WO2013086422A1 - Deployable truss with orthogonally-hinged primary chords - Google Patents
Deployable truss with orthogonally-hinged primary chords Download PDFInfo
- Publication number
- WO2013086422A1 WO2013086422A1 PCT/US2012/068578 US2012068578W WO2013086422A1 WO 2013086422 A1 WO2013086422 A1 WO 2013086422A1 US 2012068578 W US2012068578 W US 2012068578W WO 2013086422 A1 WO2013086422 A1 WO 2013086422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- truss
- primary
- joints
- orthogonal
- chords
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/005—Girders or columns that are rollable, collapsible or otherwise adjustable in length or height
Definitions
- This invention relates generally to deployable truss structures, and more particularly to a three-dimensional truss with orthogonally-hinged chords which expands and retracts in a continuous, stable, and sequential fashion, and has low manufacturing cost and favorable design/packaging characteristics.
- the present invention comprises a deployable truss with modified primary orthogonal joints.
- the construction of these joints causes the center-hinged primary chords on opposite sides of a truss bay to fold inward in a plane orthogonal to the folding planes of the side diagonals while the two secondary chords fold in planes orthogonal to the plane of the in-folding primary chords.
- This provides for stiffness and stability during deploy and retract.
- the unique joint configuration permits the truss to optionally deploy one bay at a time in a stable manner while having lateral bending stiffness.
- the truss of the present invention thus can extend and retract in a sequential manner. It can deploy integral flat panels nested between the secondary folding chords, or use cross bracing in lieu of panels.
- the folded members and joints form a basic rectangular truss beam structure.
- the truss diagonals it can also form a triangular beam using the same in-folding center-hinged chords and joints.
- the triangular truss kinematic behavior is the same as for the rectangular truss.
- the trusses are symmetrical about one axis. They can retract in a length typically 4-8% of the extended length until ready for deployment, either with integral panels or simply as a rigid beam.
- various types of square or rectangular panels can therefore be folded together compactly for transportation and handling.
- Figure 1 shows views of a rectangular truss with five bays fully extended and retracted.
- Figure 2 shows a view of a rectangular truss in a partially-deployed state.
- Figure 3 shows a single rectangular truss bay in a retracted and deployed states.
- Figure 4 shows various embodiments of the primary orthogonal joint.
- Figure 5 shows a triangular truss in accordance with an alternative embodiment of the present invention.
- Figure 6 shows a tapered deployable triangular truss.
- Figure 7 shows a powered triangular truss in a partially-deployed state.
- the present invention comprises a rectangular deployable/folding truss structure.
- the construction of modified primary 1 and secondary orthogonal joints 30 causes the two adjacent primary chordal members 2 to fold inward in a plane orthogonal to the folding planes of the side diagonals 3 while the two secondary chordal members 4 fold in planes orthogonal to the plane of the in- folding chords 2, thus synchronizing their motion.
- the folded diagonals and the folded chords of each bay lie in the same transverse space, and can provide space for two integral panels 11 mounted within the secondary chords 4.
- This compact nesting of truss members allows the retracted truss to stow in typically 4-8% of its deployed length.
- the truss comprises two primary chords, said primary chords comprising a plurality of primary chordal members 2 connected end-to-end by alternating primary orthogonal joints 1 and primary chord center-hinge joints 32.
- the primary orthogonal joints may have different geometry than the primary chord center-hinge joints.
- the truss also comprises at least one secondary chord (two for a rectangular or square truss, in cross-section), said secondary chord comprising a plurality of secondary chordal members 4 connected end-to-end by alternating secondary orthogonal joints 30 and secondary chord center hinge-joints 34.
- the secondary chord hinge joints may have different geometry than the secondary chord center-hinge joints.
- the primary orthogonal joints of the prior art comprised two angled fittings to which the truss diagonals and folding chords were attached.
- the new joint disclosed herein uses a single two or three-axis fitting (7, 7a, or 8) to connect the hinge joint 6 connecting the diagonals 3 to an offset hinge joint 9 in the folding chords 2.
- This joint fitting constrains the diagonals 3 to fold in a plane orthogonal to the plane of the primary chords.
- a single two pin fitting 8 can be used, as shown in Figure 4A, located either outside or inside of the hinge joint which connects the diagonals.
- a clevis fitting 7 which fits around the hinge joint connecting the diagonal ends can be used.
- FIG. 4C An alternate 3-axis fitting embodiment 7a is shown in Figure 4C, which has the same kinematic behavior but provides for the adjacent primary chords to be connected directly to the primary joint 1 without use of an offset hinge joint as in the alternative embodiment using fittings 7.
- the primary chordal members are connected directly ot the joint on opposite sides of the clevis axis.
- the joints connecting the diagonals at their respective ends in a z-fold manner have an offset hinge pin to allow the diagonal members to fold parallel to each other as the truss retracts.
- the primary chords (and the secondary chords) have the same hinging, but the primary chords connect to the diagonals with the fitting 7, 7a, or 8 as described above, while the secondary chords connect with a single axis hinge pin 10 in the secondary orthogonal joint 30. This allows the secondary chords to fold orthogonally to the primary chords creating the stability and stiffness of the extending or retracting truss.
- the primary chords which are center-hinged in the preferred embodiment, can optionally be replaced by flexible tension members.
- the primary orthogonal joints 1 may be connected by transverse members 5 which connect the truss sides and determine the truss width (not shown in Figure 4). Similar transverse members, braces, or chords (flexible or rigid) 35 may extend between the secondary orthogonal joints 30. Cross-bracing 12 may also be used between the secondary chords, as seen in Figure 3B.
- This unique joint configuration permits the truss to deploy one bay at a time (as shown in Figure 2), and with lateral bending stability. The truss bays thus can extend and retract in a sequential manner without need for a complex deployment system or mechanism.
- the truss can deploy, in z-fold manner, either flat panels 11 nested between the secondary folding chords 4, or transverse members 35, or cross bracing 12 without panels.
- Panels may comprise any type of panels known in the art, including, but not limited to, solar panels, heat radiation panels, floor panels, wall panels, LCD panels, display panels, or radar panels.
- an important method for powered truss deployment and retraction is the use of a support frame 16 with side rails into which rollers 18 fit to support and guide the deployment motion, as seen in Figure 7.
- the rollers 18 can be mounted on the primary joints 1, in line with the transverse members 5.
- the rail structure or support frame may be folding.
- the rails are preferably long enough to accommodate the first two truss bays and can fold/stow and around the retracted truss bays.
- the support frame can be vertical, horizontal, or angled, and can be used with the rectangular, square, triangular, or other forms of the truss.
- a transverse bar 17 moves longitudinally up and down the rail structures, and can grasp or engage each of the primary orthogonal joints. The bar successively engages the joints and moves them until truss chords lock (or, conversely, unlock), thus forming or collapsing each truss bay in succession.
- the transverse bar and truss structure may be powered by a motor or other suitable means known in the art.
- the folded members and joints can form a rectangular or a square truss beam.
- the truss diagonals can be configured as a triangular beam using the same in-folding center-hinged chords and joints, but with a single chord of center-hinged secondary chordal members 4 at the apex of the resulting hinged triangular frames.
- pairs of opposite truss diagonals 14 are connected to the secondary (apex) chordal members 4, as seen in Figure 5.
- the kinematic behavior is the same as for the rectangular embodiment.
- the transverse members 5 may be successively lengthened or shorted along the truss, so that the truss has a tapered configuration.
- the diagonals 24 and angled end fittings are configured such that retracted assemblies deploy to form a tapered truss structure.
- the truss can be tapered in one or two directions (e.g., longitudinal and lateral tapering).
- the orthogonal joints may have the same geometry as in the non-tapered configuration, and the primary and secondary chords may comprise the same general geometry. In one embodiment, to achieve proper folding of the primary and secondary chords, the center hinge joints are off-center.
- Truss actuation can be manual or powered using a variety of methods: electrical, fluid, stored energy or other means.
- the primary and secondary truss joints, as well as the chordal center hinges can also be adapted to use flexible material hinges replacing certain or all of the pin/hole revolute joint hinges, with potential for spring-powered deployment using energy stored in the hinge material.
- the flexible material may comprise shape-memory alloy (SMA) or spring material.
- the center hinge joints of the primary chords and secondary chords may be fitted with suitable locking devices to lock the truss in its fully deployed state. They can be of various types and can be manual or remotely operated.
- the secondary chords, to which flat panels 11 can be attached comprise a support strut 15 which deploys in synchronization with the folding of the truss members.
- the chordal center joints can be fitted with suitable rotary actuators.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
A deployable truss with modified primary orthogonal joints. The construction of these joints causes the center-hinged primary chords on opposite sides of a truss bay to fold inward in a plane orthogonal to the folding planes of the side diagonals while the two secondary chords fold in planes orthogonal to the plane of the in-folding primary chords. This provides for stiffness and stability during deploy and retract. The unique joint configuration permits the truss to deploy one bay at a time in a stable manner while having lateral bending stiffness, and the truss thus can extend and retract in a sequential manner. It can deploy integral flat panels nested between the secondary folding chords, or use cross bracing in lieu of panels. The truss can be triangular, square or rectangular in cross-section. A powered support frame may be used in conjunction with the truss.
Description
DEPLOYABLE TRUSS WITH ORTHOGONALLY-HINGED
PRIMARY CHORDS
This application claims benefit of and priority to U.S. Provisional Application No. 61/567,697, filed December 7, 2011, by Donald V. Merrifield, and is entitled to that filing date for priority. The specification, figures and complete disclosure of U.S.
Provisional Application No. 61/567,697 are incorporated herein by specific reference for all purposes.
FIELD OF INVENTION
This invention relates generally to deployable truss structures, and more particularly to a three-dimensional truss with orthogonally-hinged chords which expands and retracts in a continuous, stable, and sequential fashion, and has low manufacturing cost and favorable design/packaging characteristics.
BACKGROUND OF THE INVENTION
There have been many attempts to design, for various operating environments, a practical compact folding or flexing truss structure which can transition easily between the retracted and the useful extended state while exhibiting favorable characteristics of size/volume ratio, kinematic stability, simplicity and reliability, structural efficiency and weight, complexity, auxiliary mechanism requirements, manufacturing costs, speed of operation, and operating cost. Relatively few designs have appeared in the marketplace. Notable high-profile, and high-flying, examples are deployable trusses used in space missions such as for solar array deployment on NASA's International Space Station. Another example is the deployable truss disclosed in U.S. Pat. No. 7,028,442, which claims priority to U.S. Provisional Patent Application No. 60/302,997 (the complete
disclosures, specifications and drawings of U.S. Pat. No. 7,028,442 and Provisional Application No. 60/302,997 are incorporated herein in their entireties by specific reference for all purposes).
Yet a further example is the rectangular deployable/folding truss structure with panels disclosed in U.S. Pat. App. No. 12/765,532, the complete disclosure, specification and drawings of which are incorporated herein in their entireties by specific reference for all purposes. The present application is an improvement over the latter structure, providing new operational and functional capabilities, design flexibilities, and manufacturing alternatives.
SUMMARY OF THE INVENTION
The present invention comprises a deployable truss with modified primary orthogonal joints. The construction of these joints causes the center-hinged primary chords on opposite sides of a truss bay to fold inward in a plane orthogonal to the folding planes of the side diagonals while the two secondary chords fold in planes orthogonal to the plane of the in-folding primary chords. This provides for stiffness and stability during deploy and retract. The unique joint configuration permits the truss to optionally deploy one bay at a time in a stable manner while having lateral bending stiffness. The truss of the present invention thus can extend and retract in a sequential manner. It can deploy integral flat panels nested between the secondary folding chords, or use cross bracing in lieu of panels. With or without integral panels the folded members and joints form a basic rectangular truss beam structure.
With an alternate embodiment of the truss diagonals, it can also form a triangular beam using the same in-folding center-hinged chords and joints. The triangular truss kinematic behavior is the same as for the rectangular truss. In all cases the trusses are symmetrical about one axis. They can retract in a length typically 4-8% of the extended length until ready for deployment, either with integral panels or simply as a rigid beam. As a panel truss, various types of square or rectangular panels can therefore be folded together compactly for transportation and handling.
There are numerous applications benefitting from sequential bay-wise deploy/retract as compared with synchronous motion exhibited by the prior art. This is accomplished while being kinematically stable about two axes, which is particularly important for zero-gravity, low-gravity and undersea applications, and does not require a complex and costly mechanism to form each bay as in prior deployable truss inventions, most prominently exemplified by solar array trusses used on the International Space Station, previous U.S. Space Shuttle missions, and numerous space satellites. For use as a compact deployer of solar photovoltaic panels, there are important applications in which critical deploy/retract operations of long multi-bay trusses are enabled. Space applications exist for secondary structures which are kinematically extendible from a very compact packaging, for space habitats and other space or surface structures in orbit or on the Moon, Mars and asteroids. The basic configuration of this new invention opens the potential for replacement of its pin/hole revolute joints with flexible materials such as shape-memory or superelastic, for critical applications requiring zero joint free-play and dust-tolerant operation. Among the many envisioned commercial, industrial, and military applications, there are applications to mobile and fixed solar panels, towers, bridging,
access platforms, conveyors, rescue platforms, fire ladders, large folding panel displays, and several others. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows views of a rectangular truss with five bays fully extended and retracted.
Figure 2 shows a view of a rectangular truss in a partially-deployed state.
Figure 3 shows a single rectangular truss bay in a retracted and deployed states.
Figure 4 shows various embodiments of the primary orthogonal joint.
Figure 5 shows a triangular truss in accordance with an alternative embodiment of the present invention.
Figure 6 shows a tapered deployable triangular truss.
Figure 7 shows a powered triangular truss in a partially-deployed state.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
In one exemplary embodiment, as shown in Figure 1, the present invention comprises a rectangular deployable/folding truss structure. The construction of modified primary 1 and secondary orthogonal joints 30 causes the two adjacent primary chordal members 2 to fold inward in a plane orthogonal to the folding planes of the side diagonals 3 while the two secondary chordal members 4 fold in planes orthogonal to the plane of the in- folding chords 2, thus synchronizing their motion. In Figure 1, it can be seen that when the truss is fully retracted, the folded diagonals and the folded chords of each bay lie in the same transverse space, and can provide space for two integral panels 11
mounted within the secondary chords 4. This compact nesting of truss members allows the retracted truss to stow in typically 4-8% of its deployed length.
As seen in Figures 1, 2 and 5, in one embodiment the truss comprises two primary chords, said primary chords comprising a plurality of primary chordal members 2 connected end-to-end by alternating primary orthogonal joints 1 and primary chord center-hinge joints 32. The primary orthogonal joints may have different geometry than the primary chord center-hinge joints. The truss also comprises at least one secondary chord (two for a rectangular or square truss, in cross-section), said secondary chord comprising a plurality of secondary chordal members 4 connected end-to-end by alternating secondary orthogonal joints 30 and secondary chord center hinge-joints 34. The secondary chord hinge joints may have different geometry than the secondary chord center-hinge joints.
The primary orthogonal joints of the prior art comprised two angled fittings to which the truss diagonals and folding chords were attached. The new joint disclosed herein, as shown in Figures 3 and 4, uses a single two or three-axis fitting (7, 7a, or 8) to connect the hinge joint 6 connecting the diagonals 3 to an offset hinge joint 9 in the folding chords 2. This joint fitting constrains the diagonals 3 to fold in a plane orthogonal to the plane of the primary chords. As long as the pivot axes are oriented as shown, a single two pin fitting 8 can be used, as shown in Figure 4A, located either outside or inside of the hinge joint which connects the diagonals. Alternatively, a clevis fitting 7 which fits around the hinge joint connecting the diagonal ends can be used. An alternate 3-axis fitting embodiment 7a is shown in Figure 4C, which has the same kinematic behavior but provides for the adjacent primary chords to be connected directly to the
primary joint 1 without use of an offset hinge joint as in the alternative embodiment using fittings 7. In one embodiment, the primary chordal members are connected directly ot the joint on opposite sides of the clevis axis.
The joints connecting the diagonals at their respective ends in a z-fold manner, have an offset hinge pin to allow the diagonal members to fold parallel to each other as the truss retracts. The primary chords (and the secondary chords) have the same hinging, but the primary chords connect to the diagonals with the fitting 7, 7a, or 8 as described above, while the secondary chords connect with a single axis hinge pin 10 in the secondary orthogonal joint 30. This allows the secondary chords to fold orthogonally to the primary chords creating the stability and stiffness of the extending or retracting truss. The primary chords, which are center-hinged in the preferred embodiment, can optionally be replaced by flexible tension members.
Referring to Figures 1 and 3, it should be noted that the primary orthogonal joints 1 may be connected by transverse members 5 which connect the truss sides and determine the truss width (not shown in Figure 4). Similar transverse members, braces, or chords (flexible or rigid) 35 may extend between the secondary orthogonal joints 30. Cross-bracing 12 may also be used between the secondary chords, as seen in Figure 3B. This unique joint configuration permits the truss to deploy one bay at a time (as shown in Figure 2), and with lateral bending stability. The truss bays thus can extend and retract in a sequential manner without need for a complex deployment system or mechanism. The truss can deploy, in z-fold manner, either flat panels 11 nested between the secondary folding chords 4, or transverse members 35, or cross bracing 12 without panels. Panels may comprise any type of panels known in the art, including, but not limited to, solar
panels, heat radiation panels, floor panels, wall panels, LCD panels, display panels, or radar panels.
Although the truss can be readily deployed on a flat surface or in low gravity, in one exemplary embodiment an important method for powered truss deployment and retraction is the use of a support frame 16 with side rails into which rollers 18 fit to support and guide the deployment motion, as seen in Figure 7. The rollers 18 can be mounted on the primary joints 1, in line with the transverse members 5. The rail structure or support frame may be folding. The rails are preferably long enough to accommodate the first two truss bays and can fold/stow and around the retracted truss bays. The support frame can be vertical, horizontal, or angled, and can be used with the rectangular, square, triangular, or other forms of the truss.
In one embodiment of the rail-supported powered truss, a transverse bar 17 moves longitudinally up and down the rail structures, and can grasp or engage each of the primary orthogonal joints. The bar successively engages the joints and moves them until truss chords lock (or, conversely, unlock), thus forming or collapsing each truss bay in succession. The transverse bar and truss structure may be powered by a motor or other suitable means known in the art.
With or without integral panels, the folded members and joints can form a rectangular or a square truss beam. With an alternate embodiment of the truss diagonals, it can be configured as a triangular beam using the same in-folding center-hinged chords and joints, but with a single chord of center-hinged secondary chordal members 4 at the apex of the resulting hinged triangular frames. In this triangular configuration pairs of
opposite truss diagonals 14 are connected to the secondary (apex) chordal members 4, as seen in Figure 5. The kinematic behavior is the same as for the rectangular embodiment.
As shown in Figure 6, the transverse members 5 may be successively lengthened or shorted along the truss, so that the truss has a tapered configuration. The diagonals 24 and angled end fittings are configured such that retracted assemblies deploy to form a tapered truss structure. The truss can be tapered in one or two directions (e.g., longitudinal and lateral tapering). The orthogonal joints may have the same geometry as in the non-tapered configuration, and the primary and secondary chords may comprise the same general geometry. In one embodiment, to achieve proper folding of the primary and secondary chords, the center hinge joints are off-center.
In all cases the trusses have at least one-axis symmetry. They can be retracted as shown in Figure 1 until ready for deployment. In this manner, the truss, with or without various types of panels 11, can be folded together compactly for transportation and handling. Truss actuation can be manual or powered using a variety of methods: electrical, fluid, stored energy or other means.
The primary and secondary truss joints, as well as the chordal center hinges can also be adapted to use flexible material hinges replacing certain or all of the pin/hole revolute joint hinges, with potential for spring-powered deployment using energy stored in the hinge material. The flexible material may comprise shape-memory alloy (SMA) or spring material.
With further reference to Figure 1, the center hinge joints of the primary chords and secondary chords may be fitted with suitable locking devices to lock the truss in its fully deployed state. They can be of various types and can be manual or remotely
operated. In one embodiment, the secondary chords, to which flat panels 11 can be attached, comprise a support strut 15 which deploys in synchronization with the folding of the truss members. For optional powered truss operation, the chordal center joints can be fitted with suitable rotary actuators.
Thus, it should be understood that the embodiments and examples described herein have been chosen and described in order to best illustrate the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited for particular uses contemplated. Even though specific embodiments of this invention have been described, they are not to be taken as exhaustive. There are several variations that will be apparent to those skilled in the art.
Claims
What is claimed is:
1. A deployable truss, comprising:
two primary chords, said primary chords comprising a plurality of primary chordal members connected end-to-end by alternating primary orthogonal joints and primary chord center-hinge joints, wherein said primary orthogonal joints have different geometry than the primary chord center-hinge joints;
at least one secondary chord, said secondary chord comprising a plurality of secondary chordal members connected end-to-end by alternating secondary orthogonal joints and secondary chord center hinge-joints, wherein said secondary chord hinge joints have different geometry than the secondary chord center-hinge joints; and
a plurality of fixed-length diagonal members, each with a first end and a second end, the first end jointedly connected to an primary orthogonal joint, and the second end jointed connected to a secondary orthogonal joint, wherein the primary orthogonal joints are not vertically or laterally aligned with the secondary orthogonal joints;
wherein the primary chordal members fold inward in a plane at an angle to the folding planes of the diagonals when the truss is retracted, and the secondary chordal members fold inward in a plane orthogonal to the folding plane of the primary chordal members.
2. The truss of claims 1, 24 or 26, comprising one secondary chord, so that the truss has a triangular cross-section when expanded.
3. The truss of claims 1, 24 or 26, comprising two secondary chords, so that the truss has a rectangular or square cross-section when expanded. 4. The truss of claim 3, wherein the primary chordal members fold inward in a plane orthogonal to the folding planes of the diagonals when the truss is retracted.
5. The truss of claims 1, 24 or 26, wherein each primary orthogonal joint comprises a single two- or three-axis fitting connected to the first end of a diagonal member.
6. The truss of claim 5, wherein the primary orthogonal joints constrain the diagonal members to fold at an angle to the plane formed by the in-folding primary chordal members. 7. The truss of claim 5, wherein the fitting comprises a clevis fitting.
8. The truss of claims 1, 24 or 26, wherein each primary orthogonal joint comprises a 3- axis fitting whereby adjacent primary chordal members are connected directly to the primary orthogonal joint.
9. The truss of claims 1, 24 or 26, wherein the diagonals on a side of the truss fold parallel to each other in a z-fold manner as that portion of the truss retracts.
10. The truss of 1, 24 or 26, further comprising a plurality of transverse members extending between the primary orthogonal joints.
11. The truss of claim 3, further comprising a plurality of panels extending between the secondary chords.
12. The truss of claim 11, wherein the panels are solar panels, heat radiation panels, floor panels, wall panels, LCD panels, display panels, or radar panels, or combinations thereof. 13. The truss of claim 3, further comprising a plurality of transverse cross braces or cables extending between the secondary chords.
14. The truss of claims 1, 24 or 26, further comprising rollers or wheels mounted on the primary orthogonal joints.
15. The truss of claims 1, 24 or 26, further comprising a plurality of support struts extending between the primary orthogonal joints and the secondary chord center hinge- joints. 16. The truss of claim 14, further comprising power actuators connected to the support struts.
17. The truss of claims 1 , 24 or 26, wherein the joints are made of flexible material.
18. The truss of claim 16, wherein the joint flexible material is adapted to store energy, and provide energy to assist in deployment of the truss. 19. The truss of claim 16, wherein the joint flexible material acts as a spring.
20. The truss of claims 1 , 24 or 26, wherein the truss expands or retracts sequentially.
21. The truss of claims 1 , 24 or 26, wherein the truss is tapered in either lateral direction.
22. The truss of claim 14, further comprising a support frame with rails, wherein the rollers move longitudinally within the rails.
23. The truss of claim 22, further comprising a powered transverse cross-bar sliding longitudinally with the rails of the support frame, said transverse cross-bar successively engaging pairs of opposing primary orthogonal joints to move said joints along the rails.
24. A deployable truss, comprising:
two primary chords, said primary chords comprising a plurality of primary chordal members connected end-to-end by primary orthogonal joints, wherein said primary chordal members are flexible tension members;
at least one secondary chord, said secondary chord comprising a plurality of secondary chordal members connected end-to-end by alternating secondary orthogonal
joints and secondary chord center hinge-joints, wherein said secondary chord hinge joints have different geometry than the secondary chord center-hinge joints; and
a plurality of fixed-length diagonal members, each with a first end and a second end, the first end jointedly connected to an primary orthogonal joint, and the second end jointed connected to a secondary orthogonal joint, wherein the primary orthogonal joints are not vertically or laterally aligned with the secondary orthogonal joints.
26. A deployable truss, comprising:
two primary chords, said primary chords comprising a plurality of removable rigid primary chordal members connected end-to-end by primary orthogonal joints, wherein said primary chordal members are removed prior to folding of that portion of the truss, and installed in the truss as that portion of the truss is extended;
at least one secondary chord, said secondary chord comprising a plurality of secondary chordal members connected end-to-end by alternating secondary orthogonal joints and secondary chord center hinge-joints, wherein said secondary chord hinge joints have different geometry than the secondary chord center-hinge joints; and
a plurality of fixed-length diagonal members, each with a first end and a second end, the first end jointedly connected to an primary orthogonal joint, and the second end jointed connected to a secondary orthogonal joint, wherein the primary orthogonal joints are not vertically or laterally aligned with the secondary orthogonal joints.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161567697P | 2011-12-07 | 2011-12-07 | |
US61/567,697 | 2011-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013086422A1 true WO2013086422A1 (en) | 2013-06-13 |
Family
ID=48574944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/068578 WO2013086422A1 (en) | 2011-12-07 | 2012-12-07 | Deployable truss with orthogonally-hinged primary chords |
Country Status (2)
Country | Link |
---|---|
US (1) | US8813455B2 (en) |
WO (1) | WO2013086422A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO337317B1 (en) * | 2013-11-04 | 2016-03-07 | Ipi Access As | Foldable, elongated support structure module and a foldable, elongated modular beam structure. |
CN106592943A (en) * | 2016-12-19 | 2017-04-26 | 罗逍 | Constructing method for scaffold with triangular prism structure |
CN106763468A (en) * | 2016-11-22 | 2017-05-31 | 中国科学院沈阳自动化研究所 | A kind of space truss and space flight load structure for space operation |
CN107309461A (en) * | 2017-08-16 | 2017-11-03 | 张家港市中联建设机械有限公司 | A kind of tower body main chord termination hole processor |
WO2017202952A1 (en) * | 2016-05-27 | 2017-11-30 | Universite De Montpellier | Light solar panel for small satellites |
CN108557115A (en) * | 2018-04-25 | 2018-09-21 | 哈尔滨工业大学 | A kind of space mast based on flexible leading screw driving |
CN110656570A (en) * | 2019-08-29 | 2020-01-07 | 山东大学 | Telescopic pedestrian bridge, construction device and construction method |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8850774B2 (en) | 2009-12-15 | 2014-10-07 | Production Resource Group Llc | Truss hinge for a stage truss |
WO2013003882A1 (en) * | 2011-07-04 | 2013-01-10 | Betts John Marsden | A three dimensional upwardly convex frame and a method of constructing same |
US10024050B2 (en) * | 2011-12-07 | 2018-07-17 | Cpi Technologies, Llc | Solar panel truss deployable from moving carrier |
US9249565B2 (en) * | 2011-12-07 | 2016-02-02 | Cpi Technologies, Llc | Deployable truss with orthogonally-hinged primary chords |
GB2518505B (en) * | 2012-06-06 | 2016-06-08 | Ten Fold Eng Ltd | Apparatus For Converting Motion |
CA2863778C (en) | 2012-10-05 | 2021-07-13 | Dirtt Environmental Solutions, Ltd. | Divider wall connection systems and methods |
EP2904168B1 (en) * | 2012-10-05 | 2018-06-06 | Dirtt Environmental Solutions, Ltd. | Modular walls with seismic-shiftablity |
US9315985B2 (en) | 2012-10-05 | 2016-04-19 | Dirtt Environmental Solutions, Ltd. | Center-mounted acoustical substrates |
US9649831B2 (en) | 2012-10-05 | 2017-05-16 | Dirtt Environmental Solutions, Ltd | Perforated acoustic tiles |
US9127458B2 (en) * | 2013-03-15 | 2015-09-08 | Suncast Technologies, Llc | Collapsible roof truss assembly and method |
GB2517920B (en) * | 2013-09-04 | 2016-05-18 | Ten Fold Eng Ltd | Apparatus for converting motion |
USD755614S1 (en) | 2013-11-20 | 2016-05-10 | Dirtt Environmental Solutions, Ltd | Flex bracket with knuckle |
ES2449669B1 (en) * | 2013-12-13 | 2015-03-24 | Federico MENDIETA ECHEVARRIA | Vertical axis wind turbine with low visual impact |
GB2529702B (en) | 2014-08-29 | 2017-07-12 | Ten Fold Eng Ltd | Apparatus for converting motion |
EP3222531B1 (en) * | 2014-11-18 | 2023-01-04 | Kawasaki Jukogyo Kabushiki Kaisha | Radar satellite and radar satellite system using same |
AU2015101993A4 (en) * | 2014-11-26 | 2021-07-15 | Illinois Tool Works Inc. | Trusses for use in building construction and methods of installing same |
US10260226B2 (en) * | 2015-03-09 | 2019-04-16 | Qld Steel Pty Ltd | Beam system and method of erecting a supporting arch |
US9695586B1 (en) * | 2015-05-18 | 2017-07-04 | National Technology & Engineering Solutions Of Sandia, Llc | Self-erecting shapes |
WO2017120432A1 (en) * | 2016-01-06 | 2017-07-13 | Roccor, Llc | Extendible membrane systems, devices, and methods |
AU2016253555B1 (en) * | 2016-11-01 | 2017-02-09 | Tecnik Technologies Pty Limited | A modular access structure |
EP3352159A1 (en) | 2017-01-18 | 2018-07-25 | Production Resource Group, LLC | Foldable spaceframe and method of setting up spaceframe structure |
EP3352158A1 (en) | 2017-01-18 | 2018-07-25 | Production Resource Group, LLC | Foldable spaceframe and method of setting up spaceframe structure |
RU2666089C1 (en) * | 2017-03-29 | 2018-09-05 | Акционерное общество "Научный центр прикладной электродинамики" | Truss drive frame structure |
US10167624B1 (en) * | 2017-08-31 | 2019-01-01 | Craig Hodgetts | Mobile shelter and method of erecting the same |
CN109577489A (en) * | 2018-12-26 | 2019-04-05 | 佛山科学技术学院 | A kind of folding girder steel and a kind of folding building enclosure |
US11959277B1 (en) | 2019-01-28 | 2024-04-16 | William E. Smith | Pre-stressed sinusoidal member in assembly and applications |
US11608632B2 (en) * | 2019-01-28 | 2023-03-21 | William E. Smith | Pre-stressed sinusoidal member in assembly and applications |
US11498760B2 (en) * | 2019-04-23 | 2022-11-15 | International Business Machines Corporation | Deployable and retrievable section dividers |
CN110080084B (en) * | 2019-06-04 | 2023-10-31 | 重庆交通大学 | Vehicle-mounted telescopic truss bridge |
US10988921B1 (en) * | 2019-10-28 | 2021-04-27 | Overflow, Ltd. | Method and devices enabling rapid construction of buildings |
US11866938B2 (en) | 2021-08-30 | 2024-01-09 | Claudio Zullo | Truss |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030041548A1 (en) * | 2001-07-03 | 2003-03-06 | Merrifield Donald V. | Deployable truss beam with orthogonally-hinged folding diagonals |
US20060107611A1 (en) * | 2001-07-03 | 2006-05-25 | Merrifield Donald V | Deployable rectangular truss beam with orthogonally-hinged folding diagonals |
US20070044415A1 (en) * | 2005-08-29 | 2007-03-01 | Donald Merrifield | Deployable triangular truss beam with orthogonally-hinged folding diagonals |
US20100269446A1 (en) * | 2009-04-23 | 2010-10-28 | Merrifield Donald V | Deployable truss with integral folding panels |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2511613A (en) * | 1945-12-05 | 1950-06-13 | Moore Corp Lee C | Engine foundation |
US3435570A (en) * | 1966-09-23 | 1969-04-01 | Fairchild Hiller Corp | Erectable structure with scissors link |
FR2138244B1 (en) * | 1971-05-19 | 1973-05-11 | Soisson Gerard | |
US3783573A (en) * | 1972-12-07 | 1974-01-08 | Gen Dynamics Corp | Expandable truss structure |
DE3222475A1 (en) * | 1981-06-19 | 1983-01-27 | British Aerospace Public Ltd. Co., London | EXTENDABLE MASTER STRUCTURE |
US4587777A (en) * | 1981-10-09 | 1986-05-13 | General Dynamics Corporation/Convair Div. | Deployable space truss beam |
US4527362A (en) * | 1982-04-30 | 1985-07-09 | Martin Marietta Corporation | Deployable truss |
US4539786A (en) * | 1983-03-03 | 1985-09-10 | Ltv Aerospace And Defense Co. | Biaxial scissors fold, post tensioned structure |
US4557097A (en) * | 1983-09-08 | 1985-12-10 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Sequentially deployable maneuverable tetrahedral beam |
IT1162948B (en) * | 1983-09-30 | 1987-04-01 | Aeritalia Spa | EXTENSIBLE ARM PARTICULARLY FOR VEHICLES OR SPACE MODULES |
US4569176A (en) * | 1983-11-28 | 1986-02-11 | Astro Research Corporation | Rigid diagonal deployable lattice column |
DE8410428U1 (en) * | 1984-04-04 | 1985-02-07 | Eisenberg, Hans Jochen, 5600 Wuppertal | HAND-ADJUSTABLE PODESTROCK FOR THEATER STAGES OR THE LIKE. |
US4819399A (en) * | 1984-10-12 | 1989-04-11 | Hitachi, Ltd. | Deployable truss |
US4829726A (en) * | 1985-04-04 | 1989-05-16 | Potter D Indoye Eric A De | Extensible construction |
US4633566A (en) * | 1985-04-04 | 1987-01-06 | General Electric Company | Apparatus and method for constructing and disassembling a truss structure |
US4805368A (en) * | 1986-11-13 | 1989-02-21 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Expandable pallet for space station interface attachments |
US4958474A (en) * | 1987-05-18 | 1990-09-25 | Astro Aerospace Corporation | Truss structure |
JPH0794236B2 (en) * | 1989-03-31 | 1995-10-11 | 富士重工業株式会社 | Deployed structure |
EP0408826B1 (en) * | 1989-07-19 | 1994-09-14 | Japan Aircraft Mfg. Co., Ltd | Extendable mast |
US5228258A (en) * | 1989-11-27 | 1993-07-20 | Fuji Jukogyo Kabushiki Kaisha | Collapsible truss structure |
US6076770A (en) * | 1998-06-29 | 2000-06-20 | Lockheed Martin Corporation | Folding truss |
US20070145195A1 (en) * | 2005-12-23 | 2007-06-28 | Northrop Grumman Space & Mission Systems Corporation | Deployable array support structure |
US20080283670A1 (en) * | 2006-12-13 | 2008-11-20 | Thomas Jeffrey Harvey | K-truss deployable boom system |
-
2012
- 2012-12-07 US US13/708,666 patent/US8813455B2/en not_active Expired - Fee Related
- 2012-12-07 WO PCT/US2012/068578 patent/WO2013086422A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030041548A1 (en) * | 2001-07-03 | 2003-03-06 | Merrifield Donald V. | Deployable truss beam with orthogonally-hinged folding diagonals |
US20060107611A1 (en) * | 2001-07-03 | 2006-05-25 | Merrifield Donald V | Deployable rectangular truss beam with orthogonally-hinged folding diagonals |
US20070044415A1 (en) * | 2005-08-29 | 2007-03-01 | Donald Merrifield | Deployable triangular truss beam with orthogonally-hinged folding diagonals |
US20100269446A1 (en) * | 2009-04-23 | 2010-10-28 | Merrifield Donald V | Deployable truss with integral folding panels |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO337317B1 (en) * | 2013-11-04 | 2016-03-07 | Ipi Access As | Foldable, elongated support structure module and a foldable, elongated modular beam structure. |
US9938720B2 (en) | 2013-11-04 | 2018-04-10 | Ipi Access As | Support structure module and modular beam structure |
WO2017202952A1 (en) * | 2016-05-27 | 2017-11-30 | Universite De Montpellier | Light solar panel for small satellites |
CN106763468A (en) * | 2016-11-22 | 2017-05-31 | 中国科学院沈阳自动化研究所 | A kind of space truss and space flight load structure for space operation |
CN106763468B (en) * | 2016-11-22 | 2019-04-09 | 中国科学院沈阳自动化研究所 | A kind of space truss and space flight load structure for space operation |
CN106592943A (en) * | 2016-12-19 | 2017-04-26 | 罗逍 | Constructing method for scaffold with triangular prism structure |
CN107309461A (en) * | 2017-08-16 | 2017-11-03 | 张家港市中联建设机械有限公司 | A kind of tower body main chord termination hole processor |
CN107309461B (en) * | 2017-08-16 | 2024-04-30 | 张家港市中联建设机械有限公司 | Main chord member end hole processing machine for tower body |
CN108557115A (en) * | 2018-04-25 | 2018-09-21 | 哈尔滨工业大学 | A kind of space mast based on flexible leading screw driving |
CN108557115B (en) * | 2018-04-25 | 2022-03-15 | 哈尔滨工业大学 | Space extending arm based on telescopic lead screw drive |
CN110656570A (en) * | 2019-08-29 | 2020-01-07 | 山东大学 | Telescopic pedestrian bridge, construction device and construction method |
Also Published As
Publication number | Publication date |
---|---|
US20130263548A1 (en) | 2013-10-10 |
US8813455B2 (en) | 2014-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8813455B2 (en) | Deployable truss with orthogonally-hinged primary chords | |
US9650781B2 (en) | Deployable truss with orthogonally-hinged primary chords | |
US10407896B2 (en) | Mobile solar array and truss | |
US8371088B2 (en) | Deployable truss with integral folding panels | |
US4587777A (en) | Deployable space truss beam | |
US7028442B2 (en) | Deployable truss beam with orthogonally-hinged folding diagonals | |
US7716897B2 (en) | Deployable rectangular truss beam with orthogonally-hinged folding diagonals | |
US5016418A (en) | Synchronously deployable double fold beam and planar truss structure | |
Zhang et al. | Deployable structures: structural design and static/dynamic analysis | |
US9120583B1 (en) | Space solar array architecture for ultra-high power applications | |
EP3614487B1 (en) | Folded rip truss structure for reflector antenna with zero over stretch | |
US4539786A (en) | Biaxial scissors fold, post tensioned structure | |
US9660351B2 (en) | Deployable antenna frame | |
US4677803A (en) | Deployable geodesic truss structure | |
CN106450649B (en) | A kind of H configuration satellite antenna development agency | |
CN209667394U (en) | A kind of large space development agency | |
US20160107321A1 (en) | Hinge for Use in a Tension Stiffened and Tendon Actuated Manipulator | |
US4771585A (en) | Collapsible truss unit for use in combination with other like units for the construction of frameworks | |
CN112319855A (en) | Spatial extensible prism unit for on-orbit assembly | |
CN109860974A (en) | It is compound to cut hinge formula hoop truss deployable antenna mechanism | |
EP3879626A1 (en) | Deployable space reflector | |
CN106229603A (en) | Torsion spring drives scissor-type annular truss deployable antenna mechanism | |
CN114614232A (en) | Antenna folding and unfolding mechanism | |
CN107914897B (en) | Space folding and unfolding mechanism with double air cylinders as unfolding units | |
CN107946725B (en) | Folding and unfolding mechanism of double-slider spring combination constraint telescopic rod |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12854705 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12854705 Country of ref document: EP Kind code of ref document: A1 |