WO2013101054A1 - Systems, methods, and apparatus for identifying an occupant of a vehicle - Google Patents

Systems, methods, and apparatus for identifying an occupant of a vehicle Download PDF

Info

Publication number
WO2013101054A1
WO2013101054A1 PCT/US2011/067830 US2011067830W WO2013101054A1 WO 2013101054 A1 WO2013101054 A1 WO 2013101054A1 US 2011067830 W US2011067830 W US 2011067830W WO 2013101054 A1 WO2013101054 A1 WO 2013101054A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
cluster information
occupant
inputs
primary
Prior art date
Application number
PCT/US2011/067830
Other languages
French (fr)
Inventor
David L. Graumann
Jennifer Healey
Carlos MONTESINOS
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to PCT/US2011/067830 priority Critical patent/WO2013101054A1/en
Publication of WO2013101054A1 publication Critical patent/WO2013101054A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24578Query processing with adaptation to user needs using ranking
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00362Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
    • G06K9/00369Recognition of whole body, e.g. static pedestrian or occupant recognition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0809Driver authorisation; Driver identical check
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00362Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
    • H04L63/0861Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using biometrical features, e.g. fingerprint, retina-scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to network resources
    • H04L63/102Entity profiles

Abstract

Certain embodiments of the invention may include systems, methods, and apparatus for identifying an occupant of a vehicle. According to an example embodiment of the invention, a method is provided for identifying an occupant of a vehicle. The method includes receiving a primary identification (ID) input and one or more secondary ID inputs, wherein the primary ID input comprises identification token information; retrieving cluster information based at least on the primary ID input; comparing the one or more secondary ID inputs with the cluster information; determining a confidence value associated with the identification of the occupant based at least in part on the comparison of the one or more secondary ID inputs with the cluster information; and outputting information based at least in part on the determined confidence value.

Description

SYSTEMS, METHODS, AND APPARATUS FOR IDENTIFYING AN OCCUPANT OF

A VEHICLE

FIELD OF THE INVENTION

This invention generally relates to recognition systems, and in particular, to systems, methods, and apparatus for identifying an occupant of a vehicle.

BACKGROUND OF THE INVENTION

When a person gets into a car and prepares to drive, he/she will usually adjust a number of settings within the vehicle, including the seat position, the rear view mirror angle, climate control settings, etc. In some vehicles, the seats can have a number of adjustable settings, including backrest angle, fore-and-aft position, lumbar position, seat depth, seat height, etc. The array of seat positions can present a challenge, for example, when the vehicle is shared and different occupants have their own unique seat adjustment preferences.

Vehicle designers and manufacturers have attempted to address this issue by installing memory controls and motorized actuators so that seals, mirrors, pedals, etc., can be adjusted to a previously memorized position with a push of a single button. Some vehicles can associate memorized settings with a speci fically numbered key fob, for example, to set seats lo speci fic memory positions when the car is unlocked with a specific key fob. But i f key sets are traded or borrowed, the wrong preference settings may be presented to the occupant and may create an annoyance or safety hazard.

BRIEF DESCRIPTION OF THE FIGURES

Reference will now be made to the accompanying figures and flow diagrams, which are not necessarily drawn to scale, and wherein:

FIG. I is an illustrative example of a vehicle occupant recognition system arrangement with a recognized occupant, according to an example embodiment of the invention. FIG. 2 is an illustrative example of an unrecognized occupant, according to an example embodiment of the invention.

FIG. 3 is a block diagram of i llustrative identification processes, according to an example embodiment of the invention.

FIG. 4 is a block diagram of a vehicle occupant recognition system, according to an example embodiment of the invention.

FIG. 5 is a flow diagram of an example method for learning the identity of an occupant of a vehicle, according to an example embodiment of the invention.

FIG. 6 is a flow diagram of an example method for identifying an occupant of a vehicle, according to an example embodiment of the invention.

DETA I LED DESCRI PTION

Embodiments of the invention will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

In the following description, numerous speci fic details are set forth. However, it is understood that embodiments of the invention may be practiced without these speci fic details. In other instances, well-known methods, structures, and techniques have not been shown in detail in order not to obscure an understanding of this description. References to "one embodiment," "an embodiment," "example embodiment," "various embodiments," etc., indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessari ly includes the particular feature, structure, or characteristic. Further, repeated use of the phrase "in one embodiment" does not necessarily refer to the same embodiment, although it may.

As used herein, unless otherwise specified, the use of the term vehicle can include a passenger car, a truck, a bus, a freight train, a semi-trailer, an aircraft, a boat, a motorcycle, or other motorized vehicle that can be used for transportation. As used herein, unless otherwise specified, the use of the term occupant can include a driver, user, or a passenger in a vehicle. As used herein, the term training can include updating or altering data based, at least in part, on new or additional information.

Certain embodiments of the invention may enable control of devices based on a sensed identity or lack thereof. A plurality of sensors may be used in a motor vehicle to learn and/or sense an identity of an occupant. According to an example embodiment, one or more functions related to devices associated with the motor vehicle may be triggered or control led by the sensed identity or lack thereof. According to example embodiments of the invention, devices that may be controlled, based at least in part on a profile associated with the identity sensing, can include settings associated with seals, pedals, mirrors, climate control systems, windows, a sun roof, vehicle displays, sound systems, navigation systems, alerting systems, braking systems, communication systems, or any other comfort, safety, settings, or controls related to a motor vehicle.

In accordance with example embodiments of the invention, an ideniily and profile of an occupant may be learned and/or sensed by processing information received from two or more sensors within a vehicle. According to example embodiments, the sensors can include a camera, a weight sensor, a safely belt position sensor, a microphone, a radio frequency identification (RFID) reader, a Bluetooth transceiver, and/or a Wi-Fi transceiver. These sensors may be utilized in conjunction with the other sensors in the vehicle to obtain information for identifying or learning the identity of an occupant. According to example embodiments, the sensors may be utilized to provide additional information for ascertaining a confidence value for associating the information with a probable identity. According to an example embodiment, once a personal profile is established, the profile may be shared with another vehicle, for example, to provide consistency across various vehicles for a particular driver or occupant.

Certain embodiments of the invention may enable learning and associating personal devices and/or physical features of an individual driver with that individual's personal preferences, settings, and/or habits. Example embodiments may obtain and learn these preferences without cognizant inpul from the driver. According to example embodiments, the sensors may be utilized to monitor or observe an occupant in the process of selling vehicle mirrors, seal position, steering position, temperatures, dash options, and other adjustable attributes. According to an example embodiment, the sensors may detect when the adjustments are in a transient-state and/or when they are in a steady-state, for example, so that settings associated with the adjustments are memorized after a steady- state has been reached, and not while the driver is in the process of ad justment.

According to example embodiments, configurations, settings, restrictions, etc., may be placed on the operation of the vehicle based on the identity of the driver or occupants. According to example embodiments, a wireless communication system may be included for communicating, for example, with a remote server so that an owner of a vehicle may con figure settings, restrictions, etc., for the vehicle without needing to be in the car. In other example embodiments, the configurations, settings, restrictions, etc., may be set from within the vehicle. According to an example embodiment, the car may be placed in a "no-new users" mode that may disable the ignition if a previously unknown (or unlearned) driver attempts to start or drive the vehicle. In one embodiment, one or more restrictions may be imposed based on various actions of the driver, or upon sensed aspects associated with the vehicle. For example, an identified driver may be exceeding the speed limit. According to an example embodiment, the vehicle may be placed in a mode, for example, that instructs the driver to "pull the car over at the next available slop," so that the owner may query the driver via cell phone, or disable the vehicle remotely without creating a safety issue. Similar example embodiments as described above may be utilized for preventing the theft of the vehicle.

According to an example embodiment, an occupant may open the vehicle door with a key, for example, that may include a radio frequency identification (RFID) or other identifying chip embedded in a portion of the key fob. Such information may be used as partial information for identifying the driver. In other example embodiments, the vehicle

*

door may include a keyless code, and the driver may open the door via a personal code and provide identity information via the code. An unauthorized user, for example, may obtain a code, and a key fob may be borrowed or stolen. According to an example embodiment, the code or key fob may be utilized as partial information to identify an occupant, but as will now be discussed, additional information may be sensed to provide a higher level of security or confidence in the actual identity of the occupant.

Various components, systems, methods, and arrangements may be utilized for identi fying and/or learning an identity of an occupant of a vehicle, according to example embodiments, and will now be described with reference to the accompanying Figures. FIG. 1 is an illustrative example of a vehicle occupant recognition system arrangement with a recognized occupant, according to an example embodiment of the invention. In an example embodiment, two or more sensors may be utilized for determining or estimating an occupant's identity. For example, the personal entry code may be read with a keypad, or information from a key fob or other personal device may be read with a Bluetooth, WiFi, or RFID reader 1 04 and may provide partial "ground information" that may be used in conjunction with other sensed information to identify an occupant.

According to an example embodiment, the camera 102 may capture images of the driver 106, and the images may be processed to identify features associated with the driver including skin tone, facial features, eye spacing, hair color, shape, etc. According to an example embodiment, a camera 102 may be placed, for example, on the dash or in any other convenient location in or on the vehicle for capturing images associated with the driver 106. In other example embodiments, the camera 102 may be placed in other locations on the vehicle, and reflection components may be utilized for directing the camera field of view to regions of interest. ·

Certain example embodiments provide for situations when the driver 106 may be wearing a hat or sunglasses, or when the lighting in the cabin is too bright or too dim to be within a preferred dynamic range for the camera and image recognition processing. In this example embodiment, other sensed information may be utilized and weighted accordingly.

According to an example embodiment, one or more safely belts 108 within the vehicle may include optically identi fiable markings that can be detected by the camera 102 and analyzed to determine the buckled length. This information may be used in conjunction with other sensors and with other features captured in the camera image to determine the identity of the driver 106.

According to an example embodiment, a weight sensor 1 10 may be utilized to detennine an approximate weight of the driver 106. According to example embodiments, the weight sensor 1 10 may be used in conjunction with the other sensors and with other features captured in the camera image to determine the ident ity of the driver 106.

The inset box shown in FIG. I illustrates a recognition of an occupant 106 based on measured features including weight, safety belt length, and facial information, according to an example embodiment. Average values or vectors that may fluctuate over time (and/or from measurement-to-measurement) may represent measured features associated with a particular occupant. For example, weight can change; clothing may be bulky on cold days; sunglasses may be used intermittently, etc. According to an example embodiment, and for illustration purposes, a general population may have features represented by a normalized distribution 1 12. But an individual from the general population may have measured features (weight, safety belt length, facial features, vectors, etc.) that fall within a particular narrow range in comparison to the normalized distribution 1 12. For example, the weight sensor 1 10 may be used to obtain one or more weight measurements when an occupant 1 06 enters the vehicle. Multiple measurements over time may produce a weight measurement curve 1 14 having a certain mean and variance. According to an example embodiment, the weight measurement 1 14 mean or average (or a single, measurement value) may be compared with weight data to determine i f a previously defined weight signature region 1 15 exists that matches the weight measurement 1 14 within certain predefined bounds. I f so, this may be a partial indication of the probability that the driver 106 matches a previously learned identity profile. According to an example embodiment, a similar process may be carried out for a safety belt length measurement 1 16 and a facial feature measurement 1 ! 8, with processes to determine i f there are corresponding matches with a safety belt signature region 1 1 7 and a facial feature signature region 1 1 . According to an example embodiment, the combination of matching measurements 1 14, 1 16, 1 1 8 with corresponding signature regions 1 15, 1 1 7, 1 19, along with key fob information, etc., may provide a certain level of confidence for confirming an identity of the driver 106 or other occupant. According to an example embodiment, this process may also be utilized for determining if an occupant is not recognized by the system, as will be discussed in reference to the next figure.

FIG. 2 is an illustrative example of an unrecognized occupant 206, according to an example embodiment of the invention . In an example embodiment, a weight sensor 2 10 may be utilized to obtain a weight measurement 214 of the occupant 206. In an example embodiment, a camera (for example, the camera 102 of FIG. 1 ) may be utilized to obtain one or more images of the safety bell 208. which may include an optically recognizable fiducial marking pattern for determining the buckled safety belt length measurement 216. According to an example embodiment, the camera (for example, the camera 102 of FIG. 1 ) may be utilized to obtain one or more images of the occupant 206 for determining a facial feature measurement or vector 2 18.

The inset box in FIG. 2 depicts an example where the measured values 214, 216, 2 18 do not match well with corresponding signature regions 220. According to an example embodiment, the signature regions 220 may correspond to a known or previously learned identity having the closest combined match with the measured values 214, 2 16, 2 1 8. According to an example embodimenl, if a correlation between the signature regions 220 and the measured values 2 14, 2 16, 2 1 8 is not above a certain threshold, then a certain action or set of actions may be performed based on system preferences. For example, if the system is set for "no new drivers," the vehicle may not start if the unrecognized occupant 206 is in the driver seat. According to another example embodiment, if the system is set to "learn new drivers," then a set of actions may be performed to memorize the measured values 214, 21 , 2 1 8 and begin learning (and remembering) the identity of the unrecognized occupant 206.

FIG. 3 depicts a block diagram of illustrative identification processes, according to an example embodiment of the invention. Some of the blocks in FIG. 3 may represent hardware-specific items, while other blocks may represent information processing or signal processing. According to an example embodiment, measurements may be obtained from sensors, and the resulting feature vector informalion 3 10 may be utilized for training, learning, identifying, prompting, etc. According to an example embodiment, the sensors may include a seat weight sensor 303, a RFID reader 304, a camera with a associated image feature extraction module or processor 306, and a microphone with an associated speech recognition or feature extraction module or processor 308.

According to an example embodiment, an input may also be provided for obtaining a ground truth 3 13. According to an example embodiment, a ground truth 3 13 may be considered a very reliable linkage between the occupant and a particular identity. Examples of the ground truth 3 13 may include, but are not limited to, a social security number, a secure password, a biometric scan, a secure token, etc. According to an example embodiment, the ground truth 3 13 may be embodied in a key fob or personal electronic device, and may carried by the occupant. According to an example embodimenl, informalion comprising the ground truth 3 1 3 may be stored on a RFI D chip and transmitted via a R.FI D reader for making up part of the feature vector information 3 10, and/or for providing information for the training stage 3 14.

According to an example embodiment, a controller 322 may be utilized for orchestrating sensors and feature vector extraction. According to an example embodiment, certain extracted information including weight, RF1D information, facial geometry, vocal quality, etc., may be associated with a particular occupant and may be utilized in establishing linkage between the occupant, a particular identity, and any personalized settings 326 associated with the identity. For example, personalized settings 326 can include seat position, mirror position, radio station, climate control settings, etc. According lo an example embodiment, the personalized settings 326 may be extracted by various sensors. According to an example embodiment, information related lo the personalized settings 326 may be processed by the controller 322. In an example embodiment, the personalized settings 326 may be stored for learning or refining settings associated with a particular identity. In another example embodiment, the personalized settings 326 may be read from memory by the controller 322 to provide setting when an occupant has been identified and has a corresponding set of stored personalized settings 326.

According to an example embodiment, the feature vector information 3 10 may be analyzed lo determine i f there is a match with previously stored information. Based on this analysis, either a training stage 3 14 or a recognition stage 320 may be implemented. In an example embodiment, feature vector information 3 10 may need to be measured a number of times (for example, to eliminate noise, etc) or to determine if the measurements have converged 316 to an average or mean value that is a reliable indicator. In an example embodiment, converged 3 16 data may be used in the recognition stage 320 for determining an identity from the feature vector information 3 1 0.

Accord i ng lo an example embodiment, the controller 322 may provide a signal or command for a prompt or greeting .324 to be announced to the occupant based on the feature vector information 310 and whether a match was made with the read personalized features 328. For example, if a match is determined, the prompt or greeting 324 may announce: "Hello again, you are Alice." According to another example embodiment, i f there is no match, the prompt or greeting may announce: "I don't recognize you, please tell me your First name." According to an example embodiment, the speech recognition or feature extraction module or processor 308 may then process a response picked up from the microphone, and begin the process of learning the unrecognized occupant, provided that the system preferences are set to a "learn new occupant" mode.

FIG. 4 is a block diagram of a vehicle occupant recognition system 400, according to an example embodiment of the invention. The system 400 may include a controller 402 that is in communication with one or more cameras 424. One or more images from the one or more cameras 424 may be processed by the controller 402, and certain features may be extracted from the one or more images to provide feature vector information (as in the feature vector information 310 of FIG. 3). According to an example embodiment, the controller may receive, by one or more input output interfaces 408, information from other devices 426, which may include a seat weight sensor, a microphone, a key fob, etc. According to an example embodiment, the controller 402 includes a memory 404 in communication with one or more processors 406. The one or more processors may communicate with the camera 424 and/or the devices 426 via one or more input/output inter aces 408. According to an example embodiment, the memory 404 may include one or more modules that may provide computer readable code for configuring the processor to perform certain special functions. For example, the memory may include a recognition module 416. According to an example embodiment, the memory may include a learning module 418. According to example embodiments, the recognition module 416 and the learning module 418 may work in conjunction with the one or more processors 406, and may be utilized for learning or recognizing features in the captured and processed images from the camera 424, or from the devices 426. In an example embodiment, the recognition module 416 may be utilized for determining matches associated with input from the devices 426 and the camera 424.

In accordance with an example embodiment, the memory may include an interpretation/output or response module 420 that may provide commands or other information based on the recognition or non-recognition of an occupant. In example embodiments, commands or other information may include audible prompts, visual prompts, or signals for controlling various operations associated with the vehicle, as previously discussed.

According to an example embodiment, the controller may include one or more network interfaces 410 for providing communications between the controller and a remote server 430 via a wireless network 428. According to example embodiments, the remote server 430 may be used for gathering information, communicating with the control ler 402, and/or for providing software or firmware updates to the controller 402 as needed. According to an example embodiment, the controller may communicate with one or more user devices 432 via the network 428. For example, the user devices 432 can include cell phones, computer, tablet computer, etc. According to an example embodiment, the one or more user devices 432 may be utilized to communicate with and remotely control functions associated with the controller 402.

FIG. 5 is a flow diagram of an example method for learning an identity of an occupant of a vehicle, according to an example embodiment of the invention. The method 500 starts in block 502, and according to an example embodiment of the invention includes receiving a primary identification (I D) input and one or more secondary ID inputs, wherein the primary ID input comprises identification token information. In block 504, the method 500 includes retrieving cluster information based at least in part on the primary ID input. In block 506, the method 500 includes comparing the one or more secondary ID inputs with the cluster information. In block 508, the method 500 includes determining a confidence value based at least in part on the comparison of the one or more secondary ID inputs with the cluster information. In block 5 10, the method 500 includes training the cluster information based at least in pan on the received one or more secondary ID inputs. In block 5 12, the method 500 includes storing the trained cluster information. The method 500 ends after block 512.

According to example embodiments, situations may arise where a learned or authorized user, may lend his/her primary ID to another learned or authorized user, and the system may provide several alternatives for dealing with this type of situation. In one example embodiment, when cluster information (which can take the form of one or more feature vectors) is retrieved based on a primary ID (for example a key fob) and it doesn't match well with the secondary I D inputs (for example, weight, visible features, safety belt length), the system may require a tertiary I D input, for example, a fingerprint, a code, or a spoken phrase. Continuing this example, and according to another example embodiment, the system may instead search a database for cluster information associated with another known occupant that matches well (i.e., having correlation above a predefined threshold) with the secondary ID inputs. In this example embodiment, the system may provide a visual or audible prompt or greeting such as "You are not Bob, you are Jane." According to example embodiments, the system may utilize a previously stored list of approved users and associated cluster information for allowing approved users to borrow each other's key fobs for example.

According to example embodiments, situations may arise where a learned or authorized user, may lend his/her primary I D to another unknown or previously unauthorized user, and the system may provide several alternatives for dealing with this type of situation. In one example embodiment, when cluster information is retrieved based on a primary ID and it doesn 't match well with the secondary I D inputs the system may require a tertiary ID input, for example, a fingerprint, a code, or a spoken phrase. In another example embodiment, the system may call the phone of the owner or the last known driver to seek permission to let the unknown user operate the vehicle. In this example embodiment, the system may provide a visual or audible prompt or greeting such as "You are not an authorized user."

According to an example embodiment, the identification token information may include information provided by an occupant. The provide information may include, for example, an unlock code, a thumb print, or other bio identifier. According to an example embodiment, the provided information may be stored on one or more of a radio frequency identification (R.FID) tag, a barcode, a magnetic strip, a key fob, or a non-volatile memory. According to an example embodiment, the secondary ID inputs may include one or more of: weight, weight distribution, image features, audible features associated with the occupant of the vehicle or other identi fication data associated with the occupant of the vehicle. According to an example embodiment, the cluster information may include an indication of prior association between the primary ID input and the one or more secondary ID inputs. According to an example embodiment, the indication may include one or more degrees of relative association. Example embodiments may further include outputting information, commands, etc., based at least in part on comparing of the one or more secondary ID inputs with the cluster information. According to an example embodiment, training the cluster information is further based at least in part on the determined confidence value. According to an example embodiment, training the cluster information may include updating a mean and variance of the cluster information based at least in part on one or more of the received secondary ID inputs. Example embodiments may include a vehicle that includes a primary reader for receiving input from a primary identification (I D) device; one or more secondary ID input devices; at least one memory for storing data and computer-executable instructions; and one or more processors configured to access the at least one memory and further configured to execute computer-executable instructions for receiving a primary ID input from the primary reader and one or more secondary I D inputs from the one or more secondary I D input devices; retrieving cluster information from the at least one memory associated with the vehicle based at least in part on the primary I D input; comparing the one or more secondary ID inputs with the cluster information; determining a confidence value based at least in part on the cluster information or on the comparison of the one or more secondary ID inputs with the cluster information; and training the cluster information based at least in part on the received one or more secondary ID inputs. According to an example embodiment, at least a speaker or display may be included for prompting an occupant of the vehicle.

According to an example embodiment, the one or more secondary I D input devices may include sensors for measuring weight or weight distribution associated with an occupant of the vehicle, a camera for capturing image features associated with an occupant of the vehicle, or a microphone for capturing audible features associated with the occupant. According to an example embodiment, the cluster information may include an indication of prior association between the primary ID input and the one or more secondary ID inputs. According to an example embodiment, the indication may include one or more degrees of relative association. According to an example embodiment, the one or more processors are further configured for outputling information based at least in part on comparing the one or more secondary ID inputs with the cluster information. According to an example embodiment, training the cluster information is further based at least in part on the determined confidence value. According to an example embodiment, training the cluster information includes updating a mean and variance of the cluster information based at least in part on one or more of the received secondary ID inputs.

FIG. 6 is a flow diagram of an example method for identifying an occupant of a vehicle once the identity has been learned, according to an example embodiment of the invention. The method 600 starts in block 602, and according to an example embodiment of the invention includes receiving a primary identi fication (I D) input and one or more secondary ID inputs, wherein the primary ID input comprises identification token information. In block 604, the method 600 includes retrieving cluster information based at least on the primary ID input. In block 606, the method 600 includes comparing the one or more secondary ID inputs with the cluster information. In block 608, the method 600 includes determining a confidence value associaled with the identification of the driver based at least in part on the comparison of the one or more secondary ID inputs with the cluster information. In block 610, the method 600 includes ouiputting information based at least in part on the determined confidence value. The method 600 ends after block 610.

According to an example embodiment, the identification token information may include information stored on one or more of a radio frequency identi fication ( RFID) tag, a bar code, a magnetic strip, a key fob, or a non-volatile memory. According to an example embodiment, the secondary ID inputs may include one or more of: weight or weight distribution associated with the driver of the vehicle, image features associated with the driver of the vehicle, or audible features associated with the driver of the vehicle. According to an example embodiment, the cluster information may include an indication of prior association between the primary ID input and the one or more secondary ID inputs. An example embodiment may include training the cluster information based at least in part on one or more of the received one or more secondary ID inputs or determined confidence value. According to an example embodiment, training the cluster information may include updating a mean and variance of the cluster information. According to an example embodiment, ouiputting information may include one or more of an audible or visual prompt or greeting, a command for setting personalized features of the vehicle, or a predetermined command.

Example embodiments may include a vehicle that may include at least one primary reader for receiving input from a primary identification (ID) device; one or more secondary ID input devices; at least one memory for storing data and computer-executable instructions: and one or more processors configured to access the at least one memory and further configured to execute computer executable instructions for: receiving a primary ID input from the primary reader and one or more secondary I D inputs; retrieving cluster information from the at least one memory based at least in part on the primary ID input; comparing the one or more secondary ID inputs with the cluster information; determining a confidence value associated with an identification of an occupant of the vehicle based at least in part on the cluster information or on the comparison of the one or more secondary I D inputs with the cluster information; and outputting information based at least in part on the determined confidence value.

According to example embodiments, certain technical effects can be provided, such as creating certain systems, methods, and apparatus that identify a user and provide user preferences. Example embodiments of the invention can provide the further technical effects of providing systems, methods, and apparatus for learning a new user. Example embodiments of the invention can provide the further technical effects of providing systems, methods, and apparatus for learning preferences of a user.

In example embodiments of the invention, the vehicle occupant recognition system

400 may include any number of hardware and/or software applications that are executed to facilitate any of the operations. In example embodiments, one or more input/output interfaces may facilitate communication between the vehicle occupant recogniiion system 400 and one or more input/output devices. For example, a universal serial bus port, a serial port, a disk drive, a CD-ROM drive, and/or one or more user interface devices, such as a display, keyboard, keypad, mouse, control panel, touch screen display, microphone, etc., may facilitate user interaction with the vehicle occupant recogniiion system 400. The one or more input/output interfaces may be utilized to receive or collect data and/or user instructions from a wide variety of input devices. Received data may be processed by one or more computer processors as desired in various embodiments of the invention and/or stored in one or more memory devices.

One or more network interfaces may facilitate connection of the vehicle occupant recogniiion system 400 inputs and outputs to one or more suitable networks and/or connections; for example, the connections that facilitate communication with any number of sensors associated with the system. The one or more network interfaces may further facilitate connection to one or more suitable networks; for example, a local area network, a wide area network, the Internet, a cellular network, a radio frequency network, a Bluetooth™ (owned by Telefonakliebolaget LM Ericsson) enabled network, a Wi-Fi™ (owned by Wi-Fi Alliance) enabled network, a satellite-based network, any wired network, any wireless network, elc, for communication with external devices and/or systems. According to an example embodiment, a Bluetooth MAC address of a personal device may be used as pari of the identi fication or learning process for a vehicle occupant. As desired, embodiments of the invention may include the vehicle occupant recognition system 400 with more or less of the components illustrated in FIGs. 1 through 4.

Certain embodiments of the invention are described above with reference to block diagrams and flow diagrams of systems and methods and/or computer program products according to example embodiments of the invention. It will be understood that one or more blocks of the block diagrams and flow diagrams, and combinations of blocks in the block diagrams and flow diagrams, respectively, can be implemented by computer- executable program instructions. Likewise, some blocks of the block diagrams and flow diagrams may not necessarily need to be performed in the order presented, or may not necessarily need to be performed at all, according to some embodiments of the invention.

These computer-executable program instructions may be loaded onto a general- purpose computer, a special-purpose computer, a processor, or other programmable data processing apparatus to produce a particular machine, such that the instructions that execute on the computer, processor, or other programmable data processing apparatus create means for implementing one or more functions specified in the flow diagram block or blocks. These computer program instructions may also be stored in a computer- readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means that implement one or more functions specified in the flow diagram block or blocks. As an example, embodiments of the invention may provide for a computer program product, comprising a computer-usable medium having a computer-readable program code or program instructions embodied therein, said computer-readable program code adapted to be executed to implement one or more functions specified in the flow diagram block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational elements or steps to be performed on the computer or other programmable apparatus to produce a computer- implemented process such that the instructions that execute on the computer or other programmable apparatus provide elements or steps for implementing the functions specified in the flow diagram block or blocks. Accordingly, blocks of the block diagrams and flow diagrams support combinations of means for performing the specified functions, combinations of elements or steps for performing the specified functions and program instruction means for performing the specified functions. It will also be understood that each block of the block diagrams and flow diagrams, and combinations of blocks in the block diagrams and flow diagrams, can be implemented by special-purpose, hardware-based computer systems that perform the specified functions, elements or steps, or combinations of special-purpose hardware and computer instructions.

While certain embodiments of the invention have been described in connection with what is presently considered to be the most practical and various embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

This written description uses examples to disclose certain embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice certain embodiments of the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of certain embodiments of the invention is defined in the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not di ffer from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims

CLA IMS The claimed invention is:
1 . A method comprising executing computer-executable instructions by one or more processors for identifying an occupant of a vehicle, the method further comprising:
receiving a primary identification (ID) input and one or more secondary ID inputs, wherein the primary ID input comprises identification token information;
retrieving cluster information based at least on the primary ID input;
comparing the one or more secondary ID inputs with the cluster information; determining a confidence value associated with the identi fication of the occupant based at least in part on the comparison of the one or more secondary ID inputs with the cluster information; and
outputting information based at least in part on the determined confidence value.
2. The method of claim 1 , wherein the identification token information comprises information stored on one or more of a radio frequency identification (RFID) lag, a bar code, a magnetic strip, a key fob, or a non- volatile memory.
3. The method of claim 1 , wherein the secondary ID inputs comprise one or more of: weight or weight distribution associated with the occupant of the vehicle, image features associated with the occupant of the vehicle, or audible features associated with the occupant of the vehicle.
4. The method of claim 1 , wherein the cluster information comprises an indication of prior association between the primary I D input and the one or more secondary ID inputs.
5. The method of claim 1 , further comprising training the cluster information based at least in part on one or more of the received one or more secondary ID inputs or the determined confidence value.
6. The method of claim 5, wherein training the cluster information comprises updating a mean and variance of the cluster information.
7. The method of claim I , wherein outputting the information comprises one or more of an audible or visual prompt or greeting, a command for setting personalized features of the vehicle, or a predetermined command.
8. A vehicle comprising:
a primary reader for receiving input from a primary identification (ID) device;
one or more secondary I D input devices;
at least one memory for storing data and computer-executable instructions; and one or more processors configured to access the at least one memory and further configured to execute computer-executable instructions for:
receiving a primary identification (ID) input from the primary reader and one or more secondary ID inputs;
retrieving cluster information from the at least one memory based at least in part on the primary I D input;
comparing the one or more secondary ID inputs with the cluster information;
determining a confidence value associated with an identi fication of an occupant of the vehicle based at least in pan on the cluster information or on the comparison of the one or more secondary ID inputs with the cluster information; and outputting information based at least in part on the determined confidence value.
9. The vehicle o f claim 8, further comprising at least a speaker or a display for greeting or prompting the occupant of the vehicle.
10. The vehicle of claim 8, wherein the primary ID device comprises information stored on one or more of a radio frequency identification ( FID) tag, a bar code, a magnetic strip, a key fob, or a non-volatile memory.
1 1. The vehicle of claim 8, wherein the one or more secondary ID input devices comprise one or more of sensors for measuring weight or weight distribution associated with the occupant of the vehicle, a camera for capturing image features associated with the occupant of the vehicle, or a microphone for capluring audible features associaied with the occupant of the vehicle.
12. The vehicle of claim 8, wherein the cluster information comprises an indication of prior association between the primary ID input and the one or more secondary ID inputs.
13. The vehicle of claim 8, wherein the one or more processors are further configured for training the cluster information based at least in part on the received one or more secondary ID inputs.
14. The vehicle of claim 1 3, wherei n training the cluster information is further based at least in part on the determined confidence value.
15. The vehicle of claim 13, wherein training the cluster information comprises updating a mean and variance of the cluster information based at least in part on one or more of the received secondary ID inputs.
16. The vehicle of claim 13, wherein oulputting in formation comprises one or more t of an audible or visual prompt or greeting, a command for setting personalized features of the vehicle, or a predetermined command.
1 7. An apparatus comprising:
at least one memory for storing data and computer-executable instructions; and one or more processors configured to access the at least one memory and further configured to execute computer-executable instructions for:
receiving a primary identification (ID) input and one or more secondary ID inputs;
retrieving cluster information from the at least one memory based at least in part on the primary ID input;
comparing the one or more secondary ID inputs with the cluster information;
determining a confidence value associated with an identi fication of an occupant of a vehicle based at least in part on the cluster information or on the comparison of the one or more secondary I D inputs with the cluster information; and
outputting information based at least in part on the determined confidence value.
18. The apparatus of claim 17, wherein the primary ID input comprises information stored on one or more of a radio frequency identification (RFID) tag. a bar code, a magnetic strip, a key fob, or a non-volatile memory.
1 9. The apparatus of claim 17, wherein the secondary I D inputs comprise one or more of weight or weight distribution associated with the occupant of the vehicle, image features associated with the occupant of the vehicle, or audible features associated with the occupant of the vehicle.
20. The apparatus of claim 17, wherein the cluster information comprises an indication of prior association between the primary ID input and the one or more secondary ID inputs, wherein the indication comprises a relative degree of association.
2 1 . The apparatus of claim 17, wherein the one or more processors are further configured for training the cluster information based at least in part on the received one or more secondary ID inputs.
22. The apparatus of claim 2 1 , wherein the training of the cluster information is further based at least in part on the determined confidence value.
23. The apparatus of claim 21 , wherein the training of the cluster information comprises updating a mean and variance of the cluster information based at least in part on one or more of the received secondary ID inputs.
24. The apparatus of claim 1 7, wherein the outputting of the information comprises one or more of an audible or visual prompt or greeting, a command for setting personalized features of the vehicle, or a predetermined command.
25. A computer program product, comprising a computer-usable medium having a computer-readable program code embodied therein, said computer-readable program code adapted to be executed to implement a method for learning an identity of an occupant of a vehicle, the method further comprising:
receiving a primary identi fication (ID) input and one or more secondary ID inputs;
retrieving cluster information based at least on the primary ID input;
comparing the one or more secondary ID inputs with the cluster information; determining a confidence value associated with an identification of an occupant of a vehicle based at least in part on the cluster information or on the comparison of the one or more secondary ID inputs with the cluster information; and
outpuiting information based at least in part on the determined confidence value.
26. The computer program product of claim 25, wherein the primary ID input comprises information stored on one or more of a radio frequency identification (RFI D) tag, a bar code, a magnetic strip, a key fob, or a non-volatile memory and wherein the secondary ID inputs comprise one or more of weight or weight distribution associated with the occupant of the vehicle, image features associated with the occupant of the vehicle, or audible features associated with the occupant of the vehicle.
27. The computer program product of claim 25, wherein the cluster information comprises an indication of prior association between the primary ID input and the one or more secondary ID inputs.
28. The computer program product of claim 25, further comprising training the cluster information based at least in part on the received one or more secondary I D inputs.
29. The computer program product of claim 28,wherein training the cluster information is further based at least in part on the determined confidence value.
30. The computer program product of claim 28, wherein training the cluster information comprises updating a mean and variance of the cluster information based at least in part on one or more of the received secondary ID inputs.
PCT/US2011/067830 2011-12-29 2011-12-29 Systems, methods, and apparatus for identifying an occupant of a vehicle WO2013101054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2011/067830 WO2013101054A1 (en) 2011-12-29 2011-12-29 Systems, methods, and apparatus for identifying an occupant of a vehicle

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP11878583.1A EP2797794A4 (en) 2011-12-29 2011-12-29 Systems, methods, and apparatus for identifying an occupant of a vehicle
PCT/US2011/067830 WO2013101054A1 (en) 2011-12-29 2011-12-29 Systems, methods, and apparatus for identifying an occupant of a vehicle
CN201180075911.5A CN104010914B (en) 2011-12-29 2011-12-29 System, method and apparatus for recognizing automotive occupant
JP2014550262A JP2015505284A (en) 2011-12-29 2011-12-29 System, method and apparatus for identifying vehicle occupants
US13/977,615 US9573541B2 (en) 2011-12-29 2011-12-29 Systems, methods, and apparatus for identifying an occupant of a vehicle

Publications (1)

Publication Number Publication Date
WO2013101054A1 true WO2013101054A1 (en) 2013-07-04

Family

ID=48698291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/067830 WO2013101054A1 (en) 2011-12-29 2011-12-29 Systems, methods, and apparatus for identifying an occupant of a vehicle

Country Status (5)

Country Link
US (1) US9573541B2 (en)
EP (1) EP2797794A4 (en)
JP (1) JP2015505284A (en)
CN (1) CN104010914B (en)
WO (1) WO2013101054A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022838A1 (en) * 2013-08-12 2015-02-19 Mitsubishi Electric Corporation Method for adjusting settings in vehicle
US20150235483A1 (en) * 2012-11-07 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Method and Monitoring System for Monitoring the Use of Customer Functions in a Vehicle
GB2528086A (en) * 2014-07-09 2016-01-13 Jaguar Land Rover Ltd Identification method and apparatus
CN105501158A (en) * 2014-10-09 2016-04-20 福特全球技术公司 Adaptive driver identification fusion
EP3048026A1 (en) * 2015-01-22 2016-07-27 Volvo Car Corporation Method and system for assisting a vehicle occupant in tailoring vehicle settings
US9573541B2 (en) 2011-12-29 2017-02-21 Intel Corporation Systems, methods, and apparatus for identifying an occupant of a vehicle
EP3022886A4 (en) * 2013-07-15 2017-03-01 HGN Holdings, LLC System for embedded biometric authentication, identification and differentiation
WO2017139201A1 (en) * 2016-02-12 2017-08-17 Google Inc. Portable vehicle settings
GB2560324A (en) * 2017-03-07 2018-09-12 Jaguar Land Rover Ltd Apparatus and method for enabling storing of a user input vehicle setting
EP3560770A1 (en) * 2018-04-26 2019-10-30 Aisin Seiki Kabushiki Kaisha Occupant information determination apparatus
WO2019219369A1 (en) * 2018-05-14 2019-11-21 Audi Ag Method for operating a motor vehicle system on the basis of a user-specific user setting, storage medium, assignment device, motor vehicle and sensor device for operating on the internet

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133791A1 (en) * 2012-03-05 2013-09-12 Intel Corporation User identification and personalized vehicle settings management system
US10052972B2 (en) * 2013-03-26 2018-08-21 Intel Corporation Vehicular occupancy assessment
US20140316607A1 (en) * 2013-04-18 2014-10-23 Ford Global Technologeis, Llc Occupant presence detection and identification
US10127754B2 (en) * 2014-04-25 2018-11-13 Vivint, Inc. Identification-based barrier techniques
US10235822B2 (en) * 2014-04-25 2019-03-19 Vivint, Inc. Automatic system access using facial recognition
US10274909B2 (en) 2014-04-25 2019-04-30 Vivint, Inc. Managing barrier and occupancy based home automation system
WO2016082104A1 (en) * 2014-11-25 2016-06-02 臧安迪 Method and system for personalized setting of motor vehicle
CN104598269A (en) * 2014-12-18 2015-05-06 杰发科技(合肥)有限公司 Individuation setting method and setting system for vehicle and processing chip
CN105989315A (en) * 2015-02-13 2016-10-05 深圳市多尼卡电子技术有限公司 Roll call method, roll call device, roll call system, NFC (Near Field Communication) inductive card reader and seats
US9510159B1 (en) * 2015-05-15 2016-11-29 Ford Global Technologies, Llc Determining vehicle occupant location
CN105652705A (en) * 2015-06-29 2016-06-08 宇龙计算机通信科技(深圳)有限公司 Cab state regulation and control method and system thereof
JP2017043268A (en) * 2015-08-28 2017-03-02 修一 田山 Vehicle user information management system
US9704398B2 (en) 2015-09-14 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for enhancing driver situational awareness
CN106550160A (en) * 2015-09-17 2017-03-29 中国电信股份有限公司 Vehicle arrangement method and system
CN105338099A (en) * 2015-11-17 2016-02-17 广东好帮手电子科技股份有限公司 Method and system for realizing customized vehicle-mounted host based on Bluetooth MAC (Medium Access Control) address identification
US9948479B2 (en) * 2016-04-05 2018-04-17 Vivint, Inc. Identification graph theory
US10037471B2 (en) 2016-07-05 2018-07-31 Nauto Global Limited System and method for image analysis
EP3481661A4 (en) * 2016-07-05 2020-03-11 Nauto Inc System and method for automatic driver identification
JP2019527832A (en) 2016-08-09 2019-10-03 ナウト,インコーポレイテッドNauto,Inc. System and method for accurate localization and mapping
JP2019533609A (en) 2016-09-14 2019-11-21 ナウト,インコーポレイテッドNauto,Inc. Near-crash determination system and method
JP2020501227A (en) 2016-11-07 2020-01-16 ナウト,インコーポレイテッドNauto,Inc. System and method for driver distraction determination
CN106597951A (en) * 2016-12-26 2017-04-26 深圳市元征科技股份有限公司 Method for controlling vehicle and terminal thereof
WO2018229550A1 (en) 2017-06-16 2018-12-20 Nauto Global Limited System and method for adverse vehicle event determination
WO2018229549A2 (en) 2017-06-16 2018-12-20 Nauto Global Limited System and method for digital environment reconstruction
WO2018229548A2 (en) 2017-06-16 2018-12-20 Nauto Global Limited System and method for contextualized vehicle operation determination
CN107415602A (en) * 2017-07-06 2017-12-01 上海小蚁科技有限公司 For the monitoring method of vehicle, equipment and system, computer-readable recording medium
DE102018207906A1 (en) * 2018-05-18 2019-11-21 Bayerische Motoren Werke Aktiengesellschaft Apparatus, system and method for automatically configuring a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050193212A1 (en) * 2004-03-01 2005-09-01 Matsushita Electric Industrial Co., Ltd. Combined individual authentication system
US20060097844A1 (en) 2004-11-10 2006-05-11 Denso Corporation Entry control system and method using biometrics
US20070124599A1 (en) * 2005-11-28 2007-05-31 Fujitsu Ten Limited Authentication apparatus and method for use in vehicle
US20080253619A1 (en) * 2006-06-27 2008-10-16 International Business Machines Corporation Technique for authenticating an object on basis of features extracted from the object

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7243945B2 (en) * 1992-05-05 2007-07-17 Automotive Technologies International, Inc. Weight measuring systems and methods for vehicles
US5686765A (en) * 1993-03-19 1997-11-11 Driver Id Llc Vehicle security system including fingerprint and eyeball part identification
DE4414216C1 (en) * 1994-04-23 1995-04-06 Daimler Benz Ag Device for protecting a motor vehicle against use by third parties, with personalisation of the driving authorisation
US8174394B2 (en) * 2001-04-11 2012-05-08 Trutouch Technologies, Inc. System for noninvasive determination of analytes in tissue
US6819783B2 (en) * 1996-09-04 2004-11-16 Centerframe, Llc Obtaining person-specific images in a public venue
US20120078473A1 (en) * 2004-05-24 2012-03-29 Trent Ridder Apparatus and Method for Controlling Operation of Vehicles or Machinery by Intoxicated or Impaired Individuals
JP2003178032A (en) * 2001-08-08 2003-06-27 Omron Corp Authentication apparatus and method therefor, and person registering method
US7898385B2 (en) * 2002-06-26 2011-03-01 Robert William Kocher Personnel and vehicle identification system using three factors of authentication
US20060136744A1 (en) * 2002-07-29 2006-06-22 Lange Daniel H Method and apparatus for electro-biometric identity recognition
JP2005001642A (en) * 2003-04-14 2005-01-06 Fujitsu Ten Ltd Antitheft device, monitoring device, and antitheft system
US7597250B2 (en) * 2003-11-17 2009-10-06 Dpd Patent Trust Ltd. RFID reader with multiple interfaces
US7471832B2 (en) * 2004-02-24 2008-12-30 Trw Automotive U.S. Llc Method and apparatus for arbitrating outputs from multiple pattern recognition classifiers
JP4852604B2 (en) * 2005-07-11 2012-01-11 ボルボ テクノロジー コーポレイション Method and apparatus for implementing driver ID authentication
US8626377B2 (en) * 2005-08-15 2014-01-07 Innovative Global Systems, Llc Method for data communication between a vehicle and fuel pump
JP2009526707A (en) * 2006-02-13 2009-07-23 オール・プロテクト・エルエルシー Method and system for controlling a vehicle provided to a third party
US20080106390A1 (en) * 2006-04-05 2008-05-08 White Steven C Vehicle power inhibiter
US8395478B2 (en) * 2006-10-30 2013-03-12 Broadcom Corporation Secure profile setting in a shared device
US20080170758A1 (en) * 2007-01-12 2008-07-17 Honeywell International Inc. Method and system for selecting and allocating high confidence biometric data
JP2008223387A (en) * 2007-03-14 2008-09-25 Toyota Motor Corp Individual authentication device, and authentication method by individual authentication device
JP2009087232A (en) 2007-10-02 2009-04-23 Toshiba Corp Person authentication apparatus and person authentication method
JP5175649B2 (en) 2008-08-04 2013-04-03 株式会社日本自動車部品総合研究所 Driving environment setting system, in-vehicle device, and portable device
US20100209889A1 (en) * 2009-02-18 2010-08-19 Gm Global Technology Operations, Inc. Vehicle stability enhancement control adaptation to driving skill based on multiple types of maneuvers
JP5245971B2 (en) 2009-03-26 2013-07-24 富士通株式会社 Biological information processing apparatus and method
WO2010140039A2 (en) * 2009-05-30 2010-12-09 Lange Daniel H Electro-biometric methods and apparatus
US8866581B1 (en) * 2010-03-09 2014-10-21 Amazon Technologies, Inc. Securing content using a wireless authentication factor
US8547214B2 (en) * 2010-06-11 2013-10-01 International Business Machines Corporation System for preventing handheld device use while operating a vehicle
US9481375B2 (en) * 2010-12-03 2016-11-01 Pedal Logic Lp Method and apparatus to adjust for undesired force influencing a vehicle input control
US8756062B2 (en) * 2010-12-10 2014-06-17 General Motors Llc Male acoustic model adaptation based on language-independent female speech data
US8863256B1 (en) * 2011-01-14 2014-10-14 Cisco Technology, Inc. System and method for enabling secure transactions using flexible identity management in a vehicular environment
WO2013101054A1 (en) 2011-12-29 2013-07-04 Intel Corporation Systems, methods, and apparatus for identifying an occupant of a vehicle
US9193359B2 (en) * 2013-08-12 2015-11-24 GM Global Technology Operations LLC Vehicle systems and methods for identifying a driver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050193212A1 (en) * 2004-03-01 2005-09-01 Matsushita Electric Industrial Co., Ltd. Combined individual authentication system
US20060097844A1 (en) 2004-11-10 2006-05-11 Denso Corporation Entry control system and method using biometrics
US20070124599A1 (en) * 2005-11-28 2007-05-31 Fujitsu Ten Limited Authentication apparatus and method for use in vehicle
US20080253619A1 (en) * 2006-06-27 2008-10-16 International Business Machines Corporation Technique for authenticating an object on basis of features extracted from the object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797794A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573541B2 (en) 2011-12-29 2017-02-21 Intel Corporation Systems, methods, and apparatus for identifying an occupant of a vehicle
US20150235483A1 (en) * 2012-11-07 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Method and Monitoring System for Monitoring the Use of Customer Functions in a Vehicle
EP3022886A4 (en) * 2013-07-15 2017-03-01 HGN Holdings, LLC System for embedded biometric authentication, identification and differentiation
JP2016525983A (en) * 2013-08-12 2016-09-01 三菱電機株式会社 How to adjust the settings in the vehicle
WO2015022838A1 (en) * 2013-08-12 2015-02-19 Mitsubishi Electric Corporation Method for adjusting settings in vehicle
WO2016005378A1 (en) * 2014-07-09 2016-01-14 Jaguar Land Rover Limited Identification method and apparatus
GB2528086A (en) * 2014-07-09 2016-01-13 Jaguar Land Rover Ltd Identification method and apparatus
CN105501158A (en) * 2014-10-09 2016-04-20 福特全球技术公司 Adaptive driver identification fusion
EP3048026A1 (en) * 2015-01-22 2016-07-27 Volvo Car Corporation Method and system for assisting a vehicle occupant in tailoring vehicle settings
WO2017139201A1 (en) * 2016-02-12 2017-08-17 Google Inc. Portable vehicle settings
US10017139B2 (en) 2016-02-12 2018-07-10 Google Llc Portable vehicle settings
GB2560324A (en) * 2017-03-07 2018-09-12 Jaguar Land Rover Ltd Apparatus and method for enabling storing of a user input vehicle setting
WO2018162155A1 (en) * 2017-03-07 2018-09-13 Jaguar Land Rover Limited Apparatus and method for enabling storing of a user input vehicle setting
GB2560324B (en) * 2017-03-07 2019-08-07 Jaguar Land Rover Ltd Apparatus and method for enabling storing of a user input vehicle setting
EP3560770A1 (en) * 2018-04-26 2019-10-30 Aisin Seiki Kabushiki Kaisha Occupant information determination apparatus
WO2019219369A1 (en) * 2018-05-14 2019-11-21 Audi Ag Method for operating a motor vehicle system on the basis of a user-specific user setting, storage medium, assignment device, motor vehicle and sensor device for operating on the internet

Also Published As

Publication number Publication date
US9573541B2 (en) 2017-02-21
CN104010914A (en) 2014-08-27
CN104010914B (en) 2017-11-07
EP2797794A1 (en) 2014-11-05
EP2797794A4 (en) 2017-01-04
JP2015505284A (en) 2015-02-19
US20140195477A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
US10059342B2 (en) Global standard template creation, storage, and modification
EP3060434B1 (en) Responding to in-vehicle environmental conditions
US10417510B2 (en) System, methods, and apparatus for in-vehicle fiducial mark tracking and interpretation
US9956963B2 (en) Apparatus for assessing, predicting, and responding to driver fatigue and drowsiness levels
US9725098B2 (en) Vehicle driver identification
US9008641B2 (en) Detecting a user-to-wireless device association in a vehicle
JP2018114981A (en) Method of controlling vehicle environment and vehicle provided with vehicle environment control system
CN103935324B (en) Method and apparatus for vehicle access control control
US20170182958A1 (en) Method and apparatus for a near field communication system to exchange occupant information
US9610908B2 (en) Device for setting at least one operating parameter of at least one vehicle system in a motor vehicle
JP6643461B2 (en) Advertising billboard display and method for selectively displaying advertisements by sensing demographic information of vehicle occupants
EP2748039B1 (en) Method for controlling a vehicle boot lid of a vehicle and associated vehicle
US9043048B2 (en) RF biometric ignition control system
CN104369739B (en) The Vehicular system and method for driver for identification
US9449437B2 (en) Method of diagnosing operating characteristics
US10317900B2 (en) Controlling autonomous-vehicle functions and output based on occupant position and attention
US7864029B2 (en) Vehicle-setting-based driver identification system
US9275208B2 (en) System for vehicular biometric access and personalization
US20130144470A1 (en) Vehicle climate control
US20140350942A1 (en) Vehicle human machine interface with gaze direction and voice recognition
US9969268B2 (en) Controlling access to an in-vehicle human-machine interface
CN104094340B (en) Reconfigurable personalized vehicle display
CN105235615B (en) A kind of vehicle control system based on recognition of face
US10099636B2 (en) System and method for determining a user role and user settings associated with a vehicle
US7683767B2 (en) Control device for controlling in-vehicle unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13977615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011878583

Country of ref document: EP

ENP Entry into the national phase in:

Ref document number: 2014550262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE