WO2013086619A1 - Programmable cell model for determining cancer treatments - Google Patents
Programmable cell model for determining cancer treatments Download PDFInfo
- Publication number
- WO2013086619A1 WO2013086619A1 PCT/CA2012/001152 CA2012001152W WO2013086619A1 WO 2013086619 A1 WO2013086619 A1 WO 2013086619A1 CA 2012001152 W CA2012001152 W CA 2012001152W WO 2013086619 A1 WO2013086619 A1 WO 2013086619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state vector
- cell
- cell model
- treatment
- disease
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
Definitions
- This disclosure relates to computer modeling of biological cells, and more specifically, to computer modeling of human cells, disease pathways and treatments.
- the disclosure relates to a programmable cancer cell model that may be customized to simulate the effect of gene mutations, for example mutations identified from a particular cancer patient's genetic profile. The simulation may be used to assess the likelihood of a candidate therapy resulting in stable remission for the patient based on the genetic profile of that patient's cancer.
- Cell signaling pathways used by cancerous cells typically lead to upregulation of tumour growth factors and/or downreguiation of apoptotic processes meant to cause programmed cell death. Either of these can result in uncontrolled cell growth.
- Cell signaling pathways are complex and involve multiple intracellular and extracellular proteins, each of which may be implicated in multiple pathways. The result is a multi-facetted web of interactions between particular proteins and their corresponding genes with other proteins in adjacent signaling pathways.
- a computer-implemented method of modeling a cell state comprising: modeling at least a portion of a healthy cell using a cell model based on a fuzzy cognitive map, the cell model defining relationships between factors, the cell model being stored in at least a computer; applying a disease state vector to the cell model, the disease state vector configured to represent a disease affecting the cell; obtaining a new diseased cell state vector of the cell model based on the applied disease state vector; and, providing a first output indicative of the established diseased cell state vector of the cell model.
- the above computer implemented method further comprising: modifying the diseased cell state vector to obtain a treatment state vector configured to represent a proposed treatment for the established disease; applying the treatment state vector to the cell model; obtaining a treated cell state vector from the cell model based on the applied treatment state vector; and, providing a second output indicative of the established treated cell state vector of the cell model.
- a system for modeling a cell state comprising a server connected to a network and configured to communicate with a plurality of remote devices, the server further configured to: store a cell model of at least a portion of a healthy cell, the cell model based on a fuzzy cognitive map, the cell model defining relationships between factors; receive an indication of a disease state vector from a remote device of the plurality of remote devices via the network; apply the disease state vector to the cell model, the disease state vector representing a disease affecting the cell; obtain a diseased cell state vector of the cell model based on the applied disease state vector; provide a first output indicative of the diseased cell state vector of the cell model to the remote device via the network; receive an indication of a treatment state vector from the remote device via the network; modify the diseased cell state vector to obtain the treatment state vector, the treatment state vector representing a proposed treatment for the disease; apply the treatment state vector to the cell model; obtain a treated cell state vector of the cell model based on the applied
- the cell model can include factors representing cell signaling pathways.
- Fig. 1 is a causal diagram form of an example fuzzy cognitive map for a cell.
- Fig. 2 is a matrix representation of the example fuzzy cognitive map.
- Fig. 3 shows a state vector of an example state for the fuzzy cognitive map.
- Fig. 4 shows an iterative formula involving vector matrix multiplication for obtaining a new state vector.
- Fig. 5 shows a sample calculation of a new state vector.
- Fig. 6 is a partial table of current states and new states.
- Fig. 7 is another partial table of current states and new states.
- Fig. 8 is a flowchart of an example method of modeling a cell.
- Fig. 9 is diagram of an example system for modeling a cell.
- Fig. 10 is a diagram of an example input interface for generating a disease state vector.
- Fig. 1 1 is a diagram of an example output interface.
- Fig. 12 is a diagram of an example input interface for generating a treatment state vector.
- Fig. 1 shows a causal diagram representation of an example fuzzy cognitive map (FCM) 10.
- FCM fuzzy cognitive map
- the example FCM 10 comprises factors A-E, represented by circles, and relationships between the factors, represented by arrows.
- the factors A-E represent the expression of proteins (i.e., first through fifth proteins) in a biological system, and specifically, the expression of proteins involved in intercellular or intracellular signaling pathways. Since protein expression is caused by genes, the factors A-E also represent the genes (i.e., first through fifth genes) corresponding to the proteins.
- the FCM 10 represents a portion of a healthy cell's signaling system, which allows the cell to carry out basic cellular activities as well as coordinate actions among a group of cells.
- the FCM 10 is a trivalent-state FCM.
- the factors A-E numerically represent whether a protein is over expressed, normally expressed, or suppressed, which are respectively indicated by the values +1 , 0, and - 1.
- the arrows connecting the factors represent causal relationships among the factors, and can take values of +1 , 0, and -1 , with the arrow direction indicating the direction of cause to effect.
- a relationship value of +1 means that the factor at the origin of the arrow stimulates expression of the factor at the tip of the arrow.
- a relationship value of 0 means there is no relationship or a neutral relationship between the factors (and the arrow is omitted).
- a relationship value of -1 signifies that the originating factor suppresses or inhibits the factor shown at the arrowhead.
- a pentavalent-state FCM is used, in which states and/or relationships can be assigned the values -1.0, -0.5, 0.0, +0.5, and +1.0.
- a continuous-state FCM is used. In a continuous-state FCM, states and relationships can take a continuous range of floating-point values.
- Factors that have only outgoing arrows may be referred to as transmitters (i.e., factor A), factors that have both incoming and outgoing arrows may be referred to as ordinary (i.e., factors C, D, and E), and factors that have only incoming arrows may be referred to as receivers (i.e., factor B).
- protein A when expressed causes protein C to be expressed by way of one or more cell signaling pathways.
- cell signaling pathways are complex and have been simplified by the FCM 10, which in fact is one of the benefits of using the FCM 10.
- protein A may interact with a receptor on a cell that begins a chain of molecule-scale chemical reactions that results in protein C being produced.
- protein B when protein A is expressed, protein B is suppressed. For example, protein B may be consumed during the reaction that produces protein C.
- the FCM 10 can be established based on empirical data or theories regarding the causal relationships between the proteins A-E. If a causal relationship is currently unknown, it can be given the value of 0 (no arrow). As new information is discovered the causal diagram and relationship matrix are updated to reflect the new knowledge. In this way the cell signaling model is continually evolving.
- the FCM 10 and the corresponding cell can then be described as a matrix 20.
- the rows 22 of the matrix 20 indicate the effects of each of the proteins A-E on expression of each of the proteins A-E as arranged in columns 24.
- Each element 26 of the matrix 20 can thus take a value of +1 , 0, or -1 .
- the top-most row shows that protein A suppresses protein B (-1 ), promotes expression of protein C (+1 ), and has no appreciable or known effect on proteins D and E.
- protein D only causes expression of protein E (+1 ).
- a state of the FCM 10 at any given time can be defined by a vector, as shown in Fig. 3.
- the vector includes five values, one for each of the proteins A-E.
- the values can be +1 , 0, or -1 , depending on whether the respective protein is expressed, not expressed, or suppressed.
- the next state can be obtained by multiplying the current state by the matrix 20 that defines the relationships among the proteins A-E.
- the equation of Fig. 4 illustrates this with a state index of i.
- the next state i+1 can be readily obtained.
- the next state i+1 can then be multiplied by the matrix 20 to arrive at a future state i+2, and so on.
- a series of states can be obtained in an iterative manner.
- proteins A, D, and E take respective values of 0, 1 , and 0. If the multiplication process results in a value greater than 1 or less than -1 , then such a value is thresholded to 1 or -1 , respectively, to keep the resulting protein states congruent with the original model.
- thresholding can include rounding to the nearest state (i.e., 0.6 would be rounded to 0.5, -0.79 would be rounded to -1 , and so on).
- Thresholding can be omitted in continuous-state models. Thresholding may also be known as squashing. [0036] Referring back to Fig. 1 , it can be seen that this example result naturally follows the initial state. Protein C caused protein D to be expressed, and protein E caused both proteins C and B to be expressed. A new state for the cell model has been reached.
- the new state can then be fed back into the relationship matrix 20 to obtain a subsequent new state.
- Multiplying the state vector representing the expression of proteins B, C, and D and the absence of proteins A and E results in a cell state illustrated by the third current state vector in Fig. 6 (see iteration 2), that is, the expression of only proteins D and E. Again, this naturally follows the causal relationships set up at the outset, as shown by the FCM 10 in Fig. 1.
- Fig. 6 shows additional iterations, and it can be seen that a cyclic pattern quickly emerges.
- the cyclic pattern can be represented by the cell states at iterations 1 through 3.
- this cyclic pattern may correspond to the functioning of a healthy cell. Supposing that protein E is essential to cellular division, the model cell undergoes two cycles of division followed by one cycle where the cell does not divide. This may be representative of healthy tissue growth.
- the table of Fig. 6 can be provided as direct output of a computer programmed to perform the above operations.
- the cyclic pattern described can be stored and the computer can simply output an indication that the cell is healthy.
- Another aspect of the FCM 10 is that factors can be locked to particular values. This may be known as enforcing a policy on the FCM 10.
- factor C can be set to always take the value of 1 , regardless of the outcome of the state vector-matrix multiplication. In the biological cell model, this may correspond to a mutation in gene C that causes protein C to be expressed continually, rather than just initially as in the previous numerical example. Such a mutation may correspond to a disease.
- Fig. 7 numerically illustrates what happens when gene C suffers from a mutation that results in the continual expression of protein C, while protein E is expressed normally (as an initial disturbance only). It can be seen that the next state of iteration 1 has protein C being expressed. This is not the calculated result of the vector-matrix multiplication (as shown by the same state in Fig. 6 where protein C is not expressed), but rather protein C is forced to take the value of 1 to signify the enforced policy of its continual expression. Accordingly, all states shown in Fig. 7 have protein C expressed.
- Fig. 7 may represent behavior of a cancerous cell.
- the policy of holding factor C to a value of 1 may represent the genetic signature of this particular cancer.
- the stabilized vector of proteins B, C, D, and E being expressed at every state may be referred to as a diseased cell state vector.
- the FCM 10 can also use compound factors.
- a compound factor does not affect the underlying structure of the FCM 10, but rather is a kind of shorthand to facilitate input vector construction and output interpretation.
- a compound factor can include values that are to be set or locked as policy for several factors.
- a compound factor Q may include values of 1 and -1 for the proteins A and E, respectively.
- the factor Q when not locked as a policy, takes an output value of 1 at any iteration where the values of A and E are respectively 1 and -1.
- compound factors can represent larger concepts, such as a general possibility of cancer remission or programmed cell death (apoptosis), that are affected by a number of factors.
- the FCM 10 thus models a gene mutation based disease affecting a previously healthy cell. And as will be discussed further below, the above process can also be used to model the effects of treatments on the modeled cell.
- the method 30 at step 32 models a FCM for at least a portion of a healthy cell, such as one or more healthy cell signaling pathways.
- a healthy cell such as one or more healthy cell signaling pathways.
- all known pathways of a cell are modeled, and such a model may represent many hundreds of proteins amounting to thousands or more protein-to-protein relationships.
- only a select subset of pathways are modeled, and an entire cell may be modeled over several models, where any model needed can be selected.
- the cell model is stored in at least a computer (e.g., a server or a bank of servers) as, for example, a data structure representing a matrix of expressive relationships among proteins (e.g., see matrix 20 of Fig. 2).
- Step 32 can thus include one or more of loading a particular cell model, receiving input or selection of a cell model, or generating or modifying a cell model based on inputted or received empirical data.
- one or more cell models are stored at a server and loaded into active memory of the server when required.
- the cell models are regularly updated by an operator as new peer reviewed data obtained from medical publications or other sources becomes available.
- a cell state vector is obtained at step 34.
- the cell state vector can include any combination of a disturbance to a protein expression or suppression or a locked policy of protein expression, non-expression, or suppression. Recall the example of Fig. 7, where protein C was held as a policy of continual expression due to genetic mutation and protein E was applied once at the start as a normal and healthy disturbance to the model.
- the cell state vector can represent a disease, such as a specific cancer, that results from and propagates the abnormal expression of certain proteins.
- the cell state vector can represent a treatment.
- the state vector can be obtained from the memory of the same server that stores the cell model, from a different server, from an input device connected to the server, or from a remote device configured to communicate with the server.
- a disease state vector is generated based on data or other indication received at a remote device operated by a doctor or other healthcare professional who has inputted tissue biopsy results or a genetic profile of a tumor.
- the disease state vector can then be generated at a server, or generated at the remote device and then sent to the sever.
- a treatment state vector is generated based on data or other indication received at a remote device operated by a doctor or other healthcare professional who has inputted a proposed treatment.
- the treatment state vector can then be generated at a server, or generated at the remote device and then sent to the sever.
- the server multiplies the cell model relationship matrix by the state vector. Initially, the state vector obtained at step 34 is used. During subsequent iterations, the resulting new state vector is used, after thresholding and application of any enforced policies. This multiplication can be programmed in the server based on the principles discussed above (see Figs. 4 and 5).
- a vector describing the new cell state is determined.
- the results of this step are stored in memory to reference when identifying cyclic or repetitive patterns indicative of a stable-state functioning of the cell.
- non-volatile memory such as a hard drive of the server.
- the method determines whether a stable pattern exists in the cell states.
- a pattern recognition algorithm can be used to identify cyclic patterns (e.g., that of Fig. 6).
- Repetitive patterns see Fig. 7 can be tested for simply by comparing two adjacent cell states.
- step 36 is repeated by multiplying the cell state vector determined in step 38 by the cell model matrix to obtain a new cell state vector.
- the method 30 iterates through steps 36, 38, 40 over a series of cell state vectors until stabilization of the cell model is achieved.
- the method 30 proceeds to output a result at step 42.
- the output can include the actual cell state or pattern of cell states. Additionally or alternatively, the result can be indicative of the cell state or pattern of cell states.
- the output is a first output indicative of the resulting diseased state of the cell.
- the first output is limited to proteins known to be markers for certain forms of cancer. Referring to the previous numerical example and recalling that protein E related to cellular division. If protein E is expressed as in the cyclic pattern of Fig. 6, then the first output can comprise indicative text such as "Marker Protein E is Normal". On the other hand, if protein E is found to be expressed continually (see Fig. 7), then the first output can comprise indicative text such as "Marker Protein E is Abnormal".
- the indications can be color-coded, with red indicating a cancer marker, yellow indicating a possible cancer marker or other disease marker, and green indicating a healthy marker. Any form of indication readily understood by healthcare professionals can be used.
- the method 30 can be applied initially using a disease state vector.
- the first output at step 42 is thus still a diseased cell state vector.
- the diseased cell state vector can then be modified to obtain a treatment state vector, which can be used in a second application of the method 30, at step 34, to obtain a second output, namely, a treated cell state vector indicative of an efficacy of the proposed treatment. That is, if the treated cell state vector is a healthy cell state, then the proposed treatment may be effective.
- the treatment state vector can be obtained from the diseased cell state vector by applying a policy representative of, for example, a drug, radiation therapy, immunotherapy, or hormonal therapy. For instance, if a drug is known to inhibit expression of protein A, then the treatment state vector based on the diseased cell state vector obtained in Fig. 7 (i.e., 0 1 1 1 1 ) is -1 1 1 1 1 , where the inhibition of protein A (i.e., -1 ) is held for every iteration. Modification of a diseased cell state vector to obtain a treatment state vector can include changing any of the protein values and enforcing a policy on any of the protein values.
- An indication of a proposed treatment can thus be one or more protein values or policies to be applied to the diseased cell state vector. Then, the result of applying the treatment state vector to the cell model using the method 30 can be obtained in the same way as described above and provided as a second output at step 42.
- Treatments can be combined by modifying the diseased cell state vector as above to reflect multiple treatments.
- An example of a combined treatment state vector based on the diseased cell state vector obtained in Fig. 7 i.e., 0 1 1 1 1
- a combined treatment state vector based on the diseased cell state vector obtained in Fig. 7 i.e., 0 1 1 1 1
- -1 1 -1 where the inhibition of proteins A and C (i.e., -1 ) are affected by two different treatments and are accordingly locked for every iteration.
- Treatments can be started, stopped, or combined during the iteration process. For example, it may be observed that an initial treatment does not produce the desired result, and thus an additional treatment can be applied by modifying the current cell state vector by changing a value or by applying a new policy. Treatments can be stopped at any time during the simulation in the same manner. With reference to the same example, the treatment of inhibiting only protein A may be discontinued and the treatment of inhibiting protein C may be started by unlocking the value of -1 previously held as a policy for protein A and locking protein C to a value of -1 for subsequent iterations.
- the second output is limited to proteins known to be markers for certain forms of cancer, as with the first output.
- the treated cell state vector is compared to a known healthy cell state, and the second output simply indicates success or failure.
- Fig. 9 shows a system 50 that implements the above-described method 30.
- a data server 52 stores one or more cell models 54 as well as a program 56 to generate state vectors based on received tissue biopsy data or tumor profiles or proposed treatments, apply a state vector to a cell model, determine a resulting state or cycle of states, and generate output of such.
- the cell model 54 can be of the kind described elsewhere herein (e.g., matrix 20) and can be stored in any appropriate data structure, such as a database, an array or set of arrays, a data file, or similar.
- the program 56 can embody any of the methods described herein.
- the program 56 can be written in any suitable language, such as a member of the C family of languages, Visual Basic ( ), or the like.
- the program 56 can include one or more of a standalone executable program, a subroutine, a function, a module, a class, an object, or another programmatic entity.
- the data server 52 is a computer that includes hardware for executing the program 56, such as a central-processing unit (CPU), memory (e.g., RAM/ROM), and non-volatile storage (e.g., hard drive).
- the data server 52 can be a computer of the kind that is readily commercially available.
- Cell state vectors can be stored in the data server 52 and can be indexed by a unique ID, such as a patient ID.
- An indication of a proposed treatment can reference the patient ID so that the appropriate diseased cell state vector can be retrieved and then modified to obtain the proposed treatment vector.
- a frontend server 58 is coupled to the data server 52 via a network 60, such as a local-area network (LAN), a wide-area network (WAN), or the Internet. From a hardware perspective, the frontend server 58 can be similar to or the same as the data server 52.
- a network 60 such as a local-area network (LAN), a wide-area network (WAN), or the Internet. From a hardware perspective, the frontend server 58 can be similar to or the same as the data server 52.
- the frontend server stores input schema 62 and output schema 64.
- the input schema 62 is configured to receive data or indication of a state vector, such as a disease state vector or a treatment state vector, from a remote device and provide such to the data server 52.
- the output schema 64 is configured to format output provided by the data server 52 for presentation on the remote device.
- the input and output schemas 62, 64 can each be expressed in extensible markup language (XML), hypertext markup language (HTML), another structured definition language, or in any other suitable way.
- the input and output schemas 62, 64 comprise Web pages expressed in HTML and cascading style sheets (CSS), and can include client-executable code such as JavaScript ( ) or Ajax code.
- the input and output schemas 62, 64 are expressed in XML that is interpretable by a client-side application.
- the data server 52 and frontend server 58 are processes running on the same physical server.
- the data server 52 and frontend server 58 are part of the same program running on one or more physical servers or on a local computer.
- Remote devices can include any of a notebook computer 66, a smart phone 68, a desktop computer 70, a tablet computer 72, and other similar devices. Any of the remote devices 66, 68, 70, 72 and other similar devices can be considered a computer.
- remote devices 66, 68, 70, 72 communicate with the frontend server 58 via a network 80, such as a LAN, WAN, or the Internet.
- the smart phone 68 is also shown as communicating through a wireless carrier network 82.
- the remote devices 66, 68, and 70 include Web browsers to interact with Web pages embodying the input and output schemas 62, 64.
- the tablet computer 72 includes a purpose-built client application configured to operate on XML or other code embodying the input and output schemas 62, 64.
- the makeup of the network 80 can be chosen to reach physicians or other individuals around the world. Accordingly, the network 80 can include the Internet, which may deliver information via the World Wide Web. The network 80 can additionally or alternatively include a satellite network, which may be useful for serving remote locations.
- Cell state vectors such as a disease state vector, a diseased cell state vector, a treatment state vector, and a treated cell state vector can be referenced in a variety of ways by the devices 66-72 and the servers 52, 58.
- an indication of a vector rather than the vector itself can be communicated, stored, outputted, or received as input.
- Such indications can include differences from other vectors, indications of proteins expressed or not expressed as compared to another vector, aliases of vectors (e.g., names of common treatments), and so on.
- the entire vector itself can be referenced.
- a purpose-built client application configured to operate on XML-based input and output schemas 62, 64 can be written in any programming language, such as the languages described above, using known techniques.
- Fig. 10 shows an example of an input interface 90.
- the input interface 90 can be provided on the remote devices 66, 68, 70, 72 according to the input schema 62.
- the input interface 90 can be defined by the input schema 62 and interpreted and rendered by the remote devices 66, 68, 70, 72.
- the input interface 90 includes an input element 92, which in this example is a dropdown list control, for selecting a portion of a patient's biopsy results.
- an input element 92 which in this example is a dropdown list control, for selecting a portion of a patient's biopsy results.
- a specific gene can be selected.
- Another input element 94 such as another dropdown list control, is provided as corresponding to the input element 92.
- the input element 94 is used to select a mutation affecting the selected gene.
- a third input element, button 96 is provided to insert another pair of input elements 92, 94 for selection of another gene mutation.
- the form 90 can grow to accommodate as many pairs of input elements 92, 94 as required.
- the input element 98 a submit button, can be pressed to submit the biopsy results to the frontend server 58, which passes the inputted information to the data server 52.
- Another input element, such as a button 100 can be provided to cancel input and clear the form or return to a previously displayed interface.
- the frontend server 58 can convert the received input into a format for consumption by the data server 52 or can simply pass the input as received to the data server 52.
- the data server 52 responds with a first output, which the frontend server 58 provides over the network 80 to the requesting remote device 66, 68, 70, 72 according to the output schema 64.
- Fig. 1 1 shows an output interface 1 10 that can be defined by the output schema 64 and rendered by the remote device 66, 68, 70, 72.
- Output elements which in this example include text strings 1 12, indicate the results of the cell model for specific marker genes.
- the text strings 1 12 can be color-coded or highlighted in other ways.
- buttons, 1 14, 1 16, 1 18, are included to allow saving and printing the results, as well as viewing details of the results and proposing a treatment. Pressing the button 118 submits a request to the servers 58, 52 to provide a more detailed state of the cell model. Pressing button 1 19 causes the input interface 120 of Fig. 12 to be displayed.
- Fig. 12 shows an example of the input interface 120.
- the input interface 120 can be provided on the remote devices 66, 68, 70, 72 according to the input schema 62.
- the input interface 120 can be defined by the input schema 62 and interpreted and rendered by the remote devices 66, 68, 70, 72.
- the input interface 120 includes an input element 122, which in this example is a dropdown list control, for selecting a portion of proposed treatment for a patient.
- Another input element, button 126 is provided to insert another input element 122, 94 for selection of another proposed treatment.
- the form 120 can grow to accommodate as many input elements 122 as required.
- the input element 98 a submit button
- submit button can be pressed to submit the proposed treatments to the frontend server 58, which passes the inputted information to the data server 52.
- Another input element, such as a button 100 can be provided to cancel input and clear the form or return to a previously displayed interface.
- the frontend server 58 can convert the received input into a format for consumption by the data server 52 or can simply pass the input as received to the data server 52.
- the data server After performance of one of the methods described herein, the data server
- the second output can indicate to the healthcare professional the effect of the treatment on the model, which may include an output of the treated cell state vector (or the genes represented by the vector values) for assessment by the professional or a simplified interpretation stating whether the proposed treatment was successful or not. If the proposed treatment was not successful (for example, did not result in a stable remission indicated by a pattern of repeated values for the treated cell state vector), the healthcare professional may be given the option to assess another proposed treatment by returning to Fig. 12. In this manner, several potential treatment options may be assessed using the model, without resorting to trial and error methods that could potentially prove fatal for the patient. [0091] An additional feature may optionally be provided with the system and method whereby a proposed treatment is suggested by the data server 52.
- the proposed treatment may be provided based on a database of clinically accepted best practices for the treatment of cancers of known type or known genetic profile.
- Fig. 12 may include certain pre-selected suggested treatment options that may either be accepted or adjusted by the healthcare professional prior to clicking the submit button 98.
- the server 52 may automatically assess several proposed treatment options, based on the genetic profile of the patient's tumour, and provide a second output corresponding to each proposed treatment option for comparative assessment by the healthcare professional.
- the second output may be used by the server 52 to iteratively modify the proposed treatment option, based on the need to counteract any persistent abnormal gene expression through treatment using a chemotherapy targeting that gene. In this manner, potential treatment options may be assessed by the server 52 so that the final output comprises both an optimal suggested treatment and an indication of the treatment effect.
- Another aspect of the data server 52 may be to provide a database of tumor gene profiles in conjunction with in vivo results, either obtained in the laboratory or from real live patient outcomes.
- the in vivo results may be obtained in the laboratory using gene profiles obtained from patient tumor biopsies to create rodent xenografts for in vivo testing.
- the treatment option being tested may be suggested by the FCM model.
- xenografts may be created in order to attempt a proposed treatment technique experimentally and the outcome of that treatment may be uploaded to the database.
- the data server 52 contains not only data obtained from the medical literature, but also de novo data obtained based on real patient tumor biopsies.
- This enhanced data set within the data server 52 may be used to further improve the outcome of the FCM model in terms of predicting a proposed treatment option for a given gene profile.
- a physician who obtains real patient results, once the patient is treated with a particular treatment option, may provide those results to the data server 52 for augmenting the database. This technique can be used to further enhance the accuracy of predictions from the FCM model.
- Another aspect of the data server 52 is the cross-referencing of in vivo results, whether from xenografts or patients, with model predictions.
- This provides further validation and comfort for physicians to propose a certain treatment technique based upon the obtained patient gene profile, since the greater the number of validation points for the suggested treatment technique, the more likely that treatment technique is to succeed.
- Loading of patient results by physicians that are geographically distributed, perhaps even on a global basis, may be facilitated by providing certain access rights to certain physicians to augment the database remotely, according to a predetermined data format.
- One benefit of the above-described techniques is that a therapeutic intervention can be personalized and optimized based on the genetic mutation profile of an individual's cancer, thereby improving the probability of disease remission while reducing the increased health risk associated with ineffective therapies.
- Another use of the techniques described herein is identifying research targets by selecting treatment vectors that correspond to hypothetical treatments, such as treatments that have yet to be developed or treatments that lack sufficient evidence to use in actual patients. The potential efficacy of treatments that are still under clinic trial can also be tested.
- a cell model matrix similar to the matrix 20 was constructed to simulate a human cell, as well as the effects of cancer inducing gene mutations and their possible treatments on the cell.
- the cell model matrix includes rows and corresponding columns that define relationships for various proteins and cell signaling pathways for the cell. Compound factors were also used as a way of combining individual factors to simplify locking policy to multiple factors and interpreting output.
- TGF-beta Signaling Pathway http://www.genome.jp/kegg- bin/show pathwav?hsa0435Q
- VEGF Signaling Pathway http://www.genome.jp/kegg- bin/show pathway?hsa04370
- Apoptosis Overview http://www.cellsignal.com/reference/pathway/Apoptosis Overview.html
- Inhibition of Apoptosis http://www.cellsignai.com/reference/pathwav/Apoptosis lnhibition.html
- Warburg Effect http://www.celisignal.com/reference/pathwav/warburg effect.html
- Cell Cycle Control G1/S Checkpoint, http://www.cellsignal.com/reference/pathway/Cell Cycle GIS.html
- Cell Cycle Control G2/ DNA Damage Checkpoint, http://www.cellsiRnal.com/reference/pathwav/Cell Cycle G2M DNA.html
- Jak/Stat Signaling IL-6 Receptor Family, http://www.cellsignai.com/reference/pathwav/Jak Stat IL 6.html
- TLRs Toll-like Receptors
- Fas Signaling Pathway http://stke.sciencemag.org/cgi/cm/stkecm;CMP 7966
- Fibroblast Growth Factor Receptor Pathway http://stke.sciencemag.org/cgi/cm/stkecm ;C P 15049
- IGF-1 Receptor Signaling through beta-Arrestin http://stke.sciencemag.org/cgi/cm/stkecm;CMP 15950
- Interleukin 1 Pathway, http://stke.sciencemag.org/cgi/cm/stkecm;CIVIP 21286
- Interleukin 13 (IL-13) Pathway http://stke,sciencemag.org/cgi/cm/stkecm;CMP 7786
- Interleukin 4 (IL-4) Pathway http://stke.sciencemag.org/cgi/cm/stkecm;CMP 7740
- Mitochondrial Pathway of Apoptosis Antiapoptotic Bcl-2 Family, http.7/stke,sciencemag.org/cgi/cm/stkecm;CMP 17525
- Mitochondrial Pathway of Apoptosis BH3-only Bcl-2 Family, http://stke.sciencemag.Org/cgi/cm/stkecm:CMP 18017
- T Cell Signal Transduction http://stke.sciencernag.0rg/cgi/cm/stkecm:CMP 7019
- TGF-beta Signaling in Development http://stke.sciencemag.org/cgi/cm/stkecm;CMP 18196
- TGF Transforming Growth Factor
- Type I Interferon (alpha/beta IFN) Pathway, http://stke.sciencemag.org/cgi/cm/stkecm;CMP 8390
- Insulin Receptor Signaling http://www.cellsignal.com/reference/pathway/lnsulin eceptor.html
- Example 1 Small cell lung cancer
- a gene mutation profile for small cell lung cancer was provided that included the following gene mutations Myc, p53, retinoblastoma gene (Rb), and PTEN.
- a corresponding disease state vector was established as described at step 34 of the method 30.
- the genes p53, Rb, and PTEN are tumor suppressor genes, and thus their mutated values were locked to -1 to signify that the protein and its cellular signaling are suppressed/inhibited.
- the gene Myc is an oncogene, and thus its mutated value was locked to 1. All other values of the disease state vector were set to 0, but not locked as an enforced policy.
- the disease state vector was used as the starting point for a series of iterative multiplications with the cell model matrix.
- a stabilized diseased cell state vector was reached after five iterations, though a total of 27 iterations were performed to confirm pattern stabilization.
- Output of step 42 included an indication of the stabilized diseased cell state vector, in which PI3K, AKT, mTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibited values of 1 , indicating that the initial disease state vector for this gene mutation profile produced a persistent cancerous state with both the PI3K/AKT/mTOR and RAS/Raf/MEK/ERK pathways activated. The activation of these pathways was interpreted by the server 58, which determined a composite value for apoptosis of -1 , indicating that apoptosis was effectively inhibited.
- a treatment state vector was established as described at step 34 by modifying the disease state vector to lock the AKT value to less than or equal to -0.5.
- the value of -0.5 was chosen to represent 50% inhibition of AKT protein expression/signaling. All other previously determined values for the disease state vector were unmodified for the treatment state vector.
- step 42 included an indication of the stabilized treated cell state vector in which PI3K, mTORRaptor, Ras, C-Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibit values of -1 , indicating that the cancer signaling profile was reversed.
- the value of AKT remained -0.5, as it was initially locked.
- Example 3 shows the nude mouse model of human SCLC that was used to evaluate the in vivo efficacy of Akt inhibitors in comparison with several known chemotherapeutic agents.
- Nude mice were obtained form the National Cancer Institute and the SHP-77 human SCLC cell line was chosen for metastatic tumor xenografts.
- the control group consisted of 10 animals, each of which were administered bilateral thigh injections of a prescribed volume of tumor cells.
- COTI-2 an AKT inhibitor
- COTI-4 COTI-219
- Taxotere® docetaxel
- Cisplatin® c/s-diamminedichloroplatinum
- Tarceva® erlotinib, an EGFR inhibitor
- IP intraperitoneal
- Each animal in a treatment group was administered bilateral thigh injections with the same prescribed volume of tumor cells as the control animals. Treatment continued for 31 days, following which the animals were euthanized and tissues were collected for subsequent analysis. The final tumor size in mm 3 is reported in Fig. 1 and the number of tumors is reported in Fig. 2 of WO2010/006438.
- the Akt inhibitor COTI-2 showed a marked decrease in tumor growth as compared with both the control and conventional agents.
- Control animals produced tumors having a mean volume of 260 +/- 33 mm 3 .
- Animals treated with COTI-2 produced tumors of mean volume 9.9 mm 3
- those treated with COTI-219 produced tumors having mean volume 53 +/- 28 mm 3 .
- This compared well with those treated with Cisplatin®, which produced tumors having means volume 132 +/- 26 mm 3 and those treated with Taxotere®, which produced tumors having mean volume 183 mm 3 .
- Animals treated with Tarceva® died before study conclusion at 31 days.
- the AKT inhibitor COTI-2 also showed a marked decrease in number of tumors as compared with both the control and conventional agents. Control animals produced an average of 0.9 tumors per injection site, whereas those treated with COTI-2 produced 0.28, those treated with COTI-219 produced 0.38, those treated with Cisplatin® produced 0.48 and those treated with Taxotere® produced 0.48. Animals treated with Tarceva® died before study conclusion at 31 days. [00221] The above data show the efficacy of Akt inhibitors in vivo against SCLC cell lines and confirm the above predictions of efficacy made using the FCM simulation.
- a gene mutation profile for glioma was provided that included the following gene mutations EGFR/ErbB1 , MDM2, p14ARF, p16INK4a, and PTEN.
- a corresponding disease state vector was established as described at step 34 of the method 30.
- the genes p14ARF, p16INK4a, and PTEN are tumor suppressor genes, and thus their mutated values were locked to -1 .
- the genes EGFR and MDM2 are oncogenes, and thus their mutated values were locked to 1. All other values of the disease state vector were set to 0, but not locked as an enforced policy.
- the disease state vector was used as the starting point for a series of iterative multiplications with the cell model matrix.
- a stabilized diseased cell state vector was reached after 4 iterations, though a total of 19 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized diseased cell state vector, in which PI3K, AKT, imTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibited values of 1 , indicating that the initial disease state vector for this gene mutation profile produced a persistent cancerous state with both the PI3K/Akt/mTOR and RAS/Raf/MEK/ERK pathways activated.
- the activation of these pathways was interpreted by the server 58, which determined a composite value for apoptosis of -1 , indicating that apoptosis was effectively inhibited.
- the value of another composite variable indicative of remission was also - 1 , indicating that there was no reasonable probability of remission without intervention.
- Initial therapy with an AKT inhibitor was selected for evaluation first because of the PTEN mutation.
- a treatment state vector was established as described at step 34 by modifying the disease state vector to lock the AKT value to - 1. All other previously determined values for the disease state vector were unmodified for the treatment state vector.
- a series of iterative multiplications with the cell model matrix were performed as described at steps 36-40 using the treatment state vector as the starting point.
- the treatment state vector configured to inhibit AKT maximally initially produced some positive changes including silencing mTOR, turning on apoptosis and inducing a possible remission, as shown in Table 2.
- the Ras/Raf/MEK/ERK pathway was not silenced and at the new stable state the cancer signaling profile was restored and remission was not possible. Apoptosis remained active but was ineffective.
- a second treatment state vector was established as described at step 34 by modifying the disease state vector to lock the PI3K value - 0.7. All other previously determined values for the disease state vector were unmodified for the treatment state vector and the locked AKT value of the first treatment vector was released (i.e., set to 0 and unlocked).
- Output of step 42 included an indication of the stabilized second treated cell state vector in which AKT, mTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibit values of -1 , indicating that the cancer signaling profile was reversed.
- the value of PI3K remained -0.7, as it was locked.
- the value for apoptosis was 1 , indicating that apoptosis was re-established.
- the value for remission was 1 , indicating that stable remission is possible by inhibiting PI3K.
- the possibility of a remission requires about or more than 70% (-0.7) inhibition of PI3K signaling inside the central nervous system (CNS), and therefore the inhibitor must penetrate the blood-brain barrier to be effective.
- a patient exhibiting this gene mutation profile could first have a PI3K inhibitor that penetrates the blood-brain barrier added to their glioma therapy.
- a second option if the PI3K inhibitor is ineffective, is to add an AKT inhibitor that penetrates the blood-brain barrier.
- Example 7 shows the in vivo effect of an AKT inhibitor on glioma.
- SE standard error
- the asterisk indicates a significant difference (p ⁇ 0.05) between the 8 mg/kg treatment group and both the saline control and 4 mg/kg treatment groups. There was no significant difference between the 4 mg/kg group and the saline control group.
- Tumour volumes were also graphed as fractional increase in volume, to correct for differences in starting volume, + SE.
- the asterisk indicates a significant difference (p ⁇ 0.05) between the 8 mg/kg treatment group and both the saline control and 4 mg/kg treatment groups. There was no significant difference between the 4 mg/kg group and the saline control group.
- the flag ( ⁇ ) indicates a significant difference between the 8 mg/kg group and the saline group, but not between the 8 mg/kg group and the 4 mg/kg group.
- These results show that an AKT inhibitor has some limited effect in the in vivo treatment of established human brain tumors. The AKT inhibitor delayed tumor growth by about 25% at a dosage of 8 mg/kg given three times per week. No significant effect was observed at a dosage of 4 mg/kg.
- a gene mutation profile for ovarian cancer was provided that included the following gene mutations BRCA1 , BRCA2, and PTEN.
- a corresponding disease state vector was established as described at step 34 of the method 30.
- the genes BRCA1 , BRCA2, and PTEN are tumor suppressor genes, and thus their mutated values were locked to -1. All other values of the disease state vector were set to 0, but not locked as an enforced policy.
- the disease state vector was used as the starting point for a series of iterative multiplications with the cell model matrix.
- a stabilized diseased cell state vector was reached after 6 iterations, though a total of 19 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized diseased cell state vector, in which PI3K, AKT, mTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, and ERK MAPK all exhibited values of 1 , indicating that the initial disease state vector for this gene mutation profile produced a persistent cancerous state with both the PI3K/Akt/mTOR and RAS/Raf/MEK/ERK pathways activated.
- the activation of these pathways was interpreted by the server 58, which determined a composite value for apoptosis of -1 , indicating that apoptosis was effectively inhibited.
- the value of another composite variable indicative of remission was also - 1 , indicating that there was no reasonable probability of remission without intervention.
- Initial therapy with an AKT inhibitor was selected for evaluation first because of the PTEN mutation.
- a treatment state vector was established as described at step 34 by modifying the disease state vector to lock the AKT value to less than or equal to -0.75. All other previously determined values for the disease state vector were unmodified for the treatment state vector.
- a series of iterative multiplications with the cell model matrix were performed as described at steps 36-40 using the treatment state vector as the starting point.
- a stabilized treated cell state vector was reached within 24 iterations, though a total of 33 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized treated cell state vector in which PI3K, mTORRaptor, Ras, C-Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibit values of -1 , indicating that the cancer signaling profile was reversed.
- the value of AKT remained -0.75, as it was initially locked.
- the value for apoptosis was 1 , indicating that apoptosis was re-established.
- the value for remission was 1 , indicating that stable remission is possible when an AKT inhibitor is administered to a patient exhibiting this gene mutation profile.
- the value for remission stabilized to 1 after two iterations, indicating that the possibility of remission occurs relatively early.
- administering an AKT inhibitor or a combination of an AKT inhibitor and TaxolTM (paclitaxel) to a patient exhibiting this gene mutation profile has a high probability of success.
- a gene mutation profile for pancreatic cancer was provided that included the following gene mutations BRCA2, Her2/neu, p16INK4a, Smad4, p53, and KRAS.
- a corresponding disease state vector was established as described at step 34 of the method 30.
- the genes BRCA2, p16INK4a, Smad4, and P53 are tumor suppressor genes, and thus their mutated values were locked to -1.
- the genes Her2/neu and KRAS are oncogenes, and thus their mutated values were locked to 1. All other values of the disease state vector were set to 0, but not locked as an enforced policy.
- the disease state vector was used as the starting point for a series of iterative multiplications with the cell model matrix.
- a stabilized diseased cell state vector was reached after 4 iterations, though a total of 18 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized diseased cell state vector, in which PI3K, AKT, mTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibited values of 1 , indicating that the initial disease state vector for this gene mutation profile produced a persistent cancerous state with both the PI3K/Akt/mTOR and RAS/Raf/MEK/ERK pathways activated.
- the activation of these pathways was interpreted by the server 58, which determined a composite value for apoptosis of -1 , indicating that apoptosis was effectively inhibited.
- the value of another composite variable indicative of remission was also - 1 , indicating that there was no reasonable probability of remission without intervention.
- a treatment state vector was established as described at step 34 by modifying the disease state vector to lock the PI3K value to -0.6 . All other previously determined values for the disease state vector were unmodified for the treatment state vector.
- a series of iterative multiplications with the cell model matrix were performed as described at steps 36-40 using the treatment state vector as the starting point. In this example, a stabilized treated cell state vector was reached within 19 iterations, though a total of 28 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized first treated cell state vector in which AKT, mTORRaptor, Ras, C-Raf/Raf-1 , MEK1/2, and ERK/MAPK all exhibit values of -1 , indicating that the cancer signaling profile was reversed.
- the value of PI3K remained -0.6, as it was locked.
- the value for apoptosis was 1 , indicating that apoptosis was re-established.
- the value for remission was indicating that stable remission is possible by inhibiting PI3K.
- a second treatment state vector was established as described at step 34 by modifying the disease state vector to lock the MEK1/2 value to between -0.5 and -0.75 (-0.5 was selected) and to lock the PI3K value to -0.5. All other previously determined values for the disease state vector were unmodified for the treatment state vector.
- Output of step 42 included an indication of the stabilized second treated cell state vector in which AKT, mTORRaptor, Ras, C- Raf/Raf-1 , and ERK/MAPK all exhibit values of -1 , indicating that the cancer signaling profile was reversed.
- the value of PI3K and MEK1/2 remained -0.5, as they were locked.
- the value for apoptosis was 1 , indicating that apoptosis was re-established.
- the value for remission was 1 , indicating that stable remission is possible by inhibiting PI3K and MEK.
- the combination of PI3K and MEK inhibition provided a wider range of potentially effective doses.
- a gene mutation profile for colorectal cancer was provided that included the following gene mutations APC, DCC, p53, and KRAS.
- a corresponding disease state vector was established as described at step 34 of the method 30.
- the genes APC, DCC, and p53 are tumor suppressor genes, and thus their mutated values were locked to -1.
- the gene KRAS is an oncogene, and thus its mutated values was locked to 1. All other values of the disease state vector were set to 0, but not locked as an enforced policy.
- the disease state vector was used as the starting point for a series of iterative multiplications with the cell model matrix.
- a stabilized diseased cell state vector was reached after 7 iterations, though a total of 18 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized diseased cell state vector, in which PI3K, AKT, mTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, ERK/MAPK, and EGFR/ErbB1 all exhibited values of 1 , indicating that the initial disease state vector for this gene mutation profile produced a persistent cancerous state with both the PI3K/Akt/mTOR and RAS/Raf/MEK/ERK pathways activated and EGFR signaling on.
- the activation of these pathways was interpreted by the server 58, which determined a composite value for apoptosis of -1 , indicating that apoptosis was effectively inhibited.
- the value of another composite variable indicative of remission was also -1 , indicating that there was no reasonable probability of remission without intervention.
- Output of step 42 included a first treated cell state vector indicating that inhibiting EGF has produced a new stable state in which the cancer signaling profile has not been reversed, apoptosis is still off (-1), and a remission is not possible. Signaling via EGFR/ErbB1 was also found to be only transiently and incompletely inhibited.
- Due to the failure of the first treatment state vector therapy with a PI3K inhibitor was evaluated next.
- a second treatment state vector was established as described at step 34 by modifying the disease state vector to lock the PI3K value - 0.75. All other previously determined values for the disease state vector were unmodified for the treatment state vector and the locked EGF value of the initial treatment vector was released (i.e., set to 0 and unlocked).
- Output of step 42 included an indication of the stabilized second treated cell state vector in which AKT, mTORRaptor, Ras, C-
- Raf/Raf-1 , MEK1/2, and ERK/MAPK, and EGFR/ErbB1 all exhibit values of -1 , indicating that the cancer signaling profile was reversed. Signaling via EGFR/ErbB1 was found to be inhibited. The value of PI3K remained -0.75, as it was locked. The value for apoptosis was 1 , indicating that apoptosis was re-established. The value for remission was 1 , indicating that stable remission is possible when a PI3K inhibitor is administered to a patient exhibiting this gene mutation profile.
- Example 28 shows the in vivo effect of an AKT inhibitor (COTI-2) and an EGFR inhibitor (Erbitux®, or cetuximab) on the treatment of the KRAS mutant colorectal cancer cell line HCT-1 16.
- COTI-2 AKT inhibitor
- Erbitux® an EGFR inhibitor
- HCT-1 16 tumor cells approximately 5 x 10 s cells/mouse.
- tumors were measured using vernier calipers and tumor weight was calculated using the animal study management software, Study Director V.1 .6.80 (Study Log) (Cancer Res 59: 1049-1053). Seventy mice with average group tumor sizes of 136 mg, with mice ranging from 73 to 194 mg, were pair-matched into seven groups of ten by random equilibration using Study Director (Day 1). Body weights were recorded when the mice were pair-matched and then taken twice weekly thereafter in conjunction with tumor measurements throughout the study. Gross observations were made at least once a day. On Day 1 all groups were dosed intravenously and/or intraperitoneally with respect to their assigned group (See Table 40).
- the COTI-2 single agent groups were treated 3 times per week on every other day for the first week of the study then dosed 5 times per week for the remainder of the study.
- COTI-2 and Erbitux® combination treatment groups COTI-2 was administered 3 times per week on every other day.
- Erbitux® (1 mg/dose) was administered intraperitoneally every three days for five treatments (q3dx5) at 0.5 ml/mouse dose volume.
- the mice were sacrificed by regulated C0 2 when the individual mouse tumor volume reached approximately 2000 mg.
- Table 40 of WO2010/006438 shows that there was no significant difference in the mean survival of the Erbitux® only treated group when compared to the vehicle control group. This confirms the above predictions of the FCM simulation, namely that an EGFR inhibitor is ineffective in the treatment of KRAS mutant colorectal cancer.
- a gene mutation profile for colorectal cancer was provided that included the following gene mutations APC, DCC, and p53.
- a corresponding disease state vector was established as described at step 34 of the method 30.
- the genes APC, DCC, and p53 are tumor suppressor genes, and thus their mutated values were locked to -1 . All other values of the disease state vector were set to 0, but not locked as an enforced policy.
- the disease state vector was used as the starting point for a series of iterative multiplications with the cell model matrix.
- a stabilized diseased cell state vector was reached after 8 iterations, though a total of 27 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized diseased cell state vector, in which PI3K, AKT, mTORRaptor, Ras, C- Raf/Raf-1 , MEK1/2, ERK/MAPK, and EGFR/ErbB1 all exhibited values of 1 , indicating that the initial disease state vector for this gene mutation profile produced a persistent cancerous state with both the PI3K/Akt/mTOR and RAS/Raf/MEK ERK pathways activated and EGFR signaling on.
- the activation of these pathways was interpreted by the server 58, which determined a composite value for apoptosis of -1 , indicating that apoptosis was effectively inhibited.
- the value of another composite variable indicative of remission was also -1 , indicating that there was no reasonable probability of remission without intervention.
- Initial therapy with an EGFR inhibitor (such as cetuximab) was selected for evaluation first.
- a treatment state vector was established as described at step 34 by modifying the disease state vector to lock the EGF value to -1. All other previously determined values for the disease state vector were unmodified for the treatment state vector.
- a series of iterative multiplications with the cell model matrix were performed as described at steps 36-40 using the treatment state vector as the starting point.
- a stabilized treated cell state vector was reached within 26 iterations, though a total of 35 iterations were performed to confirm stabilization.
- Output of step 42 included an indication of the stabilized treated cell state vector in which PI3K, AKT, mTORRaptor, Ras, C-Raf/Raf- 1 , MEK1/2, ERK/MAPK, and EGFR/ErbB1 all exhibit values of -1 , indicating that the cancer signaling profile was reversed. Signaling via EGFR/ErbB1 was found to be inhibited. The value for apoptosis was 1 , indicating that apoptosis was re-established. The value for remission was 1 , indicating that stable remission is possible when an EGFR inhibitor is administered to a patient exhibiting this gene mutation profile. Therefore, no other treatment options were evaluated for this gene profile.
- a patient biopsy is obtained from a cancerous tumor and the biopsy is analyzed for its genetic profile. Cancerous genes are used to transfect a xenograft tumor posted by a suitable rodent species, such as a particular mouse species. Once the tumors reach appreciable size, a treatment regimen suggested by the FCM model based on historical results for the gene profile obtained from the medical literature. The efficacy of the treatment suggested by the model is determined following an appropriate treatment time. Efficacy may be evaluated by comparing a number of available parameters, such as tumor size, rodent weight gain or loss, rodent behavior, or rodent survival. These parameters are measured and used to determine efficacy of the treatment proposed by the FCM model.
- One potential efficacy parameter may be whether or not the treatment option suggested by the FCM model results in stable remission of the xenograft tumor.
- Another parameter may be dose dependence of the suggested treatment.
- the results are placed in a database and cross-correlated with the genetic profile obtained from the patient biopsy.
- the results may be cross-correlated with available historical medical literature results.
- the results may be cross-correlated along with real patient data relating to at least the likelihood of stable remission obtained using the proposed treatment.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Physiology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2859080A CA2859080A1 (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer treatments |
KR1020147018551A KR20140104993A (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer treatments |
EP12856939.9A EP2791843A4 (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer treatments |
CN201280069883.0A CN104160400A (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer treatments |
JP2014546249A JP2015509224A (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer therapy |
US14/376,912 US20150019190A1 (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer treatments |
IL233166A IL233166A0 (en) | 2012-12-14 | 2014-06-16 | Programmable cell model for determining cancer treatments |
IN1365MUN2014 IN2014MN01365A (en) | 2011-12-16 | 2014-07-04 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161576835P | 2011-12-16 | 2011-12-16 | |
US61/576,835 | 2011-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013086619A1 true WO2013086619A1 (en) | 2013-06-20 |
Family
ID=48611752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2012/001152 WO2013086619A1 (en) | 2011-12-16 | 2012-12-14 | Programmable cell model for determining cancer treatments |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150019190A1 (en) |
EP (1) | EP2791843A4 (en) |
JP (1) | JP2015509224A (en) |
KR (1) | KR20140104993A (en) |
CN (1) | CN104160400A (en) |
CA (1) | CA2859080A1 (en) |
IN (1) | IN2014MN01365A (en) |
WO (1) | WO2013086619A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014145897A2 (en) * | 2013-03-15 | 2014-09-18 | Phd Preventive Health Care And Diagnostics, Inc. | Immunotherapy system and method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6270221B2 (en) * | 2015-02-13 | 2018-01-31 | 国立研究開発法人産業技術総合研究所 | Biomarker search method, biomarker search device, and program |
WO2016187708A1 (en) | 2015-05-22 | 2016-12-01 | Csts Health Care Inc. | Thermodynamic measures on protein-protein interaction networks for cancer therapy |
EP3341875A1 (en) * | 2015-08-27 | 2018-07-04 | Koninklijke Philips N.V. | An integrated method and system for identifying functional patient-specific somatic aberations using multi-omic cancer profiles |
KR101881874B1 (en) * | 2016-04-29 | 2018-07-26 | 한국수력원자력 주식회사 | Methods for Preventing the Malignization of Normal Cells by Low Dose Radiation |
BR112019017705A2 (en) | 2017-03-30 | 2020-03-31 | Monsanto Technology Llc | SYSTEMS AND METHODS FOR USE IN THE IDENTIFICATION OF MULTIPLE GENOME EDITIONS AND PREVENTION OF THE AGGREGATE EFFECTS OF IDENTIFIED GENOME EDITIONS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010019952A2 (en) * | 2008-08-15 | 2010-02-18 | Merrimack Pharmaceuticals, Inc. | Methods, systems and products for predicting response of tumor cells to a therapeutic agent and treating a patient according to the predicted response |
WO2010092379A1 (en) * | 2009-02-11 | 2010-08-19 | The University Of Abertay Dundee | A method, system and computer program for developing an interrogatable dynamic model of a breast cancer and burkitt's lymphoma |
US20100235150A1 (en) * | 2009-03-11 | 2010-09-16 | Zvia Agur | Therapeutic implications of dickkopf affecting cancer stem cell fate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101101613A (en) * | 2007-08-06 | 2008-01-09 | 天津炜辐医疗科技有限公司 | Photodynamic therapy plot software |
WO2009155009A1 (en) * | 2008-05-27 | 2009-12-23 | Memorial Sloan Kettering Cancer Center | Models for combinatorial perturbations of living biological systems |
-
2012
- 2012-12-14 CN CN201280069883.0A patent/CN104160400A/en active Pending
- 2012-12-14 CA CA2859080A patent/CA2859080A1/en not_active Abandoned
- 2012-12-14 JP JP2014546249A patent/JP2015509224A/en active Pending
- 2012-12-14 US US14/376,912 patent/US20150019190A1/en not_active Abandoned
- 2012-12-14 EP EP12856939.9A patent/EP2791843A4/en not_active Withdrawn
- 2012-12-14 WO PCT/CA2012/001152 patent/WO2013086619A1/en active Application Filing
- 2012-12-14 KR KR1020147018551A patent/KR20140104993A/en not_active Application Discontinuation
-
2014
- 2014-07-04 IN IN1365MUN2014 patent/IN2014MN01365A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010019952A2 (en) * | 2008-08-15 | 2010-02-18 | Merrimack Pharmaceuticals, Inc. | Methods, systems and products for predicting response of tumor cells to a therapeutic agent and treating a patient according to the predicted response |
WO2010092379A1 (en) * | 2009-02-11 | 2010-08-19 | The University Of Abertay Dundee | A method, system and computer program for developing an interrogatable dynamic model of a breast cancer and burkitt's lymphoma |
US20100235150A1 (en) * | 2009-03-11 | 2010-09-16 | Zvia Agur | Therapeutic implications of dickkopf affecting cancer stem cell fate |
Non-Patent Citations (1)
Title |
---|
See also references of EP2791843A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014145897A2 (en) * | 2013-03-15 | 2014-09-18 | Phd Preventive Health Care And Diagnostics, Inc. | Immunotherapy system and method thereof |
WO2014145897A3 (en) * | 2013-03-15 | 2014-11-20 | Phd Preventive Health Care And Diagnostics, Inc. | Immunotherapy system and method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2791843A1 (en) | 2014-10-22 |
JP2015509224A (en) | 2015-03-26 |
CA2859080A1 (en) | 2013-06-20 |
CN104160400A (en) | 2014-11-19 |
EP2791843A4 (en) | 2015-07-01 |
KR20140104993A (en) | 2014-08-29 |
IN2014MN01365A (en) | 2015-06-12 |
US20150019190A1 (en) | 2015-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reimand et al. | Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap | |
Chandrashekar et al. | UALCAN: An update to the integrated cancer data analysis platform | |
Suphavilai et al. | Predicting cancer drug response using a recommender system | |
Weiner et al. | Polygenic architecture of rare coding variation across 394,783 exomes | |
Vitali et al. | A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer | |
US20150019190A1 (en) | Programmable cell model for determining cancer treatments | |
Türei et al. | Autophagy Regulatory Network—A systems-level bioinformatics resource for studying the mechanism and regulation of autophagy | |
Bøvelstad et al. | Predicting survival from microarray data—a comparative study | |
Pal | Predictive modeling of drug sensitivity | |
Singh et al. | Mutational signature SBS8 predominantly arises due to late replication errors in cancer | |
Béal et al. | Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers | |
US20180039732A1 (en) | Dasatinib response prediction models and methods therefor | |
Howard et al. | Quantification of long-term doxorubicin response dynamics in breast cancer cell lines to direct treatment schedules | |
Ahmadi Moughari et al. | Adrml: anticancer drug response prediction using manifold learning | |
Matlak et al. | Epistasis in genomic and survival data of cancer patients | |
Kho et al. | Genetic analyses of gynecological disease identify genetic relationships between uterine fibroids and endometrial cancer, and a novel endometrial cancer genetic risk region at the WNT4 1p36. 12 locus | |
Tong et al. | Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: reanalysis of CPTAC ovarian cancer | |
Zhang et al. | Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data | |
West et al. | Uncovering and characterizing splice variants associated with survival in lung cancer patients | |
Hjaltelin et al. | Identification of hyper-rewired genomic stress non-oncogene addiction genes across 15 cancer types | |
Zhang et al. | DiNeR: a Di fferential graphical model for analysis of co-regulation Ne twork R ewiring | |
Pierstorff et al. | Identifying cis-regulatory modules by combining comparative and compositional analysis of DNA | |
Sakthikumar et al. | Genomic analysis across 53 canine cancer types reveals novel mutations and high clinical actionability potential | |
Rau et al. | Individualized multi-omic pathway deviation scores using multiple factor analysis | |
Nikolova et al. | Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12856939 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2859080 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014546249 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 233166 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012856939 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147018551 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14376912 Country of ref document: US |