WO2013094658A1 - Lens unit and array unit - Google Patents

Lens unit and array unit Download PDF

Info

Publication number
WO2013094658A1
WO2013094658A1 PCT/JP2012/082976 JP2012082976W WO2013094658A1 WO 2013094658 A1 WO2013094658 A1 WO 2013094658A1 JP 2012082976 W JP2012082976 W JP 2012082976W WO 2013094658 A1 WO2013094658 A1 WO 2013094658A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
spacer
substrate
resin
spacer plate
Prior art date
Application number
PCT/JP2012/082976
Other languages
French (fr)
Japanese (ja)
Inventor
青木健太郎
江黒孝一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013094658A1 publication Critical patent/WO2013094658A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means

Definitions

  • the present invention relates to a lens unit used for an imaging lens and the like, and an array unit for producing the lens unit.
  • the lens unit in order to ensure the space between the lens part and the cover glass or between the lens part and the lens part, it is necessary to insert a member such as glass having a hole in a position corresponding to the lens part as a spacer.
  • a wafer-like spacer having a plurality of holes corresponding to the position of each lens portion such as a wafer lens having a plurality of lens portions formed of resin or the like on the surface of the substrate is sandwiched between a pair of wafer lenses.
  • a large amount of lens units can be manufactured at once by pasting them together and finally cutting them (see, for example, Patent Document 1).
  • the spacer is formed with a hole having a shape that does not interfere with the structure such as the lens portion, but in the case of a wafer lens formed by molding on a substrate with a resin, a convex shape is formed.
  • a resin convex portion is always provided to form an optical surface by applying resin on the substrate. Will be. Therefore, if the gap between the spacer and the lens portion is narrow, the resin convex portion tends to interfere with the spacer, making it difficult to manufacture the lens unit.
  • Patent Document 2 does not describe forming a lens by applying a resin on a substrate.
  • 28A to 28G (corresponding to FIGS. 1 to 7 of Patent Document 2), it is presumed that molding is performed with one material. With such a molding method, it is unlikely that the above-mentioned problems will occur because the convex portions are not necessarily formed by the resin getting on the substrate.
  • FIGS. 28A to 28C and 28F (corresponding to FIGS. 1 to 3 and 6 of Patent Document 2), even if the optical surface is concave, the optical surface is formed without a convex portion. Therefore, Patent Document 2 is unlikely to have a problem of avoiding spacer interference.
  • Patent Document 2 the lens portion and the substrate are integrally formed. Therefore, as the area of the entire wafer lens is increased and the number of lenses is increased, problems such as warpage of the substrate and the like increase.
  • the optical surface as described in Patent Document 2 is concave, it is desirable from the viewpoint of thinning to reduce the thickness of the lens unit by omitting the spacer.
  • the shape of the hole of the spacer when any of the pair of lens portions has a convex optical surface is not considered.
  • both of the pair of lens parts are convex, when a spacer is attached to a wafer lens having a plurality of lens parts, the spacer strength is maintained while securing a certain clearance (clearance) between the lens part and the spacer. It is necessary to keep.
  • the spacer is placed around the lens unit (particularly the lens unit in the case of a convex shape). Difficult to join to.
  • the space between the holes is increased in order to maintain the strength of the spacer, the number of lens units to be manufactured is reduced, making it unsuitable for mass production of lens units.
  • it is necessary to increase the number of holes in the spacer which increases the probability of breakage of the spacer, which may result in an increase in cost.
  • the bonding area between the spacer and the object to be bonded decreases, and as a result, the spacer is cut out in a process such as cutting out the lens unit. There is a possibility that peeling and breakage of the object to be bonded will occur.
  • An object of the present invention is to provide a lens unit capable of maintaining the strength of a spacer or the like while appropriately securing a gap between the lens portion and the spacer.
  • the present invention provides a lens array that can maintain the strength of the spacer plate while appropriately securing the gap between the lens portion and the spacer plate, and can produce a large number of lens units while suppressing the overall thickness.
  • the purpose is to provide.
  • a first lens unit according to the present invention is provided so as to surround a substrate, a resin lens portion provided on at least one surface of the substrate, and the periphery of the lens portion. It is a lens unit having a spacer, the edge portion of the spacer facing the lens portion has a tapered surface on the inside, and a joint portion formed of an adhesive is provided between the spacer and the substrate, The joining portion adheres to at least a part of the tapered surface.
  • the edge part of a spacer means inner parts, such as a hole formed in the spacer.
  • a resin or the like different from the bonding portion may be interposed between the substrate and the spacer. In this case, the bonding portion is also bonded to resin or the like.
  • the adhesive adheres to the tapered surface of the spacer, thereby increasing the contact area of the joint formed by the adhesive and adhering between the flat surfaces of the substrate and the spacer.
  • the adhesive strength between the spacer and the substrate can be significantly increased.
  • the number of holes in the spacer can be increased. In other words, mass production of the lens unit is enabled by improving the adhesive strength of the spacer.
  • the joint portion is disposed so as to fill a gap between the tapered surface and the substrate.
  • the adhesive strength between the substrate and the spacer can be further improved.
  • the lens portion is formed by individual dropping.
  • the lens accuracy can be improved in that it is not necessary to cut the resin portion as compared with the whole dropping type lens unit.
  • the individual dropping method it is difficult to control the outermost shape of the lens part, but by providing a joint part between the tapered surface and the substrate, a large contact area of the joint part can be secured, The adhesive strength between the spacer and the substrate can be improved.
  • the joint portion fills a gap between the tapered surface and the lens portion.
  • the strength of the joint portion in the direction parallel to the end surface of the spacer is increased, and even if the gap is somewhat wide, the spacer and the lens portion
  • the adhesive strength with the outer edge can be improved.
  • the spacer is a plate-like member having an opening corresponding to the lens portion, and the lens portion protrudes into the opening at the position of the opening.
  • the lens portion and the spacer do not interfere with each other while maintaining the adhesive strength of the spacer even if the lens portion protrudes into the opening. A gap can be secured.
  • the spacer has a pair of tapered surfaces that narrow from the one end surface side and the other end surface side of the edge portion toward the center side in the thickness direction of the edge portion.
  • taper surfaces from both end surfaces of the spacer are provided by providing tapered surfaces (both side tapered surfaces) from one side of the spacer and both sides of the other end surface toward the center side at the edge portion that is the inner portion of the spacer hole. Adhesive can be applied to the surface.
  • the spacer strength can be improved compared to the case where a taper surface is not provided when a hole is made in the spacer with the same inner diameter, or when the taper surface is provided only from one end surface side. it can.
  • the spacer is such that the tip position of the innermost protrusion is the center in the thickness direction of the spacer in the cross section of the edge portion (specifically, the cross section including the optical axis of the lens portion). It is formed on one end face side or the other end face side.
  • the position of the tip of the protrusion is arranged in a direction where the thickness of the spacer is thinner than the center of the thickness or the lens portion is not present (for example, on the image sensor side), so that the spacer interferes with the lens portion. Can be easily avoided.
  • the base portion of the spacer is directly or indirectly bonded to the substrate.
  • the base portion of the spacer is a surface in contact with the substrate or the resin on the side where the focused joint portion is present among the pair of end surfaces of the spacer.
  • Direct means a state where there is nothing other than an adhesive between the base and the substrate, or a state where the base and the substrate are in direct contact.
  • Indirect means a state where a resin or the like is interposed between the base and the substrate or a state where the base is not in direct contact with the substrate.
  • the entire lens part formed on the substrate faces the hole-like opening part of the spacer, but the spacer hole has a tapered surface on both sides to avoid interference between the lens part and the spacer. Can do.
  • the spacer is a plate-like member having an opening corresponding to the lens portion, and the edge portion extends in the thickness direction of the edge portion from one end surface side and the other end surface side. It has a pair of tapered surfaces that narrow toward the center side, and the inner diameter of the edge portion is different between one end face side and the other end face side, and at least a part of the lens part is more than the base part of the spacer in the thickness direction of the spacer. Also protrudes into the opening.
  • the pair of tapered surfaces narrows toward the center in the thickness direction of the portion, and at least a part of the first or second lens portion protrudes into the opening portion from the base portion of the spacer in the thickness direction of the spacer.
  • the inner diameter of the edge portion is different between one end face side and the other end face side.
  • the first lens portion and the second lens portion are disposed between the first substrate and the second substrate.
  • a first array unit surrounds a substrate, a resin portion having a plurality of lens portions provided on at least one surface of the substrate, and the periphery of the lens portion.
  • An array unit having a spacer plate provided, and the edge portion of the spacer plate facing the lens portion has a tapered surface inside, and a joint portion formed of an adhesive between the spacer plate and the substrate Is provided, and the joining portion adheres to at least a part of the tapered surface.
  • the resin portion refers to the entire resin portion including the lens portion formed on the substrate before cutting the array unit.
  • the adhesive adheres to the tapered surface of the spacer plate, thereby increasing the contact area of the joint portion and bonding the flat surfaces of the substrate and the spacer plate to each other at a certain angle. Bonding is possible even in a range having a three-dimensional bonding. Therefore, the adhesive strength between the spacer plate and the substrate can be significantly increased. Thereby, when it obtains through the process etc. which cut
  • the resin portion is separated into a plurality of element regions each having a lens portion.
  • the spacer having an adhesive attached to the tapered surface, it is possible to prevent damage to the spacer plate even if the array unit is cut in units of each lens unit in order to produce a lens unit.
  • a second lens unit includes a first substrate and a first lens portion made of resin provided on at least one surface of the first substrate.
  • a spacer provided between the first and second compound lenses, the spacer having an opening corresponding to at least one of the first and second lens portions of the first or second compound lens.
  • a pair of tapered surfaces that are plate-shaped members and narrow toward the center in the thickness direction of the edge portion from one end surface side and the other end surface side of the edge portion facing the first or second lens portion.
  • the compound lens means a lens that is cut into individual pieces after forming a plurality of resin lens portions on a substrate.
  • the edge part of a spacer means inner parts, such as a hole formed in the spacer.
  • the base portion of the spacer is a surface that contacts the substrate or the resin.
  • the second lens unit in the case where the first or second lens portion protrudes from the base portion of the spacer, an edge that is an inner portion of the hole is provided between the stacked first and second compound lenses.
  • a spacer having a tapered surface hereinafter referred to as a double-sided tapered surface
  • the area of the support surface of the spacer can be increased,
  • the strength of the spacer can be improved without increasing the thickness. Thereby, it can prevent that the thickness of the whole lens unit becomes large.
  • a tapered surface is provided only from the spacer that is not provided with a tapered surface when a hole is drilled with the same inner diameter or from one end surface side.
  • the strength of the spacer can be increased more than in the case.
  • the spacer has a tapered surface on both sides, the hole diameter of the spacer does not have to be increased compared to a spacer that has no tapered surface or a spacer that has a tapered surface only from one end surface. While avoiding interference with the lens portion, the cut-out portion removed from the spacer can be reduced. Therefore, the strength of the spacer can be improved.
  • the spacer when the lens unit is cut out from the array unit, the spacer may be damaged or peeled off if the strength of the spacer is insufficient, but the strength is increased by inserting spacers with tapered surfaces on both sides between the compound lenses. be able to. Further, for example, in the case of a multi-piece lens unit, the number of holes in the spacer also increases, so that the strength of the spacer is improved, thereby enabling mass production of the lens unit.
  • a convex portion (protrusion) is generated on the substrate regardless of whether the optical surface is convex or concave. If the periphery of the lens portion is filled with resin so that the convex portion does not occur, the thickness of the compound lens increases, and consequently the thickness of the entire lens unit increases. In addition, the amount of resin to be used increases, and the substrate or the like warps or the manufacturing cost increases. By using spacers having tapered surfaces on both sides, even when a compound lens for forming a resin lens portion is laminated on a substrate, the lens unit has a relatively thin overall thickness and maintains strength.
  • the first and second lens portions are formed by individual dropping.
  • the lens accuracy can be improved in that it is not necessary to cut the resin portion as compared with the whole dropping type lens unit.
  • the lens part and the spacer are made to escape so that they do not interfere with each other.
  • the wall thickness between the holes can be increased. Thereby, the intensity
  • the tip position of the innermost protrusion is formed on one end face side or the other end face side from the center in the thickness direction of the spacer.
  • the tip of the protrusion by arranging the tip of the protrusion on the side where the thickness of the lens part is thinner than the center of the thickness in the thickness direction of the spacer or where there is no lens part (for example, on the image sensor side), the spacer interferes with the lens part. Can be easily avoided.
  • the base is directly or indirectly bonded to the substrate.
  • “directly” means a state where there is nothing other than an adhesive between the base and the substrate, or a state where the base and the substrate are in direct contact.
  • Indirect means a state where a resin or the like is interposed between the base and the substrate or a state where the base is not in direct contact with the substrate.
  • the entire lens part formed on the substrate faces the hole-like opening part of the spacer, but the spacer hole has a tapered surface on both sides to avoid interference between the lens part and the spacer. Can do.
  • the spacer has a diaphragm function.
  • a spacer having a tapered surface on both sides inserted between the lens portions is provided with a light-shielding material or a light-shielding coating, and serves as an optical diaphragm.
  • the protrusions are formed at the edge portions of the spacers by the tapered surfaces on both sides, the diaphragm effect can be provided to the limit of the effective diameter of the lens portion.
  • the spacer with a tapered surface on both sides to serve as an intermediate diaphragm, it is possible to reduce the cost of parts compared to newly manufacturing and inserting an intermediate diaphragm.
  • the first lens portion and the second lens portion are disposed between the first substrate and the second substrate.
  • a second array unit includes a first wafer lens having a first substrate and a first resin portion provided on at least one surface of the first substrate. And a second wafer, a second wafer lens having a second resin portion provided on at least one surface of the second substrate, and between the first wafer lens and the second wafer lens A plurality of first or second lens parts constituting at least one first or second resin part of the first or second wafer lens.
  • a plate-like member having an opening corresponding to the first or second lens portion, from one end surface side and the other end surface side to the center side in the thickness direction of the edge portion.
  • a pair of tapered surfaces At least a portion of the first or second lens unit, projecting into the opening portion than the base portion of the spacer plate in the thickness direction of the spacer plate.
  • the wafer lens is a substrate in which a plurality of resin lens portions are formed on a substrate, and a plurality of the above-described compound lenses are collected before cutting.
  • the resin portion refers to the entire resin portion including the lens portion formed on the substrate before cutting the wafer lens.
  • both side tapered surfaces are provided at the edge portion between the stacked first and second wafer lenses.
  • the resin portion is separated into a plurality of element regions each having the first or second lens portion.
  • the spacer by using a spacer with tapered surfaces on both sides, it is possible to prevent the spacer from being damaged even if the array unit is cut for each lens unit in order to produce a lens unit.
  • a third lens unit is provided so as to surround a substrate, a resin lens portion provided on at least one surface of the substrate, and the periphery of the lens portion.
  • a spacer unit, and the spacer is a plate-like member having an opening corresponding to the lens unit, and is edged from one end surface side and the other end surface side of the edge portion facing the lens unit. It has a pair of tapered surfaces that narrow toward the center in the thickness direction of the portion, the inner diameter of the edge portion is different on one end surface side and the other end surface side, and at least part of the lens portion is in the thickness direction of the spacer Projecting from the base of the spacer into the opening.
  • the edge part of a spacer means inner parts, such as a hole formed in the spacer.
  • the inner diameter of the edge portion includes not only a circle but also an ellipse or a rectangle. In the case of an ellipse or a rectangle, the inner diameter of the edge portion refers to the length of the long side.
  • the base portion of the spacer is a surface that contacts the substrate or the resin.
  • the size of the inner diameter of the edge portion is increased according to the contour and outer shape of the desired lens unit.
  • a sufficient gap (clearance) between the spacer and the structure such as the lens portion can be secured. This makes it possible to improve the strength of the spacer that may be lowered in order to ensure the clearance, while making the spacer conform to the specifications of the contours and outer shapes of various lens portions.
  • the edge portion of the spacer is a pair of tapered surfaces (both side tapered surfaces) narrowing toward the center side in the thickness direction, and the inner diameter of the edge portion of the spacer is The difference between the one end face side and the other end face side makes it possible to narrow the size of the inner diameter of the edge portion on one end face side, thereby improving the strength of the spacer.
  • the spacer may be damaged or peeled off, but spacers with tapered surfaces on both sides with different inner diameters on the front and back sides are inserted between the lens parts. By doing so, the strength can be increased.
  • the number of holes in the spacer also increases, so that the strength of the spacer is improved, thereby enabling mass production of the lens unit.
  • a convex portion (protrusion) is generated on the substrate regardless of whether the optical surface is convex or concave. If the periphery of the lens part is filled with resin so that the convex part does not occur, the thickness of the entire lens unit increases. In addition, the amount of resin to be used increases, and the substrate or the like warps or the manufacturing cost increases. By using spacers with tapered surfaces on both sides with different inner diameters on the front and back edges, even when laminating resin lens parts (for example, compound lenses) on a substrate, the overall thickness is relatively thin. In addition, the lens unit maintains strength.
  • the spacer in the third lens unit, in the cross section of the edge portion, has a tip position of the innermost projection portion of the edge portion that is one side away from the center in the thickness direction of the spacer. Is formed on the end face side or the other end face side.
  • the tip of the protrusion on the side where the thickness of the lens part is thinner than the center of the thickness in the thickness direction of the spacer or where there is no lens part (for example, on the image sensor side), the spacer interferes with the lens part. Can be easily avoided.
  • the edge portion faces the lens portion on one end surface side, and the inner diameter of the edge portion on one end surface side is larger than the inner diameter of the edge portion on the other end surface side.
  • the strength of the spacer can be improved while ensuring a gap with the lens portion.
  • the edge portion faces the first lens portion on one end face side, faces the second lens portion on the other end face side, and is outside the first and second lens portions.
  • the inner diameter of the edge portion facing the lens portion having a large diameter is larger than the inner diameter of the edge portion facing the lens portion having a small outer diameter.
  • the inner diameter of the edge portion of the spacer can be adjusted according to the desired outer dimensions and contour size of the lens, and the strength of the spacer can be improved while avoiding interference between the spacer and the lens portion.
  • the lens portion is formed by individual dropping.
  • the lens accuracy can be improved in that it is not necessary to cut the resin portion as compared with the whole dropping type lens unit.
  • the lens part and the spacer do not interfere with each other by using spacers with tapered surfaces on both sides with different inner diameters on the front and back edges.
  • the thickness between each hole of the spacer can be increased while making a relief. Thereby, the intensity
  • the base is directly or indirectly bonded to the substrate.
  • “directly” means a state where there is nothing other than an adhesive between the base and the substrate, or a state where the base and the substrate are in direct contact.
  • Indirect means a state where a resin or the like is interposed between the base and the substrate or a state where the base is not in direct contact with the substrate.
  • the entire lens portion formed on the substrate will face the hole-shaped open portion of the spacer, but the spacer hole has a tapered surface on both sides with different inner diameters of the front and back edge portions. Interference with the spacer can be avoided.
  • the spacer has a diaphragm function.
  • a light-shielding material or a light-shielding coating is applied to the spacers with tapered surfaces on both sides that have different inner diameters between the front and back edge portions inserted between the lens portions and the like, and serve as an optical diaphragm.
  • the protrusions are formed on the edge portion or the opening portion of the spacer by the tapered surfaces on both sides, the diaphragm effect can be provided to the limit of the effective diameter of the lens portion.
  • the spacer with a tapered surface on both sides to serve as an intermediate diaphragm, it is possible to reduce the cost of parts compared to newly manufacturing and inserting an intermediate diaphragm.
  • a third array unit surrounds a substrate, a resin portion having a plurality of lens portions provided on at least one surface of the substrate, and the periphery of the lens portion.
  • the spacer unit is a plate-like member having an opening corresponding to the lens portion, and one end surface side and the other of the edge portions facing each lens portion.
  • a pair of tapered surfaces that narrow from the end surface side toward the center in the thickness direction of the edge portion, and the inner diameter of the edge portion is different between one end surface side and the other end surface side, and at least a part of the lens portion Protrudes into the opening from the base of the spacer plate in the thickness direction of the spacer plate.
  • the third array unit it is possible to improve the strength of the spacer plate that may be lowered in order to ensure the clearance while the spacer plate corresponds to the specifications of various lens outlines and external shapes. .
  • the lens part protrudes from the base part of the spacer plate, by using a spacer plate with tapered surfaces on both sides with different inner diameters on the front and back edges, the size of the inner diameter of the edge part is narrowed on one end face side.
  • the strength of the spacer plate can be improved. As described above, a large number of lens units can be manufactured by improving the strength of the spacer plate.
  • the resin portion is separated into a plurality of element regions each having a plurality of lens portions.
  • the spacer plate may be damaged even if the array unit is cut in units of lens units in order to produce a lens unit. Can be prevented.
  • FIG. 5A to 5E are views for explaining a manufacturing procedure of the spacer plate shown in FIG. 5A to 5E are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like.
  • 6A and 6B are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like.
  • 7A to 7C are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like.
  • FIGS. 8A and 8B are diagrams illustrating a stacked structure and an imaging device according to the second embodiment.
  • 9A to 9E are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 8A.
  • 10A and 10B are diagrams illustrating a stacked structure and an imaging apparatus according to the third embodiment. It is a figure explaining the manufacturing procedure of the spacer board of FIG. 10A. 12A and 12B are diagrams illustrating a multilayer structure and an imaging apparatus according to the fourth embodiment.
  • 16A and 16B are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like.
  • 17A to 17C are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 18A and 18B are views for explaining a laminated structure and an imaging apparatus according to the sixth embodiment, and
  • FIG. 18C is a partially enlarged sectional view of an edge portion of an opening.
  • 19A and 19B are views for explaining a laminated structure and an imaging apparatus according to the seventh embodiment. It is a top view explaining the laminated structure containing the array unit which concerns on 8th Embodiment. It is sectional drawing explaining the laminated structure of FIG. It is sectional drawing explaining the imaging device containing the lens unit which concerns on 8th Embodiment.
  • FIGS. 23A to 23D are views for explaining a manufacturing procedure of the spacer substrate shown in FIG. 24A to 24C are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like.
  • 25A and 25B are views for explaining a laminated structure and an imaging apparatus according to the ninth embodiment, and FIG. 25C is a partially enlarged sectional view of an edge portion of an opening.
  • FIGS. 26A and 26B are views for explaining a laminated structure and an imaging apparatus according to the tenth embodiment.
  • 27A and 27B are views for explaining a laminated structure and the like according to the eleventh embodiment.
  • 28A to 28G are diagrams corresponding to FIGS. 1 to 7 of Patent Document 2.
  • the laminated structure 1000 includes a first wafer lens 100, a first spacer plate 200, a second wafer lens 300, a second spacer plate 400, and an imaging element array 500. Laminated in the Z-axis direction.
  • an imaging device 700 in which the lens unit 800 and the imaging element 530 are laminated can be obtained.
  • the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 each extend in parallel to the XY plane and have a laminated structure.
  • the entire body 1000 also extends parallel to the XY plane.
  • a laminate of the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 is referred to as an array unit 600 for convenience in this specification. Included in wafer lens.
  • the first wafer lens 100 in the laminated structure 1000 has, for example, a disk shape, and includes a substrate 101, an upper resin portion 102, and a lower resin portion 103.
  • the upper and lower resin portions 102 and 103 are bonded to the substrate 101 in alignment with each other with respect to translation in the XY plane perpendicular to the axis AX and rotation around the axis AX.
  • a large number of first compound lenses 10 are formed as optical elements constituting them, and are secondarily arranged along the XY plane. That is, the first wafer lens 100 is a group of a plurality of first compound lenses 10 before cutting (the same applies to the second wafer lens 300).
  • the first compound lens 10 includes a lens body 10a that forms an optical surface, and a flange 10b that exists around the lens body 10a.
  • the substrate 101 of the first wafer lens 100 is a flat plate extending over the entire first wafer lens 100, and is formed of, for example, glass.
  • the thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the first wafer lens 100 is not damaged when the first wafer lens 100 is released.
  • the substrate 101 constitutes the center portion of the lens body 10a of the first compound lens 10 and the flange 10b.
  • the substrate 101 has a first flange surface 11b and a second flange surface 12b on surfaces 101a and 101b corresponding to the flange 10b, respectively.
  • As the material of the substrate 101 a glass, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used, and glass is particularly preferable.
  • substrate 101 is based also on a use, it shall be 0.2 mm or more and 1.5 mm or less, for example.
  • the upper resin portion 102 is made of resin and is formed on one surface 101 a of the substrate 101.
  • the upper resin part 102 has a plurality of upper lens parts 11. That is, the upper resin portion 102 refers to the entire resin portion including the upper lens portion 11 formed on the substrate 101 before the first wafer lens 100 is cut (the same applies to the lower lens portion 12).
  • Each upper lens portion 11 constitutes an upper portion of the lens body 10 a of the first compound lens 10.
  • Each upper lens unit 11 is two-dimensionally arranged in the XY plane on the substrate 101.
  • each upper lens portion 11 is independently arranged on the substrate 101. That is, each upper lens portion 11 is not connected to the adjacent upper lens portion 11 by resin, and the substrate 101 is exposed between the upper lens portions 11.
  • the upper lens unit 11 has, for example, a convex shape, and has a convex aspherical first optical surface 11a and a first non-optical surface 11c as shown in FIG.
  • the first optical surface 11a and the first non-optical surface 11c serve as a first molding surface 102a that is collectively molded by transfer.
  • the first optical surface 11a has an effective area AR1 (an optically effective area of the lens), and the first non-optical surface 11c has an ineffective area AR2 (an area that does not affect the optical function of the lens).
  • the upper resin portion 102 is made of a photocurable resin.
  • the photocurable resin contains a photopolymerization initiator that initiates polymerization of the photocurable resin.
  • a photocurable resin an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used.
  • acrylic resin, allyl ester resin, or vinyl resin it can be cured by reaction, for example, by radical polymerization of a photopolymerization initiator, and when epoxy resin is used, it is reacted by, for example, cationic polymerization of a photopolymerization initiator. It can be cured.
  • the lower resin portion 103 is made of resin, like the upper resin portion 102, and is formed on the other surface 101b of the substrate 101.
  • the lower resin portion 103 has a plurality of lower lens portions 12.
  • Each lower lens portion 12 constitutes a lower portion of the lens body 10 a of the first compound lens 10.
  • the lower lens portions 12 are two-dimensionally arranged in the XY plane on the substrate 101.
  • the position of each lower lens portion 12 corresponds to the position of each upper lens portion 11 on the opposite side of the substrate 101.
  • each lower lens portion 12 is independently arranged on the substrate 101. That is, each lower lens portion 12 is not connected to the adjacent lower lens portion 12 by resin, and the substrate 101 is exposed between the lower lens portions 12.
  • the lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 12a and a second non-optical surface 12c as shown in FIG.
  • the lower lens portion 12 has a concave second optical surface 12a and protrudes from the base portion 200a on the base side (upper part of the drawing) of the first spacer plate 200.
  • the second optical surface 12a and the second non-optical surface 12c are first molding surfaces 103a that are collectively molded by transfer.
  • the second optical surface 12a has an effective area AR3 (an optically effective area of the lens), and the second non-optical surface 12c has an ineffective area AR4 (an area that does not affect the optical function of the lens).
  • the photocurable resin used for the lower resin portion 103 is the same as the photocurable resin of the upper resin portion 102. However, it is not necessary to form both the resin parts 102 and 103 with the same photocurable resin, and it can form with another photocurable resin.
  • the second wafer lens 300 is, for example, a disk shape, and includes a substrate 301, an upper resin portion 302, and a lower resin portion 303.
  • the configuration of the second wafer lens 300 is substantially the same as the configuration of the first wafer lens 100.
  • a large number of second compound lenses 20 are formed as optical elements constituting the second lens, and are secondarily arranged along the XY plane.
  • the second compound lens 20 includes a lens body 20a that forms an optical surface, and a flange 20b that exists around the lens body 20a.
  • the upper lens part 11 constitutes the upper part of the lens body 20a of the second compound lens 20, and the lower lens part 12 constitutes the lower part of the lens body 20a.
  • the upper lens unit 11 has, for example, a convex shape, and includes a concave aspherical first optical surface 21a and a first non-optical surface 21c as shown in FIG. Have.
  • the lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 22a and a second optical surface 22c as shown in FIG.
  • the substrate 301 has a first flange surface 21b and a second flange surface 22b on the surfaces 101a and 101b corresponding to the flange 20b.
  • the upper and lower lens portions 11 and 12 constituting the first and second wafer lenses 100 and 300 are separated in units of the first and second compound lenses 10 and 20 including the element region.
  • a plurality of lens units 800 can be obtained.
  • the first spacer plate 200 functions as a support portion for the first wafer lens 100.
  • the first spacer plate 200 is a flat plate member made of glass, ceramics, resin, or the like, and has holes formed in an array corresponding to the first compound lens 10. As shown in FIG. 3, the first spacer plate 200 is divided into a plurality of spacers 10c by dicing. Each spacer 10c has a cylindrical support 6a and an opening 6b having a circular cross section. The opening 6b extends along the optical axis OA so as to pass the optical axis OA parallel to the Z-axis of the lens body 10a.
  • the opening 6 b is formed by the edge portion S facing the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300.
  • the edge portion S is an inner portion of a hole formed in the first spacer plate 200.
  • the edge portion S is formed in a substantially circular shape so as to surround the outer shapes of the upper and lower lens portions 11 and 12.
  • the support 6a is fixed to a flange 10b around the lens body 10a while avoiding the lens body 10a. That is, an appropriate gap is formed between the opening 6b and the lens body 10a.
  • the edge portion S of the opening 6b opens from one end face of the first spacer plate 200 on the base side (upper side in the drawing) 206a and the other end face on the front end side (lower side in the drawing) 206b. Both side tapered surfaces TP narrow toward the center side in the thickness direction (Z direction in the drawing) of the portion 6b.
  • the tip end position of the projection 91 located on the innermost side of the opening 6b is formed at substantially the center in the thickness direction.
  • An end surface 206a on the base side (upper side in the drawing) of the support 6a is bonded to a second flange surface 12b (the other surface 101b of the substrate 101) on the lower side in the drawing via an adhesive 81a. That is, the base portion 200a of the first spacer plate 200 is directly bonded to the substrate 101 without using a resin.
  • the end surface 206b on the front end side (lower side of the drawing) of the first spacer plate 200 is a first flange surface 21b (upper side of the drawing) of the second compound lens 20 constituting the second wafer lens 300 via the adhesive 81b. Bonded to one surface 101a) of the substrate 301. That is, the base portion 200b on the distal end side of the first spacer plate 200 is directly bonded to the substrate 301 without using a resin.
  • the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300 protrude into the opening 6b at the position of the corresponding opening 6b in the first spacer plate 200. It will be.
  • a joint part CE1 formed of an adhesive 81a is provided between the end face 206a on the root side of the first spacer plate 200 and the other face 101b of the substrate 101 of the first wafer lens 100.
  • the joint portion CE1 has a protruding portion 85 on the side of the end surface 206a on the root side, and is attached to a part of both side tapered surfaces TP. Further, the joint portion CE1 is provided so as to fill the gap GA between the both side tapered surfaces TP and the upper lens portion 11.
  • the joint part CE1 is not only bonded between the planes of the substrate 101 and the first spacer plate 200, but is also bonded within a certain angle range, and has a three-dimensional shape.
  • a joint portion CE2 formed of an adhesive 81b is provided between the end surface 206b on the front end side of the first spacer plate 200 and one surface 101a of the substrate 301 of the second wafer lens 300.
  • the joint portion CE2 has a protruding portion 85 at the end face 206b on the distal end side, and adheres to a part of the both side tapered surfaces TP.
  • the joint portion CE2 is provided so as to fill the gap GA between the both side tapered surfaces TP and the lower lens portion 12.
  • the tapered surfaces TP on both sides are formed so as to maintain a certain gap GA with the upper and lower lens portions 11 and 12, and the support 6a of the first spacer plate 200 and the upper and lower lens portions.
  • the distances d1 and d2 with the outer edge portions 61c and 61d of the protruding portion are 0 or more, and the edge portion S of the opening 6b can keep a predetermined distance from the upper and lower lens portions 11 and 12.
  • the distance is about.
  • the inclination angle ⁇ of the tapered surfaces TP on both sides is 0 ° ⁇ ⁇ 45 ° with respect to the thickness direction of the first spacer plate 200.
  • the roughness of the tapered surfaces TP on both sides is greater than the roughness of at least one of the one end surface 206a and the other end surface 206b of the first spacer plate 200.
  • the gap GA between the convex upper and lower lens portions 11 and 12 and the tapered surfaces TP on both sides needs to be adjusted more strictly than in the case where the lens portion is concave.
  • the first spacer plate 200 may not be attached to the first and second wafer lenses 100 and 300 with higher accuracy than when the lens portion has a concave shape.
  • the first spacer plate 200 and the spacer 10c obtained therefrom are members for adjusting the distance between the first wafer lens 100 and the second wafer lens 300, and the two first and second composites that constitute the imaging device 700. It has a role of adjusting the distance between the lenses 10 and 20.
  • the support 6a is made of a light-shielding material or has a light-shielding coating applied to the inner surface of the opening or the like, and also serves as an optical diaphragm.
  • the second spacer plate 400 functions as a support portion for the second wafer lens 300.
  • the second spacer plate 400 has the same configuration as the first spacer plate 200.
  • the second spacer plate 400 is divided into a plurality of spacers 20c by dicing.
  • the end surface 406a on the base side of the support 6a of the second spacer plate 400 is bonded to the second flange surface 22b on the lower side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via an adhesive 81c. ing. That is, the base 400a on the base side of the second spacer plate 400 is directly bonded to the substrate 301 without using a resin.
  • a joint portion CE3 formed of an adhesive 81c is provided between the end surface 406a on the root side of the second spacer plate 400 and the other surface 101b of the second wafer lens 300. Further, the end surface 406b on the front end side of the second spacer plate 400 is bonded to the imaging element array 500 via an adhesive 81d.
  • the second spacer plate 400 and the spacer 20 c are members for adjusting the distance between the second wafer lens 300 and the image sensor array 500, and are between the second compound lens 20 and the image sensor 530 constituting the image pickup apparatus 700. It has a role to adjust the distance.
  • the thickness of the first spacer plate 200 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300.
  • the thickness of the second spacer plate 400 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the second wafer lens 300 and the image sensor 530 of the image sensor array 500.
  • the specific thickness of the first and second spacer plates 200 and 400 depends on the optical characteristics of the upper and lower lens portions 11 and 12, the performance of the image sensor 530, the functions and applications required for the imaging lens, and the like. However, generally 0.1 mm or more and 0.8 mm or less are preferable, and 0.2 mm or more and 0.6 mm or less are more preferable. When the thickness is 0.1 mm or more, handling is easy, stress relaxation is high, and failures such as peeling and cracking are unlikely to occur. Moreover, it is preferable that it is 0.8 mm or less because the transmittance is high.
  • Specific materials of the first and second spacer plates 200 and 400 are soft glass, resin, organic-inorganic hybrid material, and the like, and are not particularly limited. However, heat-resistant resin or heat-resistant organic-inorganic hybrid is used. Good material. As the organic / inorganic hybrid material, heat-resistant glass fiber reinforced resin, filler reinforced resin, organic-silica hybrid, and the like are preferable. In particular, an organic silica-hybrid is preferable. Among them, an epoxy resin-silica hybrid and an acrylic-silica hybrid are preferable because they have good adhesion to the upper and lower resin portions 102 and 103.
  • the openings 6b of the first and second spacer plates 200 and 400 are formed by, for example, etching or blasting.
  • etching or blasting For example, wet etching or the like is used as the etching method, and microblasting or the like is used as the blasting method.
  • the lens unit 800 and the imaging device 700 will be described with reference to FIG.
  • the imaging device 700 includes a lens unit 800 and an imaging element 530.
  • the lens unit 800 includes a first compound lens 10, a first spacer 10c, a second compound lens 20, and a second spacer 20c.
  • the first compound lens 10 includes the upper lens portion 11, the lower lens portion 12, and the flat plate portion 13 sandwiched therebetween.
  • the flat plate portion 13 is a portion obtained by cutting out the substrate 101. That is, the first compound lens 10 is a lens that is cut into individual pieces after forming a plurality of resin upper and lower lens portions 11 and 12 on the substrate 101 (the same applies to the second compound lens 20). .
  • the shapes of the upper and lower lens portions 11 and 12 may be the same or different.
  • the second compound lens 20 includes an upper lens unit 11, a lower lens unit 12, and a flat plate unit 13 sandwiched therebetween.
  • the first spacer 10 c is provided between the first compound lens 10 and the second compound lens 20.
  • the second spacer 20 c is provided between the second compound lens 20 and the image sensor 530.
  • the first and second spacers 10c and 20c have openings 6b corresponding to the upper and lower lens portions 11 and 12, respectively.
  • a double-sided tapered surface TP that narrows toward the center in the thickness direction of the first and second spacers 10c and 20c is formed at the edge portion S of the opening 6b. In the cross section in the thickness direction of the opening 6b (edge portion S), the tip position of the protrusion 91 is formed at the approximate center in the thickness direction.
  • joints CE1 and CE2 formed by adhesives 81a and 81b are provided between the first and second compound lenses 10 and 20 and the first spacer 10c.
  • the joint portions CE1 and CE2 are provided so as to fill the gap GA between the tapered surfaces TP on both sides and the substrate 101 or the upper and lower lens portions 11 and 12.
  • a joint portion CE3 formed of an adhesive 81c is provided between the second compound lens 20 and the second spacer 20c.
  • the imaging device 700 has a rectangular outline when viewed from the optical axis OA direction. Note that the imaging device 700 is housed in, for example, a separately prepared holder and bonded to the imaging circuit board as an imaging lens.
  • FIGS. 4A to 4D An example of a method for manufacturing the first spacer plate 200 will be described with reference to FIGS. 4A to 4D.
  • the method for producing the second spacer plate 400 is the same as that for the first spacer plate 200.
  • masks MA are formed on both surfaces of a spacer substrate SS which is a material of the first and second spacer plates 200 and 400.
  • a pattern of circular holes OP is formed at positions corresponding to the openings 6 b of the first spacer plate 200.
  • a material that can withstand the etching solution as a mask MA that is adjusted by changing the size of the diameter of the hole OP and the etching and blasting time for each surface of the spacer substrate SS is used.
  • a resist a metal mask such as stainless steel, chromium, or the like is used.
  • the spacer substrate SS on which the mask MA is formed is immersed in the etching solution ES.
  • the etching solution ES For example, hydrofluoric acid or ammonium fluoride is used as the etching solution.
  • the spacer substrate SS is gradually etched from the portion where the mask MA is not formed, that is, from the exposed portion of the both end faces 206a and 206b, and finally, as shown in FIG.
  • the opening 6b having a desired size is formed in the substrate SS.
  • a blast projection is projected onto the spacer substrate SS on which the mask MA is formed.
  • the spacer substrate SS is gradually removed from the exposed portions of the both end faces 206a and 206b as shown in FIG. 4C, and finally the spacer substrate SS has a desired size as shown in FIG. 4D.
  • An opening 6b is formed.
  • a master mold 30 (see FIG. 5A) corresponding to the final shape of the upper resin portion 102 is manufactured by grinding or the like.
  • the resin material 41 b is individually dropped on the transfer surface corresponding to each upper lens portion 11 of the first transfer surface 31 of the master mold 30.
  • ultraviolet rays are irradiated by a UV generator (not shown) while pressing the sub-master substrate 42 from above the master mold 30, and the resin material 41b sandwiched therebetween is photocured.
  • the first transfer surface 31 of the master mold 30 is transferred to the resin material 41b, and the second transfer surface 43 (second optical transfer surface and second flange transfer surface) is formed on the resin material 41b.
  • the sub master molding part 41 is formed.
  • the second transfer surface 43 may be further formed in an array by changing the transfer position on the sub-master substrate 42 and repeating the sub-master type curing step in this step and the sub-master type release step in the next step. .
  • the sub-master mold 40 is manufactured by releasing the sub-master molding portion 41 and the sub-master substrate 42 as a single unit from the master mold 30. Note that a release agent may be applied on the second transfer surface 43 of the sub master molding unit 41.
  • the sub-master mold 50 is manufactured using the sub-master mold 40 obtained in the above process.
  • the resin material 51 b is individually dropped on the transfer surface corresponding to each upper lens portion 11 of the second transfer surface 43 of the sub-master mold 40.
  • ultraviolet rays are irradiated by a UV generator (not shown) while pressing the sub-submaster substrate 52 from above the sub-master mold 40, and the resin material 51b sandwiched therebetween is photocured.
  • the second transfer surface 43 of the sub master mold 40 is transferred to the resin material 51b, and a third transfer surface 53 (a third optical transfer surface and a third flange transfer surface) is formed on the resin material 51b.
  • the sub-submaster molding part 51 is formed on the sub-sub master substrate 52, as the sub-sub master molding portion 51, transfer portions corresponding to the upper lens portions 11 are arranged in an independent state.
  • the sub-submaster mold 50 is manufactured by separating the sub-submaster molding part 51 and the sub-submaster substrate 52 as a single unit from the submaster mold 40. Note that a release agent may be applied on the third transfer surface 53 of the sub-submaster molding unit 51.
  • the wafer lens 100 is manufactured using the sub-submaster mold 50 obtained in the above process.
  • resin materials 102b photocurable resins forming the upper resin portion 102 are individually applied on the transfer surfaces corresponding to the upper lens portions 11 of the third transfer surface 53 of the sub-submaster mold 50. Dripping into. Thereafter, ultraviolet rays are irradiated by a UV generator (not shown) while pressing the substrate 101 from above the sub-sub master mold 50, and the resin material 102b sandwiched therebetween is photocured.
  • the third transfer surface 53 of the sub-submaster mold 50 is transferred to the resin material 102b, and the first molding surface 102a (the first optical surface 11a and the first flange surface 11b in FIG. 3) is formed on the resin material 102b. .
  • the upper resin part 102 is formed.
  • the upper lens portions 11 are arranged as independent upper resin portions 102. In addition, you may make it harden
  • the other sub-master master 150 having the same structure as that of the sub-sub master mold 50 but having a different transfer surface is used to perform the other process of the substrate 101 in the same process as described above.
  • the lower resin portion 103 is formed on the surface 101b.
  • the pair of sub-submaster molds 50 and 150 are separated to release the substrate 101 and the resin portions 102 and 103 as a single unit.
  • the first wafer lens 100 is manufactured.
  • the second wafer lens 300 is similarly manufactured.
  • a sheet-shaped or wafer-shaped first spacer plate 200 is attached to the other surface 101b of the substrate 101 of the first wafer lens 100.
  • the adhesive 81 a is applied to one side of the first spacer plate 200 or the first wafer lens 100.
  • the first spacer plate 200 or the first wafer lens 100 is aligned with respect to the substrate 101 and the lower resin portion 103, and the bonding surface of the first spacer plate 200, that is, the end surface 206 a on the root side is used as the other surface 101 b of the substrate 101.
  • the adhesive is cured by irradiating it with UV light.
  • the application amount of the adhesive 81a slightly leaks when the first spacer plate 200 and the substrate 101 are attached, and the gap GA between the tapered surfaces TP on both sides of the first spacer plate 200 and the upper lens portion 11 is filled.
  • the amount is about.
  • an adhesive 81a may be applied to both side tapered surfaces TP of the edge portion S of the first spacer plate 200 in order to further strengthen the adhesion.
  • the application amount is the same for the adhesives 81b and 81c described below.
  • the second spacer plate 400 is attached to the second wafer lens 300 using the adhesive 81c in the same process as the above process.
  • the second spacer plate 400 may be attached to the second wafer lens 300 after the first spacer plate 200 and the second wafer lens 300 are attached.
  • the first wafer lens 100 with the first spacer plate 200 attached and the second wafer lens 300 with the second spacer plate 400 attached are joined to produce the array unit 600. That is, the adhesive 81b is applied to the end face 206b of the first spacer plate 200 fixed to the first wafer lens 100 or the second wafer lens 300, and is bonded to the second wafer lens 300 or the first spacer plate 200. Irradiate with UV light. Accordingly, the second wafer lens 300 is fixed or bonded to the first wafer lens 100 via the first spacer plate 200. Next, the image sensor array 500 is attached to the second wafer lens 300 on the opposite side of the first wafer lens 100.
  • the adhesive 81d is applied to the end face of the second spacer plate 400 fixed to the second wafer lens 300, and is bonded to the image pickup device array 500 to irradiate UV light.
  • the image sensor array 500 is fixed or bonded to the second wafer lens 300 via the second spacer plate 400.
  • the laminated structure 1000 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 are laminated is completed.
  • the first and second wafer lenses 100, 300, etc. are cut, that is, diced, along the cut line DX shown in FIGS.
  • the first and second wafer lenses 100, 300, etc. are cut out into a quadrangular prism shape to form an imaging device 700 having a structure in which the first and second compound lenses 10, 20, etc. are stacked.
  • the laminated structure 1000 has been described as including the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500.
  • the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 may be used.
  • the laminated structure 1000 is constituted by the array unit 600 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 are laminated.
  • Such an array unit 600 can be separated into pieces by dicing and joined to an individual image pickup device 530 separately manufactured.
  • the imaging element array 500 is included in the stacked structure 1000, but the imaging element array 500 may be omitted and the array unit 600 may be configured.
  • one side taper surface TP of the first and second spacer plates 200 and 400 (in the case of a lens unit, the first and second spacers 10c and 20c).
  • the adhesives 81a, 81b, and 81c adhere to the portions, the contact areas of the joints CE1, CE2, and CE3 formed by the adhesives 81a, 81b, and 81c increase.
  • the substrates 101 and 301 the flat plate portion 13 in the case of a lens unit
  • the planes of the first and second spacer plates 200 and 400 adhered to each other but they are also adhered within a certain angle range and are three-dimensional. Jointly becomes possible.
  • the adhesive strength between the first and second spacer plates 200 and 400 and the substrates 101 and 301 of the first and second wafer lenses 100 and 300 can be significantly increased. Further, the gap GA between the tapered surfaces TP formed on the edge portions S of the first and second spacer plates 200 and 400 and the substrates 101 and 301 and the upper lens portion 11 is filled with the joint portions CE1, CE2, and CE3. As a result, the adhesive strength can be further improved. Thereby, when it obtains through the process etc. which cut
  • the number of holes of the first and second spacer plates 200 and 400, that is, the opening 6b can be increased. That is, the adhesive strength of the first and second spacer plates 200 and 400 is improved, thereby enabling mass production of lens units.
  • the lens does not need to cut the upper and lower resin portions 102 and 103, which are resin portions, as compared with the whole dripping type lens unit.
  • the accuracy can be improved.
  • the outermost shape of the upper and lower lens portions 11 and 12 with respect to the third transfer surface 53 and the like for forming all the upper and lower lens portions 11 and 12 is accurately reflected between shots. Difficult to control.
  • the hole diameter of the spacer plate ensures the gap (clearance) between the lens part and the inside of the opening. If the inner diameter of the opening is widened, the strength of the spacer plate is reduced by that amount. There are concerns about strength such as the spacer plate being damaged in the step of laminating the spacer, the step of cutting the laminated structure, and the like.
  • the optical surfaces 11a, 12a, 21a, and 22a are formed by applying resin on the substrates 101 and 301, and the thickness of the substrate is equal to the thickness of the lens portion. Is not dependent. Therefore, there is an advantage that a large amount of lens parts (upper and lower lens parts 11 and 12) can be formed on the substrate 101. However, since it is necessary to separately apply a resin on the substrate, a convex portion (protrusion) made of resin always occurs on the substrate.
  • the lens unit 800 The lens portion (upper and lower lens portions 11 and 12) and the first and second spacer plates 200 and 400 can be arranged with high accuracy while suppressing the overall thickness.
  • the upper and lower lens portions 11 and 12 are formed by connecting the resin on the substrates 101 and 301.
  • the upper and lower flange portions 15 and 16 made of resin are formed around the upper and lower lens portions 11 and 12 made of resin. That is, the first and second flange surfaces 11b, 12b, 21a, and 22b are formed on the upper and lower resin portions 102, 103, 302, and 303, respectively.
  • the base portion 200 a on the base side of the first spacer plate 200 is indirectly bonded to the substrate 101 via the adhesive 81 a and the upper flange portion 15.
  • the thickness in the cutting position of the upper side and lower side resin parts 102, 103, 302, and 303 shall be 0.01 mm or more and 0.3 mm or less, for example.
  • the upper and lower resin portions 102 and 103 of the first and second wafer lenses 100 of the present embodiment are formed by an entire dropping method.
  • the manufacturing process of the second wafer lens 300 is the same as the manufacturing process of the first wafer lens 100.
  • a sub-master die 40 is manufactured using the master die 30.
  • the resin material 41 b is applied on the first transfer surface 31 of the master mold 30.
  • the sub master substrate 42 is pressed against the master mold 30 through the resin material 41b.
  • the sub master mold 40 is released from the master mold 30 as shown in FIG. 9B.
  • a sub-sub master mold 50 is manufactured using the manufactured sub-master mold 40.
  • the resin material 51 b is applied on the second transfer surface 43 of the sub master mold 40.
  • the sub-master substrate 52 is pressed against the sub-master mold 40 through the resin material 51b.
  • the sub-sub master mold 50 is released from the sub-master mold 40 as shown in FIG. 9D.
  • the first wafer lens 100 is manufactured using the manufactured sub-submaster mold 50.
  • the resin material 102 b is applied to the third transfer surface 53 of the sub-sub master mold 50.
  • the substrate 101 is pressed against the sub-sub master mold 50 through the resin material 102b.
  • the resin material 102b is cured, the substrate 101 and the upper resin portion 102 are integrally released from the sub-sub master mold 50.
  • FIGS. 6A and 6B and FIGS. 7A to 7E of the first embodiment is performed.
  • FIG. 8B an imaging device 700 including the lens unit 800 is obtained.
  • the first spacer plate 200 has a tip end position of the projection 91 on the innermost side of the opening 6b in the cross section of the opening 6b. In the thickness direction, it is formed on the end surface 206b side on the tip side from the center. In other words, the height h1 in the thickness direction from the end face 206a on the base side of the support 6a to the protrusion 91 is larger than the height h2 in the thickness direction from the end face 206b on the tip side of the support 6a to the protrusion 91. ing.
  • the tip position of the protrusion 91 may be formed closer to the end face 206a on the root side than the center in the thickness direction of the first spacer plate 200.
  • the position of the protrusion 91 in the thickness direction changes the size of the diameter of the hole OP of the mask MA of the spacer substrate SS shown in FIG. 4A or the like, or the processing time of the end surfaces 206a and 206b of the spacer substrate SS. Adjust by. Specifically, as shown in FIG. 11, the diameter x1 of the hole OP1 of the mask MA1 formed on one end surface 206a of the spacer substrate SS is set to the diameter of OP2 of the mask MA2 formed on the other end surface 206b. It is larger than the diameter x2.
  • the processing time on the end face 206a side is made shorter than that on the end face 206b side.
  • the manufacturing method of the spacer board 200 in this embodiment is demonstrated in detail in the following 5th Embodiment etc.
  • the tip position of the protrusion 91 of the first spacer plate 200 is formed closer to the end face 206b side of the tip side than the center in the thickness direction of the first spacer plate 200.
  • the protrusion 91 is disposed on the upper lens portion 11 side of the second wafer lens 300 having a small lens thickness. Thereby, it is possible to easily avoid the first spacer plate 200 from hitting the upper lens portion 11.
  • the second spacer plate 400 does not have a tapered surface on both sides, but has a single-sided tapered surface PP that narrows in one direction from one end surface 406a to the other end surface 406b.
  • the adhesive 81c adheres to a portion of the one-side tapered surface PP where the inner angle ⁇ formed by the one-side tapered surface PP and the substrate 301 is an acute angle. That is, the adhesive 81c adheres to a part of the one-side tapered surface PP on the side where the inner diameter of the opening 6b is larger among the entrances of the pair of openings 6b of the second spacer plate 400.
  • the first spacer plate 200 may be provided with a one-side tapered surface PP.
  • the laminated structure 1000 includes a first wafer lens 100, a first spacer plate 200, a second wafer lens 300, a second spacer plate 400, and an image sensor array 500. Laminated in the Z-axis direction.
  • an imaging device 700 in which the lens unit 800 and the imaging element 530 are laminated can be obtained.
  • the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 each extend in parallel to the XY plane and have a laminated structure.
  • the entire body 1000 also extends parallel to the XY plane.
  • a laminate of the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 is referred to as an array unit 600 for convenience in this specification. Included in wafer lens.
  • the first wafer lens 100 in the laminated structure 1000 has, for example, a disk shape, and includes a substrate 101, an upper resin portion 102, and a lower resin portion 103.
  • the upper and lower resin portions 102 and 103 are bonded to the substrate 101 in alignment with each other with respect to translation in the XY plane perpendicular to the axis AX and rotation around the axis AX.
  • a large number of first compound lenses 10 are formed as optical elements constituting them, and are secondarily arranged along the XY plane. That is, the first wafer lens 100 is a group of a plurality of first compound lenses 10 before cutting (the same applies to the second wafer lens 300).
  • the first compound lens 10 includes a lens body 10a that forms an optical surface, and a flange 10b that exists around the lens body 10a.
  • the lens body 10 a and the flange 10 b include not only a part of the upper and lower resin parts 102 and 103 but also a part of the substrate 101.
  • the substrate 101 of the first wafer lens 100 is a flat plate extending over the entire first wafer lens 100, and is formed of, for example, glass.
  • the thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the first wafer lens 100 is not damaged when the first wafer lens 100 is released.
  • the substrate 101 constitutes the center portion of the lens body 10a of the first compound lens 10 and the flange 10b.
  • a glass, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used, and glass is particularly preferable.
  • substrate 101 is based also on a use, it shall be 0.2 mm or more and 1.5 mm or less, for example.
  • the upper resin portion 102 is made of resin and is formed on one surface 101 a of the substrate 101.
  • the upper resin portion 102 includes a plurality of upper lens portions 11 and an upper flange portion 15 formed around each upper lens portion 11. That is, the upper resin portion 102 refers to the entire resin portion including the upper lens portion 11 formed on the substrate 101 before the first wafer lens 100 is cut (the same applies to the lower lens portion 12).
  • Each upper lens portion 11 constitutes an upper portion of the lens body 10 a of the first compound lens 10.
  • Each upper lens unit 11 is two-dimensionally arranged in the XY plane on the substrate 101.
  • the upper lens unit 11 has, for example, a convex shape, and has a convex aspherical first optical surface 11a as shown in FIG.
  • the upper flange portion 15 constitutes the upper portion of the flange 10b.
  • the upper flange portion 15 has a first flange surface 11b as shown in FIG.
  • the first optical surface 11a and the first flange surface 11b serve as a first molding surface 102a that is collectively molded by transfer.
  • the thickness of the upper resin part 102 at the cutting position is, for example, 0.01 mm or more and 0.3 mm or less.
  • the upper resin portion 102 is made of a photocurable resin.
  • the photocurable resin contains a photopolymerization initiator that initiates polymerization of the photocurable resin.
  • a photocurable resin an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used.
  • acrylic resin, allyl ester resin, or vinyl resin it can be cured by reaction, for example, by radical polymerization of a photopolymerization initiator, and when epoxy resin is used, it is reacted by, for example, cationic polymerization of a photopolymerization initiator. It can be cured.
  • the lower resin portion 103 (first resin portion) is made of resin and is formed on the other surface 101 b of the substrate 101, similar to the upper resin portion 102.
  • the lower resin portion 103 includes a plurality of lower lens portions 12 (first lens portions) and a lower flange portion 16.
  • Each lower lens portion 12 constitutes a lower portion of the lens body 10 a of the first compound lens 10.
  • the lower lens portions 12 are two-dimensionally arranged in the XY plane on the substrate 101.
  • the position of each lower lens portion 12 corresponds to the position of each upper lens portion 11 on the opposite side of the substrate 101.
  • the lower lens unit 12 has a convex shape, for example, and has a concave aspherical second optical surface 12a as shown in FIG.
  • the lower lens portion 12 protrudes toward the molding surface side of the lower resin portion 103 while having the concave second optical surface 12a.
  • the lower lens portion 12 protrudes from the base portion 200a on the base side (lower side in the drawing) of the first spacer plate 200.
  • the lower flange portion 16 constitutes a lower portion of the flange 10b.
  • the lower flange portion 16 has a second flange surface 12b as shown in FIG.
  • the second optical surface 12a and the second flange surface 12b form a second molding surface 103a that is collectively molded by transfer.
  • the thickness of the upper resin part 102 at the cutting position is, for example, 0.01 mm or more and 0.3 mm or less.
  • the photocurable resin used for the lower resin portion 103 is the same as the photocurable resin of the upper resin portion 102. However, it is not necessary to form both the resin parts 102 and 103 with the same photocurable resin, and it can form with another photocurable resin.
  • the second wafer lens 300 has a disk shape, for example, and includes a substrate 301, an upper resin portion 302 (second resin portion), and a lower resin portion 303.
  • the configuration of the second wafer lens 300 is substantially the same as the configuration of the first wafer lens 100.
  • a large number of second compound lenses 20 are formed as optical elements constituting the second lens, and are secondarily arranged along the XY plane.
  • the second compound lens 20 includes a lens body 20a that forms an optical surface, and a flange 20b that exists around the lens body 20a.
  • the lens body 20 a and the flange 20 b include not only a part of the upper and lower resin parts 302 and 303 but also a part of the substrate 301.
  • the upper lens part 11 (second lens part) constitutes the upper part of the lens body 20a of the second compound lens 20, and the lower lens part 12 constitutes the lower part of the lens body 20a.
  • the upper lens portion 11 has a convex shape, for example, and has a concave aspherical first optical surface 21a as shown in FIG.
  • the lower lens portion 12 has a convex shape, for example, and has a concave aspherical second optical surface 22a as shown in FIG.
  • the upper flange portion 15 constitutes the upper portion of the flange 20b of the second compound lens 20, and the lower flange portion 16 constitutes the lower portion of the flange 20b. As shown in FIG. 15, the upper flange portion 15 has a first flange surface 21b, and the lower flange portion 16 has a second flange portion 22b.
  • the upper and lower lens portions 11 and 12 constituting the first and second wafer lenses 100 and 300 are separated in units of the first and second compound lenses 10 and 20 including the element region.
  • a plurality of lens units 800 can be obtained.
  • the first spacer plate 200 functions as a support portion for the first wafer lens 100.
  • the first spacer plate 200 is a flat plate member made of glass, ceramics, resin, or the like, and has holes formed in an array corresponding to the first compound lens 10.
  • the first spacer plate 200 is divided into a plurality of spacers 10c by dicing.
  • Each spacer 10c has a cylindrical support 6a and an opening 6b having a circular cross section.
  • the opening 6b extends along the optical axis OA so as to pass the optical axis OA parallel to the Z-axis of the lens body 10a.
  • the opening 6 b is formed by the edge portion S facing the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300.
  • the edge portion S is an inner portion of a hole formed in the first spacer plate 200.
  • the edge portion S is formed in a substantially circular shape so as to surround the outer shapes of the upper and lower lens portions 11 and 12.
  • the support 6a is fixed to a flange 10b around the lens body 10a while avoiding the lens body 10a. That is, an appropriate gap is formed between the opening 6b and the lens body 10a.
  • the edge portion S of the opening 6b opens from one end face of the first spacer plate 200 on the base side (upper side in the drawing) 206a and the other end face on the front end side (lower side in the drawing) 206b. Both side taper surfaces TP that narrow toward the center side in the thickness direction (Z direction in the drawing) of the portion 6b are formed.
  • the tip end position of the projection 91 located on the innermost side of the opening 6b is formed at the approximate center in the thickness direction.
  • An end surface 206a on the base side (upper side in the drawing) of the support 6a is bonded to the second flange surface 12b on the lower side in the drawing via an adhesive 81a. That is, the base portion 200a of the first spacer plate 200 is bonded to the substrate 101 via the upper resin portion 102, that is, indirectly.
  • an end surface 206b on the front end side (lower side of the drawing) of the first spacer plate 200 is formed on the first flange surface 21b on the upper side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via the adhesive 81b. It is glued. That is, the base portion 200 b of the first spacer plate 200 is indirectly bonded to the substrate 301. Thus, the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300 protrude into the opening 6b at the position of the corresponding opening 6b in the first spacer plate 200. It will be.
  • the tapered surfaces TP on both sides are formed so as to maintain a certain gap with the lens portions 11 and 12, so that the support 6a of the first spacer plate 200 and the lens portions 11 and 12 do not interfere with each other.
  • the distances d1 and d2 with the outer edge portions 61c and 61d of the portions protruding from the respective sides are 0 or more, and the edge portion S of the opening 6b keeps a predetermined distance from the upper and lower lens portions 11 and 12.
  • the inclination angle ⁇ of the tapered surfaces TP on both sides is 0 ° ⁇ ⁇ 45 ° with respect to the thickness direction of the first spacer plate 200.
  • the gap between the convex upper and lower lens portions 11 and 12 and the both side tapered surfaces TP needs to be adjusted more strictly than when the lens portion is concave.
  • the first spacer plate 200 may not be attached to the first and second wafer lenses 100 and 300 with higher accuracy than when the lens portion has a concave shape.
  • the first spacer plate 200 and the spacer 10c obtained therefrom are members for adjusting the distance between the first wafer lens 100 and the second wafer lens 300, and the two first and second composites that constitute the imaging device 700. It has a role of adjusting the distance between the lenses 10 and 20.
  • the support 6a is made of a light-shielding material or has a light-shielding coating applied to the inner surface of the opening or the like, and also serves as an optical diaphragm.
  • the second spacer plate 400 functions as a support portion for the second wafer lens 300.
  • the second spacer plate 400 has the same configuration as the first spacer plate 200.
  • the second spacer plate 400 is divided into a plurality of spacers 20c by dicing.
  • the end surface 406a on the base side of the support 6a of the second spacer plate 400 is bonded to the second flange surface 22b on the lower side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via an adhesive 81c. ing. That is, the base 400 a on the base side of the second spacer plate 400 is indirectly bonded to the substrate 301.
  • the second spacer plate 400 and the spacer 20 c are members for adjusting the distance between the second wafer lens 300 and the image sensor array 500, and are between the second compound lens 20 and the image sensor 530 constituting the image pickup apparatus 700. It has a role to adjust the distance.
  • the thickness of the first spacer plate 200 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300.
  • the thickness of the second spacer plate 400 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the second wafer lens 300 and the image sensor 530 of the image sensor array 500.
  • the specific thickness of the first and second spacer plates 200 and 400 depends on the optical characteristics of the upper and lower lens portions 11 and 12, the performance of the image sensor 530, the functions and applications required for the imaging lens, and the like. However, generally 0.1 mm or more and 0.8 mm or less are preferable, and 0.2 mm or more and 0.6 mm or less are more preferable. When the thickness is 0.1 mm or more, handling is easy, stress relaxation is high, and failures such as peeling and cracking are unlikely to occur. Moreover, it is preferable that it is 0.8 mm or less because the transmittance is high.
  • Specific materials of the first and second spacer plates 200 and 400 are soft glass, resin, organic-inorganic hybrid material, and the like, and are not particularly limited. However, heat-resistant resin or heat-resistant organic-inorganic hybrid is used. Good material. As the organic / inorganic hybrid material, heat-resistant glass fiber reinforced resin, filler reinforced resin, organic-silica hybrid, and the like are preferable. In particular, an organic silica-hybrid is preferable. Among them, an epoxy resin-silica hybrid and an acrylic-silica hybrid are preferable because they have good adhesion to the upper and lower resin portions 102 and 103.
  • the openings 6b of the first and second spacer plates 200 and 400 are formed by, for example, etching or blasting.
  • etching or blasting For example, wet etching or the like is used as the etching method, and microblasting or the like is used as the blasting method.
  • the lens unit 800 and the imaging device 700 will be described with reference to FIG.
  • the imaging device 700 includes a lens unit 800 and an imaging element 530.
  • the lens unit 800 includes a first compound lens 10, a first spacer 10c, a second compound lens 20, and a second spacer 20c.
  • the first compound lens 10 includes the upper lens portion 11, the lower lens portion 12, and the flat plate portion 13 sandwiched therebetween.
  • the flat plate portion 13 is a portion obtained by cutting out the substrate 101. That is, the first compound lens 10 is a lens that is cut into individual pieces after forming a plurality of resin upper and lower lens portions 11 and 12 on the substrate 101 (the same applies to the second compound lens 20). .
  • the shapes of the upper and lower lens portions 11 and 12 may be the same or different.
  • the second compound lens 20 includes an upper lens unit 11, a lower lens unit 12, and a flat plate unit 13 sandwiched therebetween.
  • the first spacer 10 c is provided between the first compound lens 10 and the second compound lens 20.
  • the second spacer 20 c is provided between the second compound lens 20 and the image sensor 530.
  • the first and second spacers 10c and 20c have openings 6b corresponding to the upper and lower lens portions 11 and 12, respectively.
  • a double-sided tapered surface TP that narrows toward the center in the thickness direction of the first and second spacers 10c and 20c is formed at the edge portion S of the opening 6b. In the cross section in the thickness direction of the opening 6b (edge portion S), the tip position of the protrusion 91 is formed at the approximate center in the thickness direction.
  • the imaging device 700 has a rectangular outline when viewed from the optical axis OA direction. Note that the imaging device 700 is housed in, for example, a separately prepared holder and bonded to the imaging circuit board as an imaging lens.
  • the manufacturing method of the first spacer plate 200 is the same as that described in the first embodiment (see FIGS. 4A to 4D), and thus the description thereof is omitted.
  • the method for producing the second spacer plate 400 is the same as that for the first spacer plate 200.
  • a master mold 30 (see FIG. 9A) corresponding to the final shape of the upper resin portion 102 is manufactured by grinding or the like.
  • a resin material 41b is applied on the master die 30, and ultraviolet rays are irradiated by a UV generator (not shown) while pressing the sub-master substrate 42 from above the master die 30, and the resin material 41b sandwiched therebetween is applied. Light cure.
  • the first transfer surface 31 of the master mold 30 is transferred to the resin material 41b, and the second transfer surface 43 (second optical transfer surface and second flange transfer surface) is formed on the resin material 41b.
  • the sub master molding part 41 is formed.
  • the second transfer surface 43 may be further formed in an array by changing the transfer position on the sub-master substrate 42 and repeating the sub-master type curing step in this step and the sub-master type release step in the next step. .
  • the sub-master mold 40 is manufactured by releasing the sub-master molding part 41 and the sub-master substrate 42 integrally from the master mold 30.
  • a release agent may be applied on the second transfer surface 43 of the sub master molding unit 41.
  • the sub-master mold 50 is manufactured using the sub-master mold 40 obtained in the above process.
  • a resin material 51b is applied on the sub master mold 40, and UV light is irradiated by a UV generator (not shown) while pressing the sub sub master substrate 52 from above the sub master mold 40.
  • the resin material 51b sandwiched between the layers is photocured.
  • the second transfer surface 43 of the sub master mold 40 is transferred to the resin material 51b, and a third transfer surface 53 (a third optical transfer surface and a third flange transfer surface) is formed on the resin material 51b.
  • the sub-submaster molding part 51 is formed.
  • the sub-submaster mold 50 is manufactured by separating the sub-submaster molding part 51 and the sub-submaster substrate 52 as a single unit from the submaster mold 40. Note that a release agent may be applied on the third transfer surface 53 of the sub-submaster molding unit 51.
  • the wafer lens 100 is manufactured using the sub-submaster mold 50 obtained in the above process.
  • a resin material 102b (a photocurable resin that forms the upper resin portion 102) is applied onto the sub-sub master mold 50, and the substrate 101 is pressed from above the sub-sub master mold 50, not shown.
  • the ultraviolet ray is irradiated by the UV generator and the resin material 102b sandwiched therebetween is photocured.
  • the third transfer surface 53 of the sub-submaster mold 50 is transferred to the resin material 102b, and the first molding surface 102a (the first optical surface 11a and the first flange surface 11b in FIG. 15) is formed on the resin material 102b. .
  • the upper resin part 102 is formed.
  • the other sub-master master 150 having the same structure as that of the sub-sub master mold 50 but having a different transfer surface is used to perform the other process of the substrate 101 in the same process as described above.
  • the lower resin portion 103 is formed on the surface 101b.
  • the pair of sub-sub master molds 50 and 150 are separated to release the substrate 101 and the upper and lower resin portions 102 and 103 as a single unit.
  • the first wafer lens 100 is manufactured.
  • the second wafer lens 300 is similarly manufactured.
  • a sheet-shaped or wafer-shaped first spacer plate 200 is attached to the lower resin portion 103 of the first wafer lens 100.
  • the adhesive 81 a is applied to one side of the first spacer plate 200 or the first wafer lens 100.
  • the first spacer plate 200 or the first wafer lens 100 is aligned with respect to the substrate 101 or the lower resin portion 103, and the bonding surface of the first spacer plate 200, that is, the end surface 206 a on the root side, is the surface of the lower resin portion 103.
  • the adhesive is cured by irradiating it with UV light.
  • the second spacer plate 400 is attached to the second wafer lens 300 using the adhesive 81c in the same process as the above process.
  • the second spacer plate 400 may be attached to the second wafer lens 300 after the first spacer plate 200 and the second wafer lens 300 are attached.
  • the first wafer lens 100 with the first spacer plate 200 attached and the second wafer lens 300 with the second spacer plate 400 attached are joined to produce the array unit 600. That is, the adhesive 81b is applied to the end face 206b of the first spacer plate 200 fixed to the first wafer lens 100 or the second wafer lens 300, and is bonded to the second wafer lens 300 or the first spacer plate 200. Irradiate with UV light. Accordingly, the second wafer lens 300 is fixed or bonded to the first wafer lens 100 via the first spacer plate 200. Next, the image sensor array 500 is attached to the second wafer lens 300 on the opposite side of the first wafer lens 100.
  • the adhesive 81d is applied to the end face of the second spacer plate 400 fixed to the second wafer lens 300, and is bonded to the image pickup device array 500 to irradiate UV light.
  • the imaging element array 500 is fixed or bonded to the second wafer lens 300 via the second spacer plate 400.
  • the laminated structure 1000 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 are laminated is completed.
  • the first and second wafer lenses 100, 300, etc. are cut, that is, diced, along the cut line DX shown in FIGS.
  • the first and second wafer lenses 100, 300, etc. are cut out into a quadrangular prism shape to form an imaging device 700 having a structure in which the first and second compound lenses 10, 20, etc. are stacked.
  • the laminated structure 1000 has been described as including the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500.
  • the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 may be used.
  • the laminated structure 1000 is constituted by the array unit 600 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 are laminated.
  • Such an array unit 600 can be separated into pieces by dicing and joined to an individual image pickup device 530 separately manufactured.
  • the imaging element array 500 is included in the stacked structure 1000, but the imaging element array 500 may be omitted and the array unit 600 may be configured.
  • the upper and lower lens portions 11 and 12 as lens portions are the first and second spacer plates 200 and 400 (first and second in the case of a lens unit).
  • the second spacers 10c, 20c protrude from the base portions 200a, 200b, 400a, the stacked first and second wafer lenses 100, 300 (in the case of a lens unit, the first and second compound lenses 10, 20).
  • the edge portion S opening 6b which is the inner portion of the holes of the first and second spacer plates 200, 400.
  • the area of the support surface of the spacer plate can be increased or the spacer plate can be made thicker.
  • Ku can also improve the strength of the first and second spacer plates 200, 400 and. Thereby, it can prevent that the thickness of the whole lens unit 800 becomes large.
  • a spacer plate that is not provided with a tapered surface or one of the spacer plates when a hole is drilled with the same inner diameter, a spacer plate that is not provided with a tapered surface or one of the spacer plates. The strength of the spacer plate can be increased as compared with the case where the tapered surface is provided only from the end surface side.
  • the spacer plate provided with no tapered surface or the spacer plate provided with the tapered surface only from one end surface In comparison, the first and second spacer plates 200 and 400 are removed from the first and second spacer plates 200 and 400 while avoiding interference with the upper and lower lens portions 11 and 12 without increasing the hole diameter.
  • the cut-out portion can be reduced. Therefore, the strength of the first and second spacer plates 200 and 400 can be improved.
  • the spacer plate may be damaged or peeled off.
  • the strength can be increased by inserting the first and second spacer plates 200, 400 with the tapered surfaces TP on both sides. Further, for example, in the case of a multi-piece lens unit 800, the number of holes in the first and second spacer plates 200 and 400 is also increased, so that the strength of the first and second spacer plates 200 and 400 is improved. 800 mass production is possible.
  • the hole diameter of the spacer plate is increased to allow a sufficient clearance between the shape of the lens portion and the spacer plate (clearance)
  • the ratio of the area of the hole occupying the spacer plate increases and the strength decreases.
  • the number of holes in the spacer plate is also increased, which raises further concerns regarding strength.
  • the pitch of the lens portions and the pitch of the holes in the spacer plate are increased, the number of lens units is reduced and mass production cannot be performed.
  • the optical surface is formed by applying resin on the substrate, and the thickness of the substrate does not depend on the thickness of the lens portion. Therefore, there is an advantage that a large amount of lens parts (upper and lower lens parts 11 and 12) can be formed on the substrate 101.
  • a convex portion (protrusion) made of resin always occurs on the substrate.
  • the lens unit 800 is entirely formed by providing resin on the substrate 101 by forming both side tapered surfaces TP in the openings 6b of the first and second spacer plates 200 and 400, the entire lens unit 800 is formed.
  • the lens portions (upper and lower lens portions 11 and 12) and the first and second spacer plates 200 and 400 can be arranged with high accuracy while suppressing the thickness.
  • the upper resin portions 102 and 302 and the lower resin portions 103 and 303 are provided with substrates 101 and 301, respectively.
  • Upper and lower lens portions 11 and 12 are independently arranged on the upper side. That is, the lens units 11 and 12 are not connected to the adjacent lens units 11 and 12, and the substrates 101 and 301 are exposed between the lens units 11 and 12.
  • End surfaces 206a, 206b, and 406a of the support 6a are bonded to the substrates 101 and 301 via adhesives 81a, 81b, and 81c, respectively. That is, the base portions 200a, 200b, and 400a of the first and second spacer plates 200 and 400 are directly bonded to the substrates 101 and 301, respectively, without using a resin.
  • the manufacturing process of the first wafer lens 100 of this embodiment is the same as that described in the first embodiment (see FIGS. 5A to 5E).
  • the upper and lower resin portions 102, 103, 302, and 303 of the first and second wafer lenses 100 of the present embodiment are formed by an individual dropping method.
  • the manufacturing process of the second wafer lens 300 is the same as the manufacturing process of the first wafer lens 100.
  • a sub-master die 40 is produced using the master die 30.
  • the resin material 41 b is individually dropped onto the transfer surface corresponding to each upper lens portion 11 of the first transfer surface 31 of the master mold 30.
  • the sub master substrate 42 is pressed against the master mold 30 through the resin material 41b.
  • the sub-master mold 40 is released from the master mold 30 as shown in FIG. 5B.
  • a sub-sub master mold 50 is manufactured using the manufactured sub-master mold 40.
  • the resin material 51b is individually dropped onto the transfer surface corresponding to each upper lens portion 11 of the second transfer surface 43 of the sub master mold 40.
  • the sub-master substrate 52 is pressed against the sub-master mold 40 through the resin material 51b.
  • the sub-sub master mold 50 is released from the sub-master mold 40 as shown in FIG. 5D.
  • the first wafer lens 100 is manufactured using the manufactured sub-submaster mold 50.
  • the resin material 102 b is individually dropped on the transfer surface corresponding to each upper lens portion 11 of the third transfer surface 53 of the sub-submaster mold 50.
  • the substrate 101 is pressed against the sub-sub master mold 50 through the resin material 102b.
  • the resin material 102b is cured, the substrate 101 and the upper resin portion 102 are integrally released from the sub-sub master mold 50.
  • FIG. 18B an imaging device 700 including the lens unit 800 is obtained.
  • the upper and lower resin portions 102, 103 and the like are cut in the multi-piece individual dropping type lens unit 800 as compared with the whole dropping type lens unit.
  • the lens accuracy can be improved from the point that it is not necessary.
  • the outermost shape of the upper and lower lens portions 11 and 12 with respect to the third transfer surface 53 and the like for forming all the upper and lower lens portions 11 and 12 is accurately reflected between shots. Difficult to control.
  • the hole diameter of the spacer plate ensures the gap (clearance) between the lens part and the inside of the opening. If the inner diameter of the opening is widened, the strength of the spacer plate is reduced by that amount. There are concerns about strength such as the spacer plate being damaged in the step of laminating the spacer, the step of cutting the laminated structure, and the like. Therefore, by providing both side tapered surfaces TP on the first and second spacer plates 200 and 400, the upper and lower lens portions 11 and 12 and the first and second spacer plates 200 and 400 can escape so as not to interfere with each other. While making, the thickness between the openings 6b of the first and second spacer plates 200, 400, that is, the thickness of the support 6a can be increased, and the strength of the first and second spacer plates 200, 400 is improved. be able to.
  • the laminated structure according to the seventh embodiment will be described.
  • the structure and manufacturing method of the laminated structure of the seventh embodiment is a modification of the structure and manufacturing method of the laminated structure of the fifth or sixth embodiment, and parts that are not particularly described are the fifth embodiment and the like. It shall be the same.
  • the protruding adhesive 81 b slightly adheres to the both-side tapered surfaces TP in the vicinity of the end surface 206 b on the tip side of the opening 6 b in the both-side tapered surfaces TP of the first spacer plate 200.
  • the adhesive 81b sandwiched between the first spacer plate 200 and the second wafer lens 300 protrudes from the first spacer plate 200 support 6a and is tapered on both sides.
  • the strength of the first spacer plate 200 and the adhesive strength between the first spacer plate 200 and the second wafer lens 300 can be further improved.
  • the adhesive 81b not only the adhesive 81b but also the adhesive 81a between the first wafer lens 100 and the first spacer plate 200, or the adhesion between the second wafer lens 300 and the second spacer plate 400.
  • the agent 81c may protrude from the support 6a of the first or second spacer plate 200, 400.
  • portions of the upper and lower lens portions 11 and 12 that protrude from the base portions 200a, 200b, and 400a of the first and second spacer plates 200 and 400 are openings of the first and second spacer plates 200 and 400. When it is close to the edge of the portion 6b, the strength is further increased.
  • the laminated structure 1000 includes a first wafer lens 100, a first spacer plate 200, a second wafer lens 300, a second spacer plate 400, and an imaging element array 500. Laminated in the Z-axis direction.
  • an imaging device 700 in which the lens unit 800 and the imaging element 530 are laminated can be obtained.
  • the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 each extend in parallel to the XY plane and have a laminated structure.
  • the entire body 1000 also extends parallel to the XY plane.
  • a laminate of the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 is referred to as an array unit 600 for convenience in this specification. Included in wafer lens.
  • the first wafer lens 100 in the laminated structure 1000 has, for example, a disk shape, and includes a substrate 101, an upper resin portion 102, and a lower resin portion 103.
  • the upper and lower resin portions 102 and 103 are bonded to the substrate 101 in alignment with each other with respect to translation in the XY plane perpendicular to the axis AX and rotation around the axis AX.
  • a large number of first compound lenses 10 are formed as optical elements constituting them, and are secondarily arranged along the XY plane. That is, the first wafer lens 100 is a group of a plurality of first compound lenses 10 before cutting (the same applies to the second wafer lens 300).
  • the first compound lens 10 includes a lens body 10a that forms an optical surface, and a flange 10b that exists around the lens body 10a.
  • the substrate 101 of the first wafer lens 100 is a flat plate extending over the entire first wafer lens 100, and is formed of, for example, glass.
  • the thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the first wafer lens 100 is not damaged when the first wafer lens 100 is released.
  • the substrate 101 constitutes the center portion of the lens body 10a of the first compound lens 10 and the flange 10b.
  • the substrate 101 has a first flange surface 11b and a second flange surface 12b on surfaces 101a and 101b corresponding to the flange 10b, respectively.
  • As the material of the substrate 101 a glass, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used, and glass is particularly preferable.
  • substrate 101 is based also on a use, it shall be 0.2 mm or more and 1.5 mm or less, for example.
  • the upper resin portion 102 is made of resin and is formed on one surface 101 a of the substrate 101.
  • the upper resin part 102 has a plurality of upper lens parts 11. That is, the upper resin portion 102 refers to the entire resin portion including the upper lens portion 11 formed on the substrate 101 before the first wafer lens 100 is cut (the same applies to the lower lens portion 12).
  • Each upper lens portion 11 constitutes an upper portion of the lens body 10 a of the first compound lens 10.
  • Each upper lens unit 11 is two-dimensionally arranged in the XY plane on the substrate 101.
  • each upper lens portion 11 is independently arranged on the substrate 101. That is, each upper lens portion 11 is not connected to the adjacent upper lens portion 11 by resin, and the substrate 101 is exposed between the upper lens portions 11.
  • the upper lens unit 11 has, for example, a convex shape, and has a convex aspherical first optical surface 11a and a first non-optical surface 11c as shown in FIG.
  • the first optical surface 11a and the first non-optical surface 11c serve as a first molding surface 102a that is collectively molded by transfer.
  • the first optical surface 11a has an effective area AR1 (an optically effective area of the lens), and the first non-optical surface 11c has an ineffective area AR2 (an area that does not affect the optical function of the lens).
  • the upper resin portion 102 is made of a photocurable resin.
  • the photocurable resin contains a photopolymerization initiator that initiates polymerization of the photocurable resin.
  • a photocurable resin an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used.
  • acrylic resin, allyl ester resin, or vinyl resin it can be cured by reaction, for example, by radical polymerization of a photopolymerization initiator, and when epoxy resin is used, it is reacted by, for example, cationic polymerization of a photopolymerization initiator. It can be cured.
  • the lower resin portion 103 is made of resin, like the upper resin portion 102, and is formed on the other surface 101b of the substrate 101.
  • the lower resin portion 103 has a plurality of lower lens portions 12.
  • Each lower lens portion 12 constitutes a lower portion of the lens body 10 a of the first compound lens 10.
  • the lower lens portions 12 are two-dimensionally arranged in the XY plane on the substrate 101.
  • the position of each lower lens portion 12 corresponds to the position of each upper lens portion 11 on the opposite side of the substrate 101.
  • each lower lens portion 12 is independently arranged on the substrate 101. That is, each lower lens portion 12 is not connected to the adjacent lower lens portion 12 by resin, and the substrate 101 is exposed between the lower lens portions 12.
  • the lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 12a and a second non-optical surface 12c as shown in FIG.
  • the lower lens portion 12 has a concave second optical surface 12a and protrudes from the base portion 200a on the base side (upper part of the drawing) of the first spacer plate 200.
  • the second optical surface 12a and the second non-optical surface 12c are first molding surfaces 103a that are collectively molded by transfer.
  • the second optical surface 12a has an effective area AR3 (an optically effective area of the lens), and the second non-optical surface 12c has an ineffective area AR4 (an area that does not affect the optical function of the lens).
  • the photocurable resin used for the lower resin portion 103 is the same as the photocurable resin of the upper resin portion 102. However, it is not necessary to form both the resin parts 102 and 103 with the same photocurable resin, and it can form with another photocurable resin.
  • the second wafer lens 300 is, for example, a disk shape, and includes a substrate 301, an upper resin portion 302, and a lower resin portion 303.
  • the configuration of the second wafer lens 300 is substantially the same as the configuration of the first wafer lens 100.
  • a large number of second compound lenses 20 are formed as optical elements constituting the second lens, and are secondarily arranged along the XY plane.
  • the second compound lens 20 includes a lens body 20a that forms an optical surface, and a flange 20b that exists around the lens body 20a.
  • the upper lens part 11 constitutes the upper part of the lens body 20a of the second compound lens 20, and the lower lens part 12 constitutes the lower part of the lens body 20a.
  • the upper lens unit 11 has, for example, a convex shape, and includes a concave aspherical first optical surface 21a and a first non-optical surface 21c as shown in FIG. Have.
  • the lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 22a and a second non-optical surface 22c as shown in FIG.
  • the substrate 301 has a first flange surface 21b and a second flange surface 22b on the surfaces 101a and 101b corresponding to the flange 20b.
  • the upper and lower lens portions 11 and 12 constituting the first and second wafer lenses 100 and 300 are separated in units of the first and second compound lenses 10 and 20 including the element region.
  • a plurality of lens units 800 can be obtained.
  • the first spacer plate 200 functions as a support portion for the first wafer lens 100.
  • the first spacer plate 200 is a flat plate member made of glass, ceramics, resin, or the like, and has holes formed in an array corresponding to the first compound lens 10.
  • the side on which light is incident (the end surface 206a side on the root side) is the front side
  • the side on which the light is emitted is the back side.
  • the first spacer plate 200 is divided into a plurality of spacers 10c by dicing. Each spacer 10c has a cylindrical support 6a and an opening 6b having a circular cross section.
  • the opening 6b extends along the optical axis OA so as to pass the optical axis OA parallel to the Z-axis of the lens body 10a.
  • the opening 6 b is formed by the edge portion S facing the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300.
  • the edge portion S is an inner portion of a hole formed in the first spacer plate 200.
  • the edge portion S is formed in a substantially circular shape so as to surround the outer shapes of the upper and lower lens portions 11 and 12.
  • the inner diameter D1 of the entrance on the base end face 206a side is larger than the inner diameter D2 of the entrance on the end face 206b side.
  • the support 6a is fixed to a flange 10b around the lens body 10a while avoiding the lens body 10a. That is, an appropriate gap is formed between the opening 6b and the lens body 10a.
  • the edge portion S of the opening 6b opens from one end face of the first spacer plate 200 on the base side (upper side in the drawing) 206a and the other end face on the front end side (lower side in the drawing) 206b. Both side taper surfaces TP that narrow toward the center side in the thickness direction (Z direction in the drawing) of the portion 6b are formed.
  • the tip position of the projection 91 located on the innermost side of the opening 6b is formed on the end face 206b side on the tip side from the center.
  • the height h1 in the thickness direction from the end face 206a on the base side of the support 6a to the protrusion 91 is larger than the height h2 in the thickness direction from the end face 206b on the tip side of the support 6a to the protrusion 91.
  • the positions of the protrusions 91 are determined so that the support 6a of the first spacer plate 200 and the upper and lower lens portions 11 and 12 do not interfere with each other in consideration of the shapes of the upper and lower lens portions 11 and 12. Is set.
  • the distances d1 and d2 with the outer edge portions 61c and 61d of the protruding portion are 0 or more, and the edge portion S of the opening 6b can keep a predetermined distance from the upper and lower lens portions 11 and 12. The distance is about.
  • the inclination angles ⁇ 1 and ⁇ 2 of the tapered surfaces TP on both sides are 0 ° ⁇ ⁇ 45 ° with respect to the thickness direction of the first spacer plate 200, respectively.
  • the gap between the convex upper and lower lens portions 11 and 12 and the tapered surfaces TP on both sides needs to be adjusted more strictly than in the case where the lens portion is concave.
  • the first spacer plate 200 may not be attached to the first and second wafer lenses 100 and 300 with higher accuracy than when the lens portion has a concave shape.
  • the end surface 206a on the base side (upper side of the drawing) of the support 6a is bonded to the second flange surface 12b (the other surface 101b of the substrate 101) on the lower side of the drawing via an adhesive 81a. That is, the base portion 200a of the first spacer plate 200 is directly bonded to the substrate 101 without using a resin. Further, the end surface 206b on the front end side (lower side of the drawing) of the first spacer plate 200 is a first flange surface 21b (upper side of the drawing) of the second compound lens 20 constituting the second wafer lens 300 via the adhesive 81b. Bonded to one surface 101a) of the substrate 301.
  • the base portion 200b of the first spacer plate 200 is directly bonded to the substrate 301 without using a resin.
  • the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300 protrude into the opening 6b at the position of the corresponding opening 6b in the first spacer plate 200. It will be.
  • the first spacer plate 200 and the spacer 10c obtained therefrom are members for adjusting the distance between the first wafer lens 100 and the second wafer lens 300, and the two first and second composites that constitute the imaging device 700. It has a role of adjusting the distance between the lenses 10 and 20.
  • the support 6a is made of a light-shielding material or has a light-shielding coating applied to the inner surface of the opening or the like, and also serves as an optical diaphragm.
  • the second spacer plate 400 functions as a support portion for the second wafer lens 300.
  • the second spacer plate 400 has the same configuration as the first spacer plate 200.
  • the second spacer plate 400 is divided into a plurality of spacers 20c by dicing.
  • the end surface 406a on the base side of the support 6a of the second spacer plate 400 is bonded to the second flange surface 22b on the lower side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via an adhesive 81c. ing. That is, the base 400a of the second spacer plate 400 is directly bonded to the substrate 301 without using a resin.
  • the end surface 406b on the front end side of the second spacer plate 400 is bonded to the imaging element array 500 via an adhesive 81d.
  • the inner diameters of the front and back openings 6b are substantially the same.
  • the tip end position of the protrusion 92 is formed at the approximate center in the thickness direction.
  • the second spacer plate 400 and the spacer 20 c are members for adjusting the distance between the second wafer lens 300 and the image sensor array 500, and are between the second compound lens 20 and the image sensor 530 constituting the image pickup apparatus 700. It has a role to adjust the distance.
  • the thickness of the first spacer plate 200 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300.
  • the thickness of the second spacer plate 400 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the second wafer lens 300 and the image sensor 530 of the image sensor array 500.
  • the specific thickness of the first and second spacer plates 200 and 400 depends on the optical characteristics of the upper and lower lens portions 11 and 12, the performance of the image sensor 530, the functions and applications required for the imaging lens, and the like. However, generally 0.1 mm or more and 0.8 mm or less are preferable, and 0.2 mm or more and 0.6 mm or less are more preferable. When the thickness is 0.1 mm or more, handling is easy, stress relaxation is high, and failures such as peeling and cracking are unlikely to occur. Moreover, it is preferable that it is 0.8 mm or less because the transmittance is high.
  • Specific materials of the first and second spacer plates 200 and 400 are soft glass, resin, organic-inorganic hybrid material, and the like, and are not particularly limited. However, heat-resistant resin or heat-resistant organic-inorganic hybrid is used. Good material. As the organic / inorganic hybrid material, heat-resistant glass fiber reinforced resin, filler reinforced resin, organic-silica hybrid, and the like are preferable. In particular, an organic silica-hybrid is preferable. Among them, an epoxy resin-silica hybrid and an acrylic-silica hybrid are preferable because they have good adhesion to the upper and lower resin portions 102 and 103.
  • the openings 6b of the first and second spacer plates 200 and 400 are formed by, for example, etching or blasting.
  • etching or blasting For example, wet etching or the like is used as the etching method, and microblasting or the like is used as the blasting method.
  • the lens unit 800 and the imaging device 700 will be described with reference to FIG.
  • the imaging device 700 includes a lens unit 800 and an imaging element 530.
  • the lens unit 800 includes a first compound lens 10, a first spacer 10c, a second compound lens 20, and a second spacer 20c.
  • the first compound lens 10 includes the upper lens portion 11, the lower lens portion 12, and the flat plate portion 13 sandwiched therebetween.
  • the flat plate portion 13 is a portion obtained by cutting out the substrate 101. That is, the first compound lens 10 is a lens that is cut into individual pieces after forming a plurality of resin upper and lower lens portions 11 and 12 on the substrate 101 (the same applies to the second compound lens 20). .
  • the shapes of the upper and lower lens portions 11 and 12 may be the same or different.
  • the second compound lens 20 includes an upper lens unit 11, a lower lens unit 12, and a flat plate unit 13 sandwiched therebetween.
  • the first spacer 10 c is provided between the first compound lens 10 and the second compound lens 20.
  • the second spacer 20 c is provided between the second compound lens 20 and the image sensor 530.
  • the first and second spacers 10c and 20c have openings 6b corresponding to the upper and lower lens portions 11 and 12, respectively.
  • the entrance of the opening 6b is different between the end face 206a side on the root side and the end face 206b side on the tip side.
  • the inner diameter D1 of the entrance of the opening 6b facing the lower lens portion 12 of the first wafer lens 100 having a large outer dimension is an opening facing the upper lens portion 11 of the second wafer lens 300 having a smaller outer dimension. It is larger than the inner diameter D2 of the entrance of 6b.
  • a double-sided tapered surface TP that narrows toward the center in the thickness direction of the first and second spacers 10c and 20c is formed at the edge portion S of the opening 6b.
  • the tip position of the protrusion 91 is formed closer to the end surface 206b.
  • the tip position of the protrusion 92 is formed at the approximate center in the thickness direction.
  • the imaging device 700 has a rectangular outline when viewed from the optical axis OA direction. Note that the imaging device 700 is housed in, for example, a separately prepared holder and bonded to the imaging circuit board as an imaging lens.
  • FIGS. 23A to 23D An example of a method for manufacturing the first spacer plate 200 will be described with reference to FIGS. 23A to 23D.
  • the method for producing the second spacer plate 400 is the same as that for the first spacer plate 200.
  • masks MA1 and MA2 are formed on both surfaces of a spacer substrate SS which is a material of the first and second spacer plates 200 and 400.
  • circular holes OP1 and OP2 are formed at positions corresponding to the openings 6b of the first spacer plate 200.
  • the positions of the protrusions 91 on the tapered surfaces TP on both sides are adjusted by changing the diameters of the holes OP1 and OP2 and the etching and blasting time for each surface of the spacer substrate SS.
  • the diameter x1 of the hole OP1 of the mask MA1 formed on the base-side end surface 206a of the spacer substrate SS is larger than the diameter x2 of OP2 of the mask MA2 formed on the end-side end surface 206b.
  • a material that can withstand an etching solution and a blast projectile is used. Specifically, for example, a resist, a metal mask such as stainless steel, chromium, or the like is used.
  • the spacer substrate SS on which the masks MA1 and MA2 are formed is immersed in the etching solution ES.
  • the etching solution ES For example, hydrofluoric acid or ammonium fluoride is used as the etching solution.
  • the spacer substrate SS is gradually etched from the portions where the masks MA1 and MA2 are not formed, that is, the exposed portions of both end faces 206a and 206b, and finally, as shown in FIG. 23D.
  • openings 6b having different entrance inner diameters are formed on the end faces 206a and 206b.
  • a sheet-like or wafer-like first spacer plate 200 is attached to the other surface 101b of the substrate 101 of the first wafer lens 100.
  • the adhesive 81 a is applied to one side of the first spacer plate 200 or the first wafer lens 100.
  • the first spacer plate 200 or the first wafer lens 100 is aligned with respect to the substrate 101 and the lower resin portion 103, and the bonding surface of the first spacer plate 200, that is, the end surface 206 a on the root side is used as the other surface 101 b of the substrate 101.
  • the adhesive is cured by irradiating it with UV light.
  • the second spacer plate 400 is attached to the second wafer lens 300 using the adhesive 81c in the same process as the above process.
  • the second spacer plate 400 may be attached to the second wafer lens 300 after the first spacer plate 200 and the second wafer lens 300 are attached.
  • the first wafer lens 100 having the first spacer plate 200 attached thereto and the second wafer lens 300 having the second spacer plate 400 attached thereto are joined to produce the array unit 600. That is, the adhesive 81b is applied to the end face 206b of the first spacer plate 200 fixed to the first wafer lens 100 or the second wafer lens 300, and is bonded to the second wafer lens 300 or the first spacer plate 200. Irradiate with UV light. Accordingly, the second wafer lens 300 is fixed or bonded to the first wafer lens 100 via the first spacer plate 200. Next, the image sensor array 500 is attached to the second wafer lens 300 on the opposite side of the first wafer lens 100.
  • the adhesive 81d is applied to the end face of the second spacer plate 400 fixed to the second wafer lens 300, and is bonded to the image pickup device array 500 to irradiate UV light.
  • the imaging element array 500 is fixed or bonded to the second wafer lens 300 via the second spacer plate 400.
  • the laminated structure 1000 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 are laminated is completed.
  • the first and second wafer lenses 100, 300, etc. are cut, that is, diced, along the cut line DX shown in FIGS.
  • the first and second wafer lenses 100, 300, etc. are cut out into a quadrangular prism shape to form an imaging device 700 having a structure in which the first and second compound lenses 10, 20, etc. are stacked.
  • the laminated structure 1000 has been described as including the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500.
  • the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 may be used.
  • the laminated structure 1000 is constituted by the array unit 600 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 are laminated.
  • Such an array unit 600 can be separated into pieces by dicing and joined to an individual image pickup device 530 separately manufactured.
  • the imaging element array 500 is included in the stacked structure 1000, but the imaging element array 500 may be omitted and the array unit 600 may be configured.
  • the lens unit and the array unit of the eighth embodiment described above it is necessary to avoid interference with the lower lens portion 12 of the first wafer lens 100 (first compound lens 10 in the case of a lens unit) having a large outer dimension.
  • the size of the inner diameter D1 of the opening 6b is increased according to the contour and outer shape of the lower lens portion 12, and the first spacer plate 200 (first spacer 10c in the case of a lens unit) and the lower A sufficient gap (clearance) with the side lens portion 12 can be ensured.
  • the strength of the first spacer plate 200 that can be lowered to ensure the clearance can be improved while the first spacer plate 200 corresponds to the specifications of various lens outlines and external shapes.
  • the pair of tapers in which the opening 6b of the first spacer plate 200 narrows toward the center in the thickness direction.
  • the second wafer lens 300 having a small outer dimension (a second surface in the case of a lens unit) is obtained because the inner surface of the first spacer plate 200 has a different inner diameter between the end surface 206a and the end surface 206b.
  • the strength of the first spacer plate 200 can be increased by narrowing the size of the inner diameter D2 on the upper lens portion 11 side of the compound lens 20), that is, on the end face 206b side.
  • the spacer plate when the laminated structure 1000 is cut in order to obtain the imaging device 700, if the spacer plate has insufficient strength or the like, the spacer plate may be damaged or peeled off.
  • the strength can be increased by inserting the first spacer plate 200 with tapered surfaces TP on both sides having different inner diameters D1 and D2 of the opening 6b on the front and back sides.
  • the number of holes in the spacer plate is also increased, so that the strength of the first spacer plate 200 is improved, thereby enabling mass production of the lens unit 800.
  • the lens does not need to cut the upper and lower resin portions 102 and 103, which are resin portions, as compared with the whole dripping type lens unit.
  • the accuracy can be improved.
  • the outermost shape of the upper and lower lens portions 11 and 12 with respect to the third transfer surface 53 and the like for forming all the upper and lower lens portions 11 and 12 is accurately reflected between shots. Difficult to control.
  • the hole diameter of the spacer plate ensures the gap (clearance) between the lens part and the inside of the opening. If the inner diameter of the opening is widened, the strength of the spacer plate is reduced by that amount. There are concerns about strength such as the spacer plate being damaged in the step of laminating the spacer, the step of cutting the laminated structure, and the like.
  • the first spacer plate 200 with the tapered surfaces TP on both sides having different inner diameters D1 and D2 of the front and back openings 6b, the outermost diameter portions of the upper and lower lens portions 11 and 12, the first spacer plate 200, The thickness between the holes of the first spacer plate 200 can be increased while making relief so as not to interfere with each other. Thereby, the strength of the first spacer plate 200 can be improved.
  • the optical surfaces 11a, 12a, 21a, and 22a are formed by applying resin on the substrates 101 and 301, and the thickness of the substrate is equal to the thickness of the lens portion. Is not dependent. Therefore, there is an advantage that a large amount of lens parts (upper and lower lens parts 11 and 12) can be formed on the substrate 101. However, since it is necessary to separately apply a resin on the substrate, a convex portion (protrusion) made of resin always occurs on the substrate.
  • the first spacer plate 200 with the tapered surfaces TP on both sides having different inner diameters D1 and D2 of the opening 6b on the front and back sides is provided on the opening 6b to apply the resin on the substrate 101 and perform molding.
  • the lens portions (upper and lower lens portions 11 and 12) and the first spacer plate 200 can be arranged with high accuracy while suppressing the thickness of the entire lens unit 800.
  • the upper and lower lens portions 11 and 12 are connected with resin on the substrates 101 and 301, respectively. Is formed.
  • the upper and lower flange portions 15 and 16 made of resin are formed around the upper and lower lens portions 11 and 12 made of resin. That is, the first and second flange surfaces 11b, 12b, 21b, and 22b are formed on the upper and lower resin portions 102, 103, 302, and 303, respectively.
  • the base portion 200 a on the base side of the first spacer plate 200 is indirectly bonded to the substrate 101 via the adhesive 81 a and the upper flange portion 15.
  • the thickness in the cutting position of the upper side and lower side resin parts 102, 103, 302, and 303 shall be 0.01 mm or more and 0.3 mm or less, for example.
  • the inner diameter D1 of the entrance on the root end face 206a side of the entrance of the opening 6b is smaller than the inner diameter D2 of the entrance on the end face 206b side on the distal end side.
  • the tip end position of the projection 91 located on the innermost side of the opening 6b is formed closer to the end face 206a side on the root side than the center in the thickness direction of the first spacer plate 200.
  • the height h1 in the thickness direction from the end face 206a on the base side of the support 6a to the protrusion 91 is smaller than the height h2 in the thickness direction from the end face 206b on the tip side of the support 6a to the protrusion 91.
  • the tip position of the protrusion 91 may be formed on the end face 206b side of the tip side from the center in the thickness direction of the first spacer plate 200.
  • the inner diameters of the front and back openings 6b of the other second spacer plate 400 are approximately the same size, and the tip position of the protrusion 92 is formed at the approximate center in the thickness direction.
  • the manufacturing process of the first wafer lens 100 of this embodiment is the same as that described in the first embodiment (see FIGS. 9A to 9E or FIGS. 16A and 16B), the description thereof is omitted.
  • the upper and lower resin portions 102 and 103 of the first and second wafer lenses 100 of the present embodiment are formed by an entire dropping method.
  • the manufacturing process of the second wafer lens 300 is the same as the manufacturing process of the first wafer lens 100.
  • FIG. 25B an imaging device 700 including the lens unit 800 is obtained (in FIG. 25B, the illustration of the individual imaging elements 530 from which the imaging element array 500 is separated is omitted).
  • the inner diameter D1 of the entrance on the base end face 406a among the entrances of the opening 6b is equal to the entrance on the end face 406b side on the front end side. It is larger than the inner diameter D2.
  • the tip end position of the protrusion 92 located on the innermost side of the opening 6 b is formed on the end face 406 b side on the tip side from the center in the thickness direction of the second spacer plate 400.
  • the height h1 in the thickness direction from the base end surface 406a of the support 6a to the protrusion 92 is greater than the height h2 in the thickness direction from the end surface 206b of the support 6a to the protrusion 92.
  • the tip position of the protrusion 92 may be formed closer to the end surface 406a on the side of the root than the center in the thickness direction of the second spacer plate 400.
  • the inner diameters of the opening portions 6b on the front and back sides of the other first spacer plate 200 are substantially the same size, and the tip end position of the protrusion 91 is formed at the approximate center in the thickness direction.
  • the laminated structure 1000 is diced to obtain the imaging device 700 including the lens unit 800 shown in FIG. 26B (the imaging element 530 is not shown in FIG. 26B).
  • the lens unit and the array unit of the tenth embodiment by making the inner diameter D2 of the opening 6b of the end surface 406b on the distal end side where the lens portion is not formed smaller than the end surface 406a on the root side, the end surface on the root side
  • the strength of the second spacer plate 400 can be improved while avoiding hitting the lower lens portion 12 on the 406a side.
  • the opening 6b of the first spacer plate 200 has both side tapered surfaces TP including a pair of tapered surfaces narrowing toward the center in the thickness direction, and the edge portion of the first spacer 200 Are different between the end face 206a and the end face 206b. Further, between the end face 206a on the base side of the first spacer plate 200 and the other face 101b of the substrate 101, a joint portion CE1 formed of an adhesive 81a fills the gap GA and a part of both tapered surfaces TP. It is provided so that it may adhere to.
  • the joint CE2 formed of the adhesive 81a fills the gap GA between the end surface 206b far from the base of the first spacer plate 200 and the other surface 301a of the substrate 301, and a part of both side tapered surfaces TP. It is provided so that it may adhere to. That is, the protruding portion 85 is formed in both the joint portion CE1 on the end face 206a side and the joint portion CE2 on the end face 206a side.
  • the lens unit and the like according to this embodiment have been described above, but the lens unit and the like according to the present invention are not limited to the above.
  • the shapes and sizes of the first and second optical surfaces 11a and 12a and the like can be appropriately changed according to applications and functions.
  • the first and second wafer lenses 100 and 300 do not have to be disk-shaped and can have various contours such as an ellipse.
  • the dicing process can be simplified by forming the first and second wafer lenses 100 and 300 into a square plate shape from the beginning.
  • the number of the upper and lower lens portions 11 and 12 formed in the wafer lens 100 is not limited to nine in the drawing, and may be any plural number of two or more.
  • the arrangement of the upper and lower lens portions 11 and 12 is preferably on a lattice point for convenience of dicing.
  • the interval between the adjacent upper and lower lens portions 11 and 12 is not limited to the illustrated one, and can be set as appropriate in consideration of workability and the like.
  • a diaphragm, an IR cut filter, or the like may be provided on the substrates 101 and 301.
  • first or second spacer plate 200, 400 is different in the sizes of the inner diameters D1, D2 of the front and back openings 6b, but the other second or first spacer plate. 400 and 200 may have different inner diameters of the opening 6b on the front and back sides. The first and second spacer plates 200 and 400 may have different inner diameters D1 and D2 of the opening 6b on the front and back sides.
  • the shape of the entrance of the opening 6b is circular, but may be oval or rectangular.
  • the inner diameter of the opening 6b is defined by the length of the long side of the ellipse or rectangle.
  • two or more holes formed by the edge portions S of the first and second spacer plates 200 and 400 may be continuous.
  • the position of the protruding portion 91 is provided near the end surface 206a on the base side in the thickness direction of the first spacer plate 200 or the like, but may be provided at substantially the center.
  • the roughness of the both-side tapered surface TP and the one-side tapered surface PP is made rougher than the end surfaces of the first or second spacer plates 200 and 400, but it is not necessary to make it rough.
  • the roughness of the both-side tapered surface TP and the one-side tapered surface PP is made rougher than the end surfaces of the first or second spacer plates 200 and 400, but it is not necessary to make it rough.
  • the imaging device 700 is obtained by dicing the laminated structure 1000 mainly, but the laminated structure 1000 can be used as it is without being separated.
  • a plurality of images are captured using a solid-state imaging device such as a CCD (Charged Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor and a plurality of imaging lenses arranged two-dimensionally.
  • An imaging device also referred to as a lens array type imaging device that reconstructs one image from a plurality of obtained images has been proposed (see Japanese Patent Application Laid-Open No. 2007-94103).
  • the laminated structure 1000 of the above embodiment can be used.
  • the laminated structure 1000 as a lens array type imaging device can create a high-definition image by reconstructing an image obtained by each imaging lens based on parallax of a plurality of imaging lenses. For this reason, each imaging lens is not required to have very high optical performance, and as a result, it is possible to achieve a reduction in size and thickness and obtain a high-definition image.

Abstract

The purpose of the present invention is to provide a lens unit, which can maintain strength of a spacer, while suitably ensuring a gap between a lens section and the spacer. Contact areas of contact sections (CE1, CE2, CE3), which are formed of an adhesive (81a, 81b, 81c), are increased by having the adhesive (81a, 81b, 81c) adhered to a part of each of the double side taper surfaces (TP) of first and second spacer boards (200, 400) (first and second spacers (10c, 20c)). Furthermore, bonding is performed not only between flat surfaces of substrates (101, 301) (flat board section (13)) and a flat surface of the first spacer board (200), but also within a range at a certain angle, and three-dimensional bonding can be performed. Consequently, bonding strength between the first spacer board (200) or the like and the substrate (101) or the like can be significantly increased.

Description

レンズユニット及びアレイユニットLens unit and array unit
 この発明は、撮像レンズ等に用いられるレンズユニット、及び当該レンズユニットを作製するためのアレイユニットに関する。 The present invention relates to a lens unit used for an imaging lens and the like, and an array unit for producing the lens unit.
 レンズユニットにおいて、レンズ部とカバーガラスとの間やレンズ部とレンズ部との間の間隔を確保するために、レンズ部に対応する位置に穴を開けたガラス等の部材をスペーサーとして挿入する必要がある。ここで、基板の表面に樹脂等で成形した複数のレンズ部を有するウェハーレンズ等の各レンズ部の位置に対応させて複数の穴を開けたウェハー状のスペーサーを一対のウェハーレンズ間に挟むように貼り合わせて最終的に切断を行うことで一度に大量のレンズユニットを作製することができる(例えば特許文献1参照)。 In the lens unit, in order to ensure the space between the lens part and the cover glass or between the lens part and the lens part, it is necessary to insert a member such as glass having a hole in a position corresponding to the lens part as a spacer. There is. Here, a wafer-like spacer having a plurality of holes corresponding to the position of each lens portion such as a wafer lens having a plurality of lens portions formed of resin or the like on the surface of the substrate is sandwiched between a pair of wafer lenses. A large amount of lens units can be manufactured at once by pasting them together and finally cutting them (see, for example, Patent Document 1).
 上記のようなレンズユニットにおいて、スペーサーには、レンズ部等の構造物と干渉しないような形状の穴が形成されているが、基板上に樹脂で成形して作製するウェハーレンズの場合、凸形状の光学面を成形する場合であっても凹形状の光学面を成形する場合であってもどちらにしても基板上に樹脂を塗布して光学面を形成するため、必ず樹脂の凸部が設けられることとなる。そのため、スペーサーとレンズ部との隙間が狭いと、樹脂の凸部がスペーサーと干渉しやすくなりレンズユニットの製造が困難となる。一方、干渉を避けるためにスペーサーとレンズ部との間に十分な隙間を空け、かつ強度確保のためにスペーサーの厚みを増してしまうとレンズユニット全体の厚みも増し、近年求められているレンズユニットの薄型化の要望に応えられなくなってしまう。よって、これらの基板上に樹脂で成形して作製するウェハーレンズからなるレンズユニット特有の問題点を解決することが重要となってくる。 In the lens unit as described above, the spacer is formed with a hole having a shape that does not interfere with the structure such as the lens portion, but in the case of a wafer lens formed by molding on a substrate with a resin, a convex shape is formed. In either case of molding an optical surface or a concave optical surface, a resin convex portion is always provided to form an optical surface by applying resin on the substrate. Will be. Therefore, if the gap between the spacer and the lens portion is narrow, the resin convex portion tends to interfere with the spacer, making it difficult to manufacture the lens unit. On the other hand, if there is a sufficient gap between the spacer and the lens part to avoid interference, and if the spacer thickness is increased to ensure strength, the overall lens unit thickness will also increase. It will not be possible to meet the demand for thinner products. Therefore, it is important to solve the problems peculiar to lens units composed of wafer lenses formed by molding a resin on these substrates.
 なお、スペーサーの穴としては、例えば、スペーサーの厚み方向に平行な面を有していたり、スペーサーの厚み方向に対して傾斜するテーパー面を有していたりするものがあるものの(例えば特許文献2参照)、特許文献2では基板上に樹脂を塗布してレンズを成形することについて記載されていない。図28A~28G(特許文献2の図1~7に相当)を見ても、一の材料で成形していると推測される。このような成形方法だと、基板の上に樹脂が乗ることで必ず凸部が形成されるわけではないため上述の問題点が生じるとは考えにくい。事実図28A~28C、28F(特許文献2の図1~3、6に相当)において光学面が凹形状であっても凸部がない状態で光学面が形成されている。そのため、特許文献2はスペーサーの干渉を避けるという課題が生じにくい。 In addition, as the hole of the spacer, for example, there is a hole having a surface parallel to the thickness direction of the spacer or a tapered surface inclined with respect to the thickness direction of the spacer (for example, Patent Document 2). Patent Document 2 does not describe forming a lens by applying a resin on a substrate. 28A to 28G (corresponding to FIGS. 1 to 7 of Patent Document 2), it is presumed that molding is performed with one material. With such a molding method, it is unlikely that the above-mentioned problems will occur because the convex portions are not necessarily formed by the resin getting on the substrate. In fact, in FIGS. 28A to 28C and 28F (corresponding to FIGS. 1 to 3 and 6 of Patent Document 2), even if the optical surface is concave, the optical surface is formed without a convex portion. Therefore, Patent Document 2 is unlikely to have a problem of avoiding spacer interference.
 また、特許文献2では、レンズ部と基板とを一体的に形成している。そのため、ウェハーレンズ全体の面積を大きくしてレンズの取り個数を増やせば増やすほど、基板等の反り等の問題が大きくなる。 In Patent Document 2, the lens portion and the substrate are integrally formed. Therefore, as the area of the entire wafer lens is increased and the number of lenses is increased, problems such as warpage of the substrate and the like increase.
 さらに、特許文献2に記載されているような光学面が凹形状の場合、スペーサーを省略してレンズユニットの厚みを少なくすることが薄型化の観点で望ましい。また、特許文献2のレンズユニットでは、一対のレンズ部のいずれもが凸形状の光学面を有する場合のスペーサーの穴の形状が考慮されていない。しかし、一対のレンズ部がいずれも凸形状の場合、複数のレンズ部を有するウェハーレンズにスペーサーを貼り付ける際に、レンズ部とスペーサーとの隙間(クリアランス)をある程度確保しつつ、スペーサーの強度を保つことが必要である。よって、特許文献2のようなレンズユニットでは、寸法誤差を極力小さくしてレンズ部とスペーサーとの間隙を十分に確保しなければ、スペーサーをレンズ部(特に凸形状の場合のレンズ部)の周囲に接合することが難しい。ところが、スペーサーの強度を保つために穴の配置の間隔を広げると作製されるレンズユニットの個数が減り、レンズユニットの大量生産に向かなくなる。また、レンズユニットを多数個作製しようとすると、スペーサーの穴の数を増やす必要があり、スペーサーの破損の確率が上がり、結果的にコストアップとなってしまうおそれがある。また、レンズ部等の構造物とスペーサーとの干渉を避けるために穴の径を大きくすると、スペーサーと接着対象物との接着面積が小さくなってしまい、結果としてレンズユニットを切り出す等の工程でスペーサーと接着対象物との剥離や破損が生じるおそれがある。 Furthermore, when the optical surface as described in Patent Document 2 is concave, it is desirable from the viewpoint of thinning to reduce the thickness of the lens unit by omitting the spacer. Further, in the lens unit of Patent Document 2, the shape of the hole of the spacer when any of the pair of lens portions has a convex optical surface is not considered. However, if both of the pair of lens parts are convex, when a spacer is attached to a wafer lens having a plurality of lens parts, the spacer strength is maintained while securing a certain clearance (clearance) between the lens part and the spacer. It is necessary to keep. Therefore, in the lens unit as in Patent Document 2, unless the dimensional error is minimized and a sufficient gap is secured between the lens unit and the spacer, the spacer is placed around the lens unit (particularly the lens unit in the case of a convex shape). Difficult to join to. However, if the space between the holes is increased in order to maintain the strength of the spacer, the number of lens units to be manufactured is reduced, making it unsuitable for mass production of lens units. In addition, if a large number of lens units are to be manufactured, it is necessary to increase the number of holes in the spacer, which increases the probability of breakage of the spacer, which may result in an increase in cost. Also, if the hole diameter is increased in order to avoid interference between the structure such as the lens part and the spacer, the bonding area between the spacer and the object to be bonded decreases, and as a result, the spacer is cut out in a process such as cutting out the lens unit. There is a possibility that peeling and breakage of the object to be bonded will occur.
特表2011-507284号公報Special table 2011-507284 米国公開第2008/0136956号公報US Publication No. 2008/0136956
 本発明は、レンズ部とスペーサーとの隙間を適切に確保しつつ、スペーサー等の強度を保つことができるレンズユニットを提供することを目的とする。 An object of the present invention is to provide a lens unit capable of maintaining the strength of a spacer or the like while appropriately securing a gap between the lens portion and the spacer.
 また、本発明は、レンズ部とスペーサー板との隙間を適切に確保しつつ、スペーサー板等の強度を保つことができ、かつ全体の厚みを抑えつつもレンズユニットを多数個作製可能なレンズアレイを提供することを目的とする。 In addition, the present invention provides a lens array that can maintain the strength of the spacer plate while appropriately securing the gap between the lens portion and the spacer plate, and can produce a large number of lens units while suppressing the overall thickness. The purpose is to provide.
 上記課題を解決するため、本発明に係る第1のレンズユニットは、基板と、基板の少なくとも一方の面上に設けられた樹脂製のレンズ部と、レンズ部の周囲を囲むように設けられたスペーサーとを有するレンズユニットであって、レンズ部に臨むスペーサーの縁部分は、内側にテーパー面を有し、スペーサーと基板との間に、接着剤で形成された接合部が設けられており、接合部は、テーパー面の少なくとも一部に付着する。ここで、スペーサーの縁部分とは、スペーサーに形成された穴等の内側部分を意味する。また、基板とスペーサーとの間には、上記接合部とは別の樹脂等が介在していてもよい。この場合、接合部は樹脂等とも接着する。 In order to solve the above problems, a first lens unit according to the present invention is provided so as to surround a substrate, a resin lens portion provided on at least one surface of the substrate, and the periphery of the lens portion. It is a lens unit having a spacer, the edge portion of the spacer facing the lens portion has a tapered surface on the inside, and a joint portion formed of an adhesive is provided between the spacer and the substrate, The joining portion adheres to at least a part of the tapered surface. Here, the edge part of a spacer means inner parts, such as a hole formed in the spacer. Further, a resin or the like different from the bonding portion may be interposed between the substrate and the spacer. In this case, the bonding portion is also bonded to resin or the like.
 上記第1のレンズユニットによれば、スペーサーのテーパー面に接着剤が付着することにより、接着剤で形成される接合部の接触面積が増え、かつ基板とスペーサーの平面同士で接着されるだけでなく、ある角度をもった範囲でも接着され、三次元的に接合が可能となる。そのため、スペーサーと基板との間の接着強度を大幅に上げることができる。これにより、レンズユニットを切断する工程等を経て得る場合にスペーサーと基板の剥離や破損を低減することができる。また、例えば多数個取りのレンズユニットの場合、スペーサーの穴数を増やすことができる。つまり、スペーサーの接着強度が向上することにより、レンズユニットの大量生産を可能にする。 According to the first lens unit described above, the adhesive adheres to the tapered surface of the spacer, thereby increasing the contact area of the joint formed by the adhesive and adhering between the flat surfaces of the substrate and the spacer. In addition, even within a certain angle range, it is bonded and three-dimensional joining is possible. Therefore, the adhesive strength between the spacer and the substrate can be significantly increased. Thereby, when obtaining through the process etc. which cut | disconnect a lens unit, peeling and damage of a spacer and a board | substrate can be reduced. For example, in the case of a multi-piece lens unit, the number of holes in the spacer can be increased. In other words, mass production of the lens unit is enabled by improving the adhesive strength of the spacer.
 本発明の具体的な側面では、上記第1のレンズユニットにおいて、接合部は、テーパー面と基板との間隙を埋めるように配置されている。この場合、基板とスペーサーとの接着強度をより向上させることができる。 In a specific aspect of the present invention, in the first lens unit, the joint portion is disposed so as to fill a gap between the tapered surface and the substrate. In this case, the adhesive strength between the substrate and the spacer can be further improved.
 本発明の別の側面では、レンズ部は、個別滴下によって形成される。多数個取りの個別滴下方式のレンズユニットにおいて、全体滴下方式のレンズユニットに比べて樹脂部分の切断を行わなくて済む等の点からレンズ精度を良くすることができる。ここで、個別滴下方式の場合、レンズ部の最も外側の形状のコントロールが難しいが、テーパー面と基板との間に接合部を設けることにより、接合部の接触面積を多く確保することができ、スペーサーと基板との接着強度を向上させることができる In another aspect of the present invention, the lens portion is formed by individual dropping. In a multi-piece individual dropping type lens unit, the lens accuracy can be improved in that it is not necessary to cut the resin portion as compared with the whole dropping type lens unit. Here, in the case of the individual dropping method, it is difficult to control the outermost shape of the lens part, but by providing a joint part between the tapered surface and the substrate, a large contact area of the joint part can be secured, The adhesive strength between the spacer and the substrate can be improved.
 本発明のさらに別の側面では、接合部は、テーパー面とレンズ部との間隙を埋める。この場合、スペーサーとレンズ部の非光学面とを接着剤によって繋ぐことにより、スペーサーの端面に平行な方向の接合部の強度が強くなり、当該間隙が多少広くなっても、スペーサーとレンズ部の外縁との接着強度を向上させることができる。 In yet another aspect of the present invention, the joint portion fills a gap between the tapered surface and the lens portion. In this case, by connecting the spacer and the non-optical surface of the lens portion with an adhesive, the strength of the joint portion in the direction parallel to the end surface of the spacer is increased, and even if the gap is somewhat wide, the spacer and the lens portion The adhesive strength with the outer edge can be improved.
 本発明のさらに別の側面では、スペーサーは、レンズ部に対応する開口部を有する板状の部材であり、レンズ部は、開口部の位置で当該開口部内に突出する。この場合、スペーサーとレンズ部との間に接合部が設けられていれば、レンズ部が開口部内に突出していても、スペーサーの接着強度を保ちつつ、レンズ部とスペーサーとが互いに干渉しない程度の間隙を確保することができる。 In still another aspect of the present invention, the spacer is a plate-like member having an opening corresponding to the lens portion, and the lens portion protrudes into the opening at the position of the opening. In this case, if a joint portion is provided between the spacer and the lens portion, the lens portion and the spacer do not interfere with each other while maintaining the adhesive strength of the spacer even if the lens portion protrudes into the opening. A gap can be secured.
 本発明のさらに別の側面では、スペーサーは、縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有する。この場合、スペーサーの穴の内側部分である縁部分にスペーサーの一方の端面及び他方の端面の両側から中心側に向けてテーパー面(両側テーパー面)を設けることにより、スペーサーの両方の端面からテーパー面に接着剤を付着させることができる。これにより、スペーサーに同じ内径で穴を開けた場合にテーパー面が設けられていない場合や、一方の端面側からのみにテーパー面が設けられている場合よりも、スペーサーの強度を向上させることができる。 In yet another aspect of the present invention, the spacer has a pair of tapered surfaces that narrow from the one end surface side and the other end surface side of the edge portion toward the center side in the thickness direction of the edge portion. In this case, taper surfaces from both end surfaces of the spacer are provided by providing tapered surfaces (both side tapered surfaces) from one side of the spacer and both sides of the other end surface toward the center side at the edge portion that is the inner portion of the spacer hole. Adhesive can be applied to the surface. As a result, the spacer strength can be improved compared to the case where a taper surface is not provided when a hole is made in the spacer with the same inner diameter, or when the taper surface is provided only from one end surface side. it can.
 本発明のさらに別の側面では、スペーサーは、縁部分の断面(具体的にはレンズ部の光軸を含む断面)において、最も内側にある突起部の先端位置が、スペーサーの厚み方向において、中心よりも一方の端面側又は他方の端面側に形成されている。この場合、突起部の先端位置をスペーサーの厚み方向において厚みの中心よりもレンズ部の厚みが薄い又はレンズ部が無い方(例えば撮像素子側)に配置することで、スペーサーのレンズ部への干渉を回避しやすくすることができる。 In yet another aspect of the present invention, the spacer is such that the tip position of the innermost protrusion is the center in the thickness direction of the spacer in the cross section of the edge portion (specifically, the cross section including the optical axis of the lens portion). It is formed on one end face side or the other end face side. In this case, the position of the tip of the protrusion is arranged in a direction where the thickness of the spacer is thinner than the center of the thickness or the lens portion is not present (for example, on the image sensor side), so that the spacer interferes with the lens portion. Can be easily avoided.
 本発明のさらに別の側面では、スペーサーの基部は、直接的又は間接的に基板に接着されている。ここで、スペーサーの基部とは、スペーサーの一対の端面のうち着目する接合部が存在する側の基板又は樹脂に接する面である。また、直接的とは、基部と基板との間に接着剤以外のものがない状態又は基部と基板とが直接触れている状態をいう。また、間接的とは、基部と基板との間に樹脂等が介在している状態又は基部が基板に直に触れていない状態をいう。この場合、基板上に形成されるレンズ部全体がスペーサーの穴状の開放部に臨むこととなるが、スペーサーの穴が両側テーパー面を有することにより、レンズ部とスペーサーとの干渉を回避することができる。 In yet another aspect of the present invention, the base portion of the spacer is directly or indirectly bonded to the substrate. Here, the base portion of the spacer is a surface in contact with the substrate or the resin on the side where the focused joint portion is present among the pair of end surfaces of the spacer. Direct means a state where there is nothing other than an adhesive between the base and the substrate, or a state where the base and the substrate are in direct contact. Indirect means a state where a resin or the like is interposed between the base and the substrate or a state where the base is not in direct contact with the substrate. In this case, the entire lens part formed on the substrate faces the hole-like opening part of the spacer, but the spacer hole has a tapered surface on both sides to avoid interference between the lens part and the spacer. Can do.
 本発明のさらに別の側面では、スペーサーは、レンズ部に対応する開口部を有する板状の部材であって、縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、縁部分の内径は、一方の端面側と他方の端面側とで異なり、レンズ部の少なくとも一部は、スペーサーの厚み方向においてスペーサーの基部よりも開口部内に突出する。 In still another aspect of the present invention, the spacer is a plate-like member having an opening corresponding to the lens portion, and the edge portion extends in the thickness direction of the edge portion from one end surface side and the other end surface side. It has a pair of tapered surfaces that narrow toward the center side, and the inner diameter of the edge portion is different between one end face side and the other end face side, and at least a part of the lens part is more than the base part of the spacer in the thickness direction of the spacer. Also protrudes into the opening.
 本発明のさらに別の側面では、基板である第1の基板と、レンズ部である第1のレンズ部とを有する第1の複合レンズと、第2の基板と、第2の基板の少なくとも一方の面上に設けられた樹脂製の第2のレンズ部を有する第2の複合レンズとを有し、スペーサーは、第1の複合レンズと第2の複合レンズとの間に設けられ、スペーサーは、第1及び第2のレンズ部に対応する開口部を有する板状の部材であって、第1及び第2のレンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、第1又は第2のレンズ部の少なくとも一部は、スペーサーの厚み方向においてスペーサーの基部よりも開口部内に突出する。 In still another aspect of the present invention, at least one of a first composite lens having a first substrate that is a substrate and a first lens portion that is a lens portion, a second substrate, and a second substrate. And a second compound lens having a resin-made second lens portion provided on the surface, and the spacer is provided between the first compound lens and the second compound lens. And a plate-like member having openings corresponding to the first and second lens portions, the edges extending from one end surface side and the other end surface side of the edge portions facing the first and second lens portions. The pair of tapered surfaces narrows toward the center in the thickness direction of the portion, and at least a part of the first or second lens portion protrudes into the opening portion from the base portion of the spacer in the thickness direction of the spacer.
 本発明のさらに別の側面では、縁部分の内径は、一方の端面側と他方の端面側とで異なる。 In still another aspect of the present invention, the inner diameter of the edge portion is different between one end face side and the other end face side.
 本発明のさらに別の側面では、第1の基板と第2の基板との間に第1のレンズ部と第2のレンズ部とが配置されている。 In still another aspect of the present invention, the first lens portion and the second lens portion are disposed between the first substrate and the second substrate.
 上記課題を解決するため、本発明に係る第1のアレイユニットは、基板と、基板の少なくとも一方の面上に設けられた複数のレンズ部を有する樹脂部と、レンズ部の周囲を囲むように設けられたスペーサー板とを有するアレイユニットであって、レンズ部に臨むスペーサー板の縁部分は、内側にテーパー面を有し、スペーサー板と基板との間に、接着剤で形成された接合部が設けられており、接合部は、テーパー面の少なくとも一部に付着する。ここで、樹脂部とは、アレイユニットを切断する前において基板上に形成されたレンズ部を含む樹脂部分全体をいう。 In order to solve the above problems, a first array unit according to the present invention surrounds a substrate, a resin portion having a plurality of lens portions provided on at least one surface of the substrate, and the periphery of the lens portion. An array unit having a spacer plate provided, and the edge portion of the spacer plate facing the lens portion has a tapered surface inside, and a joint portion formed of an adhesive between the spacer plate and the substrate Is provided, and the joining portion adheres to at least a part of the tapered surface. Here, the resin portion refers to the entire resin portion including the lens portion formed on the substrate before cutting the array unit.
 上記第1のアレイユニットによれば、スペーサー板のテーパー面に接着剤が付着することにより、接合部の接触面積が増え、かつ基板とスペーサー板の平面同士で接着されるだけでなく、ある角度をもった範囲でも接着され、三次元的に接合が可能となる。そのため、スペーサー板と基板との接着強度を大幅に上げることができる。これにより、レンズユニットを切断する工程等を経て得る場合にスペーサー板と基板の剥離や破損を低減することができる。結果的に、レンズユニットを多数個作製することができる。 According to the first array unit described above, the adhesive adheres to the tapered surface of the spacer plate, thereby increasing the contact area of the joint portion and bonding the flat surfaces of the substrate and the spacer plate to each other at a certain angle. Bonding is possible even in a range having a three-dimensional bonding. Therefore, the adhesive strength between the spacer plate and the substrate can be significantly increased. Thereby, when it obtains through the process etc. which cut | disconnect a lens unit, the peeling and damage of a spacer board and a board | substrate can be reduced. As a result, a large number of lens units can be manufactured.
 本発明の具体的な側面では、上記第1のアレイユニットにおいて、樹脂部は、レンズ部をそれぞれ有する複数の素子領域に分離されている。この場合、テーパー面に接着剤を付着させたスペーサーを用いることにより、レンズユニットを作製するために、アレイユニットを各レンズ部単位で切断してもスペーサー板が破損等することを防ぐことができる。 In a specific aspect of the present invention, in the first array unit, the resin portion is separated into a plurality of element regions each having a lens portion. In this case, by using a spacer having an adhesive attached to the tapered surface, it is possible to prevent damage to the spacer plate even if the array unit is cut in units of each lens unit in order to produce a lens unit. .
 上記課題を解決するため、本発明に係る第2のレンズユニットは、第1の基板と、第1の基板の少なくとも一方の面上に設けられた樹脂製の第1のレンズ部を有する第1の複合レンズと、第2の基板と、第2の基板の少なくとも一方の面上に設けられた樹脂製の第2のレンズ部を有する第2の複合レンズと、第1の複合レンズと第2の複合レンズとの間に設けられたスペーサーとを有するレンズユニットであって、スペーサーは、第1又は第2の複合レンズの少なくとも一方の第1又は第2のレンズ部に対応する開口部を有する板状の部材であって、第1又は第2のレンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、第1又は第2のレンズ部の少なくとも一部は、スペーサーの厚み方向においてスペーサーの基部よりも開口部内に突出する。ここで、複合レンズとは、基板に樹脂製の複数のレンズ部を形成した後に切断して個片化したレンズを意味する。また、スペーサーの縁部分とは、スペーサーに形成された穴等の内側部分を意味する。また、スペーサーの基部とは、基板又は樹脂に接する面である。 In order to solve the above problems, a second lens unit according to the present invention includes a first substrate and a first lens portion made of resin provided on at least one surface of the first substrate. A compound lens, a second substrate, a second compound lens having a resin-made second lens portion provided on at least one surface of the second substrate, a first compound lens, and a second compound lens. And a spacer provided between the first and second compound lenses, the spacer having an opening corresponding to at least one of the first and second lens portions of the first or second compound lens. A pair of tapered surfaces that are plate-shaped members and narrow toward the center in the thickness direction of the edge portion from one end surface side and the other end surface side of the edge portion facing the first or second lens portion. Having at least one of the first and second lens portions Parts protrudes into the opening portion than the base of the spacer in the thickness direction of the spacer. Here, the compound lens means a lens that is cut into individual pieces after forming a plurality of resin lens portions on a substrate. Moreover, the edge part of a spacer means inner parts, such as a hole formed in the spacer. The base portion of the spacer is a surface that contacts the substrate or the resin.
 上記第2のレンズユニットによれば、第1又は第2のレンズ部がスペーサーの基部よりも突出している場合において、積層した第1及び第2の複合レンズ間に、穴の内側部分である縁部分に一方の端面側及び他方の端面側の両面から中心側に向けてテーパー面(以下、両側テーパー面とする)を有するスペーサーを設けることにより、スペーサーの支持面の面積を増やしたり、スペーサーを厚くしたりしなくてもスペーサーの強度を向上させることができる。これにより、レンズユニット全体の厚みが大きくなることを防ぐことができる。具体的には、スペーサーの縁部分に両側テーパー面を設けることにより、同じ内径で穴を開けた場合にテーパー面が設けられていないスペーサーや一方の端面側からのみにテーパー面が設けられている場合よりもスペーサーの強度を上げることができる。また、両側テーパー面が設けられているスペーサーであれば、テーパー面が設けられていないスペーサーや片側の端面からのみにテーパー面が設けられているスペーサーと比べてスペーサーの穴径を広げなくてもレンズ部との干渉を避けつつ、スペーサーから除去される切り取り部分を減少させることができる。そのため、スペーサーの強度を向上させることができる。特に、アレイユニットからレンズユニットを切り出す際にはスペーサーの強度等が不十分であるとスペーサーの破損や剥離が問題となるが、複合レンズ間に両側テーパー面つきのスペーサーを挿入することで強度を上げることができる。また、例えば多数個取りのレンズユニットの場合、スペーサーの穴数も増えるため、スペーサーの強度が向上することにより、レンズユニットの大量生産を可能にする。 According to the second lens unit, in the case where the first or second lens portion protrudes from the base portion of the spacer, an edge that is an inner portion of the hole is provided between the stacked first and second compound lenses. By providing a spacer having a tapered surface (hereinafter referred to as a double-sided tapered surface) from both the end surface side and the other end surface side to the center side in the part, the area of the support surface of the spacer can be increased, The strength of the spacer can be improved without increasing the thickness. Thereby, it can prevent that the thickness of the whole lens unit becomes large. Specifically, by providing a tapered surface on both sides at the edge portion of the spacer, a tapered surface is provided only from the spacer that is not provided with a tapered surface when a hole is drilled with the same inner diameter or from one end surface side. The strength of the spacer can be increased more than in the case. In addition, if the spacer has a tapered surface on both sides, the hole diameter of the spacer does not have to be increased compared to a spacer that has no tapered surface or a spacer that has a tapered surface only from one end surface. While avoiding interference with the lens portion, the cut-out portion removed from the spacer can be reduced. Therefore, the strength of the spacer can be improved. In particular, when the lens unit is cut out from the array unit, the spacer may be damaged or peeled off if the strength of the spacer is insufficient, but the strength is increased by inserting spacers with tapered surfaces on both sides between the compound lenses. be able to. Further, for example, in the case of a multi-piece lens unit, the number of holes in the spacer also increases, so that the strength of the spacer is improved, thereby enabling mass production of the lens unit.
 なお、基板上に樹脂製のレンズ部を形成する複合レンズの場合、光学面が凸形状であっても凹形状であっても基板上に凸部(突起)が生じる。凸部が生じないようにレンズ部の周辺を樹脂で埋めると、複合レンズの厚さが増え、延いてはレンズユニット全体の厚みが大きくなる。また、使用する樹脂の量が多くなり、基板等が反ったり、製造コストが増加したりする。両側テーパー面を有するスペーサーを用いることにより、基板上に樹脂製のレンズ部を形成する複合レンズを積層する場合でも、全体の厚さが比較的薄く、かつ強度を保ったレンズユニットとなる。 In the case of a compound lens in which a resin lens portion is formed on a substrate, a convex portion (protrusion) is generated on the substrate regardless of whether the optical surface is convex or concave. If the periphery of the lens portion is filled with resin so that the convex portion does not occur, the thickness of the compound lens increases, and consequently the thickness of the entire lens unit increases. In addition, the amount of resin to be used increases, and the substrate or the like warps or the manufacturing cost increases. By using spacers having tapered surfaces on both sides, even when a compound lens for forming a resin lens portion is laminated on a substrate, the lens unit has a relatively thin overall thickness and maintains strength.
 本発明の具体的な側面では、上記第2のレンズユニットにおいて、第1及び第2のレンズ部は、個別滴下によって形成される。多数個取りの個別滴下方式のレンズユニットにおいて、全体滴下方式のレンズユニットに比べて樹脂部分の切断を行わなくて済む等の点からレンズ精度を良くすることができる。ここで、個別滴下方式の場合、レンズ部の最も外側の形状のコントロールが難しいが、両側テーパー面つきのスペーサーを用いることにより、レンズ部とスペーサーとが互いに干渉しないように逃げを作りつつ、スペーサーの各穴間の肉厚を増やすことができる。これにより、スペーサーの強度を向上させることができる。 In a specific aspect of the present invention, in the second lens unit, the first and second lens portions are formed by individual dropping. In a multi-piece individual dropping type lens unit, the lens accuracy can be improved in that it is not necessary to cut the resin portion as compared with the whole dropping type lens unit. Here, in the case of the individual dropping method, it is difficult to control the outermost shape of the lens part, but by using spacers with tapered surfaces on both sides, the lens part and the spacer are made to escape so that they do not interfere with each other. The wall thickness between the holes can be increased. Thereby, the intensity | strength of a spacer can be improved.
 本発明の別の側面では、縁部分の断面において、最も内側にある突起部の先端位置が、スペーサーの厚み方向において、中心よりも一方の端面側又は他方の端面側に形成されている。この場合、突起部の先端位置がスペーサーの厚み方向において厚みの中心よりもレンズ部の厚みが薄い又はレンズ部が無い方(例えば撮像素子側)に配置することで、スペーサーのレンズ部への干渉を回避しやすくすることができる。 In another aspect of the present invention, in the cross section of the edge portion, the tip position of the innermost protrusion is formed on one end face side or the other end face side from the center in the thickness direction of the spacer. In this case, by arranging the tip of the protrusion on the side where the thickness of the lens part is thinner than the center of the thickness in the thickness direction of the spacer or where there is no lens part (for example, on the image sensor side), the spacer interferes with the lens part. Can be easily avoided.
 本発明のさらに別の側面では、基部は、直接的又は間接的に基板に接着されている。ここで、直接的とは、基部と基板との間に接着剤以外のものがない状態又は基部と基板とが直接触れている状態をいう。また、間接的とは、基部と基板との間に樹脂等が介在している状態又は基部が基板に直に触れていない状態という。この場合、基板上に形成されるレンズ部全体がスペーサーの穴状の開放部に臨むこととなるが、スペーサーの穴が両側テーパー面を有することにより、レンズ部とスペーサーとの干渉を回避することができる。 In yet another aspect of the present invention, the base is directly or indirectly bonded to the substrate. Here, “directly” means a state where there is nothing other than an adhesive between the base and the substrate, or a state where the base and the substrate are in direct contact. Indirect means a state where a resin or the like is interposed between the base and the substrate or a state where the base is not in direct contact with the substrate. In this case, the entire lens part formed on the substrate faces the hole-like opening part of the spacer, but the spacer hole has a tapered surface on both sides to avoid interference between the lens part and the spacer. Can do.
 本発明のさらに別の側面では、スペーサーは、絞りの機能を有する。この場合、レンズ部間に挿入した両側テーパー面つきのスペーサーについて、遮光性の材料又は遮光性の塗装を施してあり、光学絞りとしての役割を果たす。特に、両側テーパー面によりスペーサーの縁部分に突起部ができるため、レンズ部の有効径のぎりぎりまで絞り効果をもたせることができる。また、両側テーパー面つきのスペーサーに中間絞りの役割をもたせることにより、新たに中間絞りを作製して挿入するよりも部品費を抑えることができる。 In yet another aspect of the present invention, the spacer has a diaphragm function. In this case, a spacer having a tapered surface on both sides inserted between the lens portions is provided with a light-shielding material or a light-shielding coating, and serves as an optical diaphragm. In particular, since the protrusions are formed at the edge portions of the spacers by the tapered surfaces on both sides, the diaphragm effect can be provided to the limit of the effective diameter of the lens portion. Further, by providing the spacer with a tapered surface on both sides to serve as an intermediate diaphragm, it is possible to reduce the cost of parts compared to newly manufacturing and inserting an intermediate diaphragm.
 本発明のさらに別の側面では、第1のレンズ部と第2のレンズ部とは、第1の基板と第2の基板との間に配置されている。 In yet another aspect of the present invention, the first lens portion and the second lens portion are disposed between the first substrate and the second substrate.
 上記課題を解決するため、本発明に係る第2のアレイユニットは、第1の基板と、第1の基板の少なくとも一方の面上に設けられた第1の樹脂部を有する第1のウェハーレンズと、第2の基板と、第2の基板の少なくとも一方の面上に設けられた第2の樹脂部を有する第2のウェハーレンズと、第1のウェハーレンズと第2のウェハーレンズとの間に設けられたスペーサー板とを有するアレイユニットであって、スペーサー板は、第1又は第2ウェハーレンズの少なくとも一方の第1又は第2樹脂部を構成する複数の第1又は第2のレンズ部に対応する開口部を有する板状の部材であって、第1又は第2のレンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、第1又は第2のレンズ部の少なくとも一部は、スペーサー板の厚み方向においてスペーサー板の基部よりも開口部内に突出する。ここで、ウェハーレンズとは、基板に複数の樹脂製のレンズ部を形成したものであり、切断前において上述の複合レンズが複数集まったものをいう。また、樹脂部とは、ウェハーレンズを切断する前において基板上に形成されたレンズ部を含む樹脂部分全体をいう。 In order to solve the above problem, a second array unit according to the present invention includes a first wafer lens having a first substrate and a first resin portion provided on at least one surface of the first substrate. And a second wafer, a second wafer lens having a second resin portion provided on at least one surface of the second substrate, and between the first wafer lens and the second wafer lens A plurality of first or second lens parts constituting at least one first or second resin part of the first or second wafer lens. A plate-like member having an opening corresponding to the first or second lens portion, from one end surface side and the other end surface side to the center side in the thickness direction of the edge portion. A pair of tapered surfaces At least a portion of the first or second lens unit, projecting into the opening portion than the base portion of the spacer plate in the thickness direction of the spacer plate. Here, the wafer lens is a substrate in which a plurality of resin lens portions are formed on a substrate, and a plurality of the above-described compound lenses are collected before cutting. Further, the resin portion refers to the entire resin portion including the lens portion formed on the substrate before cutting the wafer lens.
 上記第2のアレイユニットによれば、第1又は第2のレンズ部がスペーサー板の基部よりも突出している場合において、積層した第1及び第2ウェハーレンズ間に、縁部分に両側テーパー面を有するスペーサー板を設けることにより、スペーサー板の支持面の面積を増やしたり、スペーサー板を厚くしたりしなくてもスペーサー板の強度を向上させることができる。これにより、アレイユニット全体の厚みを大きくすることなくスペーサー板の破損等が防止され、結果的に、比較的薄いレンズユニットを多数個作製することができる。 According to the second array unit, in the case where the first or second lens portion protrudes from the base portion of the spacer plate, both side tapered surfaces are provided at the edge portion between the stacked first and second wafer lenses. By providing the spacer plate, the strength of the spacer plate can be improved without increasing the area of the support surface of the spacer plate or increasing the thickness of the spacer plate. This prevents damage to the spacer plate and the like without increasing the thickness of the entire array unit, and as a result, a large number of relatively thin lens units can be manufactured.
 本発明の具体的な側面では、上記第2のアレイユニットにおいて、樹脂部は、第1又は第2のレンズ部をそれぞれ有する複数の素子領域に分離されている。この場合、両側テーパー面つきのスペーサーを用いることにより、レンズユニットを作製するためにアレイユニットを各レンズ部単位で切断しても、スペーサーが破損等することを防ぐことができる。 In a specific aspect of the present invention, in the second array unit, the resin portion is separated into a plurality of element regions each having the first or second lens portion. In this case, by using a spacer with tapered surfaces on both sides, it is possible to prevent the spacer from being damaged even if the array unit is cut for each lens unit in order to produce a lens unit.
 上記課題を解決するため、本発明に係る第3のレンズユニットは、基板と、基板の少なくとも一方の面上に設けられた樹脂製のレンズ部と、レンズ部の周囲を囲むように設けられたスペーサーとを有するレンズユニットであって、スペーサーは、レンズ部に対応する開口部を有する板状の部材であって、レンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、縁部分の内径は、一方の端面側と他方の端面側とで異なり、レンズ部の少なくとも一部は、スペーサーの厚み方向においてスペーサーの基部よりも開口部内に突出する。ここで、スペーサーの縁部分とは、スペーサーに形成された穴等の内側部分を意味する。また、縁部分の内径とは、円形以外にも楕円形や矩形ものも含む。楕円形や矩形の場合、縁部分の内径は、長辺の長さのことをいう。また、スペーサーの基部とは、基板又は樹脂に接する面である。 In order to solve the above problems, a third lens unit according to the present invention is provided so as to surround a substrate, a resin lens portion provided on at least one surface of the substrate, and the periphery of the lens portion. A spacer unit, and the spacer is a plate-like member having an opening corresponding to the lens unit, and is edged from one end surface side and the other end surface side of the edge portion facing the lens unit. It has a pair of tapered surfaces that narrow toward the center in the thickness direction of the portion, the inner diameter of the edge portion is different on one end surface side and the other end surface side, and at least part of the lens portion is in the thickness direction of the spacer Projecting from the base of the spacer into the opening. Here, the edge part of a spacer means inner parts, such as a hole formed in the spacer. The inner diameter of the edge portion includes not only a circle but also an ellipse or a rectangle. In the case of an ellipse or a rectangle, the inner diameter of the edge portion refers to the length of the long side. The base portion of the spacer is a surface that contacts the substrate or the resin.
 上記第3のレンズユニットによれば、レンズ部等の構造物との干渉をより避ける必要がある側については、所望のレンズ部の輪郭や外形に応じて、縁部分の内径のサイズを広げてスペーサーとレンズ部等の構造物との間隙(クリアランス)を十分確保させることができる。これにより、スペーサーを様々なレンズ部の輪郭や外形の仕様に対応させつつ、かつクリアランスを確保するために低下するおそれがあるスペーサーの強度を向上させることができる。また、レンズ部がスペーサーの基部よりも突出している場合において、スペーサーの縁部分が厚み方向の中心側に向かって狭まる一対のテーパー面(両側テーパー面)であって、スペーサーの縁部分の内径が一方の端面側と他方の端面側とで異なることにより、一方の端面側では縁部分の内径のサイズを狭めてスペーサーの強度の向上を図ることができる。特に、レンズを切断する際にはスペーサーの強度等が不十分であるとスペーサーの破損や剥離が問題となるが、レンズ部間等に表裏の縁部分の内径が異なる両側テーパー面つきのスペーサーを挿入することで強度を上げることができる。また、例えば多数個取りのレンズユニットの場合、スペーサーの穴数も増えるため、スペーサーの強度が向上することにより、レンズユニットの大量生産を可能にする。 According to the third lens unit, on the side where it is necessary to avoid further interference with the structure such as the lens unit, the size of the inner diameter of the edge portion is increased according to the contour and outer shape of the desired lens unit. A sufficient gap (clearance) between the spacer and the structure such as the lens portion can be secured. This makes it possible to improve the strength of the spacer that may be lowered in order to ensure the clearance, while making the spacer conform to the specifications of the contours and outer shapes of various lens portions. In addition, when the lens portion protrudes from the base portion of the spacer, the edge portion of the spacer is a pair of tapered surfaces (both side tapered surfaces) narrowing toward the center side in the thickness direction, and the inner diameter of the edge portion of the spacer is The difference between the one end face side and the other end face side makes it possible to narrow the size of the inner diameter of the edge portion on one end face side, thereby improving the strength of the spacer. In particular, when the lens is cut, if the strength of the spacer is insufficient, the spacer may be damaged or peeled off, but spacers with tapered surfaces on both sides with different inner diameters on the front and back sides are inserted between the lens parts. By doing so, the strength can be increased. Further, for example, in the case of a multi-piece lens unit, the number of holes in the spacer also increases, so that the strength of the spacer is improved, thereby enabling mass production of the lens unit.
 なお、基板上に樹脂製のレンズ部を形成する場合、光学面が凸形状であっても凹形状であっても基板上に凸部(突起)が生じる。凸部が生じないようにレンズ部の周辺を樹脂で埋めると、レンズユニット全体の厚みが大きくなる。また、使用する樹脂の量が多くなり、基板等が反ったり、製造コストが増加したりする。表裏の縁部分の内径が異なる両側テーパー面つきのスペーサーを用いることにより、基板上に樹脂製のレンズ部を形成したもの(例えば複合レンズ)を積層する場合でも、全体の厚さが比較的薄く、かつ強度を保ったレンズユニットとなる。 Note that when a resin lens portion is formed on a substrate, a convex portion (protrusion) is generated on the substrate regardless of whether the optical surface is convex or concave. If the periphery of the lens part is filled with resin so that the convex part does not occur, the thickness of the entire lens unit increases. In addition, the amount of resin to be used increases, and the substrate or the like warps or the manufacturing cost increases. By using spacers with tapered surfaces on both sides with different inner diameters on the front and back edges, even when laminating resin lens parts (for example, compound lenses) on a substrate, the overall thickness is relatively thin. In addition, the lens unit maintains strength.
 本発明の具体的な側面では、上記第3のレンズユニットにおいて、スペーサーは、縁部分の断面において、縁部分の最も内側にある突起部の先端位置が、スペーサーの厚み方向において、中心よりも一方の端面側又は他方の端面側に形成されている。この場合、突起部の先端位置がスペーサーの厚み方向において厚みの中心よりもレンズ部の厚みが薄い又はレンズ部が無い方(例えば撮像素子側)に配置することで、スペーサーのレンズ部への干渉を回避しやすくすることができる。 In a specific aspect of the present invention, in the third lens unit, in the cross section of the edge portion, the spacer has a tip position of the innermost projection portion of the edge portion that is one side away from the center in the thickness direction of the spacer. Is formed on the end face side or the other end face side. In this case, by arranging the tip of the protrusion on the side where the thickness of the lens part is thinner than the center of the thickness in the thickness direction of the spacer or where there is no lens part (for example, on the image sensor side), the spacer interferes with the lens part. Can be easily avoided.
 本発明の別の側面では、縁部分は、一方の端面側においてレンズ部に臨み、一方の端面側の縁部分の内径は、他方の端面側の縁部分の内径よりも大きい。この場合、レンズ部に臨まない側の縁部分の内径を狭めることにより、レンズ部との間隙を確保しつつ、スペーサーの強度を向上させることができる。 In another aspect of the present invention, the edge portion faces the lens portion on one end surface side, and the inner diameter of the edge portion on one end surface side is larger than the inner diameter of the edge portion on the other end surface side. In this case, by narrowing the inner diameter of the edge portion on the side not facing the lens portion, the strength of the spacer can be improved while ensuring a gap with the lens portion.
 本発明のさらに別の側面では、縁部分は、一方の端面側において第1のレンズ部に臨み、他方の端面側において第2のレンズ部に臨み、第1及び第2のレンズ部のうち外径が大きいレンズ部に臨む縁部分の内径は、外径が小さいレンズ部に臨む縁部分の内径よりも大きい。この場合、所望のレンズの外形寸法や輪郭サイズに応じてスペーサーの縁部分の内径を調整することができ、スペーサーとレンズ部との干渉を回避しつつ、スペーサーの強度を向上させることができる。 In yet another aspect of the present invention, the edge portion faces the first lens portion on one end face side, faces the second lens portion on the other end face side, and is outside the first and second lens portions. The inner diameter of the edge portion facing the lens portion having a large diameter is larger than the inner diameter of the edge portion facing the lens portion having a small outer diameter. In this case, the inner diameter of the edge portion of the spacer can be adjusted according to the desired outer dimensions and contour size of the lens, and the strength of the spacer can be improved while avoiding interference between the spacer and the lens portion.
 本発明のさらに別の側面では、レンズ部は、個別滴下によって形成される。多数個取りの個別滴下方式のレンズユニットにおいて、全体滴下方式のレンズユニットに比べて樹脂部分の切断を行わなくて済む等の点からレンズ精度を良くすることができる。ここで、個別滴下方式の場合、レンズ部の最も外側の形状のコントロールが難しいが、表裏の縁部分の内径が異なる両側テーパー面つきのスペーサーを用いることにより、レンズ部とスペーサーとが互いに干渉しないように逃げを作りつつ、スペーサーの各穴間の肉厚を増やすことができる。これにより、スペーサーの強度を向上させることができる。 In yet another aspect of the present invention, the lens portion is formed by individual dropping. In a multi-piece individual dropping type lens unit, the lens accuracy can be improved in that it is not necessary to cut the resin portion as compared with the whole dropping type lens unit. Here, in the case of the individual dripping method, it is difficult to control the outermost shape of the lens part, but the lens part and the spacer do not interfere with each other by using spacers with tapered surfaces on both sides with different inner diameters on the front and back edges. The thickness between each hole of the spacer can be increased while making a relief. Thereby, the intensity | strength of a spacer can be improved.
 本発明のさらに別の側面では、基部は、直接的又は間接的に基板に接着されている。ここで、直接的とは、基部と基板との間に接着剤以外のものがない状態又は基部と基板とが直接触れている状態をいう。また、間接的とは、基部と基板との間に樹脂等が介在している状態又は基部が基板に直に触れていない状態をいう。この場合、基板上に形成されるレンズ部全体がスペーサーの穴状の開放部に臨むこととなるが、スペーサーの穴が表裏の縁部分の内径が異なる両側テーパー面を有することにより、レンズ部とスペーサーとの干渉を回避することができる。 In yet another aspect of the present invention, the base is directly or indirectly bonded to the substrate. Here, “directly” means a state where there is nothing other than an adhesive between the base and the substrate, or a state where the base and the substrate are in direct contact. Indirect means a state where a resin or the like is interposed between the base and the substrate or a state where the base is not in direct contact with the substrate. In this case, the entire lens portion formed on the substrate will face the hole-shaped open portion of the spacer, but the spacer hole has a tapered surface on both sides with different inner diameters of the front and back edge portions. Interference with the spacer can be avoided.
 本発明のさらに別の側面では、スペーサーは、絞りの機能を有する。この場合、レンズ部間等に挿入した表裏の縁部分の内径が異なる両側テーパー面つきのスペーサーについて、遮光性の材料又は遮光性の塗装を施してあり、光学絞りとしての役割を果たす。特に、両側テーパー面によりスペーサーの縁部分又は開口部に突起部ができるため、レンズ部の有効径のぎりぎりまで絞り効果をもたせることができる。また、両側テーパー面つきのスペーサーに中間絞りの役割をもたせることにより、新たに中間絞りを作製して挿入するよりも部品費を抑えることができる。 In yet another aspect of the present invention, the spacer has a diaphragm function. In this case, a light-shielding material or a light-shielding coating is applied to the spacers with tapered surfaces on both sides that have different inner diameters between the front and back edge portions inserted between the lens portions and the like, and serve as an optical diaphragm. In particular, since the protrusions are formed on the edge portion or the opening portion of the spacer by the tapered surfaces on both sides, the diaphragm effect can be provided to the limit of the effective diameter of the lens portion. Further, by providing the spacer with a tapered surface on both sides to serve as an intermediate diaphragm, it is possible to reduce the cost of parts compared to newly manufacturing and inserting an intermediate diaphragm.
 上記課題を解決するため、本発明に係る第3のアレイユニットは、基板と、基板の少なくとも一方の面上に設けられた複数のレンズ部を有する樹脂部と、レンズ部の周囲を囲むように設けられたスペーサー板とを有するレンズユニットであって、スペーサー板は、レンズ部に対応する開口部を有する板状の部材であって、各レンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、縁部分の内径は、一方の端面側と他方の端面側とで異なり、レンズ部の少なくとも一部は、スペーサー板の厚み方向においてスペーサー板の基部よりも開口部内に突出する。 In order to solve the above problems, a third array unit according to the present invention surrounds a substrate, a resin portion having a plurality of lens portions provided on at least one surface of the substrate, and the periphery of the lens portion. The spacer unit is a plate-like member having an opening corresponding to the lens portion, and one end surface side and the other of the edge portions facing each lens portion. A pair of tapered surfaces that narrow from the end surface side toward the center in the thickness direction of the edge portion, and the inner diameter of the edge portion is different between one end surface side and the other end surface side, and at least a part of the lens portion Protrudes into the opening from the base of the spacer plate in the thickness direction of the spacer plate.
 上記第3のアレイユニットによれば、スペーサー板を様々なレンズ部の輪郭や外形の仕様に対応させつつ、かつクリアランスを確保するために低下するおそれがあるスペーサー板の強度を向上させることができる。また、レンズ部がスペーサー板の基部よりも突出している場合において、表裏の縁部分の内径が異なる両側テーパー面つきのスペーサー板を用いることにより、一方の端面側では縁部分の内径のサイズを狭めてスペーサー板の強度の向上を図ることができる。このように、スペーサー板の強度が向上することにより、レンズユニットを多数個作製することができる。 According to the third array unit, it is possible to improve the strength of the spacer plate that may be lowered in order to ensure the clearance while the spacer plate corresponds to the specifications of various lens outlines and external shapes. . In addition, when the lens part protrudes from the base part of the spacer plate, by using a spacer plate with tapered surfaces on both sides with different inner diameters on the front and back edges, the size of the inner diameter of the edge part is narrowed on one end face side. The strength of the spacer plate can be improved. As described above, a large number of lens units can be manufactured by improving the strength of the spacer plate.
 本発明の具体的な側面では、上記第3のアレイユニットにおいて、樹脂部は、複数のレンズ部をそれぞれ有する複数の素子領域に分離されている。この場合、表裏の縁部分の内径が異なる両側テーパー面つきのスペーサー板を用いることにより、レンズユニットを作製するために、アレイユニットを各レンズ部単位で切断してもスペーサー板が破損等することを防ぐことができる。 In a specific aspect of the present invention, in the third array unit, the resin portion is separated into a plurality of element regions each having a plurality of lens portions. In this case, by using spacer plates with tapered surfaces on both sides with different inner diameters on the front and back edges, the spacer plate may be damaged even if the array unit is cut in units of lens units in order to produce a lens unit. Can be prevented.
第1実施形態に係るアレイユニットを含む積層構造体を説明する平面図である。It is a top view explaining the laminated structure containing the array unit which concerns on 1st Embodiment. 図1の積層構造体を説明する断面図である。It is sectional drawing explaining the laminated structure of FIG. 第1実施形態に係るレンズユニットを含む撮像装置を説明する断面図である。It is sectional drawing explaining the imaging device containing the lens unit which concerns on 1st Embodiment. 図4A~4Dは、図2に示すスペーサー板の製造手順を説明する図である。4A to 4D are views for explaining a manufacturing procedure of the spacer plate shown in FIG. 図5A~5Eは、図1等に示す積層構造体の製造手順の一部を説明する図である5A to 5E are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like. 図6A及び6Bは、図1等に示す積層構造体の製造手順の一部を説明する図である。6A and 6B are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like. 図7A~7Cは、図1等に示す積層構造体の製造手順の一部を説明する図である。7A to 7C are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like. 図8A及び8Bは、第2実施形態に係る積層構造体及び撮像装置を説明する図である。8A and 8B are diagrams illustrating a stacked structure and an imaging device according to the second embodiment. 図9A~9Eは、図8Aに示す積層構造体の製造手順の一部を説明する図である。9A to 9E are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 8A. 図10A及び10Bは、第3実施形態に係る積層構造体及び撮像装置を説明する図である。10A and 10B are diagrams illustrating a stacked structure and an imaging apparatus according to the third embodiment. 図10Aのスペーサー板の製造手順を説明する図である。It is a figure explaining the manufacturing procedure of the spacer board of FIG. 10A. 図12A及び12Bは、第4実施形態に係る積層構造体及び撮像装置を説明する図である。12A and 12B are diagrams illustrating a multilayer structure and an imaging apparatus according to the fourth embodiment. 第5実施形態に係るアレイユニットを含む積層構造体を説明する平面図である。It is a top view explaining the laminated structure containing the array unit which concerns on 5th Embodiment. 図13の積層構造体を説明する断面図である。It is sectional drawing explaining the laminated structure of FIG. 第5実施形態に係るレンズユニットを含む撮像装置を説明する断面図である。It is sectional drawing explaining the imaging device containing the lens unit which concerns on 5th Embodiment. 図16A及び16Bは、図1等に示す積層構造体の製造手順の一部を説明する図である。16A and 16B are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like. 図17A~17Cは、図1等に示す積層構造体の製造手順の一部を説明する図である。17A to 17C are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 図18A及び18Bは、第6実施形態に係る積層構造体及び撮像装置を説明する図であり、図18Cは、開口の縁部分の部分拡大断面図である。18A and 18B are views for explaining a laminated structure and an imaging apparatus according to the sixth embodiment, and FIG. 18C is a partially enlarged sectional view of an edge portion of an opening. 図19A及び19Bは、第7実施形態に係る積層構造体及び撮像装置を説明する図である。19A and 19B are views for explaining a laminated structure and an imaging apparatus according to the seventh embodiment. 第8実施形態に係るアレイユニットを含む積層構造体を説明する平面図である。It is a top view explaining the laminated structure containing the array unit which concerns on 8th Embodiment. 図20の積層構造体を説明する断面図である。It is sectional drawing explaining the laminated structure of FIG. 第8実施形態に係るレンズユニットを含む撮像装置を説明する断面図である。It is sectional drawing explaining the imaging device containing the lens unit which concerns on 8th Embodiment. 図23A~23Dは、図2に示すスペーサー基板の製造手順を説明する図である。23A to 23D are views for explaining a manufacturing procedure of the spacer substrate shown in FIG. 図24A~24Cは、図1等に示す積層構造体の製造手順の一部を説明する図である。24A to 24C are diagrams for explaining a part of the manufacturing procedure of the laminated structure shown in FIG. 1 and the like. 図25A及び25Bは、第9実施形態に係る積層構造体及び撮像装置を説明する図であり、図25Cは、開口の縁部分の部分拡大断面図である。25A and 25B are views for explaining a laminated structure and an imaging apparatus according to the ninth embodiment, and FIG. 25C is a partially enlarged sectional view of an edge portion of an opening. 図26A及び26Bは、第10実施形態に係る積層構造体及び撮像装置を説明する図である。FIGS. 26A and 26B are views for explaining a laminated structure and an imaging apparatus according to the tenth embodiment. 図27A及び27Bは、第11実施形態に係る積層構造体等を説明する図である。27A and 27B are views for explaining a laminated structure and the like according to the eleventh embodiment. 図28A~28Gは、特許文献2の図1~7に相当する図である。28A to 28G are diagrams corresponding to FIGS. 1 to 7 of Patent Document 2. FIG.
 〔第1実施形態〕
1-A)積層構造体
 図面を参照して、本発明の第1実施形態に係るアレイユニットを含む積層構造体について説明する。
[First Embodiment]
1-A) Laminated Structure A laminated structure including an array unit according to the first embodiment of the present invention will be described with reference to the drawings.
 図1及び図2に示すように、積層構造体1000は、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とをZ軸方向に積層したものである。積層構造体1000をダイシングによって切り出すことにより、レンズユニット800と撮像素子530とを積層した撮像装置700(図3参照)を得ることができる。ここで、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とは、それぞれXY面に平行に延びており、積層構造体1000全体としても、XY面に平行に延びている。このうち、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400とを積層したものは、本明細書において便宜上アレイユニット600と呼ぶが、広義のウェハーレンズに含まれる。 As shown in FIGS. 1 and 2, the laminated structure 1000 includes a first wafer lens 100, a first spacer plate 200, a second wafer lens 300, a second spacer plate 400, and an imaging element array 500. Laminated in the Z-axis direction. By cutting out the laminated structure 1000 by dicing, an imaging device 700 (see FIG. 3) in which the lens unit 800 and the imaging element 530 are laminated can be obtained. Here, the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 each extend in parallel to the XY plane and have a laminated structure. The entire body 1000 also extends parallel to the XY plane. Of these, a laminate of the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 is referred to as an array unit 600 for convenience in this specification. Included in wafer lens.
 積層構造体1000のうち第1ウェハーレンズ100は、例えば円盤状であり、基板101と、上側樹脂部102と、下側樹脂部103とを有する。ここで、上側及び下側樹脂部102,103は、軸AXに垂直なXY面内での並進及び軸AXのまわりの回転に関して相互にアライメントされて基板101に接合されている。第1ウェハーレンズ100には、これを構成する光学素子として、多数の第1複合レンズ10が形成されXY面に沿って2次的に配列されている。つまり、第1ウェハーレンズ100は、切断前において第1複合レンズ10が複数集まったものをいう(第2ウェハーレンズ300についても同様)。第1複合レンズ10は、光学面を形成するレンズ本体10aと、レンズ本体10aの周辺に存在するフランジ10bとを有する。 The first wafer lens 100 in the laminated structure 1000 has, for example, a disk shape, and includes a substrate 101, an upper resin portion 102, and a lower resin portion 103. Here, the upper and lower resin portions 102 and 103 are bonded to the substrate 101 in alignment with each other with respect to translation in the XY plane perpendicular to the axis AX and rotation around the axis AX. In the first wafer lens 100, a large number of first compound lenses 10 are formed as optical elements constituting them, and are secondarily arranged along the XY plane. That is, the first wafer lens 100 is a group of a plurality of first compound lenses 10 before cutting (the same applies to the second wafer lens 300). The first compound lens 10 includes a lens body 10a that forms an optical surface, and a flange 10b that exists around the lens body 10a.
 第1ウェハーレンズ100のうち基板101は、第1ウェハーレンズ100の全体に亘って延びる平板であり、例えばガラスで形成されている。基板101の厚さは、基本的には光学的仕様によって決定されるが、第1ウェハーレンズ100の離型時において破損しない程度の厚さとなっている。基板101は、第1複合レンズ10のレンズ本体10aの中央部とフランジ10bとを構成する。基板101は、フランジ10bに相当する部分の面101a,101bにそれぞれ第1フランジ面11bと第2フランジ面12bとを有する。なお、基板101の材料としては、ガラスのほか、熱硬化性樹脂、光硬化性樹脂、熱可塑性樹脂等を用いることができるが、特にガラスが好ましい。基板101の具体的な厚みは、用途にもよるが、例えば0.2mm以上、1.5mm以下とされる。 The substrate 101 of the first wafer lens 100 is a flat plate extending over the entire first wafer lens 100, and is formed of, for example, glass. The thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the first wafer lens 100 is not damaged when the first wafer lens 100 is released. The substrate 101 constitutes the center portion of the lens body 10a of the first compound lens 10 and the flange 10b. The substrate 101 has a first flange surface 11b and a second flange surface 12b on surfaces 101a and 101b corresponding to the flange 10b, respectively. As the material of the substrate 101, a glass, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used, and glass is particularly preferable. Although the specific thickness of the board | substrate 101 is based also on a use, it shall be 0.2 mm or more and 1.5 mm or less, for example.
 上側樹脂部102は、樹脂製であり、基板101の一方の面101a上に形成されている。上側樹脂部102は、複数の上側レンズ部11を有する。つまり、上側樹脂部102は、第1ウェハーレンズ100を切断する前において基板101上に形成された上側レンズ部11を含む樹脂部分全体をいう(下側レンズ部12についても同様)。各上側レンズ部11は、第1複合レンズ10のレンズ本体10aの上部を構成する。各上側レンズ部11は、基板101上のXY面内で2次元的に配列されている。上側樹脂部102において、各上側レンズ部11は、基板101上にそれぞれ独立して配置されている。つまり、各上側レンズ部11は、隣接する上側レンズ部11と樹脂で繋がっておらず、各上側レンズ部11間には、基板101が露出した状態となっている。上側レンズ部11は、例えば凸形状を有し、図3に示すように凸形状の非球面型の第1光学面11aと第1非光学面11cとを有する。第1光学面11a及び第1非光学面11cは、転写によって一括成形される第1成形面102aとなっている。第1光学面11aは、有効領域AR1(レンズの光学的に有効な領域)を有し、第1非光学面11cは、非有効領域AR2(レンズの光学機能に影響しない領域)を有する。 The upper resin portion 102 is made of resin and is formed on one surface 101 a of the substrate 101. The upper resin part 102 has a plurality of upper lens parts 11. That is, the upper resin portion 102 refers to the entire resin portion including the upper lens portion 11 formed on the substrate 101 before the first wafer lens 100 is cut (the same applies to the lower lens portion 12). Each upper lens portion 11 constitutes an upper portion of the lens body 10 a of the first compound lens 10. Each upper lens unit 11 is two-dimensionally arranged in the XY plane on the substrate 101. In the upper resin portion 102, each upper lens portion 11 is independently arranged on the substrate 101. That is, each upper lens portion 11 is not connected to the adjacent upper lens portion 11 by resin, and the substrate 101 is exposed between the upper lens portions 11. The upper lens unit 11 has, for example, a convex shape, and has a convex aspherical first optical surface 11a and a first non-optical surface 11c as shown in FIG. The first optical surface 11a and the first non-optical surface 11c serve as a first molding surface 102a that is collectively molded by transfer. The first optical surface 11a has an effective area AR1 (an optically effective area of the lens), and the first non-optical surface 11c has an ineffective area AR2 (an area that does not affect the optical function of the lens).
 上側樹脂部102は、光硬化性樹脂で形成されている。光硬化性樹脂には、光硬化性樹脂の重合を開始させる光重合開始剤が含まれている。光硬化性樹脂としては、アクリル樹脂、アリルエステル樹脂、エポキシ系樹脂、又はビニル系樹脂等を使用することができる。アクリル樹脂、アリルエステル樹脂、又はビニル系樹脂を使用する場合、光重合開始剤の例えばラジカル重合により反応硬化させることができ、エポキシ系樹脂を使用する場合、光重合開始剤の例えばカチオン重合により反応硬化させることができる。 The upper resin portion 102 is made of a photocurable resin. The photocurable resin contains a photopolymerization initiator that initiates polymerization of the photocurable resin. As the photocurable resin, an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used. When acrylic resin, allyl ester resin, or vinyl resin is used, it can be cured by reaction, for example, by radical polymerization of a photopolymerization initiator, and when epoxy resin is used, it is reacted by, for example, cationic polymerization of a photopolymerization initiator. It can be cured.
 下側樹脂部103は、上側樹脂部102と同様に、樹脂製であり、基板101の他方の面101b上に形成されている。下側樹脂部103は、複数の下側レンズ部12を有する。各下側レンズ部12は、第1複合レンズ10のレンズ本体10aの下部を構成する。各下側レンズ部12は、基板101上のXY面内で2次元的に配列している。各下側レンズ部12の位置は、基板101の反対側の各上側レンズ部11の位置に対応している。下側樹脂部103において、各下側レンズ部12は、基板101上にそれぞれ独立して配置されている。つまり、各下側レンズ部12は、隣接する下側レンズ部12と樹脂で繋がっておらず、各下側レンズ部12間には、基板101が露出した状態となっている。下側レンズ部12は、例えば凸形状を有し、図3に示すように凹形状の非球面型の第2光学面12aと第2非光学面12cとを有する。下側レンズ部12は、凹形状の第2光学面12aを有しつつ、第1スペーサー板200の根本側(図面上部)の基部200aよりも突出している。第2光学面12a及び第2非光学面12cは、転写によって一括成形される第1成形面103aとなっている。第2光学面12aは、有効領域AR3(レンズの光学的に有効な領域)を有し、第2非光学面12cは、非有効領域AR4(レンズの光学機能に影響しない領域)を有する。 The lower resin portion 103 is made of resin, like the upper resin portion 102, and is formed on the other surface 101b of the substrate 101. The lower resin portion 103 has a plurality of lower lens portions 12. Each lower lens portion 12 constitutes a lower portion of the lens body 10 a of the first compound lens 10. The lower lens portions 12 are two-dimensionally arranged in the XY plane on the substrate 101. The position of each lower lens portion 12 corresponds to the position of each upper lens portion 11 on the opposite side of the substrate 101. In the lower resin portion 103, each lower lens portion 12 is independently arranged on the substrate 101. That is, each lower lens portion 12 is not connected to the adjacent lower lens portion 12 by resin, and the substrate 101 is exposed between the lower lens portions 12. The lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 12a and a second non-optical surface 12c as shown in FIG. The lower lens portion 12 has a concave second optical surface 12a and protrudes from the base portion 200a on the base side (upper part of the drawing) of the first spacer plate 200. The second optical surface 12a and the second non-optical surface 12c are first molding surfaces 103a that are collectively molded by transfer. The second optical surface 12a has an effective area AR3 (an optically effective area of the lens), and the second non-optical surface 12c has an ineffective area AR4 (an area that does not affect the optical function of the lens).
 下側樹脂部103に用いられる光硬化性樹脂は、上側樹脂部102の光硬化性樹脂と同様のものである。ただし、両樹脂部102,103を同一の光硬化性樹脂で形成する必要はなく、別の光硬化性樹脂で形成することができる。 The photocurable resin used for the lower resin portion 103 is the same as the photocurable resin of the upper resin portion 102. However, it is not necessary to form both the resin parts 102 and 103 with the same photocurable resin, and it can form with another photocurable resin.
 第2ウェハーレンズ300は、第1ウェハーレンズ100と同様に、例えば円盤状であり、基板301と、上側樹脂部302と、下側樹脂部303とを有する。第2ウェハーレンズ300の構成は、第1ウェハーレンズ100の構成と略同様である。第2ウェハーレンズ300には、これを構成する光学素子として、多数の第2複合レンズ20が形成されXY面に沿って2次的に配列されている。第2複合レンズ20は、光学面を形成するレンズ本体20aと、レンズ本体20aの周辺に存在するフランジ20bとを有する。上側レンズ部11は、第2複合レンズ20のレンズ本体20aの上部を構成し、下側レンズ部12は、レンズ本体20aの下部を構成する。なお、第2ウェハーレンズ300の場合、上側レンズ部11は、例えば凸形状を有し、図3に示すように凹形状の非球面型の第1光学面21aと第1非光学面21cとを有する。また、下側レンズ部12は、例えば凸形状を有し、図3に示すように凹形状の非球面型の第2光学面22aと第2光学面22cとを有する。また、基板301は、フランジ20bに相当する部分の面101a,101bにそれぞれ第1フランジ面21bと第2フランジ面22bとを有する。 Similarly to the first wafer lens 100, the second wafer lens 300 is, for example, a disk shape, and includes a substrate 301, an upper resin portion 302, and a lower resin portion 303. The configuration of the second wafer lens 300 is substantially the same as the configuration of the first wafer lens 100. In the second wafer lens 300, a large number of second compound lenses 20 are formed as optical elements constituting the second lens, and are secondarily arranged along the XY plane. The second compound lens 20 includes a lens body 20a that forms an optical surface, and a flange 20b that exists around the lens body 20a. The upper lens part 11 constitutes the upper part of the lens body 20a of the second compound lens 20, and the lower lens part 12 constitutes the lower part of the lens body 20a. In the case of the second wafer lens 300, the upper lens unit 11 has, for example, a convex shape, and includes a concave aspherical first optical surface 21a and a first non-optical surface 21c as shown in FIG. Have. The lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 22a and a second optical surface 22c as shown in FIG. The substrate 301 has a first flange surface 21b and a second flange surface 22b on the surfaces 101a and 101b corresponding to the flange 20b.
 以上において、第1及び第2ウェハーレンズ100,300を構成する上側及び下側レンズ部11,12は、素子領域を含む各第1及び第2複合レンズ10,20単位で分離される。このように、アレイユニット600を分離することにより、複数のレンズユニット800が得られる。 In the above, the upper and lower lens portions 11 and 12 constituting the first and second wafer lenses 100 and 300 are separated in units of the first and second compound lenses 10 and 20 including the element region. Thus, by separating the array unit 600, a plurality of lens units 800 can be obtained.
 第1スペーサー板200は、第1ウェハーレンズ100の支持部として機能するものである。第1スペーサー板200は、ガラス、セラミックス、樹脂等からなる平板状の部材であって第1複合レンズ10に対応する配列で穴が形成されている。図3に示すように、第1スペーサー板200は、ダイシングによって複数のスペーサー10cに分割される。各スペーサー10cは、筒状の支持体6aと断面円形の開口部6bとを有する。開口部6bは、レンズ本体10aのZ軸に平行な光軸OAを通すように光軸OAに沿って延びている。開口部6bは、第1ウェハーレンズ100の下側レンズ部12及び第2ウェハーレンズ300の上側レンズ部11に臨む縁部分Sによって形成される。ここで、縁部分Sとは、第1スペーサー板200に形成された穴の内側部分である。縁部分Sは、上側及び下側レンズ部11,12の外形を囲むように、略円形に形成されている。支持体6aは、レンズ本体10aを避けてレンズ本体10aの周囲のフランジ10bに固定されている。つまり、開口部6bとレンズ本体10aとの間には、適度な隙間が形成されている。開口部6bの縁部分Sには、第1スペーサー板200の一方の端面である根元側(図面上側)の端面206aと、他方の端面である先端側(図面下側)の端面206bとから開口部6bの厚み方向(図中のZ方向)の中心側に向かって狭まる両側テーパー面TPを有する。つまり、開口部6b(縁部分S)の厚み方向の断面において、開口部6bの最も内側にある突起部91の先端位置が厚み方向の略中央に形成されている。支持体6aの根元側(図面上側)の端面206aは、接着剤81aを介して図面下側の第2フランジ面12b(基板101の他方の面101b)に接着されている。つまり、第1スペーサー板200の基部200aは、樹脂を介さずに基板101に直接的に接着されている。また、第1スペーサー板200の先端側(図面下側)の端面206bは、接着剤81bを介して第2ウェハーレンズ300を構成する第2複合レンズ20のうち図面上側の第1フランジ面21b(基板301の一方の面101a)に接着されている。つまり、第1スペーサー板200の先端側の基部200bは、樹脂を介さずに基板301に直接的に接着されている。これにより、第1ウェハーレンズ100の下側レンズ部12及び第2ウェハーレンズ300の上側レンズ部11は、第1スペーサー板200において、対応する開口部6bの位置で、開口部6b内に突出することとなる。 The first spacer plate 200 functions as a support portion for the first wafer lens 100. The first spacer plate 200 is a flat plate member made of glass, ceramics, resin, or the like, and has holes formed in an array corresponding to the first compound lens 10. As shown in FIG. 3, the first spacer plate 200 is divided into a plurality of spacers 10c by dicing. Each spacer 10c has a cylindrical support 6a and an opening 6b having a circular cross section. The opening 6b extends along the optical axis OA so as to pass the optical axis OA parallel to the Z-axis of the lens body 10a. The opening 6 b is formed by the edge portion S facing the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300. Here, the edge portion S is an inner portion of a hole formed in the first spacer plate 200. The edge portion S is formed in a substantially circular shape so as to surround the outer shapes of the upper and lower lens portions 11 and 12. The support 6a is fixed to a flange 10b around the lens body 10a while avoiding the lens body 10a. That is, an appropriate gap is formed between the opening 6b and the lens body 10a. The edge portion S of the opening 6b opens from one end face of the first spacer plate 200 on the base side (upper side in the drawing) 206a and the other end face on the front end side (lower side in the drawing) 206b. Both side tapered surfaces TP narrow toward the center side in the thickness direction (Z direction in the drawing) of the portion 6b. That is, in the cross section in the thickness direction of the opening 6b (edge portion S), the tip end position of the projection 91 located on the innermost side of the opening 6b is formed at substantially the center in the thickness direction. An end surface 206a on the base side (upper side in the drawing) of the support 6a is bonded to a second flange surface 12b (the other surface 101b of the substrate 101) on the lower side in the drawing via an adhesive 81a. That is, the base portion 200a of the first spacer plate 200 is directly bonded to the substrate 101 without using a resin. Further, the end surface 206b on the front end side (lower side of the drawing) of the first spacer plate 200 is a first flange surface 21b (upper side of the drawing) of the second compound lens 20 constituting the second wafer lens 300 via the adhesive 81b. Bonded to one surface 101a) of the substrate 301. That is, the base portion 200b on the distal end side of the first spacer plate 200 is directly bonded to the substrate 301 without using a resin. Thus, the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300 protrude into the opening 6b at the position of the corresponding opening 6b in the first spacer plate 200. It will be.
 第1スペーサー板200の根本側の端面206aと第1ウェハーレンズ100の基板101の他方の面101bとの間には、接着剤81aで形成された接合部CE1が設けられている。接合部CE1は、根本側の端面206a側において、はみ出し部分85を有しており、両側テーパー面TPの一部に付着している。また、接合部CE1は、この両側テーパー面TPと上側レンズ部11との間隙GAを埋めるように設けられている。このように、接合部CE1は、基板101と第1スペーサー板200の平面同士で接着されるだけでなく、ある角度をもった範囲でも接着され、三次元的な形状となる。また、第1スペーサー板200の先端側の端面206bと第2ウェハーレンズ300の基板301の一方の面101aとの間には、接着剤81bで形成された接合部CE2が設けられている。接合部CE2は、先端側の端面206bにおいて、はみ出し部分85を有しており、両側テーパー面TPの一部に付着している。また、接合部CE2は、この両側テーパー面TPと下側レンズ部12との間隙GAを埋めるように設けられている。ここで、両側テーパー面TPは、各上側及び下側レンズ部11,12とある程度の間隙GAを保つように形成されており、第1スペーサー板200の支持体6aと各上側及び下側レンズ部11,12とが互いに干渉しないようになっている。具体的には、第1スペーサー板200の開口部6bと端面206a,206bと交差する縁部61a,61bと、下側及び上側レンズ部12,11のうち第1スペーサー板200の基部200aからそれぞれ突出する部分の外側の縁部61c,61dとの距離d1,d2は、0以上であり、開口部6bの縁部分Sが上側及び下側レンズ部11,12から所定の距離を保つことができる程度の距離となっている。両側テーパー面TPの傾斜角度θは、第1スペーサー板200の厚み方向に対して0°<θ≦45°となっている。両側テーパー面TPの粗さは、第1スペーサー板200の一方の端面206a及び他方の端面206bの少なくともいずれか一方の粗さよりも粗くなっている。なお、凸形状の上側及び下側レンズ部11,12と両側テーパー面TPとの間隙GAは、レンズ部が凹形状の場合よりもより厳密な調整が必要となる。調整が不十分な場合、レンズ部が凹形状の場合に比較して第1スペーサー板200が第1及び第2ウェハーレンズ100,300に精度良く貼り付けられないおそれがある。 Between the end face 206a on the root side of the first spacer plate 200 and the other face 101b of the substrate 101 of the first wafer lens 100, a joint part CE1 formed of an adhesive 81a is provided. The joint portion CE1 has a protruding portion 85 on the side of the end surface 206a on the root side, and is attached to a part of both side tapered surfaces TP. Further, the joint portion CE1 is provided so as to fill the gap GA between the both side tapered surfaces TP and the upper lens portion 11. Thus, the joint part CE1 is not only bonded between the planes of the substrate 101 and the first spacer plate 200, but is also bonded within a certain angle range, and has a three-dimensional shape. Further, between the end surface 206b on the front end side of the first spacer plate 200 and one surface 101a of the substrate 301 of the second wafer lens 300, a joint portion CE2 formed of an adhesive 81b is provided. The joint portion CE2 has a protruding portion 85 at the end face 206b on the distal end side, and adheres to a part of the both side tapered surfaces TP. Further, the joint portion CE2 is provided so as to fill the gap GA between the both side tapered surfaces TP and the lower lens portion 12. Here, the tapered surfaces TP on both sides are formed so as to maintain a certain gap GA with the upper and lower lens portions 11 and 12, and the support 6a of the first spacer plate 200 and the upper and lower lens portions. 11 and 12 do not interfere with each other. Specifically, the opening 6b of the first spacer plate 200 and the edge portions 61a and 61b intersecting the end surfaces 206a and 206b, and the lower and upper lens portions 12 and 11 from the base portion 200a of the first spacer plate 200, respectively. The distances d1 and d2 with the outer edge portions 61c and 61d of the protruding portion are 0 or more, and the edge portion S of the opening 6b can keep a predetermined distance from the upper and lower lens portions 11 and 12. The distance is about. The inclination angle θ of the tapered surfaces TP on both sides is 0 ° <θ ≦ 45 ° with respect to the thickness direction of the first spacer plate 200. The roughness of the tapered surfaces TP on both sides is greater than the roughness of at least one of the one end surface 206a and the other end surface 206b of the first spacer plate 200. The gap GA between the convex upper and lower lens portions 11 and 12 and the tapered surfaces TP on both sides needs to be adjusted more strictly than in the case where the lens portion is concave. When the adjustment is insufficient, the first spacer plate 200 may not be attached to the first and second wafer lenses 100 and 300 with higher accuracy than when the lens portion has a concave shape.
 第1スペーサー板200やこれから得たスペーサー10cは、第1ウェハーレンズ100と第2ウェハーレンズ300との間隔を調整するための部材であり、撮像装置700を構成する2つの第1及び第2複合レンズ10,20間の距離を調整する役割を有する。なお、支持体6aには、遮光性の材料で形成され、又は開口内面等に遮光性の塗装が施されたものであり、光学絞りとしての役割も有する。 The first spacer plate 200 and the spacer 10c obtained therefrom are members for adjusting the distance between the first wafer lens 100 and the second wafer lens 300, and the two first and second composites that constitute the imaging device 700. It has a role of adjusting the distance between the lenses 10 and 20. The support 6a is made of a light-shielding material or has a light-shielding coating applied to the inner surface of the opening or the like, and also serves as an optical diaphragm.
 第2スペーサー板400は、第2ウェハーレンズ300の支持部として機能するものである。第2スペーサー板400は、第1スペーサー板200と同様の構成を有する。図3に示すように、第2スペーサー板400は、ダイシングによって複数のスペーサー20cに分割される。第2スペーサー板400の支持体6aの根本側の端面406aは、接着剤81cを介して第2ウェハーレンズ300を構成する第2複合レンズ20のうち図面下側の第2フランジ面22bに接着されている。つまり、第2スペーサー板400の根本側の基部400aは、樹脂を介さずに基板301に直接的に接着されている。第2スペーサー板400の根本側の端面406aと第2ウェハーレンズ300の他方の面101bとの間には、接着剤81cで形成された接合部CE3が設けられている。また、第2スペーサー板400の先端側の端面406bは、接着剤81dを介して撮像素子アレイ500に接着されている。第2スペーサー板400やスペーサー20cは、第2ウェハーレンズ300と撮像素子アレイ500との間隔を調整するための部材であり、撮像装置700を構成する第2複合レンズ20と撮像素子530との間の距離を調整する役割を有する。 The second spacer plate 400 functions as a support portion for the second wafer lens 300. The second spacer plate 400 has the same configuration as the first spacer plate 200. As shown in FIG. 3, the second spacer plate 400 is divided into a plurality of spacers 20c by dicing. The end surface 406a on the base side of the support 6a of the second spacer plate 400 is bonded to the second flange surface 22b on the lower side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via an adhesive 81c. ing. That is, the base 400a on the base side of the second spacer plate 400 is directly bonded to the substrate 301 without using a resin. Between the end surface 406a on the root side of the second spacer plate 400 and the other surface 101b of the second wafer lens 300, a joint portion CE3 formed of an adhesive 81c is provided. Further, the end surface 406b on the front end side of the second spacer plate 400 is bonded to the imaging element array 500 via an adhesive 81d. The second spacer plate 400 and the spacer 20 c are members for adjusting the distance between the second wafer lens 300 and the image sensor array 500, and are between the second compound lens 20 and the image sensor 530 constituting the image pickup apparatus 700. It has a role to adjust the distance.
 第1スペーサー板200の厚みは、第1ウェハーレンズ100の下側レンズ部12と第2ウェハーレンズ300の上側レンズ部11との間隔を適切に保つような値とする。また、第2スペーサー板400の厚みは、第2ウェハーレンズ300の下側レンズ部12と撮像素子アレイ500の撮像素子530との間隔を適切に保つような値とする。第1及び第2スペーサー板200,400の具体的な厚みは、上側及び下側レンズ部11,12の光学的特性、撮像素子530の性能、撮像用レンズとして求められる機能や用途等にもよるが、概ね0.1mm以上、0.8mm以下が好ましく、0.2mm以上、0.6mm以下がさらに好ましい。0.1mm以上の場合、取り扱いが容易で、また、応力緩和性が高く、剥離や割れといった故障が生じにくい。また、0.8mm以下であると、透過率が高く好ましい。 The thickness of the first spacer plate 200 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300. In addition, the thickness of the second spacer plate 400 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the second wafer lens 300 and the image sensor 530 of the image sensor array 500. The specific thickness of the first and second spacer plates 200 and 400 depends on the optical characteristics of the upper and lower lens portions 11 and 12, the performance of the image sensor 530, the functions and applications required for the imaging lens, and the like. However, generally 0.1 mm or more and 0.8 mm or less are preferable, and 0.2 mm or more and 0.6 mm or less are more preferable. When the thickness is 0.1 mm or more, handling is easy, stress relaxation is high, and failures such as peeling and cracking are unlikely to occur. Moreover, it is preferable that it is 0.8 mm or less because the transmittance is high.
 第1及び第2スペーサー板200,400の具体的な材料は、軟質ガラス、樹脂、有機無機ハイブリッド材料等であり、特に限定されないが、耐熱性の有る樹脂、または、耐熱性の有る有機無機ハイブリッド材料が良い。有機無機ハイブリッド材料は、耐熱性の有るガラス繊維強化樹脂、フィラー強化樹脂、有機-シリカハイブリッド等が良い。特に有機シリカ-ハイブリッドが良く、中でも、エポキシ樹脂-シリカハイブリッドおよびアクリル-シリカハイブリッドは、上側及び下側樹脂部102,103との接着性も良好で好ましい。 Specific materials of the first and second spacer plates 200 and 400 are soft glass, resin, organic-inorganic hybrid material, and the like, and are not particularly limited. However, heat-resistant resin or heat-resistant organic-inorganic hybrid is used. Good material. As the organic / inorganic hybrid material, heat-resistant glass fiber reinforced resin, filler reinforced resin, organic-silica hybrid, and the like are preferable. In particular, an organic silica-hybrid is preferable. Among them, an epoxy resin-silica hybrid and an acrylic-silica hybrid are preferable because they have good adhesion to the upper and lower resin portions 102 and 103.
 第1及び第2スペーサー板200,400の開口部6bは、例えばエッチングやブラスト等によって形成される。エッチング方法として、例えばウェットエッチング等が用いられ、ブラスト方法としては、マイクロブラスト加工等が用いられる。 The openings 6b of the first and second spacer plates 200 and 400 are formed by, for example, etching or blasting. For example, wet etching or the like is used as the etching method, and microblasting or the like is used as the blasting method.
1-B)レンズユニット及び撮像装置
 図3を参照しつつ、レンズユニット800及び撮像装置700について説明する。撮像装置700は、レンズユニット800と撮像素子530とを備える。
1-B) Lens Unit and Imaging Device The lens unit 800 and the imaging device 700 will be described with reference to FIG. The imaging device 700 includes a lens unit 800 and an imaging element 530.
 レンズユニット800は、第1複合レンズ10と、第1スペーサー10cと、第2複合レンズ20と、第2スペーサー20cとを備える。 The lens unit 800 includes a first compound lens 10, a first spacer 10c, a second compound lens 20, and a second spacer 20c.
 第1複合レンズ10は、既に説明した上側レンズ部11と、下側レンズ部12と、これらの間に挟まれた平板部13とを備える。平板部13は、基板101を切り出した部分である。つまり、第1複合レンズ10は、基板101に樹脂製の複数の上側及び下側レンズ部11,12を形成した後に切断して個片化したレンズである(第2複合レンズ20についても同様)。第1複合レンズ10において、上側及び下側レンズ部11,12の形状は同一でも異なる形状であってもよい。第2複合レンズ20は、第1複合レンズ10と同様に、上側レンズ部11と、下側レンズ部12と、これらの間に挟まれた平板部13とを備える。 The first compound lens 10 includes the upper lens portion 11, the lower lens portion 12, and the flat plate portion 13 sandwiched therebetween. The flat plate portion 13 is a portion obtained by cutting out the substrate 101. That is, the first compound lens 10 is a lens that is cut into individual pieces after forming a plurality of resin upper and lower lens portions 11 and 12 on the substrate 101 (the same applies to the second compound lens 20). . In the first compound lens 10, the shapes of the upper and lower lens portions 11 and 12 may be the same or different. Similar to the first compound lens 10, the second compound lens 20 includes an upper lens unit 11, a lower lens unit 12, and a flat plate unit 13 sandwiched therebetween.
 第1スペーサー10cは、第1複合レンズ10と第2複合レンズ20との間に設けられている。第2スペーサー20cは、第2複合レンズ20と撮像素子530との間に設けられている。第1及び第2スペーサー10c,20cは、上側及び下側レンズ部11,12にそれぞれ対応する開口部6bを有する。開口部6bの縁部分Sには、第1及び第2スペーサー10c,20cの厚み方向の中心側に向かって狭まる両側テーパー面TPが形成されている。開口部6b(縁部分S)の厚み方向の断面において、突起部91の先端位置が厚み方向の略中央に形成されている。第1及び第2複合レンズ10,20と第1スペーサー10cとの間には、接着剤81a,81bで形成された接合部CE1,CE2が設けられている。この接合部CE1,CE2は、両側テーパー面TPと基板101や上側及び下側レンズ部11,12との間隙GAを埋めるように設けられている。第2複合レンズ20と第2スペーサー20cとの間も同様に、接着剤81cで形成された接合部CE3が設けられている。 The first spacer 10 c is provided between the first compound lens 10 and the second compound lens 20. The second spacer 20 c is provided between the second compound lens 20 and the image sensor 530. The first and second spacers 10c and 20c have openings 6b corresponding to the upper and lower lens portions 11 and 12, respectively. A double-sided tapered surface TP that narrows toward the center in the thickness direction of the first and second spacers 10c and 20c is formed at the edge portion S of the opening 6b. In the cross section in the thickness direction of the opening 6b (edge portion S), the tip position of the protrusion 91 is formed at the approximate center in the thickness direction. Between the first and second compound lenses 10 and 20 and the first spacer 10c, joints CE1 and CE2 formed by adhesives 81a and 81b are provided. The joint portions CE1 and CE2 are provided so as to fill the gap GA between the tapered surfaces TP on both sides and the substrate 101 or the upper and lower lens portions 11 and 12. Similarly, a joint portion CE3 formed of an adhesive 81c is provided between the second compound lens 20 and the second spacer 20c.
 撮像装置700は、光軸OA方向から見て四角形の輪郭を有する。なお、撮像装置700は、例えば別途準備したホルダーに収納され、撮像レンズとして撮像回路基板に接着される。 The imaging device 700 has a rectangular outline when viewed from the optical axis OA direction. Note that the imaging device 700 is housed in, for example, a separately prepared holder and bonded to the imaging circuit board as an imaging lens.
1-C)スペーサー板の製造方法
 以下、図4A~4Dを参照しつつ、第1スペーサー板200の作製方法の一例について説明する。なお、第2スペーサー板400の作製方法は、第1スペーサー板200と同様である。まず、図4Aに示すように、第1及び第2スペーサー板200,400の材料となるスペーサー用基板SSの両面にマスクMAを形成する。マスクMAには、第1スペーサー板200の各開口部6bに対応する位置に円形の穴OPのパターンが形成されている。両側テーパー面TPの突起部91の位置は、穴OPの径の大きさやスペーサー用基板SSの各面ごとのエッチングやブラスト処理時間を変化させることによって調整するマスクMAとして、エッチング溶液に耐えうる材料が用いられ、具体的には、例えば、レジスト、ステンレス等のメタルマスク、クロム等が用いられる。
1-C) Method for Manufacturing Spacer Plate Hereinafter, an example of a method for manufacturing the first spacer plate 200 will be described with reference to FIGS. 4A to 4D. The method for producing the second spacer plate 400 is the same as that for the first spacer plate 200. First, as shown in FIG. 4A, masks MA are formed on both surfaces of a spacer substrate SS which is a material of the first and second spacer plates 200 and 400. In the mask MA, a pattern of circular holes OP is formed at positions corresponding to the openings 6 b of the first spacer plate 200. A material that can withstand the etching solution as a mask MA that is adjusted by changing the size of the diameter of the hole OP and the etching and blasting time for each surface of the spacer substrate SS. Specifically, for example, a resist, a metal mask such as stainless steel, chromium, or the like is used.
 次に、エッチングであれば図4Bに示すように、マスクMAを形成したスペーサー用基板SSをエッチング溶液ESに浸す。エッチング溶液として、例えばフッ酸やフッ化アンモニウム等が用いられる。図4Cに示すように、スペーサー用基板SSが両端面206a,206bのうちマスクMAが形成されていない部分、すなわち露出した部分から徐々にエッチングされ、最終的に、図4Dに示すように、スペーサー用基板SSに所望の大きさの開口部6bが形成される。なお、ブラスト加工によって開口部6bを形成する場合、マスクMAを形成したスペーサー用基板SSにブラスト投射物を投射する。これにより、図4Cに示すようにスペーサー用基板SSが両端面206a,206bの露出した部分から徐々に除去され、最終的に、図4Dに示すように、スペーサー用基板SSに所望の大きさの開口部6bが形成される。 Next, in the case of etching, as shown in FIG. 4B, the spacer substrate SS on which the mask MA is formed is immersed in the etching solution ES. For example, hydrofluoric acid or ammonium fluoride is used as the etching solution. As shown in FIG. 4C, the spacer substrate SS is gradually etched from the portion where the mask MA is not formed, that is, from the exposed portion of the both end faces 206a and 206b, and finally, as shown in FIG. The opening 6b having a desired size is formed in the substrate SS. When the opening 6b is formed by blasting, a blast projection is projected onto the spacer substrate SS on which the mask MA is formed. As a result, the spacer substrate SS is gradually removed from the exposed portions of the both end faces 206a and 206b as shown in FIG. 4C, and finally the spacer substrate SS has a desired size as shown in FIG. 4D. An opening 6b is formed.
1-D)積層構造体及びレンズユニットの製造方法
 図5A~5Eを参照しつつ、ウェハーレンズ100の製造工程について説明する。なお、以下では主に上側樹脂部102の成形について説明するが、下側樹脂部103の成形についても略同様の工程を行う。
1-D) Manufacturing Method of Laminated Structure and Lens Unit The manufacturing process of the wafer lens 100 will be described with reference to FIGS. 5A to 5E. In the following, the molding of the upper resin portion 102 will be mainly described, but substantially the same process is performed for the molding of the lower resin portion 103.
 まず、研削加工等によって上側樹脂部102の最終形状に対応するマスター型30(図5A参照)を作製する。次に、マスター型30の第1転写面31の各上側レンズ部11に対応する転写面上に樹脂材料41bを個別に滴下する。その後、マスター型30の上方からサブマスター基板42を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料41bを光硬化させる。この際、樹脂材料41bにマスター型30の第1転写面31が転写され、樹脂材料41bに第2転写面43(第2光学転写面及び第2フランジ転写面)が形成される。これにより、サブマスター成形部41が形成される。サブマスター基板42上には、サブマスター成形部41として、各上側レンズ部11に対応する転写部がそれぞれ独立した状態で配置されることとなる。なお、サブマスター基板42上の転写位置を変えて本工程のサブマスター型硬化工程と次工程のサブマスター型離型工程とを繰り返し、第2転写面43をさらにアレイ状に形成してもよい。 First, a master mold 30 (see FIG. 5A) corresponding to the final shape of the upper resin portion 102 is manufactured by grinding or the like. Next, the resin material 41 b is individually dropped on the transfer surface corresponding to each upper lens portion 11 of the first transfer surface 31 of the master mold 30. Thereafter, ultraviolet rays are irradiated by a UV generator (not shown) while pressing the sub-master substrate 42 from above the master mold 30, and the resin material 41b sandwiched therebetween is photocured. At this time, the first transfer surface 31 of the master mold 30 is transferred to the resin material 41b, and the second transfer surface 43 (second optical transfer surface and second flange transfer surface) is formed on the resin material 41b. Thereby, the sub master molding part 41 is formed. On the sub master substrate 42, as the sub master molding portion 41, transfer portions corresponding to the upper lens portions 11 are arranged in an independent state. The second transfer surface 43 may be further formed in an array by changing the transfer position on the sub-master substrate 42 and repeating the sub-master type curing step in this step and the sub-master type release step in the next step. .
 次に、図5Bに示すように、マスター型30からサブマスター成形部41とサブマスター基板42とを一体として離型することで、サブマスター型40が作製される。なお、サブマスター成形部41の第2転写面43上に離型剤を塗布してもよい。 Next, as shown in FIG. 5B, the sub-master mold 40 is manufactured by releasing the sub-master molding portion 41 and the sub-master substrate 42 as a single unit from the master mold 30. Note that a release agent may be applied on the second transfer surface 43 of the sub master molding unit 41.
 次に、以上の工程で得たサブマスター型40を利用して、サブサブマスター型50を作製する。まず、図5Cに示すように、サブマスター型40の第2転写面43の各上側レンズ部11に対応する転写面上に樹脂材料51bを個別に滴下する。その後、サブマスター型40の上方からサブサブマスター基板52を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料51bを光硬化させる。この際、樹脂材料51bにサブマスター型40の第2転写面43が転写され、樹脂材料51bに第3転写面53(第3光学転写面及び第3フランジ転写面)が形成される。これにより、サブサブマスター成形部51が形成される。サブサブマスター基板52上には、サブサブマスター成形部51として、各上側レンズ部11に対応する転写部がそれぞれ独立した状態で配置されることとなる。 Next, the sub-master mold 50 is manufactured using the sub-master mold 40 obtained in the above process. First, as shown in FIG. 5C, the resin material 51 b is individually dropped on the transfer surface corresponding to each upper lens portion 11 of the second transfer surface 43 of the sub-master mold 40. Thereafter, ultraviolet rays are irradiated by a UV generator (not shown) while pressing the sub-submaster substrate 52 from above the sub-master mold 40, and the resin material 51b sandwiched therebetween is photocured. At this time, the second transfer surface 43 of the sub master mold 40 is transferred to the resin material 51b, and a third transfer surface 53 (a third optical transfer surface and a third flange transfer surface) is formed on the resin material 51b. Thereby, the sub-submaster molding part 51 is formed. On the sub-sub master substrate 52, as the sub-sub master molding portion 51, transfer portions corresponding to the upper lens portions 11 are arranged in an independent state.
 次に、図5Dに示すように、サブマスター型40からサブサブマスター成形部51とサブサブマスター基板52とを一体として離型することで、サブサブマスター型50が作製される。なお、サブサブマスター成形部51の第3転写面53上に離型剤を塗布してもよい。 Next, as shown in FIG. 5D, the sub-submaster mold 50 is manufactured by separating the sub-submaster molding part 51 and the sub-submaster substrate 52 as a single unit from the submaster mold 40. Note that a release agent may be applied on the third transfer surface 53 of the sub-submaster molding unit 51.
 次に、以上の工程で得たサブサブマスター型50を利用して、ウェハーレンズ100を作製する。まず、図5Eに示すように、サブサブマスター型50の第3転写面53の各上側レンズ部11に対応する転写面上に樹脂材料102b(上側樹脂部102を形成する光硬化性樹脂)を個別に滴下する。その後、サブサブマスター型50の上方から基板101を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料102bを光硬化させる。この際、樹脂材料102bにサブサブマスター型50の第3転写面53が転写され、樹脂材料102bに第1成形面102a(図3の第1光学面11a及び第1フランジ面11b)が形成される。これにより、上側樹脂部102が形成される。基板101上には、上側樹脂部102として、各上側レンズ部11がそれぞれ独立した状態で配置されることとなる。なお、光硬化の後、完全に硬化させるために熱によって硬化させてもよい。 Next, the wafer lens 100 is manufactured using the sub-submaster mold 50 obtained in the above process. First, as shown in FIG. 5E, resin materials 102b (photocurable resins forming the upper resin portion 102) are individually applied on the transfer surfaces corresponding to the upper lens portions 11 of the third transfer surface 53 of the sub-submaster mold 50. Dripping into. Thereafter, ultraviolet rays are irradiated by a UV generator (not shown) while pressing the substrate 101 from above the sub-sub master mold 50, and the resin material 102b sandwiched therebetween is photocured. At this time, the third transfer surface 53 of the sub-submaster mold 50 is transferred to the resin material 102b, and the first molding surface 102a (the first optical surface 11a and the first flange surface 11b in FIG. 3) is formed on the resin material 102b. . Thereby, the upper resin part 102 is formed. On the substrate 101, the upper lens portions 11 are arranged as independent upper resin portions 102. In addition, you may make it harden | cure by heat in order to make it harden | cure after photocuring.
 詳細な説明を省略するが、図6Aに示すように、サブサブマスター型50と同様の構造を有するが転写面が異なるサブサブマスター型150を利用して、上述と同様の工程で基板101の他方の面101bに下側樹脂部103を形成する。 Although a detailed description is omitted, as shown in FIG. 6A, the other sub-master master 150 having the same structure as that of the sub-sub master mold 50 but having a different transfer surface is used to perform the other process of the substrate 101 in the same process as described above. The lower resin portion 103 is formed on the surface 101b.
 その後、図6Bに示すように、一対のサブサブマスター型50,150を離間させることにより、基板101と樹脂部102,103とを一体として離型する。以上により、第1ウェハーレンズ100が作製される。第2ウェハーレンズ300についても同様に作製する。 Thereafter, as shown in FIG. 6B, the pair of sub-submaster molds 50 and 150 are separated to release the substrate 101 and the resin portions 102 and 103 as a single unit. Thus, the first wafer lens 100 is manufactured. The second wafer lens 300 is similarly manufactured.
 次に、図7Aに示すように、第1ウェハーレンズ100の基板101の他方の面101bにシート状又はウェハー状の第1スペーサー板200を貼り付ける。具体的には、第1スペーサー板200又は第1ウェハーレンズ100の片面に接着剤81aを塗布する。その後、基板101や下側樹脂部103に対して第1スペーサー板200又は第1ウェハーレンズ100をアライメントし、第1スペーサー板200の接着面すなわち根本側の端面206aを基板101の他方の面101bに押し付けるとともに、接着剤にUV光を照射して硬化させる。なお、接着剤81aの塗布量は、第1スペーサー板200と基板101とを貼り付けた際にわずかに漏れ、第1スペーサー板200の両側テーパー面TPと上側レンズ部11との間隙GAが埋まる程度の量となっている。また上記に加えてより接着を強化するために第1スペーサー板200の縁部分Sの両側テーパー面TPに接着剤81aを塗布しておいてもよい。以下に説明する接着剤81b,81cについても塗布量は同様である。 Next, as shown in FIG. 7A, a sheet-shaped or wafer-shaped first spacer plate 200 is attached to the other surface 101b of the substrate 101 of the first wafer lens 100. Specifically, the adhesive 81 a is applied to one side of the first spacer plate 200 or the first wafer lens 100. Thereafter, the first spacer plate 200 or the first wafer lens 100 is aligned with respect to the substrate 101 and the lower resin portion 103, and the bonding surface of the first spacer plate 200, that is, the end surface 206 a on the root side is used as the other surface 101 b of the substrate 101. The adhesive is cured by irradiating it with UV light. The application amount of the adhesive 81a slightly leaks when the first spacer plate 200 and the substrate 101 are attached, and the gap GA between the tapered surfaces TP on both sides of the first spacer plate 200 and the upper lens portion 11 is filled. The amount is about. In addition to the above, an adhesive 81a may be applied to both side tapered surfaces TP of the edge portion S of the first spacer plate 200 in order to further strengthen the adhesion. The application amount is the same for the adhesives 81b and 81c described below.
 図7Bに示すように、以上の工程と同様の工程で、接着剤81cを用いて第2ウェハーレンズ300に第2スペーサー板400を貼り付ける。なお、第1スペーサー板200と第2ウェハーレンズ300とを貼り付けた後に第2ウェハーレンズ300に第2スペーサー板400を貼り付けてもよい。 As shown in FIG. 7B, the second spacer plate 400 is attached to the second wafer lens 300 using the adhesive 81c in the same process as the above process. Alternatively, the second spacer plate 400 may be attached to the second wafer lens 300 after the first spacer plate 200 and the second wafer lens 300 are attached.
 その後、図7Cに示すように、第1スペーサー板200を貼り付けた第1ウェハーレンズ100と第2スペーサー板400を貼り付けた第2ウェハーレンズ300と接合してアレイユニット600を作製する。つまり、第1ウェハーレンズ100に固定した第1スペーサー板200の先端側の端面206b又は第2ウェハーレンズ300に接着剤81bを塗布して第2ウェハーレンズ300又は第1スペーサー板200と貼り合わせてUV光を照射する。これにより、第1スペーサー板200を介して、第1ウェハーレンズ100に第2ウェハーレンズ300が固定又は接合される。次に、第2ウェハーレンズ300に対して第1ウェハーレンズ100の反対側に撮像素子アレイ500を貼り付ける。つまり、第2ウェハーレンズ300に固定した第2スペーサー板400の端面に接着剤81dを塗布して撮像素子アレイ500と貼り合わせてUV光を照射する。これにより、図2に示すように、第2スペーサー板400を介して、第2ウェハーレンズ300に撮像素子アレイ500が固定又は接合される。以上により、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とを積層した積層構造体1000が完成する。 Thereafter, as shown in FIG. 7C, the first wafer lens 100 with the first spacer plate 200 attached and the second wafer lens 300 with the second spacer plate 400 attached are joined to produce the array unit 600. That is, the adhesive 81b is applied to the end face 206b of the first spacer plate 200 fixed to the first wafer lens 100 or the second wafer lens 300, and is bonded to the second wafer lens 300 or the first spacer plate 200. Irradiate with UV light. Accordingly, the second wafer lens 300 is fixed or bonded to the first wafer lens 100 via the first spacer plate 200. Next, the image sensor array 500 is attached to the second wafer lens 300 on the opposite side of the first wafer lens 100. That is, the adhesive 81d is applied to the end face of the second spacer plate 400 fixed to the second wafer lens 300, and is bonded to the image pickup device array 500 to irradiate UV light. As a result, as shown in FIG. 2, the image sensor array 500 is fixed or bonded to the second wafer lens 300 via the second spacer plate 400. As described above, the laminated structure 1000 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 are laminated is completed.
 その後、図1及び図2に示すカットラインDXに沿って第1及び第2ウェハーレンズ100,300等を切断、すなわちダイシングする。ダイシングにより、第1及び第2ウェハーレンズ100,300等は、四角柱状に切り出され、第1及び第2複合レンズ10,20等を積層した構造の撮像装置700となる。 Thereafter, the first and second wafer lenses 100, 300, etc. are cut, that is, diced, along the cut line DX shown in FIGS. By dicing, the first and second wafer lenses 100, 300, etc. are cut out into a quadrangular prism shape to form an imaging device 700 having a structure in which the first and second compound lenses 10, 20, etc. are stacked.
 以上の説明では、積層構造体1000が第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400と撮像素子アレイ500とを備えるとして説明したが、積層構造体1000を第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400とで構成することもできる。この場合、第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400とを積層したアレイユニット600によって積層構造体1000を構成することになる。このようなアレイユニット600をダイシングによって個片化し、別途作製した個別の撮像素子530と接合することもできる。なお、以下に説明する実施形態でも、積層構造体1000に撮像素子アレイ500を含めているが、撮像素子アレイ500を省略してアレイユニット600で構成することもできる。 In the above description, the laminated structure 1000 has been described as including the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500. The first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 may be used. In this case, the laminated structure 1000 is constituted by the array unit 600 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 are laminated. Such an array unit 600 can be separated into pieces by dicing and joined to an individual image pickup device 530 separately manufactured. In the embodiment described below, the imaging element array 500 is included in the stacked structure 1000, but the imaging element array 500 may be omitted and the array unit 600 may be configured.
 以上説明した第1実施形態のレンズユニット及びアレイユニットによれば、第1及び第2スペーサー板200,400(レンズユニットの場合、第1及び第2スペーサー10c,20c)の両側テーパー面TPの一部に接着剤81a,81b,81cが付着することにより、接着剤81a,81b,81cで形成される接合部CE1,CE2,CE3の接触面積が増える。また、基板101,301(レンズユニットの場合、平板部13)と第1及び第2スペーサー板200,400の平面同士で接着されるだけでなく、ある角度をもった範囲でも接着され、三次元的に接合が可能となる。そのため、第1及び第2スペーサー板200,400と第1及び第2ウェハーレンズ100,300の基板101,301との間の接着強度を大幅に上げることができる。また、第1及び第2スペーサー板200,400の縁部分Sに形成された両側テーパー面TPと基板101,301や上側レンズ部11との間隙GA等を接合部CE1,CE2,CE3によって埋めることにより、より接着強度を向上させることができる。これにより、レンズユニット800を切断する工程等を経て得る場合に第1及び第2スペーサー板200,400と基板101,301の剥離や破損を低減することができる。また、例えば多数個取りのレンズユニット800の場合、第1及び第2スペーサー板200,400の穴数すなわち開口部6bを増やすことができる。つまり、第1及び第2スペーサー板200,400の接着強度が向上することにより、レンズユニットの大量生産を可能にする。 According to the lens unit and the array unit of the first embodiment described above, one side taper surface TP of the first and second spacer plates 200 and 400 (in the case of a lens unit, the first and second spacers 10c and 20c). When the adhesives 81a, 81b, and 81c adhere to the portions, the contact areas of the joints CE1, CE2, and CE3 formed by the adhesives 81a, 81b, and 81c increase. Further, not only are the substrates 101 and 301 (the flat plate portion 13 in the case of a lens unit) and the planes of the first and second spacer plates 200 and 400 adhered to each other, but they are also adhered within a certain angle range and are three-dimensional. Jointly becomes possible. Therefore, the adhesive strength between the first and second spacer plates 200 and 400 and the substrates 101 and 301 of the first and second wafer lenses 100 and 300 can be significantly increased. Further, the gap GA between the tapered surfaces TP formed on the edge portions S of the first and second spacer plates 200 and 400 and the substrates 101 and 301 and the upper lens portion 11 is filled with the joint portions CE1, CE2, and CE3. As a result, the adhesive strength can be further improved. Thereby, when it obtains through the process etc. which cut | disconnect the lens unit 800, the peeling and damage of the 1st and 2nd spacer plates 200 and 400 and the board | substrates 101 and 301 can be reduced. For example, in the case of a multi-piece lens unit 800, the number of holes of the first and second spacer plates 200 and 400, that is, the opening 6b can be increased. That is, the adhesive strength of the first and second spacer plates 200 and 400 is improved, thereby enabling mass production of lens units.
 特に、多数個取りの個別滴下方式のレンズユニット800において、全体滴下方式のレンズユニットに比べて樹脂部である上側及び下側樹脂部102,103等の切断を行わなくて済む等の点からレンズ精度を良くすることができる。ただし、個別滴下方式の場合、上側及び下側レンズ部11,12を形成するために、樹脂材料102bの滴下量をコントロールする必要がある。ここで、全ての上側及び下側レンズ部11,12を形成するための第3転写面53等に対して上側及び下側レンズ部11,12の最も外側の形状の広がりをショット間で精度良く制御することが難しい。そのため、第1及び第2スペーサー板200,400と上側及び下側レンズ部11,12との干渉を避けるためには、樹脂材料102bの滴下量の制御だけでは不十分である。よって、スペーサー板の穴径はレンズ部と開口部の内側との間隙(クリアランス)を確保するために、開口部の内径を広げるとその分だけスペーサー板の強度が減少し、スペーサー板のハンドリング時、スペーサーを積層する工程、積層構造体を切断する工程等でスペーサー板が破損する等、強度に対する懸念が生じる。そこで、両側テーパー面TPの一部に接着剤を付着させ、両側テーパー面TPと上側及び下側レンズ部11,12との間隙GAを埋めるように接合部CE1,CE2,CE3を設けることにより、接合部CE1,CE2,CE3の接着面積を多く確保することができる。結果的に、第1スペーサー板200,400の端面に平行な方向(X方向又はY方向)の接着強度が強くなり、第1及び第2スペーサー板200,400の接着強度を向上させることができる。 In particular, in the lens unit 800 of the multi-drop individual dripping method, the lens does not need to cut the upper and lower resin portions 102 and 103, which are resin portions, as compared with the whole dripping type lens unit. The accuracy can be improved. However, in the case of the individual dropping method, it is necessary to control the dropping amount of the resin material 102b in order to form the upper and lower lens portions 11 and 12. Here, the outermost shape of the upper and lower lens portions 11 and 12 with respect to the third transfer surface 53 and the like for forming all the upper and lower lens portions 11 and 12 is accurately reflected between shots. Difficult to control. Therefore, in order to avoid interference between the first and second spacer plates 200 and 400 and the upper and lower lens portions 11 and 12, it is not sufficient to control the dropping amount of the resin material 102b. Therefore, the hole diameter of the spacer plate ensures the gap (clearance) between the lens part and the inside of the opening. If the inner diameter of the opening is widened, the strength of the spacer plate is reduced by that amount. There are concerns about strength such as the spacer plate being damaged in the step of laminating the spacer, the step of cutting the laminated structure, and the like. Therefore, by attaching an adhesive to a part of the both-side tapered surface TP and providing the joint portions CE1, CE2, and CE3 so as to fill the gap GA between the both-side tapered surface TP and the upper and lower lens portions 11 and 12, A large bonding area of the joint portions CE1, CE2, and CE3 can be secured. As a result, the adhesive strength in the direction parallel to the end faces of the first spacer plates 200 and 400 (X direction or Y direction) is increased, and the adhesive strength of the first and second spacer plates 200 and 400 can be improved. .
 なお、レンズ部と基板とを一体的に成形し、ウェハーレンズ全体の面積を大きくしてレンズユニットの取り個数を増やせば増やすほど、基板等の反り等の問題点が大きくなる。これに対して本実施形態のレンズユニット800及びアレイユニット600は、基板101,301上に樹脂を塗布し光学面11a,12a,21a,22aを成形しており、レンズ部の厚みに基板の厚さが依存しない。そのため、基板101上に多量のレンズ部(上側及び下側レンズ部11,12)を形成することができるという利点がある。しかしながら、基板上に別途樹脂を塗布する必要があるため、基板上に必ず樹脂製の凸部(突起)が生じる。この凸部が生じないように凸部の周りを樹脂で埋めるという方法もあるが、その場合、レンズ部の厚みが増えてレンズユニット全体の厚みが大きくなることや樹脂の使用量が増えて基板等の反り等や製造コストの増加等の問題も発生しやすくなる。そこで、第1及び第2スペーサー板200,400の両側テーパー面TPに接着剤を付着させることにより、基板101,301上に樹脂を塗布付して成形を行う方法であっても、レンズユニット800全体の厚みを抑えつつ、レンズ部(上側及び下側レンズ部11,12)と第1及び第2スペーサー板200,400とを精度良く配置することができる。 Note that the more the lens unit and the substrate are integrally molded and the total area of the wafer lens is increased to increase the number of lens units, the more problems such as warpage of the substrate increase. On the other hand, in the lens unit 800 and the array unit 600 of the present embodiment, the optical surfaces 11a, 12a, 21a, and 22a are formed by applying resin on the substrates 101 and 301, and the thickness of the substrate is equal to the thickness of the lens portion. Is not dependent. Therefore, there is an advantage that a large amount of lens parts (upper and lower lens parts 11 and 12) can be formed on the substrate 101. However, since it is necessary to separately apply a resin on the substrate, a convex portion (protrusion) made of resin always occurs on the substrate. There is also a method of filling the periphery of the convex part with resin so that this convex part does not occur, but in that case, the thickness of the lens part increases and the thickness of the entire lens unit increases or the amount of resin used increases and the substrate Problems such as warping and the like and an increase in manufacturing cost are likely to occur. Therefore, even if the method is such that the adhesive is applied to the tapered surfaces TP on both sides of the first and second spacer plates 200 and 400 to apply a resin on the substrates 101 and 301, the lens unit 800 The lens portion (upper and lower lens portions 11 and 12) and the first and second spacer plates 200 and 400 can be arranged with high accuracy while suppressing the overall thickness.
〔第2実施形態〕
 以下、第2実施形態に係る積層構造体等について説明する。なお、第2実施形態の積層構造体の構造や製造方法は第1実施形態の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, the laminated structure according to the second embodiment will be described. Note that the structure and manufacturing method of the laminated structure of the second embodiment are modifications of the structure and manufacturing method of the laminated structure of the first embodiment, and parts not specifically described are the same as those of the first embodiment. And
 図8A等に示すように、積層構造体1000を構成する第1ウェハーレンズ100と第2ウェハーレンズ300において、上側及び下側レンズ部11,12は、基板101,301上で樹脂が繋がって形成されている。アレイユニット600を切断すると、樹脂製の上側及び下側レンズ部11,12の周囲に樹脂製の上側及び下側フランジ部15,16が形成された状態になる。つまり、第1及び第2フランジ面11b,12b,21a,22bは、上側及び下側樹脂部102,103,302,303上にそれぞれ形成される。本実施形態において、第1スペーサー板200の根本側の基部200aは、接着剤81a及び上側フランジ部15を介して基板101に間接的に接着されている。第1スペーサー板200の先端側の基部200bや第2スペーサー板400の根本側の基部400aについても同様である。なお、上側及び下側樹脂部102,103,302,303の切断位置における厚みは、例えば0.01mm以上、0.3mm以下とされる。 As shown in FIG. 8A and the like, in the first wafer lens 100 and the second wafer lens 300 constituting the laminated structure 1000, the upper and lower lens portions 11 and 12 are formed by connecting the resin on the substrates 101 and 301. Has been. When the array unit 600 is cut, the upper and lower flange portions 15 and 16 made of resin are formed around the upper and lower lens portions 11 and 12 made of resin. That is, the first and second flange surfaces 11b, 12b, 21a, and 22b are formed on the upper and lower resin portions 102, 103, 302, and 303, respectively. In the present embodiment, the base portion 200 a on the base side of the first spacer plate 200 is indirectly bonded to the substrate 101 via the adhesive 81 a and the upper flange portion 15. The same applies to the base portion 200b on the front end side of the first spacer plate 200 and the base portion 400a on the root side of the second spacer plate 400. In addition, the thickness in the cutting position of the upper side and lower side resin parts 102, 103, 302, and 303 shall be 0.01 mm or more and 0.3 mm or less, for example.
 以下、図9A~9Eを参照しつつ、本実施形態の第1ウェハーレンズ100の製造工程について説明する。本実施形態の第1及び第2ウェハーレンズ100の上側及び下側樹脂部102,103は、全体滴下方式によって形成される。なお、第2ウェハーレンズ300の製造工程も、第1ウェハーレンズ100の製造工程と同様である。 Hereinafter, the manufacturing process of the first wafer lens 100 of the present embodiment will be described with reference to FIGS. 9A to 9E. The upper and lower resin portions 102 and 103 of the first and second wafer lenses 100 of the present embodiment are formed by an entire dropping method. The manufacturing process of the second wafer lens 300 is the same as the manufacturing process of the first wafer lens 100.
 まず、図9Aに示すように、マスター型30を利用してサブマスター型40を作製する。この際、マスター型30の第1転写面31上に樹脂材料41bを塗布する。その後、樹脂材料41bを介してマスター型30に対してサブマスター基板42を押圧する。樹脂材料41bを硬化後、図9Bに示すように、マスター型30からサブマスター型40を離型する。 First, as shown in FIG. 9A, a sub-master die 40 is manufactured using the master die 30. At this time, the resin material 41 b is applied on the first transfer surface 31 of the master mold 30. Thereafter, the sub master substrate 42 is pressed against the master mold 30 through the resin material 41b. After the resin material 41b is cured, the sub master mold 40 is released from the master mold 30 as shown in FIG. 9B.
 次に、図9Cに示すように、作製したサブマスター型40を利用してサブサブマスター型50を作製する。この際、サブマスター型40の第2転写面43上に樹脂材料51bを塗布する。その後、樹脂材料51bを介してサブマスター型40に対してサブサブマスター基板52を押圧する。樹脂材料51bを硬化後、図9Dに示すように、サブマスター型40からサブサブマスター型50を離型する。 Next, as shown in FIG. 9C, a sub-sub master mold 50 is manufactured using the manufactured sub-master mold 40. At this time, the resin material 51 b is applied on the second transfer surface 43 of the sub master mold 40. Thereafter, the sub-master substrate 52 is pressed against the sub-master mold 40 through the resin material 51b. After the resin material 51b is cured, the sub-sub master mold 50 is released from the sub-master mold 40 as shown in FIG. 9D.
 次に、図9Eに示すように、作製したサブサブマスター型50を利用して第1ウェハーレンズ100を作製する。この際、サブサブマスター型50の第3転写面53に樹脂材料102bを塗布する。その後、樹脂材料102bを介してサブサブマスター型50に対して基板101を押圧する。樹脂材料102bを硬化後、サブサブマスター型50から基板101と上側樹脂部102とを一体として離型する。 Next, as shown in FIG. 9E, the first wafer lens 100 is manufactured using the manufactured sub-submaster mold 50. At this time, the resin material 102 b is applied to the third transfer surface 53 of the sub-sub master mold 50. Thereafter, the substrate 101 is pressed against the sub-sub master mold 50 through the resin material 102b. After the resin material 102b is cured, the substrate 101 and the upper resin portion 102 are integrally released from the sub-sub master mold 50.
 その後、第1実施形態の図6A及び6B、図7A~7Eに示す製造手順を行う。これにより、図8Bに示すように、レンズユニット800を含む撮像装置700を得る。 Thereafter, the manufacturing procedure shown in FIGS. 6A and 6B and FIGS. 7A to 7E of the first embodiment is performed. As a result, as shown in FIG. 8B, an imaging device 700 including the lens unit 800 is obtained.
〔第3実施形態〕
 以下、第3実施形態に係る積層構造体等について説明する。なお、第3実施形態の積層構造体の構造や製造方法は第1実施形態等の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第1実施形態等と同様であるものとする。
[Third Embodiment]
Hereinafter, the laminated structure according to the third embodiment will be described. Note that the structure and manufacturing method of the laminated structure of the third embodiment are modifications of the structure and manufacturing method of the laminated structure of the first embodiment, and the portions that are not particularly described are the same as those of the first embodiment. It shall be.
 図10A等に示すように、積層構造体1000において、第1スペーサー板200は、開口部6bの断面において、開口部6bの最も内側にある突起部91の先端位置が、第1スペーサー板200の厚み方向において、中心よりも先端側の端面206b側に形成されている。つまり、支持体6aの根本側の端面206aから突起部91までの厚み方向の高さh1は、支持体6aの先端側の端面206bから突起部91までの厚み方向の高さh2よりも大きくなっている。なお、突起部91の先端位置が、第1スペーサー板200の厚み方向において、中心よりも根本側の端面206a側に形成されていてもよい。この積層構造体1000をダイシングすることにより、図10Bに示すレンズユニット800を含む撮像装置700を得る。 As shown in FIG. 10A and the like, in the laminated structure 1000, the first spacer plate 200 has a tip end position of the projection 91 on the innermost side of the opening 6b in the cross section of the opening 6b. In the thickness direction, it is formed on the end surface 206b side on the tip side from the center. In other words, the height h1 in the thickness direction from the end face 206a on the base side of the support 6a to the protrusion 91 is larger than the height h2 in the thickness direction from the end face 206b on the tip side of the support 6a to the protrusion 91. ing. The tip position of the protrusion 91 may be formed closer to the end face 206a on the root side than the center in the thickness direction of the first spacer plate 200. By dicing the laminated structure 1000, an imaging device 700 including the lens unit 800 shown in FIG. 10B is obtained.
 なお、突起部91の厚み方向における位置は、図4A等に示すスペーサー用基板SSのマスクMAの穴OPの径の大きさ、又はスペーサー用基板SSの端面206aと端面206bの処理時間を変化させることによって調整する。具体的には、図11に示すように、スペーサー用基板SSの一方の端面206a上に形成されたマスクMA1の穴OP1の径x1を、他方の端面206b上に形成されたマスクMA2のOP2の径x2よりも大きくする。また、突起部91を端面206a側に近づけたい場合、端面206a側の処理時間を端面206b側よりも小さくする。なお、本実施形態におけるスペーサー板200の作製方法は、以下の第5実施形態等においてより詳細に説明する。 Note that the position of the protrusion 91 in the thickness direction changes the size of the diameter of the hole OP of the mask MA of the spacer substrate SS shown in FIG. 4A or the like, or the processing time of the end surfaces 206a and 206b of the spacer substrate SS. Adjust by. Specifically, as shown in FIG. 11, the diameter x1 of the hole OP1 of the mask MA1 formed on one end surface 206a of the spacer substrate SS is set to the diameter of OP2 of the mask MA2 formed on the other end surface 206b. It is larger than the diameter x2. Further, when it is desired to bring the protruding portion 91 closer to the end face 206a side, the processing time on the end face 206a side is made shorter than that on the end face 206b side. In addition, the manufacturing method of the spacer board 200 in this embodiment is demonstrated in detail in the following 5th Embodiment etc.
 第3実施形態のレンズユニット及びアレイユニットによれば、第1スペーサー板200の突起部91の先端位置が、第1スペーサー板200の厚み方向の中心よりも先端側の端面206b側に形成されていることにより、突起部91がレンズ厚が薄い第2ウェハーレンズ300の上側レンズ部11側に配置される。これにより、第1スペーサー板200の上側レンズ部11への当たりを回避しやすくすることができる。 According to the lens unit and the array unit of the third embodiment, the tip position of the protrusion 91 of the first spacer plate 200 is formed closer to the end face 206b side of the tip side than the center in the thickness direction of the first spacer plate 200. As a result, the protrusion 91 is disposed on the upper lens portion 11 side of the second wafer lens 300 having a small lens thickness. Thereby, it is possible to easily avoid the first spacer plate 200 from hitting the upper lens portion 11.
〔第4実施形態〕
 以下、第4実施形態に係る積層構造体等について説明する。なお、第4実施形態の積層構造体の構造や製造方法は第1実施形態等の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第1実施形態等と同様であるものとする。
[Fourth Embodiment]
Hereinafter, the laminated structure etc. which concern on 4th Embodiment are demonstrated. Note that the structure and manufacturing method of the laminated structure according to the fourth embodiment are modifications of the structure and manufacturing method of the laminated structure according to the first embodiment, and parts not specifically described are the same as those of the first embodiment. It shall be.
 図12に示すように、積層構造体1000において、第2スペーサー板400は、両側テーパー面を有さず、一方の端面406aから他方の端面406bに向けて一方向に狭まる片面テーパー面PPを有する。この場合、片面テーパー面PPのうち片面テーパー面PPと基板301とがなす内側の角度αが鋭角となる部分に接着剤81cが付着する。つまり、第2スペーサー板400の一対の開口部6bの入り口のうち開口部6bの内径が大きい側の片面テーパー面PPの一部に接着剤81cが付着する。なお、第1スペーサー板200に片面テーパー面PPを設けてもよい。 As shown in FIG. 12, in the laminated structure 1000, the second spacer plate 400 does not have a tapered surface on both sides, but has a single-sided tapered surface PP that narrows in one direction from one end surface 406a to the other end surface 406b. . In this case, the adhesive 81c adheres to a portion of the one-side tapered surface PP where the inner angle α formed by the one-side tapered surface PP and the substrate 301 is an acute angle. That is, the adhesive 81c adheres to a part of the one-side tapered surface PP on the side where the inner diameter of the opening 6b is larger among the entrances of the pair of openings 6b of the second spacer plate 400. The first spacer plate 200 may be provided with a one-side tapered surface PP.
 〔第5実施形態〕
2-A)積層構造体
 図面を参照して、本発明の第5実施形態に係るアレイユニットを含む積層構造体について説明する。
[Fifth Embodiment]
2-A) Multilayer Structure A multilayer structure including an array unit according to the fifth embodiment of the present invention will be described with reference to the drawings.
 図13及び図14に示すように、積層構造体1000は、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とをZ軸方向に積層したものである。積層構造体1000をダイシングによって切り出すことにより、レンズユニット800と撮像素子530とを積層した撮像装置700(図15参照)を得ることができる。ここで、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とは、それぞれXY面に平行に延びており、積層構造体1000全体としても、XY面に平行に延びている。このうち、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400とを積層したものは、本明細書において便宜上アレイユニット600と呼ぶが、広義のウェハーレンズに含まれる。 As shown in FIGS. 13 and 14, the laminated structure 1000 includes a first wafer lens 100, a first spacer plate 200, a second wafer lens 300, a second spacer plate 400, and an image sensor array 500. Laminated in the Z-axis direction. By cutting out the laminated structure 1000 by dicing, an imaging device 700 (see FIG. 15) in which the lens unit 800 and the imaging element 530 are laminated can be obtained. Here, the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 each extend in parallel to the XY plane and have a laminated structure. The entire body 1000 also extends parallel to the XY plane. Of these, a laminate of the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 is referred to as an array unit 600 for convenience in this specification. Included in wafer lens.
 積層構造体1000のうち第1ウェハーレンズ100は、例えば円盤状であり、基板101と、上側樹脂部102と、下側樹脂部103とを有する。ここで、上側及び下側樹脂部102,103は、軸AXに垂直なXY面内での並進及び軸AXのまわりの回転に関して相互にアライメントされて基板101に接合されている。第1ウェハーレンズ100には、これを構成する光学素子として、多数の第1複合レンズ10が形成されXY面に沿って2次的に配列されている。つまり、第1ウェハーレンズ100は、切断前において第1複合レンズ10が複数集まったものをいう(第2ウェハーレンズ300についても同様)。第1複合レンズ10は、光学面を形成するレンズ本体10aと、レンズ本体10aの周辺に存在するフランジ10bとを有する。なお、レンズ本体10a及びフランジ10bは、上側及び下側樹脂部102,103の一部だけでなく基板101の一部を含むものとなっている。 The first wafer lens 100 in the laminated structure 1000 has, for example, a disk shape, and includes a substrate 101, an upper resin portion 102, and a lower resin portion 103. Here, the upper and lower resin portions 102 and 103 are bonded to the substrate 101 in alignment with each other with respect to translation in the XY plane perpendicular to the axis AX and rotation around the axis AX. In the first wafer lens 100, a large number of first compound lenses 10 are formed as optical elements constituting them, and are secondarily arranged along the XY plane. That is, the first wafer lens 100 is a group of a plurality of first compound lenses 10 before cutting (the same applies to the second wafer lens 300). The first compound lens 10 includes a lens body 10a that forms an optical surface, and a flange 10b that exists around the lens body 10a. The lens body 10 a and the flange 10 b include not only a part of the upper and lower resin parts 102 and 103 but also a part of the substrate 101.
 第1ウェハーレンズ100のうち基板101は、第1ウェハーレンズ100の全体に亘って延びる平板であり、例えばガラスで形成されている。基板101の厚さは、基本的には光学的仕様によって決定されるが、第1ウェハーレンズ100の離型時において破損しない程度の厚さとなっている。基板101は、第1複合レンズ10のレンズ本体10aの中央部とフランジ10bとを構成する。なお、基板101の材料としては、ガラスのほか、熱硬化性樹脂、光硬化性樹脂、熱可塑性樹脂等を用いることができるが、特にガラスが好ましい。基板101の具体的な厚みは、用途にもよるが、例えば0.2mm以上、1.5mm以下とされる。 The substrate 101 of the first wafer lens 100 is a flat plate extending over the entire first wafer lens 100, and is formed of, for example, glass. The thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the first wafer lens 100 is not damaged when the first wafer lens 100 is released. The substrate 101 constitutes the center portion of the lens body 10a of the first compound lens 10 and the flange 10b. As the material of the substrate 101, a glass, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used, and glass is particularly preferable. Although the specific thickness of the board | substrate 101 is based also on a use, it shall be 0.2 mm or more and 1.5 mm or less, for example.
 上側樹脂部102は、樹脂製であり、基板101の一方の面101a上に形成されている。上側樹脂部102は、複数の上側レンズ部11と各上側レンズ部11の周囲に形成された上側フランジ部15とを有する。つまり、上側樹脂部102は、第1ウェハーレンズ100を切断する前において基板101上に形成された上側レンズ部11を含む樹脂部分全体をいう(下側レンズ部12についても同様)。各上側レンズ部11は、第1複合レンズ10のレンズ本体10aの上部を構成する。各上側レンズ部11は、基板101上のXY面内で2次元的に配列されている。上側レンズ部11は、例えば凸形状を有し、図15に示すように凸形状の非球面型の第1光学面11aを有する。上側フランジ部15は、フランジ10bの上部を構成する。上側フランジ部15は、図15に示すように第1フランジ面11bを有する。第1光学面11aと第1フランジ面11bとは、転写によって一括成形される第1成形面102aとなっている。上側樹脂部102の切断位置における厚みは、例えば0.01mm以上、0.3mm以下とされる。 The upper resin portion 102 is made of resin and is formed on one surface 101 a of the substrate 101. The upper resin portion 102 includes a plurality of upper lens portions 11 and an upper flange portion 15 formed around each upper lens portion 11. That is, the upper resin portion 102 refers to the entire resin portion including the upper lens portion 11 formed on the substrate 101 before the first wafer lens 100 is cut (the same applies to the lower lens portion 12). Each upper lens portion 11 constitutes an upper portion of the lens body 10 a of the first compound lens 10. Each upper lens unit 11 is two-dimensionally arranged in the XY plane on the substrate 101. The upper lens unit 11 has, for example, a convex shape, and has a convex aspherical first optical surface 11a as shown in FIG. The upper flange portion 15 constitutes the upper portion of the flange 10b. The upper flange portion 15 has a first flange surface 11b as shown in FIG. The first optical surface 11a and the first flange surface 11b serve as a first molding surface 102a that is collectively molded by transfer. The thickness of the upper resin part 102 at the cutting position is, for example, 0.01 mm or more and 0.3 mm or less.
 上側樹脂部102は、光硬化性樹脂で形成されている。光硬化性樹脂には、光硬化性樹脂の重合を開始させる光重合開始剤が含まれている。光硬化性樹脂としては、アクリル樹脂、アリルエステル樹脂、エポキシ系樹脂、又はビニル系樹脂等を使用することができる。アクリル樹脂、アリルエステル樹脂、又はビニル系樹脂を使用する場合、光重合開始剤の例えばラジカル重合により反応硬化させることができ、エポキシ系樹脂を使用する場合、光重合開始剤の例えばカチオン重合により反応硬化させることができる。 The upper resin portion 102 is made of a photocurable resin. The photocurable resin contains a photopolymerization initiator that initiates polymerization of the photocurable resin. As the photocurable resin, an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used. When acrylic resin, allyl ester resin, or vinyl resin is used, it can be cured by reaction, for example, by radical polymerization of a photopolymerization initiator, and when epoxy resin is used, it is reacted by, for example, cationic polymerization of a photopolymerization initiator. It can be cured.
 下側樹脂部103(第1の樹脂部)は、上側樹脂部102と同様に、樹脂製であり、基板101の他方の面101b上に形成されている。下側樹脂部103は、複数の下側レンズ部12(第1のレンズ部)と下側フランジ部16とを有する。各下側レンズ部12は、第1複合レンズ10のレンズ本体10aの下部を構成する。各下側レンズ部12は、基板101上のXY面内で2次元的に配列している。各下側レンズ部12の位置は、基板101の反対側の各上側レンズ部11の位置に対応している。下側レンズ部12は、例えば凸形状を有し、図15に示すように凹形状の非球面型の第2光学面12aを有する。つまり、下側レンズ部12は、凹形状の第2光学面12aを有しつつ、下側樹脂部103の成形面側に突出している。言い換えれば、下側レンズ部12は、第1スペーサー板200の根本側(図面下側)の基部200aよりも突出している。また、下側フランジ部16は、フランジ10bの下部を構成する。下側フランジ部16は、図15に示すように第2フランジ面12bを有する。第2光学面12aと第2フランジ面12bとは、転写によって一括成形される第2成形面103aとなっている。上側樹脂部102の切断位置における厚みは、例えば0.01mm以上、0.3mm以下とされる。 The lower resin portion 103 (first resin portion) is made of resin and is formed on the other surface 101 b of the substrate 101, similar to the upper resin portion 102. The lower resin portion 103 includes a plurality of lower lens portions 12 (first lens portions) and a lower flange portion 16. Each lower lens portion 12 constitutes a lower portion of the lens body 10 a of the first compound lens 10. The lower lens portions 12 are two-dimensionally arranged in the XY plane on the substrate 101. The position of each lower lens portion 12 corresponds to the position of each upper lens portion 11 on the opposite side of the substrate 101. The lower lens unit 12 has a convex shape, for example, and has a concave aspherical second optical surface 12a as shown in FIG. That is, the lower lens portion 12 protrudes toward the molding surface side of the lower resin portion 103 while having the concave second optical surface 12a. In other words, the lower lens portion 12 protrudes from the base portion 200a on the base side (lower side in the drawing) of the first spacer plate 200. Further, the lower flange portion 16 constitutes a lower portion of the flange 10b. The lower flange portion 16 has a second flange surface 12b as shown in FIG. The second optical surface 12a and the second flange surface 12b form a second molding surface 103a that is collectively molded by transfer. The thickness of the upper resin part 102 at the cutting position is, for example, 0.01 mm or more and 0.3 mm or less.
 下側樹脂部103に用いられる光硬化性樹脂は、上側樹脂部102の光硬化性樹脂と同様のものである。ただし、両樹脂部102,103を同一の光硬化性樹脂で形成する必要はなく、別の光硬化性樹脂で形成することができる。 The photocurable resin used for the lower resin portion 103 is the same as the photocurable resin of the upper resin portion 102. However, it is not necessary to form both the resin parts 102 and 103 with the same photocurable resin, and it can form with another photocurable resin.
 第2ウェハーレンズ300は、第1ウェハーレンズ100と同様に、例えば円盤状であり、基板301と、上側樹脂部302(第2の樹脂部)と、下側樹脂部303とを有する。第2ウェハーレンズ300の構成は、第1ウェハーレンズ100の構成と略同様である。第2ウェハーレンズ300には、これを構成する光学素子として、多数の第2複合レンズ20が形成されXY面に沿って2次的に配列されている。第2複合レンズ20は、光学面を形成するレンズ本体20aと、レンズ本体20aの周辺に存在するフランジ20bとを有する。なお、レンズ本体20a及びフランジ20bは、上側及び下側樹脂部302,303の一部だけでなく基板301の一部を含むものとなっている。上側レンズ部11(第2のレンズ部)は、第2複合レンズ20のレンズ本体20aの上部を構成し、下側レンズ部12は、レンズ本体20aの下部を構成する。なお、第2ウェハーレンズ300の場合、上側レンズ部11は、例えば凸形状を有し、図15に示すように凹形状の非球面型の第1光学面21aを有する。また、下側レンズ部12は、例えば凸形状を有し、図15に示すように凹形状の非球面型の第2光学面22aを有する。上側フランジ部15は、第2複合レンズ20のフランジ20bの上部を構成し、下側フランジ部16は、フランジ20bの下部を構成する。上側フランジ部15は、図15に示すように第1フランジ面21bを有し、下側フランジ部16は、第2フランジ部22bを有する。 Similarly to the first wafer lens 100, the second wafer lens 300 has a disk shape, for example, and includes a substrate 301, an upper resin portion 302 (second resin portion), and a lower resin portion 303. The configuration of the second wafer lens 300 is substantially the same as the configuration of the first wafer lens 100. In the second wafer lens 300, a large number of second compound lenses 20 are formed as optical elements constituting the second lens, and are secondarily arranged along the XY plane. The second compound lens 20 includes a lens body 20a that forms an optical surface, and a flange 20b that exists around the lens body 20a. The lens body 20 a and the flange 20 b include not only a part of the upper and lower resin parts 302 and 303 but also a part of the substrate 301. The upper lens part 11 (second lens part) constitutes the upper part of the lens body 20a of the second compound lens 20, and the lower lens part 12 constitutes the lower part of the lens body 20a. In the case of the second wafer lens 300, the upper lens portion 11 has a convex shape, for example, and has a concave aspherical first optical surface 21a as shown in FIG. The lower lens portion 12 has a convex shape, for example, and has a concave aspherical second optical surface 22a as shown in FIG. The upper flange portion 15 constitutes the upper portion of the flange 20b of the second compound lens 20, and the lower flange portion 16 constitutes the lower portion of the flange 20b. As shown in FIG. 15, the upper flange portion 15 has a first flange surface 21b, and the lower flange portion 16 has a second flange portion 22b.
 以上において、第1及び第2ウェハーレンズ100,300を構成する上側及び下側レンズ部11,12は、素子領域を含む各第1及び第2複合レンズ10,20単位で分離される。このように、アレイユニット600を分離することにより、複数のレンズユニット800が得られる。 In the above, the upper and lower lens portions 11 and 12 constituting the first and second wafer lenses 100 and 300 are separated in units of the first and second compound lenses 10 and 20 including the element region. Thus, by separating the array unit 600, a plurality of lens units 800 can be obtained.
 第1スペーサー板200は、第1ウェハーレンズ100の支持部として機能するものである。第1スペーサー板200は、ガラス、セラミックス、樹脂等からなる平板状の部材であって第1複合レンズ10に対応する配列で穴が形成されている。図15に示すように、第1スペーサー板200は、ダイシングによって複数のスペーサー10cに分割される。各スペーサー10cは、筒状の支持体6aと断面円形の開口部6bとを有する。開口部6bは、レンズ本体10aのZ軸に平行な光軸OAを通すように光軸OAに沿って延びている。開口部6bは、第1ウェハーレンズ100の下側レンズ部12及び第2ウェハーレンズ300の上側レンズ部11に臨む縁部分Sによって形成される。ここで、縁部分Sとは、第1スペーサー板200に形成された穴の内側部分である。縁部分Sは、上側及び下側レンズ部11,12の外形を囲むように、略円形に形成されている。支持体6aは、レンズ本体10aを避けてレンズ本体10aの周囲のフランジ10bに固定されている。つまり、開口部6bとレンズ本体10aとの間には、適度な隙間が形成されている。開口部6bの縁部分Sには、第1スペーサー板200の一方の端面である根元側(図面上側)の端面206aと、他方の端面である先端側(図面下側)の端面206bとから開口部6bの厚み方向(図中のZ方向)の中心側に向かって狭まる両側テーパー面TPが形成されている。開口部6b(縁部分S)の厚み方向の断面において、開口部6bの最も内側にある突起部91の先端位置が厚み方向の略中央に形成されている。支持体6aの根元側(図面上側)の端面206aは、接着剤81aを介して図面下側の第2フランジ面12bに接着されている。つまり、第1スペーサー板200の基部200aは、上側樹脂部102を介在して、すなわち間接的に基板101に接着されている。また、第1スペーサー板200の先端側(図面下側)の端面206bは、接着剤81bを介して第2ウェハーレンズ300を構成する第2複合レンズ20のうち図面上側の第1フランジ面21bに接着されている。つまり、第1スペーサー板200の基部200bは基板301に間接的に接着されている。これにより、第1ウェハーレンズ100の下側レンズ部12及び第2ウェハーレンズ300の上側レンズ部11は、第1スペーサー板200において、対応する開口部6bの位置で、開口部6b内に突出することとなる。両側テーパー面TPは、各レンズ部11,12とある程度の隙間を保つように形成されており、第1スペーサー板200の支持体6aと各レンズ部11,12とが互いに干渉しないようになっている。具体的には、第1スペーサー板200の開口部6bと端面206a,206bと交差する縁部61a,61bと、下側及び上側レンズ部12,11のうち第1スペーサー板200の基部200a,200bからそれぞれ突出する部分の外側の縁部61c,61dとの距離d1,d2は、0以上であり、開口部6bの縁部分Sが上側及び下側レンズ部11,12から所定の距離を保つことができる程度の距離となっている。両側テーパー面TPの傾斜角度θは、第1スペーサー板200の厚み方向に対して0°<θ≦45°となっている。なお、凸形状の上側及び下側レンズ部11,12と両側テーパー面TPとの間隙は、レンズ部が凹形状の場合よりもより厳密な調整が必要となる。調整が不十分な場合、レンズ部が凹形状の場合に比較して第1スペーサー板200が第1及び第2ウェハーレンズ100,300に精度良く貼り付けられないおそれがある。 The first spacer plate 200 functions as a support portion for the first wafer lens 100. The first spacer plate 200 is a flat plate member made of glass, ceramics, resin, or the like, and has holes formed in an array corresponding to the first compound lens 10. As shown in FIG. 15, the first spacer plate 200 is divided into a plurality of spacers 10c by dicing. Each spacer 10c has a cylindrical support 6a and an opening 6b having a circular cross section. The opening 6b extends along the optical axis OA so as to pass the optical axis OA parallel to the Z-axis of the lens body 10a. The opening 6 b is formed by the edge portion S facing the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300. Here, the edge portion S is an inner portion of a hole formed in the first spacer plate 200. The edge portion S is formed in a substantially circular shape so as to surround the outer shapes of the upper and lower lens portions 11 and 12. The support 6a is fixed to a flange 10b around the lens body 10a while avoiding the lens body 10a. That is, an appropriate gap is formed between the opening 6b and the lens body 10a. The edge portion S of the opening 6b opens from one end face of the first spacer plate 200 on the base side (upper side in the drawing) 206a and the other end face on the front end side (lower side in the drawing) 206b. Both side taper surfaces TP that narrow toward the center side in the thickness direction (Z direction in the drawing) of the portion 6b are formed. In the cross section in the thickness direction of the opening 6b (edge portion S), the tip end position of the projection 91 located on the innermost side of the opening 6b is formed at the approximate center in the thickness direction. An end surface 206a on the base side (upper side in the drawing) of the support 6a is bonded to the second flange surface 12b on the lower side in the drawing via an adhesive 81a. That is, the base portion 200a of the first spacer plate 200 is bonded to the substrate 101 via the upper resin portion 102, that is, indirectly. Further, an end surface 206b on the front end side (lower side of the drawing) of the first spacer plate 200 is formed on the first flange surface 21b on the upper side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via the adhesive 81b. It is glued. That is, the base portion 200 b of the first spacer plate 200 is indirectly bonded to the substrate 301. Thus, the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300 protrude into the opening 6b at the position of the corresponding opening 6b in the first spacer plate 200. It will be. The tapered surfaces TP on both sides are formed so as to maintain a certain gap with the lens portions 11 and 12, so that the support 6a of the first spacer plate 200 and the lens portions 11 and 12 do not interfere with each other. Yes. Specifically, the edge portions 61 a and 61 b intersecting the opening 6 b and the end surfaces 206 a and 206 b of the first spacer plate 200, and the base portions 200 a and 200 b of the first spacer plate 200 among the lower and upper lens portions 12 and 11. The distances d1 and d2 with the outer edge portions 61c and 61d of the portions protruding from the respective sides are 0 or more, and the edge portion S of the opening 6b keeps a predetermined distance from the upper and lower lens portions 11 and 12. It is the distance that can be. The inclination angle θ of the tapered surfaces TP on both sides is 0 ° <θ ≦ 45 ° with respect to the thickness direction of the first spacer plate 200. The gap between the convex upper and lower lens portions 11 and 12 and the both side tapered surfaces TP needs to be adjusted more strictly than when the lens portion is concave. When the adjustment is insufficient, the first spacer plate 200 may not be attached to the first and second wafer lenses 100 and 300 with higher accuracy than when the lens portion has a concave shape.
 第1スペーサー板200やこれから得たスペーサー10cは、第1ウェハーレンズ100と第2ウェハーレンズ300との間隔を調整するための部材であり、撮像装置700を構成する2つの第1及び第2複合レンズ10,20間の距離を調整する役割を有する。なお、支持体6aには、遮光性の材料で形成され、又は開口内面等に遮光性の塗装が施されたものであり、光学絞りとしての役割も有する。 The first spacer plate 200 and the spacer 10c obtained therefrom are members for adjusting the distance between the first wafer lens 100 and the second wafer lens 300, and the two first and second composites that constitute the imaging device 700. It has a role of adjusting the distance between the lenses 10 and 20. The support 6a is made of a light-shielding material or has a light-shielding coating applied to the inner surface of the opening or the like, and also serves as an optical diaphragm.
 第2スペーサー板400は、第2ウェハーレンズ300の支持部として機能するものである。第2スペーサー板400は、第1スペーサー板200と同様の構成を有する。図15に示すように、第2スペーサー板400は、ダイシングによって複数のスペーサー20cに分割される。第2スペーサー板400の支持体6aの根本側の端面406aは、接着剤81cを介して第2ウェハーレンズ300を構成する第2複合レンズ20のうち図面下側の第2フランジ面22bに接着されている。つまり、第2スペーサー板400の根本側の基部400aは基板301に間接的に接着されている。また、第2スペーサー板400の先端側の端面406bは、接着剤81dを介して撮像素子アレイ500に接着されている。第2スペーサー板400やスペーサー20cは、第2ウェハーレンズ300と撮像素子アレイ500との間隔を調整するための部材であり、撮像装置700を構成する第2複合レンズ20と撮像素子530との間の距離を調整する役割を有する。 The second spacer plate 400 functions as a support portion for the second wafer lens 300. The second spacer plate 400 has the same configuration as the first spacer plate 200. As shown in FIG. 15, the second spacer plate 400 is divided into a plurality of spacers 20c by dicing. The end surface 406a on the base side of the support 6a of the second spacer plate 400 is bonded to the second flange surface 22b on the lower side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via an adhesive 81c. ing. That is, the base 400 a on the base side of the second spacer plate 400 is indirectly bonded to the substrate 301. Further, the end surface 406b on the front end side of the second spacer plate 400 is bonded to the imaging element array 500 via an adhesive 81d. The second spacer plate 400 and the spacer 20 c are members for adjusting the distance between the second wafer lens 300 and the image sensor array 500, and are between the second compound lens 20 and the image sensor 530 constituting the image pickup apparatus 700. It has a role to adjust the distance.
 第1スペーサー板200の厚みは、第1ウェハーレンズ100の下側レンズ部12と第2ウェハーレンズ300の上側レンズ部11との間隔を適切に保つような値とする。また、第2スペーサー板400の厚みは、第2ウェハーレンズ300の下側レンズ部12と撮像素子アレイ500の撮像素子530との間隔を適切に保つような値とする。第1及び第2スペーサー板200,400の具体的な厚みは、上側及び下側レンズ部11,12の光学的特性、撮像素子530の性能、撮像用レンズとして求められる機能や用途等にもよるが、概ね0.1mm以上、0.8mm以下が好ましく、0.2mm以上、0.6mm以下がさらに好ましい。0.1mm以上の場合、取り扱いが容易で、また、応力緩和性が高く、剥離や割れといった故障が生じにくい。また、0.8mm以下であると、透過率が高く好ましい。 The thickness of the first spacer plate 200 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300. In addition, the thickness of the second spacer plate 400 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the second wafer lens 300 and the image sensor 530 of the image sensor array 500. The specific thickness of the first and second spacer plates 200 and 400 depends on the optical characteristics of the upper and lower lens portions 11 and 12, the performance of the image sensor 530, the functions and applications required for the imaging lens, and the like. However, generally 0.1 mm or more and 0.8 mm or less are preferable, and 0.2 mm or more and 0.6 mm or less are more preferable. When the thickness is 0.1 mm or more, handling is easy, stress relaxation is high, and failures such as peeling and cracking are unlikely to occur. Moreover, it is preferable that it is 0.8 mm or less because the transmittance is high.
 第1及び第2スペーサー板200,400の具体的な材料は、軟質ガラス、樹脂、有機無機ハイブリッド材料等であり、特に限定されないが、耐熱性の有る樹脂、または、耐熱性の有る有機無機ハイブリッド材料が良い。有機無機ハイブリッド材料は、耐熱性の有るガラス繊維強化樹脂、フィラー強化樹脂、有機-シリカハイブリッド等が良い。特に有機シリカ-ハイブリッドが良く、中でも、エポキシ樹脂-シリカハイブリッドおよびアクリル-シリカハイブリッドは、上側及び下側樹脂部102,103との接着性も良好で好ましい。 Specific materials of the first and second spacer plates 200 and 400 are soft glass, resin, organic-inorganic hybrid material, and the like, and are not particularly limited. However, heat-resistant resin or heat-resistant organic-inorganic hybrid is used. Good material. As the organic / inorganic hybrid material, heat-resistant glass fiber reinforced resin, filler reinforced resin, organic-silica hybrid, and the like are preferable. In particular, an organic silica-hybrid is preferable. Among them, an epoxy resin-silica hybrid and an acrylic-silica hybrid are preferable because they have good adhesion to the upper and lower resin portions 102 and 103.
 第1及び第2スペーサー板200,400の開口部6bは、例えばエッチングやブラスト等によって形成される。エッチング方法として、例えばウェットエッチング等が用いられ、ブラスト方法としては、マイクロブラスト加工等が用いられる。 The openings 6b of the first and second spacer plates 200 and 400 are formed by, for example, etching or blasting. For example, wet etching or the like is used as the etching method, and microblasting or the like is used as the blasting method.
2-B)レンズユニット及び撮像装置
 図15を参照しつつ、レンズユニット800及び撮像装置700について説明する。撮像装置700は、レンズユニット800と撮像素子530とを備える。
2-B) Lens Unit and Imaging Device The lens unit 800 and the imaging device 700 will be described with reference to FIG. The imaging device 700 includes a lens unit 800 and an imaging element 530.
 レンズユニット800は、第1複合レンズ10と、第1スペーサー10cと、第2複合レンズ20と、第2スペーサー20cとを備える。 The lens unit 800 includes a first compound lens 10, a first spacer 10c, a second compound lens 20, and a second spacer 20c.
 第1複合レンズ10は、既に説明した上側レンズ部11と、下側レンズ部12と、これらの間に挟まれた平板部13とを備える。平板部13は、基板101を切り出した部分である。つまり、第1複合レンズ10は、基板101に樹脂製の複数の上側及び下側レンズ部11,12を形成した後に切断して個片化したレンズである(第2複合レンズ20についても同様)。第1複合レンズ10において、上側及び下側レンズ部11,12の形状は同一でも異なる形状であってもよい。第2複合レンズ20は、第1複合レンズ10と同様に、上側レンズ部11と、下側レンズ部12と、これらの間に挟まれた平板部13とを備える。 The first compound lens 10 includes the upper lens portion 11, the lower lens portion 12, and the flat plate portion 13 sandwiched therebetween. The flat plate portion 13 is a portion obtained by cutting out the substrate 101. That is, the first compound lens 10 is a lens that is cut into individual pieces after forming a plurality of resin upper and lower lens portions 11 and 12 on the substrate 101 (the same applies to the second compound lens 20). . In the first compound lens 10, the shapes of the upper and lower lens portions 11 and 12 may be the same or different. Similar to the first compound lens 10, the second compound lens 20 includes an upper lens unit 11, a lower lens unit 12, and a flat plate unit 13 sandwiched therebetween.
 第1スペーサー10cは、第1複合レンズ10と第2複合レンズ20との間に設けられている。第2スペーサー20cは、第2複合レンズ20と撮像素子530との間に設けられている。第1及び第2スペーサー10c,20cは、上側及び下側レンズ部11,12にそれぞれ対応する開口部6bを有する。開口部6bの縁部分Sには、第1及び第2スペーサー10c,20cの厚み方向の中心側に向かって狭まる両側テーパー面TPが形成されている。開口部6b(縁部分S)の厚み方向の断面において、突起部91の先端位置が厚み方向の略中央に形成されている。 The first spacer 10 c is provided between the first compound lens 10 and the second compound lens 20. The second spacer 20 c is provided between the second compound lens 20 and the image sensor 530. The first and second spacers 10c and 20c have openings 6b corresponding to the upper and lower lens portions 11 and 12, respectively. A double-sided tapered surface TP that narrows toward the center in the thickness direction of the first and second spacers 10c and 20c is formed at the edge portion S of the opening 6b. In the cross section in the thickness direction of the opening 6b (edge portion S), the tip position of the protrusion 91 is formed at the approximate center in the thickness direction.
 撮像装置700は、光軸OA方向から見て四角形の輪郭を有する。なお、撮像装置700は、例えば別途準備したホルダーに収納され、撮像レンズとして撮像回路基板に接着される。 The imaging device 700 has a rectangular outline when viewed from the optical axis OA direction. Note that the imaging device 700 is housed in, for example, a separately prepared holder and bonded to the imaging circuit board as an imaging lens.
2-C)スペーサー板の製造方法
 第1スペーサー板200の作製方法は、第1実施形態で説明したもの(図4A~4D参照)と同様であるので、説明を省略する。また、第2スペーサー板400の作製方法は、第1スペーサー板200と同様である。
2-C) Manufacturing Method of Spacer Plate The manufacturing method of the first spacer plate 200 is the same as that described in the first embodiment (see FIGS. 4A to 4D), and thus the description thereof is omitted. The method for producing the second spacer plate 400 is the same as that for the first spacer plate 200.
2-D)積層構造体及びレンズユニットの製造方法
 ウェハーレンズ100の製造工程は、第1実施形態で説明したもの(図9A~9E参照)と同様である。なお、上側樹脂部102の成形と、下側樹脂部103の成形とは、略同様の工程で行われる。
2-D) Manufacturing Method of Laminated Structure and Lens Unit The manufacturing process of the wafer lens 100 is the same as that described in the first embodiment (see FIGS. 9A to 9E). Note that the molding of the upper resin portion 102 and the molding of the lower resin portion 103 are performed in substantially the same process.
 まず、研削加工等によって上側樹脂部102の最終形状に対応するマスター型30(図9A参照)を作製する。次に、マスター型30上に樹脂材料41bを塗布し、マスター型30の上方からサブマスター基板42を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料41bを光硬化させる。この際、樹脂材料41bにマスター型30の第1転写面31が転写され、樹脂材料41bに第2転写面43(第2光学転写面及び第2フランジ転写面)が形成される。これにより、サブマスター成形部41が形成される。なお、サブマスター基板42上の転写位置を変えて本工程のサブマスター型硬化工程と次工程のサブマスター型離型工程とを繰り返し、第2転写面43をさらにアレイ状に形成してもよい。 First, a master mold 30 (see FIG. 9A) corresponding to the final shape of the upper resin portion 102 is manufactured by grinding or the like. Next, a resin material 41b is applied on the master die 30, and ultraviolet rays are irradiated by a UV generator (not shown) while pressing the sub-master substrate 42 from above the master die 30, and the resin material 41b sandwiched therebetween is applied. Light cure. At this time, the first transfer surface 31 of the master mold 30 is transferred to the resin material 41b, and the second transfer surface 43 (second optical transfer surface and second flange transfer surface) is formed on the resin material 41b. Thereby, the sub master molding part 41 is formed. The second transfer surface 43 may be further formed in an array by changing the transfer position on the sub-master substrate 42 and repeating the sub-master type curing step in this step and the sub-master type release step in the next step. .
 次に、図9Bに示すように、マスター型30からサブマスター成形部41とサブマスター基板42とを一体として離型することで、サブマスター型40が作製される。なお、サブマスター成形部41の第2転写面43上に離型剤を塗布してもよい。 Next, as shown in FIG. 9B, the sub-master mold 40 is manufactured by releasing the sub-master molding part 41 and the sub-master substrate 42 integrally from the master mold 30. Note that a release agent may be applied on the second transfer surface 43 of the sub master molding unit 41.
 次に、以上の工程で得たサブマスター型40を利用して、サブサブマスター型50を作製する。まず、図9Cに示すように、サブマスター型40上に樹脂材料51bを塗布し、サブマスター型40の上方からサブサブマスター基板52を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料51bを光硬化させる。この際、樹脂材料51bにサブマスター型40の第2転写面43が転写され、樹脂材料51bに第3転写面53(第3光学転写面及び第3フランジ転写面)が形成される。これにより、サブサブマスター成形部51が形成される。 Next, the sub-master mold 50 is manufactured using the sub-master mold 40 obtained in the above process. First, as shown in FIG. 9C, a resin material 51b is applied on the sub master mold 40, and UV light is irradiated by a UV generator (not shown) while pressing the sub sub master substrate 52 from above the sub master mold 40. The resin material 51b sandwiched between the layers is photocured. At this time, the second transfer surface 43 of the sub master mold 40 is transferred to the resin material 51b, and a third transfer surface 53 (a third optical transfer surface and a third flange transfer surface) is formed on the resin material 51b. Thereby, the sub-submaster molding part 51 is formed.
 次に、図9Dに示すように、サブマスター型40からサブサブマスター成形部51とサブサブマスター基板52とを一体として離型することで、サブサブマスター型50が作製される。なお、サブサブマスター成形部51の第3転写面53上に離型剤を塗布してもよい。 Next, as shown in FIG. 9D, the sub-submaster mold 50 is manufactured by separating the sub-submaster molding part 51 and the sub-submaster substrate 52 as a single unit from the submaster mold 40. Note that a release agent may be applied on the third transfer surface 53 of the sub-submaster molding unit 51.
 次に、以上の工程で得たサブサブマスター型50を利用して、ウェハーレンズ100を作製する。まず、図9Eに示すように、サブサブマスター型50上に樹脂材料102b(上側樹脂部102を形成する光硬化性樹脂)を塗布し、サブサブマスター型50の上方から基板101を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料102bを光硬化させる。この際、樹脂材料102bにサブサブマスター型50の第3転写面53が転写され、樹脂材料102bに第1成形面102a(図15の第1光学面11a及び第1フランジ面11b)が形成される。これにより、上側樹脂部102が形成される。なお、光硬化の後、完全に硬化させるために熱によって硬化させてもよい。 Next, the wafer lens 100 is manufactured using the sub-submaster mold 50 obtained in the above process. First, as shown in FIG. 9E, a resin material 102b (a photocurable resin that forms the upper resin portion 102) is applied onto the sub-sub master mold 50, and the substrate 101 is pressed from above the sub-sub master mold 50, not shown. The ultraviolet ray is irradiated by the UV generator and the resin material 102b sandwiched therebetween is photocured. At this time, the third transfer surface 53 of the sub-submaster mold 50 is transferred to the resin material 102b, and the first molding surface 102a (the first optical surface 11a and the first flange surface 11b in FIG. 15) is formed on the resin material 102b. . Thereby, the upper resin part 102 is formed. In addition, you may make it harden | cure by heat in order to make it harden | cure after photocuring.
 詳細な説明を省略するが、図16Aに示すように、サブサブマスター型50と同様の構造を有するが転写面が異なるサブサブマスター型150を利用して、上述と同様の工程で基板101の他方の面101bに下側樹脂部103を形成する。 Although detailed description is omitted, as shown in FIG. 16A, the other sub-master master 150 having the same structure as that of the sub-sub master mold 50 but having a different transfer surface is used to perform the other process of the substrate 101 in the same process as described above. The lower resin portion 103 is formed on the surface 101b.
 その後、図16Bに示すように、一対のサブサブマスター型50,150を離間させることにより、基板101と上側及び下側樹脂部102,103とを一体として離型する。以上により、第1ウェハーレンズ100が作製される。第2ウェハーレンズ300についても同様に作製する。 Thereafter, as shown in FIG. 16B, the pair of sub-sub master molds 50 and 150 are separated to release the substrate 101 and the upper and lower resin portions 102 and 103 as a single unit. Thus, the first wafer lens 100 is manufactured. The second wafer lens 300 is similarly manufactured.
 次に、図17Aに示すように、第1ウェハーレンズ100の下側樹脂部103にシート状又はウェハー状の第1スペーサー板200を貼り付ける。具体的には、第1スペーサー板200又は第1ウェハーレンズ100の片面に接着剤81aを塗布する。その後、基板101や下側樹脂部103に対して第1スペーサー板200又は第1ウェハーレンズ100をアライメントし、第1スペーサー板200の接着面すなわち根本側の端面206aを下側樹脂部103の表面に押し付けるとともに、接着剤にUV光を照射して硬化させる。 Next, as shown in FIG. 17A, a sheet-shaped or wafer-shaped first spacer plate 200 is attached to the lower resin portion 103 of the first wafer lens 100. Specifically, the adhesive 81 a is applied to one side of the first spacer plate 200 or the first wafer lens 100. Thereafter, the first spacer plate 200 or the first wafer lens 100 is aligned with respect to the substrate 101 or the lower resin portion 103, and the bonding surface of the first spacer plate 200, that is, the end surface 206 a on the root side, is the surface of the lower resin portion 103. The adhesive is cured by irradiating it with UV light.
 図17Bに示すように、以上の工程と同様の工程で、接着剤81cを用いて第2ウェハーレンズ300に第2スペーサー板400を貼り付ける。なお、第1スペーサー板200と第2ウェハーレンズ300とを貼り付けた後に第2ウェハーレンズ300に第2スペーサー板400を貼り付けてもよい。 As shown in FIG. 17B, the second spacer plate 400 is attached to the second wafer lens 300 using the adhesive 81c in the same process as the above process. Alternatively, the second spacer plate 400 may be attached to the second wafer lens 300 after the first spacer plate 200 and the second wafer lens 300 are attached.
 その後、図17Cに示すように、第1スペーサー板200を貼り付けた第1ウェハーレンズ100と第2スペーサー板400を貼り付けた第2ウェハーレンズ300と接合してアレイユニット600を作製する。つまり、第1ウェハーレンズ100に固定した第1スペーサー板200の先端側の端面206b又は第2ウェハーレンズ300に接着剤81bを塗布して第2ウェハーレンズ300又は第1スペーサー板200と貼り合わせてUV光を照射する。これにより、第1スペーサー板200を介して、第1ウェハーレンズ100に第2ウェハーレンズ300が固定又は接合される。次に、第2ウェハーレンズ300に対して第1ウェハーレンズ100の反対側に撮像素子アレイ500を貼り付ける。つまり、第2ウェハーレンズ300に固定した第2スペーサー板400の端面に接着剤81dを塗布して撮像素子アレイ500と貼り合わせてUV光を照射する。これにより、図14に示すように、第2スペーサー板400を介して、第2ウェハーレンズ300に撮像素子アレイ500が固定又は接合される。以上により、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とを積層した積層構造体1000が完成する。 Thereafter, as shown in FIG. 17C, the first wafer lens 100 with the first spacer plate 200 attached and the second wafer lens 300 with the second spacer plate 400 attached are joined to produce the array unit 600. That is, the adhesive 81b is applied to the end face 206b of the first spacer plate 200 fixed to the first wafer lens 100 or the second wafer lens 300, and is bonded to the second wafer lens 300 or the first spacer plate 200. Irradiate with UV light. Accordingly, the second wafer lens 300 is fixed or bonded to the first wafer lens 100 via the first spacer plate 200. Next, the image sensor array 500 is attached to the second wafer lens 300 on the opposite side of the first wafer lens 100. That is, the adhesive 81d is applied to the end face of the second spacer plate 400 fixed to the second wafer lens 300, and is bonded to the image pickup device array 500 to irradiate UV light. As a result, as shown in FIG. 14, the imaging element array 500 is fixed or bonded to the second wafer lens 300 via the second spacer plate 400. As described above, the laminated structure 1000 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 are laminated is completed.
 その後、図13及び図14に示すカットラインDXに沿って第1及び第2ウェハーレンズ100,300等を切断、すなわちダイシングする。ダイシングにより、第1及び第2ウェハーレンズ100,300等は、四角柱状に切り出され、第1及び第2複合レンズ10,20等を積層した構造の撮像装置700となる。 Thereafter, the first and second wafer lenses 100, 300, etc. are cut, that is, diced, along the cut line DX shown in FIGS. By dicing, the first and second wafer lenses 100, 300, etc. are cut out into a quadrangular prism shape to form an imaging device 700 having a structure in which the first and second compound lenses 10, 20, etc. are stacked.
 以上の説明では、積層構造体1000が第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400と撮像素子アレイ500とを備えるとして説明したが、積層構造体1000を第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400とで構成することもできる。この場合、第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400とを積層したアレイユニット600によって積層構造体1000を構成することになる。このようなアレイユニット600をダイシングによって個片化し、別途作製した個別の撮像素子530と接合することもできる。なお、以下に説明する実施形態でも、積層構造体1000に撮像素子アレイ500を含めているが、撮像素子アレイ500を省略してアレイユニット600で構成することもできる。 In the above description, the laminated structure 1000 has been described as including the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500. The first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 may be used. In this case, the laminated structure 1000 is constituted by the array unit 600 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 are laminated. Such an array unit 600 can be separated into pieces by dicing and joined to an individual image pickup device 530 separately manufactured. In the embodiment described below, the imaging element array 500 is included in the stacked structure 1000, but the imaging element array 500 may be omitted and the array unit 600 may be configured.
 以上説明した第5実施形態のレンズユニット及びアレイユニットによれば、レンズ部である上側及び下側レンズ部11,12が第1及び第2スペーサー板200,400(レンズユニットの場合は第1及び第2スペーサー10c,20c)の基部200a,200b,400aよりも突出している場合において、積層した第1及び第2ウェハーレンズ100,300(レンズユニットの場合は第1及び第2複合レンズ10,20)間に、第1及び第2スペーサー板200,400の穴の内側部分である縁部分S(開口部6b)に第1及び第2スペーサー板200,400の一方の端面側及び他方の端面側の両面から中心側に両側テーパー面TPを設けることにより、スペーサー板の支持面の面積を増やしたり、スペーサー板を厚くしたりしなくても第1及び第2スペーサー板200,400の強度を向上させることができる。これにより、レンズユニット800全体の厚みが大きくなることを防ぐことができる。具体的には、第1及び第2スペーサー板200,400の縁部分Sに両側テーパー面TPを設けることにより、同じ内径で穴を開けた場合にテーパー面が設けられていないスペーサー板や一方の端面側からのみにテーパー面が設けられている場合よりもスペーサー板の強度を上げることができる。また、両側テーパー面TPを設けている第1及び第2スペーサー板200,400であれば、テーパー面が設けられていないスペーサー板や一方の端面からのみにテーパー面が設けられているスペーサー板と比べて第1及び第2スペーサー板200,400の穴径を広げなくても上側及び下側レンズ部11,12との干渉を避けつつ、第1及び第2スペーサー板200,400から除去される切り取り部分を減少させることができる。そのため、第1及び第2スペーサー板200,400の強度を向上させることができる。特に、アレイユニットを含む積層構造体1000を切断する際にはスペーサー板の強度等が不十分であるとスペーサー板の破損や剥離が問題となるが、上側及び下側レンズ部11,12間等に両側テーパー面TPつきの第1及び第2スペーサー板200,400を挿入することで強度を上げることができる。また、例えば多数個取りのレンズユニット800の場合、第1及び第2スペーサー板200,400の穴数も増えるため、第1及び第2スペーサー板200,400の強度が向上することにより、レンズユニット800の大量生産を可能にする。 According to the lens unit and the array unit of the fifth embodiment described above, the upper and lower lens portions 11 and 12 as lens portions are the first and second spacer plates 200 and 400 (first and second in the case of a lens unit). In the case where the second spacers 10c, 20c) protrude from the base portions 200a, 200b, 400a, the stacked first and second wafer lenses 100, 300 (in the case of a lens unit, the first and second compound lenses 10, 20). ) Between one end face side and the other end face side of the first and second spacer plates 200, 400 in the edge portion S (opening 6b) which is the inner portion of the holes of the first and second spacer plates 200, 400. By providing both side tapered surfaces TP from the both sides to the center side, the area of the support surface of the spacer plate can be increased or the spacer plate can be made thicker. Ku can also improve the strength of the first and second spacer plates 200, 400 and. Thereby, it can prevent that the thickness of the whole lens unit 800 becomes large. Specifically, by providing both side tapered surfaces TP at the edge portions S of the first and second spacer plates 200 and 400, when a hole is drilled with the same inner diameter, a spacer plate that is not provided with a tapered surface or one of the spacer plates. The strength of the spacer plate can be increased as compared with the case where the tapered surface is provided only from the end surface side. Further, in the case of the first and second spacer plates 200 and 400 provided with the tapered surfaces TP on both sides, the spacer plate provided with no tapered surface or the spacer plate provided with the tapered surface only from one end surface; In comparison, the first and second spacer plates 200 and 400 are removed from the first and second spacer plates 200 and 400 while avoiding interference with the upper and lower lens portions 11 and 12 without increasing the hole diameter. The cut-out portion can be reduced. Therefore, the strength of the first and second spacer plates 200 and 400 can be improved. In particular, when the laminated structure 1000 including the array unit is cut, if the spacer plate has insufficient strength or the like, the spacer plate may be damaged or peeled off. However, the upper and lower lens portions 11 and 12, etc. The strength can be increased by inserting the first and second spacer plates 200, 400 with the tapered surfaces TP on both sides. Further, for example, in the case of a multi-piece lens unit 800, the number of holes in the first and second spacer plates 200 and 400 is also increased, so that the strength of the first and second spacer plates 200 and 400 is improved. 800 mass production is possible.
 一方、スペーサー板の穴径を大きくし、レンズ部の形状とスペーサー板との間隙(クリアランス)に余裕を持たせた場合、スペーサー板に占める穴の面積の割合が増え、強度が下がる。特に、レンズユニットを一度に多数個製造する場合、スペーサー板の穴数も増えるため、さらに強度面での懸念が大きくなる。しかし、レンズ部のピッチやスペーサー板の穴のピッチを大きくするとレンズユニットの取り数が減少し、大量生産が行えなくなる。 On the other hand, when the hole diameter of the spacer plate is increased to allow a sufficient clearance between the shape of the lens portion and the spacer plate (clearance), the ratio of the area of the hole occupying the spacer plate increases and the strength decreases. In particular, when a large number of lens units are manufactured at a time, the number of holes in the spacer plate is also increased, which raises further concerns regarding strength. However, when the pitch of the lens portions and the pitch of the holes in the spacer plate are increased, the number of lens units is reduced and mass production cannot be performed.
 なお、レンズ部と基板とを一体的に成形し、ウェハーレンズ全体の面積を大きくしてレンズユニットの取り個数を増やせば増やすほど、基板等の反り等の問題点が大きくなる。これに対して本実施形態のレンズユニット及びアレイユニットは、基板上に樹脂を塗布し光学面を成形しており、レンズ部の厚みに基板の厚さが依存しない。そのため、基板101上に多量のレンズ部(上側及び下側レンズ部11,12)を形成することができるという利点がある。しかしながら、基板上に別途樹脂を塗布する必要があるため、基板上に必ず樹脂製の凸部(突起)が生じる。この凸部が生じないように凸部の周りを樹脂で埋めるという方法もあるが、その場合、レンズ部の厚みが増えてレンズユニット全体の厚みが大きくなることや樹脂の使用量が増えて基板等の反り等や製造コストの増加等の問題も発生しやすくなる。そこで、第1及び第2スペーサー板200,400の開口部6bに両側テーパー面TPを設けることにより、基板101上に樹脂を塗布付して成形を行う方法であっても、レンズユニット800全体の厚みを抑えつつ、レンズ部(上側及び下側レンズ部11,12)と第1及び第2スペーサー板200,400とを精度良く配置することができる。 Note that the more the lens unit and the substrate are integrally molded and the total area of the wafer lens is increased to increase the number of lens units, the more problems such as warpage of the substrate increase. On the other hand, in the lens unit and the array unit of this embodiment, the optical surface is formed by applying resin on the substrate, and the thickness of the substrate does not depend on the thickness of the lens portion. Therefore, there is an advantage that a large amount of lens parts (upper and lower lens parts 11 and 12) can be formed on the substrate 101. However, since it is necessary to separately apply a resin on the substrate, a convex portion (protrusion) made of resin always occurs on the substrate. There is also a method of filling the periphery of the convex part with resin so that this convex part does not occur, but in that case, the thickness of the lens part increases and the thickness of the entire lens unit increases or the amount of resin used increases and the substrate Problems such as warping and the like and an increase in manufacturing cost are likely to occur. Therefore, even if the lens unit 800 is entirely formed by providing resin on the substrate 101 by forming both side tapered surfaces TP in the openings 6b of the first and second spacer plates 200 and 400, the entire lens unit 800 is formed. The lens portions (upper and lower lens portions 11 and 12) and the first and second spacer plates 200 and 400 can be arranged with high accuracy while suppressing the thickness.
〔第6実施形態〕
 以下、第6実施形態に係る積層構造体等について説明する。なお、第6実施形態の積層構造体の構造や製造方法は第5実施形態の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第5実施形態と同様であるものとする。
[Sixth Embodiment]
Hereinafter, the laminated structure according to the sixth embodiment will be described. Note that the structure and manufacturing method of the laminated structure of the sixth embodiment are modifications of the structure and manufacturing method of the laminated structure of the fifth embodiment, and parts not specifically described are the same as those of the fifth embodiment. And
 図18A~18Cに示すように、積層構造体1000を構成する第1ウェハーレンズ100と第2ウェハーレンズ300において、上側樹脂部102,302及び下側樹脂部103,303には、基板101,301上にそれぞれ独立して上側及び下側レンズ部11,12が配置されている。つまり、各レンズ部11,12は、隣接するレンズ部11,12と繋がっておらず、各レンズ部11,12間には、基板101,301が露出した状態となっている。支持体6aの端面206a,206b,406aは、接着剤81a,81b,81cをそれぞれ介して基板101,301にそれぞれ接着されている。つまり、第1及び第2スペーサー板200,400の基部200a,200b,400aは、樹脂を介さずに基板101,301にそれぞれ直接的に接着されている。 As shown in FIGS. 18A to 18C, in the first wafer lens 100 and the second wafer lens 300 constituting the laminated structure 1000, the upper resin portions 102 and 302 and the lower resin portions 103 and 303 are provided with substrates 101 and 301, respectively. Upper and lower lens portions 11 and 12 are independently arranged on the upper side. That is, the lens units 11 and 12 are not connected to the adjacent lens units 11 and 12, and the substrates 101 and 301 are exposed between the lens units 11 and 12. End surfaces 206a, 206b, and 406a of the support 6a are bonded to the substrates 101 and 301 via adhesives 81a, 81b, and 81c, respectively. That is, the base portions 200a, 200b, and 400a of the first and second spacer plates 200 and 400 are directly bonded to the substrates 101 and 301, respectively, without using a resin.
 本実施形態の第1ウェハーレンズ100の製造工程は、第1実施形態で説明したもの(図5A~5E参照)と同様である。本実施形態の第1及び第2ウェハーレンズ100の上側及び下側樹脂部102,103,302,303は、個別滴下方式によって形成される。なお、第2ウェハーレンズ300の製造工程も、第1ウェハーレンズ100の製造工程と同様である。 The manufacturing process of the first wafer lens 100 of this embodiment is the same as that described in the first embodiment (see FIGS. 5A to 5E). The upper and lower resin portions 102, 103, 302, and 303 of the first and second wafer lenses 100 of the present embodiment are formed by an individual dropping method. The manufacturing process of the second wafer lens 300 is the same as the manufacturing process of the first wafer lens 100.
 まず、図5Aに示すように、マスター型30を利用してサブマスター型40を作製する。この際、マスター型30の第1転写面31の各上側レンズ部11に対応する転写面上に樹脂材料41bを個別に滴下する。その後、樹脂材料41bを介してマスター型30に対してサブマスター基板42を押圧する。樹脂材料41bを硬化後、図5Bに示すように、マスター型30からサブマスター型40を離型する。 First, as shown in FIG. 5A, a sub-master die 40 is produced using the master die 30. At this time, the resin material 41 b is individually dropped onto the transfer surface corresponding to each upper lens portion 11 of the first transfer surface 31 of the master mold 30. Thereafter, the sub master substrate 42 is pressed against the master mold 30 through the resin material 41b. After the resin material 41b is cured, the sub-master mold 40 is released from the master mold 30 as shown in FIG. 5B.
 次に、図5Cに示すように、作製したサブマスター型40を利用してサブサブマスター型50を作製する。この際、サブマスター型40の第2転写面43の各上側レンズ部11に対応する転写面上に樹脂材料51bを個別に滴下する。その後、樹脂材料51bを介してサブマスター型40に対してサブサブマスター基板52を押圧する。樹脂材料51bを硬化後、図5Dに示すように、サブマスター型40からサブサブマスター型50を離型する。 Next, as shown in FIG. 5C, a sub-sub master mold 50 is manufactured using the manufactured sub-master mold 40. At this time, the resin material 51b is individually dropped onto the transfer surface corresponding to each upper lens portion 11 of the second transfer surface 43 of the sub master mold 40. Thereafter, the sub-master substrate 52 is pressed against the sub-master mold 40 through the resin material 51b. After the resin material 51b is cured, the sub-sub master mold 50 is released from the sub-master mold 40 as shown in FIG. 5D.
 次に、図5Eに示すように、作製したサブサブマスター型50を利用して第1ウェハーレンズ100を作製する。この際、サブサブマスター型50の第3転写面53の各上側レンズ部11に対応する転写面上に樹脂材料102bを個別に滴下する。その後、樹脂材料102bを介してサブサブマスター型50に対して基板101を押圧する。樹脂材料102bを硬化後、サブサブマスター型50から基板101と上側樹脂部102とを一体として離型する。 Next, as shown in FIG. 5E, the first wafer lens 100 is manufactured using the manufactured sub-submaster mold 50. At this time, the resin material 102 b is individually dropped on the transfer surface corresponding to each upper lens portion 11 of the third transfer surface 53 of the sub-submaster mold 50. Thereafter, the substrate 101 is pressed against the sub-sub master mold 50 through the resin material 102b. After the resin material 102b is cured, the substrate 101 and the upper resin portion 102 are integrally released from the sub-sub master mold 50.
 その後、第5実施形態の図16A、16B、図17A、17B等に示す製造手順と同様の製造手順を行う。これにより、図18Bに示すように、レンズユニット800を含む撮像装置700を得る。 Thereafter, the same manufacturing procedure as that shown in FIGS. 16A, 16B, 17A, 17B, etc. of the fifth embodiment is performed. Thereby, as illustrated in FIG. 18B, an imaging device 700 including the lens unit 800 is obtained.
 第6実施形態のレンズユニット及びアレイユニットによれば、多数個取りの個別滴下方式のレンズユニット800において、全体滴下方式のレンズユニットに比べて上側及び下側樹脂部102,103等の切断を行わなくて済む等の点からレンズ精度を良くすることができる。ただし、個別滴下方式の場合、上側及び下側レンズ部11,12を形成するために、樹脂材料102bの滴下量をコントロールする必要がある。ここで、全ての上側及び下側レンズ部11,12を形成するための第3転写面53等に対して上側及び下側レンズ部11,12の最も外側の形状の広がりをショット間で精度良く制御することが難しい。そのため、第1及び第2スペーサー板200,400と上側及び下側レンズ部11,12との干渉を避けるためには、樹脂材料102bの滴下量の制御だけでは不十分である。よって、スペーサー板の穴径はレンズ部と開口部の内側との間隙(クリアランス)を確保するために、開口部の内径を広げるとその分だけスペーサー板の強度が減少し、スペーサー板のハンドリング時、スペーサーを積層する工程、積層構造体を切断する工程等でスペーサー板が破損する等、強度に対する懸念が生じる。そこで、第1及び第2スペーサー板200,400に両側テーパー面TPを設けることで、上側及び下側レンズ部11,12と第1及び第2スペーサー板200,400とが干渉しないように逃げを作りつつ、第1及び第2スペーサー板200,400の開口部6b間の肉厚、すなわち支持体6aの肉厚を増やすことができ、第1及び第2スペーサー板200,400の強度を向上させることができる。 According to the lens unit and the array unit of the sixth embodiment, the upper and lower resin portions 102, 103 and the like are cut in the multi-piece individual dropping type lens unit 800 as compared with the whole dropping type lens unit. The lens accuracy can be improved from the point that it is not necessary. However, in the case of the individual dropping method, it is necessary to control the dropping amount of the resin material 102b in order to form the upper and lower lens portions 11 and 12. Here, the outermost shape of the upper and lower lens portions 11 and 12 with respect to the third transfer surface 53 and the like for forming all the upper and lower lens portions 11 and 12 is accurately reflected between shots. Difficult to control. Therefore, in order to avoid interference between the first and second spacer plates 200 and 400 and the upper and lower lens portions 11 and 12, it is not sufficient to control the dropping amount of the resin material 102b. Therefore, the hole diameter of the spacer plate ensures the gap (clearance) between the lens part and the inside of the opening. If the inner diameter of the opening is widened, the strength of the spacer plate is reduced by that amount. There are concerns about strength such as the spacer plate being damaged in the step of laminating the spacer, the step of cutting the laminated structure, and the like. Therefore, by providing both side tapered surfaces TP on the first and second spacer plates 200 and 400, the upper and lower lens portions 11 and 12 and the first and second spacer plates 200 and 400 can escape so as not to interfere with each other. While making, the thickness between the openings 6b of the first and second spacer plates 200, 400, that is, the thickness of the support 6a can be increased, and the strength of the first and second spacer plates 200, 400 is improved. be able to.
〔第7実施形態〕
 以下、第7実施形態に係る積層構造体等について説明する。なお、第7実施形態の積層構造体の構造や製造方法は第5又は第6実施形態の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第5実施形態等と同様であるものとする。
[Seventh Embodiment]
Hereinafter, the laminated structure according to the seventh embodiment will be described. Note that the structure and manufacturing method of the laminated structure of the seventh embodiment is a modification of the structure and manufacturing method of the laminated structure of the fifth or sixth embodiment, and parts that are not particularly described are the fifth embodiment and the like. It shall be the same.
 図19A等に示すように、積層構造体1000において、第1スペーサー板200と第2ウェハーレンズ300との間に挟まれた接着剤81bが第1スペーサー板200支持体6aからはみ出している。この際、はみ出した接着剤81bは、第1スペーサー板200の両側テーパー面TPのうち開口部6bの先端側の端面206b付近の両側テーパー面TP上にわずかに付着している。この積層構造体1000をダイシングすることにより、図19Bに示すレンズユニット800を含む撮像装置700を得る。 As shown in FIG. 19A and the like, in the laminated structure 1000, the adhesive 81b sandwiched between the first spacer plate 200 and the second wafer lens 300 protrudes from the first spacer plate 200 support 6a. At this time, the protruding adhesive 81 b slightly adheres to the both-side tapered surfaces TP in the vicinity of the end surface 206 b on the tip side of the opening 6 b in the both-side tapered surfaces TP of the first spacer plate 200. By dicing the laminated structure 1000, an imaging device 700 including the lens unit 800 shown in FIG. 19B is obtained.
 第7実施形態のレンズユニット及びアレイユニットによれば、第1スペーサー板200と第2ウェハーレンズ300との間に挟まれた接着剤81bが第1スペーサー板200支持体6aからはみ出して両側テーパー面TP上に付着することにより、第1スペーサー板200の強度、第1スペーサー板200と第2ウェハーレンズ300との接着強度をより向上させることができる。 According to the lens unit and the array unit of the seventh embodiment, the adhesive 81b sandwiched between the first spacer plate 200 and the second wafer lens 300 protrudes from the first spacer plate 200 support 6a and is tapered on both sides. By attaching on the TP, the strength of the first spacer plate 200 and the adhesive strength between the first spacer plate 200 and the second wafer lens 300 can be further improved.
 なお、本実施形態において、接着剤81bに限らず、第1ウェハーレンズ100と第1スペーサー板200との間の接着剤81aや、第2ウェハーレンズ300と第2スペーサー板400との間の接着剤81cが第1又は第2スペーサー板200,400の支持体6aからはみ出してもよい。接着剤は、上側及び下側レンズ部11,12のうち第1及び第2スペーサー板200,400の基部200a,200b,400aから突出している部分が第1及び第2スペーサー板200,400の開口部6bの縁に近い場合、より強度が増す。 In the present embodiment, not only the adhesive 81b but also the adhesive 81a between the first wafer lens 100 and the first spacer plate 200, or the adhesion between the second wafer lens 300 and the second spacer plate 400. The agent 81c may protrude from the support 6a of the first or second spacer plate 200, 400. In the adhesive, portions of the upper and lower lens portions 11 and 12 that protrude from the base portions 200a, 200b, and 400a of the first and second spacer plates 200 and 400 are openings of the first and second spacer plates 200 and 400. When it is close to the edge of the portion 6b, the strength is further increased.
 〔第8実施形態〕
3-A)積層構造体
 図面を参照して、本発明の第8実施形態に係るアレイユニットを含む積層構造体について説明する。
[Eighth Embodiment]
3-A) Multilayer Structure A multilayer structure including an array unit according to the eighth embodiment of the present invention will be described with reference to the drawings.
 図20及び図21に示すように、積層構造体1000は、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とをZ軸方向に積層したものである。積層構造体1000をダイシングによって切り出すことにより、レンズユニット800と撮像素子530とを積層した撮像装置700(図22参照)を得ることができる。ここで、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とは、それぞれXY面に平行に延びており、積層構造体1000全体としても、XY面に平行に延びている。このうち、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400とを積層したものは、本明細書において便宜上アレイユニット600と呼ぶが、広義のウェハーレンズに含まれる。 As shown in FIGS. 20 and 21, the laminated structure 1000 includes a first wafer lens 100, a first spacer plate 200, a second wafer lens 300, a second spacer plate 400, and an imaging element array 500. Laminated in the Z-axis direction. By cutting out the laminated structure 1000 by dicing, an imaging device 700 (see FIG. 22) in which the lens unit 800 and the imaging element 530 are laminated can be obtained. Here, the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 each extend in parallel to the XY plane and have a laminated structure. The entire body 1000 also extends parallel to the XY plane. Of these, a laminate of the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 is referred to as an array unit 600 for convenience in this specification. Included in wafer lens.
 積層構造体1000のうち第1ウェハーレンズ100は、例えば円盤状であり、基板101と、上側樹脂部102と、下側樹脂部103とを有する。ここで、上側及び下側樹脂部102,103は、軸AXに垂直なXY面内での並進及び軸AXのまわりの回転に関して相互にアライメントされて基板101に接合されている。第1ウェハーレンズ100には、これを構成する光学素子として、多数の第1複合レンズ10が形成されXY面に沿って2次的に配列されている。つまり、第1ウェハーレンズ100は、切断前において第1複合レンズ10が複数集まったものをいう(第2ウェハーレンズ300についても同様)。第1複合レンズ10は、光学面を形成するレンズ本体10aと、レンズ本体10aの周辺に存在するフランジ10bとを有する。 The first wafer lens 100 in the laminated structure 1000 has, for example, a disk shape, and includes a substrate 101, an upper resin portion 102, and a lower resin portion 103. Here, the upper and lower resin portions 102 and 103 are bonded to the substrate 101 in alignment with each other with respect to translation in the XY plane perpendicular to the axis AX and rotation around the axis AX. In the first wafer lens 100, a large number of first compound lenses 10 are formed as optical elements constituting them, and are secondarily arranged along the XY plane. That is, the first wafer lens 100 is a group of a plurality of first compound lenses 10 before cutting (the same applies to the second wafer lens 300). The first compound lens 10 includes a lens body 10a that forms an optical surface, and a flange 10b that exists around the lens body 10a.
 第1ウェハーレンズ100のうち基板101は、第1ウェハーレンズ100の全体に亘って延びる平板であり、例えばガラスで形成されている。基板101の厚さは、基本的には光学的仕様によって決定されるが、第1ウェハーレンズ100の離型時において破損しない程度の厚さとなっている。基板101は、第1複合レンズ10のレンズ本体10aの中央部とフランジ10bとを構成する。基板101は、フランジ10bに相当する部分の面101a,101bにそれぞれ第1フランジ面11bと第2フランジ面12bとを有する。なお、基板101の材料としては、ガラスのほか、熱硬化性樹脂、光硬化性樹脂、熱可塑性樹脂等を用いることができるが、特にガラスが好ましい。基板101の具体的な厚みは、用途にもよるが、例えば0.2mm以上、1.5mm以下とされる。 The substrate 101 of the first wafer lens 100 is a flat plate extending over the entire first wafer lens 100, and is formed of, for example, glass. The thickness of the substrate 101 is basically determined by optical specifications, but is such a thickness that the first wafer lens 100 is not damaged when the first wafer lens 100 is released. The substrate 101 constitutes the center portion of the lens body 10a of the first compound lens 10 and the flange 10b. The substrate 101 has a first flange surface 11b and a second flange surface 12b on surfaces 101a and 101b corresponding to the flange 10b, respectively. As the material of the substrate 101, a glass, a thermosetting resin, a photocurable resin, a thermoplastic resin, or the like can be used, and glass is particularly preferable. Although the specific thickness of the board | substrate 101 is based also on a use, it shall be 0.2 mm or more and 1.5 mm or less, for example.
 上側樹脂部102は、樹脂製であり、基板101の一方の面101a上に形成されている。上側樹脂部102は、複数の上側レンズ部11を有する。つまり、上側樹脂部102は、第1ウェハーレンズ100を切断する前において基板101上に形成された上側レンズ部11を含む樹脂部分全体をいう(下側レンズ部12についても同様)。各上側レンズ部11は、第1複合レンズ10のレンズ本体10aの上部を構成する。各上側レンズ部11は、基板101上のXY面内で2次元的に配列されている。上側樹脂部102において、各上側レンズ部11は、基板101上にそれぞれ独立して配置されている。つまり、各上側レンズ部11は、隣接する上側レンズ部11と樹脂で繋がっておらず、各上側レンズ部11間には、基板101が露出した状態となっている。上側レンズ部11は、例えば凸形状を有し、図22に示すように凸形状の非球面型の第1光学面11aと第1非光学面11cとを有する。第1光学面11a及び第1非光学面11cは、転写によって一括成形される第1成形面102aとなっている。第1光学面11aは、有効領域AR1(レンズの光学的に有効な領域)を有し、第1非光学面11cは、非有効領域AR2(レンズの光学機能に影響しない領域)を有する。 The upper resin portion 102 is made of resin and is formed on one surface 101 a of the substrate 101. The upper resin part 102 has a plurality of upper lens parts 11. That is, the upper resin portion 102 refers to the entire resin portion including the upper lens portion 11 formed on the substrate 101 before the first wafer lens 100 is cut (the same applies to the lower lens portion 12). Each upper lens portion 11 constitutes an upper portion of the lens body 10 a of the first compound lens 10. Each upper lens unit 11 is two-dimensionally arranged in the XY plane on the substrate 101. In the upper resin portion 102, each upper lens portion 11 is independently arranged on the substrate 101. That is, each upper lens portion 11 is not connected to the adjacent upper lens portion 11 by resin, and the substrate 101 is exposed between the upper lens portions 11. The upper lens unit 11 has, for example, a convex shape, and has a convex aspherical first optical surface 11a and a first non-optical surface 11c as shown in FIG. The first optical surface 11a and the first non-optical surface 11c serve as a first molding surface 102a that is collectively molded by transfer. The first optical surface 11a has an effective area AR1 (an optically effective area of the lens), and the first non-optical surface 11c has an ineffective area AR2 (an area that does not affect the optical function of the lens).
 上側樹脂部102は、光硬化性樹脂で形成されている。光硬化性樹脂には、光硬化性樹脂の重合を開始させる光重合開始剤が含まれている。光硬化性樹脂としては、アクリル樹脂、アリルエステル樹脂、エポキシ系樹脂、又はビニル系樹脂等を使用することができる。アクリル樹脂、アリルエステル樹脂、又はビニル系樹脂を使用する場合、光重合開始剤の例えばラジカル重合により反応硬化させることができ、エポキシ系樹脂を使用する場合、光重合開始剤の例えばカチオン重合により反応硬化させることができる。 The upper resin portion 102 is made of a photocurable resin. The photocurable resin contains a photopolymerization initiator that initiates polymerization of the photocurable resin. As the photocurable resin, an acrylic resin, an allyl ester resin, an epoxy resin, a vinyl resin, or the like can be used. When acrylic resin, allyl ester resin, or vinyl resin is used, it can be cured by reaction, for example, by radical polymerization of a photopolymerization initiator, and when epoxy resin is used, it is reacted by, for example, cationic polymerization of a photopolymerization initiator. It can be cured.
 下側樹脂部103は、上側樹脂部102と同様に、樹脂製であり、基板101の他方の面101b上に形成されている。下側樹脂部103は、複数の下側レンズ部12を有する。各下側レンズ部12は、第1複合レンズ10のレンズ本体10aの下部を構成する。各下側レンズ部12は、基板101上のXY面内で2次元的に配列している。各下側レンズ部12の位置は、基板101の反対側の各上側レンズ部11の位置に対応している。下側樹脂部103において、各下側レンズ部12は、基板101上にそれぞれ独立して配置されている。つまり、各下側レンズ部12は、隣接する下側レンズ部12と樹脂で繋がっておらず、各下側レンズ部12間には、基板101が露出した状態となっている。下側レンズ部12は、例えば凸形状を有し、図22に示すように凹形状の非球面型の第2光学面12aと第2非光学面12cとを有する。下側レンズ部12は、凹形状の第2光学面12aを有しつつ、第1スペーサー板200の根本側(図面上部)の基部200aよりも突出している。第2光学面12a及び第2非光学面12cは、転写によって一括成形される第1成形面103aとなっている。第2光学面12aは、有効領域AR3(レンズの光学的に有効な領域)を有し、第2非光学面12cは、非有効領域AR4(レンズの光学機能に影響しない領域)を有する。 The lower resin portion 103 is made of resin, like the upper resin portion 102, and is formed on the other surface 101b of the substrate 101. The lower resin portion 103 has a plurality of lower lens portions 12. Each lower lens portion 12 constitutes a lower portion of the lens body 10 a of the first compound lens 10. The lower lens portions 12 are two-dimensionally arranged in the XY plane on the substrate 101. The position of each lower lens portion 12 corresponds to the position of each upper lens portion 11 on the opposite side of the substrate 101. In the lower resin portion 103, each lower lens portion 12 is independently arranged on the substrate 101. That is, each lower lens portion 12 is not connected to the adjacent lower lens portion 12 by resin, and the substrate 101 is exposed between the lower lens portions 12. The lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 12a and a second non-optical surface 12c as shown in FIG. The lower lens portion 12 has a concave second optical surface 12a and protrudes from the base portion 200a on the base side (upper part of the drawing) of the first spacer plate 200. The second optical surface 12a and the second non-optical surface 12c are first molding surfaces 103a that are collectively molded by transfer. The second optical surface 12a has an effective area AR3 (an optically effective area of the lens), and the second non-optical surface 12c has an ineffective area AR4 (an area that does not affect the optical function of the lens).
 下側樹脂部103に用いられる光硬化性樹脂は、上側樹脂部102の光硬化性樹脂と同様のものである。ただし、両樹脂部102,103を同一の光硬化性樹脂で形成する必要はなく、別の光硬化性樹脂で形成することができる。 The photocurable resin used for the lower resin portion 103 is the same as the photocurable resin of the upper resin portion 102. However, it is not necessary to form both the resin parts 102 and 103 with the same photocurable resin, and it can form with another photocurable resin.
 第2ウェハーレンズ300は、第1ウェハーレンズ100と同様に、例えば円盤状であり、基板301と、上側樹脂部302と、下側樹脂部303とを有する。第2ウェハーレンズ300の構成は、第1ウェハーレンズ100の構成と略同様である。第2ウェハーレンズ300には、これを構成する光学素子として、多数の第2複合レンズ20が形成されXY面に沿って2次的に配列されている。第2複合レンズ20は、光学面を形成するレンズ本体20aと、レンズ本体20aの周辺に存在するフランジ20bとを有する。上側レンズ部11は、第2複合レンズ20のレンズ本体20aの上部を構成し、下側レンズ部12は、レンズ本体20aの下部を構成する。なお、第2ウェハーレンズ300の場合、上側レンズ部11は、例えば凸形状を有し、図22に示すように凹形状の非球面型の第1光学面21aと第1非光学面21cとを有する。また、下側レンズ部12は、例えば凸形状を有し、図22に示すように凹形状の非球面型の第2光学面22aと第2非光学面22cとを有する。また、基板301は、フランジ20bに相当する部分の面101a,101bにそれぞれ第1フランジ面21bと第2フランジ面22bとを有する。 Similarly to the first wafer lens 100, the second wafer lens 300 is, for example, a disk shape, and includes a substrate 301, an upper resin portion 302, and a lower resin portion 303. The configuration of the second wafer lens 300 is substantially the same as the configuration of the first wafer lens 100. In the second wafer lens 300, a large number of second compound lenses 20 are formed as optical elements constituting the second lens, and are secondarily arranged along the XY plane. The second compound lens 20 includes a lens body 20a that forms an optical surface, and a flange 20b that exists around the lens body 20a. The upper lens part 11 constitutes the upper part of the lens body 20a of the second compound lens 20, and the lower lens part 12 constitutes the lower part of the lens body 20a. In the case of the second wafer lens 300, the upper lens unit 11 has, for example, a convex shape, and includes a concave aspherical first optical surface 21a and a first non-optical surface 21c as shown in FIG. Have. The lower lens portion 12 has, for example, a convex shape, and has a concave aspherical second optical surface 22a and a second non-optical surface 22c as shown in FIG. The substrate 301 has a first flange surface 21b and a second flange surface 22b on the surfaces 101a and 101b corresponding to the flange 20b.
 以上において、第1及び第2ウェハーレンズ100,300を構成する上側及び下側レンズ部11,12は、素子領域を含む各第1及び第2複合レンズ10,20単位で分離される。このように、アレイユニット600を分離することにより、複数のレンズユニット800が得られる。 In the above, the upper and lower lens portions 11 and 12 constituting the first and second wafer lenses 100 and 300 are separated in units of the first and second compound lenses 10 and 20 including the element region. Thus, by separating the array unit 600, a plurality of lens units 800 can be obtained.
 第1スペーサー板200は、第1ウェハーレンズ100の支持部として機能するものである。第1スペーサー板200は、ガラス、セラミックス、樹脂等からなる平板状の部材であって第1複合レンズ10に対応する配列で穴が形成されている。本実施例では、光が入射する側(根本側の端面206a側)を表とし、光が射出する側(先端側の端面206b側)を裏とする。図22に示すように、第1スペーサー板200は、ダイシングによって複数のスペーサー10cに分割される。各スペーサー10cは、筒状の支持体6aと断面円形の開口部6bとを有する。開口部6bは、レンズ本体10aのZ軸に平行な光軸OAを通すように光軸OAに沿って延びている。開口部6bは、第1ウェハーレンズ100の下側レンズ部12及び第2ウェハーレンズ300の上側レンズ部11に臨む縁部分Sによって形成される。ここで、縁部分Sとは、第1スペーサー板200に形成された穴の内側部分である。縁部分Sは、上側及び下側レンズ部11,12の外形を囲むように、略円形に形成されている。開口部6bの入り口のうち、根本側の端面206a側の入り口の内径D1は、先端側の端面206b側の入り口の内径D2よりも大きくなっている。支持体6aは、レンズ本体10aを避けてレンズ本体10aの周囲のフランジ10bに固定されている。つまり、開口部6bとレンズ本体10aとの間には、適度な隙間が形成されている。開口部6bの縁部分Sには、第1スペーサー板200の一方の端面である根元側(図面上側)の端面206aと、他方の端面である先端側(図面下側)の端面206bとから開口部6bの厚み方向(図中のZ方向)の中心側に向かって狭まる両側テーパー面TPが形成されている。開口部6b(縁部分S)の厚み方向の断面において、開口部6bの最も内側にある突起部91の先端位置は、中心よりも先端側の端面206b側に形成されている。つまり、支持体6aの根本側の端面206aから突起部91までの厚み方向の高さh1は、支持体6aの先端側の端面206bから突起部91までの厚み方向の高さh2よりも大きくなっている。突起部91の位置は、上側及び下側レンズ部11,12の形状を考慮して、第1スペーサー板200の支持体6aと各上側及び下側レンズ部11,12とが互いに干渉しないように設定される。具体的には、第1スペーサー板200の開口部6bと端面206a,206bと交差する縁部61a,61bと、下側及び上側レンズ部12,11のうち第1スペーサー板200の基部200aからそれぞれ突出する部分の外側の縁部61c,61dとの距離d1,d2は、0以上であり、開口部6bの縁部分Sが上側及び下側レンズ部11,12から所定の距離を保つことができる程度の距離となっている。両側テーパー面TPの傾斜角度θ1,θ2は、第1スペーサー板200の厚み方向に対してそれぞれ0°<θ≦45°となっている。なお、凸形状の上側及び下側レンズ部11,12と両側テーパー面TPのとの間隙は、レンズ部が凹形状の場合よりもより厳密な調整が必要となる。調整が不十分な場合、レンズ部が凹形状の場合に比較して第1スペーサー板200が第1及び第2ウェハーレンズ100,300に精度良く貼り付けられないおそれがある。 The first spacer plate 200 functions as a support portion for the first wafer lens 100. The first spacer plate 200 is a flat plate member made of glass, ceramics, resin, or the like, and has holes formed in an array corresponding to the first compound lens 10. In this embodiment, the side on which light is incident (the end surface 206a side on the root side) is the front side, and the side on which the light is emitted (end surface 206b side on the front end side) is the back side. As shown in FIG. 22, the first spacer plate 200 is divided into a plurality of spacers 10c by dicing. Each spacer 10c has a cylindrical support 6a and an opening 6b having a circular cross section. The opening 6b extends along the optical axis OA so as to pass the optical axis OA parallel to the Z-axis of the lens body 10a. The opening 6 b is formed by the edge portion S facing the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300. Here, the edge portion S is an inner portion of a hole formed in the first spacer plate 200. The edge portion S is formed in a substantially circular shape so as to surround the outer shapes of the upper and lower lens portions 11 and 12. Of the entrances of the opening 6b, the inner diameter D1 of the entrance on the base end face 206a side is larger than the inner diameter D2 of the entrance on the end face 206b side. The support 6a is fixed to a flange 10b around the lens body 10a while avoiding the lens body 10a. That is, an appropriate gap is formed between the opening 6b and the lens body 10a. The edge portion S of the opening 6b opens from one end face of the first spacer plate 200 on the base side (upper side in the drawing) 206a and the other end face on the front end side (lower side in the drawing) 206b. Both side taper surfaces TP that narrow toward the center side in the thickness direction (Z direction in the drawing) of the portion 6b are formed. In the cross section in the thickness direction of the opening 6b (edge portion S), the tip position of the projection 91 located on the innermost side of the opening 6b is formed on the end face 206b side on the tip side from the center. In other words, the height h1 in the thickness direction from the end face 206a on the base side of the support 6a to the protrusion 91 is larger than the height h2 in the thickness direction from the end face 206b on the tip side of the support 6a to the protrusion 91. ing. The positions of the protrusions 91 are determined so that the support 6a of the first spacer plate 200 and the upper and lower lens portions 11 and 12 do not interfere with each other in consideration of the shapes of the upper and lower lens portions 11 and 12. Is set. Specifically, the opening 6b of the first spacer plate 200 and the edge portions 61a and 61b intersecting the end surfaces 206a and 206b, and the lower and upper lens portions 12 and 11 from the base portion 200a of the first spacer plate 200, respectively. The distances d1 and d2 with the outer edge portions 61c and 61d of the protruding portion are 0 or more, and the edge portion S of the opening 6b can keep a predetermined distance from the upper and lower lens portions 11 and 12. The distance is about. The inclination angles θ1 and θ2 of the tapered surfaces TP on both sides are 0 ° <θ ≦ 45 ° with respect to the thickness direction of the first spacer plate 200, respectively. The gap between the convex upper and lower lens portions 11 and 12 and the tapered surfaces TP on both sides needs to be adjusted more strictly than in the case where the lens portion is concave. When the adjustment is insufficient, the first spacer plate 200 may not be attached to the first and second wafer lenses 100 and 300 with higher accuracy than when the lens portion has a concave shape.
 支持体6aの根元側(図面上側)の端面206aは、接着剤81aを介して図面下側の第2フランジ面12b(基板101の他方の面101b)に接着されている。つまり、第1スペーサー板200の基部200aは、樹脂を介さずに基板101に直接的に接着されている。また、第1スペーサー板200の先端側(図面下側)の端面206bは、接着剤81bを介して第2ウェハーレンズ300を構成する第2複合レンズ20のうち図面上側の第1フランジ面21b(基板301の一方の面101a)に接着されている。つまり、第1スペーサー板200の基部200bは、樹脂を介さずに基板301に直接的に接着されている。これにより、第1ウェハーレンズ100の下側レンズ部12及び第2ウェハーレンズ300の上側レンズ部11は、第1スペーサー板200において、対応する開口部6bの位置で、開口部6b内に突出することとなる。 The end surface 206a on the base side (upper side of the drawing) of the support 6a is bonded to the second flange surface 12b (the other surface 101b of the substrate 101) on the lower side of the drawing via an adhesive 81a. That is, the base portion 200a of the first spacer plate 200 is directly bonded to the substrate 101 without using a resin. Further, the end surface 206b on the front end side (lower side of the drawing) of the first spacer plate 200 is a first flange surface 21b (upper side of the drawing) of the second compound lens 20 constituting the second wafer lens 300 via the adhesive 81b. Bonded to one surface 101a) of the substrate 301. That is, the base portion 200b of the first spacer plate 200 is directly bonded to the substrate 301 without using a resin. Thus, the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300 protrude into the opening 6b at the position of the corresponding opening 6b in the first spacer plate 200. It will be.
 第1スペーサー板200やこれから得たスペーサー10cは、第1ウェハーレンズ100と第2ウェハーレンズ300との間隔を調整するための部材であり、撮像装置700を構成する2つの第1及び第2複合レンズ10,20間の距離を調整する役割を有する。なお、支持体6aには、遮光性の材料で形成され、又は開口内面等に遮光性の塗装が施されたものであり、光学絞りとしての役割も有する。 The first spacer plate 200 and the spacer 10c obtained therefrom are members for adjusting the distance between the first wafer lens 100 and the second wafer lens 300, and the two first and second composites that constitute the imaging device 700. It has a role of adjusting the distance between the lenses 10 and 20. The support 6a is made of a light-shielding material or has a light-shielding coating applied to the inner surface of the opening or the like, and also serves as an optical diaphragm.
 第2スペーサー板400は、第2ウェハーレンズ300の支持部として機能するものである。第2スペーサー板400は、第1スペーサー板200と同様の構成を有する。図22に示すように、第2スペーサー板400は、ダイシングによって複数のスペーサー20cに分割される。第2スペーサー板400の支持体6aの根本側の端面406aは、接着剤81cを介して第2ウェハーレンズ300を構成する第2複合レンズ20のうち図面下側の第2フランジ面22bに接着されている。つまり、第2スペーサー板400の基部400aは、樹脂を介さずに基板301に直接的に接着されている。また、第2スペーサー板400の先端側の端面406bは、接着剤81dを介して撮像素子アレイ500に接着されている。なお、第2スペーサー板400において、表裏の開口部6bの内径は、略同一の大きさとなっている。また、第2スペーサー板400の開口部6bにおいて、突起部92の先端位置は、厚み方向の略中央に形成されている。第2スペーサー板400やスペーサー20cは、第2ウェハーレンズ300と撮像素子アレイ500との間隔を調整するための部材であり、撮像装置700を構成する第2複合レンズ20と撮像素子530との間の距離を調整する役割を有する。 The second spacer plate 400 functions as a support portion for the second wafer lens 300. The second spacer plate 400 has the same configuration as the first spacer plate 200. As shown in FIG. 22, the second spacer plate 400 is divided into a plurality of spacers 20c by dicing. The end surface 406a on the base side of the support 6a of the second spacer plate 400 is bonded to the second flange surface 22b on the lower side of the drawing of the second compound lens 20 constituting the second wafer lens 300 via an adhesive 81c. ing. That is, the base 400a of the second spacer plate 400 is directly bonded to the substrate 301 without using a resin. Further, the end surface 406b on the front end side of the second spacer plate 400 is bonded to the imaging element array 500 via an adhesive 81d. In the second spacer plate 400, the inner diameters of the front and back openings 6b are substantially the same. In addition, in the opening 6b of the second spacer plate 400, the tip end position of the protrusion 92 is formed at the approximate center in the thickness direction. The second spacer plate 400 and the spacer 20 c are members for adjusting the distance between the second wafer lens 300 and the image sensor array 500, and are between the second compound lens 20 and the image sensor 530 constituting the image pickup apparatus 700. It has a role to adjust the distance.
 第1スペーサー板200の厚みは、第1ウェハーレンズ100の下側レンズ部12と第2ウェハーレンズ300の上側レンズ部11との間隔を適切に保つような値とする。また、第2スペーサー板400の厚みは、第2ウェハーレンズ300の下側レンズ部12と撮像素子アレイ500の撮像素子530との間隔を適切に保つような値とする。第1及び第2スペーサー板200,400の具体的な厚みは、上側及び下側レンズ部11,12の光学的特性、撮像素子530の性能、撮像用レンズとして求められる機能や用途等にもよるが、概ね0.1mm以上、0.8mm以下が好ましく、0.2mm以上、0.6mm以下がさらに好ましい。0.1mm以上の場合、取り扱いが容易で、また、応力緩和性が高く、剥離や割れといった故障が生じにくい。また、0.8mm以下であると、透過率が高く好ましい。 The thickness of the first spacer plate 200 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the first wafer lens 100 and the upper lens portion 11 of the second wafer lens 300. In addition, the thickness of the second spacer plate 400 is set to a value that appropriately maintains the distance between the lower lens portion 12 of the second wafer lens 300 and the image sensor 530 of the image sensor array 500. The specific thickness of the first and second spacer plates 200 and 400 depends on the optical characteristics of the upper and lower lens portions 11 and 12, the performance of the image sensor 530, the functions and applications required for the imaging lens, and the like. However, generally 0.1 mm or more and 0.8 mm or less are preferable, and 0.2 mm or more and 0.6 mm or less are more preferable. When the thickness is 0.1 mm or more, handling is easy, stress relaxation is high, and failures such as peeling and cracking are unlikely to occur. Moreover, it is preferable that it is 0.8 mm or less because the transmittance is high.
 第1及び第2スペーサー板200,400の具体的な材料は、軟質ガラス、樹脂、有機無機ハイブリッド材料等であり、特に限定されないが、耐熱性の有る樹脂、または、耐熱性の有る有機無機ハイブリッド材料が良い。有機無機ハイブリッド材料は、耐熱性の有るガラス繊維強化樹脂、フィラー強化樹脂、有機-シリカハイブリッド等が良い。特に有機シリカ-ハイブリッドが良く、中でも、エポキシ樹脂-シリカハイブリッドおよびアクリル-シリカハイブリッドは、上側及び下側樹脂部102,103との接着性も良好で好ましい。 Specific materials of the first and second spacer plates 200 and 400 are soft glass, resin, organic-inorganic hybrid material, and the like, and are not particularly limited. However, heat-resistant resin or heat-resistant organic-inorganic hybrid is used. Good material. As the organic / inorganic hybrid material, heat-resistant glass fiber reinforced resin, filler reinforced resin, organic-silica hybrid, and the like are preferable. In particular, an organic silica-hybrid is preferable. Among them, an epoxy resin-silica hybrid and an acrylic-silica hybrid are preferable because they have good adhesion to the upper and lower resin portions 102 and 103.
 第1及び第2スペーサー板200,400の開口部6bは、例えばエッチングやブラスト等によって形成される。エッチング方法として、例えばウェットエッチング等が用いられ、ブラスト方法としては、マイクロブラスト加工等が用いられる。 The openings 6b of the first and second spacer plates 200 and 400 are formed by, for example, etching or blasting. For example, wet etching or the like is used as the etching method, and microblasting or the like is used as the blasting method.
3-B)レンズユニット及び撮像装置
 図22を参照しつつ、レンズユニット800及び撮像装置700について説明する。撮像装置700は、レンズユニット800と撮像素子530とを備える。
3-B) Lens Unit and Imaging Device The lens unit 800 and the imaging device 700 will be described with reference to FIG. The imaging device 700 includes a lens unit 800 and an imaging element 530.
 レンズユニット800は、第1複合レンズ10と、第1スペーサー10cと、第2複合レンズ20と、第2スペーサー20cとを備える。 The lens unit 800 includes a first compound lens 10, a first spacer 10c, a second compound lens 20, and a second spacer 20c.
 第1複合レンズ10は、既に説明した上側レンズ部11と、下側レンズ部12と、これらの間に挟まれた平板部13とを備える。平板部13は、基板101を切り出した部分である。つまり、第1複合レンズ10は、基板101に樹脂製の複数の上側及び下側レンズ部11,12を形成した後に切断して個片化したレンズである(第2複合レンズ20についても同様)。第1複合レンズ10において、上側及び下側レンズ部11,12の形状は同一でも異なる形状であってもよい。第2複合レンズ20は、第1複合レンズ10と同様に、上側レンズ部11と、下側レンズ部12と、これらの間に挟まれた平板部13とを備える。 The first compound lens 10 includes the upper lens portion 11, the lower lens portion 12, and the flat plate portion 13 sandwiched therebetween. The flat plate portion 13 is a portion obtained by cutting out the substrate 101. That is, the first compound lens 10 is a lens that is cut into individual pieces after forming a plurality of resin upper and lower lens portions 11 and 12 on the substrate 101 (the same applies to the second compound lens 20). . In the first compound lens 10, the shapes of the upper and lower lens portions 11 and 12 may be the same or different. Similar to the first compound lens 10, the second compound lens 20 includes an upper lens unit 11, a lower lens unit 12, and a flat plate unit 13 sandwiched therebetween.
 第1スペーサー10cは、第1複合レンズ10と第2複合レンズ20との間に設けられている。第2スペーサー20cは、第2複合レンズ20と撮像素子530との間に設けられている。第1及び第2スペーサー10c,20cは、上側及び下側レンズ部11,12にそれぞれ対応する開口部6bを有する。開口部6bの入り口は、根本側の端面206a側と先端側の端面206b側とで異なっている。具体的には、外形寸法の大きい第1ウェハーレンズ100の下側レンズ部12に臨む開口部6bの入り口の内径D1が、外形寸法の小さい第2ウェハーレンズ300の上側レンズ部11に臨む開口部6bの入り口の内径D2よりも大きくなっている。開口部6bの縁部分Sには、第1及び第2スペーサー10c,20cの厚み方向の中心側に向かって狭まる両側テーパー面TPが形成されている。第1スペーサー10cの開口部6b(縁部分S)の厚み方向の断面において、突起部91の先端位置が端面206b寄りに形成されている。第2スペーサー20cの開口部6b(縁部分S)の厚み方向の断面において、突起部92の先端位置が厚み方向の略中央に形成されている。 The first spacer 10 c is provided between the first compound lens 10 and the second compound lens 20. The second spacer 20 c is provided between the second compound lens 20 and the image sensor 530. The first and second spacers 10c and 20c have openings 6b corresponding to the upper and lower lens portions 11 and 12, respectively. The entrance of the opening 6b is different between the end face 206a side on the root side and the end face 206b side on the tip side. Specifically, the inner diameter D1 of the entrance of the opening 6b facing the lower lens portion 12 of the first wafer lens 100 having a large outer dimension is an opening facing the upper lens portion 11 of the second wafer lens 300 having a smaller outer dimension. It is larger than the inner diameter D2 of the entrance of 6b. A double-sided tapered surface TP that narrows toward the center in the thickness direction of the first and second spacers 10c and 20c is formed at the edge portion S of the opening 6b. In the cross section in the thickness direction of the opening 6b (edge portion S) of the first spacer 10c, the tip position of the protrusion 91 is formed closer to the end surface 206b. In the cross section in the thickness direction of the opening 6b (edge portion S) of the second spacer 20c, the tip position of the protrusion 92 is formed at the approximate center in the thickness direction.
 撮像装置700は、光軸OA方向から見て四角形の輪郭を有する。なお、撮像装置700は、例えば別途準備したホルダーに収納され、撮像レンズとして撮像回路基板に接着される。 The imaging device 700 has a rectangular outline when viewed from the optical axis OA direction. Note that the imaging device 700 is housed in, for example, a separately prepared holder and bonded to the imaging circuit board as an imaging lens.
3-C)スペーサー板の製造方法
 以下、図23A~23Dを参照しつつ、第1スペーサー板200の作製方法の一例について説明する。なお、第2スペーサー板400の作製方法は、第1スペーサー板200と同様である。まず、図23Aに示すように、第1及び第2スペーサー板200,400の材料となるスペーサー用基板SSの両面にマスクMA1,MA2を形成する。マスクMA1,MA2には、第1スペーサー板200の各開口部6bに対応する位置に円形の穴OP1,OP2のパターンが形成されている。両側テーパー面TPの突起部91の位置は、穴OP1,OP2の径の大きさやスペーサー用基板SSの各面ごとのエッチングやブラスト処理時間を変化させることによって調整する。具体的には、スペーサー用基板SSの根本側の端面206a上に形成されたマスクMA1の穴OP1の径x1を、先端側の端面206b上に形成されたマスクMA2のOP2の径x2よりも大きくする。マスクMA1,MA2として、エッチング溶液やブラスト投射物に耐えうる材料が用いられ、具体的には、例えば、レジスト、ステンレス等のメタルマスク、クロム等が用いられる。
3-C) Method for Manufacturing Spacer Plate Hereinafter, an example of a method for manufacturing the first spacer plate 200 will be described with reference to FIGS. 23A to 23D. The method for producing the second spacer plate 400 is the same as that for the first spacer plate 200. First, as shown in FIG. 23A, masks MA1 and MA2 are formed on both surfaces of a spacer substrate SS which is a material of the first and second spacer plates 200 and 400. In the masks MA1 and MA2, circular holes OP1 and OP2 are formed at positions corresponding to the openings 6b of the first spacer plate 200. The positions of the protrusions 91 on the tapered surfaces TP on both sides are adjusted by changing the diameters of the holes OP1 and OP2 and the etching and blasting time for each surface of the spacer substrate SS. Specifically, the diameter x1 of the hole OP1 of the mask MA1 formed on the base-side end surface 206a of the spacer substrate SS is larger than the diameter x2 of OP2 of the mask MA2 formed on the end-side end surface 206b. To do. As the masks MA1 and MA2, a material that can withstand an etching solution and a blast projectile is used. Specifically, for example, a resist, a metal mask such as stainless steel, chromium, or the like is used.
 次に、エッチングであれば図23Bに示すように、マスクMA1,MA2を形成したスペーサー用基板SSをエッチング溶液ESに浸す。エッチング溶液として、例えばフッ酸やフッ化アンモニウム等が用いられる。図23Cに示すように、スペーサー用基板SSが両端面206a,206bのうちマスクMA1,MA2が形成されていない部分、すなわち露出した部分から徐々にエッチングされ、最終的に、図23Dに示すように、スペーサー用基板SSに各端面206a,206bにおいて入り口の内径が異なる開口部6bが形成される。なお、ブラスト加工によって開口部6bを形成する場合、マスクMA1,MA2を形成したスペーサー用基板SSにブラスト投射物を投射する。これにより、図23Cに示すようにスペーサー用基板SSが両端面206a,206bの露出した部分から徐々に除去され、最終的に、図23Dに示すように、スペーサー用基板SSに各端面206a,206bにおいて入り口の内径が異なる開口部6bが形成される。 Next, in the case of etching, as shown in FIG. 23B, the spacer substrate SS on which the masks MA1 and MA2 are formed is immersed in the etching solution ES. For example, hydrofluoric acid or ammonium fluoride is used as the etching solution. As shown in FIG. 23C, the spacer substrate SS is gradually etched from the portions where the masks MA1 and MA2 are not formed, that is, the exposed portions of both end faces 206a and 206b, and finally, as shown in FIG. 23D. In the spacer substrate SS, openings 6b having different entrance inner diameters are formed on the end faces 206a and 206b. When the opening 6b is formed by blasting, a blast projection is projected onto the spacer substrate SS on which the masks MA1 and MA2 are formed. As a result, the spacer substrate SS is gradually removed from the exposed portions of both end faces 206a and 206b as shown in FIG. 23C, and finally, as shown in FIG. 23D, the end faces 206a and 206b are formed on the spacer substrate SS. Are formed with openings 6b having different inner diameters.
3-D)積層構造体及びレンズユニットの製造方法
 ウェハーレンズ100の製造工程は、第1実施形態で説明したもの(図5A~5E参照)と同様であるので、説明を省略する。なお、上側樹脂部102の成形と、下側樹脂部103の成形とは、略同様の工程で行われる。
3-D) Manufacturing Method of Laminated Structure and Lens Unit Since the manufacturing process of the wafer lens 100 is the same as that described in the first embodiment (see FIGS. 5A to 5E), description thereof is omitted. Note that the molding of the upper resin portion 102 and the molding of the lower resin portion 103 are performed in substantially the same process.
 第1及び第2ウェハーレンズ100,300の製造後は、図24Aに示すように、第1ウェハーレンズ100の基板101の他方の面101bにシート状又はウェハー状の第1スペーサー板200を貼り付ける。具体的には、第1スペーサー板200又は第1ウェハーレンズ100の片面に接着剤81aを塗布する。その後、基板101や下側樹脂部103に対して第1スペーサー板200又は第1ウェハーレンズ100をアライメントし、第1スペーサー板200の接着面すなわち根本側の端面206aを基板101の他方の面101bに押し付けるとともに、接着剤にUV光を照射して硬化させる。 After the manufacture of the first and second wafer lenses 100 and 300, as shown in FIG. 24A, a sheet-like or wafer-like first spacer plate 200 is attached to the other surface 101b of the substrate 101 of the first wafer lens 100. . Specifically, the adhesive 81 a is applied to one side of the first spacer plate 200 or the first wafer lens 100. Thereafter, the first spacer plate 200 or the first wafer lens 100 is aligned with respect to the substrate 101 and the lower resin portion 103, and the bonding surface of the first spacer plate 200, that is, the end surface 206 a on the root side is used as the other surface 101 b of the substrate 101. The adhesive is cured by irradiating it with UV light.
 図24Bに示すように、以上の工程と同様の工程で、接着剤81cを用いて第2ウェハーレンズ300に第2スペーサー板400を貼り付ける。なお、第1スペーサー板200と第2ウェハーレンズ300とを貼り付けた後に第2ウェハーレンズ300に第2スペーサー板400を貼り付けてもよい。 As shown in FIG. 24B, the second spacer plate 400 is attached to the second wafer lens 300 using the adhesive 81c in the same process as the above process. Alternatively, the second spacer plate 400 may be attached to the second wafer lens 300 after the first spacer plate 200 and the second wafer lens 300 are attached.
 その後、図24Cに示すように、第1スペーサー板200を貼り付けた第1ウェハーレンズ100と第2スペーサー板400を貼り付けた第2ウェハーレンズ300と接合してアレイユニット600を作製する。つまり、第1ウェハーレンズ100に固定した第1スペーサー板200の先端側の端面206b又は第2ウェハーレンズ300に接着剤81bを塗布して第2ウェハーレンズ300又は第1スペーサー板200と貼り合わせてUV光を照射する。これにより、第1スペーサー板200を介して、第1ウェハーレンズ100に第2ウェハーレンズ300が固定又は接合される。次に、第2ウェハーレンズ300に対して第1ウェハーレンズ100の反対側に撮像素子アレイ500を貼り付ける。つまり、第2ウェハーレンズ300に固定した第2スペーサー板400の端面に接着剤81dを塗布して撮像素子アレイ500と貼り合わせてUV光を照射する。これにより、図21に示すように、第2スペーサー板400を介して、第2ウェハーレンズ300に撮像素子アレイ500が固定又は接合される。以上により、第1ウェハーレンズ100と、第1スペーサー板200と、第2ウェハーレンズ300と、第2スペーサー板400と、撮像素子アレイ500とを積層した積層構造体1000が完成する。 Thereafter, as shown in FIG. 24C, the first wafer lens 100 having the first spacer plate 200 attached thereto and the second wafer lens 300 having the second spacer plate 400 attached thereto are joined to produce the array unit 600. That is, the adhesive 81b is applied to the end face 206b of the first spacer plate 200 fixed to the first wafer lens 100 or the second wafer lens 300, and is bonded to the second wafer lens 300 or the first spacer plate 200. Irradiate with UV light. Accordingly, the second wafer lens 300 is fixed or bonded to the first wafer lens 100 via the first spacer plate 200. Next, the image sensor array 500 is attached to the second wafer lens 300 on the opposite side of the first wafer lens 100. That is, the adhesive 81d is applied to the end face of the second spacer plate 400 fixed to the second wafer lens 300, and is bonded to the image pickup device array 500 to irradiate UV light. As a result, as shown in FIG. 21, the imaging element array 500 is fixed or bonded to the second wafer lens 300 via the second spacer plate 400. As described above, the laminated structure 1000 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500 are laminated is completed.
 その後、図21及び図22に示すカットラインDXに沿って第1及び第2ウェハーレンズ100,300等を切断、すなわちダイシングする。ダイシングにより、第1及び第2ウェハーレンズ100,300等は、四角柱状に切り出され、第1及び第2複合レンズ10,20等を積層した構造の撮像装置700となる。 Thereafter, the first and second wafer lenses 100, 300, etc. are cut, that is, diced, along the cut line DX shown in FIGS. By dicing, the first and second wafer lenses 100, 300, etc. are cut out into a quadrangular prism shape to form an imaging device 700 having a structure in which the first and second compound lenses 10, 20, etc. are stacked.
 以上の説明では、積層構造体1000が第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400と撮像素子アレイ500とを備えるとして説明したが、積層構造体1000を第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400とで構成することもできる。この場合、第1ウェハーレンズ100と第1スペーサー板200と第2ウェハーレンズ300と第2スペーサー板400とを積層したアレイユニット600によって積層構造体1000を構成することになる。このようなアレイユニット600をダイシングによって個片化し、別途作製した個別の撮像素子530と接合することもできる。なお、以下に説明する実施形態でも、積層構造体1000に撮像素子アレイ500を含めているが、撮像素子アレイ500を省略してアレイユニット600で構成することもできる。 In the above description, the laminated structure 1000 has been described as including the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, the second spacer plate 400, and the imaging element array 500. The first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 may be used. In this case, the laminated structure 1000 is constituted by the array unit 600 in which the first wafer lens 100, the first spacer plate 200, the second wafer lens 300, and the second spacer plate 400 are laminated. Such an array unit 600 can be separated into pieces by dicing and joined to an individual image pickup device 530 separately manufactured. In the embodiment described below, the imaging element array 500 is included in the stacked structure 1000, but the imaging element array 500 may be omitted and the array unit 600 may be configured.
 以上説明した第8実施形態のレンズユニット及びアレイユニットによれば、外形寸法の大きい第1ウェハーレンズ100(レンズユニットの場合は第1複合レンズ10)の下側レンズ部12との干渉を避ける必要がある端面206a側については、下側レンズ部12の輪郭や外形に応じて、開口部6bの内径D1のサイズを広げて第1スペーサー板200(レンズユニットの場合は第1スペーサー10c)と下側レンズ部12との間隙(クリアランス)を十分確保させることができる。これにより、第1スペーサー板200を様々なレンズの輪郭や外形の仕様に対応させつつ、かつクリアランスを確保するために低下するおそれがある第1スペーサー板200の強度を向上させることができる。また、上側及び下側レンズ部11,12が第1スペーサー板200の基部200aよりも突出している場合において、第1スペーサー板200の開口部6bが厚み方向の中心側に向かって狭まる一対のテーパー面(両側テーパー面)であって、第1スペーサー板200の縁部分Sの内径が端面206aと端面206bとで異なることにより、外形寸法の小さい第2ウェハーレンズ300(レンズユニットの場合は第2複合レンズ20)の上側レンズ部11側、すなわち端面206b側の内径D2のサイズを狭めて第1スペーサー板200の強度を図ることができる。特に、撮像装置700を得るために積層構造体1000を切断する際にはスペーサー板の強度等が不十分であるとスペーサー板の破損や剥離が問題となるが、上側及び下側レンズ部11,12間に表裏の開口部6bの内径D1,D2が異なる両側テーパー面TPつきの第1スペーサー板200を挿入することで強度を上げることができる。また、例えば多数個取りのレンズユニット800の場合、スペーサー板の穴数も増えるため、第1スペーサー板200の強度が向上することにより、レンズユニット800の大量生産を可能にする。 According to the lens unit and the array unit of the eighth embodiment described above, it is necessary to avoid interference with the lower lens portion 12 of the first wafer lens 100 (first compound lens 10 in the case of a lens unit) having a large outer dimension. On the end face 206a side, the size of the inner diameter D1 of the opening 6b is increased according to the contour and outer shape of the lower lens portion 12, and the first spacer plate 200 (first spacer 10c in the case of a lens unit) and the lower A sufficient gap (clearance) with the side lens portion 12 can be ensured. Thereby, the strength of the first spacer plate 200 that can be lowered to ensure the clearance can be improved while the first spacer plate 200 corresponds to the specifications of various lens outlines and external shapes. In addition, when the upper and lower lens portions 11 and 12 protrude from the base portion 200a of the first spacer plate 200, the pair of tapers in which the opening 6b of the first spacer plate 200 narrows toward the center in the thickness direction. The second wafer lens 300 having a small outer dimension (a second surface in the case of a lens unit) is obtained because the inner surface of the first spacer plate 200 has a different inner diameter between the end surface 206a and the end surface 206b. The strength of the first spacer plate 200 can be increased by narrowing the size of the inner diameter D2 on the upper lens portion 11 side of the compound lens 20), that is, on the end face 206b side. In particular, when the laminated structure 1000 is cut in order to obtain the imaging device 700, if the spacer plate has insufficient strength or the like, the spacer plate may be damaged or peeled off. The strength can be increased by inserting the first spacer plate 200 with tapered surfaces TP on both sides having different inner diameters D1 and D2 of the opening 6b on the front and back sides. Further, for example, in the case of the multi-piece lens unit 800, the number of holes in the spacer plate is also increased, so that the strength of the first spacer plate 200 is improved, thereby enabling mass production of the lens unit 800.
 特に、多数個取りの個別滴下方式のレンズユニット800において、全体滴下方式のレンズユニットに比べて樹脂部である上側及び下側樹脂部102,103等の切断を行わなくて済む等の点からレンズ精度を良くすることができる。ただし、個別滴下方式の場合、レンズ部である上側及び下側レンズ部11,12を形成するために、樹脂材料102bの滴下量をコントロールする必要がある。ここで、全ての上側及び下側レンズ部11,12を形成するための第3転写面53等に対して上側及び下側レンズ部11,12の最も外側の形状の広がりをショット間で精度良く制御することが難しい。そのため、第1及び第2スペーサー板200,400と上側及び下側レンズ部11,12との干渉を避けるためには、樹脂材料102bの滴下量の制御だけでは不十分である。よって、スペーサー板の穴径はレンズ部と開口部の内側との間隙(クリアランス)を確保するために、開口部の内径を広げるとその分だけスペーサー板の強度が減少し、スペーサー板のハンドリング時、スペーサーを積層する工程、積層構造体を切断する工程等でスペーサー板が破損する等、強度に対する懸念が生じる。そこで、表裏の開口部6bの内径D1,D2が異なる両側テーパー面TPつきの第1スペーサー板200を用いることにより、上側及び下側レンズ部11,12の最外径部分と第1スペーサー板200とが互いに干渉しないように逃げを作りつつ、第1スペーサー板200の各穴間の肉厚を増やすことができる。これにより、第1スペーサー板200の強度を向上させることができる。 In particular, in the lens unit 800 of the multi-drop individual dripping method, the lens does not need to cut the upper and lower resin portions 102 and 103, which are resin portions, as compared with the whole dripping type lens unit. The accuracy can be improved. However, in the case of the individual dropping method, it is necessary to control the dropping amount of the resin material 102b in order to form the upper and lower lens portions 11 and 12 which are lens portions. Here, the outermost shape of the upper and lower lens portions 11 and 12 with respect to the third transfer surface 53 and the like for forming all the upper and lower lens portions 11 and 12 is accurately reflected between shots. Difficult to control. Therefore, in order to avoid interference between the first and second spacer plates 200 and 400 and the upper and lower lens portions 11 and 12, it is not sufficient to control the dropping amount of the resin material 102b. Therefore, the hole diameter of the spacer plate ensures the gap (clearance) between the lens part and the inside of the opening. If the inner diameter of the opening is widened, the strength of the spacer plate is reduced by that amount. There are concerns about strength such as the spacer plate being damaged in the step of laminating the spacer, the step of cutting the laminated structure, and the like. Therefore, by using the first spacer plate 200 with the tapered surfaces TP on both sides having different inner diameters D1 and D2 of the front and back openings 6b, the outermost diameter portions of the upper and lower lens portions 11 and 12, the first spacer plate 200, The thickness between the holes of the first spacer plate 200 can be increased while making relief so as not to interfere with each other. Thereby, the strength of the first spacer plate 200 can be improved.
 なお、レンズ部と基板とを一体的に成形し、ウェハーレンズ全体の面積を大きくしてレンズユニットの取り個数を増やせば増やすほど、基板等の反り等の問題点が大きくなる。これに対して本実施形態のレンズユニット800及びアレイユニット600は、基板101,301上に樹脂を塗布し光学面11a,12a,21a,22aを成形しており、レンズ部の厚みに基板の厚さが依存しない。そのため、基板101上に多量のレンズ部(上側及び下側レンズ部11,12)を形成することができるという利点がある。しかしながら、基板上に別途樹脂を塗布する必要があるため、基板上に必ず樹脂製の凸部(突起)が生じる。この凸部が生じないように凸部の周りを樹脂で埋めるという方法もあるが、その場合、レンズ部の厚みが増えてレンズユニット全体の厚みが大きくなることや樹脂の使用量が増えて基板等の反り等や製造コストの増加等の問題も発生しやすくなる。そこで、開口部6bに表裏で開口部6bの内径D1,D2が異なる両側テーパー面TPつきの第1スペーサー板200を設けることにより、基板101上に樹脂を塗布付して成形を行う方法であっても、レンズユニット800全体の厚みを抑えつつ、レンズ部(上側及び下側レンズ部11,12)と第1スペーサー板200とを精度良く配置することができる。 Note that the more the lens unit and the substrate are integrally molded and the total area of the wafer lens is increased to increase the number of lens units, the more problems such as warpage of the substrate increase. On the other hand, in the lens unit 800 and the array unit 600 of the present embodiment, the optical surfaces 11a, 12a, 21a, and 22a are formed by applying resin on the substrates 101 and 301, and the thickness of the substrate is equal to the thickness of the lens portion. Is not dependent. Therefore, there is an advantage that a large amount of lens parts (upper and lower lens parts 11 and 12) can be formed on the substrate 101. However, since it is necessary to separately apply a resin on the substrate, a convex portion (protrusion) made of resin always occurs on the substrate. There is also a method of filling the periphery of the convex part with resin so that this convex part does not occur, but in that case, the thickness of the lens part increases and the thickness of the entire lens unit increases or the amount of resin used increases and the substrate Problems such as warping and the like and an increase in manufacturing cost are likely to occur. In view of this, the first spacer plate 200 with the tapered surfaces TP on both sides having different inner diameters D1 and D2 of the opening 6b on the front and back sides is provided on the opening 6b to apply the resin on the substrate 101 and perform molding. In addition, the lens portions (upper and lower lens portions 11 and 12) and the first spacer plate 200 can be arranged with high accuracy while suppressing the thickness of the entire lens unit 800.
〔第9実施形態〕
 以下、第9実施形態に係る積層構造体等について説明する。なお、第9実施形態の積層構造体の構造や製造方法は第8実施形態の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第8実施形態と同様であるものとする。
[Ninth Embodiment]
The laminated structure according to the ninth embodiment will be described below. Note that the structure and manufacturing method of the laminated structure of the ninth embodiment are modifications of the structure and manufacturing method of the laminated structure of the eighth embodiment, and parts not specifically described are the same as those of the eighth embodiment. And
 図25A~25Cに示すように、積層構造体1000を構成する第1ウェハーレンズ100と第2ウェハーレンズ300において、上側及び下側レンズ部11,12は、基板101,301上で樹脂が繋がって形成されている。アレイユニット600を切断すると、樹脂製の上側及び下側レンズ部11,12の周囲に樹脂製の上側及び下側フランジ部15,16が形成された状態になる。つまり、第1及び第2フランジ面11b,12b,21b,22bは、上側及び下側樹脂部102,103,302,303上にそれぞれ形成される。本実施形態において、第1スペーサー板200の根本側の基部200aは、接着剤81a及び上側フランジ部15を介して基板101に間接的に接着されている。第1スペーサー板200の先端側の基部200bや第2スペーサー板400の根本側の基部400aについても同様である。なお、上側及び下側樹脂部102,103,302,303の切断位置における厚みは、例えば0.01mm以上、0.3mm以下とされる。 As shown in FIGS. 25A to 25C, in the first wafer lens 100 and the second wafer lens 300 constituting the laminated structure 1000, the upper and lower lens portions 11 and 12 are connected with resin on the substrates 101 and 301, respectively. Is formed. When the array unit 600 is cut, the upper and lower flange portions 15 and 16 made of resin are formed around the upper and lower lens portions 11 and 12 made of resin. That is, the first and second flange surfaces 11b, 12b, 21b, and 22b are formed on the upper and lower resin portions 102, 103, 302, and 303, respectively. In the present embodiment, the base portion 200 a on the base side of the first spacer plate 200 is indirectly bonded to the substrate 101 via the adhesive 81 a and the upper flange portion 15. The same applies to the base portion 200b on the front end side of the first spacer plate 200 and the base portion 400a on the root side of the second spacer plate 400. In addition, the thickness in the cutting position of the upper side and lower side resin parts 102, 103, 302, and 303 shall be 0.01 mm or more and 0.3 mm or less, for example.
 積層構造体1000の第1スペーサー板200において、開口部6bの入り口のうち、根本側の端面206a側の入り口の内径D1は、先端側の端面206b側の入り口の内径D2よりも小さくなっている。開口部6bの断面において、開口部6bの最も内側にある突起部91の先端位置は、第1スペーサー板200の厚み方向において、中心よりも根本側の端面206a側に形成されている。つまり、支持体6aの根本側の端面206aから突起部91までの厚み方向の高さh1は、支持体6aの先端側の端面206bから突起部91までの厚み方向の高さh2よりも小さくなっている。なお、突起部91の先端位置が、第1スペーサー板200の厚み方向において、中心よりも先端側の端面206b側に形成されていてもよい。本実施形態において、他方の第2スペーサー板400の表裏の開口部6bの内径は略同じ大きさであり、突起部92の先端位置は厚み方向の略中央に形成されている。 In the first spacer plate 200 of the laminated structure 1000, the inner diameter D1 of the entrance on the root end face 206a side of the entrance of the opening 6b is smaller than the inner diameter D2 of the entrance on the end face 206b side on the distal end side. . In the cross section of the opening 6b, the tip end position of the projection 91 located on the innermost side of the opening 6b is formed closer to the end face 206a side on the root side than the center in the thickness direction of the first spacer plate 200. That is, the height h1 in the thickness direction from the end face 206a on the base side of the support 6a to the protrusion 91 is smaller than the height h2 in the thickness direction from the end face 206b on the tip side of the support 6a to the protrusion 91. ing. The tip position of the protrusion 91 may be formed on the end face 206b side of the tip side from the center in the thickness direction of the first spacer plate 200. In the present embodiment, the inner diameters of the front and back openings 6b of the other second spacer plate 400 are approximately the same size, and the tip position of the protrusion 92 is formed at the approximate center in the thickness direction.
 本実施形態の第1ウェハーレンズ100の製造工程は、第1実施形態で説明したもの(図9A~9E又は図16A及び16B参照)と同様であるので、説明を省略する。本実施形態の第1及び第2ウェハーレンズ100の上側及び下側樹脂部102,103は、全体滴下方式によって形成される。なお、第2ウェハーレンズ300の製造工程も、第1ウェハーレンズ100の製造工程と同様である。 Since the manufacturing process of the first wafer lens 100 of this embodiment is the same as that described in the first embodiment (see FIGS. 9A to 9E or FIGS. 16A and 16B), the description thereof is omitted. The upper and lower resin portions 102 and 103 of the first and second wafer lenses 100 of the present embodiment are formed by an entire dropping method. The manufacturing process of the second wafer lens 300 is the same as the manufacturing process of the first wafer lens 100.
 その後、図7A~7C又は図17A及び17Bに示す製造手順と同様のものを行う。これにより、図25Bに示すように、レンズユニット800を含む撮像装置700を得る(図25Bでは、撮像素子アレイ500を分離した個別の撮像素子530の図示を省略している)。 Thereafter, the same manufacturing procedure as shown in FIGS. 7A to 7C or FIGS. 17A and 17B is performed. As a result, as shown in FIG. 25B, an imaging device 700 including the lens unit 800 is obtained (in FIG. 25B, the illustration of the individual imaging elements 530 from which the imaging element array 500 is separated is omitted).
〔第10実施形態〕
 以下、第10実施形態に係る積層構造体等について説明する。なお、第10実施形態の積層構造体の構造や製造方法は第8実施形態等の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第8実施形態等と同様であるものとする。
[Tenth embodiment]
Hereinafter, the laminated structure according to the tenth embodiment will be described. Note that the structure and manufacturing method of the laminated structure of the tenth embodiment are modifications of the structure and manufacturing method of the laminated structure of the eighth embodiment, and the portions that are not particularly described are the same as those of the eighth embodiment. It shall be.
 図26A等に示すように、積層構造体1000の第2スペーサー板400において、開口部6bの入り口のうち、根本側の端面406a側の入り口の内径D1は、先端側の端面406b側の入り口の内径D2よりも大きくなっている。開口部6bの断面において、開口部6bの最も内側にある突起部92の先端位置が、第2スペーサー板400の厚み方向において、中心よりも先端側の端面406b側に形成されている。つまり、支持体6aの根本側の端面406aから突起部92までの厚み方向の高さh1は、支持体6aの先端側の端面206bから突起部92までの厚み方向の高さh2よりも大きくなっている。なお、突起部92の先端位置が、第2スペーサー板400の厚み方向において、中心よりも根本側の端面406a側に形成されていてもよい。本実施形態において、他方の第1スペーサー板200の表裏の開口部6bの内径は略同じ大きさであり、突起部91の先端位置は厚み方向の略中央に形成されている。この積層構造体1000をダイシングすることにより、図26Bに示すレンズユニット800を含む撮像装置700を得る(図26Bでは、撮像素子530の図示を省略している)。 As shown in FIG. 26A and the like, in the second spacer plate 400 of the laminated structure 1000, the inner diameter D1 of the entrance on the base end face 406a among the entrances of the opening 6b is equal to the entrance on the end face 406b side on the front end side. It is larger than the inner diameter D2. In the cross section of the opening 6 b, the tip end position of the protrusion 92 located on the innermost side of the opening 6 b is formed on the end face 406 b side on the tip side from the center in the thickness direction of the second spacer plate 400. That is, the height h1 in the thickness direction from the base end surface 406a of the support 6a to the protrusion 92 is greater than the height h2 in the thickness direction from the end surface 206b of the support 6a to the protrusion 92. ing. The tip position of the protrusion 92 may be formed closer to the end surface 406a on the side of the root than the center in the thickness direction of the second spacer plate 400. In the present embodiment, the inner diameters of the opening portions 6b on the front and back sides of the other first spacer plate 200 are substantially the same size, and the tip end position of the protrusion 91 is formed at the approximate center in the thickness direction. The laminated structure 1000 is diced to obtain the imaging device 700 including the lens unit 800 shown in FIG. 26B (the imaging element 530 is not shown in FIG. 26B).
 第10実施形態のレンズユニット及びアレイユニットによれば、レンズ部が形成されていない先端側の端面406bの開口部6bの内径D2を根本側の端面406aよりも小さくすることにより、根本側の端面406a側で下側レンズ部12への当たりを回避しつつ、第2スペーサー板400の強度を向上させることができる。 According to the lens unit and the array unit of the tenth embodiment, by making the inner diameter D2 of the opening 6b of the end surface 406b on the distal end side where the lens portion is not formed smaller than the end surface 406a on the root side, the end surface on the root side The strength of the second spacer plate 400 can be improved while avoiding hitting the lower lens portion 12 on the 406a side.
〔第11実施形態〕
 以下、第11実施形態に係る積層構造体等について説明する。なお、第11実施形態の積層構造体の構造や製造方法は第8実施形態等の積層構造体の構造や製造方法を変形したものであり、特に説明しない部分は第8実施形態等と同様であるものとする。
[Eleventh embodiment]
The laminated structure according to the eleventh embodiment will be described below. Note that the structure and manufacturing method of the laminated structure of the eleventh embodiment are modifications of the structure and manufacturing method of the laminated structure of the eighth embodiment, and the portions that are not particularly described are the same as those of the eighth embodiment. It shall be.
 図27A及び27Bに示すように、第1スペーサー板200の開口部6bにおいて、厚み方向の中心側に向かって狭まる一対のテーパー面を含む両側テーパー面TPを有し、第1スペーサー200の縁部分の内径が端面206aと端面206bとで異なるものとなっている。さらに、第1スペーサー板200の根本側の端面206aと基板101の他方の面101bとの間には、接着剤81aで形成された接合部CE1が間隙GAを埋めるとともに両側テーパー面TPの一部に付着するように設けられている。また、第1スペーサー板200の根元から遠い端面206bと基板301の他方の面301aとの間にも、接着剤81aで形成された接合部CE2が間隙GAを埋めるとともに両側テーパー面TPの一部に付着するように設けられている。つまり、端面206a側の接合部CE1と端面206a側の接合部CE2との双方に、はみ出し部分85が形成されている。 As shown in FIGS. 27A and 27B, the opening 6b of the first spacer plate 200 has both side tapered surfaces TP including a pair of tapered surfaces narrowing toward the center in the thickness direction, and the edge portion of the first spacer 200 Are different between the end face 206a and the end face 206b. Further, between the end face 206a on the base side of the first spacer plate 200 and the other face 101b of the substrate 101, a joint portion CE1 formed of an adhesive 81a fills the gap GA and a part of both tapered surfaces TP. It is provided so that it may adhere to. In addition, the joint CE2 formed of the adhesive 81a fills the gap GA between the end surface 206b far from the base of the first spacer plate 200 and the other surface 301a of the substrate 301, and a part of both side tapered surfaces TP. It is provided so that it may adhere to. That is, the protruding portion 85 is formed in both the joint portion CE1 on the end face 206a side and the joint portion CE2 on the end face 206a side.
 以上、本実施形態に係るレンズユニット等について説明したが、本発明に係るレンズユニット等は上記のものには限られない。例えば、上記実施形態において、第1及び第2光学面11a,12a等の形状、大きさは、用途や機能に応じて適宜変更することができる。 The lens unit and the like according to this embodiment have been described above, but the lens unit and the like according to the present invention are not limited to the above. For example, in the above-described embodiment, the shapes and sizes of the first and second optical surfaces 11a and 12a and the like can be appropriately changed according to applications and functions.
 また、上記実施形態において、第1及び第2ウェハーレンズ100,300は、円盤状である必要はなく、楕円形等の各種輪郭を有するものとできる。例えば第1及び第2ウェハーレンズ100,300を当初から四角板状に成形することで、ダイシング工程を簡略化することができる。 In the above-described embodiment, the first and second wafer lenses 100 and 300 do not have to be disk-shaped and can have various contours such as an ellipse. For example, the dicing process can be simplified by forming the first and second wafer lenses 100 and 300 into a square plate shape from the beginning.
 また、上記実施形態において、ウェハーレンズ100内に形成される上側及び下側レンズ部11,12の数も、図示の9つに限らず、2つ以上の任意の複数とすることができる。この際、上側及び下側レンズ部11,12の配置は、ダイシングの都合から格子点上が望ましい。さらに、隣接する上側及び下側レンズ部11,12の間隔も、図示のものに限らず、加工性等を考慮して適宜設定することができる。 In the above embodiment, the number of the upper and lower lens portions 11 and 12 formed in the wafer lens 100 is not limited to nine in the drawing, and may be any plural number of two or more. At this time, the arrangement of the upper and lower lens portions 11 and 12 is preferably on a lattice point for convenience of dicing. Furthermore, the interval between the adjacent upper and lower lens portions 11 and 12 is not limited to the illustrated one, and can be set as appropriate in consideration of workability and the like.
 また、上記実施形態において、基板101,301上に絞りやIRカットフィルター等を設けてもよい。 In the above embodiment, a diaphragm, an IR cut filter, or the like may be provided on the substrates 101 and 301.
 また、上記第8実施形態等において、第1又は第2スペーサー板200,400のみ表裏の開口部6bの内径D1,D2の大きさを異なるものとしたが、他方の第2又は第1スペーサー板400,200についても表裏の開口部6bの内径の大きさを異なるものとしてもよい。また、第1及び第2スペーサー板200,400ともに表裏の開口部6bの内径D1,D2の大きさを異なるものとしてもよい。 In the eighth embodiment and the like, only the first or second spacer plate 200, 400 is different in the sizes of the inner diameters D1, D2 of the front and back openings 6b, but the other second or first spacer plate. 400 and 200 may have different inner diameters of the opening 6b on the front and back sides. The first and second spacer plates 200 and 400 may have different inner diameters D1 and D2 of the opening 6b on the front and back sides.
 また、上記第8実施形態等において、開口部6bの入り口の形状を円形としたが、楕円形や矩形としてもよい。この場合、開口部6bの内径は、楕円や矩形の長辺の長さによって規定される。また、第1及び第2スペーサー板200,400の縁部分Sによって形成される穴が2つ以上連なっていてもよい。 In the eighth embodiment and the like, the shape of the entrance of the opening 6b is circular, but may be oval or rectangular. In this case, the inner diameter of the opening 6b is defined by the length of the long side of the ellipse or rectangle. Further, two or more holes formed by the edge portions S of the first and second spacer plates 200 and 400 may be continuous.
 また、上記第8実施形態等において、突起部91の位置を第1スペーサー板200等の厚み方向の根本側の端面206a側寄り等に設けたが、略中心に設けてもよい。 In the eighth embodiment and the like, the position of the protruding portion 91 is provided near the end surface 206a on the base side in the thickness direction of the first spacer plate 200 or the like, but may be provided at substantially the center.
 また、上記第1実施形態等において、両側テーパー面TPや片面テーパー面PPの粗さを第1又は第2スペーサー板200,400の端面よりも粗くしたが、粗くしなくてもよい。 In the first embodiment and the like, the roughness of the both-side tapered surface TP and the one-side tapered surface PP is made rougher than the end surfaces of the first or second spacer plates 200 and 400, but it is not necessary to make it rough.
 また、上記第1実施形態等において、両側テーパー面TPや片面テーパー面PPの粗さを第1又は第2スペーサー板200,400の端面よりも粗くしたが、粗くしなくてもよい。 In the first embodiment and the like, the roughness of the both-side tapered surface TP and the one-side tapered surface PP is made rougher than the end surfaces of the first or second spacer plates 200 and 400, but it is not necessary to make it rough.
 上記実施形態等では、主に積層構造体1000をダイシングすることによって個片化した撮像装置700を得る場合について説明したが、積層構造体1000を個片化しないでそのまま使用することもできる。例えば、CCD(Charged Coupled Device)型イメージセンサーやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子と、2次元的に配置された複数の撮像レンズとを用いて複数の画像を撮影し、得られた複数の画像から1つの画像を再構成する撮像装置(レンズアレイ型撮像装置ともいう)が提案されている(特許2007-94103号公報等参照)。このようなレンズアレイ型撮像装置として、上記実施形態の積層構造体1000を活用することができる。レンズアレイ型撮像装置としての積層構造体1000は、複数の撮像レンズの視差に基づいて各撮像レンズによって得られる画像を再構成することで、高精細な画像を作り出すことができる。そのため、各撮像レンズにはあまり高い光学性能が求められず、結果として小型化・薄型化を実現し、かつ高精細な画像を得ることができる。 In the above-described embodiment and the like, a case has been described in which the imaging device 700 is obtained by dicing the laminated structure 1000 mainly, but the laminated structure 1000 can be used as it is without being separated. For example, a plurality of images are captured using a solid-state imaging device such as a CCD (Charged Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor and a plurality of imaging lenses arranged two-dimensionally. An imaging device (also referred to as a lens array type imaging device) that reconstructs one image from a plurality of obtained images has been proposed (see Japanese Patent Application Laid-Open No. 2007-94103). As such a lens array type imaging apparatus, the laminated structure 1000 of the above embodiment can be used. The laminated structure 1000 as a lens array type imaging device can create a high-definition image by reconstructing an image obtained by each imaging lens based on parallax of a plurality of imaging lenses. For this reason, each imaging lens is not required to have very high optical performance, and as a result, it is possible to achieve a reduction in size and thickness and obtain a high-definition image.

Claims (31)

  1.  基板と、前記基板の少なくとも一方の面上に設けられた樹脂製のレンズ部と、前記レンズ部の周囲を囲むように設けられたスペーサーとを有するレンズユニットであって、
     前記レンズ部に臨む前記スペーサーの縁部分は、内側にテーパー面を有し、
     前記スペーサーと前記基板との間に、接着剤で形成された接合部が設けられており、
     前記接合部は、前記テーパー面の少なくとも一部に付着する、レンズユニット。
    A lens unit having a substrate, a resin lens portion provided on at least one surface of the substrate, and a spacer provided to surround the periphery of the lens portion;
    An edge portion of the spacer facing the lens portion has a tapered surface inside,
    Between the spacer and the substrate, a bonding portion formed of an adhesive is provided,
    The joint unit is a lens unit that adheres to at least a part of the tapered surface.
  2.  前記接合部は、前記テーパー面と前記基板との間隙を埋めるように配置されている、請求項1に記載のレンズユニット。 The lens unit according to claim 1, wherein the joint portion is disposed so as to fill a gap between the tapered surface and the substrate.
  3.  前記レンズ部は、個別滴下によって形成される、請求項1及び2のいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 1 and 2, wherein the lens unit is formed by individual dropping.
  4.  前記接合部は、前記テーパー面と前記レンズ部との間隙を埋める、請求項1から3までのいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 3, wherein the joint portion fills a gap between the tapered surface and the lens portion.
  5.  前記スペーサーは、前記レンズ部に対応する開口部を有する板状の部材であり、
     前記レンズ部は、前記開口部の位置で当該開口部内に突出する、請求項1から4までのいずれか一項に記載のレンズユニット。
    The spacer is a plate-like member having an opening corresponding to the lens part,
    The lens unit according to any one of claims 1 to 4, wherein the lens unit protrudes into the opening at the position of the opening.
  6.  前記スペーサーは、前記縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有する、請求項1から5までのいずれか一項に記載のレンズユニット。 The said spacer has a pair of taper surface which narrows toward the center side of the thickness direction of the said edge part from the one end surface side and the other end surface side among the said edge parts, The any one of Claim 1-5 The lens unit according to item.
  7.  前記スペーサーは、前記縁部分の断面において、最も内側にある突起部の先端位置が、前記スペーサーの厚み方向において、中心よりも前記一方の端面側又は前記他方の端面側に形成されている、請求項6に記載のレンズユニット。 In the cross-section of the edge portion, the spacer is formed such that the tip end position of the innermost protrusion is formed closer to the one end face or the other end face than the center in the thickness direction of the spacer. Item 7. The lens unit according to Item 6.
  8.  前記スペーサーの基部は、直接的又は間接的に前記基板に接着されている、請求項6及び7のいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 6 and 7, wherein a base portion of the spacer is directly or indirectly bonded to the substrate.
  9.  前記スペーサーは、前記レンズ部に対応する開口部を有する板状の部材であって、前記縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、
     前記縁部分の内径は、前記一方の端面側と前記他方の端面側とで異なり、
     前記レンズ部の少なくとも一部は、前記スペーサーの厚み方向において前記スペーサーの基部よりも前記開口部内に突出する、請求項1から8までのいずれか一項に記載のレンズユニット。
    The spacer is a plate-like member having an opening corresponding to the lens portion, and from one end surface side and the other end surface side of the edge portion toward the center side in the thickness direction of the edge portion. A pair of tapered surfaces that narrow;
    The inner diameter of the edge portion is different between the one end face side and the other end face side,
    9. The lens unit according to claim 1, wherein at least a part of the lens part protrudes into the opening part from a base part of the spacer in a thickness direction of the spacer.
  10.  前記基板である第1の基板と、前記レンズ部である第1のレンズ部とを有する第1の複合レンズと、第2の基板と、前記第2の基板の少なくとも一方の面上に設けられた樹脂製の第2のレンズ部を有する第2の複合レンズとを有し、
     前記スペーサーは、前記第1の複合レンズと前記第2の複合レンズとの間に設けられ、
     前記スペーサーは、前記第1及び第2のレンズ部に対応する開口部を有する板状の部材であって、前記第1及び第2のレンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、
     前記第1又は第2のレンズ部の少なくとも一部は、前記スペーサーの厚み方向において前記スペーサーの基部よりも前記開口部内に突出する、請求項1から8までのいずれか一項に記載のレンズユニット。
    Provided on at least one surface of the first compound lens having the first substrate as the substrate and the first lens portion as the lens portion, the second substrate, and the second substrate. A second compound lens having a second lens portion made of resin,
    The spacer is provided between the first compound lens and the second compound lens,
    The spacer is a plate-like member having openings corresponding to the first and second lens portions, and one end surface side and the other of the edge portions facing the first and second lens portions. Having a pair of tapered surfaces narrowing from the end surface side toward the center side in the thickness direction of the edge portion;
    The lens unit according to any one of claims 1 to 8, wherein at least a part of the first or second lens portion protrudes into the opening portion from a base portion of the spacer in a thickness direction of the spacer. .
  11.  前記縁部分の内径は、前記一方の端面側と前記他方の端面側とで異なる、請求項10に記載のレンズユニット。 The lens unit according to claim 10, wherein an inner diameter of the edge portion is different between the one end face side and the other end face side.
  12.  前記第1の基板と前記第2の基板との間に前記第1のレンズ部と前記第2のレンズ部とが配置されている、請求項11に記載のレンズユニット。 The lens unit according to claim 11, wherein the first lens unit and the second lens unit are disposed between the first substrate and the second substrate.
  13.  基板と、前記基板の少なくとも一方の面上に設けられた複数のレンズ部を有する樹脂部と、前記レンズ部の周囲を囲むように設けられたスペーサー板とを有するアレイユニットであって、
     前記レンズ部に臨む前記スペーサー板の縁部分は、内側にテーパー面を有し、
     前記スペーサー板と前記基板との間に、接着剤で形成された接合部が設けられており、
     前記接合部は、前記テーパー面の少なくとも一部に付着する、アレイユニット。
    An array unit having a substrate, a resin portion having a plurality of lens portions provided on at least one surface of the substrate, and a spacer plate provided so as to surround the lens portion,
    The edge part of the spacer plate facing the lens part has a tapered surface inside,
    Between the spacer plate and the substrate, a joint formed by an adhesive is provided,
    The joint unit is an array unit attached to at least a part of the tapered surface.
  14.  前記樹脂部は、前記レンズ部をそれぞれ有する複数の素子領域に分離されている、請求項13に記載のアレイユニット。 The array unit according to claim 13, wherein the resin portion is separated into a plurality of element regions each having the lens portion.
  15.  第1の基板と、前記第1の基板の少なくとも一方の面上に設けられた樹脂製の第1のレンズ部を有する第1の複合レンズと、第2の基板と、前記第2の基板の少なくとも一方の面上に設けられた樹脂製の第2のレンズ部を有する第2の複合レンズと、前記第1の複合レンズと前記第2の複合レンズとの間に設けられたスペーサーとを有するレンズユニットであって、
     前記スペーサーは、前記第1又は第2の複合レンズの少なくとも一方の前記第1又は第2のレンズ部に対応する開口部を有する板状の部材であって、前記第1又は第2のレンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、
     前記第1又は第2のレンズ部の少なくとも一部は、前記スペーサーの厚み方向において前記スペーサーの基部よりも前記開口部内に突出する、レンズユニット。
    A first substrate, a first compound lens having a resin-made first lens portion provided on at least one surface of the first substrate, a second substrate, and the second substrate. A second compound lens having a resin-made second lens portion provided on at least one surface; and a spacer provided between the first compound lens and the second compound lens. A lens unit,
    The spacer is a plate-like member having an opening corresponding to the first or second lens portion of at least one of the first or second compound lens, and the first or second lens portion. A pair of tapered surfaces that narrow from the one end face side and the other end face side toward the center side in the thickness direction of the edge part,
    The lens unit, wherein at least a part of the first or second lens portion protrudes into the opening portion from a base portion of the spacer in a thickness direction of the spacer.
  16.  前記第1及び第2のレンズ部は、個別滴下によって形成される、請求項15に記載のレンズユニット。 The lens unit according to claim 15, wherein the first and second lens portions are formed by individual dropping.
  17.  前記縁部分の断面において、最も内側にある突起部の先端位置が、前記スペーサーの厚み方向において、中心よりも前記一方の端面側又は前記他方の端面側に形成されている、請求項15及び16のいずれか一項に記載のレンズユニット。 The tip position of the innermost protrusion in the cross section of the edge portion is formed on the one end face side or the other end face side from the center in the thickness direction of the spacer. The lens unit according to any one of the above.
  18.  前記基部は、直接的又は間接的に前記基板に接着されている、請求項15から17までのいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 15 to 17, wherein the base is directly or indirectly bonded to the substrate.
  19.  前記スペーサーは、絞りの機能を有する、請求項15から18までのいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 15 to 18, wherein the spacer has a diaphragm function.
  20.  前記第1のレンズ部と前記第2のレンズ部とは、前記第1の基板と前記第2の基板との間に配置されている、請求項15から19までのいずれか一項に記載のレンズユニット。 The said 1st lens part and the said 2nd lens part are arrange | positioned between the said 1st board | substrate and the said 2nd board | substrate, As described in any one of Claim 15-19 Lens unit.
  21.  第1の基板と、前記第1の基板の少なくとも一方の面上に設けられた第1の樹脂部を有する第1のウェハーレンズと、第2の基板と、前記第2の基板の少なくとも一方の面上に設けられた第2の樹脂部を有する第2のウェハーレンズと、前記第1のウェハーレンズと前記第2のウェハーレンズとの間に設けられたスペーサー板とを有するアレイユニットであって、
     前記スペーサー板は、前記第1又は第2のウェハーレンズの少なくとも一方の前記第1又は第2の樹脂部を構成する複数の第1又は第2のレンズ部に対応する開口部を有する板状の部材であって、前記第1又は第2のレンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、
     前記第1又は第2のレンズ部の少なくとも一部は、前記スペーサー板の厚み方向において前記スペーサー板の基部よりも前記開口部内に突出する、アレイユニット。
    At least one of a first substrate, a first wafer lens having a first resin portion provided on at least one surface of the first substrate, a second substrate, and the second substrate. An array unit comprising: a second wafer lens having a second resin portion provided on a surface; and a spacer plate provided between the first wafer lens and the second wafer lens. ,
    The spacer plate has a plate shape having openings corresponding to a plurality of first or second lens portions constituting the first or second resin portion of at least one of the first or second wafer lenses. A member having a pair of tapered surfaces that narrow from one end surface side and the other end surface side of the edge portion facing the first or second lens portion toward a center side in the thickness direction of the edge portion. And
    The array unit, wherein at least a part of the first or second lens portion protrudes into the opening from the base of the spacer plate in the thickness direction of the spacer plate.
  22.  前記樹脂部は、前記第1又は第2レンズ部をそれぞれ有する複数の素子領域に分離されている、請求項21に記載のアレイユニット。 The array unit according to claim 21, wherein the resin portion is separated into a plurality of element regions each having the first or second lens portion.
  23.  基板と、前記基板の少なくとも一方の面上に設けられた樹脂製のレンズ部と、前記レンズ部の周囲を囲むように設けられたスペーサーとを有するレンズユニットであって、
     前記スペーサーは、前記レンズ部に対応する開口部を有する板状の部材であって、前記レンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、
     前記縁部分の内径は、前記一方の端面側と前記他方の端面側とで異なり、
     前記レンズ部の少なくとも一部は、前記スペーサーの厚み方向において前記スペーサーの基部よりも前記開口部内に突出する、レンズユニット。
    A lens unit having a substrate, a resin lens portion provided on at least one surface of the substrate, and a spacer provided to surround the periphery of the lens portion;
    The spacer is a plate-like member having an opening corresponding to the lens portion, and the edge portion has a thickness direction center from one end surface side and the other end surface side among the edge portions facing the lens portion. Having a pair of tapered surfaces that narrow toward the side,
    The inner diameter of the edge portion is different between the one end face side and the other end face side,
    At least a part of the lens part projects into the opening part from the base part of the spacer in the thickness direction of the spacer.
  24.  前記スペーサーは、前記縁部分の断面において、前記縁部分の最も内側にある突起部の先端位置が、前記スペーサーの厚み方向において、中心よりも前記一方の端面側又は前記他方の端面側に形成されている、請求項23に記載のレンズユニット。 In the cross-section of the edge portion, the spacer is formed such that the tip end position of the innermost protrusion of the edge portion is closer to the one end face side or the other end face side than the center in the thickness direction of the spacer. The lens unit according to claim 23.
  25.  前記縁部分は、前記一方の端面側において前記レンズ部に臨み、
     前記一方の端面側の縁部分の内径は、前記他方の端面側の縁部分の内径よりも大きい、請求項23及び24のいずれか一項に記載のレンズユニット。
    The edge portion faces the lens portion on the one end surface side,
    25. The lens unit according to claim 23, wherein an inner diameter of the edge portion on the one end surface side is larger than an inner diameter of the edge portion on the other end surface side.
  26.  前記縁部分は、前記一方の端面側において第1のレンズ部に臨み、前記他方の端面側において第2のレンズ部に臨み、
     前記第1及び第2のレンズ部のうち外径が大きいレンズ部に臨む縁部分の内径は、外径が小さいレンズ部に臨む縁部分の内径よりも大きい、請求項23及び24のいずれか一項に記載のレンズユニット。
    The edge portion faces the first lens portion on the one end surface side, and faces the second lens portion on the other end surface side,
    The inner diameter of an edge portion facing a lens portion having a large outer diameter among the first and second lens portions is larger than the inner diameter of an edge portion facing a lens portion having a small outer diameter. The lens unit according to item.
  27.  前記レンズ部は、個別滴下によって形成される、請求項23から26までのいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 23 to 26, wherein the lens unit is formed by individual dropping.
  28.  前記基部は、直接的又は間接的に前記基板に接着されている、請求項23から27までのいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 23 to 27, wherein the base is directly or indirectly bonded to the substrate.
  29.  前記スペーサーは、絞りの機能を有する、請求項23から28までのいずれか一項に記載のレンズユニット。 The lens unit according to any one of claims 23 to 28, wherein the spacer has a diaphragm function.
  30.  基板と、前記基板の少なくとも一方の面上に設けられた複数のレンズ部を有する樹脂部と、前記レンズ部の周囲を囲むように設けられたスペーサー板とを有するレンズユニットであって、
     前記スペーサー板は、前記レンズ部に対応する開口部を有する板状の部材であって、前記各レンズ部に臨む縁部分のうち一方の端面側と他方の端面側とから前記縁部分の厚み方向の中心側に向かって狭まる一対のテーパー面を有し、
     前記縁部分の内径は、前記一方の端面側と前記他方の端面側とで異なり、
     前記レンズ部の少なくとも一部は、前記スペーサー板の厚み方向において前記スペーサー板の基部よりも前記開口部内に突出する、アレイユニット。
    A lens unit having a substrate, a resin portion having a plurality of lens portions provided on at least one surface of the substrate, and a spacer plate provided so as to surround the lens portion;
    The spacer plate is a plate-like member having an opening corresponding to the lens part, and the edge direction from one end face side and the other end face side of the edge part facing each lens part is a thickness direction of the edge part. Having a pair of tapered surfaces narrowing toward the center side of the
    The inner diameter of the edge portion is different between the one end face side and the other end face side,
    The array unit, wherein at least a part of the lens portion protrudes into the opening from the base of the spacer plate in the thickness direction of the spacer plate.
  31.  前記樹脂部は、前記複数のレンズ部をそれぞれ有する複数の素子領域に分離されている、請求項30に記載のアレイユニット。 The array unit according to claim 30, wherein the resin portion is separated into a plurality of element regions each having the plurality of lens portions.
PCT/JP2012/082976 2011-12-19 2012-12-19 Lens unit and array unit WO2013094658A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-277729 2011-12-19
JP2011-277728 2011-12-19
JP2011277728 2011-12-19
JP2011-277730 2011-12-19
JP2011277730 2011-12-19
JP2011277729 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094658A1 true WO2013094658A1 (en) 2013-06-27

Family

ID=48668542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082976 WO2013094658A1 (en) 2011-12-19 2012-12-19 Lens unit and array unit

Country Status (1)

Country Link
WO (1) WO2013094658A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136956A1 (en) * 2006-11-17 2008-06-12 Tessera North America Internal noise reducing structures in camera systems employing an optics stack and associated methods
JP2011107588A (en) * 2009-11-20 2011-06-02 Toppan Printing Co Ltd Camera module and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136956A1 (en) * 2006-11-17 2008-06-12 Tessera North America Internal noise reducing structures in camera systems employing an optics stack and associated methods
JP2011107588A (en) * 2009-11-20 2011-06-02 Toppan Printing Co Ltd Camera module and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100774775B1 (en) Camera device, method of manufacturing a camera device, wafer scale package
JP5390277B2 (en) Microlens, microlens manufacturing method, microlens manufacturing apparatus, and camera module including microlens
JP5579067B2 (en) Lens assembly manufacturing method and camera equipped with such an assembly
JP5894809B2 (en) Lens assembly and camera module
JP4236418B2 (en) Resin erecting lens array and manufacturing method thereof
US20060208374A1 (en) Method of manufacturing lens sheet
JP5401628B2 (en) Lens module manufacturing method and lens module
JP4781001B2 (en) Compound lens manufacturing method
WO2014119646A1 (en) Laminated lens array, aperture member for laminated lens array, and related device and method
KR100867520B1 (en) Imaging-lens and method of manufacturing the same
TW201721207A (en) Optical assemblies including a spacer adhering directly to a substrate
WO2013094658A1 (en) Lens unit and array unit
JP2011209699A (en) Wafer lens array and method for manufacturing the same
JP7277268B2 (en) Optical element, optical equipment, imaging device, and method for manufacturing optical element
WO2010143454A1 (en) Wafer lens assembly and lens unit
KR100985568B1 (en) Method for fabricating lens using stemps
TWI581031B (en) Wafer level lens system and method of fabricating the same
TW200914864A (en) Method for fabricating coating lens
WO2013191035A1 (en) Method for manufacturing wafer lens and imaging lens
TW201740179A (en) A method of making a projection screen and a related projection screen
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
KR100983043B1 (en) Master for micro lens and fabrication method of micro lens
TWI482700B (en) Manufacture method of lens sheet
JP2014004727A (en) Method of manufacturing laminated lens, and laminated lens
TWI446049B (en) Optical lens module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP