WO2013113883A1 - Verfahren zum herstellen dreidimensionaler strukturen und solche strukturen - Google Patents

Verfahren zum herstellen dreidimensionaler strukturen und solche strukturen Download PDF

Info

Publication number
WO2013113883A1
WO2013113883A1 PCT/EP2013/052046 EP2013052046W WO2013113883A1 WO 2013113883 A1 WO2013113883 A1 WO 2013113883A1 EP 2013052046 W EP2013052046 W EP 2013052046W WO 2013113883 A1 WO2013113883 A1 WO 2013113883A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
liquid
dimensional structure
printing
living cells
Prior art date
Application number
PCT/EP2013/052046
Other languages
English (en)
French (fr)
Inventor
Wilhelm Jahnen-Dechent
Horst Fischer
Andreas BLAESER
Daniela Filipa DUARTE CAMPOS
Sabine Neuss-Stein
Michael Weber
Original Assignee
Rwth Aachen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rwth Aachen filed Critical Rwth Aachen
Publication of WO2013113883A1 publication Critical patent/WO2013113883A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2521/00Culture process characterised by the use of hydrostatic pressure, flow or shear forces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/76Agarose, agar-agar

Definitions

  • the present invention relates to a process for producing a three-dimensional structure from a structural material comprising the step of printing or extruding the structural material in a liquid to obtain a three-dimensional structure, said liquid being a high-density liquid. Furthermore, the present invention relates to such produced three-dimensional structures and corresponding printing devices for forming this three-dimensional structure, in particular for use according to the invention in the inventive method.
  • the inventive method is particularly suitable for the production of three-dimensional structures containing at least partially living cells.
  • tissue engineering In recent years, the biotechnological production of biomaterials has increased and, in particular in the field of tissue engineering, various fields of application have been discussed.
  • One of the goals of tissue engineering is to remedy the lack of donor organs by implanting autologous organs or tissues.
  • tissue substitutes There are various possibilities for generating corresponding tissue substitutes.
  • cells are taken from the patient and propagated in vitro. After receiving a sufficient number of cells, the cells are then cultured using various methods, for example in a bioreactor. Depending on the application, the cells are placed there in or on a shaping scaffold, the so-called scaffold.
  • This Scaffold or scaffold can be of biological origin or synthetic. Such Sca fo / c / materials can be present both as degradable materials and permanent materials.
  • tissue engineering derived tissue substitutes include skin as well as other soft or hard tissues. These include, but are not limited to, bone or cartilage tissue, as well as various forms of vessels including blood vessels, trachea, or esophagus.
  • Other tissue engineered structures include heart valves or venous valves.
  • the aim of tissue engineering is the provision of entire functional tissues or organs.
  • the tissue substitute to be produced is usually cultured in bioreactors until use. Depending on the application, the tissue substitute can be stored with appropriate means.
  • biodegradable structural materials which are present as polymeric gels, for example collagen, fibrin, alginate or agarose gels, are preferably used for this purpose.
  • polymeric gels for example collagen, fibrin, alginate or agarose gels.
  • the shaping of these three-dimensional structures, the scaffolds, which optionally contain living cells, can be carried out by various methods. Casting, extrusion or printing of the three-dimensional structures are possible here.
  • the low stability of these gels as structural material presents problems in producing corresponding three-dimensional structures. Previous results, however, only allowed the production of very small three-dimensional polymer constructs.
  • Fluorohydrocarbons are non-aqueous (hydrophobic), biocompatible, highly oxygenated fluids with high buoyant density. Perfluorohydrocarbons or perhalocarbons are often inert fluids. Fluorocarbons have been studied in experiments with liquid respiration since the 1950s. It has been shown that suspension cultures in perfluorocarbons can survive very well (eg, Maillard E. et al, Biomaterials, 201 1, 32, 9282-9). Brief description of the invention
  • the present invention provides a method for producing a three-dimensional structure from a structural material optionally containing living cells comprising the step of printing or extruding the structural material optionally in admixture with living cells immersed in a liquid to a three-dimensional structure optionally containing living cell obtained, characterized in that this liquid is a liquid of high density, ready.
  • the present invention is directed to a method for producing a three-dimensional structure containing at least partially living cells and suitable as a tissue substitute, the preparation being effected by printing or extruding the structure immersed in a liquid, the liquid preferably being Fluorocarbon, in particular a perfluorocarbon is.
  • This liquid in particular the fluorohydrocarbon which can be used according to the invention, is a liquid of high density.
  • the fluorocarbons such as the perfluorocarbons
  • the fluorocarbons are, due to their inert properties, not further miscible and reactive with the printed structural material present in liquid form, if appropriate also containing solvent. Due to the high density of the liquid, which is higher than the density of the structural material when printed in liquid form, stabilization and support of the printed or extruded structural material is achieved.
  • the application is directed to three-dimensional structures, in particular those containing living cells, obtainable by means of the method according to the invention.
  • These three-dimensional structures are in particular artificial soft or hard tissue.
  • a further aspect is a printing device for, in particular, site-specific design of these three-dimensional structures.
  • This device can selectively or selectively extrude the structural material with the aid of structural geometric data on the three-dimensional structure.
  • the present invention is directed to the use of these three-dimensional structures optionally containing living cells as artificial tissue, in particular as soft tissue or hard tissue.
  • the present invention provides the use of a high density liquid, in particular fluorocarbons, such as perfluorocarbons, as a medium for printing or extruding a three-dimensional structure, optionally containing living cells.
  • a method for producing a three-dimensional structure from a structural material optionally containing living cells comprising the step of printing or extruding the structure optionally immersed in a liquid in a mixture with living cells in order to obtain a three-dimensional structure optionally containing a living cell, characterized in that this liquid is a liquid of high density.
  • this high-density liquid acts on the printed or extruded structural material in such a supportive manner that the three-dimensional structures can be easily produced by extrusion and printing to obtain this structure.
  • this liquid allows a location-selective structure of the structure.
  • the liquid be one that is immiscible with the structural material and / or non-reactive.
  • the liquid is thus preferably a high density inert liquid which supports and stabilizes the printed or extruded structural material.
  • the high density liquid is one that is immiscible with the structural material and non-reactive.
  • structural material herein is meant a compressible or extrudable material which can form a three-dimensional structure, in particular, this structural material is one which forms a stable three-dimensional structure, in particular, this stable three-dimensional structure can be obtained by cooling that for extruding or Printing heated structural material or other curing of this structural material, for example by crosslinking etc, as by induction of curing by energy supply.
  • thermosensitive synthetic polymers As structural materials both thermosensitive synthetic polymers and hydrogels can be used.
  • the hydrogels As structural materials both thermosensitive synthetic polymers and hydrogels can be used.
  • Hydrogels are those of a material selected from agarose, collagen, fibrin, alginate, chitosan, hyaluronan or synthetic hydrogels including polyethylene glycol, poly (N-isopropylacrylamide) and copolymers. re, polylactides, polyurethanes or polyvinyl alcohols or mixtures of both natural and synthetic polymers, in particular hydrogels, which are highly hydrated and thus are particularly suitable in interaction with living cells.
  • Silica-based gels in particular those which are at least partially prepared with a Si-N precursor, may also be used as polymers.
  • the person skilled in suitable systems are known.
  • Various structural materials can be used to produce the three-dimensional structure. Either such that different structural materials are used in different layers or that different structural materials are used in a printed or extruded layer to form regions of different properties. As a result, it is possible to produce structures which have different cell types in different subareas or which only have cells in sections, while other sections are cell-free.
  • high density liquid herein is meant a fluid, especially a liquid, which has a density greater than or equal to the density of the structural material which is printed or extruded into the high density liquid at the time of printing or extrusion 0.2 g / cm 3 , preferably greater than 0.3 g / cm 3 , compared to the density of the structural material
  • the high-density liquid is one whose density is higher than the density of the structural material printed in liquid form.
  • the density is a measure of the mass of the substance per unit volume and is completely independent of the viscosity of a fluid.
  • the viscosity is a measure of the viscosity of a fluid. This viscosity is independent of the density of the substance Density can have a low viscosity and is nevertheless suitable according to the invention. Hydrocarbons such as perfluorocarbons on a high density at low viscosity.
  • the method according to the invention is particularly suitable for producing three-dimensional structures, wherein these structures may at least partially contain living cells. These living cells can then be used in the context of tissue engineering (also referred to in German as tissue engineering or tissue engineering). With the aid of the method according to the invention, the disadvantages of known methods can be overcome, namely the production of three-dimensional structures of good mechanical stability and in dimensions that have not yet been achieved due to the low stability of the gels, such as hydrogels used in the tissue engineering field could become.
  • the high-density liquid is preferably a liquid having a density of at least 1.5 g / cm 3 , particularly preferably a liquid having a density of at least 1.7 g / cm 3 .
  • These liquids are preferably hydrophobic liquids.
  • Particularly suitable high-density liquids according to the invention are fluorohydrocarbons, in particular perfluorocarbons.
  • the liquids which can be used according to the invention and into which the three-dimensional structures are extruded or printed, in particular in a location-selective manner are those which are preferably nonaqueous, biocompatible and readily oxygenatable.
  • the high density liquids are preferably such that they face the structural material inert, immiscible and / or non-reactive.
  • the perfluorocarbons allow one to produce three-dimensional structures that may at least partially contain living cells.
  • Hydrocarbons and especially perfluorocarbons are known as liquids in which cells can survive. They are z.
  • liquids which exhibit the ability to release respiratory gases such as oxygen, nitrogen and carbon dioxide.
  • it is in the Perfluorkohlenwasserstof- fen as high density liquid to perfluorocarbons selected from the group consisting of perfluorotributylamine (C 12 F 27 N), perfluorodecalin (CI OF-I S), Perfluorhexamethylprisman (Ci 2 Fi 8).
  • Perfluorohydrocarbons such as perfluorodecalin or perfluorohexamethylprisman are chemically inert so that reaction with the structural material or with cell components does not occur.
  • Perfluorohydrocarbons or perfluorocarbon emulsions which in the present case fall under the term perfluorocarbons, are known as oxygen carriers. They are z. B. as a blood substitute (EP 0307087 B1) or described in the context of liquid ventilation. Tan, Q., et al., Tissue Engineering Part A, 2009, 15 (9): 2471-2480 discloses the use of perfluorohydrocarbon emulsions to oxygenate cultured cells and tissues.
  • such high-density liquids such as fluorohydrocarbons and in particular perfluorocarbons
  • the means for extruding or printing are immersed in the high-density liquid, and then the structural material optionally containing living cells is extruded three-dimensionally or printed in layers.
  • Corresponding methods of extruding and printing structures are generally commonly known. For example, methods known from “rapid prototyping” can be used to extrude or print the structural material in a spatially selective manner, typically on the basis of structural geometric data provided. "This data gives the detailed geometry of this fabric to be fabricated, such as tissue. again.
  • the method is a method for producing a three-dimensional structure containing living cells.
  • This structure containing living cells is then cultured in further steps by means of known cell culture methods in order finally to provide artificial three-dimensional structures as a tissue substitute.
  • Structural material which is used according to the invention is at least partially a mixture of the structural material and living cells in order to produce three-dimensional structures which at least partially contain living cells.
  • the living cells are preferably eukaryotic cells, in particular cells of human origin. It is particularly preferred that the cells are primary cells, e.g. Cells of xenogeneic, allogenic or autologous origin. These cells are provided as isolates accordingly.
  • the cells may be correspondingly tissue-specific cells.
  • tissue-specific or organ-specific cells is meant, first of all, all cells that are in the organ or tissue (including cells not restricted to the particular tissue or organ).
  • These cells include various types of cells including muscle cells, epithelial cells, nerve cells, connective tissue cells, but also stem cells.
  • cells of the type muscle cells can be smooth muscle cells, striated muscle cells or cardiac muscle cells, epithelial cells close a intestinal cell.
  • epithelial cells skin epithelial cells, endothelial cells, pneumocytes, nerve cells include neurons including motor and sensory neurons as well as interneurons, glial cells, etc .; as well as connective tissue cells with fibroblasts, chondrocytes, osteoblasts, adipocytes, myofibroblasts, pericytes.
  • tissue-specific and organ-specific cells can also be introduced.
  • the structural material or the mixture with the living cells and optionally further additives may further contain excipients to assist the cultivation process.
  • excipients are in particular cell adhesion molecules, differentiation factors, immunologically active cytokines / chemokines and / or antibiotics. These may optionally be conjugated with the structural material.
  • Other additives include ions, nutrients including amino acids, peptides, proteins, lipids, carbohydrates, nucleic acids and other necessary nutrients that promote cell proliferation and differentiation.
  • the structural material can furthermore contain additives in liquid or solid form.
  • additives for example, for the construction of bone or cartilage substitutes corresponding calcium phosphate may be present.
  • corresponding calcium phosphate may be present.
  • components eg. In the form of encapsulated compounds allowing for a time-delayed release of compounds present in the capsule.
  • the structural materials are polymers that allow good cohesion between the individual printed or extruded layers.
  • the structural material may be a perma- material or a biodegradable material.
  • a biodegradable material may be advantageous. This biodegradable material temporarily takes over the function of the extracellular matrix, which is subsequently secreted by the cells themselves. Areas of application here are in particular vessels, etc.
  • the method according to the invention is particularly suitable for the formation of tissue substitutes, in particular of artificial soft tissue or hard tissue.
  • Soft tissue or hard tissue include
  • the method according to the invention for producing the three-dimensional structure may comprise further steps.
  • the high-density liquid may be removed to further cultivate the three-dimensional structure containing living cells, if any. Cultivation may be carried out according to conventional techniques known from tissue engineering to obtain the target tissue.
  • the method according to the invention is a printing method.
  • the structural material optionally containing living cells is sequentially printed site-selectively.
  • the printing takes place in several layers one above the other, in order to allow the formation of the three-dimensional structure, possibly with living cells, by this multiple printing.
  • the layers may be formed of the same or different structural materials.
  • This printing is especially complex three-dimensional Structures can be produced.
  • Such three-dimensional structures include heart valves as well as other types of hard and soft tissue as well as vessels, e.g. B. vessels with outgoing vessel parts (vascular branches), etc.
  • Especially in complex three-dimensional structures are free spaces, such as lumens and cavities, which can be prepared by the method according to the invention.
  • One known method comprises an inkjet based system as described in the literature.
  • Other processes are pneumatic or extruder based.
  • the present invention is directed to three-dimensional structures containing optionally living cells obtainable by the method according to the invention.
  • These three-dimensional structures are, in particular, tissue substitutes, such as artificial soft tissue or hard tissue, including bone tissue, cartilage tissue, blood vessels, trachea, esophagus, heart valve or organs.
  • tissue substitutes such as artificial soft tissue or hard tissue, including bone tissue, cartilage tissue, blood vessels, trachea, esophagus, heart valve or organs.
  • These three-dimensional structures, possibly containing living cells can be used as artificial tissue and patients implanted. They can be implanted as transient or permanent tissue.
  • the three-dimensional structures which can be produced with the aid of the method according to the invention can in particular represent complex structures which were not attainable with the hitherto known methods due to the instability of the structures produced, or which can only be achieved by use. additional auxiliary structures.
  • the structural geometric data that is to say the detailed geometry of the three-dimensional structure to be reproduced, in particular of the tissue or of the organ, allows the control of the extruding or printing device, in particular of the printing head or of the extrusion nozzle, in order to print the spatial form of the desired three-dimensional structure in a location-selective manner.
  • These structural geometric data are using known methods based on original structures, eg. B. vessels, organs, etc., and then implemented accordingly using the device according to the invention.
  • the present application is directed to a device, such as a printing device or extrusion device, for forming a three-dimensional structure optionally containing living cells.
  • the device is designed such that it is suitable for carrying out the method according to the invention.
  • This device comprises means for printing or extruding, which means are designed such that it allows location-selective printing or extruding of the structural material optionally containing living cells and allows printing or extrusion in a high-density liquid.
  • the device according to the invention has a device for receiving the fluid. high density.
  • the means for printing or extruding is characterized in that the means for extruding or printing are formed so as to enable a submerged in a liquid extruding or printing.
  • the device for printing or extrusion is designed such that it allows with the aid of an optionally motorized X, Y, Z control positioning of these means for printing or extrusion in a predetermined position in all three dimensions. Furthermore, this means for printing or extrusion is preferably provided with a unit which allows heating of the structural material to be printed or extruded. Corresponding control elements, including valves, permit a precise quantity delivery of the structural material to be extruded or printed.
  • the device for receiving the liquid of high density can also be designed to be movable, i. H. also be designed to be movable in the X, Y and Z directions. If the receiving device is designed to be movable for receiving the device for the high-density liquid, the means for printing and extruding may also be designed to be stationary.
  • the device for receiving the high-density liquid is suitable for incubating the three-dimensional structure optionally containing living cells at temperatures of at least 30 ° C.
  • this device is one that represents a bioreactor itself or that can be transferred to a bioreactor, or that the structure printed or extruded in the device can be transferred to a nutrient medium.
  • cultivate the three-dimensional structure prepared by extrusion or printing with contained living cells to provide a corresponding three-dimensional structure suitable as a tissue substitute.
  • the printing device may be provided under appropriate Culture conditions are maintained.
  • FIG. 1 shows the printing process as a first step, the incubation at 37 ° C., ie. H. the cultivation of the printed three-dimensional structure containing living cells as a second step and the three-dimensional structure obtained in the third step.
  • the plate may be present in a receiving device which allows movement in the X, Y and Z directions (not shown).
  • the extrusion head or print head is designed so that the smallest amounts of structural material can be printed or extruded. As a result, a plurality of layers can be printed or extruded one above the other.
  • the means for printing or extruding is heatable 4 to heat the structural material and thus to keep it in a corresponding liquid state for printing or extrusion.
  • the control means for controlling the means for printing or extruding or for moving the receiving means for the device for receiving the high-density liquid are not shown.
  • Structure 5 extruded or printed. Possibly. It is also possible to use a plurality of extrusion or pressure agents, ie multiple heads or nozzles For example, areas with or without cells to print or extrude or to print or extrude different mixtures of structural material and cells.
  • a plurality of extrusion or pressure agents ie multiple heads or nozzles
  • areas with or without cells to print or extrude or to print or extrude different mixtures of structural material and cells.
  • the extrusion of the respective flowable structural material takes place such that the printhead or the extrusion die is immersed in the high-density liquid and a predetermined amount of the structural material is extruded at the predetermined position.
  • the liquid By printing in the liquid, also referred to as “submerged printing” or “submerged extrusion”, it is possible to provide three-dimensional structures of a desired size. In particular, it is possible to provide these structures such that no deformation of the three-dimensional structure takes place during printing or extrusion or later cultivation. As a result, the size of the produced three-dimensional structure is no longer limited as it is in the prior art. Furthermore, complex structures including cavities and lumens, or complex structures such as vascular branches, etc. are also possible.
  • the high-density liquid-containing receptacle and the fabricated three-dimensional structure are taken out of the printing device and placed in a culture device placed. Previously, the liquid of high density is at least partially removed and replaced by appropriate culture medium 6.
  • the three-dimensional structure is then cultured according to known methods, for. B. a tissue substitute 7, such as artificial soft tissue or To provide artificial hard tissue.
  • a tissue substitute 7 such as artificial soft tissue or To provide artificial hard tissue.
  • an agarose gel after autoclaving was brought to about 37 ° C. and mixed with cells of a cell line, here MG-63 human osteosarcoma cell line, or isolated and cultured human mesenchymal stem cells to obtain a concentration of 200,000 cells / ml.
  • the agarose-hydrogel suspension used had a final concentration of 3%.
  • the printhead was immersed in perfluorotributylamine (C 12 F 27 N) and the hollow body sequentially printed layer by layer to print a more than 3 cm long hollow body. After making this over 3 cm long hollow body, the perfluorocarbon was removed and replaced by cell medium (37 ° C). After culturing for 24 hours, it was possible to demonstrate by means of live / dead staining of the cells that the majority of the printed cells were living in the three-dimensional structure and correspondingly distributed in the hollow body. When checking the three-dimensional structures after 2 or 3 weeks, the good results were confirmed. Staining for a proliferation marker (Ki-67) confirmed proliferation of the cells present in the structure 2 and 3 weeks after culturing, respectively.
  • a proliferation marker Ki-67

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer dreidimensionalen Struktur aus einem Strukturmaterial umfassend den Schritt des Druckens oder Extrudierens des Strukturmaterials in einer Flüssigkeit zum Erhalt einer dreidimensionalen Struktur, wobei diese Flüssigkeit eine Flüssigkeit hoher Dichte ist. Weiterhin betrifft die vorliegende Erfindung solche hergestellten dreidimensionalen Strukturen sowie entsprechende Druckeinrichtungen zum Ausbilden dieser dreidimensionalen Struktur, insbesondere zur erfindungsgemäßen Verwendung in dem erfindungsgemäßen Verfahren. Das erfindungsgemäße Verfahren ist insbesondere geeignet zur Herstellung dreidimensionaler Strukturen, die zumindest teilweise lebende Zellen enthalten können.

Description

VERFAHREN ZUM HERSTELLEN DREI DI MENSIONALER STRUKTU REN UND SOLCHE STRUKTUREN
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer drei- dimensionalen Struktur aus einem Strukturmaterial umfassend den Schritt des Druckens oder Extrudierens des Strukturmaterials in einer Flüssigkeit zum Erhalt einer dreidimensionalen Struktur, wobei diese Flüssigkeit eine Flüssigkeit hoher Dichte ist. Weiterhin betrifft die vorliegende Erfindung solche hergestellten dreidimensionalen Strukturen sowie entsprechende Druckeinrichtungen zum Ausbilden dieser dreidimensionalen Struktur, insbesondere zur erfindungsgemäßen Verwendung in dem erfindungsgemäßen Verfahren. Das erfindungsgemäße Verfahren ist insbesondere geeignet zur Herstellung dreidimensionaler Strukturen, die zumindest teilweise lebende Zellen enthalten.
Stand der Technik
In den letzten Jahren hat die biotechnologische Herstellung von Biomaterialien zugenommen und insbesondere auf dem Gebiet des Tissue Engineerings wurden verschiedene Anwendungsbereiche diskutiert. Eines der Ziele des Tissue Engineering ist es, den Mangel an Spenderorganen durch die I mplantation autologer Organe oder Gewebe zu beheben. Zur Generierung von entsprechenden Gewebesubstituten gibt es verschiedene Möglichkeiten. So werden in einem Ansatz dem Patienten Zellen entnommen und in vitro vermehrt. Nach Erhalt einer ausreichenden Zellzahl werden die Zellen dann mit Hilfe verschiedener Verfahren z.B. in einem Bioreaktor kultiviert. Je nach Anwendung werden die Zellen dort in oder auf ein formgebendes Stützgerüst, dem sogenannten Scaffold, verbracht. Dieses Ge- rüst oder Scaffold kann dabei biologischen Ursprungs oder synthetisch sein. Solche Sca fo/c/materialien können dabei sowohl als degradierbare Materialien als auch Permanentmaterialien vorliegen. In einigen Anwendungsbereichen sind biodegradierbare Materialien gewünscht, die im Lau- fe der Zeit durch die von den Zellen gebildete Struktur ersetzt oder remodelliert werden. Solche durch Tissue Engineering gewonnenen Gewebe- substitute schließen sowohl Haut als auch andere Weich- oder Hartgewebe ein. Diese beinhalten unter anderem Knochen- oder Knorpelgewebe aber auch verschiedene Formen von Gefäßen einschließlich Blutgefäßen sowie Luftröhre oder Speiseröhre. Weitere durch Tissue Engineering gewonnene Strukturen beinhalten Herzklappen oder Venenklappen. Ziel des Tissue Engineerings ist die Bereitstellung von gesamten funktionsfähigen Geweben oder Organen. Das herzustellende Gewebesubstitut wird üblicherweise in Bioreaktoren bis zum Einsatz kultiviert. Je nach Anwendung kann das Gewebesubstitut mit entsprechend geeigneten Mitteln gelagert werden.
Wenn biodegradierbare Scaffolds eingesetzt werden, so werden hierzu bevorzugt biodegradierbare Strukturmaterialien genutzt, die als polymere Gele vorliegen, wie beispielsweise Kollagen-, Fibrin-, Alginat- oder Agarose-Gele. Bei Vermischung dieser polymeren Gele mit Zellen ist eine gleichmäßige Zellverteilung gewährleistet und die eingebrachten Zellen können sich entsprechend entwickeln und vermehren. Die Formgebung dieser dreidimensionalen Strukturen, den Scaffolds, die gegebenenfalls lebende Zellen enthalten, kann über verschiedene Verfahren erfolgen. Möglich sind hier Guss, Extrusion oder Drucken der dreidimensionalen Strukturen. Allerdings stellt die geringe Stabilität dieser Gele als Strukturmaterial Probleme bei der Herstellung entsprechender dreidimensionaler Strukturen dar. Bisherige Ergebnisse erlaubten allerdings lediglich die Herstellung von sehr kleinen dreidimensionalen Polymerkonstrukten. Es besteht daher ein Bedarf Verfahren bereitzustellen, die die Herstellung von Gewebesubstituten bereitzustellen, die die oben genannten Probleme insbesondere bzgl. der Dimension der dreidimensionalen Strukturen überwindet. Insbesondere bei Einbringen von lebenden Zellen in die dreidimensionale Struktur (Scaffold) muss dieses Verfahren gewährleisten, dass die Zellen sich anschließend in die gewünschten Gewebesubstitute entwi- ekeln können.
Fluorkohlenwasserstoffe sind nicht-wässrige (hydrophobe), biokompatible, stark oxygenierte Fluide mit hoher Schwimmdichte. Perfluorkohlenwas- serstoffe bzw. Perhalogenkohlenwasserstoffe sind häufig inerte Fluide. Bereits seit den 50er Jahren werden Fluorkohlenwasserstoffe in Experimenten mit Flüssigkeitsatmung untersucht. Es zeigte sich, dass Suspensionskulturen in Perfluorkohlenwasserstoffen sehr gut überleben können (z. B. Maillard E. et.al, Biomaterials, 201 1 , 32, 9282-9). Kurze Beschreibung der Erfindung
Die vorliegende Erfindung stellt ein Verfahren zum Herstellen einer dreidimensionalen Struktur aus einem Strukturmaterial ggf. enthaltend lebende Zellen umfassend den Schritt des Druckens oder Extrudierens des Strukturmaterials ggf. in Mischung mit lebenden Zellen eingetaucht in eine Flüssigkeit, um eine dreidimensionale Struktur ggf. enthaltend lebende Zelle zu erhalten, dadurch gekennzeichnet, dass diese Flüssigkeit eine Flüssigkeit hoher Dichte ist, bereit.
Insbesondere richtet sich die vorliegende Erfindung auf ein Verfahren zur Herstellung einer dreidimensionalen Struktur, die zumindest teilweise lebende Zellen enthält und als Gewebesubstitut geeignet ist, wobei die Herstellung durch Drucken oder Extrudieren der Struktur eingetaucht in eine Flüssigkeit erfolgt {submerged), wobei die Flüssigkeit bevorzugt ein Fluorkohlenwasserstoff, insbesondere ein Perfluorkohlenwasserstoff ist. Diese Flüssigkeit, insbesondere das erfindungsgemäß verwendbare Fluorkohlenwasserstoff, ist dabei eine Flüssigkeit hoher Dichte. Durch Verwendung der Flüssigkeit hoher Dichte ist ein ortsselektives Einbringen des Strukturmaterials durch Drucken oder Extrudieren möglich. Es zeigte sich, dass insbesondere die Fluorkohlenstoffe, wie die Perfluorkoh- lenstoffe, sich aufgrund ihrer inerten Eigenschaften nicht mit dem gedruck- ten, in flüssiger Form vorliegenden Strukturmaterial gegebenenfalls weiterhin enthaltend Lösungsmittel, mischbar und reaktiv sind. Aufgrund der hohen Dichte der Flüssigkeit, die höher ist als die Dichte des Strukturmaterials, wenn es in flüssiger Form gedruckt wird, wird eine Stabilisierung und Stützung des gedruckten oder extrudierten Strukturmaterials erreicht.
In einem weiteren Aspekt richtet sich die Anmeldung auf dreidimensionale Strukturen, insbesondere solche, die lebende Zellen enthalten, erhältlich mittels des erfindungsgemäßen Verfahrens. Diese dreidimensionalen Strukturen sind insbesondere artifizielle Weich- oder Hartgewebe.
Ein weiterer Aspekt stellt eine Druckeinrichtung zur insbesondere ortsspezifischen Ausbildung dieser dreidimensionalen Strukturen dar. Diese Einrichtung kann mit Hilfe von strukturgeometrischen Daten zur dreidimensionalen Struktur ortsselektiv das Strukturmaterial Drucken oder Extrudieren. Schließlich richtet sich die vorliegende Erfindung in einem weiteren Aspekt auf die Verwendung dieser dreidimensionalen Strukturen ggf. enthaltend lebende Zellen als artifizielles Gewebe, insbesondere als Weichgewebe oder Hartgewebe. Letztlich stellt die vorliegende Erfindung die Verwendung einer Flüssigkeit hoher Dichte, insbesondere von Fluorkohlenwas- serstoffen, wie Perfluorkohlenwasserstoffen, als Medium zum Drucken oder Extrudieren einer dreidimensionalen Struktur, die ggf. lebende Zellen enthält, bereit.
Ausführliche Beschreibung der Erfindung
In einem ersten Aspekt wird ein Verfahren zum Herstellen einer dreidimensionalen Struktur aus einem Strukturmaterial ggf. enthaltend lebende Zellen umfassend den Schritt des Druckens oder Extrudierens des Struk- turmaterials ggf. in Mischung mit lebenden Zellen eingetaucht in eine Flüssigkeit, um eine dreidimensionale Struktur ggf. enthaltend lebende Zelle zu erhalten, dadurch gekennzeichnet, dass diese Flüssigkeit eine Flüssigkeit hoher Dichte ist.
Vorliegend wurde festgestellt, dass diese Flüssigkeit hoher Dichte derart unterstützend auf das gedruckte oder extrudierte Strukturmaterial einwirkt, dass die dreidimensionalen Strukturen unter Erhalt dieser Struktur einfach durch Extrudieren und Drucken hergestellt werden können. Insbesondere erlaubt diese Flüssigkeit ein ortsselektives Aufbauen der Struktur. Es ist dabei gewünscht, dass die Flüssigkeit eine ist, die mit dem Strukturmaterial nicht-mischbar und/oder nicht-reaktiv ist. Die Flüssigkeit ist also bevorzugt eine inerte Flüssigkeit mit hoher Dichte, die das gedruckte oder extrudierte Strukturmaterial stützt und stabilisiert. Insbesondere bei Struk- turmaterialien, die Wasser als Lösungsmittel oder Bestandteil enthalten, wie Hydrogele, ist die Flüssigkeit hoher Dichte eine, die mit dem Strukturmaterial nicht-mischbar und nicht-reaktiv ist.
Unter dem Ausdruck„Strukturmaterial" wird vorliegend ein druck- oder extrudierbares Material verstanden, das eine dreidimensionale Struktur ausbilden kann. Insbesondere ist dieses Strukturmaterial eines, das eine beständige dreidimensionale Struktur ausbildet, insbesondere kann diese beständige dreidimensionale Struktur erhalten werden durch Abkühlen des zum Extrudieren oder Drucken erwärmten Strukturmaterials oder ander- weitiges Aushärten dieser Strukturmaterials, z. B. durch Vernetzen etc, wie durch Induktion der Aushärtung durch Energiezufuhr.
Als Strukturmaterialien können sowohl thermosensitive synthetische Polymere als auch Hydrogele verwendet werden. Insbesondere sind die
Hydrogele solche aus einem Material ausgewählt aus Agarose, Kollagen, Fibrin, Alginat, Chitosan, Hyaluronan oder synthetischen Hydrogelen einschließlich Polyethylenglycol, Poly-(N-Isopropylacrylamid) und Kopolyme- re, Polylaktide, Polyurethane oder Polyvinylalkohole oder Mischungen von sowohl natürlichen als auch synthetischen Polymeren, insbesondere Hydrogele, die stark hydratisiert sind und somit insbesondere im Zusammenspiel mit lebenden Zellen geeignet sind.
Als Polymere können auch Gele auf Silica-Basis, insbesondere solche, die zumindest teilweise mit einem Si-N Precursor hergestellt sind. Dem Fachmann sind geeignete Systeme bekannt. Es können dabei verschiedene Strukturmaterialien zur Herstellung der dreidimensionalen Struktur eingesetzt werden. Entweder derart, dass verschiedene Strukturmaterialien in verschiedenen Schichten eingesetzt werden oder dass verschiedene Strukturmaterialien in einer gedruckten oder extrudierten Schicht zur Ausbildung von Bereichen unterschiedlicher Ei- genschaften eingesetzt werden. Dadurch können Strukturen hergestellt werden, die in unterschiedlichen Teilbereichen verschiedene Zellarten aufweisen oder die nur abschnittsweise Zellen aufweisen, während andere Abschnitte zellfrei sind. Unter dem Ausdruck„Flüssigkeit hoher Dichte" wird vorliegend ein Fluid, insbesondere eine Flüssigkeit, verstanden, das im Vergleich zu der Dichte des Strukturmaterials, das in die Flüssigkeit hoher Dichte gedruckt oder extrudiert wird, zum Zeitpunkt des Druckens oder Extrudierens eine Dichte von größer als 0,2 g/cm3, bevorzugt von grö ßer als 0,3 g/cm3im Vergleich zu der Dichte des Strukturmaterials aufweist. Die Flüssigkeit hoher Dichte ist eine, deren Dichte höher ist als die Dichte des in flüssiger Form gedruckten Strukturmaterials. Die Dichte ist dabei ein Maß für die Masse des Stoffes pro Volumeneinheit. Sie ist vollkommen unabhängig von der Viskosität eines Fluids. Die Viskosität ist ein Maß für die Zähflüssigkeit eines Fluids. Diese Zähflüssigkeit ist dabei unabhängig von der Dichte des Stoffes. D.h. eine Flüssigkeit hoher Dichte kann eine niedrige Viskosität aufweisen und ist dennoch erfindungsgemäß geeignet. So weisen z.B. Fluor- Kohlenwasserstoffe wie Perfluorkohlenwasserstoffe eine hohe Dichte bei niedriger Viskosität auf.
Der Ausdruck„umfassen" oder„umfassend" und die Ausdrücke„enthal- tend" oder„enthalten", wie sie vorliegend verwendet werden, beinhalten die Ausführungsform von„bestehen" oder„bestehend aus" soweit nicht explizit anders ausgeführt.
Das erfindungsgemäße Verfahren ist insbesondere geeignet dreidimensi- onale Strukturen herzustellen, wobei diese Strukturen zumindest teilweise lebende Zellen enthalten können. Diese lebenden Zellen können dann im Rahmen des Tissue Engineering (im Deutschen auch als Gewebekonstruktion bzw. Gewebezüchtung bezeichnet) eingesetzt werden. Mit Hilfe des erfindungsgemäßen Verfahrens können dabei die Nachteile bekannter Verfahren überwunden werden, nämlich die Herstellung von dreidimensionalen Strukturen guter mechanischer Stabilität und in Dimensionen, die aufgrund der geringen Stabilität der Gele, wie Hydrogele, die im Tissue Engineering-Bereich eingesetzt werden, bisher nicht erzielt werden konnten.
Bevorzugt handelt es sich bei der Flüssigkeit hoher Dichte um eine Flüssigkeit mit einer Dichte von mindestens 1 ,5 g/cm3, insbesondere bevorzugt einer Flüssigkeit mit einer Dichte von mindestens 1 ,7 g/cm3. Diese Flüssigkeiten sind bevorzugt hydrophobe Flüssigkeiten.
Besonders geeignete Flüssigkeiten hoher Dichte sind erfindungsgemäß Fluorkohlenwasserstoffe, insbesondere Perfluorkohlenwasserstoffe. Die erfindungsgemäß verwendbaren Flüssigkeiten, in die eingetaucht die dreidimensionalen Strukturen insbesondere ortsselektiv extrudiert bzw. ge- druckt werden, sind dabei solche, die bevorzugt nicht wässrig, biokompatibel sowie gut oxygenierbar sind. Weiterhin sind die Flüssigkeiten hoher Dichte bevorzugt derart, dass sie sich gegenüber dem Strukturmaterial inert verhalten, nicht-mischbar und/oder nicht-reaktiv sind.
Insbesondere die Perfluorkohlenwasserstoffe erlauben ein Herstellen dreidimensionaler Strukturen, die zumindest teilweise lebende Zellen enthal- ten können. Kohlenwasserstoffe und insbesondere Perfluorkohlenwasserstoffe sind bekannt als Flüssigkeiten, in denen Zellen überleben können. Sie sind z. B. als Flüssigkeiten beschrieben, die die Fähigkeit aufzeigen Atemgase, wie Sauerstoff, Stickstoff und Kohlendioxid zu lösen. Insbesondere bevorzugt handelt es sich bei den Perfluorkohlenwasserstof- fen als Flüssigkeit hoher Dichte um Perfluorkohlenwasserstoffe ausgewählt aus der Gruppe von Perfluortributylamin (C12F27N), Perfluordecalin (C-I OF-I S), Perfluorhexamethylprisman (Ci2Fi8). Perfluorkohlenwasserstoffe, wie Perfluordecalin oder Perfluorhexamethylprisman sind chemisch inert, so dass eine Umsetzung mit dem Strukturmaterial oder mit Zellkomponenten nicht auftritt. Perfluorkohlenwasserstoffe oder Perfluorkohlenwasserstoffemulsionen, die vorliegend unter dem Ausdruck Perfluorkohlenwasserstoffe fallen, sind als Sauer- stoffträger bekannt. Sie werden z. B. als Blutersatz (EP 0307087 B1 ) oder im Rahmen der Flüssigbeatmung beschrieben. Durch Tan, Q., et al., Tis- sue Engineering Part A, 2009 ;1 5(9) :2471 -2480 ist die Verwendung von Perfluorkohlenwasserstoffemulsionen zur Sauerstoffversorgung kultivierter Zellen und Gewebe bekannt. Überraschend wurde nun gefunden, dass solche Flüssigkeiten hoher Dichte, wie Fluorkohlenwasserstoffe und insbesondere Perfluorkohlenwasserstoffe, ideale Flüssigkeiten zur Herstellung dreidimensionaler Strukturen, die zumindest teilweise lebende Zellen enthalten, darstellen. D.h., bei dem erfindungsgemäßen Verfahren werden die Einrichtungen zum Extrudieren oder Drucken in die Flüssigkeit hoher Dichte eingetaucht und dann das Strukturmaterial ggf. enthaltend lebende Zellen dreidimensional extrudiert bzw. schichtweise gedruckt. Entsprechende Verfahren des Extrudierens und Druckens von Strukturen sind all- gemein bekannt. Z.B. können Verfahren eingesetzt werden, wie sie aus dem„Rapid-Prototyping" bekannt sind. Diese Verfahren können ortsselektiv das Strukturmaterial extrudieren oder drucken. Üblicherweise erfolgt dieses aufgrund bereitgestellter strukturgeometrischer Daten. Diese Daten geben die detaillierte Geometrie dieser herzustellenden Struktur, wie des Gewebes, wieder.
In einer bevorzugten Ausführungsform ist das Verfahren ein Verfahren zum Herstellen einer dreidimensionalen Struktur enthaltend lebende Zel- len. Diese Struktur enthaltend lebende Zellen wird dann in weiteren Schritten mittels bekannter Zellkulturverfahren kultiviert, um schließlich artifiziel- le dreidimensionale Strukturen als Gewebesubstitut bereit zu stellen.
Strukturmaterial, das erfindungsgemäß eingesetzt wird ist dabei zumindest teilweise eine Mischung aus dem Strukturmaterial und lebenden Zellen, um dreidimensionale Strukturen, die zumindest abschnittsweise lebende Zellen enthalten, herzustellen. Bevorzugt handelt es sich bei den lebenden Zellen um eukaryotische Zellen, insbesondere Zellen humanen Ursprungs. Es ist insbesondere bevorzugt, dass es sich bei den Zellen um Primärzellen handelt, z.B. Zellen xenogenen, allogenen oder autologen Ursprungs. Diese Zellen werden entsprechend als Isolate bereitgestellt.
Die Zellen können dabei je nach herzustellender Struktur, z.B. je nach herzustellendem Hart- oder Weichgewebe, entsprechend gewebespezifische Zellen sein. Vorzugsweise liegen mehrere Arten dieser gewebespezi- fischen Zellen vor. Unter gewebespezifischen Zellen oder organspezifischen Zellen werden zunächst alle Zellen verstanden, die sich in dem Organ oder dem Gewebe befinden (einschließlich nicht auf das spezielle Gewebe oder Organ beschränkte Zellen). Diese Zellen schließen verschiedene Typen von Zellen einschließlich Muskelzellen, Epithelzellen, Nervenzellen, Bindegewebszellen aber auch Stammzellen ein. So können Zellen vom Typ Muskelzellen glatte Muskelzellen, quergestreifte Muskelzellen oder Herzmuskelzellen sein, Epithelzellen schließen ein Darme- pithelzellen, Hautepithelzellen, Endothelzellen, Pneumozyten, Nervenzellen schließen ein Neuronen einschließlich motorische und sensorische Neuronen sowie Interneuronen, Gliazellen usw. ; sowie Bindegewebszellen mit Fibroblasten, Chondrozyten, Osteoblasten, Adipozyten, Myo- fibroblasten, Perizyten.
Die oben genannte Aufzählung ist nur beispielhaft und nicht abschließend zu verstehen. Je nach Gewebe oder Organ können auch entsprechend gewebe- und organspezifische Zellen eingebracht werden.
Weiterhin kann das Strukturmaterial bzw. die Mischung mit den lebenden Zellen und ggf. weiteren Zusatzstoffen weiterhin Hilfsstoffe zur Unterstützung des Kultivierungsprozesses enthalten. Solche Hilfsstoffe sind insbesondere Zelladhäsionsmoleküle, Differenzierungsfaktoren, immunologisch aktive Zytokine/Chemokine und/oder Antibiotika. Diese können ggf. mit dem Strukturmaterial konjugiert vorliegen. Als weitere Zusatzstoffe sind Ionen, Nährstoffe einschließlich Aminosäuren, Peptide, Proteine, Lipide, Kohlenhydrate, Nukleinsäuren und anderen notwendigen Nährstoffen, die die Proliferation und Differenzierung der Zellen fördern, möglich.
Das Strukturmaterial kann je nach Anwendungsgebiet weiterhin Zusatzstoffe in flüssiger oder fester Form aufweisen. Z. B. für den Aufbau von Knochen- oder Knorpelsubstituten können entsprechende Calciumphos- phate vorliegen. Möglich sind auch Komponenten, z. B. in Form von ver- kapselten Verbindungen, die eine zeitverzögerte Freisetzung von in der Kapsel vorliegenden Verbindungen erlaubt.
Bevorzugt handelt es sich bei den Strukturmaterialien um Polymere, die eine gute Kohäsion zwischen den einzelnen gedruckten oder extrudierten Schichten erlaubt.
Je nach Anwendung kann es sich bei dem Strukturmaterial um ein perma- nentes Material oder um ein biodegradierbares Material handeln. Im Bereich des Tissue Engineerings kann insbesondere ein biodegradierbares Material vorteilhaft sein. Dieses biodegradierbare Material übernimmt vorübergehend die Funktion der extrazellulären Matrix, die im weiteren Ver- lauf von den Zellen selbst sezerniert wird. Anwendungsbereiche sind hier insbesondere Gefäße usw.
Das erfindungsgemäße Verfahren eignet sich insbesondere zur Ausbildung von Gewebesubstituten, insbesondere von artifiziellen Weichgewebe oder Hartgewebe. Weichgewebe oder Hartgewebe schließen ein
Knochengewebe oder Knorpelgewebe aber auch Gefäße, wie Blutgefäße oder Luftröhre, Speiseröhre aber auch Herzklappen oder andere Klappen, Gewebeconduits zum Harnblasenersatz, Ligamente und Sehnenersatz sowie Organe.
Das erfindungsgemäße Verfahren zur Herstellung der dreidimensionalen Struktur kann weitere Schritte umfassen. So kann nach Drucken oder Extrudieren der dreidimensionalen Struktur in der Flüssigkeit hoher Dichte, die Flüssigkeit hoher Dichte entfernt werden, um die dreidimensionale Struktur ggf. enthaltend lebende Zellen weiter zu kultivieren. Eine Kultivierung kann gemäß üblicher Verfahren, wie sie aus der Gewebezüchtung bekannt sind, erfolgen, um das Zielgewebe zu erhalten.
In einer Ausführungsform handelt es sich bei dem erfindungsgemäßen Verfahren um ein Druckverfahren. Dabei wird das Strukturmaterial ggf. enthaltend lebenden Zellen sequenziell ortsselektiv gedruckt. Das Drucken erfolgt in mehreren Schichten übereinander, um durch dieses mehrfache Drucken die Ausbildung der dreidimensionalen Struktur ggf. mit lebenden Zellen zu erlauben. Wie ausgeführt, können die Schichten aus gleichen oder unterschiedlichen Strukturmaterialien ausgebildet sein.
Durch dieses Drucken sind insbesondere komplexe dreidimensionale Strukturen herstellbar. Solche dreidimensionalen Strukturen umfassen Herzklappen aber auch andere Arten von Hart- und Weichgewebe sowie von Gefäßen, z. B. Gefäße mit abgehenden Gefäßteilen (Gefäßäste) usw. Gerade in komplexen dreidimensionalen Strukturen liegen Freiräume, wie Lumina und Kavitäten vor, die mit Hilfe des erfindungsgemäßen Verfahrens hergestellt werden können. Durch das ortsselektive Extrudieren oder Drucken des Strukturmaterials in der Flüssigkeit hoher Dichte lassen sich einfach entsprechende Lumina und Kavitäten ausbilden, so dass eine Schaffung komplexer dreidimensionaler Strukturen einfach möglich ist, ohne dass diese Strukturen aufgrund geringer Stabilität des Strukturmaterials sich während der Herstellung oder der späteren Kultivierung verformen.
Ein bekanntes Verfahren umfasst ein tintenstrahlbasiertes System, wie es in der Literatur beschrieben ist. Andere Verfahren sind solche auf pneumatischer Basis oder auf Extruder-Basis.
In einem weiteren Aspekt richtet sich die vorliegende Erfindung auf dreidimensionale Strukturen enthaltend ggf. lebende Zellen, die mit dem erfin- dungsgemäßen Verfahren erhältlich sind. Bei diesen dreidimensionalen Strukturen handelt es sich insbesondere um Gewebesubstitute, wie artifi- zielles Weichgewebe oder Hartgewebe, einschließlich Knochengewebe, Knorpelgewebe, Blutgefäße, Luftröhre, Speiseröhre, Herzklappe oder Organe. Diese so erhaltenen dreidimensionalen Strukturen ggf. enthaltend lebende Zellen können als artifizielles Gewebe eingesetzt und Patienten implantiert werden. Sie können als transientes oder permanentes Gewebe implantiert werden.
Die mit Hilfe des erfindungsgemäßen Verfahrens herstellbaren dreidimen- sionalen Strukturen können insbesondere komplexe Strukturen darstellen, die mit den bisher bekannten Verfahren aufgrund der Instabilität der hergestellten Strukturen nicht erreichbar waren oder nur durch Einsatz zu- sätzlicher Hilfsstrukturen.
Die strukturgeometrischen Daten, also die detaillierte Geometrie der nachzubildenden dreidimensionalen Struktur, insbesondere des Gewebes oder des Organs, erlauben die Steuerung der Extrudier- oder Druckeinrichtung, insbesondere des Druckkopfes oder der Extrudierdüse, um die Raumform der gewünschten dreidimensionalen Struktur ortsselektiv zu drucken. Diese strukturgeometrischen Daten werden mit Hilfe bekannter Verfahren auf Basis von Originalstrukturen, z. B. Gefäßen, Organen etc. generiert und dann entsprechend mit Hilfe der erfindungsgemäßen Einrichtung umgesetzt.
Es ist erfindungsgemäß möglich, bei dem erfindungsgemäßen Herstellungsverfahren die dreidimensionalen Strukturen ohne Einsatz von Hilfs- strukturen herzustellen. D. h., es müssen keinerlei Stütz- oder Hilfsstrukturen genutzt werden, um insbesondere Strukturmaterialien, wie Hydrogele zu stützen. Diese Stützung erfolgt durch die Flüssigkeit hoher Dichte, in die das Stützmaterial extrudiert bzw. gedruckt wird. Überraschenderweise zeigte es sich, dass auch aufgrund der vorhandenen Dichteunterschiede das Stützmaterial bzw. die dreidimensionale Struktur nicht in ungewollter Art und Weise verformt wird.
In einem weiteren Aspekt richtet sich die vorliegende Anmeldung auf eine Einrichtung, wie eine Druckeinrichtung oder Extrusionseinrichtung, zum Ausbilden einer dreidimensionalen Struktur ggf. enthaltend lebende Zellen. Die Einrichtung ist derart ausgebildet, dass sie zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist. Diese Einrichtung umfasst Mittel zum Drucken oder Extrudieren, wobei diese Mittel derart ausgebildet sind, dass sie ein Drucken oder Extrudieren des Strukturmaterials ggf. enthaltend lebende Zellen ortsselektiv ermöglicht und ein Drucken oder Extrudieren in einer Flüssigkeit hoher Dichte erlaubt. Weiterhin weist die erfindungsgemäße Vorrichtung eine Einrichtung zur Aufnahme der Flüs- sigkeit hoher Dichte auf. Die Einrichtung zum Drucken oder Extrudieren ist dadurch gekennzeichnet, dass die Mittel zum Extrudieren oder Drucken derart ausgebildet sind, dass sie ein in eine Flüssigkeit eingetauchtes Extrudieren oder Drucken ermöglichen. Die Einrichtung zum Drucken oder Extrudieren ist dabei derart ausgebildet, dass sie mit Hilfe von einer ggf. motorisierten X-, Y-, Z-Steuerung eine Positionierung dieser Mittel zum Drucken oder Extrudieren in eine in allen drei Dimensionen vorbestimmte Position erlaubt. Weiterhin ist dieses Mittel zum Drucken oder Extrudieren bevorzugt mit einer Einheit ausgestattet, die ein Erwärmen des zu dru- ckenden oder extrudierenden Strukturmaterials ermöglicht. Entsprechende Steuerungselemente einschließlich Ventile erlauben eine präzise Mengenabgabe des zu extrudierenden oder druckenden Strukturmaterials.
Alternativ oder ergänzend kann die Einrichtung zur Aufnahme der Flüssig- keit hoher Dichte ebenfalls beweglich ausgebildet sein, d. h. ebenfalls in X- , Y- und Z-Richtung bewegbar ausgebildet sein. Sollte die Aufnahmevorrichtung zur Aufnahme der Einrichtung für die Flüssigkeit hoher Dichte bewegbar ausgebildet sein, kann das Mittel zum Drucken und Extrudieren auch stationär ausgebildet sein.
Die Einrichtung zur Aufnahme der Flüssigkeit hoher Dichte ist geeignet zur Inkubation der dreidimensionalen Struktur ggf. enthaltend lebende Zellen bei Temperaturen von mindestens 30 °C. Insbesondere handelt es sich bei dieser Einrichtung um eine, die einen Bioreaktor selbst darstellt oder in einen Bioreaktor überführt werden kann oder, dass die in der Einrichtung gedruckte oder extrudierte Struktur in ein Nährmedium überführt werden kann. Hierdurch ist es einfach möglich, die durch Extrusion oder Druck hergestellte dreidimensionale Struktur mit enthaltenen lebenden Zellen zu kultivieren, um eine entsprechende dreidimensionale Struktur, die als Ge- webesubstitut geeignet ist, bereitzustellen.
In einer Ausführungsform kann die Druckeinrichtung unter entsprechenden Kulturbedingungen gehalten werden.
Unter Bezugnahme auf die beigefügte Figur 1 werden eine erfindungsgemäße Druckeinrichtung und das erfindungsgemäße Verfahren näher erläu- tert.
Die Figur 1 stellt das Druckverfahren als ersten Schritt, die Inkubation bei 37 °C, d. h. die Kultivierung der gedruckten dreidimensionalen Struktur enthaltend lebende Zellen als zweiten Schritt sowie die erhaltene dreidi- mensionale Struktur im dritten Schritt dar.
Dargestellt ist eine übliche Zellkulturplatte als Beispiel einer Einrichtung zur Aufnahme der Flüssigkeit hoher Dichte 1 enthaltend die Flüssigkeit hoher Dichte 2, z.B. einen Fluorkohlenstoff. Dabei kann die Platte in einer Aufnahmevorrichtung vorliegen, die eine Bewegung in die X-, Y- und Z- Richtung erlaubt (nicht dargestellt). Weiterhin dargestellt ist das Mittel zum Drucken oder Extrudieren des Strukturmaterials 3. Dieses Mittel ist ebenfalls in X-, Y- und Z-Richtung bewegbar. Der Extrusionskopf oder Druckkopf ist dabei so ausgebildet, dass kleinste Mengen an Strukturmaterial gedruckt bzw. extrudiert werden können. Dadurch können eine Vielzahl von Schichten übereinander gedruckt bzw. extrudiert werden. Wie dargestellt, ist das Mittel zum Drucken oder Extrudieren beheizbar 4, um das Strukturmaterial zu erwärmen und so in einem entsprechenden flüssigen Zustand zum Drucken bzw. Extrudieren zu halten. Nicht dargestellt sind die Steuereinrichtungen zum Steuern des Mittels zum Drucken oder Extrudieren bzw. zum Bewegen der Aufnahmeeinrichtung für die Einrichtung zur Aufnahme der Flüssigkeit hoher Dichte.
Mit Hilfe des Mittels zum Drucken bzw. Extrudieren wird schichtweise orts- selektiv gemäß den strukturgeometrischen Daten die dreidimensionale
Struktur 5 extrudiert bzw. gedruckt. Ggf. können auch mehrere Extrusions- oder Druckmittel, d.h. mehrere -Köpfe oder -Düsen, verwendet werden, um z.B. Bereiche mit oder ohne Zellen zu drucken bzw. extrudieren oder um verschiedene Mischungen von Strukturmaterial und Zellen zu drucken bzw. extrudieren. Über die entsprechende Steuerung des Mittels zum Drucken bzw. über die Steuerung der Positionierung und der Einrichtung zur Aufnahme der Flüssigkeit hoher Dichte ist es möglich, die dreidimensionale Struktur zu drucken bzw. zu extrudieren. Das Drucken bzw. Extrudieren des jeweiligen fließbaren Strukturmaterials findet derart statt, dass der Druckkopf bzw. die Extrusionsdüse in die Flüssigkeit hoher Dichte eingetaucht ist und eine vorbestimmte Menge des Strukturmaterials an der vorgegebenen Position gedruckt bzw. extrudiert wird.
Mit dem Drucken in der Flüssigkeit, im Englischen auch als„submerged printing" oder„submerged extrusion" bezeichnet, ist es möglich dreidimensionale Strukturen einer gewünschten Grö ße bereitzustellen. Insbesondere ist es möglich, diese Strukturen derart bereitzustellen, dass keine Verformung der dreidimensionalen Struktur während des Druckens oder Extrudierens oder der späteren Kultivierung stattfindet. Dadurch ist die Größe der hergestellten dreidimensionalen Struktur nicht mehr derart begrenzt, wie es im Stand der Technik gegeben ist. Des Weiteren sind auch komplexe Strukturen möglich, die Kavitäten und Lumina einschließen oder komplexe Strukturen, wie Gefäßäste usw. Nach dem Drucken bzw. Extrudieren wird die Aufnahmeeinrichtung mit der Flüssigkeit hoher Dichte und der hergestellten dreidimensionalen Struktur aus der Druckeinrichtung herausgenommen und in eine Einrichtung zum Kultivieren platziert. Vorher wird zumindest teilweise die Flüssigkeit hoher Dichte entfernt und durch entsprechendes Kulturmedium 6 ersetzt.
Die dreidimensionale Struktur wird dann gemäß bekannter Verfahren kultiviert, um z. B. ein Gewebesubstitut 7, wie artifizielles Weichgewebe oder artif izielles Hartgewebe bereitzustellen.
Bei Durchführung des erfindungsgemäßen Verfahrens war es möglich, Körperstrukturen mit eingelagerten Zellen herzustellen, die anschließend kultiviert wurden. Eine Untersuchung dieser kultivierten Strukturen über einen Zeitraum von mindestens 24 Stunden zeigte, dass die Zellen überleben und sich auch in der Struktur entsprechend entwickelten und proliferierten. Hierzu wurde ein Agarose-Gel nach Autoklavieren auf ca. 37 °C gebracht und mit Zellen einer Zelllinie, vorliegend MG-63 humane Osteo- sarkomzelllinie vermischt oder isolierte und kultivierte humane mesenchymale Stammzellen, um eine Konzentration von 200.000 Zellen/ml zu erhalten. Die verwendete Agarose-Hydrogel-Suspension hatte eine Endkonzentration von 3 %. Mit Hilfe einer rechnergesteuerten Druckeinrichtung wurde das Zellen enthaltende Agarose-Hydrogel gedruckt. Dazu wurde der Druckkopf in Perfluortributylamin (C12F27N) getaucht und der Hohlkörper sequenziell Schicht für Schicht gedruckt, um einen über 3 cm langen Hohlkörper zu drucken. Nach Herstellung dieses über 3 cm langen Hohlkörpers wurde der Perfluorkohlenwasserstoff entfernt und durch Zellmedium (37 °C) ersetzt. Nach 24stündiger Kultivierung konnte mittels Lebend- /Tot-Färbung der Zellen nachgewiesen werden, dass die Mehrzahl der gedruckten Zellen in der dreidimensionalen Struktur lebend waren und entsprechend verteilt in dem Hohlkörper vorlagen. Bei Überprüfung der dreidimensionalen Strukturen nach 2 oder 3 Wochen, konnten die guten Ergebnisse bestätigt werden. Mit einer Färbung für einen Proliferationsmar- ker (Ki-67) konnte eine Proliferation der in der Struktur vorliegenden Zellen 2 bzw. 3 Wochen nach Kultivierung bestätigt werden.
Bei der Herstellung einer Vielzahl von Strukturen zeigte sich eine hervorragende Reproduzierbarkeit der Herstellung dieser mit Hilfe des erfin- dungsgemäßen Verfahrens.

Claims

Patentansprüche:
1 . Verfahren zum Herstellen einer dreidimensionalen Struktur aus einem Strukturmaterial ggf. enthaltend lebende Zellen umfassend den Schritt des Drucken oder Extrudieren des Strukturmaterials ggf. in Mischung mit lebenden Zellen eingetaucht in eine Flüssigkeit, um eine dreidimensionale Struktur ggf. enthaltend lebende Zelle zu erhalten, wobei das Strukturmaterial ein Polymer, insbesondere ein
Hydrogel ist, insbesondere ein Material ausgewählt aus Agarose, Kollagen, Fibrin, Alginat, Chitosan, Hyaluronan oder synthetischen Hydrogelen einschließlich Polyethylenglycol, Poly-(N- Isopropylacrylamid) und Kopolymere, Polylaktide, Polyurethane oder Polyvinylalkohole oder Mischungen von sowohl natürlichen als auch synthetischen Polymeren dadurch gekennzeichnet, dass diese Flüssigkeit eine Flüssigkeit hoher Dichte ist und ausgebildet ist, die dreidimensionale Struktur zu stützen und zu stabilisieren.
2. Verfahren nach Anspruch 1 , wobei die Flüssigkeit mit hoher Dichte eine Flüssigkeit mit einer Dichte von mindestens 1 ,5 g/cm3, bevorzugt mindestens 1 ,7 g/cm3 ist.
3. Verfahren nach Anspruch 1 oder 2, wobei die Flüssigkeit hoher Dichte ein Fluorkohlenwasserstoff, insbesondere eine Perfluorkohlenwas- serstoff ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flüssigkeit hoher Dichte ein Perfluorkohlen- wasserstoff ausgewählt aus der Gruppe von Perfluortributylamin (C12F27N), Perfluordecalin (Ci0Fi8), Perfluorhexamethylprisman (C12F18) ist. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Strukturmaterial eine Mischung aus Strukturmaterial und lebenden Zellen ist, zur Herstellung einer dreidimensionalen Struktur zumindest abschnittsweise enthaltend lebende Zellen.
Verfahren nach einem der Ansprüche 4 oder 5, wobei das Strukturmaterial weiterhin Zelladhäsionsmoleküle, Differenzierungsfaktoren, immunologisch aktive Zytokine/Chemokine und/oder Antibiotika, die ggf. mit dem Strukturmaterial konjugiert sein können, enthalten.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es weiterhin den Schritt des Kultivierens der hergestellten dreidimensionalen Struktur enthaltend lebende Zellen bei einer Temperatur von über 30 °C vorzugsweise bei 37 °C umfasst.
Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren ein sequenzielles Drucken von mehreren Schichten übereinander umfasst und dieses mehrfache Drucken die Ausbildung der dreidimensionalen Struktur mit ggf. lebenden Zellen erlaubt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Strukturmaterial ein biodegradierbares Material ist. 1 0. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es weiterhin den Schritt das Entfernen der Flüssigkeit hoher Dichte umfasst, um eine dreidimensionale Struktur ggf. enthaltend lebende Zellen, insbesondere ein Gewebe einschließlich Weichgewebe oder Hartgewebe, insbesondere Knochengewebe, Knorpelgewebe, Blutgefäß, Luftröhre, Speiseröhre, Herzklappe, Ge- webeconduits zum Harnblasenersatz, Ligamente und Sehnenersatz oder Organ, zu erhalten.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zellen eukaryotische Zellen sind.
Dreidimensionale Struktur enthaltend ggf. lebende Zellen erhältlich mittels eines Verfahrens nach einem der Ansprüche 1 bis 1 1 .
Dreidimensionale Struktur gemäß Anspruch 1 2, dass als ein Gewe- besubstitut insbesondere ein artifizielles Weichgewebe oder Hartge webe, wie Knochengewebe, Knorpelgewebe, Blutgefäß, Luftröhre, Speiseröhre, Herzklappe, Gewebeconduits zum Harnblasenersatz, Ligamente und Sehnenersatz oder Organ ausgebildet ist.
14. Verwendung einer Flüssigkeit hoher Dichte als Medium zum Drucken oder Extrudieren einer dreidimensionalen Struktur ggf. enthaltend lebende Zellen, bevorzugt, wobei diese Flüssigkeit hoher Dichte eine Dichte von mindestens 1 ,5 g/cm3, bevorzugt 1 ,7 g/cm3 aufweist, insbesondere wobei diese Flüssigkeit hoher Dichte ein Perfluorkoh- lenstoff ist.
1 5. Druckeinrichtung zum Ausbilden einer dreidimensionalen Struktur ggf. enthaltend lebende Zellen umfassend Mittel zum Drucken oder Extrudieren, wobei diese Mittel derart ausgebildet sind, dass Sie ein Extrudieren oder Drucken des Strukturmaterials ggf. enthaltend le- bende Zellen ermöglicht, eine Einrichtung zur Aufnahme der Flüssigkeit hoher Dichte, dadurch gekennzeichnet, dass die Mittel zum Extrudieren oder Drucken derart ausgebildet sind, dass sie ein in eine Flüssigkeit eingetauchtes Extrudieren oder Drucken ermöglichen, wobei die Einrichtung zur Aufnahme der Flüssigkeit geeignet ist zur Inkubation der dreidimensionalen Struktur ggf. enthaltend lebende
Zellen bei Temperaturen von mindestens 30 °C, eingerichtet zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 1 1 . Verwendung einer dreidimensionalen Struktur ggf. enthaltend lebende Zellen nach einem der Ansprüche 1 3 oder 1 4 als artifizielles Gewebe, insbesondere als Weichgewebe oder Hartgewebe, wie
Knochengewebe, Knorpelgewebe, Blutgefäß, Luftröhre, Speiseröhre, Herzklappe, Gewebeconduits zum Harnblasenersatz, Ligamente und Sehnenersatz oder Organ.
PCT/EP2013/052046 2012-02-02 2013-02-01 Verfahren zum herstellen dreidimensionaler strukturen und solche strukturen WO2013113883A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012100859.0 2012-02-02
DE102012100859.0A DE102012100859B4 (de) 2012-02-02 2012-02-02 Verfahren zum Herstellen dreidimensionaler Strukturen und solche Strukturen

Publications (1)

Publication Number Publication Date
WO2013113883A1 true WO2013113883A1 (de) 2013-08-08

Family

ID=47664285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052046 WO2013113883A1 (de) 2012-02-02 2013-02-01 Verfahren zum herstellen dreidimensionaler strukturen und solche strukturen

Country Status (2)

Country Link
DE (1) DE102012100859B4 (de)
WO (1) WO2013113883A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001442A1 (de) * 2014-07-04 2016-01-07 Rwth Aachen Gewebemodell und verfahren zur herstellung hiervon sowie dessen verwendung
EP3018531A1 (de) 2014-11-10 2016-05-11 Technische Universität Berlin Verfahren und Vorrichtung zur Erzeugung eines dreidimensionalen mehrzelligen Objektes
ES2600324A1 (es) * 2016-07-26 2017-02-08 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Procedimiento de consolidación de estructuras ligeras obtenidas por fabricación aditiva
EP3427949A1 (de) 2017-07-12 2019-01-16 Albert-Ludwigs-Universität Freiburg Mechanisch abstimmbare biotinten zum biodrucken
EP3766957A1 (de) * 2019-07-18 2021-01-20 Axenoll Life Sciences AG Verfahren zur erzeugung und/oder anordnung von zellkulturen
US11549097B2 (en) * 2016-03-01 2023-01-10 Oxford University Innovation Limited Phase transfer of a cargo laden scaffold

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3810407A4 (de) 2018-06-04 2022-03-23 Ramot at Tel-Aviv University Ltd. Trägermedium zum 3d-drucken von biomaterialien
GB201902862D0 (en) 2019-03-04 2019-04-17 Univ Dublin A print head and insert for use with a three-dimensional bioprinter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307087B1 (de) 1987-08-05 1994-06-08 Alliance Pharmaceutical Corp. Emulsionen von Fluorkohlenwasserstoffen für "in vivo"-Verwendung
WO2002083194A1 (en) * 2001-04-12 2002-10-24 Therics, Inc. Method and apparatus for engineered regenerative biostructures
US20110281351A1 (en) * 2009-01-29 2011-11-17 Kagawa University Process for producing laminated high-density cultured artificial tissue, and laminated high-density cultured artificial tissue

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143817A (en) * 1989-12-22 1992-09-01 E. I. Du Pont De Nemours And Company Solid imaging system
US5506607A (en) * 1991-01-25 1996-04-09 Sanders Prototypes Inc. 3-D model maker
DE69325649T2 (de) * 1992-03-13 1999-11-18 Atrium Medical Corp Gegenstände aus expandiertem fluorpolymer (z. b. polytetrafluorethylen) mit komtrolliert eingestellter porosität, sowie seine herstellung
DE19948591A1 (de) * 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
JP4551087B2 (ja) * 2001-10-03 2010-09-22 スリーディー システムズ インコーポレーテッド 相変化支持材料組成物
US7073442B2 (en) * 2002-07-03 2006-07-11 Afbs, Inc. Apparatus, systems and methods for use in three-dimensional printing
US7790074B2 (en) * 2003-07-30 2010-09-07 Houston-Packard Development Company, L.P. Stereolithographic method for forming three-dimensional structure
DE102007016852A1 (de) * 2007-04-10 2008-10-16 Bioregeneration Gmbh Verfahren zur Herstellung einer kristalline Cellulose umfassenden Struktur
US20120129208A1 (en) * 2009-03-18 2012-05-24 Michelle Khine Honeycomb shrink wells for stem cell culture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307087B1 (de) 1987-08-05 1994-06-08 Alliance Pharmaceutical Corp. Emulsionen von Fluorkohlenwasserstoffen für "in vivo"-Verwendung
WO2002083194A1 (en) * 2001-04-12 2002-10-24 Therics, Inc. Method and apparatus for engineered regenerative biostructures
US20110281351A1 (en) * 2009-01-29 2011-11-17 Kagawa University Process for producing laminated high-density cultured artificial tissue, and laminated high-density cultured artificial tissue

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALBERT R. LIBERSKI ET AL: ""One Cell-One Well": A New Approach to Inkjet Printing Single Cell Microarrays", ACS COMBINATORIAL SCIENCE, vol. 13, no. 2, 14 March 2011 (2011-03-14), pages 190 - 195, XP055000736, ISSN: 2156-8952, DOI: 10.1021/co100061c *
BOLAND ET AL: "Drop-on-demand printing of cells and materials for designer tissue constructs", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A, CH, vol. 27, no. 3, 22 February 2007 (2007-02-22), pages 372 - 376, XP005900190, ISSN: 0928-4931, DOI: 10.1016/J.MSEC.2006.05.047 *
DANIELA F DUARTE CAMPOS ET AL: "Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid", BIOFABRICATION, vol. 5, no. 1, 21 November 2012 (2012-11-21), pages 015003, XP055060280, ISSN: 1758-5082, DOI: 10.1088/1758-5082/5/1/015003 *
DURCH TAN, Q. ET AL., TISSUE ENGINEERING, vol. 15, no. 9, 2009, pages 2471 - 2480
LANDERS R ET AL: "Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 37, no. 15, 1 August 2002 (2002-08-01), pages 3107 - 3116, XP019209659, ISSN: 1573-4803, DOI: 10.1023/A:1016189724389 *
MAILLARD E., BIOMATERIALS, vol. 32, 2011, pages 9282 - 9
OVSIANIKOV A ET AL: "Laser printing of cells into 3D scaffolds", BIOFABRICATION, INSTITUTE OF PHYSICS PUBLISHING LTD, UK, vol. 2, no. 1, 10 March 2010 (2010-03-10), pages 14104 - 1, XP002665511, ISSN: 1758-5082, DOI: 10.1088/1758-5082/2/1/014104 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001442A1 (de) * 2014-07-04 2016-01-07 Rwth Aachen Gewebemodell und verfahren zur herstellung hiervon sowie dessen verwendung
EP3018531A1 (de) 2014-11-10 2016-05-11 Technische Universität Berlin Verfahren und Vorrichtung zur Erzeugung eines dreidimensionalen mehrzelligen Objektes
WO2016075103A1 (de) 2014-11-10 2016-05-19 Technische Universität Berlin Verfahren und vorrichtung zur erzeugung eines dreidimensionalen mehrzelligen objektes
US10299940B2 (en) 2014-11-10 2019-05-28 Technische Universität Berlin Method and device for producing a three-dimensional, multi-cell object
US11549097B2 (en) * 2016-03-01 2023-01-10 Oxford University Innovation Limited Phase transfer of a cargo laden scaffold
ES2600324A1 (es) * 2016-07-26 2017-02-08 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Procedimiento de consolidación de estructuras ligeras obtenidas por fabricación aditiva
EP3427949A1 (de) 2017-07-12 2019-01-16 Albert-Ludwigs-Universität Freiburg Mechanisch abstimmbare biotinten zum biodrucken
EP3766957A1 (de) * 2019-07-18 2021-01-20 Axenoll Life Sciences AG Verfahren zur erzeugung und/oder anordnung von zellkulturen
WO2021009320A1 (de) * 2019-07-18 2021-01-21 Axenoll Life Sciences Ag Verfahren zur erzeugung und/oder anordnung von zellkulturen

Also Published As

Publication number Publication date
DE102012100859A1 (de) 2013-08-08
DE102012100859B4 (de) 2015-12-17

Similar Documents

Publication Publication Date Title
DE102012100859B4 (de) Verfahren zum Herstellen dreidimensionaler Strukturen und solche Strukturen
Dixon et al. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits
Abdollahiyan et al. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering
JP7175195B2 (ja) 付加堆積によって身体代替体を製造する方法
CN107523136B (zh) 温度响应性可降解3d打印生物墨水及3d打印方法
DE60204352T2 (de) Haut/haar-äquivalent mit rekonstruierten papillen
WO1997015655A2 (de) Neue künstliche gewebe, verfahren zu ihrer herstellung und ihre verwendung
CN111172100A (zh) 一种控制细胞取向排列的生物3d打印方法
WO2004001023A2 (de) Verfahren und vorrichtung zur vermehrung und differenzierung von zellen in anwesenheit von wachstumsfaktoren und einer biologischen matrix oder trägerstruktur
EP1792980A1 (de) Kollagenbiomatrix und Verfahren zu ihrer Herstellung
EP3821919B1 (de) Verfahren zur herstellung eines bioartifiziellen, primär azellulären konstrukts auf fibrinbasis und dieses konstrukt selbst
DE10351661B4 (de) Verfahren zur Herstellung eines Kompositmaterials, dadurch hergestelltes Kompositmaterial und dessen Verwendung
Badwaik 3D Printed Organs: The Future of Regenerative Medicine.
EP1385559B9 (de) Poröse und nichtporöse matrices auf basis von chitosan und hydroxycarbonsäuren
EP2788171B1 (de) Herstellung anisotrop strukturierter werkstoffe
DE102014109360A1 (de) Gewebemodell und Verfahren zur Herstellung hiervon sowie dessen Verwendung
DE10227611A1 (de) Verfahren und Vorrichtung zur Vermehrung und Differenzierung von Zellen in Anwesenheit von Wachstumsfaktoren und einer biologischen Matrix oder Trägerstruktur
EP2755666B1 (de) Verfahren zur herstellung eines biologischen gewebekonstrukts und verwendung spezifisch gewonnener autologer zellen und dessen medizinische verwendung
DE102019135193B4 (de) Gewebetechnologisch unterstützte Rekonstruktion einer ekkrinen Schweißdrüse
Quitéria 3D & 4D printing for health application: new insights into printed formulations and bioprinted organs is the topical route on this way?: topical printed formulations and skin bioprinting 3D and 4D printing
Liu et al. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues
Li et al. 7 3D Printing in Nerve
Li et al. 3D Printing in Nerve Regeneration
DE102004049757B4 (de) Verfahren zur Herstellung eines offenporigen Substrats zur Kultivierung von Gewebezellen
WO2019048524A1 (de) Verfahren zum herstellen einer dreidimensionalen biologischen struktur und diese struktur so erhaltend

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13702631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13702631

Country of ref document: EP

Kind code of ref document: A1