WO2013094313A1 - 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法 - Google Patents

溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法 Download PDF

Info

Publication number
WO2013094313A1
WO2013094313A1 PCT/JP2012/077898 JP2012077898W WO2013094313A1 WO 2013094313 A1 WO2013094313 A1 WO 2013094313A1 JP 2012077898 W JP2012077898 W JP 2012077898W WO 2013094313 A1 WO2013094313 A1 WO 2013094313A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
bubbler
glass
upstream
melting tank
Prior art date
Application number
PCT/JP2012/077898
Other languages
English (en)
French (fr)
Inventor
一由 渡邊
亮介 赤木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147015101A priority Critical patent/KR101971755B1/ko
Priority to CN201280062959.7A priority patent/CN103998383B/zh
Priority to JP2013550173A priority patent/JP6015671B2/ja
Publication of WO2013094313A1 publication Critical patent/WO2013094313A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a molten glass production apparatus, a molten glass production method, and a plate glass production method using them. More specifically, the present invention relates to a molten glass manufacturing apparatus, a molten glass manufacturing method, and a plate glass manufacturing method using them for producing high-quality alkali-free glass with high homogeneity.
  • alkali-free glass that does not substantially contain alkali metal ions in order to increase the insulating properties of the glass substrate.
  • alkali-free glass is preferable for the production of a glass substrate for FPD because it has a small coefficient of thermal expansion.
  • the melting furnace described in Patent Document 1 the melting furnace is divided into an upstream zone and a downstream zone by a transverse sill, and a molten glass circulation flow (upstream circulation flow, downstream circulation flow) is formed in each zone. , Melting raw materials and homogenizing molten glass. More specifically, the glass raw material is melted by forming an upstream circulation flow in the upstream zone, and the molten glass is homogenized by forming a downstream circulation flow in the downstream zone.
  • a bubbler is provided on the upstream side of the crossing sill in order to control the upstream circulation flow and the downstream circulation flow.
  • the melting furnace (melting tank) described in Patent Document 2 does not have a structure corresponding to the transverse sill in the melting furnace described in Patent Document 1, but includes at least one row of bubblers and at least two opposite burners. It describes using glass to melt and clarify.
  • the melting furnaces described in Patent Documents 1 and 2 are not necessarily suitable for producing high-quality alkali-free glass.
  • T ⁇ As an index of the melting temperature of glass, T ⁇ , that is, a temperature at which the glass viscosity ⁇ becomes 10 2 [dPa ⁇ s] is used, but non-alkali glass has a T ⁇ of 1500 to 1760 ° C. Compared with alkali-containing glass such as lime glass, T ⁇ is 100 ° C.
  • the alkali-free glass has a higher T ⁇ than the alkali-containing glass such as soda lime glass, and therefore the temperature of the molten glass in the melting furnace inevitably increases. If the temperature of the molten glass is high, the erosion action of the molten glass on the in-furnace structure is enhanced accordingly. Therefore, in the case of non-alkali glass, there is a step that affects the flow of the molten glass at the bottom of the melting furnace, such as a crossing threshold in the melting furnace described in Patent Document 1 and a fining table in the melting furnace described in Patent Document 2. Then, the erosion of the level
  • the applicant of the present application has proposed a molten glass manufacturing apparatus described in Patent Document 3.
  • a bubbler first and second bubblers 13 and 14
  • the inside of the melting tank 10 can be provided without providing a step structure that affects the molten glass flow as described in Patent Documents 1 and 2 at the bottom of the molten glass flow path.
  • the glass cullet When starting the operation of the melting tank, in order to improve the efficiency of the melting work, the glass cullet is poured into the melting tank while the upper space of the melting tank is heated with a burner, and the cullet is melted to dissolve the tank.
  • the depth of the molten glass is ensured by melting the cullet until it reaches about 50% or more of the target depth of the molten glass in the melting tank.
  • the time required to reach about 50% or more of the target depth of the molten glass in the melting tank varies depending on the dimensions of the melting tank. In the case of a melting tank having a glass production amount of 20 to 100 tons / day, since the size thereof is considerably large, it takes a long time to reach about 50% or more of the target depth of the molten glass in the melting tank.
  • a cullet having an alkali-free glass composition is projected.
  • an easily volatile component such as B 2 O 3 or Cl (hereinafter referred to as “volatilization”).
  • the composition of the molten glass differs from the target composition due to volatilization from the molten glass. Therefore, at the time of starting the addition of the glass raw material, the time until the molten glass reaches the target composition is shortened by adding more raw material of the volatile component than the target composition.
  • the melting tank is supplied by supplying the gases 16 and 17 from the bubblers (first and second bubblers 13 and 14) provided in the vicinity of the bottom surface of the melting tank 10.
  • 10 promotes the formation of a circulating flow of molten glass (upstream circulating flow 100, downstream circulating flow 101) within 10 and sets the flow rate of upstream circulating flow 100 and the flow rate of downstream circulating flow 101 to a predetermined value.
  • the homogenization of the molten glass is promoted by controlling so as to satisfy the relationship (all symbols in the sentence are as described in Patent Document 3).
  • the volatilization component having a low molecular weight has a lower specific gravity than other glass raw materials, so that the light raw material does not dissolve in the upstream circulation flow and floats on the upstream circulation flow to the downstream side of the dissolution tank. And tend to move. For this reason, it takes a long time to homogenize the molten glass in the melting tank.
  • the molten glass may stay on the upstream side of the melting tank from the upstream circulation flow.
  • Such stagnation of the molten glass causes the homogenization of the molten glass to be delayed.
  • Such stagnation of molten glass is caused, for example, when the amount of glass raw material added is increased or when a glass raw material having a specific gravity lower than that of the molten glass in the melting tank is used for the purpose of adjusting the specific gravity of the glass to be produced.
  • Tend to happen Moreover, there exists a tendency which occurs when the depth of the molten glass in a melting tank falls for some reason, or when the temperature of the molten glass which exists in the upstream of a melting tank falls.
  • An object of the present invention is to provide a molten glass manufacturing apparatus, a molten glass manufacturing method, and a plate glass manufacturing method using them, which are suitable for producing a high-quality, high-quality alkali-free glass.
  • the present invention is a molten glass manufacturing apparatus having a melting tank for melting a glass raw material,
  • the dissolution tank has a burner for heating the upper space of the dissolution tank,
  • a midstream bubbling unit is provided at a position where the distance from the upstream side of the melting tank is 0.4 L F to 0.6 L F.
  • the midstream bubbling unit is composed of a bubbler group in which a plurality of bubblers are provided in the vicinity of the bottom surface of the melting tank over the width direction of the molten glass flow path of the melting tank,
  • the upstream region bubbling unit is composed of a plurality of bubblers provided in parallel in the width direction of the molten glass flow path of the melting tank in the vicinity of the bottom surface of the melting tank,
  • the upstream bubbling unit includes at least a pair of bubblers provided at positions symmetrical with respect to the center in the width direction of the molten glass flow path.
  • this invention is a molten glass manufacturing method which manufactures molten glass, supplying gas from each bubbler which comprises the said middle stream area bubbling unit and the said upstream area bubbling unit using the molten glass manufacturing apparatus of this invention. provide.
  • the present invention also provides a plate glass manufacturing method in which the molten glass obtained by the molten glass manufacturing method of the present invention is formed into a plate glass.
  • the molten glass manufacturing apparatus and the molten glass manufacturing method of the present invention homogenization of the molten glass can be promoted even when the operation of the melting tank is started or when the operating conditions of the melting tank are changed. It is suitable for production of high-quality, high-quality alkali-free glass, and the time required for production of the alkali-free glass can be shortened. Since the plate glass manufacturing method of this invention can manufacture plate glass with high homogeneity and high transparency, it is suitable for manufacture of the board
  • FIG. 1 is a cross-sectional view of an embodiment of a melting tank in the molten glass production apparatus of the present invention.
  • FIG. 2 is a plan view of the dissolution tank 10 shown in FIG. However, the upper wall surface of the dissolution tank 10 is omitted.
  • FIG. 1 is a cross-sectional view of one embodiment of a melting tank in the molten glass production apparatus of the present invention
  • FIG. 2 is a plan view of the melting tank shown in FIG.
  • a glass raw material inlet 11 is provided at the upstream end of the melting tank 10.
  • the glass raw material charged from the charging port 11 is melted by heating by the burner 16 to become molten glass G, and is held in the melting tank 10.
  • a discharge port 12 for discharging the molten glass G to the next process is provided at the downstream end of the melting tank 10.
  • the discharge port 12 communicates with the downstream conduit 20.
  • an upstream region bubbling unit and a midstream region bubbling unit each including a plurality of bubblers 13, 14 and 15 are provided.
  • the bubbler 13 constituting the upstream bubbling unit is provided in the upstream area of the molten glass flow path of the melting tank 10, and the bubblers 14 and 15 constituting the midstream bubbling unit are provided in the melting tank 10. Is provided in the middle region of the molten glass flow path.
  • Burners 16 are arranged on both side surfaces of the melting tank 10 shown in FIGS. 1 and 2 so as to be positioned above the molten glass G held in the melting tank 10. The burners 16 are provided at equal intervals over the entire length of the dissolution tank 10 except for an exception part to be described later.
  • the upstream region bubbling unit includes a plurality of bubblers 13 provided in the vicinity of the bottom surface of the melting tank 10 in parallel in the width direction of the molten glass flow path of the melting tank 10.
  • the upstream region bubbling unit is composed of a pair of bubblers 13 provided at symmetrical positions with respect to the center in the width direction of the molten glass flow path of the melting tank 10.
  • the volatilization component having a low molecular weight has a lower specific gravity than other glass raw materials, so that the light raw material does not dissolve in the upstream circulation flow 100 and floats on the upstream circulation flow 100.
  • the molten glass G may stay on the upstream side of the melting tank 10 with respect to the upstream circulating flow 100.
  • the retention of the molten glass G on the upstream side of the melting tank 10 relative to the upstream circulation flow 100 is referred to as “the retention of the molten glass G on the upstream side of the melting tank 10”.
  • the molten glass in the melting tank 10 Since the retention of the molten glass G on the upstream side of the melting tank 10 causes the homogenization of the molten glass G in the melting tank 10 to be delayed, the molten glass in the melting tank 10 after the change of the operating conditions of the melting tank 10 is performed. It takes a long time to homogenize G.
  • the molten glass in the dissolution tank 10 is supplied at the start of the operation of the dissolution tank 10 or when the operation conditions of the dissolution tank are changed by supplying the gas 17 from the bubbler 13 constituting the upstream region bubbling unit.
  • the homogenization of G can be promoted.
  • supplying the gas 17 from the bubbler 13 constituting the upstream region bubbling unit may be referred to as “bubbling from the upstream region bubbling unit”.
  • the bubbling from the upstream region bubbling unit is carried out to promote the dissolution of the volatile component raw material into the upstream circulation flow 100. Thereby, homogenization of the molten glass G in the melting tank 10 is promoted.
  • the stagnation of the molten glass G on the upstream side of the melting tank 10 can be suppressed by carrying out the bubbling from the upstream region bubbling unit. Can eliminate the retention of the molten glass G.
  • the bubbler 13 which comprises an upstream area bubbling unit needs to satisfy
  • FIG. 1 the length of molten glass flow path of the dissolution tank 10 when the L F, until each bubbler 13 constituting the upstream region bubbling unit from the upstream end of the molten glass flow path Is a distance of 0.05L F to 0.2L F.
  • the upstream side wall surface of the dissolution tank 10 If the distance from the upstream end of the molten glass flow path to the bubbler 13 is less than 0.05 L F, the upstream side wall surface of the dissolution tank 10, because the respective bubblers 13, the distance too close, from the upstream region bubbling unit There is a possibility that erosion of the upstream side wall surface of the dissolution tank 10 may be promoted by performing the bubbling. On the other hand, if the distance from the upstream end of the molten glass flow path to the bubbler 13 is greater than 0.2L F , the upstream side of the melting tank 10 can be upstream even when bubbling from the upstream bubbling unit is performed at the start of operation of the melting tank 10.
  • the melting of the raw material of the volatile component into the circulating flow 100 cannot be promoted, and the homogenization of the molten glass G in the melting tank 10 cannot be promoted. Further, when the operating conditions of the melting tank 10 are changed, even if bubbling from the upstream region bubbling unit is performed, the retention of the molten glass G on the upstream side of the melting tank 10 cannot be suppressed.
  • the distance to the bubbler 13 constituting the upstream region bubbling unit from the upstream end of the molten glass flow path is 0.1 L F ⁇ 0.2 L F, More preferably, it is 0.1 L F to 0.15 L F.
  • the pair of bubblers 13 are provided at positions symmetrical to the center in the width direction of the molten glass flow path of the melting tank 10.
  • the fact that the bubbler 13 is provided at a position that is symmetric with respect to the center in the width direction of the molten glass flow path of the melting tank 10 is “to be symmetric in the width direction of the melting tank 10.
  • a bubbler 13 is provided. " In the melting tank 10 in the molten glass manufacturing apparatus of the present invention, the bubbler 13 needs to be provided so as to be symmetric in the width direction of the melting tank 10.
  • the bubbler 13 is not provided so as to be symmetric in the width direction of the dissolution tank 10
  • one of the pair of bubblers 13 shown in FIG. 2 is not provided.
  • the flow of the molten glass G in the melting tank 10 is not symmetric with respect to the width direction of the melting tank 10, but toward the side wall of the melting tank 10. Since the flow of this is promoted, the side wall of the dissolution tank 10 may be eroded. Further, the upstream circulating flow 100 may be disturbed, and the homogenization of the molten glass G may be adversely affected.
  • one bubbler 13 is provided near the center in the width direction of the molten glass flow path of the melting tank 10.
  • the bubbling from the upstream region bubbling unit is performed, the flow of the molten glass G toward the side wall of the melting tank 10 is promoted, so that the side wall of the melting tank 10 may be eroded.
  • it is necessary to provide the bubbler 13 so that it may become symmetrical in the width direction of the dissolution tank 10 it is necessary to provide at least two bubblers 13.
  • the number of bubblers 13 is increased from two, the number of bubblers 13 needs to be an even number. For example, when four bubblers 13 are provided, it is necessary to provide two pairs of bubblers 13 so as to be symmetrical in the width direction of the dissolution tank 10.
  • the bubbler 13 which comprises an upstream area bubbling unit satisfy
  • FIG. In the melting tank 10 in the molten glass manufacturing apparatus of the present invention, when the width of the molten glass flow path of the melting tank 10 is W, each bubbler 13 constituting the upstream region bubbling unit is centered in the width direction of the molten glass flow path. It is preferable to be provided at a position where the distance from the center becomes 0.25 W or more. If the distance from the center in the width direction of the molten glass flow path is smaller than 0.25 W, the bubbler 13 is provided near the center in the width direction of the molten glass flow path.
  • each bubbler 13 constituting the upstream bubbling unit is provided at a position where the distance from the center in the width direction of the molten glass flow path is 0.27 W or more. More preferably, it is more preferably provided at a position of 0.4 W or more.
  • each bubbler 13 which comprises an upstream area bubbling unit is provided in the position where the distance from the side wall of the dissolution tank 10 becomes 400 mm or more.
  • the bubbler 13 is provided at a position where the distance from the side wall of the dissolution tank 10 is smaller than 400 mm, the distance between the side wall of the dissolution tank 10 and the bubbler 13 is too close, so that the bubbling from the upstream area bubbling unit is performed.
  • the erosion of the side wall of the dissolution tank 10 may be promoted.
  • each bubbler 13 constituting the upstream region bubbling unit is provided at a position where the distance from the side wall of the melting tank 10 is 1000 mm or more.
  • the length L F of the molten glass channel of the melting tank 10 of the present invention varies depending on the width W of the molten glass channel, but is preferably 10 to 30 m, more preferably 10 to 25 m, and still more preferably. Is 15-22 m.
  • the width W of the molten glass channel is preferably 5 to 10 m, more preferably 5.5 to 9 m, and still more preferably 6.5 to 8 m.
  • each bubbler 13 constituting the upstream region bubbling unit is provided further upstream than the burner 16 located on the most upstream side in the length direction of the molten glass flow path. Yes.
  • each bubbler 13 constituting the upstream region bubbling unit is provided further upstream than the burner 16 located on the most upstream side. It is preferable for exerting an effect of promoting homogenization of the molten glass by carrying out bubbling from the upstream region bubbling unit.
  • a flue for discharging combustion exhaust gas from the burner 16 may be provided further upstream than the burner 16 located on the most upstream side.
  • each bubbler 13 constituting the upstream region bubbling unit is provided further upstream than the flue.
  • each bubbler 13 constituting the upstream region bubbling unit it is preferable that the distance from the most upstream burner 16 is not too large.
  • the distance in the length direction of the molten glass flow path between each bubbler 13 constituting the upstream region bubbling unit and the burner 16 located on the most upstream side is within 2000 mm. Preferably, it is within 1500 mm, more preferably within 1000 mm.
  • the midstream bubbling unit is composed of a bubbler group in which a plurality of bubblers 14 and 15 are provided in the vicinity of the bottom surface of the melting tank 10 over the width direction of the molten glass flow path of the melting tank 10.
  • the bubbling from the middle-stream bubbling unit affects the molten glass flow as described in Patent Documents 1 and 2 at the bottom of the molten glass flow path. Without providing a step structure, the formation of a circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10 is promoted, and the flow rate and downstream of the upstream circulating flow 100 are reduced.
  • the flow rate of the side circulation flow 101 can be controlled to have a predetermined relationship.
  • T ⁇ is 1500 to 1760 ° C.
  • soda lime glass It is suitable for the production of an alkali-free glass that is 100 ° C. or more higher than the alkali-containing glass.
  • the midstream bubbling unit has two bubbler groups whose positions in the length direction of the molten glass channel of the melting tank 10 are different from each other, that is, across the width direction of the molten glass channel.
  • the first bubbler group is provided with a plurality of bubblers 14 and the second bubbler group is provided with a plurality of bubblers 15 across the width direction of the molten glass flow path.
  • the midstream bubbling unit may have a single bubbler group. Specifically, for example, only one of the above-described first bubbler group and second bubbler group may be included.
  • the middle basin bubbling unit is composed of a plurality of bubbler groups whose positions in the length direction of the molten glass flow path of the melting tank 10 are different from each other. It is preferable when exhibiting.
  • the middle basin bubbling unit is constituted by a plurality of bubbler groups, it may be constituted by three or more bubbler groups whose positions in the length direction of the molten glass flow path of the melting tank 10 are different from each other.
  • the melting tank 10 shown in FIG. 2 it is more preferable from the viewpoint of cost effectiveness that the melting tank 10 is composed of two bubbler groups whose positions in the length direction of the molten glass flow path are different from each other.
  • the bubblers 14 and 15 constituting the midstream bubbling unit must satisfy the following conditions in relation to the length of the molten glass flow path of the melting tank 10.
  • L F the length of the molten glass flow path of the melting tank 10
  • the distance to each of the bubblers 14 and 15 constituting the second bubbler group) is 0.4L F to 0.6L F. Therefore, compared with the conventional melting tank (melting furnace) as described in Patent Documents 1 and 2, the length of the melting tank 10 is short, and the length of the part forming the downstream circulating flow in the melting tank is also short. .
  • two bubbler groups (first bubbler group and second bubbler group) having different positions in the length direction of the molten glass flow path of the melting tank 10 are mutually different.
  • the distance from the upstream end of the molten glass flow path to the bubblers 14 and 15 constituting each bubbler group satisfy the following respectively.
  • the distance from the upstream end of the molten glass flow path to each bubbler 14 constituting the first bubbler group is 0.4L F ⁇ 0.5L F, it is 0.43L F ⁇ 0.46L F Is more preferable.
  • the distance to the bubbler 15 constituting the second bubbler group from the upstream end of the molten glass flow path is 0.45 L F ⁇ 0.55 L F, at 0.46L F ⁇ 0.53L F More preferably.
  • the melting tank 10 shown in FIGS. 1 and 2 is composed of two bubbler groups (first bubbler group and second bubbler group) whose positions in the length direction of the molten glass flow path of the melting tank 10 are different from each other. If, each bubbler 14 constituting the first bubbler group, and a distance between each bubbler 15 constituting the second bubbler group and L P, that L P is 500 ⁇ 1000 mm, in the above-mentioned It is preferable for exhibiting the effect of bubbling from the basin bubbling unit, and L P is more preferably 600 to 800 mm.
  • the pitch p between the bubblers constituting each bubbler group of the middle basin bubbling unit that is, the distance between the bubblers in the width direction of the molten glass flow path of the melting tank 10 is 400 to 700 mm. It is preferable in order to exhibit the effect by carrying out the bubbling from the above-mentioned middle basin bubbling unit while considering the viewpoint of cost effectiveness.
  • the melting tank 10 shown in FIGS. 1 and 2 is composed of two bubbler groups (first bubbler group and second bubbler group) whose positions in the length direction of the molten glass flow path of the melting tank 10 are different from each other.
  • the bubbler 14 constituting the first bubbler group and the bubbler 15 constituting the second bubbler group do not exist on the same axis. It is preferable that they are arranged.
  • the protrusions of the bubblers 14 constituting the first bubbler group and the protrusions of the bubbler 15 constituting the second bubbler group are arranged in a staggered manner.
  • the protruding port of the bubbler 14 constituting the bubbler group and the protruding port of the bubbler 15 constituting the second bubbler group do not exist on the same axis.
  • the second bubbler group arranged in a staggered pattern on the downstream side
  • the presence of the protruding port of the constituting bubbler 15 does not impair the effect of promoting the formation of the circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) in the melting tank 10, and
  • the flow rate of the upstream circulating flow 100 and the flow rate of the downstream circulating flow 101 can be controlled to have a predetermined relationship.
  • the constituent materials of the bubbler 13 constituting the upstream region bubbling unit and the bubblers 14 and 15 constituting the midstream region bubbling unit are excellent in flame resistance and corrosion resistance to the molten glass. Therefore, platinum or a platinum alloy is preferable.
  • the gas 17 supplied from the bubbler 13 constituting the upstream region bubbling unit and the gases 18 and 19 supplied from the bubblers 14 and 15 constituting the midstream region bubbling unit include the molten glass G and the bubblers 13 and 14. , 15 and the like that do not adversely affect the components of the dissolution tank 10 are preferably used. Specific examples of such a gas include air, nitrogen, oxygen, helium, and argon.
  • the gases 17, 18, and 19 supplied from the bubblers 13, 14, and 15 are oxygen such as nitrogen, helium, and argon. It is preferable to use a gas that does not contain. Of these, nitrogen is particularly preferred.
  • Burners 16 are provided at equal intervals over the entire length of the dissolution tank 10 on both side surfaces of the dissolution tank 10 shown in FIGS. However, the burner 16 is not provided above the bubbler 15 constituting the second bubbler group.
  • the reason why the burner 16 is not provided above the bubbler 15 constituting the second bubbler group is a mode of suitable control in the molten glass production method of the present invention described later (control 2). This is because the ambient temperature T 2 above the bubbler 15 constituting the second bubbler group needs to be lower than the ambient temperature T 1 above the bubbler 14 constituting the first bubbler group.
  • the bubbler 15 constituting the second bubbler group and the burner 16 closest to the downstream side with respect to the bubbler 15 are arranged to some extent apart from each other. Specifically, it is preferable that the distance L B2 between the bubbler 15 constituting the second bubbler group and the burner 16 closest to the downstream side with respect to the bubbler 15 is 800 mm or more.
  • L B2 is preferably 2500 mm or less.
  • L B2 is preferably 1000 to 2000 mm, and L B2 is more preferably 1000 to 1600 mm.
  • the distance L B1 between the bubbler 14 constituting the first bubbler group and the burner 16 closest to the upstream side with respect to the bubbler 14 and the above-mentioned distance L B2 are expressed as L B2 It is preferable that the relationship is> L B1 . Therefore, as shown in FIG. 2, it is preferable that the burner 16 is provided above the bubbler 14 which comprises a 1st bubbler group.
  • the ambient temperature T 2 above the bubbler 15 constituting the second bubbler group is made lower than the ambient temperature T 1 above the bubbler 14 constituting the first bubbler group.
  • L B2 ⁇ L B1 ⁇ 300 mm is preferable, L B2 ⁇ L B1 ⁇ 500 mm is more preferable, and L B2 ⁇ L B1 ⁇ 800 mm is further preferable.
  • the nearest burner 16 is provided above the bubbler 14 constituting the first bubbler group.
  • the first bubbler group And the burner 16 nearest to the upstream side of the bubbler 14 may be arranged apart from each other to some extent.
  • the ambient temperature above the bubbler 14 becomes too low and the upstream side circulation flow 100 is weakened.
  • problems such as insufficient melting of the glass raw material and insufficient homogenization of the molten glass G in the downstream region of the melting tank 10 may occur. From such a viewpoint, it is preferable that L B1 is 2000 mm or less. L B1 is more preferably 500 to 1500 mm.
  • the pitch between adjacent burners 16 is preferably 600 to 2600 mm, more preferably 800 to 2400 mm, although it depends on the type of burner 16 and the layout of the dissolution tank 10.
  • Combustion in the burner 16 can be performed by mixing the fuel with oxygen gas and burning it, or mixing the fuel with oxygen gas and air and burning it. By using these methods, moisture can be contained in the molten glass.
  • the molten glass In the post-process of the molten glass sent from the melting tank 10 to the downstream conduit 20, when the bubbles in the molten glass are defoamed by vacuum degassing, the molten glass preferably contains moisture. Therefore, the combustion as described above is preferable.
  • the melting tank 10 In order to prevent deposits on the inner wall brick surface of the melting tank 10 (for example, glassy material eluted from the bricks, volatilized materials or molten glass) from falling on the burner portion, the melting tank 10 An eaves (not shown) is preferably provided on the upper wall of the burner 16 on the inner wall.
  • the constituent material of the melting tank 10 in contact with the molten glass G is required to be excellent in heat resistance and corrosion resistance to the molten glass. Therefore, a refractory brick containing ZrO 2 is used. of the bottom surface of the dissolving tank 10, in a portion of the first 0.1L from bubbler 14 of the bubbler group upstream F ⁇ 0.3L F, ZrO 2 is not more than 97% 85% by mass%, It is preferable to use a glassy hot-melt refractory material whose main part is SiO 2 .
  • the melting tank forming the molten glass flow path This is because the constituent material of the bottom surface 10 is easily eroded. Further, from the viewpoint of preventing erosion of the constituent material of the bottom surface of the melting tank 10 forming the molten glass flow path, it is preferable to use the above-described hot-melt refractory also for the peripheral portion of the bubbler 13 constituting the upstream region bubbling unit. .
  • the upstream bubbling unit is configured. It is preferable to use the above-mentioned hot-melt refractory in the range of 100 to 600 mm, preferably in the range of 150 to 400 mm, in the length direction of the molten glass channel with the bubbler 13 as the center.
  • the upstream region bubbling unit is formed in the range of 100 to 600 mm, preferably in the range of 150 to 400 mm, more preferably in the range of 150 to 300 mm, respectively, in the width direction of the molten glass channel with the bubbler 13 constituting Is preferably used.
  • the thickness of each hot-melt refractory is preferably 50 to 400 mm, and two to three hot-melt refractories are preferably laminated.
  • each refractory brick can be laminated
  • stamp materials such as an alumina zircon material.
  • cooling means by air cooling or water cooling for cooling the refractory brick is provided on the outer side of the refractory brick at the bottom of the melting tank 10 because the life of the refractory brick is improved.
  • a ring-shaped or horseshoe-shaped water pipe for cooling the pipe is provided around the pipes of the bubblers 13, 14, 15 inside the refractory brick at the bottom of the melting tank 10 or outside the refractory brick.
  • the molten glass manufacturing method of this invention is demonstrated.
  • the above-described molten glass manufacturing apparatus is used to perform bubbling from the middle-stream bubbling unit and bubbling from the upstream bubbling unit in the melting tank 10 of the molten glass manufacturing apparatus.
  • a molten glass is produced while performing.
  • homogenization of the molten glass G in the melting tank 10 can be promoted by carrying out the bubbling from the middle basin bubbling unit when the operation of the melting tank 10 is started or when the operating conditions of the melting tank are changed. Therefore, the time required for manufacturing the alkali-free glass can be shortened.
  • alkali-free glass having a T ⁇ of 1500 to 1760 ° C. include alkali-free glass compositions 1 to 4 having the following composition in mass percentage on an oxide basis.
  • the alkali-free glass composition 2 is preferable.
  • the alkali-free glass composition 3 is preferable.
  • SiO 2 50 to 61.5% Al 2 O 3 : 10.5-18% B 2 O 3 : 7 to 10% MgO: 2-5% CaO: 0 to 14.5% SrO: 0-24% BaO: 0 to 13.5% MgO + CaO + SrO + BaO: 16 to 29.5%
  • the average flow rate of the gases 18 and 19 supplied from the respective bubblers 14 and 15 constituting the midstream bubbling unit is set to 0.5 to 5.0 liters / min.
  • the formation of the circulating flow of the molten glass G (upstream circulating flow 100, downstream circulating flow 101) is promoted, and the flow rate of the upstream circulating flow 100 and the flow rate of the downstream circulating flow 101 have a predetermined relationship. It is preferable when controlling so that it becomes.
  • the middle basin bubbling unit is configured by the first and second bubbler groups as in the dissolution tank 10 shown in FIGS. 1 and 2, the following (Control 1) and (Control 2) are performed.
  • Control 1 The average flow rate V 2 of the gas 19 from the bubbler 15 constituting the second bubbler group is made smaller than the average flow rate V 1 of the gas 18 from the bubbler 14 constituting the first bubbler group.
  • Control 2 The ambient temperature T 2 above the second bubbler 15 is set lower than the ambient temperature T 1 above the first bubbler 14.
  • V 1 is preferably 0.5 to 20 liters / minute, more preferably 0.7 to 5 liters / minute, and 0.9 to 3 liters / minute. More preferably, it is 1.8 to 2.6 liters / minute.
  • the V 2 is preferably 0.3 to 19.8 liters / minute, more preferably 0.4 to 4.8 liters / minute, and 0.5 to 2 liters / minute. Is more preferable, and 0.9 to 2.0 liter / min is particularly preferable.
  • V 1 ⁇ V 2 ⁇ 0.2 liter / min is preferable, V 1 ⁇ V 2 ⁇ 0.4 liter / min is more preferable, V 1 ⁇ V 2 ⁇ 0.6 liter / min is more preferable, V 1 ⁇ V 2 ⁇ 1.0 l / min is particularly preferred.
  • the T 1 is preferably 1590 to 1710 ° C., more preferably 1600 to 1695 ° C.
  • the T 2 is preferably 1570 to 1690 ° C., more preferably 1580 to 1675 ° C.
  • T 1 -T 2 is preferably 10 to 35 ° C.
  • T 1 -T 2 is more preferably 15 to 30 ° C., and further preferably 19 to 26 ° C.
  • T 1 and T 2 can be measured by the following method.
  • (Measurement position) T 1 An intermediate position between the burner 16 closest to the upstream side of the bubbler 14 constituting the first bubbler group and the latest burner 16 positioned further upstream than the burner 16.
  • T 2 Intermediate position between the burner 16 closest to the downstream side of the bubbler 15 constituting the second bubbler group and the burner 16 closest to the downstream side of the bubbler.
  • the average flow rate of the gas 17 supplied from each bubbler 13 constituting the upstream region bubbling unit is set to 0.1 to 5.0 liters / minute at the start of operation of the melting tank 10.
  • the homogenization of the molten glass G in the melting tank 10 can always be promoted, including when the operating conditions of the melting tank 10 are changed.
  • the average flow rate of the gas 17 supplied from each bubbler 13 constituting the upstream region bubbling unit is the upstream region bubbling unit at the start of operation of the dissolution tank 10 or when the operation conditions of the dissolution tank 10 are changed.
  • the average flow rate of the gas 17 supplied from each bubbler 13 constituting the upstream region bubbling unit is set to 0.5 to 3.0.
  • Liter / minute preferably 1.0 to 2.0 liter / minute
  • the average flow rate of the gas 17 supplied from each bubbler 13 constituting the upstream bubbling unit during the normal operation of the dissolution tank 10 is 0.1 to 1. It is preferably 0 liter / minute, preferably 0.2 to 0.5 liter / minute.
  • the normal operation of the dissolution tank 10 where, for example, when the glass composition containing B 2 O 3 is, ⁇ 1% are B 2 O 3 in mass percentage based on oxides with respect to the target composition, preferably It means a state of ⁇ 0.5%, more preferably ⁇ 0.3%.
  • F 1 and F 2 can be measured by the following method.
  • F 2 distance from the downstream end of the molten glass flow path at 0.22L F ⁇ 0.30L F, near the center in the width direction of the molten glass flow path.
  • Video of the flow of bubbles on the surface of the molten glass is taken, and the moving time with respect to the moving distance of the bubbles is measured to obtain the flow velocity. Repeat this procedure 2-3 times to determine the average flow rate.
  • the plate glass manufacturing method of the present invention the molten glass obtained by the above-described molten glass manufacturing method of the present invention is formed into a plate glass.
  • various forming methods such as a float method and a downdraw method can be used. In the case of a glass having a T ⁇ of 1500 to 1760 ° C., the float method is particularly preferable.
  • bubbles in the molten glass may be degassed by vacuum degassing.
  • the plate glass manufacturing method of the present invention since the molten glass having high homogeneity obtained by the molten glass manufacturing method of the present invention is formed into a plate glass, a plate glass having high homogeneity and high transparency can be obtained.
  • the plate glass production apparatus of the present invention can be applied to the production of plate glass for various uses. However, since a plate glass having high homogeneity and high transparency can be obtained, the homogeneity of the glass substrate for FPD can be obtained. It is particularly preferable to apply it to the production of plate glass for applications in which the demands of these are extremely strict.
  • a glass raw material is introduced into a charging port of the melting tank 10 shown in FIGS. 1 and 2, and an alkali-free glass having a T ⁇ of 1500 to 1760 ° C., specifically the alkali-free glass composition described above. 1 to 4 are produced.
  • Molten glass flow path length L F 16 to 25 m Width W of molten glass channel: 5.5-9m Distance from upstream end of molten glass flow path to each bubbler 13 constituting upstream bubbling unit: 0.1 L F Distance from the center in the width direction of the molten glass flow path to each bubbler 13 constituting the upstream bubbling unit: 0.5 W Distance from the upstream end of the molten glass flow path to each bubbler 14 constituting the first bubbler group: 0.43L F to 0.46L F Distance from the downstream end of the molten glass flow path to each bubbler 15 constituting the second bubbler group: 0.47L F to 0.54L F Distance L P between each bubbler 14 constituting the first bubbler group and each bubbler 15 constituting the second bubbler group: 600 to 800 mm Pitch p between each bubbler 14 constituting the first bubbler group: 400 to 700 mm Pitch p between each bubbler 15 constituting the second bubbler group: 400 to 700 mm The distance from the upstream end of the molten glass channel to
  • the average flow rate V 1 of the gas 18 from the bubbler 14 constituting the first bubbler group, and the average flow rate V 2 of the gas 19 from the bubbler 15 constituting the second bubbler group is adjusted to be the following conditions .
  • V 2 0.9 to 2.0 liters / minute
  • T 1 and T 2 are measured by the method described above.
  • T 1 -T 2 10 to 35 ° C
  • the time required for homogenization of the molten glass in the melting tank 10 is shortened by carrying out the bubbling from the bubbler 13 constituting the upstream bubbling unit.
  • F 2 1 to 4 m / hour
  • the molten glass manufacturing apparatus and the molten glass manufacturing method of the present invention homogenization of the molten glass can be promoted even when the operation of the melting tank is started or when the operating conditions of the melting tank are changed. It is suitable for production of high-quality, high-quality alkali-free glass, and the time required for production of the alkali-free glass can be shortened. Since the plate glass manufacturing method of this invention can manufacture plate glass with high homogeneity and high transparency, it is suitable for manufacture of the board
  • Dissolution tank 11 Input port 12: Discharge port 13: Bubbler (upstream bubbling unit) 14: Bubbler (middle basin bubbling unit, first bubbler group) 15: Bubbler (middle basin bubbling unit, second bubbler group) 16: Burner 17: Gas from bubbler (upstream bubbling unit) 18: Gas from bubbler (middle basin bubbling unit, first bubbler group) 19: From bubbler (middle basin bubbling unit, second bubbler group) Gas 20: Downstream conduit 100: Upstream circulating flow 101: Downstream circulating flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

 溶解槽の運転開始時や、溶解槽の運転条件を変更した際にも、溶融ガラスの均質化を促進することができる、均質性の高い高品質な無アルカリガラスを生産するのに適した溶融ガラス製造装置の提供。ガラス原料を溶解するための溶解槽を有する溶融ガラス製造装置であって、前記溶解槽は、該溶解槽の上部空間を加熱するためのバーナーを有し、前記溶解槽の溶融ガラス流路の長さをLとするとき、該溶解槽の上流側からの距離が0.4L~0.6Lとなる位置に中流域バブリングユニットが設けられており、該溶解槽の上流側からの距離が0.05L~0.2Lとなる位置に上流域バブリングユニットが設けられており、前記中流域バブリングユニットは、前記溶解槽の底面近傍に、該溶解槽の溶融ガラス流路の幅方向にわたって複数のバブラーが設けられたバブラーグループで構成され、前記上流域バブリングユニットは、前記溶解槽の底面近傍に、該溶解槽の溶融ガラス流路の幅方向に並列して設けられた複数のバブラーで構成されており、前記上流域バブリングユニットは、該溶融ガラス流路の幅方向における中心に対し、対称となる位置に設けられた一対のバブラーを少なくとも含むことを特徴とする溶融ガラス製造装置。

Description

溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法
 本発明は、溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法に関する。より具体的には、均質性の高い高品質な無アルカリガラスを生産するための溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法に関する。
 フラットパネルディスプレイ(FPD)用のガラス基板の製造には、実質的にアルカリ金属イオンを含まない無アルカリガラスを用いることが、ガラス基板の絶縁性を高めるために好ましい。また、無アルカリガラスは熱膨張係数が小さい点でもFPD用のガラス基板の製造に好ましい。
 FPD用のガラス基板の製造においては、なお一層の高品質化、すなわち、均質性の高い高品質なガラス基板の製造が求められている。このためガラス原料を溶解して溶融ガラスを得る溶解槽(溶融炉)では溶融ガラスの均質性を高めるために様々な工夫がなされている。
 特許文献1に記載の溶融炉では、横断敷居により溶解炉を上流帯域と下流帯域とに分け、各々の帯域で溶融ガラスの循環流(上流側循環流、下流側循環流)を形成させることにより、原料の溶解および溶融ガラスの均質化を行っている。より具体的には、上流帯域では上流側循環流を形成することによりガラス原料の溶解を行い、下流帯域では下流側循環流を形成することにより溶融ガラスの均質化を行う。特許文献1に記載の溶融炉では、上流側循環流および下流側循環流を制御するために、横断敷居の上流側にバブラーが設けられている。
 特許文献2に記載の溶融炉(溶融タンク)は、特許文献1に記載の溶融炉における横断敷居に相当する構造は有していないが、少なくとも1列のバブラーと少なくとも2つの互いに向かい合ったバーナーを用いてガラスを溶融、清澄することについて記載されている。
 しかしながら、特許文献1,2に記載の溶融炉は、高品質な無アルカリガラスを生産するのには必ずしも適していなかった。
 ガラスの溶解温度の指標には、Tη、すなわち、ガラス粘度ηが102[dPa・s]となる温度が用いられるが、無アルカリガラスはTηが1500~1760℃であり、通常のソーダライムガラス等のアルカリ含有ガラスに比べてTηが100℃以上高く、均質化が難しい。このため、特許文献1,2に記載のソーダライムガラス等の一般的な大量生産用等のレイアウトの溶融炉では十分均質化することができず、均質性に対する要求が特に厳しいガラス製品(FPD用のガラス基板等)の製造には必ずしも適していなかった。
 また、上述したように、無アルカリガラスはソーダライムガラス等のアルカリ含有ガラスに比べてTηが高いため、溶融炉内における溶融ガラスの温度も必然的に高くなる。溶融ガラスの温度が高ければ、それに応じて溶融ガラスによる炉内構造物への侵食作用が強くなる。したがって、無アルカリガラスの場合、特許文献1に記載の溶融炉における横断敷居や特許文献2に記載の溶融炉における清澄台のような、溶融炉の底部に溶融ガラス流に影響を与える段差が存在すると、溶融ガラスによる段差の侵食、および、それによる不純物の発生が問題となる。
 また、無アルカリガラスの場合、溶融炉内における溶融ガラスの温度が必然的に高くなるので、特許文献1のように下流帯域が長い構造や、特許文献2のように大型の溶融炉とすると、バーナーを用いて加熱する範囲が広くなることからエネルギー効率的に不利である。また、溶融ガラスによる侵食およびそれによる不純物の発生や、溶融ガラスの流速の変化も問題となる。
 上記した問題点を解決するため、本願出願人は、特許文献3に記載の溶融ガラス製造装置を提案している。特許文献3に記載の溶融ガラス製造装置では、ガラス原料を溶解するための溶解槽10の底面近傍に設けるバブラー(第1,2のバブラー13,14)、および、溶解槽10の上部空間を加熱するバーナー15を特定の配置にすることにより、溶融ガラス流路の底部に特許文献1、2に記載されているような溶融ガラス流に影響を与える段差構造を設けることなしに、溶解槽10内での溶融ガラスの循環流(上流側循環流100、下流側循環流101)の形成を促進し、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することにより、均質性の高い高品質な無アルカリガラスを生産することができる(文中の符号はいずれも、特許文献3での記載通り)。
日本国特開平9-124323号公報 日本国特開平7-144923号公報 国際公開第2011/036939号
 上述したように、特許文献3に記載のガラス製造装置を用いることで、均質性の高い高品質な無アルカリガラスを生産することができる。
 しかしながら、特許文献3に記載のガラス製造装置を用いた場合であっても、溶解槽の運転開始時や、溶解槽の運転条件を変更した際には、後述する理由により溶融ガラスの均質化に長時間を要する。
 溶解槽の運転を開始する際、溶解作業の効率化のために、バーナーで溶解槽の上部空間を加熱しながら、ガラスカレットを溶解槽内に投入し、該カレットを溶解させることによって、溶解槽における溶融ガラスの深さを確保する。例えば、溶解槽における溶融ガラスの目標深さの約50%以上となるまで、カレットの溶融によって溶融ガラスの深さを確保する。
 溶解槽における溶融ガラスの目標深さの約50%以上となるまでに要する時間は、溶解槽の寸法によって異なる。ガラス生産量が20~100トン/日の規模の溶解槽の場合、その寸法がかなり大きいため、溶解槽における溶融ガラスの目標深さの約50%以上となるまでに長時間を要する。
 無アルカリガラスを製造する場合は、無アルカリガラス組成のカレットを投射することになるが、無アルカリガラス組成の場合、ガラス組成中にB23やClといった揮散しやすい成分(以下、「揮散成分」とする。)を含有することから、溶融ガラスからの揮散により、溶融ガラスの組成が目標組成と異なってくる。
 そのため、ガラス原料の投入開始時には、揮散成分の原料を目標組成よりも多く投入することによって、溶融ガラスが目標組成となるまでの時間を短縮する。
 上述したように、特許文献3に記載の溶融ガラス製造装置では、溶解槽10の底面近傍に設けたバブラー(第1,2のバブラー13,14)からのガス16,17の供給により、溶解槽10内での溶融ガラスの循環流(上流側循環流100、下流側循環流101)の形成を促進することで、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することにより、溶融ガラスの均質化を促進している(文中の符号はいずれも、特許文献3での記載通り)。
 しかしながら、分子量が小さい揮散成分は、他のガラス原料にくらべて比重が軽いため、当該軽い原料が上流側循環流に溶け込むことなしに、上流側循環流上を浮遊して溶解槽の下流側へと移動する傾向がある。このため、溶解槽内の溶融ガラスの均質化には長時間を要する。
 また、溶解槽の運転条件を変更した場合は、上流側循環流よりも溶解槽の上流側で溶融ガラスの滞留が起こる場合がある。このような溶融ガラスの滞留は、溶融ガラスの均質化を遅らせる原因となる。なお、このような溶融ガラスの滞留は、たとえば、ガラス原料の投入量を増加させた場合、製造するガラスの比重調整目的で溶解槽内の溶融ガラスよりも比重が軽いガラス原料を投入した場合に起こる傾向がある。また、何らかの原因で、溶解槽における溶融ガラスの深さが下がった場合や、溶解槽の上流側に存在する溶融ガラスの温度が低下した場合に起こる傾向がある。
 本発明は、上記した従来技術の問題点を解決するため、溶解槽の運転開始時や、溶解槽の運転条件を変更した際にも、溶融ガラスの均質化を促進することができる、均質性の高い高品質な無アルカリガラスを生産するのに適した溶融ガラス製造装置、溶融ガラス製造方法、および、それらを用いた板ガラス製造方法を提供することを目的とする。
 上記した目的を達成するため、本発明は、ガラス原料を溶解するための溶解槽を有する溶融ガラス製造装置であって、
 前記溶解槽は、該溶解槽の上部空間を加熱するためのバーナーを有し、
 前記溶解槽の溶融ガラス流路の長さをLFとするとき、該溶解槽の上流側からの距離が0.4LF~0.6LFとなる位置に中流域バブリングユニットが設けられており、該溶解槽の上流側からの距離が0.05LF~0.2LFとなる位置に上流域バブリングユニットが設けられており、
 前記中流域バブリングユニットは、前記溶解槽の底面近傍に、該溶解槽の溶融ガラス流路の幅方向にわたって複数のバブラーが設けられたバブラーグループで構成され、
 前記上流域バブリングユニットは、前記溶解槽の底面近傍に、該溶解槽の溶融ガラス流路の幅方向に並列して設けられた複数のバブラーで構成されており、
 前記上流域バブリングユニットは、該溶融ガラス流路の幅方向における中心に対し、対称となる位置に設けられた一対のバブラーを少なくとも含むことを特徴とする溶融ガラス製造装置を提供する。
 また、本発明は、本発明の溶融ガラス製造装置を用いて、前記中流域バブリングユニットおよび前記上流域バブリングユニットを構成する各バブラーからガスを供給しながら溶融ガラスを製造する、溶融ガラス製造方法を提供する。
 また、本発明は、本発明の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する板ガラス製造方法を提供する。
 本発明の溶融ガラス製造装置および溶融ガラス製造方法によれば、溶解槽の運転開始時や、溶解槽の運転条件を変更した際にも、溶融ガラスの均質化を促進することができるため、均質性の高い高品質な無アルカリガラスを生産に好適であり、該無アルカリガラスの生産に要する時間を短縮できる。
 本発明の板ガラス製造方法は、均質性が高く、透明性が高い板ガラスを製造することができるため、FPD用の基板の製造に好適である。
図1は、本発明の溶融ガラス製造装置における溶解槽の一実施形態の断面図である。 図2は、図1に示す溶解槽10の平面図である。但し、溶解槽10の上部壁面は省略されている。
 以下、図面を参照して本発明について説明する。
 図1は、本発明の溶融ガラス製造装置における溶解槽の1実施形態の断面図であり、図2は、図1に示す溶解槽の平面図である。但し、理解を容易にするため、溶解槽10の上部壁面は省略されている。
 溶解槽10の上流側の端部にはガラス原料の投入口11が設けられている。投入口11から投入されたガラス原料は、バーナー16による加熱によって溶解して溶融ガラスGとなり、溶解槽10内に保持される。溶解槽10の下流側の端部には、溶融ガラスGを次工程に払出すための払出し口12が設けられている。払出し口12は下流側の導管20と連通している。
 図1、2に示す溶解槽10の底面近傍には、それぞれ複数のバブラー13,14,15で構成される上流域バブリングユニット、および、中流域バブリングユニットが設けられている。詳しくは後述するが、上流域バブリングユニットを構成するバブラー13は、溶解槽10の溶融ガラス流路の上流域に設けられており、中流域バブリングユニットを構成するバブラー14,15は、溶解槽10の溶融ガラス流路の中流域に設けられている。
 図1、2に示す溶解槽10の両側面には、該溶解槽10内に保持された溶融ガラスGよりも上方に位置するようにバーナー16が配置されている。バーナー16は、後述する例外部分を除いて、溶解槽10の長さ方向全体にわたって等間隔で設けられている。
 上流域バブリングユニットは、溶解槽10の底面近傍に、該溶解槽10の溶融ガラス流路の幅方向に並列して設けられた複数のバブラー13で構成されている。
 図2に示す態様では、上流域バブリングユニットは、溶解槽10の溶融ガラス流路の幅方向における中心に対し、対称となる位置に設けられた一対のバブラー13で構成されている。
 詳しくは後述するが、本発明の溶融ガラス製造装置における溶解槽10では、中流域バブリングユニットを構成するバブラー14,15からガス18,19を供給することによって、溶融ガラス流路の底部に特許文献1、2に記載されているような溶融ガラス流に影響を与える段差構造を設けることなしに、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進し、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することができる。以下、本明細書において、中流域バブリングユニットを構成するバブラー14,15からガス18,19を供給することを、「中流域バブリングユニットからのバブリング」という場合がある。
 しかしながら、中流域バブリングユニットからのバブリングのみでは、溶解槽10の運転開始時や、溶解槽の運転条件を変更した際に、溶解槽10内の溶融ガラスGの均質化に長時間を要する。
 無アルカリガラスを製造する場合、溶解槽10の運転開始時には、溶解槽10内の溶融ガラスGが目標組成となるまでの時間を短縮するために、揮散成分の原料を目標組成よりも多く投入することが行われるが、分子量が小さい揮散成分は、他のガラス原料にくらべて比重が軽いため、当該軽い原料が上流側循環流100に溶け込むことなしに、上流側循環流100上を浮遊して溶解槽10の下流側へと移動する傾向があるため、溶解槽10内の溶融ガラスGの均質化には長時間を要することとなる。
 また、溶解槽10の運転条件を変更した際には、上流側循環流100よりも溶解槽10の上流側で溶融ガラスGの滞留が起こる場合がある。以下、本明細書において、上流側循環流100よりも溶解槽10の上流側での溶融ガラスGの滞留のことを、「溶解槽10の上流側での溶融ガラスGの滞留」とする。
 溶解槽10の上流側での溶融ガラスGの滞留は、溶解槽10内の溶融ガラスGの均質化を遅らせる原因となるので、溶解槽10の運転条件の変更後における溶解槽10内の溶融ガラスGの均質化には長時間を要することとなる。
 溶解槽10では、上流域バブリングユニットを構成するバブラー13からガス17を供給することによって、溶解槽10の運転開始時や、溶解槽の運転条件を変更した際に、溶解槽10内の溶融ガラスGの均質化を促進することができる。以下、本明細書において、上流域バブリングユニットを構成するバブラー13からガス17を供給することを、「上流域バブリングユニットからのバブリング」という場合がある。
 溶解槽10の運転開始時においては、上流域バブリングユニットからのバブリングを実施することで、上流側循環流100への揮散成分の原料の溶け込みが促進される。これにより、溶解槽10内の溶融ガラスGの均質化が促進される。
 また、溶解槽10の運転条件を変更した際においても、上流域バブリングユニットからのバブリングを実施することで、溶解槽10の上流側での溶融ガラスGの滞留を抑制することができ、場合によっては、該溶融ガラスGの滞留を解消することができる。
 上述した効果を発揮するため、上流域バブリングユニットを構成するバブラー13は、溶解槽10の溶融ガラス流路の長さとの関係において、以下に述べる条件を満たす必要がある。
 本発明の溶融ガラス製造装置における溶解槽10では、溶解槽10の溶融ガラス流路の長さをLFとするとき、溶融ガラス流路の上流端から上流域バブリングユニットを構成する各バブラー13までの距離が0.05LF~0.2LFである。
 溶融ガラス流路の上流端から各バブラー13までの距離が0.05LFよりも小さいと、溶解槽10の上流側壁面と、各バブラー13と、の距離が近すぎるため、上流域バブリングユニットからのバブリングの実施により、溶解槽10の上流側壁面の侵食が促進されるおそれがある。
 一方、溶融ガラス流路の上流端からバブラー13までの距離が0.2LFよりも大きいと、溶解槽10の運転開始時においては、上流域バブリングユニットからのバブリングを実施しても、上流側循環流100への揮散成分の原料の溶け込みが促進することができず、溶解槽10内の溶融ガラスGの均質化を促進することができない。また、溶解槽10の運転条件を変更した際に、上流域バブリングユニットからのバブリングを実施しても、溶解槽10の上流側での溶融ガラスGの滞留を抑制することができない。
 本発明の溶融ガラス製造装置における溶解槽10において、溶融ガラス流路の上流端から上流域バブリングユニットを構成する各バブラー13までの距離が0.1LF~0.2LFであることが好ましく、0.1LF~0.15LFであることがより好ましい。
 上述したように、図2に示す溶解槽10では、溶解槽10の溶融ガラス流路の幅方向における中心に対し対称となる位置に一対のバブラー13で設けられている。以下、本明細書において、溶解槽10の溶融ガラス流路の幅方向における中心に対し対称となる位置にバブラー13が設けられていることを、「溶解槽10の幅方向において対称となるようにバブラー13が設けられている」という。本発明の溶融ガラス製造装置における溶解槽10においては、溶解槽10の幅方向において対称となるようにバブラー13が設けられている必要がある。溶解槽10の幅方向において対称となるようにバブラー13が設けられていない例としては、図2に示す一対のバブラー13のうちの一方が設けられていない場合が挙げられる。この場合、上流域バブリングユニットからのバブリングを実施した際に、溶解槽10内での溶融ガラスGの流れが、溶解槽10の幅方向に対して対称とならず、溶解槽10の側壁方向への流れが促進されるため、溶解槽10の側壁が侵食されるおそれがある。また、上流側循環流100に乱れを生じさせ、溶融ガラスGの均質化に悪影響をおよぼすおそれがある。
 また、バブラー溶解槽10の幅方向において対称となるようにバブラー13が設けられていない例としては、溶解槽10の溶融ガラス流路の幅方向における中心付近に1つのバブラー13が設けられている場合が挙げられる。この場合も、上流域バブリングユニットからのバブリングを実施した際に、溶解槽10の側壁方向への溶融ガラスGの流れが促進されるため、溶解槽10の側壁が侵食されるおそれがある。
 なお、溶解槽10の幅方向において対称となるようにバブラー13が設けられている必要があるので、少なくとも2つのバブラー13が設けられている必要がある。また、バブラー13を2つよりも増やす場合は、バブラー13の数を偶数とする必要がある。たとえば、4つのバブラー13を設ける場合は、溶解槽10の幅方向において対称となるように二対のバブラー13を設ける必要がある。
 上流域バブリングユニットを構成するバブラー13は、溶解槽10の溶融ガラス流路の幅との関係においても、以下に述べる条件を満たすことが好ましい。
 本発明の溶融ガラス製造装置における溶解槽10では、溶解槽10の溶融ガラス流路の幅をWとするとき、上流域バブリングユニットを構成する各バブラー13は、溶融ガラス流路の幅方向における中心からの距離が0.25W以上となる位置に設けられていることが好ましい。
 溶融ガラス流路の幅方向における中心からの距離が0.25Wよりも小さいと、該溶融ガラス流路の幅方向における中心付近にバブラー13が設けられることになるので、上流域バブリングユニットからのバブリングを実施した際に、溶解槽10の側壁方向への溶融ガラスGの流れが促進されるため、溶解槽10の側壁が侵食されるおそれがある。
 本発明の溶融ガラス製造装置における溶解槽10において、上流域バブリングユニットを構成する各バブラー13は、溶融ガラス流路の幅方向における中心からの距離が0.27W以上となる位置に設けられていることがより好ましく、0.4W以上となる位置に設けられていることがさらに好ましい。
 但し、上流域バブリングユニットを構成する各バブラー13は、溶解槽10の側壁からの距離が400mm以上となる位置に設けられていることが好ましい。溶解槽10の側壁からの距離が400mmよりも小さい位置にバブラー13を設けた場合、溶解槽10の側壁と、バブラー13と、の距離が近すぎるため、上流域バブリングユニットからのバブリングの実施により、溶解槽10の側壁の侵食が促進されるおそれがある。
 本発明の溶融ガラス製造装置における溶解槽10において、上流域バブリングユニットを構成する各バブラー13は、溶解槽10の側壁からの距離が1000mm以上となる位置に設けられていることがより好ましい。
 なお、本発明の溶解槽10の溶融ガラス流路の長さLFは、溶融ガラス流路の幅Wによって異なるが、好ましくは10~30mであり、より好ましくは10~25mであり、さらに好ましくは15~22mである。
 一方、溶融ガラス流路の幅Wは、好ましくは5~10mであり、より好ましくは5.5~9mであり、さらに好ましくは6.5~8mである。
 図1,2に示す溶解槽10では、上流域バブリングユニットを構成する各バブラー13が、溶融ガラス流路の長さ方向において、最も上流側に位置するバーナー16よりもさらに上流側に設けられている。このように、本発明の溶融ガラス製造装置における溶解槽10では、上流域バブリングユニットを構成する各バブラー13が、最も上流側に位置するバーナー16よりもさらに上流側に設けられていることが、上流域バブリングユニットからのバブリングの実施による溶融ガラスの均質化を促進する効果を発揮するうえで好ましい。
 また、溶解槽によっては、バーナー16による燃焼排ガスを排出するための煙道が、最も上流側に位置するバーナー16よりもさらに上流側に設けられている場合がある。このような場合、該煙道よりもさらに上流側に、上流域バブリングユニットを構成する各バブラー13が設けられていることが好ましい。
 但し、上流域バブリングユニットからのバブリングの実施による溶融ガラスの均質化を促進する効果を発揮するためには、溶融ガラス流路の長さ方向において、上流域バブリングユニットを構成する各バブラー13と、最も上流側に位置するバーナー16と、の距離が大きすぎないほうが好ましい。本発明の溶融ガラス製造装置における溶解槽10において、上流域バブリングユニットを構成する各バブラー13と、最も上流側に位置するバーナー16と、の溶融ガラス流路の長さ方向における距離が2000mm以内であることが好ましく、1500mm以内であることがより好ましく、1000mm以内であることがさらに好ましい。
 中流域バブリングユニットは、溶解槽10の底面近傍に、該溶解槽10の溶融ガラス流路の幅方向にわたって複数のバブラー14,15が設けられたバブラーグループで構成されている。
 本発明の溶融ガラス製造装置における溶解槽10では、中流域バブリングユニットからのバブリングの実施により、溶融ガラス流路の底部に特許文献1、2に記載されているような溶融ガラス流に影響を与える段差構造を設けることなしに、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進し、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することができる。
 本発明の溶融ガラス製造装置における溶解槽10では、溶融ガラス流路の底部に溶融ガラスによる侵食が問題となる段差構造を設ける必要がないため、Tηが1500~1760℃であり、ソーダライムガラス等のアルカリ含有ガラスに比べて100℃以上高い無アルカリガラスの製造に好適である。
 図1,2に示す溶解槽10において、中流域バブリングユニットは、該溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる2つのバブラーグループ、すなわち、溶融ガラス流路の幅方向にわたって複数のバブラー14が設けられた第1のバブラーグループ、および、溶融ガラス流路の幅方向にわたって複数のバブラー15が設けられた第2のバブラーグループで構成されている。
 但し、本発明の溶融ガラス製造装置における溶解槽10において、中流域バブリングユニットは、単一のバブラーグループを有するものであってもよい。具体的には、例えば、上述した第1のバブラーグループ、および、第2のバブラーグループのうち、一方のみを有するものであってもよい。
 但し、中流域バブリングユニットは、溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる複数のバブラーグループで構成されていることが、上述した中流域バブリングユニットからのバブリングの実施による効果を発揮するうえで好ましい。
 なお、中流域バブリングユニットを複数のバブラーグループで構成する場合、溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる3つ以上のバブラーグループで構成してもよいが、図1、2に示す溶解槽10のように、溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる2つのバブラーグループで構成することが、費用対効果の観点からより好ましい。
 上述した効果を発揮するため、中流域バブリングユニットを構成するバブラー14,15は、溶解槽10の溶融ガラス流路の長さとの関係において、以下に述べる条件を満たす必要がある。
 本発明の溶融ガラス製造装置における溶解槽10では、溶解槽10の溶融ガラス流路の長さをLFとするとき、溶融ガラス流路の上流端から、中流域バブリングユニットの各バブラー(第1のバブラーグループ、第2のバブラーグループ)を構成する各バブラー14,15までの距離が0.4LF~0.6LFである。
 したがって、特許文献1,2に記載されているような従来の溶解槽(溶融炉)に比べて、溶解槽10の長さが短く、溶解槽における下流側循環流を形成する部位の長さも短い。
 ここで、図1,2に示す溶解槽10のように、溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる2つのバブラーグループ(第1のバブラーグループ、第2のバブラーグループ)で構成する場合、溶融ガラス流路の上流端から、各バブラーグループを構成するバブラー14、15までの距離が、それぞれ以下を満たすことが好ましい。
 溶融ガラス流路の上流端から第1のバブラーグループを構成する各バブラー14までの距離が0.4LF~0.5LFであることが好ましく、0.43LF~0.46LFであることがより好ましい。一方、溶融ガラス流路の上流端から第2のバブラーグループを構成する各バブラー15までの距離が0.45LF~0.55LFであることが好ましく、0.46LF~0.53LFであることがより好ましい。
 図1,2に示す溶解槽10のように、溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる2つのバブラーグループ(第1のバブラーグループ、第2のバブラーグループ)で構成する場合、第1のバブラーグループを構成する各バブラー14と、第2のバブラーグループを構成する各バブラー15との距離をLPとするとき、LPが500~1000mmであることが、上述した中流域バブリングユニットからのバブリングの実施による効果を発揮するうえで好ましく、LPが600~800mmであることがより好ましい。
 また、中流域バブリングユニットの各バブラーグループを構成する各バブラー間のピッチp、すなわち、溶解槽10の溶融ガラス流路の幅方向における、各バブラー間の距離が、400~700mmであることが、費用対効果の観点を考慮しつつ、上述した中流域バブリングユニットからのバブリングの実施による効果を発揮するうえで好ましい。
 図1,2に示す溶解槽10のように、溶解槽10の溶融ガラス流路の長さ方向における位置が互いに異なる2つのバブラーグループ(第1のバブラーグループ、第2のバブラーグループ)で構成する場合、溶解槽10における溶融ガラスの流路方向を軸とするとき、第1のバブラーグループを構成するバブラー14と、第2のバブラーグループを構成するバブラー15と、が同軸上に存在しないように配置されていることが好ましい。
 図2に示す溶解槽10において、第1のバブラーグループを構成するバブラー14の突出口と、第2のバブラーグループを構成するバブラー15の突出口と、が千鳥状に配置されており、第1のバブラーグループを構成するバブラー14の突出口と、第2のバブラーグループを構成するバブラー15の突出口と、が同軸上に存在しない。
 このような配置にした場合、第1のバブラーグループを構成するバブラー14の突出口のいずれかが機能しなくなった場合であっても、下流側に千鳥状に配置された第2のバブラーグループを構成するバブラー15の突出口の存在により、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進する効果が損なわれることがなく、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することができる。
 本発明の溶融ガラス製造装置における溶解槽10において、上流域バブリングユニットを構成するバブラー13、および、中流域バブリングユニットを構成するバブラー14,15の構成材料は、耐燃性および溶融ガラスに対する耐食性に優れることが求められることから、白金または白金合金であることが好ましい。
 また、上流域バブリングユニットを構成するバブラー13から供給するガス17、および、中流域バブリングユニットを構成するバブラー14,15から供給するガス18,19には、溶融ガラスG、および、バブラー13,14,15等の溶解槽10の構成要素に悪影響を及ぼさないものを用いることが好ましい。このようなガスの具体例としては、空気、窒素、酸素、ヘリウム、アルゴン等が例示される。バブラー13,14,15の構成材料として、白金または白金合金が用いられている場合、バブラー13,14,15から供給するガス17,18,19には、窒素、ヘリウム、および、アルゴンといった酸素を含まないガスを用いることが好ましい。これらの中でも窒素が特に好ましい。
 図1、2に示す溶解槽10の両側面には、該溶解槽10の長さ方向全体にわたってバーナー16が等間隔で設けられている。但し、第2のバブラーグループを構成するバブラー15の上方にはバーナー16が設けられていない。
 第2のバブラーグループを構成するバブラー15の上方にバーナー16が設けられていないのは、後述する本発明の溶融ガラス製造方法において、好適な制御の一態様である(制御2)を実施する場合には、第2のバブラーグループを構成するバブラー15の上方の雰囲気温度T2を、第1のバブラーグループを構成するバブラー14の上方の雰囲気温度T1よりも低くする必要があるからである。
 (制御2)を実施する場合、第2のバブラーグループを構成するバブラー15と、該バブラー15に対して下流側に直近のバーナー16と、をある程度離して配置することが好ましい。具体的には、第2のバブラーグループを構成するバブラー15と、該バブラー15に対して下流側に直近のバーナー16と、の距離LB2を800mm以上とすることが好ましい。
 但し、第2のバブラーグループを構成するバブラー15と、該バブラー15に対して下流側に直近のバーナー16と、を離しすぎると、第2のバブラーグループを構成するバブラー15の上方の雰囲気温度が低くなりすぎて、却って溶融ガラスの均質化が不十分になる等の問題が生じるおそれがある。また、溶解槽10の下流側の端部に設けられた払出し口12から払出される溶融ガラスGの温度が低くなり、後工程において減圧脱泡を行う場合に脱泡し難くなる等の問題が生じるおそれがある。このため、LB2は2500mm以下とすることが好ましい。なお、LB2は1000~2000mmであることが好ましく、LB2は1000~1600mmであることがより好ましい。
 また、(制御2)を実施する場合、第2のバブラーグループを構成するバブラー15の上方の雰囲気温度T2を、第1のバブラーグループを構成するバブラー14の上方の雰囲気温度T1よりも低くする必要があるため、第1のバブラーグループを構成するバブラー14と、該バブラー14に対して上流側に直近のバーナー16と、の距離LB1と、上述した距離LB2と、が、LB2>LB1の関係になることが好ましい。したがって、図2に示すように、第1のバブラーグループを構成するバブラー14の上方にはバーナー16が設けられていることが好ましい。このような配置とすることによって、第2のバブラーグループを構成するバブラー15の上方の雰囲気温度T2を、第1のバブラーグループを構成するバブラー14の上方の雰囲気温度T1よりも低くすることができる。
 本発明において、LB2-LB1≧300mmであることが好ましく、LB2-LB1≧500mmであることがより好ましく、LB2-LB1≧800mmであることがさらに好ましい。
 一方、図2に示す溶解槽10では、第1のバブラーグループを構成するバブラー14の上方に直近のバーナー16が設けられているが、LB2>LB1の関係を満たす限り第1のバブラーグループを構成するバブラー14と該バブラー14に上流側に直近のバーナー16とをある程度離して配置してもよい。但し、第1のバブラーグループを構成するバブラー14と該バブラー14に上流側に直近のバーナー16と、を離しすぎると、バブラー14の上方の雰囲気温度が低くなりすぎて上流側循環流100が弱まり、ガラス原料の溶解が不十分になる、また、それにより、溶解槽10の下流域での溶融ガラスGの均質化が不十分になる等の問題が生じるおそれがある。このような観点から、LB1は2000mm以下であることが好ましい。なお、LB1は500~1500mmであることがより好ましい。
 また、隣り合うバーナー16間のピッチは、バーナー16の種類や溶解槽10のレイアウトにもよるが、600~2600mmが好ましく、800~2400mmがより好ましい。
 バーナー16での燃焼は、燃料を酸素ガスと混合して燃焼させたり、燃料を酸素ガスおよび空気と混合して燃焼させたりすることができる。これらの方法を用いることにより、溶融ガラスに水分を含有させることができる。溶解槽10から下流側の導管20へと送られた溶融ガラスの後工程において、溶融ガラス中の泡を減圧脱泡により脱泡する場合には、溶融ガラスが水分を含んでいることが好ましいことから、上記のような燃焼が好ましい。
 なお、溶解槽10の内壁レンガ表面の付着物(例えば、該レンガから溶出したガラス質や、原料または溶融ガラスの揮散物等)が、バーナー部に落下するのを防止するために、溶解槽10の内壁におけるバーナー16の上部には、ひさし(不図示)が設けられていると好ましい。
 溶解槽10の溶融ガラスGと接する部分の構成材料は、耐熱性および溶融ガラスに対する耐食性に優れていることが求められることから、ZrO2含有の耐火レンガが用いられるが、溶融ガラス流路をなす溶解槽10の底面のうち、第1のバブラーグループを構成するバブラー14から上流側に0.1LF~0.3LFの部分には、質量%でZrO2が85%以上97%以下で、残部がSiO2を主体とするガラス質の熱溶融耐火物が用いることが好ましい。溶解槽10を流通する溶融ガラスの温度は、下流側よりも上流側のほうが高く、また、後述する本発明の溶融ガラス製造方法における好適な制御形態である(制御1)を実施する場合には、第2のバブラーグループを構成するバブラー15からのガス19の流量よりも、第1のバブラーグループを構成するバブラー14からのガス18の流量のほうが大きくなるため、溶融ガラス流路をなす溶解槽10の底面の構成材料が侵食されやすいからである。
 また、溶融ガラス流路をなす溶解槽10の底面の構成材料の侵食防止の観点からは、上流域バブリングユニットを構成するバブラー13の周辺部分にも、上記した熱溶融耐火物を用いることが好ましい。
 なお、溶解槽10の溶融ガラス流路の長さLFが、前記したように、10~30m(好ましくは10~25m、より好ましくは15~22m)の寸法の場合、上流域バブリングユニットを構成するバブラー13を中心に該溶融ガラス流路の長さ方向にそれぞれ100~600mmの範囲、好ましくは150~400mmの範囲の部分に、上記した熱溶融耐火物を用いることが好ましい。
 また、溶解槽10の溶融ガラス流路の幅Wが、前記したように、5~10m(好もしくは5.5~9m、より好ましくは6.5~8m)の寸法の場合、上流域バブリングユニットを構成するバブラー13を中心に該溶融ガラス流路の幅方向にそれぞれ100~600mmの範囲、好ましくは150~400mmの範囲、より好ましくは150~300mmの範囲の部分に、上記した熱溶融耐火物を用いることが好ましい。
 これら場合、個々の熱溶融耐火物の厚さは50~400mmであることが好ましく、熱溶融耐火物は2~3個積層させることが好ましい。さらに、このようにして形成した熱溶融耐火物の層の外側に、他のZrO2含有の耐火レンガを2~5層積層させることができる。なお、溶解槽10の溶融ガラスGと接する部分の全てを上記組成の熱溶融耐火物で構成することが好ましい。また、各耐火レンガをアルミナ・ジルコン質等のタンプ材を介して積層することができる。
 なお、溶解槽10底部の耐火レンガの目地から溶融ガラスが侵入し、該耐火レンガが侵食されるのを防止するために、前記目地の下に、目地を塞ぐように耐火レンガを積層配置させると好ましい。
 溶解槽10底部の耐火レンガの外側には、該耐火レンガを冷却するための空冷または水冷等による冷却手段が設けられていると、耐火レンガの寿命が向上するため、好ましい。
 また、溶解槽10底部の耐火レンガ内部または耐火レンガ外側における前記バブラー13、14、15の配管周囲には、該配管を冷却するためのリング状または馬蹄形状の水管が設けられていると好ましい。
 次に、本発明の溶融ガラス製造方法について説明する。
 本発明の溶融ガラス製造方法では、上述した溶融ガラス製造装置を用いて、溶融ガラス製造装置の溶解槽10において、中流域バブリングユニットからのバブリングを実施し、かつ、上流域バブリングユニットからのバブリングを実施しながら溶融ガラスを製造する。
 上述したように、中流域バブリングユニットからのバブリングの実施により、溶融ガラス流路の底部に特許文献1、2に記載されているような溶融ガラス流に影響を与える段差構造を設けることなしに、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進し、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御することができるので、Tηが1500~1760℃で、均質性の高い無アルカリガラスの製造に好適である。
 また、中流域バブリングユニットからのバブリングの実施により、溶解槽10の運転開始時や、溶解槽の運転条件を変更した際に、溶解槽10内の溶融ガラスGの均質化を促進することができるので、該無アルカリガラスの製造に要する時間を短縮できる。
 Tηが1500~1760℃となる無アルカリガラスの具体例としては、酸化物基準の質量百分率表示が下記組成となる無アルカリガラス組成1~4が例示できる。
 無アルカリガラス組成1
SiO2:50~73%、好ましくは50~66%
Al23:10.5~24%
23:0~12%
MgO:0~10%、好ましくは0~8%
CaO:0~14.5%
SrO:0~24%
BaO:0~13.5%
MgO+CaO+SrO+BaO:8~29.5%、好ましくは9~29.5%
ZrO2:0~5%
 歪点が高く溶解性を考慮する場合は好ましくは、無アルカリガラス組成2
SiO2:58~66%
Al23:15~22%
23:5~12%
MgO:0~8%
CaO:0~9%
SrO:3~12.5%
BaO:0~2%
MgO+CaO+SrO+BaO:9~18%
 特に溶解性を考慮する場合は好ましくは、無アルカリガラス組成3
SiO:50~61.5%
Al:10.5~18%
:7~10%
MgO:2~5%
CaO:0~14.5%
SrO:0~24%
BaO:0~13.5%
MgO+CaO+SrO+BaO:16~29.5%
 特に高歪点を考慮する場合は好ましくは、無アルカリガラス組成4
SiO:  54~73  %
Al:  10.5~22.5  %
:  0~5.5  %
MgO:  0~10  %
CaO:  0~9  %
SrO:  0~16  %
BaO:  0~2.5  %
MgO+CaO+SrO+BaO:  8~26  %
 本発明の溶融ガラス製造方法において、中流域バブリングユニットを構成する各バブラー14,15から供給するガス18,19の平均流量を0.5~5.0リットル/分とすることが、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進し、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御するうえで好ましい。
 ここで、中流域バブリングユニットが、図1,2に示す溶解槽10のように、第1および第2のバブラーグループで構成させる場合、以下に述べる(制御1)および(制御2)を実施することが、溶解槽10内での溶融ガラスGの循環流(上流側循環流100、下流側循環流101)の形成を促進し、かつ、上流側循環流100の流速と下流側循環流101の流速とを所定の関係になるように制御するうえで好ましい。これにより、Tηが1500~1760℃の溶融ガラスを製造する際に、溶融ガラスの均質化を促進することができ、均質性の高い高品質な溶融ガラスを得ることができる。
(制御1)
 第2のバブラーグループを構成するバブラー15からのガス19の平均流量V2を第1のバブラーグループを構成するバブラー14からのガス18の平均流量V1よりも小さくする。
(制御2)
 第2のバブラー15の上方の雰囲気温度T2を第1のバブラー14の上方の雰囲気温度T1よりも低くする。
 (制御1)を実施する場合、上記V1が0.5~20リットル/分であることが好ましく、0.7~5リットル/分であることがより好ましく、0.9~3リットル/分であることがさらに好ましく、1.8~2.6リットル/分であることが特に好ましい。また、上記V2が0.3~19.8リットル/分であることが好ましく、0.4~4.8リットル/分であることがより好ましく、0.5~2リットル/分であることがさらに好ましく、0.9~2.0リットル/分であることが特に好ましい。
 また、V1-V2≧0.2リットル/分が好ましく、V1-V2≧0.4リットル/分がより好ましく、V1-V2≧0.6リットル/分がさらに好ましく、V1-V2≧1.0リットル/分が特に好ましい。
 (制御2)を実施する場合、上記T1が1590~1710℃であることが好ましく、1600~1695℃であることがより好ましい。また、上記T2が1570~1690℃であることが好ましく、1580~1675℃であることがより好ましい。
 また、T1-T2は10~35℃が好ましく、T1-T2は15~30℃がより好ましく、19~26℃がさらに好ましい。
 なお、T1およびT2は、以下の方法で測定することができる。
(測定位置)
1:第1のバブラーグループを構成するバブラー14よりも上流側に直近のバーナー16と、該バーナー16よりもさらに上流側に位置する直近のバーナー16と、の中間位置。
2:第2のバブラーグループを構成するバブラー15よりも下流側に直近のバーナー16と、該バブラーよりも下流側に直近のバーナー16と、の中間位置。
(測定方法)
 溶解槽の側面に設けられた観察用窓から、対面側の側面の溶解槽内壁面温度を放射温度計(例えば、CHINO IR-AH3SU(測定波長:0.65μm、ε=1.0))で測定する。
 本発明の溶融ガラス製造方法において、上流域バブリングユニットを構成する各バブラー13から供給するガス17の平均流量を0.1~5.0リットル/分とすることが、溶解槽10の運転開始時や、溶解槽10の運転条件の変更時を含めて、常に、溶解槽10内の溶融ガラスGの均質化を促進することができることから好ましい。
 ここで、上流域バブリングユニットを構成する各バブラー13から供給するガス17の平均流量は、溶解槽10の運転開始時や、溶解槽10の運転条件を変更した際のような、上流域バブリングユニットからのバブリングの実施による溶解槽10内の溶融ガラスGの均質化の促進がより求められる状況と、溶解槽10の通常運転時と、で変更することができる。例えば、溶解槽10の運転開始時や、溶解槽10の運転条件を変更した際には、上流域バブリングユニットを構成する各バブラー13から供給するガス17の平均流量を0.5~3.0リットル/分、好ましくは1.0~2.0リットル/分とし、溶解槽10の通常運転時には上流域バブリングユニットを構成する各バブラー13から供給するガス17の平均流量を0.1~1.0リットル/分、好ましくは0.2~0.5リットル/分とすることが好ましい。ここで溶解槽10の通常運転時とは、例えばガラス組成にB23を含む場合には、酸化物基準の質量百分率表示でB23が目標組成に対して±1%、好ましくは±0.5%、より好ましくは±0.3%の状態をいう。
 本発明の溶融ガラス製造方法では、上流側循環流100の平均流速をF1[m/時間]とし、下流側循環流101の平均流速をF2[m/時間]とするとき、F1=5~20m/時間、F2=0.5~7m/時間となるように制御することが好ましい。これにより、Tηが1500~1760℃の溶融ガラスを製造する際に、溶融ガラスの均質化を促進することができ、均質性の高い高品質な溶融ガラスを得ることができる。
 F1=8~15m/時間、F2=1~4m/時間となるように制御することがより好ましい。
 なお、F1およびF2は、以下の方法で測定することができる。
(測定位置)
1:溶融ガラス流路の上流端からの距離が0.30LF~0.34LFで、溶融ガラス流路の幅方向における中央付近。
2:溶融ガラス流路の下流端からの距離が0.22LF~0.30LFで、溶融ガラス流路の幅方向における中央付近。
(測定方法)
 溶融ガラスの表層における泡の流れをビデオ撮影し、泡の移動距離に対する移動時間を測定して流速とする。この手順を2~3回繰り返して平均流速を求める。
 次に、本発明の板ガラス製造方法について説明する。
 本発明の板ガラス製造方法では、上記した本発明の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する。溶融ガラスを成形して板ガラスとする手段としては、フロート法、ダウンドロー法等の各種成形方法を用いることができる。Tηが1500~1760℃のガラスの場合、フロート法が特に好ましい。
 本発明の板ガラス製造方法において、上記した本発明の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する前に、該溶融ガラス中の泡を減圧脱泡により脱泡してもよい。
 本発明の板ガラス製造方法では、本発明の溶融ガラス製造方法により得られた均質性が高い溶融ガラスを成形して板ガラスとするので、均質性が高く、透明性が高い板ガラスを得ることができる。
 本発明の板ガラス製造装置では、様々な用途の板ガラスの製造に適用可能であるが、均質性が高く、透明性が高い板ガラスが得られることから、FPD用のガラス基板のように、均質性についての要求がきわめて厳しい用途の板ガラスの製造に適用することが特に好ましい。
 図1,2に示す溶解槽10の投入口に所望の組成となるようにガラス原料を投入して、Tηが1500~1760℃の無アルカリガラス、具体的には、前記の無アルカリガラス組成1~4を製造する。図1,2に示す溶解槽10の各部の寸法は以下の通り。
溶融ガラス流路の長さLF:16~25m
溶融ガラス流路の幅W:5.5~9m
溶融ガラス流路の上流端から上流側バブリングユニットを構成する各バブラー13までの距離:0.1LF
溶融ガラス流路の幅方向における中心から上流側バブリングユニットを構成する各バブラー13までの距離:0.5W
溶融ガラス流路の上流端から第1のバブラーグループを構成する各バブラー14までの距離:0.43LF~0.46LF
溶融ガラス流路の下流端から第2のバブラーグループを構成する各バブラー15までの距離:0.47LF~0.54LF
第1のバブラーグループを構成する各バブラー14と、第2のバブラーグループを構成する各バブラー15と、の距離LP:600~800mm
第1のバブラーグループを構成する各バブラー14間のピッチp:400~700mm
第2のバブラーグループを構成する各バブラー15間のピッチp:400~700mm
溶融ガラス流路の上流端から、溶解槽での溶融ガラスの流路方向における、最も上流側に位置するバーナー16までの距離0.15LF
溶解槽での溶融ガラスの流路方向における、第1のバブラーグループを構成するバブラー14と該バブラー14の上流側に直近のバーナー16との距離LB1:500~1500mm
溶解槽での溶融ガラスの流路方向における、第2のバブラーグループを構成するバブラー15と該バブラー15の下流側に直近のバーナー16との距離LB2:1000~2000mm
B2-LB1≧500mm
溶解槽での溶融ガラスの流路方向における、個々のバーナー16間の距離:800~2400mm
 上流側バブリングユニットを構成するバブラー13からのガス17の平均流量を、0.25~0.5リットル/分に調整する。
 第1のバブラーグループを構成するバブラー14からのガス18の平均流量V1、および、第2のバブラーグループを構成するバブラー15からのガス19の平均流量V2が下記条件となるように調整する。
1:1.8~2.6リットル/分
2:0.9~2.0リットル/分
1-V2≧0.6リットル/分
 バーナー16での燃焼により、第1のバブラーグループを構成するバブラー14の上方の雰囲気温度T1、および、第2のバブラーグループを構成するバブラー15の上方の雰囲気温度T2は下記条件に保持される。なお、T1およびT2は上述した方法で測定する。
1:1590~1710℃
2:1580~1675℃
1-T2:10~35℃
 溶解槽10の運転開始時において、上流側バブリングユニットを構成するバブラー13からのバブリングの実施により、溶解槽10内の溶融ガラスの均質化に要する時間が短縮される。
 溶解槽10内における上流側循環流100の平均流速F1および下流側循環流101の平均流速F2を上述した方法により測定する。結果は以下の通りである。
1=8~15m/時間
2=1~4m/時間
 上記の条件で実施することにより、Tηが1500~1760℃で、均質性が高い高品質な無アルカリガラスが製造され、該無アルカリガラスの生産に要する時間を短縮できる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2011年12月19日出願の日本特許出願2011-277287に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の溶融ガラス製造装置および溶融ガラス製造方法によれば、溶解槽の運転開始時や、溶解槽の運転条件を変更した際にも、溶融ガラスの均質化を促進することができるため、均質性の高い高品質な無アルカリガラスを生産に好適であり、該無アルカリガラスの生産に要する時間を短縮できる。
 本発明の板ガラス製造方法は、均質性が高く、透明性が高い板ガラスを製造することができるため、FPD用の基板の製造に好適である。
  10:溶解槽
  11:投入口
  12:払出し口
  13:バブラー(上流域バブリングユニット)
  14:バブラー(中流域バブリングユニット、第1のバブラーグループ)
  15:バブラー(中流域バブリングユニット、第2のバブラーグループ)
  16:バーナー
  17:バブラー(上流域バブリングユニット)からのガス
  18:バブラー(中流域バブリングユニット、第1のバブラーグループ)からのガス
  19:バブラー(中流域バブリングユニット、第2のバブラーグループ)からのガス
  20:下流側の導管
  100:上流側循環流
  101:下流側循環流

Claims (12)

  1.  ガラス原料を溶解するための溶解槽を有する溶融ガラス製造装置であって、
     前記溶解槽は、該溶解槽の上部空間を加熱するためのバーナーを有し、
     前記溶解槽の溶融ガラス流路の長さをLとするとき、該溶解槽の上流側からの距離が0.4L~0.6Lとなる位置に中流域バブリングユニットが設けられており、該溶解槽の上流側からの距離が0.05L~0.2Lとなる位置に上流域バブリングユニットが設けられており、
     前記中流域バブリングユニットは、前記溶解槽の底面近傍に、該溶解槽の溶融ガラス流路の幅方向にわたって複数のバブラーが設けられたバブラーグループで構成され、
     前記上流域バブリングユニットは、前記溶解槽の底面近傍に、該溶解槽の溶融ガラス流路の幅方向に並列して設けられた複数のバブラーで構成されており、
     前記上流域バブリングユニットは、該溶融ガラス流路の幅方向における中心に対し、対称となる位置に設けられた一対のバブラーを少なくとも含むことを特徴とする溶融ガラス製造装置。
  2.  前記溶解槽の溶融ガラス流路の幅をWとするとき、前記上流域バブリングユニットを構成する各バブラーは、該溶融ガラス流路の幅方向における中心からの距離が0.25W以上、かつ、前記溶解槽の側壁からの距離が400mm以上を満たす位置に設けられている、請求項1に記載の溶融ガラス製造装置。
  3.  前記上流域バブリングユニットを構成する各バブラーは、前記溶融ガラス流路の長さ方向において、最も上流側に位置するバーナーよりもさらに上流側に設けられている、請求項1または2に記載の溶融ガラス製造装置。
  4.  前記中流域バブリングユニットは、前記溶融ガラス流路の長さ方向における位置が互いに異なる複数のバブラーグループを含む、請求項1~3のいずれか一項に記載の溶融ガラス製造装置。
  5.  前記中流域バブリングユニットおよび前記上流域バブリングユニットを構成する各バブラーが白金製または白金合金製であり、該各バブラーから供給されるガスが酸素を含まないガスである、請求項1~4のいずれか一項に記載の溶融ガラス製造装置。
  6.  請求項1~5のいずれか一項に記載の溶融ガラス製造装置を用いて、前記中流域バブリングユニットおよび前記上流域バブリングユニットを構成する各バブラーからガスを供給しながら溶融ガラスを製造する、溶融ガラス製造方法。
  7.  ガラス粘度ηが102[dPa・s]となる温度Tηが1500~1760℃の溶融ガラスを製造する、請求項6に記載の溶融ガラス製造方法。
  8.  前記中流域バブリングユニットを構成する各バブラーから供給するガスの平均流量を0.5~5.0リットル/分とし、前記上流域バブリングユニットを構成する各バブラーから供給するガスの平均流量を0.1~5.0リットル/分とする、請求項6または7に記載の溶融ガラス製造方法。
  9.  請求項6~8のいずれか一項に記載の溶融ガラス製造方法により得られた溶融ガラスを板ガラスに成形する板ガラス製造方法。
  10.  溶融ガラスが、酸化物基準の質量百分率表示で、
    SiO:50~73%
    Al:10.5~24%
    :0~12%
    MgO:0~10%
    CaO:0~14.5%
    SrO:0~24%
    BaO:0~13.5%
    MgO+CaO+SrO+BaO:8~29.5%
    ZrO:0~5%
    を含有する無アルカリガラスである請求項1~5のいずれか一項に記載の溶融ガラス製造装置。
  11.  溶融ガラスが、酸化物基準の質量百分率表示で、
    SiO:50~73%
    Al:10.5~24%
    :0~12%
    MgO:0~10%
    CaO:0~14.5%
    SrO:0~24%
    BaO:0~13.5%
    MgO+CaO+SrO+BaO:8~29.5%
    ZrO:0~5%
    を含有する無アルカリガラスである請求項6~8のいずれか一項に記載の溶融ガラス製造方法。
  12.  溶融ガラスが、酸化物基準の質量百分率表示で、
    SiO:50~73%
    Al:10.5~24%
    :0~12%
    MgO:0~10%
    CaO:0~14.5%
    SrO:0~24%
    BaO:0~13.5%
    MgO+CaO+SrO+BaO:8~29.5%
    ZrO:0~5%
    を含有する無アルカリガラスである請求項9に記載の板ガラス製造方法。
PCT/JP2012/077898 2011-12-19 2012-10-29 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法 WO2013094313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147015101A KR101971755B1 (ko) 2011-12-19 2012-10-29 용융 유리 제조 장치, 용융 유리 제조 방법 및 그것들을 사용한 판유리의 제조 방법
CN201280062959.7A CN103998383B (zh) 2011-12-19 2012-10-29 熔融玻璃制造装置、熔融玻璃制造方法及使用该制造装置和制造方法的平板玻璃的制造方法
JP2013550173A JP6015671B2 (ja) 2011-12-19 2012-10-29 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-277287 2011-12-19
JP2011277287 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094313A1 true WO2013094313A1 (ja) 2013-06-27

Family

ID=48668214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077898 WO2013094313A1 (ja) 2011-12-19 2012-10-29 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法

Country Status (5)

Country Link
JP (1) JP6015671B2 (ja)
KR (1) KR101971755B1 (ja)
CN (1) CN103998383B (ja)
TW (1) TWI552972B (ja)
WO (1) WO2013094313A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033931A1 (ja) * 2013-09-06 2015-03-12 旭硝子株式会社 溶融ガラス製造方法およびそれを用いた板ガラスの製造方法
WO2015190531A1 (ja) * 2014-06-12 2015-12-17 旭硝子株式会社 溶融ガラスの製造方法、ガラス物品の製造方法、および溶融ガラス製造装置
DE102013019083B4 (de) 2013-11-13 2018-09-27 Jsj Jodeit Gmbh Verfahren zur Herstellung eines Glases
JP2019518701A (ja) * 2016-09-21 2019-07-04 ジュシ グループ カンパニー リミテッド 窯炉バブリング装置の配列構造
JP2020200217A (ja) * 2019-06-10 2020-12-17 日本電気硝子株式会社 ガラス物品の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104609701A (zh) * 2015-02-06 2015-05-13 成都光明光电有限责任公司 玻璃原料粗熔物的连续制造装置及其制造方法
WO2018226535A1 (en) * 2017-06-06 2018-12-13 Corning Incorporated Methods for reconditioning glass manufacturing systems
CN115353272B (zh) * 2022-08-26 2023-09-05 凯里市凯荣玻璃有限公司 一种应用于玻璃熔窑的消泡系统和消泡方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218715A (en) * 1975-08-04 1977-02-12 Nippon Electric Glass Co Method of homogenizing glass
JPH07144923A (ja) * 1993-08-13 1995-06-06 Beteiligungen Sorg Gmbh & Co Kg ガラスを溶解する方法及びタンク炉
JP2005523861A (ja) * 2001-10-02 2005-08-11 カール−ツアイス−シュティフツンク 物質を低汚染溶融する装置および方法
JP2010030881A (ja) * 2008-06-25 2010-02-12 Nippon Electric Glass Co Ltd バブリング装置、ガラス物品の製造方法及びガラス熔融装置
WO2011036939A1 (ja) * 2009-09-24 2011-03-31 旭硝子株式会社 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1300813A (fr) * 1961-06-21 1962-08-10 Saint Gobain Perfectionnement aux fours à bassin pour la fabrication du verre ou autre matière analogue
US4536205A (en) * 1983-10-20 1985-08-20 Ppg Industries, Inc. Method for controlling currents in glass melter
FR2737487B1 (fr) 1995-08-03 1998-01-09 Saint Gobain Vitrage Dispositif pour la fusion de matieres vitrifiables
US6722161B2 (en) * 2001-05-03 2004-04-20 The Boc Group, Inc. Rapid glass melting or premelting
KR20050109929A (ko) * 2003-03-31 2005-11-22 아사히 가라스 가부시키가이샤 무알칼리 유리
CN101980977B (zh) * 2008-04-07 2013-10-30 旭硝子株式会社 熔融玻璃制造装置及采用该制造装置的熔融玻璃制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218715A (en) * 1975-08-04 1977-02-12 Nippon Electric Glass Co Method of homogenizing glass
JPH07144923A (ja) * 1993-08-13 1995-06-06 Beteiligungen Sorg Gmbh & Co Kg ガラスを溶解する方法及びタンク炉
JP2005523861A (ja) * 2001-10-02 2005-08-11 カール−ツアイス−シュティフツンク 物質を低汚染溶融する装置および方法
JP2010030881A (ja) * 2008-06-25 2010-02-12 Nippon Electric Glass Co Ltd バブリング装置、ガラス物品の製造方法及びガラス熔融装置
WO2011036939A1 (ja) * 2009-09-24 2011-03-31 旭硝子株式会社 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517963B (zh) * 2013-09-06 2017-09-22 旭硝子株式会社 熔融玻璃制造方法和使用该制造方法的平板玻璃的制造方法
KR102196157B1 (ko) * 2013-09-06 2020-12-30 에이지씨 가부시키가이샤 용융 유리 제조 방법 및 그것을 이용한 판유리의 제조 방법
CN105517963A (zh) * 2013-09-06 2016-04-20 旭硝子株式会社 熔融玻璃制造方法和使用该制造方法的平板玻璃的制造方法
KR20160052547A (ko) * 2013-09-06 2016-05-12 아사히 가라스 가부시키가이샤 용융 유리 제조 방법 및 그것을 이용한 판유리의 제조 방법
JPWO2015033931A1 (ja) * 2013-09-06 2017-03-02 旭硝子株式会社 溶融ガラス製造方法およびそれを用いた板ガラスの製造方法
WO2015033931A1 (ja) * 2013-09-06 2015-03-12 旭硝子株式会社 溶融ガラス製造方法およびそれを用いた板ガラスの製造方法
DE102013019083B4 (de) 2013-11-13 2018-09-27 Jsj Jodeit Gmbh Verfahren zur Herstellung eines Glases
EP3156375A4 (en) * 2014-06-12 2018-01-24 Asahi Glass Company, Limited Method for manufacturing molten glass, method for manufacturing glass product, and device for manufacturing molten glass
JPWO2015190531A1 (ja) * 2014-06-12 2017-04-27 旭硝子株式会社 溶融ガラスの製造方法、ガラス物品の製造方法、および溶融ガラス製造装置
CN106458677A (zh) * 2014-06-12 2017-02-22 旭硝子株式会社 熔融玻璃的制造方法、玻璃物品的制造方法、以及熔融玻璃制造装置
US10246361B2 (en) 2014-06-12 2019-04-02 AGC Inc. Method for manufacturing molten glass, method for manufacturing glass product, and device for manufacturing molten glass
WO2015190531A1 (ja) * 2014-06-12 2015-12-17 旭硝子株式会社 溶融ガラスの製造方法、ガラス物品の製造方法、および溶融ガラス製造装置
JP2019518701A (ja) * 2016-09-21 2019-07-04 ジュシ グループ カンパニー リミテッド 窯炉バブリング装置の配列構造
EP3431445A4 (en) * 2016-09-21 2019-12-11 Jushi Group Co., Ltd. ARRANGEMENT STRUCTURE FOR FURNITURE FURNACE APPLIANCES
US11097972B2 (en) 2016-09-21 2021-08-24 Jushi Group Co., Ltd. Arrangement structure for bubbling apparatuses of furnace
JP2020200217A (ja) * 2019-06-10 2020-12-17 日本電気硝子株式会社 ガラス物品の製造方法
JP7222312B2 (ja) 2019-06-10 2023-02-15 日本電気硝子株式会社 ガラス物品の製造方法

Also Published As

Publication number Publication date
CN103998383B (zh) 2016-03-30
KR20140107233A (ko) 2014-09-04
CN103998383A (zh) 2014-08-20
TWI552972B (zh) 2016-10-11
JP6015671B2 (ja) 2016-10-26
JPWO2013094313A1 (ja) 2015-04-27
TW201326073A (zh) 2013-07-01
KR101971755B1 (ko) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6015671B2 (ja) 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法
KR101300934B1 (ko) 유리판의 제조 방법 및 유리판의 제조 장치
TWI538889B (zh) Manufacture of glass plates
US8720229B2 (en) Vacuum degassing apparatus, apparatus for producing glass products and process for producing glass products
US11629092B2 (en) Method for manufacturing alkali-free glass substrate and alkali-free glass substrate
JP7197978B2 (ja) ガラス
WO2012132474A1 (ja) ガラス基板の製造方法
KR102483260B1 (ko) 무알칼리 유리 기판의 제조방법
JP5549674B2 (ja) 溶融ガラス製造装置、溶融ガラス製造方法およびそれらを用いた板ガラスの製造方法
JP7421161B2 (ja) 無アルカリガラス基板の製造方法及び無アルカリガラス基板
JP5731437B2 (ja) ガラス板の製造方法
JP6292090B2 (ja) 溶解窯、溶解方法、および無アルカリガラス板の製造方法
JP6304256B2 (ja) 溶融ガラス製造方法およびそれを用いた板ガラスの製造方法
JP2013095639A (ja) ガラス溶融炉の予備加熱方法とガラス溶融装置およびガラス物品の製造方法
JP2017178731A (ja) ガラス板の製造方法
KR20190078512A (ko) 유리 기판 제조 장치 및 유리 기판의 제조 방법
JP6631372B2 (ja) 溶解方法、および無アルカリガラス板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280062959.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550173

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147015101

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859075

Country of ref document: EP

Kind code of ref document: A1