WO2013104270A1 - 专用导频的解码方法和用户设备 - Google Patents

专用导频的解码方法和用户设备 Download PDF

Info

Publication number
WO2013104270A1
WO2013104270A1 PCT/CN2013/070021 CN2013070021W WO2013104270A1 WO 2013104270 A1 WO2013104270 A1 WO 2013104270A1 CN 2013070021 W CN2013070021 W CN 2013070021W WO 2013104270 A1 WO2013104270 A1 WO 2013104270A1
Authority
WO
WIPO (PCT)
Prior art keywords
dedicated pilot
pilot channelization
code
channelization code
scch
Prior art date
Application number
PCT/CN2013/070021
Other languages
English (en)
French (fr)
Inventor
周欢
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13736259.6A priority Critical patent/EP2797238B1/en
Publication of WO2013104270A1 publication Critical patent/WO2013104270A1/zh
Priority to US14/328,884 priority patent/US9480083B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers

Definitions

  • the pilot mode that can be used in the 4 transmit antennas can be simultaneously transmitted by a common pilot (Common Pilot) and a dedicated pilot (Dedicated Pilot), wherein the common pilot is used for channel estimation and generating a precoding control indication (Precoding Control) Indication, PCI), dedicated pilot is used for data decoding.
  • This method can reduce the amount of pre-coded information that the base station (NodeB) notifies the user equipment (User Equipment, UE).
  • the NodeB Since the number of dedicated pilots is related to the number of data layers, the NodeB needs to notify the UE of the channelization code used by the downlink dedicated pilot in real time, so that the UE can decode the dedicated pilot. However, there is no explicit NodeB in the prior art to notify the UE scheme of the channelization code of the dedicated pilot.
  • the embodiments of the present invention provide a decoding method and a device for a dedicated pilot, which enable a UE to learn a channelization code of a dedicated pilot notified by a NodeB, and implement decoding of a dedicated pilot.
  • An embodiment of the present invention provides a decoding method of a dedicated pilot, including:
  • Determining a set of dedicated pilot channelization codes Receiving downlink control information sent by the base station;
  • the dedicated pilot channelization code is used to decode the dedicated pilot.
  • the embodiment of the invention provides a user equipment, including:
  • the embodiment of the present invention can determine the dedicated pilot channelization code used from the set of dedicated pilot channelization codes by using the downlink control information, thereby implementing decoding of the dedicated pilot.
  • FIG. 1 is a schematic flowchart diagram of an embodiment of a method for decoding a dedicated pilot according to the present invention
  • FIG. 2 is a schematic flowchart of another embodiment of a method for decoding a dedicated pilot according to the present invention
  • FIG. 3 is a schematic flowchart of another embodiment of a method for decoding a dedicated pilot according to the present invention
  • FIG. 5 is a schematic flowchart of another embodiment of a method for decoding a dedicated pilot according to the present invention
  • FIG. 6 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • Step 11 A UE determines a set of dedicated pilot channelization codes
  • a fixed set of dedicated pilot channelization codes may be preset, for example, a fixed spreading factor (SF) is set in the UE in advance, and a set of dedicated pilot channelization codes is determined by a fixed SF;
  • SF spreading factor
  • Step 12 The UE receives downlink control information sent by the base station.
  • the UE receives the High Speed Shared Control Channel (HS-SCCH) information sent by the base station.
  • Step 13 The UE determines, according to the downlink control information, a dedicated pilot channelization code from the set of dedicated pilot channelization codes;
  • the HS-SCCH includes information for indicating the location of the dedicated pilot, and the UE may directly determine the dedicated pilot from the determined set of dedicated pilots according to the information for indicating the location of the dedicated pilot.
  • the HS-SCCH includes the number of data layers, and the UE selects, from the set of the dedicated pilot channels determined above, the same number of dedicated pilots as the number of data layers as the determined dedicated pilot; or, in the HS-SCCH Including the number of data layers, the UE may also or itself use the code channel number of the HS-SCCH, and use the code channel number of the HS-SCCH as a starting position, and select and data layer from the determined set of dedicated pilot channels. The same number of dedicated pilots as the determined dedicated pilot;
  • the HS-SCCH includes the number of data layers and the starting channel code number of the High Speed Physical Downlink Shared Channel (HS-PDSCH), and the UE starts with the starting code channel number of the HS-PDSCH. Position, selecting the same number of dedicated pilots as the number of data layers from the set of dedicated pilot channels determined above as the determined dedicated pilot.
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • Step 14 The UE uses the dedicated pilot channelization code to decode the dedicated pilot.
  • the UE After the UE successfully decodes the HS-SCCH with its own UE ID, it can know that there is its own data, and then can obtain the dedicated pilot in its own data. For example, in the existing protocol, the dedicated pilot is transmitted in the dedicated pilot channel of two slots (slots) after the HS-SCCH. Therefore, after successfully decoding the HS-SCCH, the UE can successfully decode the HS- The dedicated pilot channel of the 2 slots after the SCCH receives its own dedicated pilot, and then the dedicated pilot channel can be decoded using the determined dedicated pilot channelization code.
  • the dedicated pilot channelization code used can be determined from the set of dedicated pilot channelization codes, thereby implementing decoding of the dedicated pilot.
  • Step 21 A fixed SF is set in the UE, and a set of dedicated pilot channelization codes is determined according to the set SF.
  • the spreading code of the channel is determined by using an Orthogonal Variable Spreading Factor (OVSF) code, and the spread spectrum causes the data symbol to become a chip, and the signal bandwidth is increased, and the code of each symbol is added.
  • the number of slices is called the spreading factor (SF), and the spread spectrum can be passed through the data.
  • the symbol is multiplied by the OVSF code.
  • the channelization code uses the OVSF code, often expressed as C ch , SF , k , SF is the spreading factor, k is the code number, 0 ⁇ k ⁇ SF-l.
  • the dedicated pilot channelization codes corresponding to the four dedicated pilots are combined into a dedicated pilot channelization code set according to the code number from small to large, and the code number can uniquely identify the dedicated pilot channelization code.
  • the number of the dedicated pilot channelization codes in the set is 0, 1, 2, 3, respectively, and the determined set of dedicated pilot channelization codes can be expressed as ⁇ 0, 1, 2, 3 ⁇ .
  • the code numbers of the four dedicated pilot channelization codes are a, b, c, and d, respectively, and assuming that a ⁇ b ⁇ c ⁇ d, the above four dedicated pilot channelization codes are combined and used.
  • the correspondence between the code number of the pilot channelization code and the number of the dedicated pilot channelization code in the set is: a, b, c, and d correspond to numbers 0, 1, 2, and 3, respectively.
  • a fixed set of dedicated pilot channelization codes may be directly set in the UE, for example, directly configuring, in the UE, the dedicated pilot channelization codes whose code numbers are a, b, c, and d respectively.
  • a set of dedicated pilot channelization codes may be directly set in the UE, for example, directly configuring, in the UE, the dedicated pilot channelization codes whose code numbers are a, b, c, and d respectively.
  • the high-level signaling may be sent by the NodeB to the UE, for example, the radio resource control protocol signaling of the UE and the universal terrestrial radio access network (UTRAN) radio interface, where the high-layer signaling indicates the UE
  • the dedicated pilot channelization code is used by the UE to determine the indicated dedicated pilot channelization code according to the indication information, and the indicated dedicated pilot channelization codes constitute a set of dedicated pilot channelization codes.
  • Step 22 The UE correctly receives the HS-SCCH information sent by the NodeB, where the HS-SCCH information includes location information indicating the dedicated pilot channelization code in the dedicated pilot channelization code set.
  • the above location information can be indicated in an explicit or implicit manner.
  • the number of dedicated pilot channelization codes and the initial offset of the dedicated pilot channelization code are included in the HS-SCCH;
  • the HS-SCCH includes a data layer (Layer) number and a starting offset of the dedicated pilot channelization code.
  • the UE can simultaneously listen to multiple HS-SCCHs and use the UE ID to decode after listening to the HS-SCCH. If the UE can successfully decode, it indicates that the HS-SCCH is correctly received. And use the information in the correctly received HS-SCCH for subsequent processing.
  • Step 23 The UE determines a dedicated pilot channelization code from the determined set of dedicated pilot channelization codes according to the location information used to indicate the dedicated pilot channelization code in the dedicated pilot channelization code set.
  • the determined set of dedicated pilot channelization codes is ⁇ 0, 1, 2, 3 ⁇ , and since the number of dedicated pilots is the same as the number of data layers, the dedicated pilots included in the HS-SCCH are The number of channelization codes (or the number of data layers) is 2, and when the initial offset is 0, the number of the dedicated pilot channelization codes determined is: 0 and 1; for example, the dedicated pilot channelization code The number of the dedicated pilot channelization codes is 1 and 2 when the number of the pilot layers (or the number of data layers) is 2.
  • the code number of the dedicated pilot channelization code may be further determined according to the correspondence between the code number and the number of the dedicated pilot channelization code, and then the dedicated pilot channelization code is determined, for example, the determined number If 0 and 1, 0 and 1 respectively correspond to code numbers a and b, it can be determined that the dedicated pilot channelization codes are dedicated pilot channelization codes of code numbers a and b, respectively.
  • Step 24 The UE decodes the received dedicated pilot by using the determined dedicated pilot channelization code.
  • the UE directly learns the location of the dedicated pilot channelization code, so that the UE learns the dedicated pilot channelization code, and thus the decoding of the dedicated pilot can be implemented.
  • FIG. 3 is a schematic flowchart of another embodiment of a method for decoding a dedicated pilot according to the present invention.
  • the method includes the following steps: Step 31: The NodeB sends high-level signaling to the UE, and the high-layer signaling is used to configure a fixed dedicated pilot channelization code for the UE.
  • the UE is configured with a fixed N dedicated pilot channelization codes through the high layer signaling, where N is 4 or the number of data layers supported by the UE.
  • the N dedicated pilot channelization codes form a set of dedicated pilot channelization codes, assuming ⁇ 0, 1, 2, 3 ⁇ .
  • a fixed SF is directly set in the UE, and a fixed dedicated pilot channelization code is determined according to the SF.
  • a fixed set of dedicated pilot channelization codes is configured directly within the UE.
  • Step 32 The UE correctly receives the HS-SCCH information sent by the NodeB, where the HS-SCCH information includes the number of data layers.
  • the UE can simultaneously listen to multiple HS-SCCHs and use the UE ID to decode after listening to the HS-SCCH. If the UE can successfully decode, it indicates that the HS-SCCH is correctly received. And use the information in the correctly received HS-SCCH for subsequent processing.
  • Step 33 The UE determines a dedicated pilot channelization code from the determined set of dedicated pilot channelization codes according to the number of data layers.
  • Step 34 The UE decodes the received dedicated pilot by using the determined dedicated pilot channelization code.
  • the UE determines the dedicated pilot channelization code from the set of dedicated pilot channelization codes by using the number of data layers included in the correctly received HS-SCCH, thereby implementing decoding of the dedicated pilot.
  • Step 41 A NodeB sends a high layer signaling to a UE, where the high layer signaling is used to configure a fixed dedicated pilot channelization code for the UE.
  • step 31 For details, see step 31.
  • Step 42 The UE determines the code channel number of the HS-SCCH sent by the NodeB that is correctly received.
  • the UE can simultaneously listen to multiple HS-SCCHs and use the UE ID to decode after detecting the HS-SCCH. If the UE can successfully decode, it indicates that the HS-SCCH is correctly received.
  • Step 43 The UE determines the number of data layers from the correctly received HS-SCCH.
  • the number of data layers may be included in the HS-SCCH.
  • Step 44 The UE determines the dedicated pilot channel according to the correspondence between the number of data layers, the code channel number of the HS-SCCH, and the code channel number of the HS-SCCH and the number of the dedicated pilot channelization code in the set.
  • a dedicated pilot channelization code is determined in the set of codes.
  • the UE may first obtain a correspondence between a code channel number of the HS-SCCH and a number of the dedicated pilot channelization code in the set.
  • the correspondence may be performed by sorting the code channel numbers of the HS-SCCH correctly received by the UE in ascending order, and sequentially ordering the coded channel numbers of the HS-SCCHs with the dedicated pilot channelization codes on the dedicated pilot channel. Numbering within the code set Get it after the correspondence.
  • the code channel number of the HS-SCCH correctly received by UE1 is A
  • the code channel number of the HS-SCCH correctly received by UE2 is B
  • the code channel number of the HS-SCCH correctly received by UE3 is C
  • the HS-correctly received by UE4 The code channel number of the SCCH is D. If A ⁇ B ⁇ C ⁇ D, the number corresponding to the code channel number A is 0, the number corresponding to the code channel number B is 1, and the number corresponding to the code channel number C is 2.
  • the code number D corresponds to the number 3.
  • the code channel number of the correctly received HS-SCCH is A, and the above correspondence indicates that the number corresponding to A is 0, then UE1 will be in the determined set of dedicated pilot channelization codes. Taking 0 as the starting point, a dedicated pilot channelization code whose number is the number of data layers is selected.
  • the code channel number of the correctly received HS-SCCH is A, and A corresponds to When the number is 0, the number of the dedicated pilot channelization codes determined is 0 and 1.
  • the code channel number of the correctly received HS-SCCH is B, and the number corresponding to B is 1, then it is determined.
  • the dedicated pilot channelization codes are numbered 1 and 2. That is, the number corresponding to the code channel number of the HS-SCCH is used as the starting position, and the dedicated pilot channelization code whose number is the number of data layers is sequentially selected from the set of dedicated pilot channelization codes as the determined dedicated guide. Frequency channelization code.
  • Step 45 The UE decodes the received dedicated pilot by using the determined dedicated pilot channelization code.
  • the UE determines the dedicated pilot channelization code from the set of dedicated pilot channelization codes by using the correctly received HS-SCCH code channel number and the number of data layers included in the HS-SCCH, thereby implementing Decoding of dedicated pilots.
  • FIG. 5 is a schematic flowchart of another embodiment of a method for decoding a dedicated pilot according to the present invention, including: Step 51: A NodeB sends a high layer signaling to a UE, where the high layer signaling is used to configure a fixed dedicated pilot channelization code for the UE.
  • step 31 For details, see step 31.
  • Step 52 The UE correctly receives the HS-SCCH information sent by the NodeB, where the HS-SCCH information includes the number of data layers and the starting channel code number of the HS-PDSCH.
  • Step 53 The UE determines a dedicated pilot channelization code from the determined set of dedicated pilot channelization codes according to the number of data layers and the starting channel code number of the HS-PDSCH.
  • the dedicated pilot is determined.
  • the channelization codes are numbered 0 and 1.
  • the starting channel code number of the HS-PDSCH is 1, the determined dedicated The pilot channelization codes are numbered 1 and 2. That is, using the starting channel code number of the HS-PDSCH as a starting position, a dedicated pilot channelization code whose number is the number of data layers is sequentially selected from the set of dedicated pilot channelization codes as the determined dedicated pilot. Channelization code.
  • Step 54 The UE decodes the received dedicated pilot by using the determined dedicated pilot channelization code.
  • the UE determines the dedicated pilot channelization code from the set of dedicated pilot channelization codes by using the starting channel code number and the number of data layers of the HS-PDSCH in the correctly received HS-SCCH, which can be implemented. Decoding of dedicated pilots.
  • FIG. 6 is a schematic structural diagram of an embodiment of a user equipment according to the present invention, including a determining module 61, a receiving module 62, a selecting module 63, and a decoding module 64.
  • the determining module 61 is configured to determine a set of dedicated pilot channelization codes; Receiving downlink control information sent by the base station; the selecting module 63 is configured to determine, according to the downlink control information received by the receiving module 62, a dedicated guide from the set of the dedicated pilot channelization codes determined by the determining module 61.
  • the frequency channelization code is used by the decoding module 64 to decode the dedicated pilot channelization code obtained by the selection module 63 and decode the dedicated pilot.
  • the determining module is specifically configured to: preset a set of dedicated pilot channelization codes; or receive high layer signaling sent by the base station, where the high layer signaling is used to configure a fixed dedicated pilot channelization for the UE.
  • the fixed dedicated pilot channelization code forms a set of the dedicated pilot channelization codes.
  • the receiving module is specifically configured to: correctly receive an HS-SCCH sent by the base station, where the correctly received HS-SCCH explicitly or implicitly includes a dedicated pilot channelization code for indicating the dedicated guide The location information in the frequency channelization code set; the selection module is specifically configured to: according to the location information used to indicate the dedicated pilot channelization code in the dedicated pilot channelization code set, from the dedicated guide A dedicated pilot channelization code corresponding to the location is determined in the set of frequency channelization codes.
  • the information used to indicate the location of the dedicated pilot channelization code includes: a number of dedicated pilot channelization codes and a starting offset, or a starting offset of the dedicated pilot channelization code.
  • the number of data layers includes: a number of dedicated pilot channelization codes and a starting offset, or a starting offset of the dedicated pilot channelization code.
  • the downlink control information includes a number of data layers
  • the selecting module is specifically configured to: sequentially select, from the set of the dedicated pilot channelization codes, a dedicated pilot channelization code whose number is the number of the data layers, and determine the dedicated pilot channelization code.
  • the downlink control information is carried on the HS-SCCH, and the receiving module is further configured to determine a code channel number of the HS-SCCH where the downlink control information is correctly received, where the HS-SCCH includes data.
  • the selecting module is specifically configured to: according to the code channel number of the HS-SCCH, and the code channel number of the HS-SCCH and the dedicated pilot channelization code in the dedicated pilot channelization code set Corresponding relationship, the dedicated pilot channelization code indicated by the number corresponding to the code channel number of the HS-SCCH is used as a starting position, and the number of the dedicated pilot channelization codes is sequentially selected from the set A dedicated pilot channelization code for the number of data layers is determined as the dedicated pilot channelization code.
  • the selecting module may be further configured to: obtain a correspondence between a code channel number of the HS-SCCH and a number of the dedicated pilot channelization code in the dedicated pilot channelization code set, where the correspondence relationship is The code channel numbers of the HS-SCCH correctly received by the UE are sorted in order from smallest to largest, and the code channel numbers of the sorted HS-SCCH are sequentially sequenced with the dedicated pilot channelization code in the dedicated pilot channelization code set. Obtained after the correspondence.
  • the receiving module is specifically configured to: correctly receive an HS-SCCH sent by the base station, where the correctly received HS-SCCH includes a starting channel code number and a data layer number of the HS-PDSCH; Specifically, the starting channel code number of the HS-PDSCH is used as a starting number, and the dedicated pilot channelization of the number of the data layers is selected from the set of dedicated pilot channelization codes in sequence. a code, determined as the dedicated pilot channelization code.
  • the dedicated pilot channelization code used can be determined from the set of dedicated pilot channelization codes, thereby implementing decoding of the dedicated pilot.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种专用导频的解码方法和用户设备。该方法包括确定专用导频信道化码的集合;接收基站发送的下行控制信息;根据所述下行控制信息,从所述专用导频信道化码的集合中确定专用导频信道化码;采用所述专用导频信道化码,解码专用导频。本发明实施例可以实现专用导频信道化码的确定以及专用导频的解码。

Description

专用导频的解码方法和用户设备 本申请要求于 2012 年 1 月 13 日提交中国专利局、 申请号为 201210010863.8、发明名称为"专用导频的解码方法和用户设备"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通信技术, 尤其涉及一种专用导频的解码方法和用户 设备。
背景技术 将多输入多输出 (Multiple Input Multiple Output, MIMO ) 引入宽带码 分多址( Wideband Code Division Multiple Access, WCDMA )的下行链路后, 可以提高小区吞吐量。 4发射天线 ΜΙΜΟ中可釆用的导频方式可以为公共 导频( Common Pilot )和专用导频( Dedicated Pilot ) 同时发送, 其中, 公 共导频用于信道估计和生成预编码控制指示 ( Precoding Control Indication, PCI ), 专用导频用于数据解码, 这种方式可以减少基站(NodeB )通知用户 设备(User Equipment, UE )的预编码的信息量。 由于专用导频的个数与数 据层个数相关, 需要 NodeB实时通知 UE下行专用导频使用的信道化码, 以便 UE能够解码得到专用导频。 但是, 现有技术中没有明确的 NodeB将 专用导频的信道化码的通知给 UE方案。
发明内容 本发明实施例提供一种专用导频的解码方法和设备,实现 UE能够获知 NodeB通知的专用导频的信道化码, 并实现专用导频的解码。
本发明实施例提供了一种专用导频的解码方法, 包括:
确定专用导频信道化码的集合; 接收基站发送的下行控制信息;
根据所述下行控制信息, 从所述专用导频信道化码的集合中确定专用 导频信道化码;
釆用所述专用导频信道化码, 解码专用导频。
本发明实施例提供了一种用户设备, 包括:
由上述技术方案可知, 本发明实施例通过下行控制信息, 可以从专用 导频信道化码的集合中确定出釆用的专用导频信道化码, 进而实现专用导 频的解码。
附图说明 图 1为本发明专用导频的解码方法一实施例的流程示意图;
图 2为本发明专用导频的解码方法另一实施例的流程示意图; 图 3为本发明专用导频的解码方法另一实施例的流程示意图; 图 4为本发明专用导频的解码方法另一实施例的流程示意图; 图 5为本发明专用导频的解码方法另一实施例的流程示意图; 图 6为本发明用户设备一实施例的结构示意图。
具体实施方式 图 1为本发明专用导频的解码方法一实施例的流程示意图, 包括: 步骤 11 : UE确定专用导频信道化码的集合;
其中, 可以预先设置固定的专用导频信道化码的集合, 例如, 预先在 UE内设置固定的扩频因子(Spread Factor, SF ) , 通过固定的 SF确定专用 导频信道化码的集合;
也可以预先在 UE内设置固定的 N个专用导频信道化码, 这些固定的 专用导频信道化码组成专用导频信道化码的集合。
步骤 12: UE接收基站发送的下行控制信息;
例如, UE 接收基站下发的高速共享控制信道 (High Speed Shared Control Channel, HS-SCCH )信息。 步骤 13: UE根据所述下行控制信息,从所述专用导频信道化码的集合 中确定专用导频信道化码;
例如, HS-SCCH中包含用于指示专用导频的位置的信息, UE可以根 据该用于指示专用导频的位置的信息, 直接从上述确定的专用导频的集合 中确定出专用导频;
或者, HS-SCCH中包含数据层个数, UE从上述确定的专用导频信道 的集合中选取与数据层个数相同数目的专用导频作为确定出的专用导频; 或者, HS-SCCH 中包含数据层个数, UE 还可以或者自身釆用的 HS-SCCH的码道号, 以 HS-SCCH的码道号作为起始位置, 从上述确定的 专用导频信道的集合中选取与数据层个数相同数目的专用导频作为确定出 的专用导频;
或者, HS-SCCH 中包含数据层个数和高速物理下行共享信道(High Speed Physical Downlink Shared Channel, HS-PDSCH ) 的起始信道码号, UE 以 HS-PDSCH的起始码道号作为起始位置, 从上述确定的专用导频信 道的集合中选取与数据层个数相同数目的专用导频作为确定出的专用导 频。
步骤 14: UE釆用所述专用导频信道化码, 解码专用导频。
其中, UE釆用自身的 UE ID成功解码 HS-SCCH后, 可以获知存在自 身的数据, 之后可以在自身的数据中获取专用导频。 例如, 现有协议中规 定, 专用导频在 HS-SCCH之后的 2个时隙( slot )的专用导频信道中传输, 因此, UE在成功解码 HS-SCCH后, 可以在成功解码的 HS-SCCH之后的 2 个时隙的专用导频信道内接收到自身的专用导频, 然后可以釆用确定出的 专用导频信道化码对专用导频进行解码。
本实施例通过下行控制信息, 可以从专用导频信道化码的集合中确定 出釆用的专用导频信道化码, 进而实现专用导频的解码。
图 2为本发明专用导频的解码方法另一实施例的流程示意图, 包括: 步骤 21 : UE内设置固定的 SF,根据设置的 SF确定专用导频信道化码 的集合。
现有协议中规定信道的扩频码均釆用正交可变扩频因子 ( Orthogonal Variable Spreading Factor, OVSF )码, 扩频使数据符号变为码片, 并增加 了信号带宽, 每符号的码片数称为扩频因子 (SF ) , 扩频可以通过将数据 符号与 OVSF码相乘得到。信道化码使用 OVSF码,常表示为 Cch,SF,k, SF 为 扩频因子, k 为码号,0 < k<SF-l。
由于 UE在下行时的专用物理控制信道可以支持 SF=256, 那么若使用 SF4的扩频码, 则可以同时调度 64个专用导频给 UE; 若使用 SF64, 则可 以同时调度 4个专用导频。
因此当专用导频的扩频码确定后, 那么它的可能个数也就确定了, 专 用导频的信道化码集合就固定了, 例如, 当使用 SF=64, 则可以同时调度 4 个专用导频。
以 SF=64为例, 将 4个专用导频对应的专用导频信道化码按照码号从 小到大的顺序组合成专用导频信道化码集合, 码号可以唯一标识专用导频 信道化码。 该集合内 4个专用导频信道化码的编号分别为 0、 1、 2、 3 , 则 确定的专用导频信道化码的集合可以表示为 {0,1,2,3}。 例如, 上述的 4个专 用导频信道化码的码号分别为 a,b,c,d,假设 a<b<c<d, 则上述的 4个专用导 频信道化码组成集合后, 专用导频信道化码的码号与专用导频信道化码在 集合内的编号的对应关系为: a,b,c,d所对应的编号分别为 0,1,2,3。
可选的,也可以直接在 UE内设置固定的专用导频信道化码的集合,例 如, 直接在 UE内配置上述的码号分别为 a,b,c,d的专用导频信道化码组成 专用导频信道化码的集合;
可选的, 也可以由 NodeB向 UE下发高层信令, 例如 UE与通用陆地 无线接入网络 ( Universal Terrestrial Radio Access Network, UTRAN )无线 接口的无线资源控制协议信令,该高层信令指示 UE釆用的专用导频信道化 码, UE才艮据指示信息确定指示的专用导频信道化码, 由这些指示的专用导 频信道化码组成专用导频信道化码的集合。
步骤 22: UE正确接收 NodeB发送的 HS-SCCH信息, 该 HS-SCCH信 息中包含用于指示专用导频信道化码在所述专用导频信道化码集合中的位 置信息。
上述的位置信息可以釆用显式或隐式的方式进行指示。
例如, HS-SCCH中包含专用导频信道化码的个数和专用导频信道化码 的起始偏置 (offset ) ;
或者, HS-SCCH中包含数据层(Layer )个数和专用导频信道化码的起 始偏置。 另夕卜, UE可以同时侦听多个 HS-SCCH, 并在侦听到 HS-SCCH后釆用 自身的 UE ID进行解码,如果能够成功解码,则表明正确接收该 HS-SCCH。 并釆用正确接收的 HS-SCCH中的信息进行后续处理。
步骤 23: UE根据用于指示专用导频信道化码在所述专用导频信道化码 集合中的位置信息, 从确定的专用导频信道化码的集合中确定出专用导频 信道化码。
例如, 确定的专用导频信道化码的集合为 {0,1,2,3} , 又由于专用导频的 个数与数据层个数相同, 因此, 当 HS-SCCH中包含的专用导频信道化码的 个数(或者数据层个数)为 2, 起始偏置为 0时, 确定出的专用导频信道化 码的编号为: 0和 1 ; 又例如, 专用导频信道化码的个数(或者数据层的个 数)为 2, 起始偏置为 1时, 确定出的专用导频信道化码的编号为: 1和 2。
在确定出编号后, 可以进一步根据专用导频信道化码的码号与编号的 对应关系确定出专用导频信道化码的码号, 进而确定专用导频信道化码, 例如, 确定出的编号为 0和 1 , 0和 1分别对应码号为 a和 b, 则可以确定 出专用导频信道化码分别为码号为 a和 b的专用导频信道化码。
步骤 24: UE釆用确定出的专用导频信道化码,对接收的专用导频进行 解码。
本实施例通过基站直接指示专用导频信道化码的位置的方式使得 UE 获知专用导频信道化码, 进而可以实现专用导频的解码。
图 3为本发明专用导频的解码方法另一实施例的流程示意图, 包括: 步骤 31 : NodeB向 UE发送高层信令, 高层信令用于为 UE配置固定 的专用导频信道化码。
例如,通过高层信令为 UE配置固定的 N个专用导频信道化码, N为 4 或者为 UE最大支持的数据层数。
N 个专用导频信道化码组成专用导频信道化码的集合, 假设为 {0,1,2,3}。
可选的, 也可以如上一实施例所示, 直接在 UE内设置固定的 SF, 根 据 SF确定固定的专用导频信道化码。 或者, 直接在 UE内配置固定的专用 导频信道化码的集合。
步骤 32: UE正确接收 NodeB发送的 HS-SCCH信息, 该 HS-SCCH信 息中包含数据层个数。 UE可以同时侦听多个 HS-SCCH,并在侦听到 HS-SCCH后釆用自身的 UE ID进行解码, 如果能够成功解码, 则表明正确接收该 HS-SCCH。 并釆 用正确接收的 HS-SCCH中的信息进行后续处理。
步骤 33: UE根据数据层个数,从确定的专用导频信道化码的集合中确 定出专用导频信道化码。
假设确定的专用导频信道化码的集合为 {0,1,2,3} , 当数据层个数(RI ) =1时, 则确定出的专用导频信道化码的编号为 0, 当数据层个数为 2时, 确定出的专用导频信道化码的编号为 0和 1。 即,从专用导频信道化码的集 合中依次选取个数为数据层个数的专用导频信道化码作为确定出的专用导 频信道化码。
步骤 34: UE釆用确定出的专用导频信道化码,对接收的专用导频进行 解码。
本实施例中 UE通过正确接收的 HS-SCCH中包含的数据层个数从专用 导频信道化码的集合中确定出专用导频信道化码, 进而可以实现专用导频 的解码。
图 4为本发明专用导频的解码方法另一实施例的流程示意图, 包括: 步骤 41 : NodeB向 UE发送高层信令, 高层信令用于为 UE配置固定 的专用导频信道化码。
具体内容可以参见步骤 31。
步骤 42: UE确定正确接收的 NodeB发送的 HS-SCCH的码道号。 其中, UE可以同时侦听多个 HS-SCCH, 并在侦听到 HS-SCCH后釆用 自身的 UE ID进行解码,如果能够成功解码,则表明正确接收该 HS-SCCH。
步骤 43: UE从正确接收的 HS-SCCH中确定出数据层个数。
其中, HS-SCCH中可以包含数据层个数。
步骤 44: UE根据数据层个数、 HS-SCCH的码道号以及 HS-SCCH的 码道号与专用导频信道化码在集合内的编号之间的对应关系, 从确定的专 用导频信道化码集合中确定出专用导频信道化码。
其中, UE可以首先获取 HS-SCCH的码道号与专用导频信道化码在集 合内的编号之间的对应关系。 该对应关系可以通过将 UE 正确接收的 HS-SCCH 的码道号按照从小到大的顺序进行排序, 将排序后的 HS-SCCH 的码道号依次与专用导频信道化码在专用导频信道化码集合内的编号进行 对应后得到。 例如, UE1正确接收的 HS-SCCH的码道号为 A, UE2正确接 收的 HS-SCCH的码道号为 B, UE3正确接收的 HS-SCCH的码道号为 C, UE4正确接收的 HS-SCCH的码道号为 D, 如果 A<B<C<D, 则可以得到码 道号 A对应的编号为 0, 码道号 B对应的编号为 1 , 码道号 C对应的编号 为 2, 码道号 D对应的编号为 3。 之后对于某个 UE, 例如 UE1 , 其正确接 收的 HS-SCCH的码道号为 A, 上述的对应关系表明 A对应的编号为 0, 则 UE1将在确定的专用导频信道化码的集合中以 0为起点, 选择个数为数据 层个数的专用导频信道化码。
例如,假设确定的专用导频信道化码的集合为 {0,1,2,3} , 数据层个数为 2, 则当正确接收的 HS-SCCH的码道号为 A, 且 A对应的编号为 0时, 则 确定出的专用导频信道化码的编号为 0 和 1 ; 又例如, 当正确接收的 HS-SCCH的码道号为 B, 且 B对应的编号为 1时, 则确定出的专用导频信 道化码的编号为 1和 2。即,以 HS-SCCH的码道号对应的编号为起始位置, 从专用导频信道化码的集合中依次选取个数为数据层个数的专用导频信道 化码作为确定出的专用导频信道化码。
步骤 45: UE釆用确定出的专用导频信道化码,对接收的专用导频进行 解码。
本实施例中 UE通过正确接收的 HS-SCCH的码道号以及该 HS-SCCH 中包含的数据层个数从专用导频信道化码的集合中确定出专用导频信道化 码, 进而可以实现专用导频的解码。
图 5为本发明专用导频的解码方法另一实施例的流程示意图, 包括: 步骤 51 : NodeB向 UE发送高层信令, 高层信令用于为 UE配置固定 的专用导频信道化码。
具体内容可以参见步骤 31。
步骤 52: UE正确接收 NodeB发送的 HS-SCCH信息, 该 HS-SCCH信 息中包含数据层个数和 HS-PDSCH的起始信道码号。
步骤 53: UE根据数据层个数和 HS-PDSCH的起始信道码号, 从确定 的专用导频信道化码的集合中确定出专用导频信道化码。
假设确定的专用导频信道化码的集合为 {0,1,2,3} , 数据层个数为 2, 则 当 HS-PDSCH的起始信道码号为 0时, 确定出的专用导频信道化码的编号 为 0和 1。 又例如, 当 HS-PDSCH的起始信道码号为 1时, 确定出的专用 导频信道化码的编号为 1和 2。 即, 以 HS-PDSCH的起始信道码号为起始 位置, 从专用导频信道化码的集合中依次选取个数为数据层个数的专用导 频信道化码作为确定出的专用导频信道化码。
步骤 54: UE釆用确定出的专用导频信道化码,对接收的专用导频进行 解码。
本实施例中 UE通过正确接收的 HS-SCCH中的 HS-PDSCH的起始信道 码号和数据层个数从专用导频信道化码的集合中确定出专用导频信道化 码, 进而可以实现专用导频的解码。
图 6为本发明用户设备一实施例的结构示意图, 包括确定模块 61、 接 收模块 62、 选择模块 63和解码模块 64; 确定模块 61用于确定专用导频信 道化码的集合; 接收模块 62用于接收基站发送的下行控制信息; 选择模块 63 用于根据所述接收模块 62接收的所述下行控制信息, 从所述确定模块 61确定的所述专用导频信道化码的集合中确定专用导频信道化码; 解码模 块 64用于釆用所述选择模块 63得到的所述专用导频信道化码, 解码专用 导频。
可选的, 所述确定模块具体用于: 预先设置专用导频信道化码的集合; 或者,接收基站发送的高层信令, 所述高层信令用于为 UE配置固定的专用 导频信道化码, 所述固定的专用导频信道化码组成所述专用导频信道化码 的集合。
可选的, 所述接收模块具体用于: 正确接收基站发送的 HS-SCCH, 所 述正确接收的 HS-SCCH 中显式或隐式包含用于指示专用导频信道化码在 所述专用导频信道化码集合中的位置信息; 所述选择模块具体用于: 根据 所述用于指示专用导频信道化码在所述专用导频信道化码集合中的位置信 息, 从所述专用导频信道化码集合中确定出对应位置的专用导频信道化码。
可选的, 所述用于指示专用导频信道化码的位置的信息包括: 专用导 频信道化码的个数和起始偏置, 或者, 专用导频信道化码的起始偏置和数 据层个数。
可选的, 所述下行控制信息中包含数据层个数,
所述选择模块具体用于: 从所述专用导频信道化码的集合中依次选取 个数为所述数据层个数的专用导频信道化码, 确定为所述专用导频信道化 码。 可选的, 所述下行控制信息承载在 HS-SCCH上, 所述接收模块还用于 确定正确接收的所述下行控制信息所在的 HS-SCCH 的码道号, 所述 HS-SCCH中包含数据层个数;所述选择模块具体用于:根据所述 HS-SCCH 的码道号,以及 HS-SCCH的码道号与专用导频信道化码在专用导频信道化 码集合内的编号之间的对应关系,以所述 HS-SCCH的码道号对应的编号指 示的专用导频信道化码作为起始位置, 依次从所述专用导频信道化码的集 合中选取个数为所述数据层个数的专用导频信道化码, 确定为所述专用导 频信道化码。
进一步地, 所述选择模块还可以用于: 获取 HS-SCCH的码道号与专用 导频信道化码在专用导频信道化码集合内的编号之间的对应关系, 所述对 应关系通过将 UE正确接收的 HS-SCCH的码道号按照从小到大的顺序进行 排序,将排序后的 HS-SCCH的码道号依次与专用导频信道化码在专用导频 信道化码集合内的编号进行对应后得到。
可选的, 所述接收模块具体用于: 正确接收基站发送的 HS-SCCH, 所 述正确接收的 HS-SCCH中包含 HS-PDSCH的起始信道码号和数据层个数; 所述选择模块具体用于:以所述 HS-PDSCH的起始信道码号作为起始编号, 依次从所述专用导频信道化码的集合中选取个数为所述数据层个数的专用 导频信道化码, 确定为所述专用导频信道化码。
本实施例通过下行控制信息, 可以从专用导频信道化码的集合中确定 出釆用的专用导频信道化码, 进而实现专用导频的解码。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储 程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利要求
1、 一种专用导频的解码方法, 其特征在于, 包括:
确定专用导频信道化码的集合;
接收基站发送的下行控制信息;
根据所述下行控制信息, 从所述专用导频信道化码的集合中确定专用 导频信道化码;
釆用所述专用导频信道化码, 解码专用导频。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定专用导频信道 化码的集合, 包括:
预先设置专用导频信道化码的集合; 或者,
接收基站发送的高层信令,所述高层信令用于为用户设备 UE配置固定 的专用导频信道化码, 所述固定的专用导频信道化码组成所述专用导频信 道化码的集合。
3、 根据权利要求 1或 2所述的方法, 其特征在于,
所述接收基站发送的下行控制信息, 包括:
正确接收基站发送的高速共享控制信道 HS-SCCH, 所述正确接收的 HS-SCCH中显式或隐式包含用于指示专用导频信道化码在所述专用导频信 道化码集合中的位置信息;
所述根据所述下行控制信息, 从所述专用导频信道化码的集合中确定 专用导频信道化码, 包括:
根据所述用于指示专用导频信道化码在所述专用导频信道化码集合中 的位置信息, 从所述专用导频信道化码集合中确定出对应位置的专用导频 信道化码。
4、 根据权利要求 3所述的方法, 其特征在于, 所述用于指示专用导频 信道化码在所述专用导频信道化码集合中的位置信息包括: 专用导频信道 化码的个数和起始偏置, 或者, 专用导频信道化码的起始偏置和数据层个 数。
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述下行控制信息 中包含数据层个数, 所述根据所述下行控制信息, 从所述专用导频信道化 码的集合中确定专用导频信道化码, 包括:
从所述专用导频信道化码的集合中依次选取个数为所述数据层个数的 专用导频信道化码, 确定为所述专用导频信道化码。
6、 根据权利要求 1或 2所述的方法, 其特征在于, 所述下行控制信息 承载在 HS-SCCH上, 所述方法还包括:
确定正确接收的所述下行控制信息所在的 HS-SCCH 的码道号, 所述 HS-SCCH中包含数据层个数;
所述根据所述下行控制信息, 从所述专用导频信道化码的集合中确定 专用导频信道化码, 包括:
根据所述 HS-SCCH的码道号, 以及 HS-SCCH的码道号与专用导频信 道化码在专用导频信道化码集合内的编号之间的对应关系, 以所述 HS-SCCH的码道号对应的编号指示的专用导频信道化码作为起始位置, 依 次从所述专用导频信道化码的集合中选取个数为所述数据层个数的专用导 频信道化码, 确定为所述专用导频信道化码。
7、 根据权利要求 6所述的方法, 其特征在于, 还包括:
获取 HS-SCCH 的码道号与专用导频信道化码在专用导频信道化码集 合内的编号之间的对应关系, 所述对应关系通过将 UE 正确接收的 HS-SCCH 的码道号按照从小到大的顺序进行排序, 将排序后的 HS-SCCH 的码道号依次与专用导频信道化码在专用导频信道化码集合内的编号进行 对应后得到。
8、 根据权利要求 1或 2所述的方法, 其特征在于,
所述接收基站发送的下行控制信息, 包括:
正确接收基站发送的 HS-SCCH, 所述正确接收的 HS-SCCH中包含高 速物理下行共享信道 HS-PDSCH的起始信道码号和数据层个数;
所述根据所述下行控制信息, 从所述专用导频信道化码的集合中确定 专用导频信道化码, 包括:
以所述 HS-PDSCH的起始信道码号作为起始, 依次从所述专用导频信 道化码的集合中选取个数为所述数据层个数的专用导频信道化码, 确定为 所述专用导频信道化码。
9、 一种用户设备, 其特征在于, 包括:
确定模块, 用于确定专用导频信道化码的集合; 接收模块, 用于接收基站发送的下行控制信息;
选择模块, 用于根据所述接收模块接收的所述下行控制信息, 从所述 确定模块确定的所述专用导频信道化码的集合中确定专用导频信道化码; 解码模块, 用于釆用所述选择模块得到的所述专用导频信道化码, 解 码专用导频。
10、 根据权利要求 9所述的设备, 其特征在于, 所述确定模块具体用 于:
预先设置专用导频信道化码的集合; 或者,
接收基站发送的高层信令,所述高层信令用于为用户设备 UE配置固定 的专用导频信道化码, 所述固定的专用导频信道化码组成所述专用导频信 道化码的集合。
11、 根据权利要求 9或 10所述的设备, 其特征在于,
所述接收模块具体用于: 正确接收基站发送的高速共享控制信道 HS-SCCH, 所述正确接收的 HS-SCCH 中显式或隐式包含用于指示专用导 频信道化码在所述专用导频信道化码集合中的位置信息;
所述选择模块具体用于: 根据所述用于指示专用导频信道化码在所述 专用导频信道化码集合中的位置信息, 从所述专用导频信道化码集合中确 定出对应位置的专用导频信道化码。
12、 根据权利要求 9或 10所述的设备, 其特征在于, 所述下行控制信 息中包含数据层个数,
所述选择模块具体用于:
从所述专用导频信道化码的集合中依次选取个数为所述数据层个数的 专用导频信道化码, 确定为所述专用导频信道化码。
13、 根据权利要求 9 或 10 所述的设备, 所述下行控制信息承载在 HS-SCCH上, 其特征在于,
所述接收模块还用于确定正确接收的所述下行控制信息所在的 HS-SCCH的码道号, 所述 HS-SCCH中包含数据层个数;
所述选择模块具体用于:根据所述 HS-SCCH的码道号,以及 HS-SCCH 的码道号与专用导频信道化码在专用导频信道化码集合内的编号之间的对 应关系,以所述 HS-SCCH的码道号对应的编号指示的专用导频信道化码作 为起始位置, 依次从所述专用导频信道化码的集合中选取个数为所述数据 层个数的专用导频信道化码, 确定为所述专用导频信道化码。
14、根据权利要求 13所述的设备,其特征在于, 所述选择模块还用于: 获取 HS-SCCH 的码道号与专用导频信道化码在专用导频信道化码集 合内的编号之间的对应关系, 所述对应关系通过将 UE 正确接收的 HS-SCCH 的码道号按照从小到大的顺序进行排序, 将排序后的 HS-SCCH 的码道号依次与专用导频信道化码在专用导频信道化码集合内的编号进行 对应后得到。
15、 根据权利要求 9或 10所述的设备, 其特征在于,
所述接收模块具体用于: 正确接收基站发送的 HS-SCCH, 所述正确接 收的 HS-SCCH中包含高速物理下行共享信道 HS-PDSCH的起始信道码号 和数据层个数;
所述选择模块具体用于: 以所述 HS-PDSCH的起始信道码号作为起始 编号, 依次从所述专用导频信道化码的集合中选取个数为所述数据层个数 的专用导频信道化码, 确定为所述专用导频信道化码。
PCT/CN2013/070021 2012-01-13 2013-01-04 专用导频的解码方法和用户设备 WO2013104270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13736259.6A EP2797238B1 (en) 2012-01-13 2013-01-04 Decoding method for dedicated pilot and user equipment
US14/328,884 US9480083B2 (en) 2012-01-13 2014-07-11 Dedicated pilot decoding method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210010863.8A CN103209048B (zh) 2012-01-13 2012-01-13 专用导频的解码方法和用户设备
CN201210010863.8 2012-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/328,884 Continuation US9480083B2 (en) 2012-01-13 2014-07-11 Dedicated pilot decoding method and user equipment

Publications (1)

Publication Number Publication Date
WO2013104270A1 true WO2013104270A1 (zh) 2013-07-18

Family

ID=48756145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070021 WO2013104270A1 (zh) 2012-01-13 2013-01-04 专用导频的解码方法和用户设备

Country Status (4)

Country Link
US (1) US9480083B2 (zh)
EP (1) EP2797238B1 (zh)
CN (1) CN103209048B (zh)
WO (1) WO2013104270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717749A (zh) * 2013-12-11 2015-06-17 华为技术有限公司 一种基于共享小区的导频配置方法、相关装置及系统
WO2017124433A1 (zh) * 2016-01-22 2017-07-27 富士通株式会社 随机接入与数据传输的装置、方法以及通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031561A (ko) * 2006-10-04 2008-04-10 엘지전자 주식회사 신호 처리 방법 및 장치와, 인코딩 및 디코딩 방법과 그를위한 장치
CN101390318A (zh) * 2006-02-22 2009-03-18 Nxp股份有限公司 符号级适配方法,用于实现该方法的存储器、均衡器以及接收机
CN101848030A (zh) * 2009-03-27 2010-09-29 汤姆森特许公司 用于无线网络的发送方法以及对应的接收方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981207A1 (en) * 1998-06-30 2000-02-23 Lucent Technologies Inc. Pilot symbols
JP3793380B2 (ja) 1999-10-22 2006-07-05 株式会社エヌ・ティ・ティ・ドコモ Cdma移動通信システムにおける下りリンクのパイロットチャネルの送信方法およびcdma移動通信システム
JP3440048B2 (ja) * 2000-02-14 2003-08-25 松下電器産業株式会社 受信装置およびパイロット信号の受信方法
US6628702B1 (en) * 2000-06-14 2003-09-30 Qualcomm, Incorporated Method and apparatus for demodulating signals processed in a transmit diversity mode
JP3660278B2 (ja) 2001-07-13 2005-06-15 松下電器産業株式会社 基地局装置、移動局装置、無線通信システム及び無線通信方法
US7088955B2 (en) * 2001-07-16 2006-08-08 Qualcomm Inc. Method and apparatus for acquiring and tracking pilots in a CDMA communication system
US20030072282A1 (en) * 2001-10-17 2003-04-17 Ying-Chang Liang Code division multiple access downlink receiver
GB0407902D0 (en) * 2003-08-15 2004-05-12 Koninkl Philips Electronics Nv Feedback signalling for multicast data transmission
KR100643740B1 (ko) * 2004-04-09 2006-11-10 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 코드 패턴 송수신 장치 및 방법
GB2417167B (en) * 2004-08-13 2007-02-14 Ipwireless Inc Apparatus and method for communicating user equipment specific information in cellular communication system
EP2369879A3 (en) * 2005-06-17 2011-11-09 Fujitsu Limited Communication system
US7965759B2 (en) * 2005-10-28 2011-06-21 Qualcomm Incorporated Synchronization codes for wireless communication
WO2007123448A1 (en) * 2006-04-21 2007-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Optimizing code utilization regarding a secondary scrambling code
JP4659804B2 (ja) 2007-10-01 2011-03-30 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法及び通信システム
US8532066B2 (en) * 2007-10-18 2013-09-10 Qualcomm Incorporated Transmission structure supporting multi-user scheduling and MIMO transmission
JP5108450B2 (ja) * 2007-10-22 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信方法、基地局及び無線端末
CN101978735B (zh) * 2008-03-21 2015-08-19 交互数字专利控股公司 反馈信令的方法和设备
CN102014099B (zh) * 2009-11-02 2013-04-24 电信科学技术研究院 一种下行导频的传输方法、装置及系统
US20110201324A1 (en) * 2010-02-16 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Reporting of Non-Real-Time MDT Measurements
EP2892173A1 (en) * 2010-10-01 2015-07-08 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting pilot on multiple antennas
US20130155968A1 (en) * 2011-08-12 2013-06-20 Interdigital Patent Holdings, Inc. Method for channel estimation and pilot reception for remote radio head (rrh) deployments and multi-antenna downlink mimo
WO2014051497A2 (en) * 2012-09-28 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Systems and method for reporting downlink control channel information in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101390318A (zh) * 2006-02-22 2009-03-18 Nxp股份有限公司 符号级适配方法,用于实现该方法的存储器、均衡器以及接收机
KR20080031561A (ko) * 2006-10-04 2008-04-10 엘지전자 주식회사 신호 처리 방법 및 장치와, 인코딩 및 디코딩 방법과 그를위한 장치
CN101848030A (zh) * 2009-03-27 2010-09-29 汤姆森特许公司 用于无线网络的发送方法以及对应的接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797238A4 *

Also Published As

Publication number Publication date
EP2797238B1 (en) 2019-05-08
EP2797238A1 (en) 2014-10-29
CN103209048B (zh) 2017-04-12
CN103209048A (zh) 2013-07-17
US20140348086A1 (en) 2014-11-27
EP2797238A4 (en) 2015-02-11
US9480083B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
CN110036589B (zh) 使用处于预定功率级的参考信号序列的方法、无线装置和网络节点
JP6451957B2 (ja) 小トラフィック伝送のためのシステムおよび方法
JP6069666B2 (ja) アップリンクのマルチポイント協調
TWI500288B (zh) 用於在多載波無線通訊系統中提供harq回饋的裝置和方法
RU2725154C1 (ru) Способ передачи сигнала, оконечное устройство и сетевое устройство
JP2019050592A (ja) 制御チャネルを受信および送信する方法、ユーザ機器ならびに基地局
WO2019192530A1 (zh) 数据传输方法、终端设备和网络设备
CN115001920A (zh) 确定频域资源块的位置
JP6179825B2 (ja) 通信装置、通信方法及び集積回路
WO2017006871A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017012430A1 (zh) 一种测量参考信号的传输方法及系统
US9166759B2 (en) Method and device for transmitting control information in wireless communication system
WO2017092535A1 (zh) 参考信号序列的传输方法和设备
WO2013127339A1 (zh) 一种下行传输方法及装置
AU2017338040A1 (en) Control of aperiodic signalling of SRS for wireless systems
WO2017006882A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JPWO2017006873A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2022191387A (ja) ページング機会の開始決定
KR101904205B1 (ko) Mtc ue 내의 물리적 리소스 블록 할당을 위한 enb, ue 및 방법
US11476906B2 (en) Base station, terminal, and communication method
RU2729414C1 (ru) Способ передачи информации, базовая станция и оборудование пользователя
JP6041999B2 (ja) ダウンリンク電力パラメータの設定方法及び装置
US20180146502A1 (en) Base station apparatus, terminal apparatus, and communication method
WO2013104270A1 (zh) 专用导频的解码方法和用户设备
RU2746712C2 (ru) Способ беспроводной связи, оконечное устройство и сетевое устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013736259

Country of ref document: EP