WO2013101962A1 - Orthopedic fixation device with magnetic field generator - Google Patents

Orthopedic fixation device with magnetic field generator Download PDF

Info

Publication number
WO2013101962A1
WO2013101962A1 PCT/US2012/071878 US2012071878W WO2013101962A1 WO 2013101962 A1 WO2013101962 A1 WO 2013101962A1 US 2012071878 W US2012071878 W US 2012071878W WO 2013101962 A1 WO2013101962 A1 WO 2013101962A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
electromagnetic field
orthopedic
field emitter
fixation device
Prior art date
Application number
PCT/US2012/071878
Other languages
French (fr)
Inventor
Richard ROGACHEFSKY
Original Assignee
Rogachefsky Richard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rogachefsky Richard filed Critical Rogachefsky Richard
Priority to CA2861605A priority Critical patent/CA2861605A1/en
Priority to JP2014550473A priority patent/JP6184975B2/en
Priority to EP12862131.5A priority patent/EP2797525A4/en
Publication of WO2013101962A1 publication Critical patent/WO2013101962A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/008Magnetotherapy specially adapted for a specific therapy for pain treatment or analgesia

Definitions

  • This disclosure relates to orthopedics. More specifically, the invention relates to an orthopedic fixation device with an integrated magnetic field generator for placement in a patient to promote healing of a fractured bone and surrounding tissue, to reduce infection, reduce both acute and chronic pain, in arthrodesis procedures, and to reduce edema, as well as for other purposes.
  • Electromagnetic fields have been proposed for use for therapeutic purposes for ma ⁇ ? years. Heretofore, fields have been generated externally and oriented so as to pass through the tissue or bone to be treated.
  • the systems while effective, have the disadvantage that they require bulky signal generating apparatus and electromagnetic field generating coils to be worn by the patient. This is a particular problem for patients who are ambulatory and a lesser but: still significant problem for patients confined to bed,
  • the present disclosure remedies the foregoing shortcomings of the prior art by providing an improved medical device for implanting in a patient,
  • a device in one aspect of the invention, includes an orthopedic fixation device and an electromagnetic field emitter carried by the fixation device.
  • the orthopedic fixation device may be a rod or plate or similar device.
  • the device preferably further includes a power source for powering the electromagnetic field emitter, and a controller that may be separate from or integrated with the power source for generating a varying signal that is applied to the electromagnetic field emitter, all of which may be implanted in the human body with the fixation device and the electromagnetic field emitter.
  • the power source may be a battery.
  • a device for use in healing a roken bone includes an internal fixation device having an opening or cavity therein and an electromagnetic field emitter disposed ⁇ the opening or cavity.
  • a device for u se in healing a broken bone and for other uses includes an internal fixation device carrying an electromagnetic field generator, a signal generator, and a rechargeable power source, together with an external device for recharging the power source.
  • FIG. 1 is a diagram of a fixation device according to a first embodiment of the disclosure.
  • FIG. 2 is a diagram of an electromagnetic field emitter used in a fixation device according to the disclosure.
  • FIGs. 3A-3C are cross-sectional views of oilier embodiments of fixation devices according to the disclosure.
  • FIG. 4 is a cross-sectional view of another embodiment of a fixation device according to the disclosure.
  • FIG. 5 is a perspective view of a fixation device according to another embodiment of the disclosure.
  • FIG. 6 is a perspective view of a fixation device according to another embodiment of the disclosure.
  • FIG-. 7 is a perspective view of a fixation device according to another embodiment of the disclosure.
  • FIG. 8 is a cross -sectional view of a fixation device according to another embodiment of the disclosure.
  • FIG. 9 is a cross-sectional view of a fixation device according to another embodiment of the disclosure.
  • FIG. 10 is a perspective view of a fixation device according to another embodiment of the invention.
  • FIG. 11 is a perspective view of a field generator and an associated generated field.
  • FIG. 12 is a perspective view of a series of coils on a substrate, according to another embodiment of the invention.
  • FIG. 13 is a schematic illustrating a system according to another embodimen t of the invention.
  • FIG. 14 is a perspective view of a fixation device according to another embodiment of the invention.
  • FIG. 15 is a plan view of a fixation device according to another embodiment of the invention.
  • the invention relates generally to fixation devices. More specifically, the invention relates to fixation devices that are useful for assisting in fracture and wound healing, treating infection, reducing pain, and for other therapeutic purposes. Preferred embodimen ts of the invention now will be described with reference to the figures.
  • FIG. 1 shows a fixation device 10 according to a first embodiment of the invention.
  • the fixation device generally includes a hollow rod 14 which is an intramedullary fixation device.
  • intramedullary fixation devices are conventionally known for placement within a bone cavity, especially longer bones such as the femur or the tibia to aid in proper realignment ol a bone 2 having a fracture 4,
  • the hollow rod 14 illustrated in FIG. 1 may be held in place using screws 12 such as locking screws.
  • the rod is fabricated in a size and shape that give it sufficient strength to stabilize the fracture during healing,
  • the rod is fabricated from a material that permits a magnetic field to pass there through, either because the material itself permits the passage of a magnetic field or the rod is provided with a section through which the magnetic field may pass.
  • a fixation device 10 includes an electromagnetic field emitter 16 disposed in the cavity 15 of the hollow rod 14.
  • the electromagnetic field emitter 16 may take any conventional shape, and preferably includes an electromagnetic coil such as a solenoid coil through which a current is passed to create a magnetic field.
  • a controller 1 8 which may be fabricated on a printed circuit board and/ or as an integrated circuit is provided in communication with the electromagnetic coil or the electromagnetic field emitter 16 for generating a signal to energize the electromagnetic field emitter 16.
  • a power source 20 such as a battery, also is provided within the hollow rod, in communication with the electromagnetic field emitter 16 and the controller 1 8.
  • Leads or wires 22 also are provided in the hollow rod 14 to interconnect the electromagnetic field emitter 16, the controller 18, and the power source 20.
  • the controller is energized by the power source to generate the signal that when applied to the electromagnetic field emitter creates a field, preferably a varying field that intersects the fracture or wound.
  • the controller 18 is programmed with a series of instructions for controlling the field emitted by the electromagnetic field emitter 16, More specifically, the controller may be programmed with a routine such as a series of intensity and/or time dependent instructions, Depending upon the program routine, the controller will manipulate the power hrom the power source to supply a current to the electromagnetic field emitter 16, which in turn will create an electromagnetic field corresponding to the applied current, By varying the current and the time, any number of routines may be used, as required by the patient.
  • the controller may be preprogrammed with a number of routines for application of varied electromagnetic fields to the injury site. For example, routines may be included that depend upon the location and/ or severity of a fracture or accompanying wounds to nearby tissue and/or muscle.
  • the controller may be programmable either before implantation into the patient, or after being inserted. One lead may be accessible through the skin to allow tethering to a computer or the like useable in programming the controller 18.
  • the controller will include a wireless receiver configured to receive programming instructions wirelessiy from a computer or the like equipped with a transmitter. Further, the controller may include a wireless transmitter for transmitting data corresponding to the signal generated by the controller.
  • the power source and controller are disposed within the hollow rod with the electromagnetic field emitter, in other embodiments the power source and/ or the controller may be disposed in the body, but remote from the
  • the wires or leads 22 may extend outside of the hollow rod 14 and connect to the remotely disposed controller 18 and/or power supply 20.
  • the controller and/or the power source may be disposed completely outside of the body.
  • the power source may be a field emitter disposed outside the bod ⁇ " that emits an electromagnetic field and when placed in proximity to an induction coil disposed in the body, will charge the coil to power the electromagnetic field generator.
  • the field emitter used as the power supply 20 emits a field that is different from the field generated by the electromagnetic field emitter, and which will not adversely affect: the wound healing sought to be accomplished by the electromagnetic emitter.
  • the electromagnetic field emitter generally is a conventional structure that will emit an electromagnetic field at a frequency of between about 5 and about 100 Hz, more preferably between about 5 Hz and about 30 MHz, and at 60 -400 Gauss within a treatment volume.
  • the emitter can be placed in close proximity to a fracture in a bone and /or proximate nearby afflicted muscle or other tissue.
  • two emitters are illustrated in Figure 1, more or fewer emitters may be provided.
  • the emitter (s) preferably are at fixed positions inside the hollow rod 14. The position of the emitter 16 within the hollow rod 14 will be dictated by the position of the rod relative to the position of the fracture.
  • the electromagnetic field emitter 16 When the rod 14 is placed in the bone 2, the electromagnetic field emitter 16 will closely align with the position of the fracture to expose the fracture to the electromagnetic field.
  • the emitter(s) will be affixed to the inside of the hollow rod using any known fastener, such as a physical fastener like a set screw, or an implant grade adhesive.
  • known electromagnetic field emitters produce electromagnetic fields having a known size and shape.
  • Figure 2 shows a conventional electromagnetic field emitter 160 including a conductive wire, such as copper, 162 wound along an axis to form a coil. When an electrical current is passed through the coil, an electromagnetic field is created as depicted by flux lines 168.
  • the illustrated coil 162 is wrapped around a cylindrical core 164, which is preferably a ferrous core, to intensify the field.
  • the coil should be positioned such that the bone fracture and /or any other- tissue to be healed is disposed in the electromagnetic field.
  • An advantage of the invention over previously-used, non-implanted electromagnetic field emitters is that the field can be generated very near to d e fracture or other wound to be treated so that the high flu portion of the field can intersect the wound/ fracture. This close positioning allows for a lower power requirement, because the field need not be as strong as it would need to be if it were generated farther from the fracture and increased biological healing response because the field is not interfered with by passing through surrounding tissue.
  • a series of electromagnetic field emitters like those illustrated in Figure 2 may be disposed along the length of the hollow rod, such that the electromagnetic fields overlap along the length of the rod. In this embodiment any position along the rod will be affected by an electromagnetic field. While the care giver could opt to energize all coils to provide a field along the full length of the rod, the controller could alternatively be configured to allow for selective energizing of the coils. In other embodiments fewer emitters may be provided that are positioned specifically for affecting the fracture/wound. One or more emitters may be provided that are moveable within the rod prior to placement of the rod, to allow the emitters to be placed at positions that will best promote healing. In yet another embodiment of the invention, the emitters may be placed at predetermined positions within different rods, with the orthopedic surgeon choosing a rod that will align the emitter with the fracture/wound for healing promotion.
  • a guide wire is passed longitudinally through a fractured bone, a reamer is passed over the guide wire to bore the bone out longitudinally, and the rod is fed over the guide wife into position. Once in position, screws may be inserted transversely through the bone and into the rod, to lock the rod in place.
  • a rod according to the present disclosure may be inserted using the same procedure. To do so, the rod preferably also has a longitudinal opening, which may require that each of the electromagnetic field emitters and other components occupy less than the full cross-sectional area of the opening in the rod or have openings extending axialiy therethrough.
  • each electromagnetic field emitter couid have a hole formed therethrough, large enough to allow for passage of the guide wire there through.
  • each of the emitters is a wound coil such as that shown in Figure 2.
  • the illustrated coil also referred to as an air coil, is illustrated in which a wire is wound continuously along an axis preferably in multiple layers to form a cylindrical coil defining an open middle.
  • the coil is preferably sized to allow passage of the guide wire through the open middle.
  • d e ferrite core may have a longitudinal opening formed therein.
  • FIG. 1 Other embodiments may also allow use of a guide wire to insert an intramedullary rod by ensuring that the footprint of the electromagnetic field emitter has a smaller area than the area of a cross-section of the opening in the hollow rod.
  • This could be particularly useful when it is desired to dispose a solid core in the coil.
  • the emitter could be attached to a sidewall of the opening, sized small enough such that space is provided next to the emitter large enough to pass a guide wire.
  • a sleeve or conduit could also be provided in the rod to guide the guide wire through a more tortuous path along the length of the rod. The sleeve or conduit feeds the guide wire in any number of ways, including through the sidewall of the hollow rod.
  • the hollow rod may include a completely separate, substantially axial, guide opening 21 , which is parallel to the cavity 1 5.
  • An example of this separate opening is illustrated in Figure 3A, and is formed in a sidewall of the hollow rod.
  • the hollow rod may not be cylindrical, but couid instead include a profile allowing for both the cavity 15 and the guide opening 21.
  • the electromagnetic field emitter (and power source and controller) may be inserted into the rod after the rod is inserted into the bone, A stop, such as a constriction or protuberance, may be provided in the cavity 15 of the hollow rod in such an embodiment, to attain proper axial positioning of the inserted components.
  • An adhesive may be applied to the inserted components to maintain their position once inserted.
  • a packing or mechanical stop may be inserted after the inserted components to maintain positioning of the emitter in the rod.
  • a guide wire is not used for insertion of the hollow rod, so no provisions for an axial passageway through the rod need be made.
  • the opening through the bone is bored or reamed out using known techniques, and the rod is then inserted.
  • each of the components should be implant grade.
  • the hollow rod 14 of the embodiment of FIG, 1 preferably is a non-ferrous material, such as a polymer or titanium so as not to affect the electromagnetic field emitted by the electromagnetic field emitter 16.
  • the components should be chosen such that the electromagnetic field emitted by the electromagnetic field emitter 16 will pass freely through the fixation device 10 to the fractured bone and/ or the damaged tissue,
  • the invention is not limited to an embodiment in which the electromagnetic field emitter is disposed within a hollow rod comprising a fixation device.
  • the electromagnetic field emitter could be disnoseci on a side ol the hollow rod 14 or at an end thereof. In such an embodiment, it may not be necessary that the hollow rod 14 be hollow at all.
  • a solid rod could be used instead, because no components are intended to be disposed within the rod.
  • the coil comprising the emitter could be wrapped around the rod.
  • This embodiment is shown in Figure 4.
  • emitters 16 are formed at spaced positions along the rod 14 by wrapping wire around the rod 14.
  • this embodiment shows a plurality' of discrete coils along the length of the rod, the wire may be wrapped continuously along the entire length of the rod, to create a larger field.
  • all or a portion of the rod may be ferrous, to intensify the field at each coil.
  • the rod could still be hollow, but with ferrous material disposed in the hollow rod.
  • the control and power supply could also be disposed in a hollow rod.
  • the embodiment illustrated in Figure 4 also includes a protective layer 26 formed over tiie coils.
  • This protective layer 26 preferably is chosen to shield the coils from damage when the rod is inserted by an orthopedic surgeon.
  • the protective layer may be a polymeric or foil wrap disposed over the coil, and which will not affect the field emitted by the coils.
  • Figure 4 also shows a leading protrusion 24 disposed axially adjacent to each coil. The protrusion extends radially from the rod further than the coil and is disposed such that when the rod is inserted along the direction of arrow in Figure 4, the protrusion first enters the bone. In this manner, the protrusion forges a path through the bone to minimize contact of the bone with the coil, thereby reducing the potential for damage to the coil.
  • the protrusion 24 may not: be provided.
  • the protrusion may be an annular ring disposed abou!: the circumference of the rod, or it may be a series of protrusions disposed about the circumference.
  • the protrusion preferably is angled, to promote ease of insertion of the rod into the bone.
  • FIG. 5 shows an embodiment ot the invention in which a fixation device 110 is incorporated in a screw 112 having a threaded shaft 112a and a head 112b.
  • an electromagnetic field emitter 1 16 comprising a plurality of windings as a coil like that in Figure 2 is disposed on a shaft of the screw 1 12, proximate the head 112b.
  • the electromagnetic field emitter thus will not inhibit access to the head of the screw, for example, for insertion, but the emitter can be placed wherever a screw can be inserted.
  • the screw may be a locking screw such as the type used in connection with an intramedullary rod or a plate, or it may be any other type ot screw, including but not limited to a pedicle screw for use m spinal procedures,
  • the screw 1 12 further includes an annular stop 128 arranged between the threads and the coil.
  • an orthopedic surgeon inserts the screw, rotation of the screw will be stopped when the stop 128 contacts the bone or plate into which the screw is being inserted. In this way, the surgeon will not overtighten the screw in a manner that will cause the coil to contact the bone or plate, resulting m potential damage to the coil.
  • leads will extend from the coil to the controller and/or power source, as in previous embodiments.
  • Such components may be provided on the screw, or in a separate implant.
  • Figure 6 is similar to the previous embodiments in that it shows a fixation device 210 including an implant 214 and an electromagnetic field emitter 216.
  • the implant is a plate 214, such as a surgical or orthopedic plate
  • the emitter 216 is a coil earned on the plate.
  • the plate may be any known plate or plate-like structure, for example, such as used to maintain position of a fractured bone for healing that bone or for fusion of bones, as in spinal surgery.
  • the emitter 216 is carried on a side of the plate 214 that does not contact the bone.
  • the emitter 2.16 may be fixed to the plate in any number of ways, including fasteners and adhesives.
  • Figure 6 also shows a controller 218 and power source 220 carried on the plate, and electrical leads 222. interconnecting the foregoing components. It is preferred thai: the plate be made from a material that will not distort the field generated by the emitter, but the emitter and plate may be designed to cooperate in creating a field that will effectively intersect with a fracture/wound.
  • the emitter may be mounted on any position of the plate, to ensure maximum exposure of the fracture to the generated field.
  • the orthopedic surgeon will affix the emitter during surgery, using known fastening means, such as adhesives or mechanical fasteners.
  • an emitter or emitters may be fixed at predetermined position (s) on the plate. The surgeon will then choose the appropriate plate, and place the plate to ensure that the emitted field is properly aligned with the injury.
  • Figure 6 also illustrates indicia or a registration mark 224 (a clotted line in the figure) that will allow a user to readily properly align the plate for healing using the emitter, In the illustrated embodiment, the surgeon aligns the dotted line 224 with the break to ensure that the emitter will be properly aligned.
  • a registration mark 224 a clotted line in the figure
  • an emitter 316 includes a coil 328 such as those described above and a protrusion 330 depending from the coil.
  • the protrusion 330 is sized to allow for registration of the emitter 316 with any standard hole 315 formed in an orthopedic plate 314.
  • orthopedic plates generally have a plurality of holes 315, to allow a surgeon maximum flexibility for affixation of the plate to the bone. Any hole or holes aligning with the fracture are generally not used, because a screw is rarely used at the break. However, it is beneficial to align the emitter with the break, for reasons discussed above.
  • the protrusion 330 of this embodiment allows for registration of the emitter with the plate at the break.
  • the protrusion may form a press or interference fit with the plate, facilitating connection of the emitter with the plate.
  • the emitter with protrusion may be fixed to the plate sing any known fastening method, such as adhesives.
  • a controller and/or a power source may be included with the emitter or may be positioned anywhere on or spaced irom the plate.
  • the emitter may be disposed anywhere on the plate, including on an edge of the plate or the bottom of the plate, proximate the bone to which the plate is affixed.
  • an electromagnetic field emitter 316 is disposed in a recess 313 formed in a plate 314.
  • the plate 314 further includes holes 315 for affixation of the plate.
  • a controller 31 8 and a power source 320 are also illustrated in the recess 313.
  • the recess 313 allows for a lower-profile arrangement than can be achieved by placing the emitter on top of the plate.
  • the recessed portion of the plate should be configured to provide sufficient rigidity to stabilize the fracture and minimize the formation of stress risers.
  • Figure 9 is a modification of the embodiment of Figure 8 in which an emitter 416, a controller 418 and a power supply 42.0, with, interconnections 422, are completely encapsulated within an orthopedic plate 414.
  • a cavity 413 is provided in the plate 414 and the components are disposed in the cavity.
  • the plate may be made of multiple pieces that are assembled after affixation of the emitter 416 and other components to one of the pieces.
  • the plate may have first and second opposing pieces, e.g., a top and a bottom having lacing horizontal surfaces that when assembled define a cavity sized to receive the emitter and other components, as appropriate.
  • the plate may be formed with a recess, as in Figure 8, the components placed in the recess, and then a cover applied to substantially encapsulate the components in the plate.
  • the surgeon will preferably receive a unitary piece in which is embedded the components, such as the emitter, controller and power supply.
  • the plate used in Figures 6-9 preferably is non- ferrous, such that the emitted electromagnetic field will readily pass through the plate to the treatment area.
  • Figure 10 shows an embodiment in which the electromagnetic field emitter is a flat or pancake coil 516 disposed on a plate 514, such as an orthopedic plate.
  • a pancake coil generally emits a field having flux lines 568 such as those illustrated in Figure 11.
  • Figure 1 1 also illustrates treatment regions 570, which are areas disposed in the magnetic field. In practice, the afflicted bone or tissue to be healed should be disposed in these treatment regions 570 for maximum efficacy of the emitter 516.
  • a plurality of pancake coils is provided in a two- dimensional array, i.e., a 1x4 matrix, on a plate 514.
  • the coils may be selectively energized at desired frequencies and for preferred durations.
  • the coil or coils closest to the fracture site will be energized according to a first treatment methodology.
  • Other coils may be energized differently or not at all. in other embodiments, more or fewer pancake coils may be provided.
  • the pancake coils may be encapsulated in the plate, instead or disposed on the piate, as in the embodiment: of Figure 9.
  • FIG. 12 Another embodiment of the invention is illustrated in Figure 12.
  • a plurality of pancake coils 61 6 is provided on a flexible substrate 614.
  • the flexible substrate allows for form- fitting of the array of coils to a surface.
  • the array of coils may be formed from wrapped wire, but more likely will be formed by depositing a metal, such as copper, onto the substrate as a coil using known deposition, including known masking and/or etching, techniques.
  • the deposited coil may be a single-layer coil or may include turns in multiple layers. That is, deposited pancake coils may be stacked one on top of the next. In such a configuration, an intermediate layer, such as an insulating- layer, may also be provided between stacked coils. Such an arrangement will provide an increased number of turns for the coil, but still provide a relatively low profile.
  • the substrate according to the embodiment of Figure 12 preferably is made of a polymer-blend.
  • the flexible substrate may be affixed to a plate, such as a conventional plate, or in some embodiments could be affixed directly to a patient's bone.
  • An adhesive may be disposed between the back of the substrate and the site to be treated to adhere the substrate.
  • the adhesive may be pre-applied and exposed by removing; a backing or other protective coating, or it may be applied at the time oi affixation of the substrate.
  • the substrate could otherwise be affixed using any known methodologv.
  • the flexible substrate with electromagnetic emitters has the benefit of allowing for adaptation of existing orthopedic devices, i.e., by affixing the substrate to such devices.
  • Any number ot fixation devices could be modified to include a substrate including coils.
  • one or more coils on a flexible substrate may be disposed on an intramedullary rod, either wrapping around the rod, or along the length of the rod. in other uses, the substrate couid be applied directly to a bone or other anatomical structure in the body.
  • any of the foregoing embodiments it is preferable to arrange the electromagnetic field emitter such that in use the emitted field acts on the desired treatment area.
  • the embodiments of Figures 6- 11 generally illustrate coils with axes perpendicular to a top surface of a plate, the coils could readily be provided "on their side” such that their axis is parallel to the top surface of the plate without departing from the spirit and scope of the invention,
  • a device generally Includes an implantable device, such as a conventional device like a rod or plate, adapted to earn 7 a field emitter and a signal generator.
  • the field emitter and signal generator also may be carried by an implant such as a prosthesis.
  • an implant such as a prosthesis.
  • the field emitter and signal generator may be carried by the bail or by the shaft of the implant.
  • the ball and/or shaft may be hollow, with the field emitter and signal generator being; disposed in the hollow ball or shaft.
  • the power source provided in the invention may be any known or developed power source sufficient to power the coil. Batteries have been conventionally implanted into the human body, e.g., in pace makers, and such powering technology may be applicable with embodiments of the invention.
  • the control circuitry preferably is provided to allow for user selection of strength and duration of currents applied to the electromagnetic emitters.
  • the controller may be programmable, i.e., via remote control through an input device external to the patient, to allow for custom treatment of each patient. In other embodiments, the controller could be pre-programmed with a treatment methodology and merely turned on to run through that pre-determined treatment regimen.
  • the control circuitry may further include wake-tip circuitry or the like, to allow for delayed operation. For example, an orthopedist may determine that they would prefer not to use the electromagnetic field therapy until some amount of time after surgery. Thus, the emitter should not be energized until that rime, if at all.
  • a number of arrangements of electromagnetic field emitters, signal generating electronics, i.e., to instruct energizing of the coil, and power sources, which provide power for energizing the coil will be appreciated from this disclosure.
  • a battery as the power source, the signal generating electronics, and a wire coil are implanted directly in a patient.
  • the signal generating electronics will include pre-programmed operational sequences as treatment routines that will energize the coil as desired.
  • the implanted device may further include a receiver and a transmitter, allowing the device to
  • Such an arrangement would allow for downloading to the implanted device signal patterns and schedules, e.g., for specific treatments, as well as updates, and for receiving information from the device, for example, about the treatment, such as accumulated dosimetry and/ or other treatment characteristics.
  • the device may further include sensory coils.
  • Such coils are spaced from the electromagnetic field emitters to receive the generated magnetic field at a known distance from the generating coil.
  • the receiver coil is placed at a position, such as a position spaced along the implanted device away from the emitter or an opposite side of a fracture to be treated, to measure the magnitude and duration of the generated magnetic field, Using the aforementioned transmitter, the results measured by the sensor coil are then forwarded to the remote device, for interpretation by a doctor or technician.
  • the device may further include an induction coil as a rechargeable power source, More specifically, the induction coil is implanted in the patient and an induction device, such as an induction wand, is used external to the patient to charge the device.
  • the wand may take any known form including; being provided in a wearable device that could charge the device, for example, when the user is sleeping.
  • FIG. 13 illustrates a schematic of a system according to the invention.
  • a battery 42 is the power source, and an induction loop 44 is provided to charge the battery 42.
  • a receiver 46 and transmitter 48 are also illustrated, as is an example of the signal generator 50.
  • the signal generator 50 is illustrated as including a signal shape memory 52, which stores one or more signal shapes used to drive the coil 60; a signal playback generator 54; signal level controls 56; and final treatment amplifier 58. These components all are connected to the treatment coil 60.
  • the schematic also shows a sensor coil 62, such as that described above, and controls 64 for receiving information from the sensor coil 62.
  • This schematic is provided merely as an example; other systems and configurations will be apparent to those of ordinary skill in the art upon being educated by this disclosure.
  • an alternative embodiment may include a permanent magnet, having a known field strength and shape. The magnet could then be vibrated, rotated or otherwise moved to modulate the field, to apply the desired bioeffect.
  • Figure 14 shows an example of this.
  • a permanent magnet 716 generates a magnetic field having a known strength and shape.
  • the magnet 716 is disposed on a shaft 790, rotatabie by a rotary actuator 792, such as a piezoelectric actuator. By rotating the magnet, the magnet's field is modulated, which modulation may be optimized for treatment of a broken bone or wound.
  • the actuator/permanent magnet combination forms a controllable magnetic field emitter.
  • the actuator/permanent magnet field emitter will be carried on a fixation device or other implantable carrier, such as an orthopedic plate, intramedullary rod, replacement implant, or the like.
  • a rotary actuator is illustrated in Figure 14, this is merely for illustrative and exemplary purposes.
  • the magnet 816 is provided on a linear actuator 892, such as a piezoelectric actuator, disposed to move along the direction indicated by the arrow in Figure 15.
  • a fracture 804 in a bone 802 is selectively disposed in and spaced from the magnet's field, indicated by flux lines 868.
  • a signal generator for driving the actuator also is shown in Figure 15.
  • the magnet 816 and the actuator 892 are illustrated in this embodiment as being disposed in a hollow rod 814. In other embodiments those components could be carried on any other impiant, including but not limited to those described above

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

A medical device includes an orthopedic fixation device and an electromagnetic field emitter carried by the fixation device. The device preferably further includes a power source for powering the electromagnetic field emitter, which may be implanted in the human body with the fixation device and the electromagnetic field emitter. The power source may be a battery.

Description

ORTHOPEDIC FIXATION DEVICE WITH MAGNETIC FIELD GENERATOR
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
[0003] This disclosure relates to orthopedics. More specifically, the invention relates to an orthopedic fixation device with an integrated magnetic field generator for placement in a patient to promote healing of a fractured bone and surrounding tissue, to reduce infection, reduce both acute and chronic pain, in arthrodesis procedures, and to reduce edema, as well as for other purposes.
RELATED ART
[0002] Electromagnetic fields have been proposed for use for therapeutic purposes for ma }? years. Heretofore, fields have been generated externally and oriented so as to pass through the tissue or bone to be treated. The systems, while effective, have the disadvantage that they require bulky signal generating apparatus and electromagnetic field generating coils to be worn by the patient. This is a particular problem for patients who are ambulatory and a lesser but: still significant problem for patients confined to bed,
SUMMARY OF THE INVENTION
[0003] The present disclosure remedies the foregoing shortcomings of the prior art by providing an improved medical device for implanting in a patient,
[0004] In one aspect of the invention, a device includes an orthopedic fixation device and an electromagnetic field emitter carried by the fixation device. The orthopedic fixation device may be a rod or plate or similar device. The device preferably further includes a power source for powering the electromagnetic field emitter, and a controller that may be separate from or integrated with the power source for generating a varying signal that is applied to the electromagnetic field emitter, all of which may be implanted in the human body with the fixation device and the electromagnetic field emitter. The power source may be a battery. [0005] In another aspect of the invention, a device for use in healing a roken bone includes an internal fixation device having an opening or cavity therein and an electromagnetic field emitter disposed ·η the opening or cavity.
[0006] In accordance with another aspect of the invention a device for u se in healing a broken bone and for other uses includes an internal fixation device carrying an electromagnetic field generator, a signal generator, and a rechargeable power source, together with an external device for recharging the power source.
[0007] An understanding of these and other aspects, features, and benefits of the invention may be had with reference to the attached figures and following disclosure, in which preferred embodiments of the invention are illustrated and described.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
[0008] FIG. 1 is a diagram of a fixation device according to a first embodiment of the disclosure.
[0009] FIG. 2 is a diagram of an electromagnetic field emitter used in a fixation device according to the disclosure.
[0010] FIGs. 3A-3C are cross-sectional views of oilier embodiments of fixation devices according to the disclosure.
[0011] FIG. 4 is a cross-sectional view of another embodiment of a fixation device according to the disclosure.
[0012] FIG. 5 is a perspective view of a fixation device according to another embodiment of the disclosure.
[0013] FIG. 6 is a perspective view of a fixation device according to another embodiment of the disclosure.
[0014] FIG-. 7 is a perspective view of a fixation device according to another embodiment of the disclosure. [0015] FIG. 8 is a cross -sectional view of a fixation device according to another embodiment of the disclosure.
[0016] FIG. 9 is a cross-sectional view of a fixation device according to another embodiment of the disclosure.
[0017] FIG. 10 is a perspective view of a fixation device according to another embodiment of the invention.
[0018] FIG. 11 is a perspective view of a field generator and an associated generated field.
[0019] FIG. 12 is a perspective view of a series of coils on a substrate, according to another embodiment of the invention,
[0020] FIG. 13 is a schematic illustrating a system according to another embodimen t of the invention.
[0021] FIG. 14 is a perspective view of a fixation device according to another embodiment of the invention.
[0022] FIG. 15 is a plan view of a fixation device according to another embodiment of the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
[0023] The invention relates generally to fixation devices. More specifically, the invention relates to fixation devices that are useful for assisting in fracture and wound healing, treating infection, reducing pain, and for other therapeutic purposes. Preferred embodimen ts of the invention now will be described with reference to the figures.
[0024] FIG. 1 shows a fixation device 10 according to a first embodiment of the invention.
The fixation device generally includes a hollow rod 14 which is an intramedullary fixation device. Such intramedullary fixation devices are conventionally known for placement within a bone cavity, especially longer bones such as the femur or the tibia to aid in proper realignment ol a bone 2 having a fracture 4, Like conventional intramedullary rods, the hollow rod 14 illustrated in FIG. 1 may be held in place using screws 12 such as locking screws. Preferably the rod is fabricated in a size and shape that give it sufficient strength to stabilize the fracture during healing, The rod is fabricated from a material that permits a magnetic field to pass there through, either because the material itself permits the passage of a magnetic field or the rod is provided with a section through which the magnetic field may pass.
[0025] Unlike conventional intramedullary rods, a fixation device 10 according to the illustrated embodiment includes an electromagnetic field emitter 16 disposed in the cavity 15 of the hollow rod 14. The electromagnetic field emitter 16 may take any conventional shape, and preferably includes an electromagnetic coil such as a solenoid coil through which a current is passed to create a magnetic field.
[0026] A controller 1 8 which may be fabricated on a printed circuit board and/ or as an integrated circuit is provided in communication with the electromagnetic coil or the electromagnetic field emitter 16 for generating a signal to energize the electromagnetic field emitter 16. In the embodiment of FIG, 1, a power source 20, such as a battery, also is provided within the hollow rod, in communication with the electromagnetic field emitter 16 and the controller 1 8. Leads or wires 22 also are provided in the hollow rod 14 to interconnect the electromagnetic field emitter 16, the controller 18, and the power source 20. Generally speaking, the controller is energized by the power source to generate the signal that when applied to the electromagnetic field emitter creates a field, preferably a varying field that intersects the fracture or wound.
[0027] In one example of the invention, the controller 18 is programmed with a series of instructions for controlling the field emitted by the electromagnetic field emitter 16, More specifically, the controller may be programmed with a routine such as a series of intensity and/or time dependent instructions, Depending upon the program routine, the controller will manipulate the power hrom the power source to supply a current to the electromagnetic field emitter 16, which in turn will create an electromagnetic field corresponding to the applied current, By varying the current and the time, any number of routines may be used, as required by the patient.
[0028] The controller may be preprogrammed with a number of routines for application of varied electromagnetic fields to the injury site. For example, routines may be included that depend upon the location and/ or severity of a fracture or accompanying wounds to nearby tissue and/or muscle. In still other embodiments, the controller may be programmable either before implantation into the patient, or after being inserted. One lead may be accessible through the skin to allow tethering to a computer or the like useable in programming the controller 18. Preferably, the controller will include a wireless receiver configured to receive programming instructions wirelessiy from a computer or the like equipped with a transmitter. Further, the controller may include a wireless transmitter for transmitting data corresponding to the signal generated by the controller.
[0029] Although in the illustrated embodiment of FIG. 1 , the power source and controller are disposed within the hollow rod with the electromagnetic field emitter, in other embodiments the power source and/ or the controller may be disposed in the body, but remote from the
electromagnetic field emitter. In such an arrangement, the wires or leads 22 may extend outside of the hollow rod 14 and connect to the remotely disposed controller 18 and/or power supply 20. In still other embodiments, the controller and/or the power source may be disposed completely outside of the body. For example, the power source may be a field emitter disposed outside the bod}" that emits an electromagnetic field and when placed in proximity to an induction coil disposed in the body, will charge the coil to power the electromagnetic field generator. Preferably, the field emitter used as the power supply 20 emits a field that is different from the field generated by the electromagnetic field emitter, and which will not adversely affect: the wound healing sought to be accomplished by the electromagnetic emitter.
[0030] The electromagnetic field emitter generally is a conventional structure that will emit an electromagnetic field at a frequency of between about 5 and about 100 Hz, more preferably between about 5 Hz and about 30 MHz, and at 60 -400 Gauss within a treatment volume. As a result of the invention, the emitter can be placed in close proximity to a fracture in a bone and /or proximate nearby afflicted muscle or other tissue. Although two emitters are illustrated in Figure 1, more or fewer emitters may be provided. The emitter (s) preferably are at fixed positions inside the hollow rod 14. The position of the emitter 16 within the hollow rod 14 will be dictated by the position of the rod relative to the position of the fracture. When the rod 14 is placed in the bone 2, the electromagnetic field emitter 16 will closely align with the position of the fracture to expose the fracture to the electromagnetic field. In a preferred embodiment, the emitter(s) will be affixed to the inside of the hollow rod using any known fastener, such as a physical fastener like a set screw, or an implant grade adhesive. [0031] As will be appreciated by those of ordinary skill in the art, known electromagnetic field emitters produce electromagnetic fields having a known size and shape. Figure 2 shows a conventional electromagnetic field emitter 160 including a conductive wire, such as copper, 162 wound along an axis to form a coil. When an electrical current is passed through the coil, an electromagnetic field is created as depicted by flux lines 168. Although not required, the illustrated coil 162 is wrapped around a cylindrical core 164, which is preferably a ferrous core, to intensify the field.
[0032] In use, the coil should be positioned such that the bone fracture and /or any other- tissue to be healed is disposed in the electromagnetic field. An advantage of the invention over previously-used, non-implanted electromagnetic field emitters, is that the field can be generated very near to d e fracture or other wound to be treated so that the high flu portion of the field can intersect the wound/ fracture. This close positioning allows for a lower power requirement, because the field need not be as strong as it would need to be if it were generated farther from the fracture and increased biological healing response because the field is not interfered with by passing through surrounding tissue. When the fixation device is a rod, as in Figure 1 , a series of electromagnetic field emitters like those illustrated in Figure 2 may be disposed along the length of the hollow rod, such that the electromagnetic fields overlap along the length of the rod. In this embodiment any position along the rod will be affected by an electromagnetic field. While the care giver could opt to energize all coils to provide a field along the full length of the rod, the controller could alternatively be configured to allow for selective energizing of the coils. In other embodiments fewer emitters may be provided that are positioned specifically for affecting the fracture/wound. One or more emitters may be provided that are moveable within the rod prior to placement of the rod, to allow the emitters to be placed at positions that will best promote healing. In yet another embodiment of the invention, the emitters may be placed at predetermined positions within different rods, with the orthopedic surgeon choosing a rod that will align the emitter with the fracture/wound for healing promotion.
[0033] In conventional intramedullary nail placement procedures, a guide wire is passed longitudinally through a fractured bone, a reamer is passed over the guide wire to bore the bone out longitudinally, and the rod is fed over the guide wife into position. Once in position, screws may be inserted transversely through the bone and into the rod, to lock the rod in place. A rod according to the present disclosure may be inserted using the same procedure. To do so, the rod preferably also has a longitudinal opening, which may require that each of the electromagnetic field emitters and other components occupy less than the full cross-sectional area of the opening in the rod or have openings extending axialiy therethrough.
[0034] For example, each electromagnetic field emitter couid have a hole formed therethrough, large enough to allow for passage of the guide wire there through. In one
embodiment, each of the emitters is a wound coil such as that shown in Figure 2. The illustrated coil, also referred to as an air coil, is illustrated in which a wire is wound continuously along an axis preferably in multiple layers to form a cylindrical coil defining an open middle. The coil is preferably sized to allow passage of the guide wire through the open middle. In another embodiment it may be desirable to wrap the air coil around a ferrite core. To facilitate passage of the nail over a guide wire, d e ferrite core may have a longitudinal opening formed therein.
[0035] Other embodiments may also allow use of a guide wire to insert an intramedullary rod by ensuring that the footprint of the electromagnetic field emitter has a smaller area than the area of a cross-section of the opening in the hollow rod. This could be particularly useful when it is desired to dispose a solid core in the coil. For example, the emitter could be attached to a sidewall of the opening, sized small enough such that space is provided next to the emitter large enough to pass a guide wire. A sleeve or conduit could also be provided in the rod to guide the guide wire through a more tortuous path along the length of the rod. The sleeve or conduit feeds the guide wire in any number of ways, including through the sidewall of the hollow rod. This would be particularly useful in applications m which the emitter occupies substantially ail of the opening m the hollow rod at axial positio s along the rod. In a further example, the hollow rod may include a completely separate, substantially axial, guide opening 21 , which is parallel to the cavity 1 5. An example of this separate opening is illustrated in Figure 3A, and is formed in a sidewall of the hollow rod. To this end, the hollow rod may not be cylindrical, but couid instead include a profile allowing for both the cavity 15 and the guide opening 21. Some exemplary profiles are illustrated in Figure 3B and 3C.
[0036] As will be appreciated, large, concentrated forces are often applied to intramedullary nails and rods during insertion and during healing, and the components disposed within the rod must be firmly affixed in the rod to avoid damage or disloclgement during insertion and healing. [0037] In another embodiment of the disclosure, the electromagnetic field emitter (and power source and controller) may be inserted into the rod after the rod is inserted into the bone, A stop, such as a constriction or protuberance, may be provided in the cavity 15 of the hollow rod in such an embodiment, to attain proper axial positioning of the inserted components. An adhesive may be applied to the inserted components to maintain their position once inserted. Alternatively, a packing or mechanical stop may be inserted after the inserted components to maintain positioning of the emitter in the rod. An advantage of the after-inserted components is that the components do not undergo the pounding and potential destruction accompanying insertion of the rod,
[0038] In other embodiments, a guide wire is not used for insertion of the hollow rod, so no provisions for an axial passageway through the rod need be made. In this example, the opening through the bone is bored or reamed out using known techniques, and the rod is then inserted.
[0039] Because the fixation device 10 is generally intended to be left in the patient permanently, each of the components should be implant grade. Moreover, the hollow rod 14 of the embodiment of FIG, 1 preferably is a non-ferrous material, such as a polymer or titanium so as not to affect the electromagnetic field emitted by the electromagnetic field emitter 16. The components should be chosen such that the electromagnetic field emitted by the electromagnetic field emitter 16 will pass freely through the fixation device 10 to the fractured bone and/ or the damaged tissue,
[0040] The invention is not limited to an embodiment in which the electromagnetic field emitter is disposed within a hollow rod comprising a fixation device. In an alternative to the toresoine embodiments, the electromagnetic field emitter could be disnoseci on a side ol the hollow rod 14 or at an end thereof. In such an embodiment, it may not be necessary that the hollow rod 14 be hollow at all. A solid rod could be used instead, because no components are intended to be disposed within the rod.
[0043] hi another embodiment, the coil comprising the emitter could be wrapped around the rod. This embodiment is shown in Figure 4. In that figure, emitters 16 are formed at spaced positions along the rod 14 by wrapping wire around the rod 14. Although this embodiment shows a plurality' of discrete coils along the length of the rod, the wire may be wrapped continuously along the entire length of the rod, to create a larger field. In these embodiments, all or a portion of the rod may be ferrous, to intensify the field at each coil. Alternatively, the rod could still be hollow, but with ferrous material disposed in the hollow rod. The control and power supply could also be disposed in a hollow rod.
[0042] The embodiment illustrated in Figure 4 also includes a protective layer 26 formed over tiie coils. This protective layer 26 preferably is chosen to shield the coils from damage when the rod is inserted by an orthopedic surgeon. For example, the protective layer may be a polymeric or foil wrap disposed over the coil, and which will not affect the field emitted by the coils. Figure 4 also shows a leading protrusion 24 disposed axially adjacent to each coil. The protrusion extends radially from the rod further than the coil and is disposed such that when the rod is inserted along the direction of arrow in Figure 4, the protrusion first enters the bone. In this manner, the protrusion forges a path through the bone to minimize contact of the bone with the coil, thereby reducing the potential for damage to the coil.
[0043] In alternatives to Figure 4, one or both of the protective layer 26 and the protrusion
24 may not: be provided. The protrusion may be an annular ring disposed abou!: the circumference of the rod, or it may be a series of protrusions disposed about the circumference. Moreover, as illustrated in Figure 4, the protrusion preferably is angled, to promote ease of insertion of the rod into the bone.
[0044] The invention also is not limited to an intramedullary rod or nail. FIG, 5 shows an embodiment ot the invention in which a fixation device 110 is incorporated in a screw 112 having a threaded shaft 112a and a head 112b. There, an electromagnetic field emitter 1 16 comprising a plurality of windings as a coil like that in Figure 2 is disposed on a shaft of the screw 1 12, proximate the head 112b. The electromagnetic field emitter thus will not inhibit access to the head of the screw, for example, for insertion, but the emitter can be placed wherever a screw can be inserted. The screw may be a locking screw such as the type used in connection with an intramedullary rod or a plate, or it may be any other type ot screw, including but not limited to a pedicle screw for use m spinal procedures,
[0045] As also illustrated in Figure 5, the screw 1 12 further includes an annular stop 128 arranged between the threads and the coil. When an orthopedic surgeon inserts the screw, rotation of the screw will be stopped when the stop 128 contacts the bone or plate into which the screw is being inserted. In this way, the surgeon will not overtighten the screw in a manner that will cause the coil to contact the bone or plate, resulting m potential damage to the coil. Although not iliustrated, leads will extend from the coil to the controller and/or power source, as in previous embodiments. Such components may be provided on the screw, or in a separate implant.
[0046] Yet another embodiment of the invention is illustrated in Figure 6, Figure 6 is similar to the previous embodiments in that it shows a fixation device 210 including an implant 214 and an electromagnetic field emitter 216. Unlike the other embodiments, the implant is a plate 214, such as a surgical or orthopedic plate, and the emitter 216 is a coil earned on the plate. The plate may be any known plate or plate-like structure, for example, such as used to maintain position of a fractured bone for healing that bone or for fusion of bones, as in spinal surgery. In the preferred embodiment, the emitter 216 is carried on a side of the plate 214 that does not contact the bone. The emitter 2.16 may be fixed to the plate in any number of ways, including fasteners and adhesives. Figure 6 also shows a controller 218 and power source 220 carried on the plate, and electrical leads 222. interconnecting the foregoing components. It is preferred thai: the plate be made from a material that will not distort the field generated by the emitter, but the emitter and plate may be designed to cooperate in creating a field that will effectively intersect with a fracture/wound.
[0047] The emitter may be mounted on any position of the plate, to ensure maximum exposure of the fracture to the generated field. In some embodiments, the orthopedic surgeon will affix the emitter during surgery, using known fastening means, such as adhesives or mechanical fasteners. In other embodiments, an emitter or emitters may be fixed at predetermined position (s) on the plate. The surgeon will then choose the appropriate plate, and place the plate to ensure that the emitted field is properly aligned with the injury. Figure 6 also illustrates indicia or a registration mark 224 (a clotted line in the figure) that will allow a user to readily properly align the plate for healing using the emitter, In the illustrated embodiment, the surgeon aligns the dotted line 224 with the break to ensure that the emitter will be properly aligned.
[0048] In yet another embodiment, iliustrated in Figure 7, an emitter 316 includes a coil 328 such as those described above and a protrusion 330 depending from the coil. The protrusion 330 is sized to allow for registration of the emitter 316 with any standard hole 315 formed in an orthopedic plate 314. As will be appreciated, orthopedic plates generally have a plurality of holes 315, to allow a surgeon maximum flexibility for affixation of the plate to the bone. Any hole or holes aligning with the fracture are generally not used, because a screw is rarely used at the break. However, it is beneficial to align the emitter with the break, for reasons discussed above. The protrusion 330 of this embodiment allows for registration of the emitter with the plate at the break. The protrusion may form a press or interference fit with the plate, facilitating connection of the emitter with the plate. Alternatively, the emitter with protrusion may be fixed to the plate sing any known fastening method, such as adhesives. A controller and/or a power source may be included with the emitter or may be positioned anywhere on or spaced irom the plate.
[0049] Although the foregoing embodiments describe securing the emitter to the top of the plate, the emitter may be disposed anywhere on the plate, including on an edge of the plate or the bottom of the plate, proximate the bone to which the plate is affixed. In another embodiment, illustrated in Figure 8, an electromagnetic field emitter 316 is disposed in a recess 313 formed in a plate 314. The plate 314 further includes holes 315 for affixation of the plate. A controller 31 8 and a power source 320 are also illustrated in the recess 313. The recess 313 allows for a lower-profile arrangement than can be achieved by placing the emitter on top of the plate. The recessed portion of the plate should be configured to provide sufficient rigidity to stabilize the fracture and minimize the formation of stress risers.
[0050] Figure 9 is a modification of the embodiment of Figure 8 in which an emitter 416, a controller 418 and a power supply 42.0, with, interconnections 422, are completely encapsulated within an orthopedic plate 414. In this embodiment, a cavity 413 is provided in the plate 414 and the components are disposed in the cavity. To facilitate formation of the plate 414, the plate may be made of multiple pieces that are assembled after affixation of the emitter 416 and other components to one of the pieces. For example, the plate may have first and second opposing pieces, e.g., a top and a bottom having lacing horizontal surfaces that when assembled define a cavity sized to receive the emitter and other components, as appropriate. Alternatively, the plate may be formed with a recess, as in Figure 8, the components placed in the recess, and then a cover applied to substantially encapsulate the components in the plate. In such embodiments, the surgeon will preferably receive a unitary piece in which is embedded the components, such as the emitter, controller and power supply.
[0051] As with previous embodiments, the plate used in Figures 6-9 preferably is non- ferrous, such that the emitted electromagnetic field will readily pass through the plate to the treatment area. [0052] Although the embodiments illustrated until now utilize air or axial coils such as those illustrated in Figure 2, other types of coils may be used, Figure 10 shows an embodiment in which the electromagnetic field emitter is a flat or pancake coil 516 disposed on a plate 514, such as an orthopedic plate. A pancake coil generally emits a field having flux lines 568 such as those illustrated in Figure 11. Figure 1 1 also illustrates treatment regions 570, which are areas disposed in the magnetic field. In practice, the afflicted bone or tissue to be healed should be disposed in these treatment regions 570 for maximum efficacy of the emitter 516.
[0053] In the embodiment of Figure 10, a plurality of pancake coils is provided in a two- dimensional array, i.e., a 1x4 matrix, on a plate 514. Using appropriate controls, the coils may be selectively energized at desired frequencies and for preferred durations. For example, when a plate such as that illustrated in Figure 10 is used, the coil or coils closest to the fracture site will be energized according to a first treatment methodology. Other coils may be energized differently or not at all. in other embodiments, more or fewer pancake coils may be provided. Moreover, the pancake coils may be encapsulated in the plate, instead or disposed on the piate, as in the embodiment: of Figure 9.
[0054] Another embodiment of the invention is illustrated in Figure 12. There, a plurality of pancake coils 61 6 is provided on a flexible substrate 614. The flexible substrate allows for form- fitting of the array of coils to a surface. The array of coils may be formed from wrapped wire, but more likely will be formed by depositing a metal, such as copper, onto the substrate as a coil using known deposition, including known masking and/or etching, techniques. The deposited coil may be a single-layer coil or may include turns in multiple layers. That is, deposited pancake coils may be stacked one on top of the next. In such a configuration, an intermediate layer, such as an insulating- layer, may also be provided between stacked coils. Such an arrangement will provide an increased number of turns for the coil, but still provide a relatively low profile.
[0055] The substrate according to the embodiment of Figure 12 preferably is made of a polymer-blend. The flexible substrate may be affixed to a plate, such as a conventional plate, or in some embodiments could be affixed directly to a patient's bone. An adhesive may be disposed between the back of the substrate and the site to be treated to adhere the substrate. The adhesive may be pre-applied and exposed by removing; a backing or other protective coating, or it may be applied at the time oi affixation of the substrate. The substrate could otherwise be affixed using any known methodologv.
[0056] The flexible substrate with electromagnetic emitters has the benefit of allowing for adaptation of existing orthopedic devices, i.e., by affixing the substrate to such devices. Any number ot fixation devices could be modified to include a substrate including coils. For example, one or more coils on a flexible substrate may be disposed on an intramedullary rod, either wrapping around the rod, or along the length of the rod. in other uses, the substrate couid be applied directly to a bone or other anatomical structure in the body.
[0057] In any of the foregoing embodiments, it is preferable to arrange the electromagnetic field emitter such that in use the emitted field acts on the desired treatment area. Although the embodiments of Figures 6- 11 generally illustrate coils with axes perpendicular to a top surface of a plate, the coils could readily be provided "on their side" such that their axis is parallel to the top surface of the plate without departing from the spirit and scope of the invention,
[0058] In several embodiments described above, a device according to the invention generally Includes an implantable device, such as a conventional device like a rod or plate, adapted to earn7 a field emitter and a signal generator. Other combinations also are contemplated. The field emitter and signal generator also may be carried by an implant such as a prosthesis. For example, during a hip replacement, a portion of the femur is removed and replaced with an implant including a new ball attached to a stem and a cooperating; piece including a socket. The field emitter and signal generator may be carried by the bail or by the shaft of the implant. In one embodiment, the ball and/or shaft may be hollow, with the field emitter and signal generator being; disposed in the hollow ball or shaft. Those of ordinary skill in the art will appreciate that alternative, similar embodiments can also be achieved using the teachings of this disclosure.
[0059] The power source provided in the invention may be any known or developed power source sufficient to power the coil. Batteries have been conventionally implanted into the human body, e.g., in pace makers, and such powering technology may be applicable with embodiments of the invention.
[0060] The control circuitry preferably is provided to allow for user selection of strength and duration of currents applied to the electromagnetic emitters. The controller may be programmable, i.e., via remote control through an input device external to the patient, to allow for custom treatment of each patient. In other embodiments, the controller could be pre-programmed with a treatment methodology and merely turned on to run through that pre-determined treatment regimen. The control circuitry may further include wake-tip circuitry or the like, to allow for delayed operation. For example, an orthopedist may determine that they would prefer not to use the electromagnetic field therapy until some amount of time after surgery. Thus, the emitter should not be energized until that rime, if at all.
[0061] As noted above, a number of arrangements of electromagnetic field emitters, signal generating electronics, i.e., to instruct energizing of the coil, and power sources, which provide power for energizing the coil, will be appreciated from this disclosure. In a relatively simple embodiment, a battery, as the power source, the signal generating electronics, and a wire coil are implanted directly in a patient. The signal generating electronics will include pre-programmed operational sequences as treatment routines that will energize the coil as desired.
[0062] In addition to a battery, signal generating electronics and a magnetic coil, the implanted device may further include a receiver and a transmitter, allowing the device to
communicate with an external device. Such an arrangement would allow for downloading to the implanted device signal patterns and schedules, e.g., for specific treatments, as well as updates, and for receiving information from the device, for example, about the treatment, such as accumulated dosimetry and/ or other treatment characteristics.
[0063] In yet another embodiment of the invention, to assist in providing useful information about die device implanted into the body, the device may further include sensory coils. Such coils are spaced from the electromagnetic field emitters to receive the generated magnetic field at a known distance from the generating coil. The receiver coil is placed at a position, such as a position spaced along the implanted device away from the emitter or an opposite side of a fracture to be treated, to measure the magnitude and duration of the generated magnetic field, Using the aforementioned transmitter, the results measured by the sensor coil are then forwarded to the remote device, for interpretation by a doctor or technician.
[0064] Although many of the foregoing embodiments entail implanting a battery as a power source, in some applications a battery may not be the best power source. For example, it may be impractical to use a conventional battery, for example, because the battery may not last long enough. When chronic pain is being treated using a device according; to the invention, it is preferable that the device function as long as the patient requires. Thus, the device may further include an induction coil as a rechargeable power source, More specifically, the induction coil is implanted in the patient and an induction device, such as an induction wand, is used external to the patient to charge the device. The wand may take any known form including; being provided in a wearable device that could charge the device, for example, when the user is sleeping.
[0065] Figure 13 illustrates a schematic of a system according to the invention. There, a battery 42 is the power source, and an induction loop 44 is provided to charge the battery 42. A receiver 46 and transmitter 48 are also illustrated, as is an example of the signal generator 50. The signal generator 50 is illustrated as including a signal shape memory 52, which stores one or more signal shapes used to drive the coil 60; a signal playback generator 54; signal level controls 56; and final treatment amplifier 58. These components all are connected to the treatment coil 60. The schematic also shows a sensor coil 62, such as that described above, and controls 64 for receiving information from the sensor coil 62. This schematic is provided merely as an example; other systems and configurations will be apparent to those of ordinary skill in the art upon being educated by this disclosure.
[0066] The invention has been generally described herein as utilizing a coil as an
electromagnetic field emitter. Other embodiments may include different field generators. For example, an alternative embodiment may include a permanent magnet, having a known field strength and shape. The magnet could then be vibrated, rotated or otherwise moved to modulate the field, to apply the desired bioeffect. Figure 14 shows an example of this. There, a permanent magnet 716 generates a magnetic field having a known strength and shape. The magnet 716 is disposed on a shaft 790, rotatabie by a rotary actuator 792, such as a piezoelectric actuator. By rotating the magnet, the magnet's field is modulated, which modulation may be optimized for treatment of a broken bone or wound. Thus, the actuator/permanent magnet combination forms a controllable magnetic field emitter. Although not illustrated, the actuator/permanent magnet field emitter will be carried on a fixation device or other implantable carrier, such as an orthopedic plate, intramedullary rod, replacement implant, or the like. [0067] Although a rotary actuator is illustrated in Figure 14, this is merely for illustrative and exemplary purposes. In an alternative embodiment, shown in Figure 15, the magnet 816 is provided on a linear actuator 892, such as a piezoelectric actuator, disposed to move along the direction indicated by the arrow in Figure 15. By actuating the actuator 892, a fracture 804 in a bone 802 is selectively disposed in and spaced from the magnet's field, indicated by flux lines 868. A signal generator for driving the actuator also is shown in Figure 15. The magnet 816 and the actuator 892 are illustrated in this embodiment as being disposed in a hollow rod 814. In other embodiments those components could be carried on any other impiant, including but not limited to those described above
[0068] While the invention has been described in connection with several presently preferred embodiments thereof, those skilled in the art will appreciate that many modifications and changes may be made therein without departing from the true spirit and scope of the invention which accordingly is intended to be defined solely by the appended claims.

Claims

1. An orthopedic device comprising:
an internal orthopedic fixation device; and
a magnetic field emitter carried by the fixation device.
2. The orthopedic device of claim 1 , farther comprising a power source for modulating a magnetic field emitted by the magnetic field emitter.
3. The orthopedic device of claim 2, wherein die power source is a batten implanted in the human body with the fixation device and the magnetic field emitter.
4. The orthopedic device oi claim 2, wherein the power source is a field generator generating a field that will charge the electromagnetic field emitter.
5. The orthopedic device of claim 4, wherein the field generated by the field generator is different from the field generated by the magnetic field emitter.
6. The orthopedic device of claim 1 , wherein the fixation device comprises a hollow rod and the magnetic field emitter is disposed in the hollow rod.
7. The orthopedic device of claim 1, wherein the fixation device is a plate.
8. The orthopedic device of claim 7, wherein the plate comprises a cutout adapted to receive the magnetic field emitter therein.
9. The orthopedic device of claim 7, wherein the magnetic field emitter is affixed to the plate.
10. The orthopedic device of claim 1 , wherein the fixation device is non-ferrous.
11. The orthopedic device of claim 1 , wherein the fixation device is a screw and the magnetic field generator is an electromagnetic field emitter disposed proximate a head of the screw.
12. The orthopedic device of claim 1, wherein the magnetic field emitter comprises an electromagnetic coil.
13. The orthopedic device of claim 12, further comprising a controller for controlling the electromagnetic field emitted bv the eiectroma netic coil.
14. A method of treating an injury comprising:
placing an orthopedic fixation device in a patient;
placing an electromagnetic field emitter carried by the device into the patient; and activating the electromagnetic field emitter to emit an electromagnetic field proximate the injury.
15. The method of claim 14, wherein the step of activating the electromagnetic field emitter comprises controlling the emitter to deliver a prescribed electromagnetic field regimen.
16. The method of claim 15, wherein the regimen includes one or more of
predetermined frequencies and durations.
17. The method of claim 14, further comprising securing the fixation device to a bone of the patient.
18. The method of claim 14, further comprising powering the electromagnetic field emitter with a power supply.
19. The method of claim 18, wherein the power supply is placed in the patient along with the fixation device.
20. A device for stabilizing a fracture and promoting healing, comprising: an intramedullary orthopedic fixation device having an opening therein;
an electromagnetic field emitter disposed in the opening of the orthopedic fixation device;
a controller disposed in die opening of the orthopedic fixation device and communicating with the electromagnetic field emitter to control the field emitted by the electromagnetic field emitter; and
a power source providing power to the controller and the electromagnetic field emitter.
PCT/US2012/071878 2011-12-27 2012-12-27 Orthopedic fixation device with magnetic field generator WO2013101962A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2861605A CA2861605A1 (en) 2011-12-27 2012-12-27 Orthopedic fixation device with magnetic field generator
JP2014550473A JP6184975B2 (en) 2011-12-27 2012-12-27 Orthopedic fixation device with magnetic field generator
EP12862131.5A EP2797525A4 (en) 2011-12-27 2012-12-27 Orthopedic fixation device with magnetic field generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/337,584 2011-12-27
US13/337,584 US20130165733A1 (en) 2011-12-27 2011-12-27 Orthopedic fixation device with magnetic field generator

Publications (1)

Publication Number Publication Date
WO2013101962A1 true WO2013101962A1 (en) 2013-07-04

Family

ID=48655238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/071878 WO2013101962A1 (en) 2011-12-27 2012-12-27 Orthopedic fixation device with magnetic field generator

Country Status (5)

Country Link
US (2) US20130165733A1 (en)
EP (1) EP2797525A4 (en)
JP (2) JP6184975B2 (en)
CA (1) CA2861605A1 (en)
WO (1) WO2013101962A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335282B2 (en) 2016-02-09 2019-07-02 Richard A. Rogachefsky Magnetic joint replacement
WO2020165905A1 (en) * 2019-02-13 2020-08-20 Magdent Ltd. Implantable electromagnetic field generator for orthopedic therapy

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324786A1 (en) 2012-05-31 2013-12-05 Richard A. Rogachefsky Applicable device for healing injuries with magnetic fields
US20140049223A1 (en) * 2012-08-17 2014-02-20 Karl Hermann Berger Rechargeable programmable intelligent variable output battery module
US9987140B2 (en) * 2013-03-04 2018-06-05 Mechano-Transduction, Llc Dynamic force generation for bone repair
US9474908B2 (en) * 2014-03-06 2016-10-25 Robert Alex Hirschl Bone stabilizer and stimulator implant
DE102014112573A1 (en) * 2014-09-01 2016-03-03 Wittenstein Ag Mark Nagel
WO2016169578A1 (en) * 2015-04-20 2016-10-27 Bioscience Medical Group Ltd Bone fixation apparatus
US10307588B2 (en) * 2015-06-30 2019-06-04 Elemental Orthopedics Llc Metal alloy mono and poly-filament wire reinforced carbon fiber plating system with electromagnetic bone stimulation
US10405776B2 (en) * 2017-06-13 2019-09-10 Biosense Webster (Israel) Ltd. Positioning tool for an orthopedic implant
US10667850B2 (en) * 2017-08-17 2020-06-02 Spinal Generations, Llc Modular femoral nail and method of use thereof
US11305112B2 (en) 2018-05-16 2022-04-19 DePuy Synthes Products, Inc. Electrical stimulation implants
US11596803B2 (en) * 2018-08-02 2023-03-07 Richard A. Rogachefsky Orthopedic treatment device with electromagnetic field generator
DE102019122354A1 (en) * 2019-08-20 2021-02-25 Orthofix Srl Intramedullary nail for distraction of a long bone
US11534620B2 (en) * 2020-02-24 2022-12-27 Hsuan-Hua Chiu Magnetic stimulation device having planar coil structure
US11806050B2 (en) 2020-09-21 2023-11-07 DePuy Synthes Products, Inc. Tension isolating adjustable adapter for external fixation and methods of production and use thereof
CN112915389A (en) * 2021-01-20 2021-06-08 清华大学 Bone growth assisting system and flexible magnetic field generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138663A1 (en) * 2001-05-23 2004-07-15 Yona Kosashvili Magnetically-actuable intramedullary device
US6778861B1 (en) * 1999-06-23 2004-08-17 Geot Gesellschaft Fur Elektro-Osteo-Therapie G.M.B.H. Bone screw comprising a device for electrostimulation
US20050075562A1 (en) * 2002-10-03 2005-04-07 Szakelyhidi David C. Magnetic targeting device
US20080255556A1 (en) * 2007-04-11 2008-10-16 Berger J Lee Electrical screw
US20100131024A1 (en) * 2006-10-06 2010-05-27 Peter Lathrop Electrotherapy orthopedic device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1918299B2 (en) * 1969-04-10 1972-04-13 Kraus, Werner, Dipl.-Ing., 8000 München Splint for guiding and healing fractured bones
CH551201A (en) * 1971-04-06 1974-07-15 Kraus Werner DEVICE FOR STIMULATING AND / OR ACCELERATING THE FORMATION OF BONE SUBSTANCE.
DE2314573C2 (en) * 1973-03-23 1986-12-18 Werner Dipl.-Ing. 8000 München Kraus Device for promoting healing processes
EP0501048A1 (en) * 1991-02-25 1992-09-02 Lti-Imd Usa, Inc. Shielded electromagnetic transducer
US5411503A (en) * 1993-06-18 1995-05-02 Hollstien; Steven B. Instrumentation for distal targeting of locking screws in intramedullary nails
US20090062886A1 (en) * 2002-12-09 2009-03-05 Ferro Solutions, Inc. Systems and methods for delivering electrical energy in the body
US7613497B2 (en) * 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
US7029478B2 (en) * 2003-09-30 2006-04-18 Depuy Products, Inc. Method and apparatus for distal targeting of locking screws in intramedullary nails
US20060079897A1 (en) * 2004-09-29 2006-04-13 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
DE102006018191B4 (en) * 2006-04-19 2008-08-07 Neue Magnetodyn Gmbh Electric intramedullary nail system
EP2114264B1 (en) * 2007-02-28 2019-07-03 Smith & Nephew, Inc. Instrumented orthopaedic implant for identifying a landmark
DE102007049542A1 (en) * 2007-10-16 2009-04-23 Neue Magnetodyn Gmbh Implantable device, system for generating localized electromagnetic fields in the region of an implant and coil arrangement
DE102007063027A1 (en) * 2007-12-28 2009-07-09 Neue Magnetodyn Gmbh Contact device for osteosynthesis
US10064664B2 (en) * 2008-10-31 2018-09-04 Peter Forsell Device and method for bone adjustment operating with wireless transmission energy
ES2732890T3 (en) * 2009-10-29 2019-11-26 Magdent Ltd Implant device to stimulate osteogenesis and osseointegration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778861B1 (en) * 1999-06-23 2004-08-17 Geot Gesellschaft Fur Elektro-Osteo-Therapie G.M.B.H. Bone screw comprising a device for electrostimulation
US20040138663A1 (en) * 2001-05-23 2004-07-15 Yona Kosashvili Magnetically-actuable intramedullary device
US20050075562A1 (en) * 2002-10-03 2005-04-07 Szakelyhidi David C. Magnetic targeting device
US20100131024A1 (en) * 2006-10-06 2010-05-27 Peter Lathrop Electrotherapy orthopedic device
US20080255556A1 (en) * 2007-04-11 2008-10-16 Berger J Lee Electrical screw

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797525A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335282B2 (en) 2016-02-09 2019-07-02 Richard A. Rogachefsky Magnetic joint replacement
WO2020165905A1 (en) * 2019-02-13 2020-08-20 Magdent Ltd. Implantable electromagnetic field generator for orthopedic therapy
CN113677395A (en) * 2019-02-13 2021-11-19 帕萨尔美德他克有限公司 Implanted electromagnetic field generator for orthopedic treatment

Also Published As

Publication number Publication date
EP2797525A1 (en) 2014-11-05
JP6184975B2 (en) 2017-08-23
EP2797525A4 (en) 2015-11-04
US20150080636A1 (en) 2015-03-19
US20130165733A1 (en) 2013-06-27
US10004916B2 (en) 2018-06-26
JP2017205561A (en) 2017-11-24
JP6552557B2 (en) 2019-07-31
CA2861605A1 (en) 2013-07-04
JP2015504728A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US10004916B2 (en) Orthopedic fixation device with magnetic field generator
US20220233869A1 (en) Implantable device having one or more screws
US20210260373A1 (en) Method of treating an overactive bladder condition
US7245972B2 (en) Electrical treatment to treat shoulder subluxation
US20220362555A1 (en) Batteryless implantable microstimulators
CA2447155C (en) Magnetically-actuable intramedullary device
US20090105782A1 (en) Vagus nerve stimulation apparatus, and associated methods
US20070150035A1 (en) Multiple Selectable Field/Current-Voltage Pads Having Individually Powered and Controlled Cells
AU2002304270A1 (en) Magnetically-actuable intramedullary device
US9227080B2 (en) Applicable device for healing injuries with magnetic fields
US20240350801A1 (en) Implantable Pulse Generator with Automatic Jump-Start
US11596803B2 (en) Orthopedic treatment device with electromagnetic field generator
US9987140B2 (en) Dynamic force generation for bone repair
WO2007085822A1 (en) Improvements in and relating to peripheral neurostimulation
CN118681133A (en) Device for stimulating peripheral nerves
JP2018519968A (en) Implantable pulse generator for generating spinal stimulation signals for the human body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550473

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2861605

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012862131

Country of ref document: EP