WO2013106874A1 - Évaporateur à cylindre à vide pour purifier de l'eau salée ou de l'eau polluée - Google Patents

Évaporateur à cylindre à vide pour purifier de l'eau salée ou de l'eau polluée Download PDF

Info

Publication number
WO2013106874A1
WO2013106874A1 PCT/AT2013/000003 AT2013000003W WO2013106874A1 WO 2013106874 A1 WO2013106874 A1 WO 2013106874A1 AT 2013000003 W AT2013000003 W AT 2013000003W WO 2013106874 A1 WO2013106874 A1 WO 2013106874A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
water
chamber
water chamber
valve
Prior art date
Application number
PCT/AT2013/000003
Other languages
German (de)
English (en)
Inventor
Johann SCHACHINGER
Original Assignee
Schachinger Johann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schachinger Johann filed Critical Schachinger Johann
Publication of WO2013106874A1 publication Critical patent/WO2013106874A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0064Feeding of liquid into an evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/046Treatment of water, waste water, or sewage by heating by distillation or evaporation under vacuum produced by a barometric column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • Drinking water supply is a major problem in many places in southern parts of the world. River water reaches only a few areas of usable quality and in sufficient quantities. Near the coast can only be from many wells
  • the object of the invention is to win as much water as distillate and condensate from salt water, brackish water or polluted water in relation to the energy used.
  • the desalination device should achieve a high volume performance of usable service water in use cost-effectively.
  • Salt water or polluted water evaporates at just over 100 ° Celsius
  • the presented invention utilizes the property of the water to lower the boiling point at reduced ambient pressure. This is achieved in an evaporation and evaporation chamber. In order to reduce the boiling point to below 50 ° C, a vacuum of approx. 50 mbar must be generated. In the systems of the invention similar to the negative pressure manufactured with the help of vacuum pumps. During the evaporation, however, a large amount of gas is produced and the efficiency of these pumps is unfortunately not very high. In order to obtain a constant negative pressure, correspondingly high pumping capacity is required, which drives the energy consumption of the systems strongly upwards.
  • the invention uses a partially filled with raw water water chamber (l) with attached cylinder (2) in which a reciprocating piston (3) in the cylinder interior of the downward movement squeezes the gas and builds back pressure in the backward movement.
  • a reciprocating piston (3) in the cylinder interior of the downward movement squeezes the gas and builds back pressure in the backward movement.
  • the air compressed and heated during piston retraction is injected with atomized raw water through the piston line (9) and the piston nozzle (6) into the water chamber (1) and atomised.
  • Ultrasonic atomizer (15) is intended to split the water particles into the smallest possible particles.
  • the gas is cooled and preselected.
  • the gas which has been expanded at the point of discharge is cooled in a conventional countercurrent heat exchanger by the incoming raw water.
  • the gas partly contains residual impurities with salt or
  • Conducted condenser drains Lighter gas is condensed in more remote processes. Thus, service water of different quality is achieved.
  • Salt concentration in the system but has the disadvantage of greater heat removal from the water chamber (L).
  • the concentration with impurities should remain as low as possible. If other substances are dissolved in the water, they make it difficult
  • Water chamber nozzles (16) are closable openings on the water chamber bottom. Through these nozzles is at the water chamber bottom, just before reaching the top
  • the preferably heated air receives condensate from the raw water contained in the water chamber (l) and forms a kind of buffer zone above the water level line and the condensed injected raw water.
  • the piston chamber valve (l 1) regulates time and amount of raw water after-run from the Zulaufreservoire (4).
  • air is supplied via the piston chamber valve (l 1) as well
  • the reciprocating piston (3) is ideally moved by a linear drive (7).
  • the drive can be attached to the piston rod (5) or to the cylinder (2).
  • the advantage is that the piston fits the conditions (raw water temperature, concentration of
  • Contamination, salinity is controlled.
  • this drive a precise control of the reciprocating piston (3) is possible. Different piston speeds for each phase can be realized with it.
  • the withdrawal movement can be adapted to the external conditions and the different situations inside.
  • the piston can accelerate just before opening the spool valve (8) so that the raw water can be injected into the Water chamber (l) is pressed.
  • a linear drive (7) on the cylinder (2) can move the reciprocating piston without contact, if, for example, neodymium magnets are installed in the cylinder.
  • FIG. 1 shows a schematic first embodiment of the device according to the invention during piston retraction during the raw water injection phase.
  • FIG. 2 shows the uppermost piston return point before the condensate is pressed out.
  • the central elements in Vakuumzylinderverdunster are the standing built, driven
  • HubkoIben (3) and a cylinder (2) which has a slender cross-sectional area in its shape and a widening container as a water chamber (l), at which at the top point the Exhaust valve (12) is placed.
  • the length of the cylinder (2) determines the size of the working space of the reciprocating piston (3).
  • the drain line (13) connects the system with the multi-stage
  • a rinse water valve (17) is mounted at the water chamber (l).
  • the piston chamber (10) sits the piston chamber valve (l 1) through which air and raw water from the Zulaufreservoire (4) into the piston chamber (lO) is passed.
  • the piston chamber (10) is the cylinder chamber above the piston (3). Installed in the same is at the top of the piston nozzle (6) and a piston valve (8), which opens or closes the piston line (9).
  • An internal ultrasonic atomizer (15) can be mounted on the reciprocating piston (3) or in the water chamber (l). Moves the reciprocating piston (3) via a
  • the inlet reservoir (4) in front of the piston chamber valve (l 1) serves as a raw water reservoir for the next stroke.
  • built-in water chamber nozzles (16) can preferably rise preheated and compressed gas through the raw water.
  • Intermediate levels (18) are placed at the top of the water chamber so that they are wetted when immersing the reciprocating piston (3).
  • the reciprocating piston (3) is in the cylinder (2), adapted to the processes in the interior, with the driven piston rod (5) or a linear drive (7) on the cylinder wall, moved up and down.
  • the movement of the reciprocating piston (3) divides the process into two working cycles. In the first work cycle, shown in Fig.l, the withdrawal movement of the reciprocating piston (3), in the water chamber (l) negative pressure is built up.
  • Piston chamber (10) Close the piston chamber valve (l 1). The air sucked into the piston chamber (10) is compressed.
  • the via the piston rod (5) driven reciprocating piston (3) has in the interior a piston valve (8), a continuous piston line (9) and a
  • Piston nozzle (6) at the top. If the reciprocating piston (3) moved back so far that it is to Whole is located in the cylinder (2), can at the water chamber bottom by the
  • Water chamber nozzles (16) air, preferably heated, are sucked. The air flows through the raw water in the water chamber (l) and reduces the saturation deficit by
  • Ultrasonic atomizers (15), mounted on the reciprocating piston (3) or in the water chamber (l), are here to provide even finer atomization by the droplets in the
  • Reciprocating piston (3) reaches the uppermost retraction point, closes the piston valve (8), the first power stroke is completed.
  • the second working stroke of the reciprocating piston (3) is to guide in the downward movement in the water chamber (l) existing enriched air through the outlet valve (12) in the drain line (13).
  • the saturation limit of the outflowing air decreases due to the pressure drop.
  • This enriched air is cooled in the multi-stage condenser (14) in a conventional manner, for example with countercurrent heat exchangers, selected for residual contamination and recovered the condensate.
  • the water chamber (l) is filled just before reaching the lowest dead center of the reciprocating piston (3) entirely with raw water. There is no more air in the Water chamber (l), shown in Figure 3, closes the outlet valve (12) and the over-injected raw water is squeezed out as rinse water through the rinse water valve (17).
  • the purpose of the rinse water is to high salt concentration and deposits in the
  • Piston chamber valve (l 1) sucked raw water and preferably heated air for the next cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention vise à produire de l'eau sanitaire à partir d'eau salée ou d'eau polluée et repose sur un coffre à eau (1) sur lequel est monté un cylindre (2) doté d'un piston de levée (3). Une soupape de refoulement (12) et une soupape d'eau de rinçage (17) sont montées sur le coffre à eau (1). La soupape de chambre de piston (11) en face de laquelle est monté le réservoir d'alimentation (4) est placée au-dessus de la chambre de piston (10). Le piston de levée (3) est déplacé par exemple par la tige de piston (5). Une dépression se crée dans le coffre à eau (1), sous l'effet de la remise en place du piston de levée (3) depuis le point le plus bas, lorsque les soupapes sont fermées. De l'eau brute est injectée par le piston de levée (3) avant la fin de la phase de retour du piston. L'eau brute évaporée est évacuée par la soupape de refoulement (12) et traitée de manière plus poussée dans le mouvement en avant du piston de levée (3).
PCT/AT2013/000003 2012-01-16 2013-01-16 Évaporateur à cylindre à vide pour purifier de l'eau salée ou de l'eau polluée WO2013106874A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA40/2012A AT512478A1 (de) 2012-01-16 2012-01-16 Vakuumzylinderverdunster zur reinigung von salzhaltigem oder verschmutztem wasser
ATA40/2012 2012-01-16

Publications (1)

Publication Number Publication Date
WO2013106874A1 true WO2013106874A1 (fr) 2013-07-25

Family

ID=47754234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2013/000003 WO2013106874A1 (fr) 2012-01-16 2013-01-16 Évaporateur à cylindre à vide pour purifier de l'eau salée ou de l'eau polluée

Country Status (2)

Country Link
AT (1) AT512478A1 (fr)
WO (1) WO2013106874A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460841A (zh) * 2020-04-27 2021-03-09 钱锡华 一种基于压缩机原理的冷热水一体制取装置
CN116041707A (zh) * 2023-03-16 2023-05-02 福建纳新硅业科技有限公司 一种硅橡胶提纯装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864932A (en) * 1973-06-12 1975-02-11 Pioneer Science Limited Sea water desalting apparatus
AU644338B1 (en) * 1992-10-14 1993-12-02 Ocean Resources Engineering, Inc. Wave powered desalination apparatus with turbine-driven pressurization
US20110174605A1 (en) * 2008-08-20 2011-07-21 Nicolas Ugolin Method for the desalination or purification of water by distillation of a spray (spray pump)
US20110266132A1 (en) * 2008-12-29 2011-11-03 Motohide Takezaki Air flow-circulation seawater desalination apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420745A (en) * 1966-07-05 1969-01-07 Schlueter William Bryan Piston-cylinder vacuum distillation apparatus
CY2601B1 (fr) * 2008-10-23 2010-03-03 Branlay Capital Holding Ltd

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864932A (en) * 1973-06-12 1975-02-11 Pioneer Science Limited Sea water desalting apparatus
AU644338B1 (en) * 1992-10-14 1993-12-02 Ocean Resources Engineering, Inc. Wave powered desalination apparatus with turbine-driven pressurization
US20110174605A1 (en) * 2008-08-20 2011-07-21 Nicolas Ugolin Method for the desalination or purification of water by distillation of a spray (spray pump)
US20110266132A1 (en) * 2008-12-29 2011-11-03 Motohide Takezaki Air flow-circulation seawater desalination apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460841A (zh) * 2020-04-27 2021-03-09 钱锡华 一种基于压缩机原理的冷热水一体制取装置
CN116041707A (zh) * 2023-03-16 2023-05-02 福建纳新硅业科技有限公司 一种硅橡胶提纯装置
CN116041707B (zh) * 2023-03-16 2024-04-05 福建纳福硅业有限公司 一种硅橡胶提纯装置

Also Published As

Publication number Publication date
AT512478A1 (de) 2013-08-15

Similar Documents

Publication Publication Date Title
DE10260494B3 (de) Verfahren und Vorrichtung zur Erzeugung einer Reinflüssigkeit aus einer Rohflüssigkeit
DE102012220199A1 (de) Verflüssiger, Verfahren zum Verflüssigen und Wärmepumpe
EP0131213B1 (fr) Echangeur de chaleur
DE102009014576A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage und Kraftwerksanlage
DE102012203439A1 (de) Anlage zum Eindampfen eines flüssigen Produkts
DE102013013214A1 (de) "Vorrichtung zur Gewinnung von Wasser aus atmosphärischer Luft"
DE102016203414A1 (de) Wärmepumpe mit einem Fremdgassammelraum, Verfahren zum Betreiben einer Wärmepumpe und Verfahren zum Herstellen einer Wärmepumpe
EP3710136A1 (fr) Procédé et dispositif pour obtenir de l'eau à partir de l'air ambiant
WO2013106874A1 (fr) Évaporateur à cylindre à vide pour purifier de l'eau salée ou de l'eau polluée
EP2404886B1 (fr) Procédé et dispositif pour la préparation de briques silico-calcaires et de pierres en béton poreux
AT401293B (de) Verfahren und vorrichtung zur entgasung der flüssigkeit in einem flüssigkeitskreislauf
DE102017217730A1 (de) Kondensierer mit einer füllung und wärmepumpe
WO1986004517A1 (fr) Installation munie d'un element de traitement endothermique et exothermique ainsi que d'un element pour la fourniture de la chaleur contenant une installation d'absorption thermique
DE1288433B (de) Verfahren und Vorrichtung zur UEbertragung von Energie eines Antriebsmediums auf eine angetriebenes Medium
DE102015209848A1 (de) Wärmepumpe mit verschränkter Verdampfer/Kondensator-Anordnung und Verdampferboden
DE19544238C1 (de) Verfahren und Vorrichtung zur Aufbereitung von Brauchwasser einer Kalk-Sandstein-Härteanlage
DE102016203410A1 (de) Wärmepumpe mit einer gasfalle, verfahren zum betreiben einer wärmepumpe mit einer gasfalle und verfahren zum herstellen einer wärmepumpe mit einer gasfalle
DE2920212C2 (fr)
DE102014112140B4 (de) Verfahren und eine Vorrichtung zur Aufbereitung von Abwasser aus Produktions- oder Arbeitsverfahren
DE102016213295A1 (de) Wärmepumpe mit einer Füllstands-regulierenden Drossel und Verfahren zum Herstellen einer Wärmepumpe
DE10347498B4 (de) Vorrichtung zum Austreiben von Wasser aus einer wässrigen Lösung
DE102012220186A1 (de) Tropfenabscheider und Verdampfer
DE202012009318U1 (de) Solare Meerwasserentsalzungsanlage
EP1295852A1 (fr) Installation de dessalement ou d épuration d eau salée par distillation
DE2552753A1 (de) Verfahren und anordnung zum heizen unter verwendung einer waermepumpe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13706403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13706403

Country of ref document: EP

Kind code of ref document: A1