape elements that disappear from the video and the number of landscape elements that appear in the video exceed a predetermined threshold. When a landscape element changes, it progresses to step S2241 and refers to map DB2222, and calculates the present location of the communication terminal 2010 (user). In the present location calculation in step S2241, each recognized landscape element is imaged from the geometrical arrangement of the feature point coordinates in the process of recognizing the landscape element from the collation of the local feature amount at each landscape element recognition (steps S2211 and S2229). Direction calculation is possible. Therefore, it is possible to reverse the imaged direction based on the position / angle calculation results of a plurality of landscape elements.
 そして、景観要素認識サーバ2420は、ステップS2243において、ユーザの現在地を通信端末2010に送信する。通信端末2010は、ステップS2237において、ユーザの現在地を報知する(図20A参照)
 なお、上記のように図22においては、ユーザの現在地が景観要素の変化から、ユーザの移動方向および移動速度が景観要素の角度から、自動的に算出されて報知される例を示した。図20Aや図20Bのように、撮像部601の撮像方向をユーザが意識的に変えると現在地算出をし、撮像部601の撮像方向を保って所定時間が経過すると移動方向および移動速度算出を行なうような、ユーザインターフェースが工夫されている。しかしながら、ユーザが通信端末のメニューから現在地算出や、移動方向および移動速度を選択することも可能である。
And the landscape element recognition server 2420 transmits a user's present location to the communication terminal 2010 in step S2243. In step S2237, the communication terminal 2010 notifies the user's current location (see FIG. 20A).
As described above, FIG. 22 shows an example in which the current location of the user is automatically calculated and notified from the change of the landscape element, and the movement direction and movement speed of the user are automatically calculated from the angle of the landscape element. As shown in FIGS. 20A and 20B, when the user consciously changes the imaging direction of the imaging unit 601, the current location is calculated, and when a predetermined time elapses while the imaging direction of the imaging unit 601 is maintained, the moving direction and the moving speed are calculated. Such a user interface has been devised. However, it is also possible for the user to select the current location, the moving direction and the moving speed from the menu of the communication terminal.
 また、図22には、図20Cに対応するユーザの移動方向および移動速度報知の動作手順は示さないが、映像中の景観要素の移動から移動方向および移動速度が算出されるのは、明らかである。 In addition, FIG. 22 does not show the user's moving direction and moving speed notification operation procedure corresponding to FIG. 20C, but it is clear that the moving direction and moving speed are calculated from the movement of the landscape element in the video. is there.
 《通信端末の機能構成》
 図23は、本実施形態に係る通信端末の機能構成を示すブロック図である。なお、図23において、第2実施形態の図6と同様の機能構成部には同じ参照番号を付して、説明を省略する。また、認識結果報知部2306は、図6の表示画面生成部606を含む機能構成部である。
<Functional configuration of communication terminal>
FIG. 23 is a block diagram illustrating a functional configuration of the communication terminal according to the present embodiment. In FIG. 23, the same reference numerals are given to the same functional components as those in FIG. 6 of the second embodiment, and the description thereof will be omitted. The recognition result notification unit 2306 is a functional configuration unit including the display screen generation unit 606 in FIG.
 現在地算出結果受信部2307は、通信制御部604を介して、景観要素認識サーバ2420から算出したユーザの現在地情報を受信する。そして、現在地報知部2308からユーザに報知する。 The current location calculation result receiving unit 2307 receives the current location information of the user calculated from the landscape element recognition server 2420 via the communication control unit 604. The current location notification unit 2308 notifies the user.
 移動方向/速度算出結果受信部2309は、通信制御部604を介して、景観要素認識サーバ2420から算出したユーザの移動方向および移動速度情報を受信する。そして、移動方向/速度報知部2310からユーザに報知する。 The moving direction / speed calculation result receiving unit 2309 receives the moving direction and moving speed information of the user calculated from the landscape element recognition server 2420 via the communication control unit 604. Then, the moving direction / speed notification unit 2310 notifies the user.
 《景観要素認識サーバの機能構成》
 図24は、本実施形態に係る景観要素認識サーバの機能構成を示すブロック図である。なお、図24において、第2実施形態の図7と同様の機能構成部には同じ参照番号を付して、説明を省略する。
《Functional configuration of landscape element recognition server》
FIG. 24 is a block diagram illustrating a functional configuration of the landscape element recognition server according to the present embodiment. In FIG. 24, the same reference numerals are assigned to the same functional components as those in FIG. 7 of the second embodiment, and the description thereof is omitted.
 景観要素記憶部2405は、景観要素認識部703が認識した景観要素を、景観要素の撮像角度と撮像時間とに対応付けて記憶する。あるいは、景観要素までの距離を記憶する。景観要素比較部2406は、同じ景観要素と認識された景観要素の撮像角度を比較する。また、景観要素の比較により映像中の景観要素の消滅と出現を検出する。 The landscape element storage unit 2405 stores the landscape element recognized by the landscape element recognition unit 703 in association with the imaging angle and the imaging time of the landscape element. Or memorize | store the distance to a landscape element. The landscape element comparison unit 2406 compares the imaging angles of the landscape elements recognized as the same landscape element. Moreover, disappearance and appearance of landscape elements in the video are detected by comparing the landscape elements.
 撮像角度の変化が所定閾値以上であれば、移動方向/速度算出部2407が、地図DB2222を参照して、移動方向および移動速度を算出する。そして、移動方向/速度送信部2408は、通信制御部701を介して、算出された移動方向および移動速度を通信端末2010に送信する。 If the change in the imaging angle is equal to or greater than the predetermined threshold, the movement direction / speed calculation unit 2407 refers to the map DB 2222 and calculates the movement direction and movement speed. Then, the movement direction / speed transmission unit 2408 transmits the calculated movement direction and movement speed to the communication terminal 2010 via the communication control unit 701.
 一方、景観要素の消滅と出現が所定数を超えたならば、現在地算出部2409において広範囲の景観要素と撮像角度とから現在地を算出する。そして、現在地送信部2410は、通信制御部701を介して、算出された現在地を通信端末2010に送信する。 On the other hand, if the disappearance and appearance of landscape elements exceed a predetermined number, the current location calculation unit 2409 calculates the current location from a wide range of landscape elements and imaging angles. Then, the current location transmission unit 2410 transmits the calculated current location to the communication terminal 2010 via the communication control unit 701.
 (局所特徴量DB)
 図25は、本実施形態に係る局所特徴量DB2221の構成を示す図である。
(Local feature DB)
FIG. 25 is a diagram illustrating a configuration of the local feature DB 2221 according to the present embodiment.
 図25の図8との相違点は、同じ景観要素ID2501および名称2502に対応付けて、第1算出局所特徴量2503や第2算出局所特徴量のように複数の局所特徴量が記憶されている点にある。これら複数の局所特徴量は、その間の相関が小さいものが選択されている。それぞれの局所特徴量が、第1番局所特徴量から第m番局所特徴量2505から構成されるのは、図8と同様である。 25 differs from FIG. 8 in that a plurality of local feature quantities such as the first calculated local feature quantity 2503 and the second calculated local feature quantity are stored in association with the same landscape element ID 2501 and name 2502. In the point. As the plurality of local feature quantities, those having a small correlation between them are selected. Each local feature amount is composed of the first local feature amount to the m-th local feature amount 2505, as in FIG.
 (地図DB)
 図26は、本実施形態に係る地図DB2222の構成を示す図である。
(Map DB)
FIG. 26 is a diagram showing the configuration of the map DB 2222 according to this embodiment.
 地図DB2222は、地図データ記憶部2610と景観要素位置記憶部2620とを有する。地図データ記憶部2610には、地図ID2611に対応付けて地図データ2612が記憶される。景観要素位置記憶部2620には、景観要素ID2621に対応付けて、景観要素のIDI経度からなる座標2622と、住所2623と、地図データ記憶部2610に記憶された地図上の位置2626と、が記憶される。 The map DB 2222 includes a map data storage unit 2610 and a landscape element position storage unit 2620. The map data storage unit 2610 stores map data 2612 in association with the map ID 2611. In the landscape element position storage unit 2620, a coordinate 2622 composed of the IDI longitude of the landscape element, an address 2623, and a position 2626 on the map stored in the map data storage unit 2610 are stored in association with the landscape element ID 2621. Is done.
 《景観要素認識部の処理》
 図27Aおよび図27Bは、本実施形態に係る景観要素認識部の処理を示す図である。なお、説明を簡略化するため、図27Aおよび図27Bにおいては、1つの景観要素について説明するが、映像中の多数の景観要素についても同様である。
《Process of landscape element recognition unit》
FIG. 27A and FIG. 27B are diagrams illustrating processing of the landscape element recognition unit according to the present embodiment. In addition, in order to simplify description, in FIG. 27A and FIG. 27B, although one landscape element is demonstrated, it is the same also about many landscape elements in an image | video.
 図27Aは、地上における景観要素認識部の処理を示す。図27Aは、通信端末2010が地上から撮像した景観要素の映像2791~2793に基づいて生成した局所特徴量を、あらかじめ局所特徴量DB2221に格納された局所特徴量と照合する様子を示す図である。 FIG. 27A shows the processing of the landscape element recognition unit on the ground. FIG. 27A is a diagram illustrating a state in which local feature amounts generated based on landscape element images 2791 to 2793 captured from the ground by the communication terminal 2010 are compared with local feature amounts stored in the local feature amount DB 2221 in advance. .
 図27Aの左図の通信端末2010で撮像された映像2791~2793からは、本実施形態に従い局所特徴量が生成される。そして、局所特徴量DB2221に格納された景観要素の局所特徴量との照合により、映像2791~2793の景観要素の撮像方角が算出される。 From the images 2791 to 2793 captured by the communication terminal 2010 in the left diagram of FIG. 27A, local feature amounts are generated according to the present embodiment. Then, by comparing with the local feature amount of the landscape element stored in the local feature amount DB 2221, the shooting direction of the landscape element of the images 2791 to 2793 is calculated.
 図27Bは、空中における景観要素認識部の処理を示す。図27Bは、通信端末2010が空中から撮像した景観要素の映像2794~2796に基づいて生成した局所特徴量を、あらかじめ局所特徴量DB2221に格納された局所特徴量と照合する様子を示す図である。 FIG. 27B shows the process of the landscape element recognition unit in the air. FIG. 27B is a diagram illustrating a state in which the local feature amount generated based on the landscape element images 2794 to 2796 captured from the air by the communication terminal 2010 is collated with the local feature amount stored in the local feature amount DB 2221 in advance. .
 図27Bの左図の通信端末2010で撮像された映像2794~2796からは、本実施形態に従い局所特徴量が生成される。そして、局所特徴量DB2221に格納された景観要素の局所特徴量との照合により、映像2794~2796の景観要素の撮像方角が算出される。 From the images 2794 to 2796 captured by the communication terminal 2010 in the left diagram of FIG. 27B, local feature amounts are generated according to the present embodiment. Then, by comparing with the local feature amount of the landscape element stored in the local feature amount DB 2221, the imaging direction of the landscape element of the videos 2794 to 2796 is calculated.
 《通信端末のハードウェア構成》
 図28は、本実施形態に係る通信端末2010のハードウェア構成を示すブロック図である。なお、第2実施形態の図12と同様の要素には同じ参照番号を付して、説明は省略する。
<< Hardware configuration of communication terminal >>
FIG. 28 is a block diagram illustrating a hardware configuration of the communication terminal 2010 according to the present embodiment. In addition, the same reference number is attached | subjected to the element similar to FIG. 12 of 2nd Embodiment, and description is abbreviate | omitted.
 RAM2840は、CPU1210が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM2840には、本実施形態の実現に必要なデータを記憶する領域が確保されている。現在地算出結果2841は、算出したユーザの現在地を示す。移動方向/速度算出結果2842は、算出した移動方向および移動速度を示す。表示画面データ1247は、ユーザに現在地算出結果2841や移動方向/速度算出結果2842を含む情報を報知するための表示画面データを示す。 The RAM 2840 is a random access memory used by the CPU 1210 as a work area for temporary storage. In the RAM 2840, an area for storing data necessary for realizing the present embodiment is secured. The current location calculation result 2841 indicates the calculated current location of the user. The movement direction / speed calculation result 2842 indicates the calculated movement direction and movement speed. The display screen data 1247 indicates display screen data for notifying the user of information including the current location calculation result 2841 and the movement direction / speed calculation result 2842.
 ストレージ2850には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。算出結果受信報知モジュール2851は、現在地あるいは移動方向および移動速度を景観要素認識サーバ2420から受信して報知するモジュールである。 The storage 2850 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment. The calculation result reception notification module 2851 is a module that receives the current location or moving direction and moving speed from the landscape element recognition server 2420 and notifies them.
 なお、図28には、本実施形態に必須なデータやプログラムのみが示されており、本実施形態に関連しないデータやプログラムは図示されていない。 Note that FIG. 28 shows only data and programs essential to the present embodiment, and does not illustrate data and programs not related to the present embodiment.
 《通信端末の処理手順》
 図29は、本実施形態に係る通信端末2010の処理手順を示すフローチャートである。なお、第2実施形態の図13と同様のステップには同じステップ番号を付して、説明は省略する。
<< Processing procedure of communication terminal >>
FIG. 29 is a flowchart showing a processing procedure of the communication terminal 2010 according to the present embodiment. In addition, the same step number is attached | subjected to the step similar to FIG. 13 of 2nd Embodiment, and description is abbreviate | omitted.
 ステップS1321において、データ受信と判定した場合には、まず、ステップS2923において、景観要素認識結果の受信であるかを判定する。景観要素認識結果の受信であればステップS2925に進んで、景観要素認識結果を報知する。次に、ステップS2927において、現在地算出結果の受信であるかを判定する。現在地算出結果の受信であればステップS2929に進んで、現在地を報知する。次に、ステップS2931において、移動方向/速度算出結果の受信であるかを判定する。移動方向/速度算出結果の受信であればステップS2933に進んで、移動方向および移動速度を報知する。 If it is determined in step S1321 that data has been received, first, in step S2923, it is determined whether it is reception of a landscape element recognition result. If it is reception of a landscape element recognition result, it will progress to step S2925 and will alert | report a landscape element recognition result. Next, in step S2927, it is determined whether it is reception of the present location calculation result. If it is reception of a present location calculation result, it will progress to step S2929 and will alert | report a present location. Next, in step S2931, it is determined whether it is reception of a moving direction / speed calculation result. If the movement direction / speed calculation result is received, the process proceeds to step S2933 to notify the movement direction and the movement speed.
 《景観要素認識サーバのハードウェア構成》
 図30は、本実施形態に係る景観要素認識サーバ2420のハードウェア構成を示すブロック図である。なお、第2実施形態の図15と同様の要素には同じ参照番号を付して、説明は省略する。
<< Hardware configuration of landscape element recognition server >>
FIG. 30 is a block diagram illustrating a hardware configuration of the landscape element recognition server 2420 according to the present embodiment. In addition, the same reference number is attached | subjected to the element similar to FIG. 15 of 2nd Embodiment, and description is abbreviate | omitted.
 RAM3040は、CPU1510が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM3040には、本実施形態の実現に必要なデータを記憶する領域が確保されている。現在地算出テーブル3041は、現在地を算出するためのパラメータを記憶するテーブルを示す(図31A参照)。移動方向/速度算出テーブル3042は、移動方向および移動速度を算出するためのパラメータを記憶するテーブルを示す(図31B参照)。 The RAM 3040 is a random access memory that the CPU 1510 uses as a temporary storage work area. The RAM 3040 has an area for storing data necessary for realizing the present embodiment. The current location calculation table 3041 is a table that stores parameters for calculating the current location (see FIG. 31A). The movement direction / speed calculation table 3042 is a table for storing parameters for calculating the movement direction and the movement speed (see FIG. 31B).
 ストレージ3050には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。局所特徴量DB2221は、図25に示したと同様の局所特徴量DBを示す。地図DB2222は、図26に示したと同様の地図DBを示す。 The storage 3050 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment. The local feature DB 2221 indicates a local feature DB similar to that shown in FIG. The map DB 2222 shows the same map DB as shown in FIG.
 ストレージ3050には、以下のプログラムが格納される。現在地算出モジュール3051は、景観要素と景観要素の撮像方角からユーザの現在地を算出するモジュールである。移動方向/速度算出モジュール3052は、景観要素と景観要素の撮像方角変化からユーザの移動方向および移動速度を算出するモジュールである。認識結果/算出結果送信モジュール3053は、映像中の景観要素の認識結果と、現在地あるいは移動方向および移動速度の算出結果とを通信端末2010に送信するモジュールである。 The storage 3050 stores the following programs. The current location calculation module 3051 is a module that calculates the current location of the user from the landscape elements and the imaging directions of the landscape elements. The moving direction / speed calculating module 3052 is a module for calculating the moving direction and moving speed of the user from the landscape element and the change in the imaging direction of the landscape element. The recognition result / calculation result transmission module 3053 is a module that transmits the recognition result of the landscape element in the video and the calculation result of the current location or moving direction and moving speed to the communication terminal 2010.
 なお、図30には、本実施形態に必須なデータやプログラムのみが示されており、本実施形態に関連しないデータやプログラムは図示されていない。 Note that FIG. 30 shows only data and programs essential to the present embodiment, and data and programs not related to the present embodiment are not shown.
 (現在地算出テーブル)
 図31Aは、本実施形態に係る現在地算出テーブル3041の構成を示す図である。
(Current location calculation table)
FIG. 31A is a diagram showing a configuration of a current location calculation table 3041 according to the present embodiment.
 現在地算出テーブル3041は、通信端末ID3111に対応付けて、第1景観要素3112の第1景観要素IDと第1景観要素までの距離と撮像方向、第2景観要素3113の第2景観要素IDと第2景観要素までの距離と撮像方向、を記憶する。そして、これら景観要素への距離と撮像方向に基づいて算出された現在地算出結果3114を記憶する。 The present location calculation table 3041 is associated with the communication terminal ID 3111, the first landscape element ID of the first landscape element 3112, the distance to the first landscape element, the imaging direction, the second landscape element ID of the second landscape element 3113, and the first 2 The distance to the landscape element and the imaging direction are stored. And the present location calculation result 3114 calculated based on the distance to these landscape elements and the imaging direction is stored.
 (移動方向/移動速度算出テーブル)
 図31Bは、本実施形態に係る移動方向/速度算出テーブル3042の構成を示す図である。
(Movement direction / speed calculation table)
FIG. 31B is a diagram showing a configuration of the movement direction / speed calculation table 3042 according to the present embodiment.
 移動方向/速度算出テーブル3042は、通信端末ID3121に対応付けて、第1景観要素3122の第1景観要素IDと、以前の映像における第1景観要素までの距離と撮像方向と、現在の映像における第1景観要素までの距離と撮像方向と、を記憶する。また、第2景観要素3123の第2景観要素IDと、以前の映像における第1景観要素までの距離と撮像方向と、現在の映像における第1景観要素までの距離と撮像方向と、を記憶する。そして、これら景観要素への距離と撮像方向に基づいて算出された移動方向/速度算出結果3124を記憶する。 The movement direction / speed calculation table 3042 is associated with the communication terminal ID 3121, the first landscape element ID of the first landscape element 3122, the distance to the first landscape element in the previous video, the imaging direction, and the current video The distance to the first landscape element and the imaging direction are stored. Moreover, 2nd landscape element ID of the 2nd landscape element 3123, the distance and imaging direction to the 1st landscape element in a previous image | video, and the distance and imaging direction to the 1st landscape element in the present image | video are memorize | stored. . And the moving direction / speed calculation result 3124 calculated based on the distance to these landscape elements and the imaging direction is stored.
 《景観要素認識サーバの処理手順》
 図32は、本実施形態に係る景観要素認識サーバ2420の処理手順を示すフローチャートである。このフローチャートは、図30のCPU1510によりRAM1540を使用して実行され、図24の景観要素認識サーバ2420の各機能構成部を実現する。
<< Processing procedure of landscape element recognition server >>
FIG. 32 is a flowchart showing the processing procedure of the landscape element recognition server 2420 according to this embodiment. This flowchart is executed by the CPU 1510 of FIG. 30 using the RAM 1540, and implements each functional component of the landscape element recognition server 2420 of FIG.
 局所特徴量DBの生成であればステップS3213に進んで、本実施形態の局所特徴量DB生成処理を実行する(図33参照)。また、局所特徴量の受信であればステップS1623に進んで、景観要素認識処理を行なう(図18Aおよび図18B参照)。そして、ステップS3225において、景観要素認識結果を通信端末2010に送信する。 If the local feature DB is generated, the process proceeds to step S3213 to execute the local feature DB generation processing of the present embodiment (see FIG. 33). If a local feature is received, the process advances to step S1623 to perform landscape element recognition processing (see FIGS. 18A and 18B). In step S3225, the landscape element recognition result is transmitted to the communication terminal 2010.
 ステップS3227においては、現在地算出の条件を満たしたか否かを判定する。上述のように、現在地算出の条件とは、景観要素の変化(消滅や出現)が所定閾値を超えた場合とする。現在地算出の条件を満たせばステップS3229に進んで、現在地算出処理を実行する(図34A参照)。そして、ステップS3231において、算出された現在地情報を通信端末2010に送信する。 In step S3227, it is determined whether or not the present location calculation condition is satisfied. As described above, the current location calculation condition is when the change (disappearance or appearance) of a landscape element exceeds a predetermined threshold. If the current location calculation condition is satisfied, the process advances to step S3229 to execute the current location calculation process (see FIG. 34A). In step S3231, the calculated current location information is transmitted to the communication terminal 2010.
 次に、ステップS3233においては、移動方向/速度算出の条件を満たしたか否かを判定する。上述のように、移動方向/速度算出の条件とは、景観要素の撮像角度の変化が所定閾値を超えた場合とする。移動方向/速度算出の条件を満たせばステップS3235に進んで、移動方向/速度算出処理を実行する(図34B参照)。そして、ステップS3237において、算出された現在地情報を通信端末2010に送信する。 Next, in step S3233, it is determined whether or not the conditions for calculating the moving direction / speed are satisfied. As described above, the moving direction / speed calculation condition is a case where the change in the imaging angle of the landscape element exceeds a predetermined threshold. If the moving direction / speed calculation condition is satisfied, the process proceeds to step S3235 to execute the moving direction / speed calculating process (see FIG. 34B). In step S3237, the calculated current location information is transmitted to the communication terminal 2010.
 (局所特徴量DB生成処理)
 図33は、本実施形態に係る局所特徴量DB生成処理S3213の処理手順を示すフローチャートである。なお、第2実施形態の図17と同様のステップには同じステップ番号を付して、説明を省略する。
(Local feature DB generation processing)
FIG. 33 is a flowchart showing the processing procedure of the local feature DB generation processing S3213 according to the present embodiment. In addition, the same step number is attached | subjected to the step similar to FIG. 17 of 2nd Embodiment, and description is abbreviate | omitted.
 ステップS3301においては、ある景観要素について生成した局所特徴量を記憶する。次に、同じ景観要素を撮像した他の画像があるか否かが判定される。他の画像があればステップS1701に戻って、局所特徴量に生成を繰り返す。他の画像が無ければステップS3305に進んで、ステップS3301において記憶した同じ景観要素から生成された局所特徴量の内から、相関の小さい複数(少なくとも2つ)の局所特徴量を選択する。したがって、ステップS1715においては、局所特徴量DB2221には、景観要素に対応付けて相関の小さい複数の局所特徴量が記憶される。 In step S3301, the local feature amount generated for a certain landscape element is stored. Next, it is determined whether there is another image obtained by imaging the same landscape element. If there is another image, the process returns to step S1701, and the generation of the local feature amount is repeated. If there is no other image, the process proceeds to step S3305, and a plurality of (at least two) local feature values having a small correlation are selected from the local feature values generated from the same landscape element stored in step S3301. Therefore, in step S1715, the local feature amount DB 2221 stores a plurality of local feature amounts having a small correlation in association with the landscape element.
 (現在地算出処理)
 図34Aは、本実施形態に係る現在地算出処理S3229の処理手順を示すフローチャートである。
(Current location calculation process)
FIG. 34A is a flowchart illustrating the processing procedure of the current location calculation processing S3229 according to the present embodiment.
 まず、ステップS3411において、地図DB2222を参照して、認識した連続画像内の各景観要素位置を取得する。次に、ステップS3413において、局所特徴量DB2221の対応景観要素の局所特徴量との照合における特徴点の配置から、各景観要素の向き(撮像角度)を算出する。そして、各景観要素の位置と向きとから、撮像現在地(通信端末およびユーザの現在地)を算出する。なお、ステップS3413における照合は、景観要素認識処理で既に行なっているので、その時点で向きを算出すれば必要ない。 First, in step S3411, the map DB 2222 is referenced to acquire each landscape element position in the recognized continuous image. Next, in step S3413, the orientation (imaging angle) of each landscape element is calculated from the arrangement of the feature points in the matching with the local feature amount of the corresponding landscape element in the local feature amount DB 2221. And the imaging present location (a communication terminal and a user's present location) is calculated from the position and direction of each landscape element. In addition, since collation in step S3413 has already been performed in the landscape element recognition process, it is not necessary if the direction is calculated at that time.
 (移動方向/速度算出処理)
 図34Bは、本実施形態に係る移動方向/速度算出処理S3235の処理手順を示すフローチャートである。
(Movement direction / speed calculation process)
FIG. 34B is a flowchart showing the processing procedure of the movement direction / speed calculation processing S3235 according to the present embodiment.
 まず、ステップS3421において、局所特徴量DB2221を参照して、第1画像内の少なくとも2つの景観要素の向き(撮像角度)を算出する。続いて、ステップS3423において、局所特徴量DB2221を参照して、第2画像内の同じ景観要素の向き(撮像角度)を算出する。ステップS3425においては、上記景観要素までの距離を算出する。なお、景観要素までの距離は、通信端末2010による測定から取得してもよい。そして、ステップS3427において、景観要素の向き(撮像角度)の変化と景観要素までの距離とに基づいて、撮像位置(通信端末およびユーザの現在地)を算出する。なお、ステップS3421およびS3423における向きの算出は、景観要素認識処理で算出可能であるので、その時点で向きを算出すれのであれば必要ない。 First, in step S3421, the orientation (imaging angle) of at least two landscape elements in the first image is calculated with reference to the local feature DB 2221. Subsequently, in step S3423, the orientation (imaging angle) of the same landscape element in the second image is calculated with reference to the local feature DB 2221. In step S3425, the distance to the landscape element is calculated. In addition, you may acquire the distance to a landscape element from the measurement by the communication terminal 2010. In step S3427, the imaging position (the communication terminal and the current location of the user) is calculated based on the change in the direction of the landscape element (imaging angle) and the distance to the landscape element. In addition, since the calculation of the direction in steps S3421 and S3423 can be calculated by the landscape element recognition process, it is not necessary if the direction is calculated at that time.
 [第5実施形態]
 次に、本発明の第5実施形態に係る情報処理システムについて説明する。本実施形態に係る情報処理システムは、上記第4実施形態と比べると、ユーザの現在地および/または移動方向/速度の算出結果からユーザのナビゲーションをする点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。なお、本実施形態においては、景観要素認識サーバがナビゲーションを行なう例を示すが、車両搭載のサビゲーションシステムや携帯端末に搭載されたナビゲーション処理によりナビゲーションを行なう構成のように、役割分担を変更できる。
[Fifth Embodiment]
Next, an information processing system according to the fifth embodiment of the present invention will be described. The information processing system according to the present embodiment differs from the fourth embodiment in that the user performs navigation based on the calculation result of the user's current location and / or movement direction / speed. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted. In addition, in this embodiment, although the landscape element recognition server shows an example of performing the navigation, the role assignment can be changed as in a configuration in which navigation is performed by a navigation process mounted on a vehicle-mounted saviation system or a portable terminal. .
 本実施形態によれば、映像中の画像内の景観要素に基づいて、リアルタイムにユーザをナビゲーションできる。 According to the present embodiment, the user can be navigated in real time based on the landscape element in the image in the video.
 《通信端末の表示画面例》
 図35は、本実施形態に係る情報処理システムにおける通信端末3510の表示画面例を示す図である。
《Example of communication terminal display screen》
FIG. 35 is a diagram showing a display screen example of the communication terminal 3510 in the information processing system according to the present embodiment.
 図35の左図は、通信端末3510が撮像した景観の表示画面3511を示す。図35の中央図は、通信端末3510を持ったユーザ(あるいは通信端末3510を設置した車両)が、道路に沿ってある距離だけ移動した後に撮像した景観の表示画面3512を示す。図35では、ユーザが上方に進んでいることが見られる。 The left diagram in FIG. 35 shows a landscape display screen 3511 captured by the communication terminal 3510. The central view of FIG. 35 shows a landscape display screen 3512 imaged after a user having the communication terminal 3510 (or a vehicle in which the communication terminal 3510 is installed) has moved a certain distance along the road. In FIG. 35, it can be seen that the user is moving upward.
 そして、本実施形態における処理により、まず、映像中の景観要素を認識して、映像に景観要素名(○○ビル3514と××公園3515)を重畳表示する。さらに、左図と中央図とを組み合わせて、撮像した景観中の景観要素の変化に基づいて通信端末3510の現在地と、移動方向および移動速度とを算出する。図35の右図の表示画面3513には、算出した現在地と、移動方向および移動速度とに基づいて、地図DB2222を参照して、ユーザの目的地(△△ビル)へのルートを示すナビゲーション情報と、目的地(△△ビル)までの予測時間とを示す指示コメント3516を重畳表示する。 Then, by the processing in this embodiment, first, a landscape element in the video is recognized, and a landscape element name (XX building 3514 and XX park 3515) is superimposed on the video. Further, by combining the left figure and the center figure, the current location, the moving direction, and the moving speed of the communication terminal 3510 are calculated based on the change of the landscape element in the captured landscape. On the display screen 3513 on the right side of FIG. 35, navigation information indicating the route to the user's destination (ΔΔ building) is obtained by referring to the map DB 2222 based on the calculated current location, moving direction, and moving speed. And an instruction comment 3516 indicating the predicted time to the destination (ΔΔ building) is displayed in a superimposed manner.
 《情報処理システムの動作手順》
 図36は、本実施形態に係る情報処理システムの動作手順を示すシーケンス図である。なお、図4と同様の動作手順には同じステップ番号を付して、説明は省略する。
<< Operation procedure of information processing system >>
FIG. 36 is a sequence diagram illustrating an operation procedure of the information processing system according to the present embodiment. In addition, the same step number is attached | subjected to the operation | movement procedure similar to FIG. 4, and description is abbreviate | omitted.
 ステップS400およびS401においては、アプリケーションやデータの相違の可能性はあるが、図4と同様にダウンロードおよび起動と初期化が行なわれる。 In steps S400 and S401, although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
 ステップS3603においては、通信端末3510においてユーザの入力により目的地設定がされる。ステップS3605およびS3607と、ステップS3609およびS3611とにおいて、連続する映像の取得と局所特徴量生成が行なわれる。なお、連続する映像の取得は、所定時間の間隔で行なわれるが、その所定時間はユーザが徒歩であるか、車両に乗っているかにより、あるいは仮測定したユーザの移動速度に対応して適切に設定あるいは調整される。ステップS3613においては、連続する映像の局所特徴量と特徴点座標とを符号化する。そして、ステップS3615において、目的地と連続する画像の局所特徴量とが、通信端末3510から景観要素認識サーバに送信される。なお、送信される局所特徴量の連続画像は少なくとも2つであり、3つ以上の連続画像の局所特徴量を送信してもよい。 In step S3603, the destination is set in the communication terminal 3510 by a user input. In steps S3605 and S3607 and steps S3609 and S3611, continuous video acquisition and local feature generation are performed. Note that continuous video acquisition is performed at predetermined time intervals. The predetermined time is appropriately determined depending on whether the user is walking or riding in a vehicle, or according to the temporarily measured user moving speed. Set or adjusted. In step S3613, the local feature amount and feature point coordinates of the continuous video are encoded. In step S3615, the local feature amount of the image continuous with the destination is transmitted from the communication terminal 3510 to the landscape element recognition server. Note that there are at least two continuous images of local feature values to be transmitted, and local feature values of three or more continuous images may be transmitted.
 景観要素認識サーバは、局所特徴量DB2221を参照して、ステップS3617において映像中の景観要素を認識し、ステップS3619において特徴点座標の配置から景観要素を撮像している角度を算出する。 The landscape element recognition server refers to the local feature DB 2221, recognizes the landscape element in the video in step S3617, and calculates the angle at which the landscape element is imaged from the arrangement of the feature point coordinates in step S3619.
 次に、景観要素認識サーバは、地図DB2222を参照して、ステップS3621において、認識した景観要素位置を取得して、景観要素位置とその撮像角度とからユーザの現在地を算出する(詳細は、第4実施形態参照)。図35の例では、認識した景観要素の○○ビルおよび××公園と、その地図上の位置と、各景観要素の撮像角度とから、ユーザの現在地を算出する。また、ステップS3523においては、2つの映像間の景観要素の撮像角度の変化からユーザの移動方向および移動速度を算出する(詳細は、第4実施形態参照)。ユーザの現在地と、ユーザの移動方向および移動速度が算出されたので、ステップS3625において、それらの情報に基づいて、地図DB2222を参照して、目的地への経路情報と到着予測時刻を算出すると共に、指示コメント生成が行なわれる。 Next, the landscape element recognition server refers to the map DB 2222, acquires the recognized landscape element position in step S3621, and calculates the current location of the user from the landscape element position and its imaging angle (for details, see 4 embodiment). In the example of FIG. 35, the user's current location is calculated from the recognized landscape elements XX building and xx park, the position on the map, and the imaging angle of each landscape element. In step S3523, the moving direction and moving speed of the user are calculated from the change in the imaging angle of the landscape element between the two images (refer to the fourth embodiment for details). Since the current location of the user, the moving direction and the moving speed of the user are calculated, in step S3625, the route information to the destination and the estimated arrival time are calculated based on the information by referring to the map DB 2222. The instruction comment is generated.
 景観要素認識サーバは、ステップS3627において、ナビゲーション情報として、指示コメントと、指示コメントを表示する目標物の局所特徴量を送信する。また、算出された現在地、移動方向および移動速度、到着予測時刻を送信する。通信端末3510は、ステップS3629において、先に生成された映像の局所特徴量とナビゲーション用局所特徴量DB3621に格納された目標物を示す局所特徴量とを照合する。そして、映像上の目標物に指示コメントを表示する。図35の例では、○○ビルおよび××公園の間の道を指し示す指示コメント“左折れ、△△ビルまで6分”を表示する。 In step S3627, the landscape element recognition server transmits an instruction comment and a local feature amount of the target for displaying the instruction comment as navigation information. Also, the calculated present location, moving direction and moving speed, and estimated arrival time are transmitted. In step S3629, the communication terminal 3510 collates the local feature amount of the previously generated video with the local feature amount indicating the target stored in the navigation local feature amount DB 3621. Then, an instruction comment is displayed on the target on the video. In the example of FIG. 35, an instruction comment “turn left, 6 minutes to △ Δ building” indicating the road between XX building and XX park is displayed.
 ステップS3631においては、ナビゲーションの終了か否かを判定し、継続であればステップS3605に進んで、ナビゲーションを継続する。 In step S3631, it is determined whether or not the navigation is finished. If the navigation is continued, the process proceeds to step S3605 and the navigation is continued.
 (ナビゲーション用局所特徴量DB)
 図37は、本実施形態に係るナビゲーション用局所特徴量DB3621の構成を示す図である。
(Local feature DB for navigation)
FIG. 37 is a diagram showing a configuration of the navigation local feature DB 3621 according to this embodiment.
 ナビゲーション用局所特徴量DB3621には、景観要素認識サーバで算出された現在地3701と、通信端末3510で設定された目的地(△△ビル)3702と、景観要素認識サーバで算出された移動方向3703および移動速度3704が記憶される。 In the navigation local feature DB 3621, the current location 3701 calculated by the landscape element recognition server, the destination (ΔΔ building) 3702 set by the communication terminal 3510, the movement direction 3703 calculated by the landscape element recognition server, and The moving speed 3704 is stored.
 また、局所特徴量記憶部3705には、経路上の景観要素に対応して局所特徴量が記憶される。また、指示コメント記憶部3706には、指示コメントと、コメントの表示条件と表示位置とが記憶される。 In the local feature amount storage unit 3705, local feature amounts are stored corresponding to the landscape elements on the route. The instruction comment storage unit 3706 stores an instruction comment, a comment display condition, and a display position.
 図35の例では、○○ビルの局所特徴量と、××公園の局所特徴量が景観要素認識サーバから通信端末3510にダウンロードされる。また、指示コメント“左折れ、(  )ビルまで( )分”と、コメント表示条件である映像中の○○ビルおよび××公園の出現、そして、表示位置の位置情報として○○ビルおよび××公園の間が記憶される。 In the example of FIG. 35, the local feature amount of XX building and the local feature amount of xx park are downloaded from the landscape element recognition server to the communication terminal 3510. In addition, the instruction comment “turn left, (to) building ())”, the appearance of the XX building and XX park in the video, which is the comment display condition, and the XX building and XX as position information of the display position Memorize between the parks.
 [第6実施形態]
 次に、本発明の第6実施形態に係る情報処理システムについて説明する。本実施形態に係る情報処理システムは、上記第5実施形態と比べると、目標物を認識しながら目標物に向かって装置を自動誘導制御する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
[Sixth Embodiment]
Next, an information processing system according to the sixth embodiment of the present invention will be described. The information processing system according to the present embodiment is different from the fifth embodiment in that the apparatus is automatically guided and controlled toward the target while recognizing the target. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態によれば、映像中の画像内の景観要素に基づいて、リアルタイムに装置を自動誘導制御できる。 According to the present embodiment, the apparatus can be automatically guided and controlled in real time based on the landscape elements in the images in the video.
 《通信端末の表示画面例》
 図38は、本実施形態に係る情報処理システムにおける通信端末3810の表示画面例を示す図である。なお、表示画面は本実施形態の処理を説明するためのもので、本実施形態は自動誘導制御であるので、表示をしなくてもよい。
《Example of communication terminal display screen》
FIG. 38 is a diagram showing a display screen example of the communication terminal 3810 in the information processing system according to the present embodiment. The display screen is for explaining the processing of the present embodiment. Since the present embodiment is automatic guidance control, the display screen need not be displayed.
 図38の左図は、通信端末3810が撮像した景観の表示画面3811を示す。表示画面3811には、誘導の目標物(ターゲット)である飛行場の滑走路3811aが示されている。図35の中央図は、通信端末3810が空中をある距離だけ移動した後に撮像した景観の表示画面3812を示す。図38では、通信端末3810が上方に進んでいることが見られる。そして、目標物に対してコースから右に外れている。表示部があれは図のように警告が表示されるが、自動誘導制御であれば自動的に左に旋回してコース内に戻る制御が行なわれる。なお、本実施形態は誘導制御のための現在地、移動方向および移動速度のリアルタイム取得が特徴であり、誘導制御については詳細な説明は省略する。 The left diagram in FIG. 38 shows a landscape display screen 3811 captured by the communication terminal 3810. The display screen 3811 shows a runway 3811a of an airfield that is a guidance target (target). The central view of FIG. 35 shows a landscape display screen 3812 captured after the communication terminal 3810 has moved a certain distance in the air. In FIG. 38, it can be seen that the communication terminal 3810 is moving upward. And it is off the course to the right with respect to the target. If there is a display unit, a warning is displayed as shown in the figure, but if it is automatic guidance control, control is automatically performed to turn left and return to the course. The present embodiment is characterized by real-time acquisition of the current location, moving direction, and moving speed for guidance control, and detailed description of guidance control is omitted.
 本実施形態における処理によれば、左図と中央図とを組み合わせて、撮像した景観中の景観要素の変化に基づいて通信端末3810の現在地と、移動方向および移動速度とを算出する。図38の右図の表示画面3813には、コース内に復帰してさらに接近した飛行場の滑走路3813aが示されている。表示部があれは図のように正常復帰が表示される。 According to the processing in the present embodiment, the current position of the communication terminal 3810, the moving direction, and the moving speed are calculated based on the change of the landscape element in the captured landscape by combining the left diagram and the center diagram. A display screen 3813 on the right side of FIG. 38 shows a runway 3813a of an airfield that has returned to the course and further approached. If there is a display, normal return is displayed as shown in the figure.
 《情報処理システムの動作手順》
 図39は、本発明の第6実施形態に係る情報処理システムの動作手順を示すシーケンス図である。なお、第2実施形態の図4および図5と同様の動作手順には同じステップ番号を付して、説明を省略する。
<< Operation procedure of information processing system >>
FIG. 39 is a sequence diagram showing an operation procedure of the information processing system according to the sixth embodiment of the present invention. In addition, the same step number is attached | subjected to the operation | movement procedure similar to FIG. 4 and FIG. 5 of 2nd Embodiment, and description is abbreviate | omitted.
 ステップS400およびS401においては、アプリケーションやデータの相違の可能性はあるが、図4と同様にダウンロードおよび起動と初期化が行なわれる。 In steps S400 and S401, although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
 誘導制御コンピュータは、ステップS3911において、目標とする景観要素を指示する目標景観要素指示に従って、必要であれば目標景観要素の局所特徴量を生成して、局所特徴量DB2221に格納する。既に目標景観要素の局所特徴量が局所特徴量DB2221に格納されていれば、目標とする景観要素の景観要素IDを設定するのみでよい。 In step S3911, the guidance control computer generates a local feature amount of the target landscape element according to the target landscape element instruction that specifies the target landscape element, and stores it in the local feature DB 2221. If the local feature amount of the target landscape element is already stored in the local feature amount DB 2221, it is only necessary to set the landscape element ID of the target landscape element.
 誘導制御コンピュータは、ステップS3913においては、通信端末3810から送信された映像の局所特徴量から、局所特徴量DB2221に格納された目標景観要素の局所特徴量と照合して目標景観要素を認識する。ステップS3915においては、認識した目標景観要素が映像中の所望位置にあるか否かを判定して、所望位置でなければ所望位置になるように位置補正する誘導制御を行なう。ステップS3917においては、誘導制御の終了か否かを判定し、終了でなければステップS3913に戻って、新たな映像の局所特徴量に基づいた自動誘導制御を継続する。 In step S3913, the guidance control computer recognizes the target landscape element by comparing the local feature amount of the video transmitted from the communication terminal 3810 with the local feature amount of the target landscape element stored in the local feature amount DB 2221. In step S3915, it is determined whether or not the recognized target landscape element is at a desired position in the video, and guidance control is performed to correct the position so that the desired position is not the desired position. In step S3917, it is determined whether or not the guidance control is finished. If not finished, the process returns to step S3913 and the automatic guidance control based on the local feature amount of the new video is continued.
 《誘導制御コンピュータの処理手順》
 図40は、本実施形態に係る誘導制御コンピュータの処理手順を示すフローチャートである。このフローチャートは、誘導制御コンピュータのCPUによってRAMを使用しながら実行される。なお、図40の処理手順において第2実施形態の図16と同様のステップには同じステップ番号を付して、説明は省略する。
<< Processing procedure of guidance control computer >>
FIG. 40 is a flowchart illustrating a processing procedure of the guidance control computer according to the present embodiment. This flowchart is executed using the RAM by the CPU of the guidance control computer. In the processing procedure of FIG. 40, steps similar to those in FIG. 16 of the second embodiment are denoted by the same step numbers and description thereof is omitted.
 まず、ステップS4011において、目標とする景観要素の指示か否かを判定する。また、ステップS1621において、通信端末からの局所特徴量受信かを判定する。いずれでもなければ、ステップS1631において他の処理を行なう。 First, in step S4011, it is determined whether or not it is an instruction for a target landscape element. In step S1621, it is determined whether a local feature amount is received from the communication terminal. Otherwise, other processing is performed in step S1631.
 目標景観要素の設定であればステップS4013に進んで、目標景観要素の局所特徴量を局所特徴量DB2221に記憶する。 If it is the setting of the target landscape element, the process proceeds to step S4013, and the local feature amount of the target landscape element is stored in the local feature amount DB 2221.
 また、局所特徴量の受信であればステップS1623に進んで、目標の景観要素認識処理を行なう。なお、本実施形態においては、目標景観要素のみを認識することを除いて、図18Aおよび図18Bの処理手順と同様であり、詳細は省略する。 If the local feature amount is received, the process proceeds to step S1623 to perform a target landscape element recognition process. In addition, in this embodiment, it is the same as that of the process sequence of FIG. 18A and FIG. 18B except recognizing only a target landscape element, and a detail is abbreviate | omitted.
 次に、ステップS4025において、目標景観要素が映像中にあることが認識されたか否かを判定する。映像中に無ければステップS4029に進んで、映像中に目標景観要素があるように誘導制御による位置補正を行なう。一方、目標景観要素が映像中にあればステップS4027に進んで、映像中の目標景観要素の位置が所望位置かを判定する。なお、所望位置とは、映像中央や所定位置を含む領域内にある場合を示す。所望位置にあれば何もせずに終了する。しかし、所望位置になければステップS4029に進んで、映像中の所望位置に目標景観要素があるように誘導制御による位置補正を行なう。 Next, in step S4025, it is determined whether or not it is recognized that the target landscape element is in the video. If it is not in the video, the process proceeds to step S4029, and position correction by guidance control is performed so that the target landscape element is in the video. On the other hand, if the target landscape element is in the video, the process proceeds to step S4027 to determine whether the position of the target landscape element in the video is a desired position. The desired position indicates a case where the desired position is within the center of the image or an area including a predetermined position. If it is in the desired position, the process ends without doing anything. However, if it is not at the desired position, the process proceeds to step S4029 to perform position correction by guidance control so that the target landscape element is at the desired position in the video.
 [第7実施形態]
 次に、本発明の第7実施形態に係る情報処理システムについて説明する。本実施形態に係る情報処理システムは、上記第6実施形態と比べると、経路の景観を認識しながら目標物に向かって装置を自動誘導制御する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
[Seventh Embodiment]
Next, an information processing system according to a seventh embodiment of the present invention will be described. The information processing system according to the present embodiment is different from the sixth embodiment in that the apparatus is automatically guided and controlled toward the target while recognizing the landscape of the route. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態によれば、映像中の画像内の景観要素に基づいて、リアルタイムに装置を自動誘導制御できる。 According to the present embodiment, the apparatus can be automatically guided and controlled in real time based on the landscape elements in the images in the video.
 なお、第6実施形態の自動誘導制御と本実施形態の自動誘導制御は、装置と目標物との距離や装置の高度などの条件に合わせて切り替えて使用することが可能である。また、従来の電波やレーザなどを使用した自動誘導制御とも組み合わせることができる。一般に、地上から遠く離れた位置では電波による誘導、地上の景観要素が認識可能な高度では本実施形態の誘導、目標物が見える距離や高度では第6実施形態の誘導が、好適である。あるいは、視界がよいか悪いかなどの条件により誘導方法を切り替える事も可能である。 Note that the automatic guidance control of the sixth embodiment and the automatic guidance control of the present embodiment can be switched and used in accordance with conditions such as the distance between the device and the target and the altitude of the device. Further, it can be combined with conventional automatic guidance control using radio waves or lasers. In general, the guidance by radio waves is suitable for positions far from the ground, the guidance of this embodiment is suitable for altitudes where the landscape elements on the ground can be recognized, and the guidance of the sixth embodiment is suitable for distances and altitudes where the target can be seen. Alternatively, it is possible to switch the guidance method according to conditions such as whether the visibility is good or bad.
 《通信端末の表示画面例》
 図41は、本実施形態に係る情報処理システムにおける通信端末の表示画面例を示す図である。なお、表示画面は本実施形態の処理を説明するためのもので、本実施形態は自動誘導制御であるので、表示をしなくてもよい。
《Example of communication terminal display screen》
FIG. 41 is a diagram showing a display screen example of the communication terminal in the information processing system according to the present embodiment. The display screen is for explaining the processing of the present embodiment. Since the present embodiment is automatic guidance control, the display screen need not be displayed.
 図41の左図は、通信端末4110が撮像した空中から地上を撮像した景観の表示画面4111を示す。表示画面4111には、認識する景観要素の領域4111aが示されている。この領域4111a内の景観要素を、局所特徴量DB2221の局所特徴量との照合により認識する。そして、目標とする景観要素に向かうコース中のあるべき景観を記憶する経路画面DB4210と照合して、コース上を移動しているか否かを判定する。図41の左図においては、コース上を移動していると判定され、正常に○○町上空Amを飛行中であることを示している。 The left diagram in FIG. 41 shows a landscape display screen 4111 in which the ground is imaged from the air imaged by the communication terminal 4110. The display screen 4111 shows a landscape element area 4111a to be recognized. The landscape element in the region 4111a is recognized by collation with the local feature amount in the local feature amount DB 2221. And it is compared with route screen DB4210 which memorize | stores the scenery which should be in the course which goes to the target landscape element, and it is determined whether it is moving on the course. In the left diagram of FIG. 41, it is determined that the vehicle is moving on the course, and it is shown that the aircraft is normally flying over Am.
 図41の中央図は、通信端末4110が空中をある距離だけ移動した後に空中から地上を撮像した景観の表示画面4112を示す。図41では、通信端末4110が上方に進んでいることが見られる。表示画面4112には、認識する景観要素の領域4112aが示されている。この領域4112a内の景観要素を、局所特徴量DB2221の局所特徴量との照合により認識する。そして、目標とする景観要素に向かうコース中のあるべき景観を記憶する経路画面DB4210と照合して、コース上を移動しているか否かを判定する。図41の中央図においては、コース上を移動していると判定され、正常に△△町上空Bm(<Am)を飛行中であることを示している。 41 shows a landscape display screen 4112 obtained by imaging the ground from the air after the communication terminal 4110 has moved a certain distance in the air. In FIG. 41, it can be seen that the communication terminal 4110 is moving upward. The display screen 4112 shows a landscape element region 4112a to be recognized. The landscape element in the region 4112a is recognized by collation with the local feature amount in the local feature amount DB 2221. And it is compared with route screen DB4210 which memorize | stores the scenery which should be in the course which goes to the target landscape element, and it is determined whether it is moving on the course. In the central view of FIG. 41, it is determined that the vehicle is moving on the course, and it is shown that the aircraft is normally flying over Bm (<Am) over ΔΔ town.
 図41の右図は、通信端末4110が空中をさらにある距離だけ移動した後に空中から地上を撮像した景観の表示画面4113を示す。表示画面4113には、認識する景観要素の領域4113aが示されている。この領域4113a内の景観要素を、局所特徴量DB2221の局所特徴量との照合により認識する。そして、目標とする景観要素に向かうコース中のあるべき景観を記憶する経路画面DB4210と照合して、コース上を移動しているか否かを判定する。図41の右図においては、コース上を移動していると判定され、正常に××町上空Cm(<Bm<Am)を飛行中であることを示している。 The right diagram of FIG. 41 shows a landscape display screen 4113 in which the ground is imaged from the air after the communication terminal 4110 has further moved through the air by a certain distance. The display screen 4113 shows a landscape element area 4113a to be recognized. The landscape element in the region 4113a is recognized by collation with the local feature amount in the local feature amount DB 2221. And it is compared with route screen DB4210 which memorize | stores the scenery which should be in the course which goes to the target landscape element, and it is determined whether it is moving on the course. In the right diagram of FIG. 41, it is determined that the vehicle is moving on the course, and it is shown that the vehicle is normally flying in the xx town Cm (<Bm <Am).
 《情報処理システムの動作手順》
 図42は、本実施形態に係る情報処理システムの動作手順を示すシーケンス図である。なお、第2実施形態の図4および図5と同様の動作手順には同じステップ番号を付して、説明を省略する。
<< Operation procedure of information processing system >>
FIG. 42 is a sequence diagram illustrating an operation procedure of the information processing system according to the present embodiment. In addition, the same step number is attached | subjected to the operation | movement procedure similar to FIG. 4 and FIG. 5 of 2nd Embodiment, and description is abbreviate | omitted.
 ステップS400およびS401においては、アプリケーションやデータの相違の可能性はあるが、図4と同様にダウンロードおよび起動と初期化が行なわれる。 In steps S400 and S401, although there is a possibility of a difference between applications and data, downloading, activation and initialization are performed as in FIG.
 誘導制御コンピュータは、ステップS4211において、目標とする景観要素の指示に従って、必要であれば目標景観要素および地図DB2222から取得した目標景観要素に向かうコースにある景観要素の局所特徴量を生成して、局所特徴量DB2221に格納する。既に景観要素の局所特徴量が局所特徴量DB2221に格納されていれば、各景観要素の景観要素IDを設定するのみでよい。次に、誘導制御コンピュータは、ステップS4213において、局所特徴量DB「2221および地図DB2222を参照して、目標景観要素までのコース途中の複数箇所における映像を表わす経路図面を生成して、経路画面DB4210に経路画像保持を行なう。 In step S4211, the guidance control computer generates a local feature amount of the landscape element in the course toward the target landscape element acquired from the target landscape element and the map DB 2222 if necessary according to the instruction of the target landscape element, Stored in the local feature DB 2221. If the local feature amount of the landscape element is already stored in the local feature amount DB 2221, it is only necessary to set the landscape element ID of each landscape element. Next, in step S4213, the guidance control computer refers to the local feature value DB “2221 and map DB 2222, generates a route drawing representing videos at a plurality of locations on the course to the target landscape element, and generates a route screen DB 4210. The route image is retained.
 誘導制御コンピュータは、ステップS4215においては、通信端末4110から送信された映像の局所特徴量から、局所特徴量DB2221に格納された景観要素の局所特徴量と照合して映像中の景観要素を認識する。ステップS4217においては、認識した複数の景観要素からなる景観認識を行ない、経路画面DB4210に格納された目標景観要素までのコースからの映像と一致するように、誘導制御により経路補正を行なう。ステップS4219においては、誘導制御の終了か否かを判定し、終了でなければステップS4215に戻って、新たな映像の局所特徴量に基づいた自動誘導制御を継続する。 In step S4215, the guidance control computer recognizes the landscape element in the video by comparing the local feature quantity of the video transmitted from the communication terminal 4110 with the local feature quantity of the landscape element stored in the local feature DB 2221. . In step S4217, landscape recognition including a plurality of recognized landscape elements is performed, and route correction is performed by guidance control so as to match the image from the course up to the target landscape element stored in the route screen DB 4210. In step S4219, it is determined whether or not the guidance control is finished. If not finished, the process returns to step S4215 and the automatic guidance control based on the local feature amount of the new video is continued.
 (経路画面DB)
 図43は、本実施形態に係る経路画面DB4210の構成を示す図である。
(Route screen DB)
FIG. 43 is a diagram showing a configuration of the route screen DB 4210 according to the present embodiment.
 経路画面DB4210は、目標景観要素までの経路に従って、撮像されるべき景観要素群の局所特徴量を順に記憶する景観要素群記憶部4310と、目標景観要素までの経路に従って、撮像されるべき映像の局所特徴量を記憶する映像記憶部4320とを有してよい。 The route screen DB 4210 includes a landscape element group storage unit 4310 that sequentially stores local feature quantities of a landscape element group to be imaged according to a route to the target landscape element, and a video to be imaged according to the route to the target landscape element. And a video storage unit 4320 for storing local feature amounts.
 景観要素群記憶部4310は、目標景観要素4311までの経路ID4312に対応付けて、映像中にあるべき第1景観要素ID4313、第2景観要素ID4314のそれぞれについて、局所特徴量と各経路での映像中の相対位置とを記憶する。 The landscape element group storage unit 4310 is associated with the route ID 4312 to the target landscape element 4311, and each of the first landscape element ID 4313 and the second landscape element ID 4314, which should be in the video, is a video with each local feature and each route. The relative position inside is memorized.
 一方、映像記憶部4320は、目標景観要素4321までの経路ID4322に対応付けて、あるべき映像全体の局所特徴量を記憶する。 On the other hand, the video storage unit 4320 stores the local feature amount of the entire video to be associated with the route ID 4322 to the target landscape element 4321.
 本実施形態の自動誘導制御は、上記景観要素群記憶部4310と映像記憶部4320とのいずれか、あるいは両方を使用して行なわれる。 The automatic guidance control of this embodiment is performed using either or both of the landscape element group storage unit 4310 and the video storage unit 4320.
 《誘導制御コンピュータの処理手順》
 図44は、本実施形態に係る誘導制御コンピュータの処理手順を示すフローチャートである。このフローチャートは、誘導制御コンピュータのCPUによってRAMを使用しながら実行される。なお、図44の処理手順において第2実施形態の図16または第6実施形態の図40と同様のステップには同じステップ番号を付して、説明は省略する。
<< Processing procedure of guidance control computer >>
FIG. 44 is a flowchart showing a processing procedure of the guidance control computer according to the present embodiment. This flowchart is executed using the RAM by the CPU of the guidance control computer. In the processing procedure of FIG. 44, steps similar to those in FIG. 16 of the second embodiment or FIG. 40 of the sixth embodiment are denoted by the same step numbers, and description thereof is omitted.
 まず、ステップS4011において、目標とする景観要素の指示か否かを判定する。また、ステップS1621において、通信端末からの局所特徴量受信かを判定する。いずれでもなければ、ステップS1631において他の処理を行なう。 First, in step S4011, it is determined whether or not it is an instruction for a target landscape element. In step S1621, it is determined whether a local feature amount is received from the communication terminal. Otherwise, other processing is performed in step S1631.
 目標景観要素の設定であればステップS4413に進んで、目標景観要素までのコース途中における経路画面を経路画面DB4210に記憶する。 If the target landscape element is set, the process proceeds to step S4413, and the route screen in the course of the course to the target landscape element is stored in the route screen DB 4210.
 また、局所特徴量の受信であればステップS1623に進んで、景観要素認識処理を行なう。次に、ステップS4425において、経路画面DB4210を参照して、映像中の認識した景観要素の配置を分析する。ステップS4437においては、経路画面DB4210の経路画面と映像中の画面との照合によって、ズレがあれば経路補正処理を行なう。 If the local feature is received, the process proceeds to step S1623 to perform landscape element recognition processing. Next, in step S4425, the arrangement of the recognized landscape elements in the video is analyzed with reference to the route screen DB 4210. In step S4437, a route correction process is performed if there is a deviation by comparing the route screen of the route screen DB 4210 with the screen in the video.
 [第8実施形態]
 次に、本発明の第8実施形態に係る情報処理システムについて説明する。本実施形態に係る情報処理システムは、上記第1実施形態乃至第7実施形態と比べると、通信端末が景観要素認識を含む全ての処理を行なう点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
[Eighth Embodiment]
Next, an information processing system according to an eighth embodiment of the present invention will be described. The information processing system according to the present embodiment is different from the first to seventh embodiments in that the communication terminal performs all processes including landscape element recognition. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態によれば、映像中の画像内の景観要素に基づいて、通信端末のみ全ての処理を行なうことができる。 According to the present embodiment, all processing can be performed only on the communication terminal based on the landscape element in the image in the video.
 《通信端末の機能構成》
 図45は、本実施形態に係る通信端末4510の機能構成を示すブロック図である。なお、図45において第2実施形態の図6あるいは第4実施形態の図23と同様の機能構成部には同じ参照番号を付して、説明を省略する。
<Functional configuration of communication terminal>
FIG. 45 is a block diagram showing a functional configuration of a communication terminal 4510 according to this embodiment. 45, the same reference numerals are given to the same functional components as those in FIG. 6 of the second embodiment or FIG. 23 of the fourth embodiment, and description thereof will be omitted.
 景観要素認識部4501は、局所特徴量生成部602が生成した映像の局所特徴量と、局所特徴量DB4502に格納された景観要素の局所特徴量を照合して、映像中の景観要素を認識する。景観要素記憶部4503は、少なくとも1つの以前に認識した景観要素を記憶する。景観要素比較部4504は、景観要素記憶部4503に記憶された景観要素と、現在、景観要素認識部4501において認識された景観要素とを比較する。 The landscape element recognition unit 4501 recognizes the landscape element in the video by collating the local feature amount of the image generated by the local feature amount generation unit 602 with the local feature amount of the landscape element stored in the local feature amount DB 4502. . The landscape element storage unit 4503 stores at least one previously recognized landscape element. The landscape element comparison unit 4504 compares the landscape element stored in the landscape element storage unit 4503 with the landscape element currently recognized by the landscape element recognition unit 4501.
 そして、移動方向/速度算出部4505は、地図DB4506を参照して、景観要素の撮像角度の変化に基づいて、ユーザの移動方法および移動速度を算出する。また、現在地算出部4507は、地図DB4506を参照して、複数の景観要素の撮像角度に基づいて、ユーザの現在地を算出する。 Then, the moving direction / speed calculating unit 4505 refers to the map DB 4506 and calculates the moving method and moving speed of the user based on the change in the imaging angle of the landscape element. Also, the current location calculation unit 4507 refers to the map DB 4506 and calculates the current location of the user based on the imaging angles of a plurality of landscape elements.
 ナビゲーション情報生成部4508は、地図DB4506を参照して、算出されたユーザの現在地と算出された、ユーザの移動方法および移動速度とに基づいて、目的地に向かうナビゲーション情報を生成する。ナビゲーション情報報知部4509は、生成されたナビゲーション情報をユーザに報知する。 The navigation information generation unit 4508 refers to the map DB 4506, and generates navigation information toward the destination based on the calculated current location of the user and the calculated moving method and moving speed of the user. The navigation information notification unit 4509 notifies the user of the generated navigation information.
 [他の実施形態]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
[Other Embodiments]
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, a system or an apparatus in which different features included in each embodiment are combined in any way is also included in the scope of the present invention.
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する制御プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされる制御プログラム、あるいはその制御プログラムを格納した媒体、その制御プログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。 Further, the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where a control program that realizes the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention with a computer, a control program installed in the computer, a medium storing the control program, and a WWW (World Wide Web) server that downloads the control program are also included in the scope of the present invention. include.
 この出願は、2012年1月30日に出願された日本出願特願2012-017386を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-018386 filed on January 30, 2012, the entire disclosure of which is incorporated herein.
 本実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of this embodiment can be described as in the following supplementary notes, but is not limited to the following.
 (付記1)
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段と、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成手段と、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する景観要素認識手段と、
 を備えることを特徴とする情報処理システム。
 (付記2)
 前記景観要素は、自然景観を構成する景観要素と、人工景観を構成する建造物とを含むことを特徴とする付記1に記載の情報処理システム。
 (付記3)
 前記景観要素認識手段の認識結果を報知する報知手段をさらに備えることを特徴とする付記1または2に記載の情報処理システム。
 (付記4)
 前記報知手段は、さらに、前記認識結果に関連する情報を報知することを特徴とする付記3に記載の情報処理システム。
 (付記5)
 前記報知手段は、さらに、前記認識結果に関連する情報を取得するためのリンク情報を報知することを特徴とする付記3または4に記載の情報処理システム。
 (付記6)
 前記報知手段は、前記認識結果に関連する情報をリンク情報に従って取得する関連情報取得手段を有し、
 リンク情報に従って取得した前記関連情報を報知することを特徴とする付記3に記載の情報処理システム。
 (付記7)
 複数の景観要素の位置および撮像角度を算出する位置/角度算出手段と、
 前記複数の景観要素の位置および撮像角度から現在地を算出する現在地算出手段と、
 をさらに備えることを特徴とする付記1乃至6のいずれか1つに記載の情報処理システム。
 (付記8)
 連続画像内の景観要素の撮像角度を算出する角度算出手段と、
 前記連続画像内の景観要素の撮像角度から撮像位置の移動方向および移動速度を算出する移動方向/速度算出手段と、
 をさらに備えることを特徴とする付記1乃至7のいずれか1つに記載の情報処理システム。
 (付記9)
 目的地を設定する目的地設定手段と、
 複数の景観要素の位置および撮像角度を算出する位置/角度算出手段と、
 前記複数の景観要素の位置および撮像角度から現在地を算出する現在地算出手段と、
 前記目的地と前記現在地とに基づいて、前記目的地に向かう指示コメントを、前記現在地から前記目的地への経路上に存在する景観要素の局所特徴量と対応付けて生成する指示コメント生成手段と、
 前記撮像手段が撮像した映像中の景観要素に対応付けて、前記指示コメントを表示する表示手段と、
 をさらに備えることを特徴とする付記1乃至6のいずれか1つに記載の情報処理システム。
 (付記10)
 目標とする景観要素を指示する目標景観要素指示手段と、
 前記目標とする景観要素が、前記撮像手段が撮像した映像中の所望位置になるように撮像位置を制御する誘導制御手段と、
 をさらに備えることを特徴とする付記1乃至8のいずれか1つに記載の情報処理システム。
 (付記11)
 前記第1局所特徴量記憶手段は、複数の景観要素にそれぞれ対応付けて各景観要素の画像から生成した前記m個の第1局所特徴量を記憶し、
 前記景観要素認識手段が認識した、前記撮像手段が撮像した前記画像に含まれる複数の景観要素の配置に基づいて景観を認識する景観認識手段を備えることを特徴とする付記1乃至8のいずれか1つに記載の情報処理システム。
 (付記12)
 目標とする景観要素を指示する目標景観要素指示手段と、
 前記目標とする景観要素までのコース途中の画像内の景観要素を、局所特徴量に対応付けて保持する経路画像保持手段と、
 前記撮像手段の撮像した映像中の所定位置に所望の景観要素が存在するように撮像位置を制御する誘導制御手段と、
 をさらに備えることを特徴とする付記1乃至8のいずれか1つに記載の情報処理システム。
 (付記13)
 前記第1局所特徴量および前記第2局所特徴量は、画像から抽出した特徴点を含む局所領域を複数のサブ領域に分割し、前記複数のサブ領域内の勾配方向のヒストグラムからなる複数の次元の特徴ベクトルを生成することにより生成されることを特徴とする付記1乃至12のいずれか1つに記載の情報処理システム。
 (付記14)
 前記第1局所特徴量および前記第2局所特徴量は、前記生成した複数の次元の特徴ベクトルから、隣接するサブ領域間の相関がより大きな次元を削除することにより生成されることを特徴とする付記13に記載の情報処理システム。
 (付記15)
 前記特徴ベクトルの複数の次元は、前記特徴点の特徴に寄与する次元から順に、かつ、前記局所特徴量に対して求められる精度の向上に応じて第1次元から順に選択できるよう、所定の次元数ごとに前記局所領域をひと回りするよう配列することを特徴とする付記13または14に記載の情報処理システム。
 (付記16)
 前記第2局所特徴量生成手段は、前記景観要素の相関に対応して、他の景観要素とより低い前記相関を有する景観要素については次元数のより少ない前記第2局所特徴量を生成することを特徴とする付記15に記載の情報処理システム。
 (付記17)
 前記第1局所特徴量記憶手段は、前記景観要素の相関に対応して、他の景観要素とより低い前記相関を有する景観要素については次元数のより少ない前記第1局所特徴量を記憶することを特徴とする付記15または16に記載の情報処理システム。
 (付記18)
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理システムを用いた情報処理方法であって、
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
 を含むことを特徴とする情報処理方法。
 (付記19)
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成手段と、
 前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信手段と、
 前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信手段と、
 を備えたことを特徴とする通信端末。
 (付記20)
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
 前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信ステップと、
 前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信ステップと、
 を含むことを特徴とする通信端末の制御方法。
 (付記21)
 撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
 前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信ステップと、
 前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信ステップと、
 をコンピュータに実行させることを特徴とする通信端末の制御プログラム。
 (付記22)
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段と、
 通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信手段と、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識手段と、
 認識した前記景観要素を示す情報を前記通信端末に送信する第2送信手段と、
 を備えることを特徴とする情報処理装置。
 (付記23)
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理装置の制御方法であって、
 通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信ステップと、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
 認識した前記景観要素を示す情報を前記通信端末に送信する第2送信ステップと、
 を含むことを特徴とする情報処理装置の制御方法。
 (付記24)
 景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理装置の制御プログラムであって、
 通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信ステップと、
 前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
 認識した前記景観要素を示す情報を前記通信端末に送信する第2送信ステップと、
 をコンピュータに実行させることを特徴とする制御プログラム。
(Appendix 1)
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. First local feature quantity storage means for storing the quantity in association with each other;
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. Second local feature quantity generating means for generating the second local feature quantity of
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video A landscape element recognition means for recognizing that the landscape element exists in
An information processing system comprising:
(Appendix 2)
The information processing system according to supplementary note 1, wherein the landscape element includes a landscape element constituting a natural landscape and a building constituting an artificial landscape.
(Appendix 3)
The information processing system according to appendix 1 or 2, further comprising notification means for notifying a recognition result of the landscape element recognition means.
(Appendix 4)
The information processing system according to supplementary note 3, wherein the notification unit further notifies information related to the recognition result.
(Appendix 5)
The information processing system according to appendix 3 or 4, wherein the notifying unit further notifies link information for acquiring information related to the recognition result.
(Appendix 6)
The notification means includes related information acquisition means for acquiring information related to the recognition result according to link information,
The information processing system according to appendix 3, wherein the related information acquired according to link information is notified.
(Appendix 7)
A position / angle calculation means for calculating the position and imaging angle of a plurality of landscape elements;
Current location calculation means for calculating the current location from the position and imaging angle of the plurality of landscape elements;
The information processing system according to any one of supplementary notes 1 to 6, further comprising:
(Appendix 8)
An angle calculating means for calculating an imaging angle of a landscape element in the continuous image;
A moving direction / speed calculating means for calculating a moving direction and a moving speed of an imaging position from an imaging angle of a landscape element in the continuous image;
The information processing system according to any one of appendices 1 to 7, further comprising:
(Appendix 9)
Destination setting means for setting the destination;
A position / angle calculation means for calculating the position and imaging angle of a plurality of landscape elements;
Current location calculation means for calculating the current location from the position and imaging angle of the plurality of landscape elements;
An instruction comment generating means for generating an instruction comment toward the destination based on the destination and the current position in association with a local feature amount of a landscape element existing on the route from the current position to the destination; ,
Display means for displaying the instruction comment in association with a landscape element in the video imaged by the imaging means;
The information processing system according to any one of supplementary notes 1 to 6, further comprising:
(Appendix 10)
A target landscape element indicating means for indicating a target landscape element;
Guidance control means for controlling the imaging position so that the target landscape element is a desired position in the video imaged by the imaging means;
The information processing system according to any one of supplementary notes 1 to 8, further comprising:
(Appendix 11)
The first local feature quantity storage means stores the m first local feature quantities generated from images of each landscape element in association with a plurality of landscape elements,
Any one of Supplementary notes 1 to 8, further comprising landscape recognition means for recognizing a landscape based on an arrangement of a plurality of landscape elements included in the image picked up by the image pickup means recognized by the landscape element recognition means. The information processing system according to one.
(Appendix 12)
A target landscape element indicating means for indicating a target landscape element;
Route image holding means for holding a landscape element in an image in the course of the course up to the target landscape element in association with a local feature,
Guidance control means for controlling the imaging position so that a desired landscape element exists at a predetermined position in the video imaged by the imaging means;
The information processing system according to any one of supplementary notes 1 to 8, further comprising:
(Appendix 13)
The first local feature value and the second local feature value are a plurality of dimensions formed by dividing a local region including a feature point extracted from an image into a plurality of sub-regions, and comprising histograms of gradient directions in the plurality of sub-regions. The information processing system according to any one of supplementary notes 1 to 12, wherein the information processing system is generated by generating a feature vector.
(Appendix 14)
The first local feature amount and the second local feature amount are generated by deleting a dimension having a larger correlation between adjacent sub-regions from the generated plurality of dimension feature vectors. The information processing system according to attachment 13.
(Appendix 15)
The plurality of dimensions of the feature vector is a predetermined dimension so that it can be selected in order from the dimension that contributes to the feature of the feature point and from the first dimension in accordance with the improvement in accuracy required for the local feature amount. The information processing system according to appendix 13 or 14, wherein the local area is arranged so as to make a round for each number.
(Appendix 16)
The second local feature quantity generating means generates the second local feature quantity having a smaller number of dimensions for a landscape element having the lower correlation with other landscape elements, corresponding to the correlation of the landscape elements. The information processing system according to appendix 15, characterized by:
(Appendix 17)
The first local feature quantity storage means stores the first local feature quantity having a smaller number of dimensions for a landscape element having a lower correlation with other landscape elements, corresponding to the correlation of the landscape elements. The information processing system according to appendix 15 or 16, characterized by:
(Appendix 18)
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. An information processing method using an information processing system including first local feature storage means for storing a quantity in association with each other,
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
An information processing method comprising:
(Appendix 19)
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. Second local feature quantity generating means for generating the second local feature quantity of
First transmission means for transmitting the m second local feature amounts to an information processing apparatus that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
First receiving means for receiving information indicating a landscape element included in the captured image from the information processing apparatus;
A communication terminal comprising:
(Appendix 20)
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
A first receiving step of receiving information indicating a landscape element included in the captured image from the information processing apparatus;
A control method for a communication terminal, comprising:
(Appendix 21)
N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
A first receiving step of receiving information indicating a landscape element included in the captured image from the information processing apparatus;
A program for controlling a communication terminal, which causes a computer to execute.
(Appendix 22)
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. First local feature quantity storage means for storing the quantity in association with each other;
N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. Second receiving means for receiving the second local feature amount from the communication terminal;
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing means for recognizing that the landscape element exists in
Second transmission means for transmitting information indicating the recognized landscape element to the communication terminal;
An information processing apparatus comprising:
(Appendix 23)
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. A method for controlling an information processing apparatus including first local feature storage means for storing a quantity in association with each other,
N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. A second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal;
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
A method for controlling an information processing apparatus, comprising:
(Appendix 24)
M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. A control program for an information processing device including first local feature storage means for storing the amount in association with each other,
N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. A second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal;
A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
A control program for causing a computer to execute.

Claims (24)

  1.  景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段と、
     撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成手段と、
     前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する景観要素認識手段と、
     を備えることを特徴とする情報処理システム。
    M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. First local feature quantity storage means for storing the quantity in association with each other;
    N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. Second local feature quantity generating means for generating the second local feature quantity of
    A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video A landscape element recognition means for recognizing that the landscape element exists in
    An information processing system comprising:
  2.  前記景観要素は、自然景観を構成する景観要素と、人工景観を構成する建造物とを含むことを特徴とする請求項1に記載の情報処理システム。 The information processing system according to claim 1, wherein the landscape element includes a landscape element constituting a natural landscape and a building constituting an artificial landscape.
  3.  前記景観要素認識手段の認識結果を報知する報知手段をさらに備えることを特徴とする請求項1または2に記載の情報処理システム。 The information processing system according to claim 1 or 2, further comprising notification means for notifying a recognition result of the landscape element recognition means.
  4.  前記報知手段は、さらに、前記認識結果に関連する情報を報知することを特徴とする請求項3に記載の情報処理システム。 4. The information processing system according to claim 3, wherein the notifying unit further notifies information related to the recognition result.
  5.  前記報知手段は、さらに、前記認識結果に関連する情報を取得するためのリンク情報を報知することを特徴とする請求項3または4に記載の情報処理システム。 The information processing system according to claim 3 or 4, wherein the notification means further notifies link information for acquiring information related to the recognition result.
  6.  前記報知手段は、前記認識結果に関連する情報をリンク情報に従って取得する関連情報取得手段を有し、
     リンク情報に従って取得した前記関連情報を報知することを特徴とする請求項3に記載の情報処理システム。
    The notification means includes related information acquisition means for acquiring information related to the recognition result according to link information,
    The information processing system according to claim 3, wherein the related information acquired according to link information is notified.
  7.  複数の景観要素の位置および撮像角度を算出する位置/角度算出手段と、
     前記複数の景観要素の位置および撮像角度から現在地を算出する現在地算出手段と、
     をさらに備えることを特徴とする請求項1乃至6のいずれか1項に記載の情報処理システム。
    A position / angle calculation means for calculating the position and imaging angle of a plurality of landscape elements;
    Current location calculation means for calculating the current location from the position and imaging angle of the plurality of landscape elements;
    The information processing system according to claim 1, further comprising:
  8.  連続画像内の景観要素の撮像角度を算出する角度算出手段と、
     前記連続画像内の景観要素の撮像角度から撮像位置の移動方向および移動速度を算出する移動方向/速度算出手段と、
     をさらに備えることを特徴とする請求項1乃至7のいずれか1項に記載の情報処理システム。
    An angle calculating means for calculating an imaging angle of a landscape element in the continuous image;
    A moving direction / speed calculating means for calculating a moving direction and a moving speed of an imaging position from an imaging angle of a landscape element in the continuous image;
    The information processing system according to claim 1, further comprising:
  9.  目的地を設定する目的地設定手段と、
     複数の景観要素の位置および撮像角度を算出する位置/角度算出手段と、
     前記複数の景観要素の位置および撮像角度から現在地を算出する現在地算出手段と、
     前記目的地と前記現在地とに基づいて、前記目的地に向かう指示コメントを、前記現在地から前記目的地への経路上に存在する景観要素の局所特徴量と対応付けて生成する指示コメント生成手段と、
     前記撮像手段が撮像した映像中の景観要素に対応付けて、前記指示コメントを表示する表示手段と、
     をさらに備えることを特徴とする請求項1乃至6のいずれか1項に記載の情報処理システム。
    Destination setting means for setting the destination;
    A position / angle calculation means for calculating the position and imaging angle of a plurality of landscape elements;
    Current location calculation means for calculating the current location from the position and imaging angle of the plurality of landscape elements;
    An instruction comment generating means for generating an instruction comment toward the destination based on the destination and the current position in association with a local feature amount of a landscape element existing on the route from the current position to the destination; ,
    Display means for displaying the instruction comment in association with a landscape element in the video imaged by the imaging means;
    The information processing system according to claim 1, further comprising:
  10.  目標とする景観要素を指示する目標景観要素指示手段と、
     前記目標とする景観要素が、前記撮像手段が撮像した映像中の所望位置になるように撮像位置を制御する誘導制御手段と、
     をさらに備えることを特徴とする請求項1乃至8のいずれか1項に記載の情報処理システム。
    A target landscape element indicating means for indicating a target landscape element;
    Guidance control means for controlling the imaging position so that the target landscape element is a desired position in the video imaged by the imaging means;
    The information processing system according to claim 1, further comprising:
  11.  前記第1局所特徴量記憶手段は、複数の景観要素にそれぞれ対応付けて各景観要素の画像から生成した前記m個の第1局所特徴量を記憶し、
     前記景観要素認識手段が認識した、前記撮像手段が撮像した前記画像に含まれる複数の景観要素の配置に基づいて景観を認識する景観認識手段を備えることを特徴とする請求項1乃至8のいずれか1項に記載の情報処理システム。
    The first local feature quantity storage means stores the m first local feature quantities generated from images of each landscape element in association with a plurality of landscape elements,
    The landscape recognition unit for recognizing a landscape based on the arrangement of a plurality of landscape elements included in the image captured by the imaging unit recognized by the landscape element recognition unit. The information processing system according to claim 1.
  12.  目標とする景観要素を指示する目標景観要素指示手段と、
     前記目標とする景観要素までのコース途中の画像内の景観要素を、局所特徴量に対応付けて保持する経路画像保持手段と、
     前記撮像手段の撮像した映像中の所定位置に所望の景観要素が存在するように撮像位置を制御する誘導制御手段と、
     をさらに備えることを特徴とする請求項1乃至8のいずれか1項に記載の情報処理システム。
    A target landscape element indicating means for indicating a target landscape element;
    Route image holding means for holding a landscape element in an image in the course of the course up to the target landscape element in association with a local feature,
    Guidance control means for controlling the imaging position so that a desired landscape element exists at a predetermined position in the video imaged by the imaging means;
    The information processing system according to claim 1, further comprising:
  13.  前記第1局所特徴量および前記第2局所特徴量は、画像から抽出した特徴点を含む局所領域を複数のサブ領域に分割し、前記複数のサブ領域内の勾配方向のヒストグラムからなる複数の次元の特徴ベクトルを生成することにより生成されることを特徴とする請求項1乃至12のいずれか1項に記載の情報処理システム。 The first local feature amount and the second local feature amount are a plurality of dimensions formed by dividing a local region including a feature point extracted from an image into a plurality of sub-regions, and comprising histograms of gradient directions in the plurality of sub-regions. The information processing system according to claim 1, wherein the information processing system is generated by generating a feature vector.
  14.  前記第1局所特徴量および前記第2局所特徴量は、前記生成した複数の次元の特徴ベクトルから、隣接するサブ領域間の相関がより大きな次元を削除することにより生成されることを特徴とする請求項13に記載の情報処理システム。 The first local feature amount and the second local feature amount are generated by deleting a dimension having a larger correlation between adjacent sub-regions from the generated plurality of dimension feature vectors. The information processing system according to claim 13.
  15.  前記特徴ベクトルの複数の次元は、前記特徴点の特徴に寄与する次元から順に、かつ、前記局所特徴量に対して求められる精度の向上に応じて第1次元から順に選択できるよう、所定の次元数ごとに前記局所領域をひと回りするよう配列することを特徴とする請求項13または14に記載の情報処理システム。 The plurality of dimensions of the feature vector is a predetermined dimension so that it can be selected in order from the dimension that contributes to the feature of the feature point and from the first dimension in accordance with the improvement in accuracy required for the local feature amount. The information processing system according to claim 13 or 14, wherein the local area is arranged so as to go around the local area every number.
  16.  前記第2局所特徴量生成手段は、前記景観要素の相関に対応して、他の景観要素とより低い前記相関を有する景観要素については次元数のより少ない前記第2局所特徴量を生成することを特徴とする請求項15に記載の情報処理システム。 The second local feature quantity generating means generates the second local feature quantity having a smaller number of dimensions for a landscape element having a lower correlation with other landscape elements, corresponding to the correlation of the landscape elements. The information processing system according to claim 15.
  17.  前記第1局所特徴量記憶手段は、前記景観要素の相関に対応して、他の景観要素とより低い前記相関を有する景観要素については次元数のより少ない前記第1局所特徴量を記憶することを特徴とする請求項15または16に記載の情報処理システム。 The first local feature quantity storage means stores the first local feature quantity having a smaller number of dimensions for a landscape element having a lower correlation with other landscape elements, corresponding to the correlation of the landscape elements. The information processing system according to claim 15 or 16, characterized in that:
  18.  景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理システムを用いた情報処理方法であって、
     撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
     前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
     を含むことを特徴とする情報処理方法。
    M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. An information processing method using an information processing system including first local feature storage means for storing a quantity in association with each other,
    N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
    A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
    An information processing method comprising:
  19.  撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成手段と、
     前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信手段と、
     前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信手段と、
     を備えたことを特徴とする通信端末。
    N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. Second local feature quantity generating means for generating the second local feature quantity of
    First transmission means for transmitting the m second local feature amounts to an information processing apparatus that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
    First receiving means for receiving information indicating a landscape element included in the captured image from the information processing apparatus;
    A communication terminal comprising:
  20.  撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
     前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信ステップと、
     前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信ステップと、
     を含むことを特徴とする通信端末の制御方法。
    N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
    A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
    A first receiving step of receiving information indicating a landscape element included in the captured image from the information processing apparatus;
    A control method for a communication terminal, comprising:
  21.  撮像手段が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を生成する第2局所特徴量生成ステップと、
     前記m個の第2局所特徴量を、局所特徴量の照合に基づいて撮像した前記画像に含まれる景観要素を認識する情報処理装置に送信する第1送信ステップと、
     前記情報処理装置から、撮像した前記画像に含まれる景観要素を示す情報を受信する第1受信ステップと、
     をコンピュータに実行させることを特徴とする通信端末の制御プログラム。
    N feature points are extracted from the image captured by the imaging means, and n local feature regions each including the n feature points are each composed of feature vectors of 1 to j dimensions. A second local feature generation step of generating the second local feature of
    A first transmission step of transmitting the m second local feature amounts to an information processing device that recognizes a landscape element included in the image captured based on the comparison of local feature amounts;
    A first receiving step of receiving information indicating a landscape element included in the captured image from the information processing apparatus;
    A program for controlling a communication terminal, which causes a computer to execute.
  22.  景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段と、
     通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信手段と、
     前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識手段と、
     認識した前記景観要素を示す情報を前記通信端末に送信する第2送信手段と、
     を備えることを特徴とする情報処理装置。
    M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. First local feature quantity storage means for storing the quantity in association with each other;
    N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. Second receiving means for receiving the second local feature amount from the communication terminal;
    A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing means for recognizing that the landscape element exists in
    Second transmission means for transmitting information indicating the recognized landscape element to the communication terminal;
    An information processing apparatus comprising:
  23.  景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理装置の制御方法であって、
     通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信ステップと、
     前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
     認識した前記景観要素を示す情報を前記通信端末に送信する第2送信ステップと、
     を含むことを特徴とする情報処理装置の制御方法。
    M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. A method for controlling an information processing apparatus including first local feature storage means for storing a quantity in association with each other,
    N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. A second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal;
    A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
    A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
    A method for controlling an information processing apparatus, comprising:
  24.  景観要素と、前記景観要素の画像のm個の特徴点のそれぞれを含むm個の局所領域のそれぞれについて生成された、それぞれ1次元からi次元までの特徴ベクトルからなるm個の第1局所特徴量とを、対応付けて記憶する第1局所特徴量記憶手段を備えた情報処理装置の制御プログラムであって、
     通信端末が撮像した映像中の画像からn個の特徴点を抽出し、前記n個の特徴点のそれぞれを含むn個の局所領域について、それぞれ1次元からj次元までの特徴ベクトルからなるn個の第2局所特徴量を、前記通信端末から受信する第2受信ステップと、
     前記第1局所特徴量の特徴ベクトルの次元数iおよび前記第2局所特徴量の特徴ベクトルの次元数jのうち、より少ない次元数を選択し、選択された前記次元数までの特徴ベクトルからなる前記n個の第2局所特徴量に、選択された前記次元数までの特徴ベクトルからなる前記m個の第1局所特徴量の所定割合以上が対応すると判定した場合に、前記映像中の前記画像に前記景観要素が存在すると認識する認識ステップと、
     認識した前記景観要素を示す情報を前記通信端末に送信する第2送信ステップと、
     をコンピュータに実行させることを特徴とする制御プログラム。
    M first local features each consisting of a 1-dimensional to i-dimensional feature vector generated for each of the landscape elements and m local regions including each of the m feature points of the landscape element image. A control program for an information processing device including first local feature storage means for storing the amount in association with each other,
    N feature points are extracted from an image in the video captured by the communication terminal, and n feature regions of 1 to j dimensions are respectively obtained for n local regions including the n feature points. A second receiving step of receiving the second local feature amount of the communication terminal from the communication terminal;
    A smaller dimension number is selected from among the dimension number i of the feature vector of the first local feature quantity and the dimension number j of the feature vector of the second local feature quantity, and the feature vector includes up to the selected dimension number. When it is determined that the n second local feature amounts correspond to a predetermined ratio or more of the m first local feature amounts including feature vectors up to the selected number of dimensions, the image in the video Recognizing that the landscape element exists in
    A second transmission step of transmitting information indicating the recognized landscape element to the communication terminal;
    A control program for causing a computer to execute.
PCT/JP2013/051955 2012-01-30 2013-01-30 Information processing system, information processing method, information processing device, and control method and control program therefor, and communication terminal, and control method and control program therefor WO2013115204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556426A JP6131859B2 (en) 2012-01-30 2013-01-30 Information processing system, information processing method, information processing apparatus and control method and control program thereof, communication terminal and control method and control program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-017386 2012-01-30
JP2012017386 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115204A1 true WO2013115204A1 (en) 2013-08-08

Family

ID=48905238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051955 WO2013115204A1 (en) 2012-01-30 2013-01-30 Information processing system, information processing method, information processing device, and control method and control program therefor, and communication terminal, and control method and control program therefor

Country Status (2)

Country Link
JP (1) JP6131859B2 (en)
WO (1) WO2013115204A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091297A (en) * 2015-11-12 2017-05-25 Kddi株式会社 Screen transition specification device, screen transition specification system, and screen transition specification method
JP2022531812A (en) * 2018-11-07 2022-07-12 メタ プラットフォームズ, インク. Augmented reality target

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108043A (en) * 2005-10-14 2007-04-26 Xanavi Informatics Corp Location positioning device, location positioning method
JP2011008507A (en) * 2009-06-25 2011-01-13 Kddi Corp Image retrieval method and system
WO2011025236A2 (en) * 2009-08-24 2011-03-03 Samsung Electronics Co., Ltd. Mobile device and server exchanging information with mobile apparatus
WO2011043275A1 (en) * 2009-10-06 2011-04-14 株式会社 トプコン Three-dimensional data creating method and three-dimensional data creating device
JP2011094992A (en) * 2009-10-27 2011-05-12 Jvc Kenwood Holdings Inc Navigation device, navigation method and navigation program
JP2011099854A (en) * 2009-11-03 2011-05-19 Samsung Electronics Co Ltd User terminal device, position providing method therefor, and route guiding method therefor
JP2011198130A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Image processing apparatus, and image processing program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105640A (en) * 2004-10-01 2006-04-20 Hitachi Ltd Navigation system
JP4988408B2 (en) * 2007-04-09 2012-08-01 株式会社デンソー Image recognition device
JP4896115B2 (en) * 2008-11-21 2012-03-14 三菱電機株式会社 Automatic tracking imaging device from a moving body in the air
JP5685390B2 (en) * 2010-05-14 2015-03-18 株式会社Nttドコモ Object recognition device, object recognition system, and object recognition method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108043A (en) * 2005-10-14 2007-04-26 Xanavi Informatics Corp Location positioning device, location positioning method
JP2011008507A (en) * 2009-06-25 2011-01-13 Kddi Corp Image retrieval method and system
WO2011025236A2 (en) * 2009-08-24 2011-03-03 Samsung Electronics Co., Ltd. Mobile device and server exchanging information with mobile apparatus
WO2011043275A1 (en) * 2009-10-06 2011-04-14 株式会社 トプコン Three-dimensional data creating method and three-dimensional data creating device
JP2011094992A (en) * 2009-10-27 2011-05-12 Jvc Kenwood Holdings Inc Navigation device, navigation method and navigation program
JP2011099854A (en) * 2009-11-03 2011-05-19 Samsung Electronics Co Ltd User terminal device, position providing method therefor, and route guiding method therefor
JP2011198130A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Image processing apparatus, and image processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRONOBU FUJIYOSHI: "Gradient-Based Feature Extraction : SIFT and HOG", IEICE TECHNICAL REPORT, vol. 107, no. 206, 27 August 2007 (2007-08-27), pages 211 - 224 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091297A (en) * 2015-11-12 2017-05-25 Kddi株式会社 Screen transition specification device, screen transition specification system, and screen transition specification method
JP2022531812A (en) * 2018-11-07 2022-07-12 メタ プラットフォームズ, インク. Augmented reality target

Also Published As

Publication number Publication date
JPWO2013115204A1 (en) 2015-05-11
JP6131859B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
US11580753B2 (en) License plate detection and recognition system
KR101293776B1 (en) Apparatus and Method for providing augmented reality using object list
CN104936283A (en) Indoor positioning method, server and system
JP6168303B2 (en) Information processing system, information processing method, information processing apparatus and control method and control program thereof, communication terminal and control method and control program thereof
KR20140130499A (en) Visual ocr for positioning
JP6168355B2 (en) Information processing system, information processing method, communication terminal, control method thereof, and control program
CA2783014A1 (en) Matching an approximately located query image against a reference image set
CN111323024B (en) Positioning method and device, equipment and storage medium
US11915478B2 (en) Bayesian methodology for geospatial object/characteristic detection
JP6153086B2 (en) Video processing system, video processing method, video processing apparatus for portable terminal or server, and control method and control program therefor
WO2013115092A1 (en) Video processing system, video processing method, video processing device, and control method and control program therefor
Yu et al. Pairwise three-dimensional shape context for partial object matching and retrieval on mobile laser scanning data
Domozi et al. Real time object detection for aerial search and rescue missions for missing persons
WO2013115203A1 (en) Information processing system, information processing method, information processing device, and control method and control program therefor, and communication terminal, and control method and control program therefor
JP6131859B2 (en) Information processing system, information processing method, information processing apparatus and control method and control program thereof, communication terminal and control method and control program thereof
CN115790610B (en) Unmanned aerial vehicle accurate positioning system and method
WO2013089004A1 (en) Video processing system, video processing method, video processing device for portable terminal or for server and method for controlling and program for controlling same
CN116192822A (en) Screen display communication control method and device, 5G firefighting intercom mobile phone and medium
JP2013037606A (en) Information terminal, information providing system, and information providing method
CN116817892B (en) Cloud integrated unmanned aerial vehicle route positioning method and system based on visual semantic map
US20190073791A1 (en) Image display system, terminal, method, and program
WO2021075072A1 (en) Object detection device, flight vehicle, object detection method, computer program, and method for generating learning model
WO2013089041A1 (en) Video processing system, video processing method, video processing device for portable terminal or for server, and method for controlling and program for controlling same
JP2010271845A (en) Image reading support device
CN114140725A (en) Aerial image analysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743530

Country of ref document: EP

Kind code of ref document: A1