WO2013085925A1 - Antibody-drug conjugates and related compounds, compositions, and methods - Google Patents

Antibody-drug conjugates and related compounds, compositions, and methods Download PDF

Info

Publication number
WO2013085925A1
WO2013085925A1 PCT/US2012/067803 US2012067803W WO2013085925A1 WO 2013085925 A1 WO2013085925 A1 WO 2013085925A1 US 2012067803 W US2012067803 W US 2012067803W WO 2013085925 A1 WO2013085925 A1 WO 2013085925A1
Authority
WO
WIPO (PCT)
Prior art keywords
linker
antibody
conjugate
formula
cytotoxin
Prior art date
Application number
PCT/US2012/067803
Other languages
French (fr)
Inventor
David Y. Jackson
Edward Ha
Original Assignee
Igenica, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014546004A priority Critical patent/JP2015500287A/en
Priority to SG11201402686UA priority patent/SG11201402686UA/en
Application filed by Igenica, Inc. filed Critical Igenica, Inc.
Priority to AU2012348017A priority patent/AU2012348017A1/en
Priority to EP12855849.1A priority patent/EP2793585A4/en
Priority to CN201280067454.XA priority patent/CN104244718A/en
Priority to RU2014124984A priority patent/RU2014124984A/en
Priority to KR1020147018663A priority patent/KR20140139480A/en
Priority to BR112014013526A priority patent/BR112014013526A2/en
Priority to MX2014006739A priority patent/MX2014006739A/en
Priority to CA2857398A priority patent/CA2857398A1/en
Priority to IN4961CHN2014 priority patent/IN2014CN04961A/en
Publication of WO2013085925A1 publication Critical patent/WO2013085925A1/en
Priority to ZA2014/03946A priority patent/ZA201403946B/en
Priority to PH12014501229A priority patent/PH12014501229A1/en
Priority to IL232936A priority patent/IL232936A0/en
Priority to HK15104134.2A priority patent/HK1203309A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6817Toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Definitions

  • This invention relates to antibody-drug conjugates (ADCs) and related compounds, such as linkers used to make them, tubulysin analogs, and intermediates in their synthesis; compositions; and methods, including methods of treating cancers.
  • ADCs antibody-drug conjugates
  • related compounds such as linkers used to make them, tubulysin analogs, and intermediates in their synthesis
  • compositions and methods, including methods of treating cancers.
  • Cancer is the second most prevalent cause of death in the U.S, yet there are few effective treatment options beyond surgical resection. Of the medical treatments for cancers, the use of monoclonal antibodies targeting antigens present on the cancer cells has become common.
  • Anticancer antibodies approved for therapeutic use in the USA include alemtuzumab
  • CAMPATH ® a humanized anti-CD52 antibody used in the treatment of chronic lymphocytic leukemia
  • bevacizumab AVASTIN®
  • cetuximab ERBITUX ®
  • a chimeric anti-epidermal growth factor antibody used in colorectal cancer, head and neck cancer, and squamous cell carcinoma
  • ipilimumab YERVOY ®
  • a human anti-CTLA-4 antibody used in melanoma
  • ARZERRA ® a human anti-CD20 antibody used in chronic lymphocytic leukemia
  • panitumumab VECTIBIX ®
  • rituximab a chimeric anti-CD20 antibody used in non-Hodgkin lympho
  • trastuzumab is a recombinant DNA-derived humanized monoclonal antibody that selectively binds with high affinity to the extracellular domain of the human epidermal growth factor receptor2 protein, HER2 (ErbB2) (Coussens et al., Science 1985, 230, 1132-9; Salmon et al., Science 1989, 244, 707-12), thereby inhibiting the growth of HER2-positive cancerous cells.
  • HERCEPTIN is useful in treating patients with HER2-overexpressing breast cancers that have received extensive prior anti-cancer therapy, some patients in this population fail to respond or respond only poorly to HERCEPTIN treatment. Therefore, there is a significant clinical need for developing further HER2-directed cancer therapies for those patients with HER2-overexpressing tumors or other diseases associated with HER2 expression that do not respond, or respond poorly, to HERCEPTIN treatment.
  • ADCs Antibody drug conjugates
  • a rapidly growing class of targeted therapeutics represent a promising new approach toward improving both the selectivity and the cytotoxic activity of cancer drugs. See, for example, Trail et al., “Monoclonal antibody drug immunoconjugates for targeted treatment of cancer", Cancer Immunol. Immunother. 2003, 52, 328-337; and Chari, “Targeted Cancer Therapy: Conferring Specificity to Cytotoxic Drugs", Acc. Chem. Res., 2008, 41(1), 98-107.
  • ADCs have three components: (1) a monoclonal antibody conjugated through a (2) linker to a (3) cytotoxin.
  • the cytotoxins are attached to either lysine or cysteine sidechains on the antibody through linkers that react selectively with primary amines on lysine or with sulfhydryl groups on cysteine.
  • the maximum number of linkers/drugs that can be conjugated depends on the number of reactive amino or sulfhydryl groups that are present on the antibody.
  • a typical antibody contains up to 90 lysines as potential conjugation sites; however, the optimal number of cytotoxins per antibody for most ADCs is typically between 2 and 4 due to aggregation of ADCs with higher numbers of cytotoxins.
  • lysine linked ADCs currently in clinical development are heterogeneous mixtures that contain from 0 to 10 cytotoxins per antibody conjugated to different amino groups on the antibody.
  • the monoclonal antibody is cancer antigen specific, non-immunogenic, low toxicity, and internalized by cancer cells;
  • the cytotoxin is highly potent and is suitable for linker attachment; while the linker may be specific for cysteine (S) or lysine (N) binding, is stable in circulation, may be protease cleavable and/or pH sensitive, and is suitable for attachment to the cytotoxin.
  • Anticancer ADCs approved for therapeutic use in the USA include brentuximab vedotin (ADCETRIS ® ), a chimeric anti-CD30 antibody conjugated to monomethylauristatin E used in anaplastic large cell lymphoma and Hodgkin lymphoma; and gemtuzumab ozogamicin (MYLOTARG ), a humanized anti-CD33 antibody conjugated to calicheamicin ⁇ used in acute myelogeneous leukemia - though this was withdrawn in 2010 for lack of efficacy.
  • ADCETRIS ® a chimeric anti-CD30 antibody conjugated to monomethylauristatin E used in anaplastic large cell lymphoma and Hodgkin lymphoma
  • MYLOTARG gemtuzumab ozogamicin
  • trastuzumab has been conjugated to the maytansinoid drug mertansine to form the ADC trastuzumab emtansine, also called trastuzumab-DMl or trastuzumab-MC-DMl, abbreviated T-DM1 (LoRusso et al., "Trastuzumab Emtansine: A Unique Antibody-Drug Conjugate in Development for Human Epidermal Growth Factor Receptor 2-Positive Cancer", Clin. Cancer Res.
  • trastuzumab emtansine a novel antibody-drug conjugate for HER2-positive breast cancer
  • the mertansine is conjugated to the trastuzumab through a maleimidocaproyl (MC) linker which bonds at the maleimide to the 4-thiovaleric acid terminus of the mertansine side chain and forms an amide bond between the carboxyl group of the linker and a lysine basic amine of the trastuzumab.
  • MC maleimidocaproyl
  • trastuzumab has 88 lysines (and 32 cysteines).
  • trastuzumab emtansine is highly heterogeneous, containing dozens of different molecules containing from 0 to 8 mertansine units per trastuzumab, with an average mertansine/trastuzumab ratio of 3.4.
  • Antibody cysteines can also be used for conjugation to cytotoxins through linkers that contain maleimides or other thiol specific functional groups.
  • a typical antibody contains 4, or sometimes 5, interchain disulfide bonds (2 between the heavy chains and 2 between heavy and light chains) that covalently bond the heavy and light chains together and contribute to the stability of the antibodies in vivo.
  • interchain disulfides can be selectively reduced with dithiothreitol, tris(2-carboxyethyl)phosphine, or other mild reducing agents to afford 8 reactive sulfhydryl groups for conjugation.
  • Cysteine linked ADCs are less heterogeneous than lysine linked ADCs because there are fewer potential conjugation sites; however, they also tend to be less stable due to partial loss of the interchain disulfide bonds during conjugation, since current cysteine linkers bond to only one sulfur atom.
  • the optimal number of cytotoxins per antibody for cysteine linked ADCs is also 2 to 4.
  • ADCETRIS is a heterogeneous mixture that contains 0 to 8 monomethylauristatin E residues per antibody conjugated through cysteines.
  • tubulysins first isolated by the Hofle/Reichenbach group from myxobacterial cultures (Sasse et al., J. Antibiot. 2000, 53, 879-885), are exceptionally potent cell-growth inhibitors that act by inhibiting tubulin polymerization and thereby induce apoptosis. (Khalil et al., Chem. Biochem. 2006, 7, 678-683; and Kaur et al., Biochem. J. 2006, 396, 235-242).
  • tubulysins of which tubulysin D is the most potent, have activity that exceeds most other tubulin modifiers including, the epothilones, vinblastine, and paclitaxel (TAXOL ® ), by 10- to 1000-fold.
  • tubulin modifiers including, the epothilones, vinblastine, and paclitaxel (TAXOL ® ), by 10- to 1000-fold.
  • TAXOL ® paclitaxel
  • Paclitaxel and vinblastine are current treatments for a variety of cancers, and epothilone derivatives are under active evaluation in clinical trials.
  • Synthetic derivatives of tubulysin D would provide essential information about the mechanism of inhibition and key binding interactions, and could have superior properties as anticancer agents either as isolated entities or as chemical warheads on targeted antibodies or ligands.
  • Tubulysin D is a complex tetrapeptide that can be divided into four regions, Mep
  • tubulysin D Most of the more potent derivatives of tubulysin, including tubulysin D, also incorporate the interesting 6>-acyl N,6>-acetal functionality, which has rarely been observed in natural products. This reactive functionality is labile in both acidic and basic reaction conditions, and therefore may play a key role in the function of the tubulysins. (Iley et al., Pharm. Res. 1997, 14, 1634-1639). Recently, the total synthesis of tubulysin D was reported, which represents the first synthesis of any member of the tubulysin family that incorporates the 6>-acyl N,6>-acetal functionality. (Peltier et al., J. Am. Chem. Soc. 2006, 128, 16018-16019).
  • tubulysins including tubulysins U and V, have been synthesized by Domling et al., “Total Synthesis of Tubulysins U and V", Angew. Chem. Int. Ed. 2006, 45, 7235-7239.
  • US Patent Application Publication No. US 2011/0021568 Al discloses the synthesis and activities of a number of tubulysin analogs, including compounds (40) and (10), referred to here as Tl and T2 respectively:
  • this invention is antibody-cytotoxin antibody-drug conjugates (ADCs) of n
  • A is an antibody
  • PD is pyrrole-2,5-dione or pyrrolidine-2,5-dione
  • the double bond represents bonds from the 3- and 4-positions of the pyrrole-2,5-dione or pyrrolidine-
  • L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
  • CTX is a cytotoxin bonded to L by an amide bond
  • n is an integer of 1 to 4, and
  • n is an integer of 1 to 12.
  • these ADCs are homogeneous and have enhanced stability over ADCs with monodentate linkers. They will therefore have increased half-lives in vivo, reducing the amount of cytotoxin released systemically, and be safer than ADCs with monodentate linkers.
  • this invention is pharmaceutical compositions containing ADCs of the first aspect of this invention; and in a third aspect, this invention is methods of treatment of cancers targeted by the relevant antibodies by administering ADCs of the first aspect of this invention or pharmaceutical compositions of the second aspect of this invention.
  • this invention is linker-cytotoxin conjugates of formula A, formula B, and formula C:
  • R is C 1-6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl,
  • L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
  • CTX is a cytotoxin bonded to L by an amide bond
  • n is an integer of 1 to 12.
  • bidentate linker-cytotoxin conjugates are useful in preparing the antibody-drug conjugates of the first aspect of this invention.
  • this invention is linkers of formula AA, BB, and CC:
  • R is Ci_ 6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, Ci_ 3 alkoxycarbonyl, or Ci_ 3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl,
  • L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
  • Z is carboxyl, C 1-6 alkoxycarbonyl, or amino
  • n is an integer of 1 to 12.
  • bidentate linkers are useful in preparing the linker-cytotoxin conjugates of the fourth aspect of this invention.
  • BBB CCC where R' is chloro, bromo, iodo, C 1-6 alkylsulfonyloxy, trifluoromethanesulfonyloxy,
  • L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
  • Z is carboxyl, Ci_ 6 alkoxycarbonyl, or amino
  • n is an integer of 1 to 12.
  • bidentate linkers are also useful in preparing the linker-cytotoxin conjugates of the fourth aspect of this invention, and are useful in preparing the linkers of the fifth aspect of this invention.
  • this invention is tubulysins of the formulae of the formulae T3 and T4:
  • tubulysins are analogs of the known tubulysins Tl and T2 referred to previously, but because the terminal N-methylpiperidine has been replaced by an unsubstituted piperidine, these new compounds are able to form tubulysin-linker conjugates with linkers containing a carboxyl group by forming an amide bond between the piperidine nitrogen atom and the carbonyl of the linker carboxy group.
  • an "antibody”, also known as an immunoglobulin, is a large Y-shaped protein used by the immune system to identify and neutralize foreign objects such as bacteria and viruses.
  • the antibody recognizes a unique part of the foreign target, called an antigen, because each tip of the "Y" of the antibody contains a site that is specific to a site on an antigen, allowing these two structures to bind with precision.
  • An antibody consists of four polypeptide chains, two identical heavy chains and two identical light chains connected by cysteine disulfide bonds.
  • a “monoclonal antibody” is a monospecific antibody where all the antibody molecules are identical because they are made by identical immune cells that are all clones of a unique parent cell.
  • monoclonal antibodies are typically prepared by fusing myeloma cells with the spleen cells from a mouse (or B-cells from a rabbit) that has been immunized with the desired antigen, then purifying the resulting hybridomas by such techniques as affinity purification.
  • Recombinant monoclonal antibodies are prepared in viruses or yeast cells rather than in mice, through technologies referred to as repertoire cloning or phage display/yeast display, the cloning of immunoglobulin gene segments to create libraries of antibodies with slightly different amino acid sequences from which antibodies with desired specificities may be obtained.
  • the resulting antibodies may be prepared on a large scale by fermentation.
  • “Chimeric” or “humanized” antibodies are antibodies containing a combination of the original (usually mouse) and human DNA sequences used in the recombinant process, such as those in which mouse DNA encoding the binding portion of a monoclonal antibody is merged with human antibody-producing DNA to yield a partially-mouse, partially-human monoclonal antibody.
  • Full-humanized antibodies are produced using transgenic mice (engineered to produce human antibodies) or phage display libraries.
  • Antibodies of particular interest in this invention are those that are specific to cancer antigens, are non-immunogenic, have low toxicity, and are readily internalized by cancer cells; and suitable antibodies include alemtuzumab, bevacizumab, brentuximab, cetuximab, gemtuzumab, ipilimumab, ofatumumab, panitumumab, rituximab, tositumomab, and trastuzumab.
  • a "cytotoxin” is a molecule that, when released within a cancer cell, is toxic to that cell.
  • Cytotoxins of particular interest in this invention are the tubulysins (such as the tubulysins of the formulae T3 and T4), the auristatins (such as monomethylauristatin E and monomethylauristatin F), the maytansinoids (such as mertansine), the cahcheamicins (such as calicheamicin ⁇ ); and especially those cytotoxins that, like the tubulysins of the formulae T3 and T4, are capable of coordination through an amide bond to a linker, such as by possessing a basic amine or a carboxyl group.
  • a "linker” is a molecule with two reactive termini, one for conjugation to an antibody and the other for conjugation to a cytotoxin.
  • the antibody conjugation reactive terminus of the linker is typically a site that is capable of conjugation to the antibody through a cysteine thiol or lysine amine group on the antibody, and so is typically a thiol-reactive group such as a double bond (as in maleimide) or a leaving group such as a chloro, bromo, or iodo, or an R-sulfanyl group, or an amine- reactive group such as a carboxyl group; while the antibody conjugation reactive terminus of the linker is typically a site that is capable of conjugation to the cytotoxin through formation of an amide bond with a basic amine or carboxyl group on the cytotoxin, and so is typically a carboxyl or basic amine group.
  • linker When the term "linker” is used in describing the linker in conjugated form, one or both of the reactive termini will be absent (such as the leaving group of the thiol-reactive group) or incomplete (such as the being only the carbonyl of the carboxylic acid) because of the formation of the bonds between the linker and/or the cytotoxin.
  • an "antibody-drug conjugate”, or “ADC” is an antibody that is conjugated to one or more (typically 1 to 4) cytotoxins, each through a linker.
  • the antibody is typically a monoclonal antibody specific to a cancer antigen.
  • Tubulysin includes both the natural products described as tubulysins, such as by Sasse et al. and other authors mentioned in the Description of the related art, and also the tubulysin analogs described in US Patent Application Publication No. US 2011/0021568 Al.
  • Tubulysins of particular interest in this invention are the tubulysins of the formulae T3 and T4, and other tubulysins where the terminal N-methylpiperidine has been replaced by an unsubstituted piperidine, allowing amide bond formation with a linker.
  • a “therapeutically effective amount” means that amount of an ADC of the first aspect of this invention or composition of the second aspect of this invention which, when administered to a human suffering from a cancer, is sufficient to effect treatment for the cancer.
  • Treating" or “treatment” of the cancer includes one or more of:
  • Cancers of interest for treatment include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g.
  • lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, oral cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer including, for example, HER2 -positive breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma, brain cancer, head and neck cancers, and associated metastases.
  • lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of
  • ADC antibody-drug conjugate
  • DEA diethylamine
  • DCC 1,3-dicyclohexylcarbodiimide
  • DIAD diisopropyl azodicarboxylate
  • DIPC 1 ,3-diisopropylcarbodiimide
  • DIPEA DIPEA
  • DMF N,N-dimethylformamide
  • DPBS Dulbecco's phosphate-buffered saline
  • DTPA diethylenetriaminepentaacetic acid
  • DTT dithiothreitol
  • EDC ethyl
  • HATU 6>-(7-azabenzotriazol-l-yl)- N,N,N',N'-tetramethyluronium hexafluorophosphate
  • HOBT N-hydroxybenzotriazole
  • NHS N-hydroxybenzotriazole
  • TGI tumor growth inhibition
  • ADCs of the prior art that coordinate to cysteine thiols of the antibody have employed monofunctional linkers, of which the MC linker is an example. Reduction and opening of the cysteine-cysteine disulfide bonds to give free thiols for conjugation decreases the stability of the antibody, and the formation of the ADC by reaction of the reduced thiols does not re-form a bond, as illustrated in the scheme below:
  • the bifunctional pyrrole-2,5-dione- and pyrrolidine-2,5-dione-based linkers of this invention contain two reactive functional groups (X in the scheme below) that react with the two sulfur atoms of an opened cysteine-cysteine disulfide bond. Reaction of the bifunctional linker with the two cysteines gives a "stapled" dithiosuccinimide or dithiomaleimide antibody conjugate with one linker per disulfide connected through two thioether bonds, as shown in the scheme below (double bond absent from the ring: succinimide linkers of formulae AA and AAA; double bond present in the ring: maleimide linkers of formulae BB and BBB):
  • the reaction re-forms a covalently bonded structure between the 2 cysteine sulfur atoms and therefore does not compromise the overall stability of the antibody.
  • the method also enables conjugation of an optimal 4 drugs per antibody to afford a homogeneous ADC since all of the reactive cysteines are used.
  • the overall result is replacement of a relatively labile disulfide with a stable "staple" between the cysteines.
  • the monosubstituted maleimide linkers (formulae CC and CCC) are also effectively bifunctional in conjugation with the antibody because the double bond of the maleimide is capable of conjugation to one of the cysteine sulfur atoms and the X group with the other.
  • the compounds of the invention are prepared by conventional methods of organic and bio-organic chemistry. See, for example, Larock, "Comprehensive Organic Transformations", Wiley- VCH, New York, N.Y., U.S.A.. Suitable protective groups and their methods of addition and removal, where appropriate, are described in Greene et al., "Protective Groups in Organic Synthesis", 2 nd ed., 1991, John Wiley and Sons, New York, NY, US. Reference may also be made to the documents referred to elsewhere in the application, such as to the Schumacher et al. article referred to earlier for the synthesis of linkers, US Patent Application Publication No. US 2011/0021568 Al for the preparation of tubulysins, etc.
  • Tubulysins T3 and T4 are prepared by methods analogous to those of Peltier et al. and US Patent Application Publication No. US 2011/0021568 Al, by substituting D-pipecolinic acid for the D-N-methylpipecolinic acid, protecting and deprotecting if appropriate.
  • the comparator MC linker is prepared by methods known to the art for its preparation.
  • Linkers of this invention are prepared by methods analogous to those of Schumacher et al., as follows (in this reaction scheme, R, L and Z have the meanings given them in the discussion of the fifth and sixth as ects of the invention above):
  • 2,3-Dibromomaleimide, 1 equivalent, and a base such as sodium bicarbonate, about 5 equivalents, are dissolved in methanol, and a solution of 2-pyridinethiol, slightly more than 1 equivalent, in methanol, is added.
  • the reaction is stirred for 15 min at ambient temperature.
  • the solvent is removed under vacuum and the residue is purified, such as by flash chromatography on silica gel (petroleum ether: ethyl acetate, gradient elution from 9: 1 to 7:3, to give
  • dichloromethane is added dropwise DIAD, 1 equivalent, at -78 °C.
  • the reaction is stirred for 5 min and the sidechain, 0.5 equivalent, in dichloromethane is added dropwise.
  • neopentyl alcohol, 1 equivalent, in tetrahydrofuran and dichloromethane is added, and stirred for a further 5 min, then the 3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione, 1 equivalent, is added and stirred for another 5 min.
  • the reaction is allowed to warm to ambient temperature with stirring for 20 hr, then the solvents are removed under vacuum. The residue is purified, such as by flash
  • the sidechain may be used in protected form, and deprotected following the Mitsunobu reaction, if appropriate.
  • the sidechain optionally protected if appropriate, may be coupled to a 3,4-dibromomaleimide by Mitsunobu coupling; and the resulting compound activated for disulfide exchange by reaction with an R-thiol in the presence of base; in the reverse of the synthesis described in the two previous paragraphs.
  • linkers containing the pyrrolidine-2,5-dione moiety rather than the pyrrole-2,5-dione moiety shown above by starting with 2,3-dibromosuccinimide; but more usually these linkers are prepared by preparing the linker with an unsubstituted maleimide and brominating the linker to give the dibromosuccinimide moiety after coupling with the sidechain, and then "activating" the linker with the R-thiol as a last step.
  • Mono-substituted maleimide linkers are conveniently prepared by dehydrobromination of the dibromosuccinimide linkers under basic conditions, and related methods.
  • Linker-cytotoxin conjugates may be prepared by methods analogous to those of Doronina et al., Bioconjugate Chem. 2006, 17, 114-124, and similar documents.
  • the linker, 1 equivalent, and HATU, 1 equivalent are dissolved in anhydrous DMF, followed by the addition of DIPEA, 2 equivalents.
  • the resulting solution is added to the cytotoxin, 0.5 equivalents, dissolved in DMF, and the reaction stirred at ambient temperature for 3 hr.
  • the linker-cytotoxin conjugate is purified by reverse phase HPLC on a C- 18 column.
  • Antibodies typically monoclonal antibodies are raised against a specific cancer target (antigen), and purified and characterized.
  • Therapeutic ADCs containing that antibody are prepared by standard methods for cysteine conjugation, such as by methods analogous to those of Hamblett et al., "Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug
  • Antibody- drug conjugates with four drugs per antibody are prepared by partial reduction of the antibody with an excess of a reducing reagent such as DTT or TCEP at 37 °C for 30 min, then the buffer exchanged by elution through SEPHADEX ® G-25 resin with 1 mM DTPA in DPBS. The eluent is diluted with further DPBS, and the thiol concentration of the antibody may be measured using 5,5'- dithiobis(2-nitrobenzoic acid) [Ellman's reagent].
  • a reducing reagent such as DTT or TCEP
  • the linker- cytotoxin conjugate is added at 4 °C for 1 hr, and the conjugation reaction may be quenched by addition of a substantial excess, for example 20-fold, of cysteine.
  • the resulting ADC mixture may be purified on SEPHADEX G-25 equilibrated in PBS to remove unreacted linker-cytotoxin conjugate, desalted if desired, and purified by size-exclusion chromatography.
  • the resulting ADC may then be then sterile filtered, for example, through a 0.2 ⁇ filter, and lyophilized if desired for storage.
  • n will be 4, where all of the interchain cysteine disulfide bonds are replaced by linker- drug conjugates.
  • Schumacher et al. in their conjugation to somatostatin add the reducing agent to a mixture of the somatostatin and the PEGylated linker, so this may be possible with antibodies and linker-cytotoxin conjugates also and is not excluded as a method of synthesis.
  • the ADCs of this invention may be assayed for binding affinity to and specificity for the desired antigen by any of the methods conventionally used for the assay of antibodies; and they may be assayed for efficacy as anticancer agents by any of the methods conventionally used for the assay of cytostatic/cytotoxic agents, such as assays for potency against cell cultures, xenograft assays, and the like.
  • cytostatic/cytotoxic agents such as assays for potency against cell cultures, xenograft assays, and the like.
  • the ADCs of the first aspect of this invention will typically be formulated as solutions for intravenous administration, or as lyophilized concentrates for reconstitution to prepare intravenous solutions (to be reconstituted, e.g., with normal saline, 5% dextrose, or similar isotonic solutions). They will typically be administered by intravenous injection or infusion.
  • intravenous solutions to be reconstituted, e.g., with normal saline, 5% dextrose, or similar isotonic solutions.
  • the 2-pyridinethiol/methanol solution was added dropwise to the 3,4-dibromopyrrole-2,5-dione via a 20 mL syringe with a 16 gauge needle, and the reaction mixture was stirred for an additional 3-4 hours.
  • the methanol was evaporated and the crude product was dissolved in ethyl acetate and loaded onto about 2 g silica gel.
  • the silica gel-loaded crude product was eluted through a 12 g silica gel cartridge with a hexane: ethyl acetate gradient from 9: 1 to 0: 1 over 25 column volumes.
  • the enriched fractions were identified, pooled and lyophilized to dryness.
  • the final product was recrystallized from ethyl acetate and diethyl ether to provide yellow needle crystals which were collected by filtration.
  • Example 2 Synthesis of 39-(3,4-dibromo-2,5-dioxopyrrolyl)- 3, 6,9, 12, 15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid:
  • a 100 mL two-necked round bottom flask was flame dried and cooled under nitrogen.
  • the cooled flask was charged with 200 mg (0.296 mmol) of ieri-butyl 39-hydroxy- 3, 6, 9, 12,15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoate.
  • Triphenylphosphine, 106 mg was dissolved in about 5 mL anhydrous tetrahydrofuran in a vial, and the solution was added to thelOO mL flask via cannula under nitrogen.
  • the 100 mL flask was cooled in an ice-water bath for 15 minutes.
  • the oil was eluted over a 12 g silica gel cartridge with a methanokdichloromethane gradient from 1:0 to 9:1 over 28 column volumes.
  • the fractions containing the desired product were pooled and concentrated to dryness.
  • the purified product was suspended in 50:50 acetonitrile: water and lyophilized overnight to provide a clear light yellow viscous oil.
  • LC-MS analysis the of ieri-butyl-protected carboxylic acid product had been partially deprotected during the work-up.
  • the lyophilized material was treated with 5% trifluoroacetic acid in dichloromethane, concentrated to dryness and lyophilized in acetonitrile: water (50:50) overnight.
  • Fmoc-T4 was prepared by coupling Fmoc-D-2-piperidinecarboxylic acid to isoleucine in the presence of EDC and sodium bicarbonate, then coupling the resulting Fmoc-D-Pip-Ile-OH to the N-methylvaline intermediate 1 (purchased from Concortis) by mixing with 1 equivalent of HOBT and DIPC in DMF followed by addition of 2.5 equivalents of NMM. The reaction mixture was stirred overnight and purified by flash chromatography on silica gel using a gradient of hexane and ethyl acetate. Evaporation of solvent gave Fmoc-T4 as a yellow oil.
  • T4 The Fmoc-T4 was then deprotected by treatment with 20% DEA in methylene chloride for 30 minutes to give T4, which was purified by preparative HPLC on a CI 8 reverse phase column eluted with acetonitrile/water.
  • Example 5 Synthesis of 6-(2,5-dioxopyrrolyl)hexanoyl-T4 [MC-T4] and 39-(3,4-dibromo- 2,5-dioxopyrrolidinyl)-3,6,9,12,15, 18,21,24,27,30,33,36-dodecaoxanonatriacontanoyl-T4
  • Example 6 Synthesis of 39-(2,5-dioxo-3,4-bis(2-pyridylsulfanyl)pyrrolyl)- -dodecaoxanonatriacontanoyl-MMAF [dPSPEG-MMAF] :
  • the crude reaction mixture was purified by reverse-phase HPLC on a 21.2 mm x 50 mm Agilent PREP-C18 column at a flow rate of 35 mL/min over 20 column volumes (about 30 minutes of gradient time). Enriched fractions were identified, pooled and lyophilized to give the dPSPEG- MMAF conjugate as a white semi-solid.
  • trastuzumab 1 mL of a 20 mg/niL solution in pH 7.4 PBS (Gibco Mg and Ca free) with ImM DTPA, is loaded into a sterile 1.7 mL Eppendorf tube, then 2.75 equivalents of TCEP hydrochloride (Sigma ampule 0.5M concentration), is added and the mixture incubated at 37 °C for 1 hour to give an average of 4 free thiol pairs per trastuzumab (this can be verified by Ellman's colorimetric assay - see Ellman, "Tissue sulfhydryl groups", Arch. Biochem. Biophys, 1959, 82, 70- 77 or later papers referring to this assay). The reduced antibody solution is cooled in an ice-bath at about 0 °C for 15 minutes; then a solution of about 4 equivalents of dPSPEG-MMAF in
  • trastuzumab-dTSPEG-MMAF ADC is added and the mixture incubated at 37 °C for 2 hours (or at 4 °C for 20 hours).
  • the resulting trastuzumab-dTSPEG-MMAF ADC is purified by size-exclusion chromatography (GE AKTA pure chromatographic system) or PD10 desalting column.
  • GE AKTA pure chromatographic system size-exclusion chromatography
  • PD10 desalting column PD10 desalting column.
  • ADCs of this invention are tested for potency and selectivity in vitro by determining their cytotoxicity in cancer cell lines of interest, such as those cancer cell lines expressing the antigen corresponding to the antibody portion of the ADC and similar cancer cell lines lacking the antigen. They are tested for potency and safety in vivo in such animal models as the mouse subcutaneous cancer xenograft and mouse orthotopic cancer xenograft models well known to those of skill in the art of cancer research.
  • Example 8 Cytotoxicity of trastuzumab ADCs compared to trastuzumab
  • the IC 50 for both ADCs and for trastuzumab itself was >500 nM;
  • cytotoxicity of tubulysins Tl and T2 was compared to the cytotoxicity of MMAF using the BT474 (HER2+) cell line in a standard cellular cytotoxicity assay.
  • MMAF had an IC 50 of 93 nM
  • Tl had an IC 50 of 11 nM
  • T2 had an IC 50 of ⁇ 0.1 nM, showing that these tubulysins are considerably more potent than MMAF.
  • N-conjugable tubulysins T3 and T4 are of similar potency to non-N-conjugable tubulysins Tl and T2, and considerably more potent than MMAF. These results and the results of Example 8 suggest that tubulysin ADCs are considerably more potent than MMAF ADCs, and will be effective anticancer agents. [0084] Example 10: Binding affinity of ADCs for antigen-expressing cells
  • Binding of the antibodies and ADCs to antigen-expressing cells are measured using a cell ELISA.
  • Sarcoma cells transduced to express the target (F279 cells for HER2, F244 cells for CD98) are plated the day at 5000 cells per well in a 384- well plate.
  • antibodies are serially diluted in a separate plate, and then transferred to the cell plate, which has previously had media removed by aspiration. After a 2 hour incubation at room temperature, the plate is washed with wash buffer (DPBS at pH7.4 with 0.1% bovine serum albumin) and then 25 ⁇ horseradish peroxidase-labeled secondary antibody diluted in media is added and incubated for 30 minutes at room temperature.
  • wash buffer DPBS at pH7.4 with 0.1% bovine serum albumin
  • a chemiluminescent substrate (Pierce catalog #37069) is added; and the plate is read in a plate-based luminescence reader.
  • Trastuzumab and trastuzumab ADCs (trastuzumab-MC-MMAF, trastuzumab-MC-T4, trastuzumab-dTSPEG- MMAF, and trastuzumab-dTSPEG-T4) demonstrated comparable affinity for F277 cells; and 18-2A and 18-2A ADCs (18-2A-MC-MMAF, 18-2A-MC-T4, 18-2A-dTSPEG-MMAF, and 18-2A- dTSPEG-T4) demonstrated comparable affinity for F244 cells, indicating that conjugation of the drug payloads do not effect antigen binding.
  • Example 11 Potency of ADCs against antigen-expressing cells
  • ADCs for inhibition of tumor cell growth was tested in cell proliferation assays.
  • ADCs and controls were serially diluted in a master plate, and then transferred to the cell plates, which were incubated at 37 degrees Celsius and 5% C0 2 for 3 days.
  • the cells were quantitated by measuring the level of ATP in the wells using the ATPLite IStep kit (Perkin Elmer catalog #50-904-9883) as described by the manufacturer.
  • the 18-2A ADCs (18-2A-MC-MMAF, 18- 2A-MC-T4, 18-2A-dTSPEG-MMAF, and 18-2A-dTSPEG-T4) were approximately equipotent and considerably more potent than the parent 18-2A antibody in Ramos cells, while the trastuzumab ADCs (trastuzumab-MC-MMAF, trastuzumab-MC-T4, trastuzumab-dTSPEG-MMAF, and trastuzumab-dTSPEG-T4) were approximately equipotent and considerably more potent than the parent trastuzumab antibody in BT474 cells. [0088]
  • Example 12 Efficacy of ADCs in murine xenograft models
  • the Ramos cell line was obtained from ATCC and cultured according to the supplier's protocols. 4-6 Week-old immunodeficient female mice (Taconic C.B-17 scid) were subcutaneously ⁇
  • mice were randomized. ADCs were formulated in PBS and administered once intravenously at a dose of 1 mg/Kg into the lateral tail vein, and body weights and tumors were measured twice weekly.
  • Tumor volume was calculated as described in van der Horst et al., "Discovery of Fully Human Anti-MET Monoclonal Antibodies with Antitumor Activity against Colon Cancer Tumor Models In Vivo", Neoplasia, 2009, 11, 355-364.
  • the experiments were performed on groups of 8 animals per experimental point.
  • the negative control group received HB121 (an IgG2a-negative antibody) and free MMAF or T4, as appropriate, at a concentration equimolar to the concentration that would be released by the ADCs, while the positive control group received 18-2A.
  • the 18-2A ADCs with the linkers of this invention demonstrated slightly more but comparable TGI than the comparator ADCs (18-2A-MC-MMAF and 18-2A-MC-T4, respectively), and more TGI than the parent 18-2A antibody, while all demonstrated significant TGI compared to the control. No toxicity was observed based on animal weight measurements.
  • the BT474 cell line was obtained from ATCC and cultured according to the supplier's protocols. 4-6 Week-old immunodeficient female mice (Taconic C.B-17 scid) were implanted with a ⁇ -estradiol pellet 3 days before being subcutaneously injected on the right flank with lxlO 7 viable cells in a mixture of PBS (without magnesium or calcium) and BD Matrigel (BD Biosciences) at a 1: 1 ratio. The injected total volume per mouse was 200 ⁇ with 50% being Matrigel. Once the tumor reached a size of 100-150 mm , mice were randomized.
  • ADCs were formulated in PBS and administered once intravenously at a dose of 1 mg/Kg into the lateral tail vein, and body weights and tumors were measured twice weekly. Tumor volume was calculated as described in van der Horst et al., cited above. The experiments were performed on groups of 8 animals per experimental point. The negative control group received HB121 and free MMAF or T4, as appropriate, at a
  • trastuzumab ADCs with the linkers of this invention demonstrate comparable TGI to than the comparator ADCs (trastuzumab-MC-MMAF and trastuzumab-MC-T4,

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Antibody-cytotoxin antibody-drug conjugates and related compounds, such as linker- cytotoxin conjugates and the linkers used to make them, tubulysin analogs, and intermediates synthesis; compositions; and methods, including methods of treating cancers.

Description

Antibody-Drug Conjugates and Related Compounds, Compositions, and Methods
Background of the invention
Field of the invention
[0001] This invention relates to antibody-drug conjugates (ADCs) and related compounds, such as linkers used to make them, tubulysin analogs, and intermediates in their synthesis; compositions; and methods, including methods of treating cancers.
Description of the related art
[0002] Cancer is the second most prevalent cause of death in the U.S, yet there are few effective treatment options beyond surgical resection. Of the medical treatments for cancers, the use of monoclonal antibodies targeting antigens present on the cancer cells has become common.
Anticancer antibodies approved for therapeutic use in the USA include alemtuzumab
(CAMPATH®), a humanized anti-CD52 antibody used in the treatment of chronic lymphocytic leukemia; bevacizumab (AVASTIN®), a humanized anti-VEGF antibody used in colorectal cancer; cetuximab (ERBITUX®), a chimeric anti-epidermal growth factor antibody used in colorectal cancer, head and neck cancer, and squamous cell carcinoma; ipilimumab (YERVOY ® ), a human anti-CTLA-4 antibody used in melanoma; ofatumumab (ARZERRA ® ), a human anti-CD20 antibody used in chronic lymphocytic leukemia; panitumumab (VECTIBIX ® ), a human anti-epidermal growth factor receptor antibody used in colorectal cancer; rituximab (RITUXAN ®^), a chimeric anti-CD20 antibody used in non-Hodgkin lymphoma; tositumomab (BEXXAR®), a murine anti-CD20 antibody used in non-Hodgkin lymphoma; and trastuzumab (HERCEPTIN ® ), a humanized anti-HER2 antibody used in breast cancer. While these antibodies have proven useful in the treatments of the cancers for which they are indicated, they are rarely curative as single agents, and are generally used in combination with standard chemotherapy for the cancer.
[0003] As an example, trastuzumab is a recombinant DNA-derived humanized monoclonal antibody that selectively binds with high affinity to the extracellular domain of the human epidermal growth factor receptor2 protein, HER2 (ErbB2) (Coussens et al., Science 1985, 230, 1132-9; Salmon et al., Science 1989, 244, 707-12), thereby inhibiting the growth of HER2-positive cancerous cells. Although HERCEPTIN is useful in treating patients with HER2-overexpressing breast cancers that have received extensive prior anti-cancer therapy, some patients in this population fail to respond or respond only poorly to HERCEPTIN treatment. Therefore, there is a significant clinical need for developing further HER2-directed cancer therapies for those patients with HER2-overexpressing tumors or other diseases associated with HER2 expression that do not respond, or respond poorly, to HERCEPTIN treatment.
[0004] Antibody drug conjugates (ADCs), a rapidly growing class of targeted therapeutics, represent a promising new approach toward improving both the selectivity and the cytotoxic activity of cancer drugs. See, for example, Trail et al., "Monoclonal antibody drug immunoconjugates for targeted treatment of cancer", Cancer Immunol. Immunother. 2003, 52, 328-337; and Chari, "Targeted Cancer Therapy: Conferring Specificity to Cytotoxic Drugs", Acc. Chem. Res., 2008, 41(1), 98-107. These ADCs have three components: (1) a monoclonal antibody conjugated through a (2) linker to a (3) cytotoxin. The cytotoxins are attached to either lysine or cysteine sidechains on the antibody through linkers that react selectively with primary amines on lysine or with sulfhydryl groups on cysteine. The maximum number of linkers/drugs that can be conjugated depends on the number of reactive amino or sulfhydryl groups that are present on the antibody. A typical antibody contains up to 90 lysines as potential conjugation sites; however, the optimal number of cytotoxins per antibody for most ADCs is typically between 2 and 4 due to aggregation of ADCs with higher numbers of cytotoxins. As a result, conventional lysine linked ADCs currently in clinical development are heterogeneous mixtures that contain from 0 to 10 cytotoxins per antibody conjugated to different amino groups on the antibody. Key factors in the success of an ADC include that the monoclonal antibody is cancer antigen specific, non-immunogenic, low toxicity, and internalized by cancer cells; the cytotoxin is highly potent and is suitable for linker attachment; while the linker may be specific for cysteine (S) or lysine (N) binding, is stable in circulation, may be protease cleavable and/or pH sensitive, and is suitable for attachment to the cytotoxin.
[0005] Anticancer ADCs approved for therapeutic use in the USA include brentuximab vedotin (ADCETRIS®), a chimeric anti-CD30 antibody conjugated to monomethylauristatin E used in anaplastic large cell lymphoma and Hodgkin lymphoma; and gemtuzumab ozogamicin (MYLOTARG ), a humanized anti-CD33 antibody conjugated to calicheamicin γ used in acute myelogeneous leukemia - though this was withdrawn in 2010 for lack of efficacy.
[0006] Although several ADCs have demonstrated recent clinical success, the utility of most ADCs currently in development may be limited by cumbersome synthetic processes resulting in high cost of goods, insufficient anti-tumor activity associated with limited potency of the cytotoxic drug, and questionable safety due to linker instability and ADC heterogeneity. See, for example, Ducry et al., "Antibody-Drug Conjugates: Linking Cytotoxic Payloads to Monoclonal Antibodies", Bioconjugate Chem. 2010, 21, 5-13; Chari, "Targeted Cancer Therapy: Conferring Specificity to Cytotoxic Drugs", Acc. Chem. Res. 2008, 41, 98-107; and Senter, "Recent advancements in the use of antibody drug conjugates for cancer therapy", Biotechnol: Pharma. Aspects, 2010, 11, 309-322.
[0007] As an example, trastuzumab has been conjugated to the maytansinoid drug mertansine to form the ADC trastuzumab emtansine, also called trastuzumab-DMl or trastuzumab-MC-DMl, abbreviated T-DM1 (LoRusso et al., "Trastuzumab Emtansine: A Unique Antibody-Drug Conjugate in Development for Human Epidermal Growth Factor Receptor 2-Positive Cancer", Clin. Cancer Res. 2011, 17, 6437-6447; Burris et al., "Trastuzumab emtansine: a novel antibody-drug conjugate for HER2-positive breast cancer", Expert Opin. Biol. Ther. 2011, 11, 807-819). It is now in Phase III studies in the US for that indication. The mertansine is conjugated to the trastuzumab through a maleimidocaproyl (MC) linker which bonds at the maleimide to the 4-thiovaleric acid terminus of the mertansine side chain and forms an amide bond between the carboxyl group of the linker and a lysine basic amine of the trastuzumab. Trastuzumab has 88 lysines (and 32 cysteines). As a result, trastuzumab emtansine is highly heterogeneous, containing dozens of different molecules containing from 0 to 8 mertansine units per trastuzumab, with an average mertansine/trastuzumab ratio of 3.4.
[0008] Antibody cysteines can also be used for conjugation to cytotoxins through linkers that contain maleimides or other thiol specific functional groups. A typical antibody contains 4, or sometimes 5, interchain disulfide bonds (2 between the heavy chains and 2 between heavy and light chains) that covalently bond the heavy and light chains together and contribute to the stability of the antibodies in vivo. These interchain disulfides can be selectively reduced with dithiothreitol, tris(2-carboxyethyl)phosphine, or other mild reducing agents to afford 8 reactive sulfhydryl groups for conjugation. Cysteine linked ADCs are less heterogeneous than lysine linked ADCs because there are fewer potential conjugation sites; however, they also tend to be less stable due to partial loss of the interchain disulfide bonds during conjugation, since current cysteine linkers bond to only one sulfur atom. The optimal number of cytotoxins per antibody for cysteine linked ADCs is also 2 to 4. For example, ADCETRIS is a heterogeneous mixture that contains 0 to 8 monomethylauristatin E residues per antibody conjugated through cysteines.
[0009] The tubulysins, first isolated by the Hofle/Reichenbach group from myxobacterial cultures (Sasse et al., J. Antibiot. 2000, 53, 879-885), are exceptionally potent cell-growth inhibitors that act by inhibiting tubulin polymerization and thereby induce apoptosis. (Khalil et al., Chem. Biochem. 2006, 7, 678-683; and Kaur et al., Biochem. J. 2006, 396, 235-242). The tubulysins, of which tubulysin D is the most potent, have activity that exceeds most other tubulin modifiers including, the epothilones, vinblastine, and paclitaxel (TAXOL®), by 10- to 1000-fold. (Steinmetz et al., Angew. Chem. 2004, 116, 4996-5000; Steinmetz et al., Angew. Chem. Int. Ed. 2004, 43, 4888-4892; and Hofle et al., Pure App. Chem. 2003, 75, 167-178). Paclitaxel and vinblastine are current treatments for a variety of cancers, and epothilone derivatives are under active evaluation in clinical trials. Synthetic derivatives of tubulysin D would provide essential information about the mechanism of inhibition and key binding interactions, and could have superior properties as anticancer agents either as isolated entities or as chemical warheads on targeted antibodies or ligands.
[0010] Tubulysin D is a complex tetrapeptide that can be divided into four regions, Mep
(D-N-methylpipecolinic acid), He (isoleucine), Tuv (tubuvaline), and Tup (tubuphenylalanine), as shown in the formula:
Figure imgf000005_0001
Most of the more potent derivatives of tubulysin, including tubulysin D, also incorporate the interesting 6>-acyl N,6>-acetal functionality, which has rarely been observed in natural products. This reactive functionality is labile in both acidic and basic reaction conditions, and therefore may play a key role in the function of the tubulysins. (Iley et al., Pharm. Res. 1997, 14, 1634-1639). Recently, the total synthesis of tubulysin D was reported, which represents the first synthesis of any member of the tubulysin family that incorporates the 6>-acyl N,6>-acetal functionality. (Peltier et al., J. Am. Chem. Soc. 2006, 128, 16018-16019). Other tubulysins, including tubulysins U and V, have been synthesized by Domling et al., "Total Synthesis of Tubulysins U and V", Angew. Chem. Int. Ed. 2006, 45, 7235-7239.
[0011] US Patent Application Publication No. US 2011/0021568 Al (Ellman et al.) discloses the synthesis and activities of a number of tubulysin analogs, including compounds (40) and (10), referred to here as Tl and T2 respectively:
Figure imgf000006_0001
[0012] Schumacher et al., "In Situ Maleimide Bridging of Disulfides and a New Approach to Protein PEGylation", Bioconjugate Chem. 2011, 22, 132-136, disclose the synthesis of
3.4- disubstituted maleimides such as 3,4-bis(2-hydroxyethylsulfanyl)pyrrole-2,5-dione [referred to by Schumacher et al. as "dimercaptoethanolmaleimide"] and 3,4-bis(phenylsulfanyl)pyrrole-
2.5- dione ["dithiophenolmaleimide"], and their N-PEGylated derivatives as PEGylating agents for somatostatin, where the substituted maleimide bonds to the two sulfur atoms of an opened cysteine- cysteine disulfide bond.
[0013] It would be desirable to develop potent, homogeneous ADCs, compositions containing them and methods for their use in treating cancers, and methods and intermediates in their preparation. Summary of the invention
[0014] In a first aspect, this invention is antibody-cytotoxin antibody-drug conjugates (ADCs) of
Figure imgf000007_0001
n
where:
A is an antibody,
PD is pyrrole-2,5-dione or pyrrolidine-2,5-dione,
the double bond represents bonds from the 3- and 4-positions of the pyrrole-2,5-dione or pyrrolidine-
2,5-dione to the two sulfur atoms of an opened cysteine-cysteine disulfide bond in the antibody,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
CTX is a cytotoxin bonded to L by an amide bond,
n is an integer of 1 to 4, and
m is an integer of 1 to 12.
Because of the bidentate binding of the PD to the two sulfur atoms of an opened cysteine-cysteine disulfide bond in the antibodies, these ADCs are homogeneous and have enhanced stability over ADCs with monodentate linkers. They will therefore have increased half-lives in vivo, reducing the amount of cytotoxin released systemically, and be safer than ADCs with monodentate linkers.
[0015] In a second aspect, this invention is pharmaceutical compositions containing ADCs of the first aspect of this invention; and in a third aspect, this invention is methods of treatment of cancers targeted by the relevant antibodies by administering ADCs of the first aspect of this invention or pharmaceutical compositions of the second aspect of this invention.
[0016] In a fourth aspect, this invention is linker-cytotoxin conjugates of formula A, formula B, and formula C:
Figure imgf000007_0002
A B C where R is C1-6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
CTX is a cytotoxin bonded to L by an amide bond, and
m is an integer of 1 to 12.
These bidentate linker-cytotoxin conjugates are useful in preparing the antibody-drug conjugates of the first aspect of this invention.
[0017] In a fifth aspect, this invention is linkers of formula AA, BB, and CC:
Figure imgf000008_0001
AA BB CC
where R is Ci_6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, Ci_3 alkoxycarbonyl, or Ci_3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
Z is carboxyl, C1-6 alkoxycarbonyl, or amino, and
m is an integer of 1 to 12.
These bidentate linkers are useful in preparing the linker-cytotoxin conjugates of the fourth aspect of this invention.
nkers of formula AAA BBB, and CCC:
Figure imgf000009_0001
BBB CCC where R' is chloro, bromo, iodo, C1-6 alkylsulfonyloxy, trifluoromethanesulfonyloxy,
benzenesulfonyloxy, or 4-toluenesulfonyloxy,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
Z is carboxyl, Ci_6 alkoxycarbonyl, or amino, and
m is an integer of 1 to 12.
These bidentate linkers are also useful in preparing the linker-cytotoxin conjugates of the fourth aspect of this invention, and are useful in preparing the linkers of the fifth aspect of this invention.
[0019] In a seventh aspect, this invention is tubulysins of the formulae of the formulae T3 and T4:
Figure imgf000009_0002
These new tubulysins are analogs of the known tubulysins Tl and T2 referred to previously, but because the terminal N-methylpiperidine has been replaced by an unsubstituted piperidine, these new compounds are able to form tubulysin-linker conjugates with linkers containing a carboxyl group by forming an amide bond between the piperidine nitrogen atom and the carbonyl of the linker carboxy group.
[0020] Preferred embodiments of this invention are characterized by the specification and by the features of Claims 1 to 47 of this application as filed, and of corresponding pharmaceutical compositions, methods, and uses of these compounds. Detailed description of the invention
[0021] Definitions
[0022] An "antibody", also known as an immunoglobulin, is a large Y-shaped protein used by the immune system to identify and neutralize foreign objects such as bacteria and viruses. The antibody recognizes a unique part of the foreign target, called an antigen, because each tip of the "Y" of the antibody contains a site that is specific to a site on an antigen, allowing these two structures to bind with precision. An antibody consists of four polypeptide chains, two identical heavy chains and two identical light chains connected by cysteine disulfide bonds. A "monoclonal antibody" is a monospecific antibody where all the antibody molecules are identical because they are made by identical immune cells that are all clones of a unique parent cell. Initially, monoclonal antibodies are typically prepared by fusing myeloma cells with the spleen cells from a mouse (or B-cells from a rabbit) that has been immunized with the desired antigen, then purifying the resulting hybridomas by such techniques as affinity purification. Recombinant monoclonal antibodies are prepared in viruses or yeast cells rather than in mice, through technologies referred to as repertoire cloning or phage display/yeast display, the cloning of immunoglobulin gene segments to create libraries of antibodies with slightly different amino acid sequences from which antibodies with desired specificities may be obtained. The resulting antibodies may be prepared on a large scale by fermentation. "Chimeric" or "humanized" antibodies are antibodies containing a combination of the original (usually mouse) and human DNA sequences used in the recombinant process, such as those in which mouse DNA encoding the binding portion of a monoclonal antibody is merged with human antibody-producing DNA to yield a partially-mouse, partially-human monoclonal antibody. Full-humanized antibodies are produced using transgenic mice (engineered to produce human antibodies) or phage display libraries. Antibodies of particular interest in this invention are those that are specific to cancer antigens, are non-immunogenic, have low toxicity, and are readily internalized by cancer cells; and suitable antibodies include alemtuzumab, bevacizumab, brentuximab, cetuximab, gemtuzumab, ipilimumab, ofatumumab, panitumumab, rituximab, tositumomab, and trastuzumab.
[0023] A "cytotoxin" is a molecule that, when released within a cancer cell, is toxic to that cell. Cytotoxins of particular interest in this invention are the tubulysins (such as the tubulysins of the formulae T3 and T4), the auristatins (such as monomethylauristatin E and monomethylauristatin F), the maytansinoids (such as mertansine), the cahcheamicins (such as calicheamicin γ); and especially those cytotoxins that, like the tubulysins of the formulae T3 and T4, are capable of coordination through an amide bond to a linker, such as by possessing a basic amine or a carboxyl group.
[0024] A "linker" is a molecule with two reactive termini, one for conjugation to an antibody and the other for conjugation to a cytotoxin. The antibody conjugation reactive terminus of the linker is typically a site that is capable of conjugation to the antibody through a cysteine thiol or lysine amine group on the antibody, and so is typically a thiol-reactive group such as a double bond (as in maleimide) or a leaving group such as a chloro, bromo, or iodo, or an R-sulfanyl group, or an amine- reactive group such as a carboxyl group; while the antibody conjugation reactive terminus of the linker is typically a site that is capable of conjugation to the cytotoxin through formation of an amide bond with a basic amine or carboxyl group on the cytotoxin, and so is typically a carboxyl or basic amine group. When the term "linker" is used in describing the linker in conjugated form, one or both of the reactive termini will be absent (such as the leaving group of the thiol-reactive group) or incomplete (such as the being only the carbonyl of the carboxylic acid) because of the formation of the bonds between the linker and/or the cytotoxin.
[0025] An "antibody-drug conjugate", or "ADC" is an antibody that is conjugated to one or more (typically 1 to 4) cytotoxins, each through a linker. The antibody is typically a monoclonal antibody specific to a cancer antigen.
[0026] "Tubulysin" includes both the natural products described as tubulysins, such as by Sasse et al. and other authors mentioned in the Description of the related art, and also the tubulysin analogs described in US Patent Application Publication No. US 2011/0021568 Al. Tubulysins of particular interest in this invention are the tubulysins of the formulae T3 and T4, and other tubulysins where the terminal N-methylpiperidine has been replaced by an unsubstituted piperidine, allowing amide bond formation with a linker.
[0027] A "basic amine", such as the amine forming a part of the terminal piperidine group of the tubulysins of the formulae T3 and T4, is a primary or secondary amine that is not part of an amide.
[0028] A "therapeutically effective amount" means that amount of an ADC of the first aspect of this invention or composition of the second aspect of this invention which, when administered to a human suffering from a cancer, is sufficient to effect treatment for the cancer. "Treating" or "treatment" of the cancer includes one or more of:
(1) limiting/inhibiting growth of the cancer, i.e. limiting its development;
(2) reducing/preventing spread of the cancer, i.e. reducing/preventing metastases;
(3) relieving the cancer, i.e. causing regression of the cancer,
(4) reducing/preventing recurrence of the cancer; and
(5) palliating symptoms of the cancer.
[0029] Cancers of interest for treatment include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, oral cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer including, for example, HER2 -positive breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma, brain cancer, head and neck cancers, and associated metastases.
[0030] Abbreviations/acronyms
[0031] ADC: antibody-drug conjugate; DEA: diethylamine; DCC: 1,3-dicyclohexylcarbodiimide; DIAD: diisopropyl azodicarboxylate; DIPC: 1 ,3-diisopropylcarbodiimide; DIPEA:
diisopropylethylamine; DMF: N,N-dimethylformamide; DPBS: Dulbecco's phosphate-buffered saline; DTPA: diethylenetriaminepentaacetic acid; DTT: dithiothreitol; EDC: ethyl
3-(3-dimethylaminopropyl)carbodiirnide; HATU: 6>-(7-azabenzotriazol-l-yl)- N,N,N',N'-tetramethyluronium hexafluorophosphate; HOBT: N-hydroxybenzotriazole; NHS:
N-hydroxysuccinimide; ΝΜΜ: N-methylmorpholine; MMAE: monomethylaunstatin E; MMAF: monomethylauristatin F, monomethylauristatin phenylalanine; MC: maleimidocaproyl, 6-(2,5- dioxopyrrolyl)hexanoyl; PBS: phosphate-buffered saline; PEG: poly(ethyleneglycol); TBTU: 2-(lH-benzotriazol- 1 -yl)- 1 , 1 ,3,3-tetramethyluronium tetrafluoroborate; TCEP:
tris(2-carboxyethyl)phosphine; TGI: tumor growth inhibition.
[0032] The ADCs of the invention
As mentioned in the Description of the related art, ADCs of the prior art that coordinate to cysteine thiols of the antibody have employed monofunctional linkers, of which the MC linker is an example. Reduction and opening of the cysteine-cysteine disulfide bonds to give free thiols for conjugation decreases the stability of the antibody, and the formation of the ADC by reaction of the reduced thiols does not re-form a bond, as illustrated in the scheme below:
Figure imgf000013_0001
However, the bifunctional pyrrole-2,5-dione- and pyrrolidine-2,5-dione-based linkers of this invention contain two reactive functional groups (X in the scheme below) that react with the two sulfur atoms of an opened cysteine-cysteine disulfide bond. Reaction of the bifunctional linker with the two cysteines gives a "stapled" dithiosuccinimide or dithiomaleimide antibody conjugate with one linker per disulfide connected through two thioether bonds, as shown in the scheme below (double bond absent from the ring: succinimide linkers of formulae AA and AAA; double bond present in the ring: maleimide linkers of formulae BB and BBB):
Figure imgf000014_0001
bifunctional
linker-drug
conjugate
Unlike conventional methods for cysteine conjugation, the reaction re-forms a covalently bonded structure between the 2 cysteine sulfur atoms and therefore does not compromise the overall stability of the antibody. The method also enables conjugation of an optimal 4 drugs per antibody to afford a homogeneous ADC since all of the reactive cysteines are used. The overall result is replacement of a relatively labile disulfide with a stable "staple" between the cysteines. The monosubstituted maleimide linkers (formulae CC and CCC) are also effectively bifunctional in conjugation with the antibody because the double bond of the maleimide is capable of conjugation to one of the cysteine sulfur atoms and the X group with the other.
[0033] Preparation of the compounds of the invention
[0034] The compounds of the invention, such as ADCs, linker-cytotoxin conjugates, linkers, and tubulysins, are prepared by conventional methods of organic and bio-organic chemistry. See, for example, Larock, "Comprehensive Organic Transformations", Wiley- VCH, New York, N.Y., U.S.A.. Suitable protective groups and their methods of addition and removal, where appropriate, are described in Greene et al., "Protective Groups in Organic Synthesis", 2nd ed., 1991, John Wiley and Sons, New York, NY, US. Reference may also be made to the documents referred to elsewhere in the application, such as to the Schumacher et al. article referred to earlier for the synthesis of linkers, US Patent Application Publication No. US 2011/0021568 Al for the preparation of tubulysins, etc.
[0035] Preparation of the tubulysins
[0036] Tubulysins T3 and T4 are prepared by methods analogous to those of Peltier et al. and US Patent Application Publication No. US 2011/0021568 Al, by substituting D-pipecolinic acid for the D-N-methylpipecolinic acid, protecting and deprotecting if appropriate.
[0037] Preparation of the linkers
[0038] The comparator MC linker is prepared by methods known to the art for its preparation. [0039] Linkers of this invention are prepared by methods analogous to those of Schumacher et al., as follows (in this reaction scheme, R, L and Z have the meanings given them in the discussion of the fifth and sixth as ects of the invention above):
Figure imgf000015_0001
"Activated" for
disulfide exchange
[0040] 2,3-Dibromomaleimide, 1 equivalent, and a base such as sodium bicarbonate, about 5 equivalents, are dissolved in methanol, and a solution of 2-pyridinethiol, slightly more than 1 equivalent, in methanol, is added. The reaction is stirred for 15 min at ambient temperature. The solvent is removed under vacuum and the residue is purified, such as by flash chromatography on silica gel (petroleum ether: ethyl acetate, gradient elution from 9: 1 to 7:3, to give
3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione.
[0041] The coupling of the 3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione with the sidechain is performed under strictly dry conditions. To the 3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione, 1 equivalent, and triphenylphosphine, 1 equivalent, in a mixture of tetrahydrofuran and
dichloromethane, is added dropwise DIAD, 1 equivalent, at -78 °C. The reaction is stirred for 5 min and the sidechain, 0.5 equivalent, in dichloromethane is added dropwise. After stirring for 5 min, neopentyl alcohol, 1 equivalent, in tetrahydrofuran and dichloromethane is added, and stirred for a further 5 min, then the 3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione, 1 equivalent, is added and stirred for another 5 min. The reaction is allowed to warm to ambient temperature with stirring for 20 hr, then the solvents are removed under vacuum. The residue is purified, such as by flash
chromatography on silica gel (methanol: dichloromethane, gradient elution from 0 - 10% methanol), to give the linker. The sidechain may be used in protected form, and deprotected following the Mitsunobu reaction, if appropriate. [0042] Alternatively, the sidechain, optionally protected if appropriate, may be coupled to a 3,4-dibromomaleimide by Mitsunobu coupling; and the resulting compound activated for disulfide exchange by reaction with an R-thiol in the presence of base; in the reverse of the synthesis described in the two previous paragraphs.
[0043] A similar method may be used for linkers containing the pyrrolidine-2,5-dione moiety rather than the pyrrole-2,5-dione moiety shown above, by starting with 2,3-dibromosuccinimide; but more usually these linkers are prepared by preparing the linker with an unsubstituted maleimide and brominating the linker to give the dibromosuccinimide moiety after coupling with the sidechain, and then "activating" the linker with the R-thiol as a last step.
[0044] Mono-substituted maleimide linkers are conveniently prepared by dehydrobromination of the dibromosuccinimide linkers under basic conditions, and related methods.
[0045] Preparation of the linker-cytotoxin conjugates
[0046] Linker-cytotoxin conjugates may be prepared by methods analogous to those of Doronina et al., Bioconjugate Chem. 2006, 17, 114-124, and similar documents. The linker, 1 equivalent, and HATU, 1 equivalent, are dissolved in anhydrous DMF, followed by the addition of DIPEA, 2 equivalents. The resulting solution is added to the cytotoxin, 0.5 equivalents, dissolved in DMF, and the reaction stirred at ambient temperature for 3 hr. The linker-cytotoxin conjugate is purified by reverse phase HPLC on a C- 18 column.
[0047] Preparation of ADCs
[0048] Antibodies, typically monoclonal antibodies are raised against a specific cancer target (antigen), and purified and characterized. Therapeutic ADCs containing that antibody are prepared by standard methods for cysteine conjugation, such as by methods analogous to those of Hamblett et al., "Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug
Conjugate", Clin. Cancer Res. 2004, 10, 7063-7070; Doronina et al., "Development of potent and highly efficacious monoclonal antibody auristatin conjugates for cancer therapy", Nat. Biotechnol., 2003, 21(7), 778-784; and Francisco et al., "cAClO-vcMMAE, an anti-CD30-monomethylauristatin E conjugate with potent and selective antitumor activity", Blood, 2003, 102, 1458-1465. Antibody- drug conjugates with four drugs per antibody are prepared by partial reduction of the antibody with an excess of a reducing reagent such as DTT or TCEP at 37 °C for 30 min, then the buffer exchanged by elution through SEPHADEX® G-25 resin with 1 mM DTPA in DPBS. The eluent is diluted with further DPBS, and the thiol concentration of the antibody may be measured using 5,5'- dithiobis(2-nitrobenzoic acid) [Ellman's reagent]. An excess, for example 5-fold, of the linker- cytotoxin conjugate is added at 4 °C for 1 hr, and the conjugation reaction may be quenched by addition of a substantial excess, for example 20-fold, of cysteine. The resulting ADC mixture may be purified on SEPHADEX G-25 equilibrated in PBS to remove unreacted linker-cytotoxin conjugate, desalted if desired, and purified by size-exclusion chromatography. The resulting ADC may then be then sterile filtered, for example, through a 0.2 μΜ filter, and lyophilized if desired for storage.
[0049] The formation of an ADC of this invention is illustrated by the reaction scheme below, where the "Y"-shaped structure denotes the antibody, only one disulfide bond is shown, and details
Figure imgf000017_0001
Typically, n will be 4, where all of the interchain cysteine disulfide bonds are replaced by linker- drug conjugates. Schumacher et al. in their conjugation to somatostatin add the reducing agent to a mixture of the somatostatin and the PEGylated linker, so this may be possible with antibodies and linker-cytotoxin conjugates also and is not excluded as a method of synthesis.
[0050] Assays
[0051] The ADCs of this invention may be assayed for binding affinity to and specificity for the desired antigen by any of the methods conventionally used for the assay of antibodies; and they may be assayed for efficacy as anticancer agents by any of the methods conventionally used for the assay of cytostatic/cytotoxic agents, such as assays for potency against cell cultures, xenograft assays, and the like. A person of ordinary skill in the art will have no difficulty, considering that skill and the literature available, in determining suitable assay techniques; from the results of those assays, in determining suitable doses to test in humans as anticancer agents, and, from the results of those tests, in determining suitable doses to use to treat cancers in humans.
[0052] Formulation and administration
[0053] The ADCs of the first aspect of this invention will typically be formulated as solutions for intravenous administration, or as lyophilized concentrates for reconstitution to prepare intravenous solutions (to be reconstituted, e.g., with normal saline, 5% dextrose, or similar isotonic solutions). They will typically be administered by intravenous injection or infusion. A person of ordinary skill in the art of pharmaceutical formulation, especially the formulation of anticancer antibodies, will have no difficulty, considering that skill and the literature available, in developing suitable formulations.
[0054] Examples
[0055] Synthesis of linkers
- Synthesis of 3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione
Figure imgf000018_0001
[0057] 3,4-Dibromopyrrole-2,5-dione [2,3-dibromomaleimide], 1 g, was added to a clean 100 mL round bottom flask with a rubber stopper and bubbler, and dissolved in 50mL HPLC grade methanol. 2-Pyridinethiol, 2 equivalents, was added to a 20 mL scintillation vial, and dissolved in 10 mL methanol. Under nitrogen and with stirring, the 2-pyridinethiol/methanol solution was added dropwise to the 3,4-dibromopyrrole-2,5-dione via a 20 mL syringe with a 16 gauge needle, and the reaction mixture was stirred for an additional 3-4 hours. The methanol was evaporated and the crude product was dissolved in ethyl acetate and loaded onto about 2 g silica gel. The silica gel-loaded crude product was eluted through a 12 g silica gel cartridge with a hexane: ethyl acetate gradient from 9: 1 to 0: 1 over 25 column volumes. The enriched fractions were identified, pooled and lyophilized to dryness. The final product was recrystallized from ethyl acetate and diethyl ether to provide yellow needle crystals which were collected by filtration.
[0058] Similar syntheses may be performed using the methods of Schumacher et al. for other 3,4-di(R-sulfanyl)pyrrole-2,5-diones (see the Supplementary Materials at pages S17-S18). Similar syntheses may also be performed starting with (3,4-dibromo-2,5-dioxopyrrolyl)-terminated linkers [i.e. compounds where a sidechain has already been added to the pyrrole nitrogen] to give the corresponding (2,5-dioxo-3,4-di(R-sulfanyl)pyrrolyl)-terminated linkers; and/or with other thiols (such as the benzenethiol and 2-hydroxyethanethiol of Schumacher et al.) to give the corresponding linkers; and/or with other pyrrolediones or pyrrolidinediones, such as 3,4-dichloropyrrole-2,5-dione or 3,4-dibromopyrrolidine-2,5-dione, or based on them, to give the corresponding
3,4-di(R-sulfanyl)pyrrole-2,5-diones or 3,4-di(R-sulfanyl)pyrrolidine-2,5-diones or linkers based on them.
[0059] Example 2 - Synthesis of 39-(3,4-dibromo-2,5-dioxopyrrolyl)- 3, 6,9, 12, 15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid:
Figure imgf000019_0001
[0060] A 100 mL two-necked round bottom flask was flame dried and cooled under nitrogen. The cooled flask was charged with 200 mg (0.296 mmol) of ieri-butyl 39-hydroxy- 3, 6, 9, 12,15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoate. Triphenylphosphine, 106 mg, was dissolved in about 5 mL anhydrous tetrahydrofuran in a vial, and the solution was added to thelOO mL flask via cannula under nitrogen. The 100 mL flask was cooled in an ice-water bath for 15 minutes. To the cooled solution was added 55 mg (0.217mmol) 3,4-dibromopyrrole-2,5-dione with stirring until a clear solution was observed. DIAD, 58.3 μL·, was added to the cooled reaction mixture, which was stirred in the ice bath for an additional 10 minutes. The reaction mixture was stirred and allowed to reach room temperature over about 20 hours, then concentrated on a rotary evaporator until dry, giving a yellow viscous oil, which was absorbed onto about 1 g silica gel and dry-loaded onto a Reveleris normal phase chromatography unit. The oil was eluted over a 12 g silica gel cartridge with a methanokdichloromethane gradient from 1:0 to 9:1 over 28 column volumes. The fractions containing the desired product were pooled and concentrated to dryness. The purified product was suspended in 50:50 acetonitrile: water and lyophilized overnight to provide a clear light yellow viscous oil. By LC-MS analysis, the of ieri-butyl-protected carboxylic acid product had been partially deprotected during the work-up. To fully deprotect the material to the free acid, the lyophilized material was treated with 5% trifluoroacetic acid in dichloromethane, concentrated to dryness and lyophilized in acetonitrile: water (50:50) overnight.
[0061] Similar syntheses may be performed starting with 3,4-bis(2-pyridylsulfanyl)pyrrole-
2,5-dione to give 39-(2,5-dioxo-3,4-bis(2-pyridylsulfanyl)pyrrolyl)-
3, 6, 9, 12,15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid, or starting with other
3.4- di(R-sulfanyl)pyrrole-2,5-diones to give the corresponding linkers; and/or starting with other hydroxyl-terminated sidechains, e.g. using ieri-butyl 6-hydroxyhexanoate to give 6-(3,4-dibromo-
2.5- dioxopyrrolyl)hexanoic acid, etc. Similar syntheses starting with maleimide rather than
2,3-dibromomaleimide give comparator linkers of the prior art, such as
6-(2,5-dioxopyrrolyl)hexanoic acid, the MC linker. [0062] Example 3 : Synthesis of 39-(3,4-dibromo-2,5-dioxopyrrolidinyl)-
3, 6, 9, 12, 15, 18,21 , 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid [the dBrPEG linker] :
Figure imgf000021_0001
[0063] 39-(2,5-dioxopyrrolyl)-3, 6, 9, 12, 15, 18,21 , 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid was prepared in the same manner as the 39-(3,4-dibromo-2,5-dioxopyrrolyl)-
3, 6, 9, 12, 15, 18,21 , 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid of Example 2, but starting with maleimide rather than 2,3-dibromomaleimide. The acid was treated with 0.5 equivalents of bromine in chloroform followed by refluxing overnight to give 39-(3,4-dibromo-2,5-dioxopyrrolidinyl)-
3, 6, 9, 12, 15, 18,21 , 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid after flash purification on silica gel.
[0064] Similar syntheses may be performed using other hydroxyl-terminated sidechains, e.g. using ieri-butyl 6-hydroxyhexanoate to give 6-(3,4-dibromo-2,5-dioxopyrrolidinyl)hexanoic acid, etc. The dibrominated linkers that are products of this synthesis may be dehydrobrominated with base in an additional step to give (3-bromo-2,5-dioxopyrrolyl)-terminated linkers, such as 6-(3-bromo- 2,5-dioxopyrrolyl)hexanoic acid. [0065] Synthesis of linker-cytotoxin conjugates [0066] Example 4: Synthesis of T4
Figure imgf000022_0001
[0067] Fmoc-T4 was prepared by coupling Fmoc-D-2-piperidinecarboxylic acid to isoleucine in the presence of EDC and sodium bicarbonate, then coupling the resulting Fmoc-D-Pip-Ile-OH to the N-methylvaline intermediate 1 (purchased from Concortis) by mixing with 1 equivalent of HOBT and DIPC in DMF followed by addition of 2.5 equivalents of NMM. The reaction mixture was stirred overnight and purified by flash chromatography on silica gel using a gradient of hexane and ethyl acetate. Evaporation of solvent gave Fmoc-T4 as a yellow oil. The Fmoc-T4 was then deprotected by treatment with 20% DEA in methylene chloride for 30 minutes to give T4, which was purified by preparative HPLC on a CI 8 reverse phase column eluted with acetonitrile/water.
[0068] Example 5: Synthesis of 6-(2,5-dioxopyrrolyl)hexanoyl-T4 [MC-T4] and 39-(3,4-dibromo- 2,5-dioxopyrrolidinyl)-3,6,9,12,15, 18,21,24,27,30,33,36-dodecaoxanonatriacontanoyl-T4
[dBrPEG-T4]
Figure imgf000023_0001
[0069] Coupling of T4 to the MC or dBrPEG linkers described in Example 2 and 3 respectively was performed by activating the linkers with 1 equivalent of TBTU in the presence of 2 equivalents of DIPEA in DMF, then coupling with the T4 for 72 hours at room temperature. Purification by preparative CI 8 HPLC (acetonitrile-water gradient) gave MC-T4 or dBrPEG-T4 suitable for conjugation to antibodies.
[0070] Similar syntheses using other linkers give the corresponding linker-T4 conjugates. Similar syntheses using T3, MMAF, or other cytotoxins with a basic amine give the corresponding linker- cytotoxin conjugates. Similar syntheses using amine-terminated linkers and cytotoxins with a carboxyl group, activating the cytotoxin in the same manner as the linker was activated in the above Example, give other linker-cytotoxin conjugates.
[0071] Example 6. Synthesis of 39-(2,5-dioxo-3,4-bis(2-pyridylsulfanyl)pyrrolyl)- -dodecaoxanonatriacontanoyl-MMAF [dPSPEG-MMAF] :
Figure imgf000024_0001
[0072] 39-(2,5-Dioxo-3,4-bis(pyridin-2-ylthio)-2,5-dihydro-lH-pyrrol-l-yl)- 3,6, 9, 12,15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid was added to a clean, flame- dried 50 mL round bottom flask, and the carboxylic acid was activated with NHS in 3 mL of DMF in the presence of DCC. MMAF was predissolved in about 1 mL DMF and transferred to the NHS- activated acid via 22 gauge needle. DIPEA was added to the reaction mixture and stirred overnight. The crude reaction mixture was purified by reverse-phase HPLC on a 21.2 mm x 50 mm Agilent PREP-C18 column at a flow rate of 35 mL/min over 20 column volumes (about 30 minutes of gradient time). Enriched fractions were identified, pooled and lyophilized to give the dPSPEG- MMAF conjugate as a white semi-solid.
[0073] Similar syntheses using other linkers give the corresponding linker-MMAF conjugates. Similar syntheses using T3, T4, or other cytotoxins with a basic amine give the corresponding linker-cytotoxin conjugates, such as dPSPEG-T4. Similar syntheses using amine-terminated linkers and cytotoxins with a carboxyl group, activating the cytotoxin in the same manner as the linker was activated in the above Example, give other linker-cytotoxin conjugates. [0074] Synthesis of antibody-drug conjugates
[0075] Example 7 : Synthesis of trastuzumab-dTSPEG-MMAF ADC
Figure imgf000025_0001
trastuzumab-dTSPEG-MMAF
[0076] Trastuzumab, 1 mL of a 20 mg/niL solution in pH 7.4 PBS (Gibco Mg and Ca free) with ImM DTPA, is loaded into a sterile 1.7 mL Eppendorf tube, then 2.75 equivalents of TCEP hydrochloride (Sigma ampule 0.5M concentration), is added and the mixture incubated at 37 °C for 1 hour to give an average of 4 free thiol pairs per trastuzumab (this can be verified by Ellman's colorimetric assay - see Ellman, "Tissue sulfhydryl groups", Arch. Biochem. Biophys, 1959, 82, 70- 77 or later papers referring to this assay). The reduced antibody solution is cooled in an ice-bath at about 0 °C for 15 minutes; then a solution of about 4 equivalents of dPSPEG-MMAF in
dimethylsulf oxide is added and the mixture incubated at 37 °C for 2 hours (or at 4 °C for 20 hours). The resulting trastuzumab-dTSPEG-MMAF ADC is purified by size-exclusion chromatography (GE AKTA pure chromatographic system) or PD10 desalting column. [0077] Similar syntheses using other linker-cytotoxin conjugates, such as dPSPEG-T4, and/or other antibodies, such as 18-2A (a murine IgG2a antibody), give the corresponding ADCs.
[0078] Assays
[0079] ADCs of this invention are tested for potency and selectivity in vitro by determining their cytotoxicity in cancer cell lines of interest, such as those cancer cell lines expressing the antigen corresponding to the antibody portion of the ADC and similar cancer cell lines lacking the antigen. They are tested for potency and safety in vivo in such animal models as the mouse subcutaneous cancer xenograft and mouse orthotopic cancer xenograft models well known to those of skill in the art of cancer research.
[0080] Example 8: Cytotoxicity of trastuzumab ADCs compared to trastuzumab
[0081] The cytotoxicity of two ADCs where trastuzumab was conjugated to the currently used cytotoxin MMAF through an MC linker [trastuzumab-MC-MMAF] was compared to the cytotoxicity of trastuzumab alone in HER2-positive and HER2-negative tumor cells. In the
HER2-negative tumor cells, the IC50 for both ADCs and for trastuzumab itself was >500 nM;
however, in the HER2-positive tumor cells, while the IC50 for trastuzumab itself was still >500 nM, the two trastuzumab-MC-MMAF ADCs had IC50s of 0.009 nM and 0.018 nM. These results suggest that ADCs are considerably more potent than their parental antibodies.
[0082] Example 9: Cytotoxicity of Tl and T2 compared to MMAF
[0083] The cytotoxicity of tubulysins Tl and T2 was compared to the cytotoxicity of MMAF using the BT474 (HER2+) cell line in a standard cellular cytotoxicity assay. In these cells, MMAF had an IC50 of 93 nM, Tl had an IC50 of 11 nM, and T2 had an IC50 of <0.1 nM, showing that these tubulysins are considerably more potent than MMAF. These results suggest that that the
N-conjugable tubulysins T3 and T4 are of similar potency to non-N-conjugable tubulysins Tl and T2, and considerably more potent than MMAF. These results and the results of Example 8 suggest that tubulysin ADCs are considerably more potent than MMAF ADCs, and will be effective anticancer agents. [0084] Example 10: Binding affinity of ADCs for antigen-expressing cells
[0085] Binding of the antibodies and ADCs to antigen-expressing cells are measured using a cell ELISA. Sarcoma cells transduced to express the target (F279 cells for HER2, F244 cells for CD98) are plated the day at 5000 cells per well in a 384- well plate. The following day, antibodies are serially diluted in a separate plate, and then transferred to the cell plate, which has previously had media removed by aspiration. After a 2 hour incubation at room temperature, the plate is washed with wash buffer (DPBS at pH7.4 with 0.1% bovine serum albumin) and then 25 μΕ horseradish peroxidase-labeled secondary antibody diluted in media is added and incubated for 30 minutes at room temperature. The plate is then washed and 15 μΕ of a chemiluminescent substrate (Pierce catalog #37069) is added; and the plate is read in a plate-based luminescence reader. Trastuzumab and trastuzumab ADCs (trastuzumab-MC-MMAF, trastuzumab-MC-T4, trastuzumab-dTSPEG- MMAF, and trastuzumab-dTSPEG-T4) demonstrated comparable affinity for F277 cells; and 18-2A and 18-2A ADCs (18-2A-MC-MMAF, 18-2A-MC-T4, 18-2A-dTSPEG-MMAF, and 18-2A- dTSPEG-T4) demonstrated comparable affinity for F244 cells, indicating that conjugation of the drug payloads do not effect antigen binding.
[0086] Example 11 : Potency of ADCs against antigen-expressing cells
[0087] The potency of ADCs for inhibition of tumor cell growth was tested in cell proliferation assays. The Ramos (B-cell lymphoma) and BT474 (HER2+ human breast carcinoma) cell lines were seeded into 96 well half-area plates the day before drug treatment at 3000 and 5000 cells per well respectively. ADCs and controls were serially diluted in a master plate, and then transferred to the cell plates, which were incubated at 37 degrees Celsius and 5% C02 for 3 days. The cells were quantitated by measuring the level of ATP in the wells using the ATPLite IStep kit (Perkin Elmer catalog #50-904-9883) as described by the manufacturer. The 18-2A ADCs (18-2A-MC-MMAF, 18- 2A-MC-T4, 18-2A-dTSPEG-MMAF, and 18-2A-dTSPEG-T4) were approximately equipotent and considerably more potent than the parent 18-2A antibody in Ramos cells, while the trastuzumab ADCs (trastuzumab-MC-MMAF, trastuzumab-MC-T4, trastuzumab-dTSPEG-MMAF, and trastuzumab-dTSPEG-T4) were approximately equipotent and considerably more potent than the parent trastuzumab antibody in BT474 cells. [0088] Example 12: Efficacy of ADCs in murine xenograft models
[0089] The Ramos cell xenograft model.
[0090] The Ramos cell line was obtained from ATCC and cultured according to the supplier's protocols. 4-6 Week-old immunodeficient female mice (Taconic C.B-17 scid) were subcutaneously η
injected on the right flank with 1x10 viable cells in a mixture of PBS (without magnesium or calcium) and BD Matrigel (BD Biosciences) at a 1: 1 ratio. The injected total volume per mouse was 200 μΕ with 50% being Matrigel. Once the tumor reached a size of 65-200 mm , mice were randomized. ADCs were formulated in PBS and administered once intravenously at a dose of 1 mg/Kg into the lateral tail vein, and body weights and tumors were measured twice weekly. Tumor volume was calculated as described in van der Horst et al., "Discovery of Fully Human Anti-MET Monoclonal Antibodies with Antitumor Activity against Colon Cancer Tumor Models In Vivo", Neoplasia, 2009, 11, 355-364. The experiments were performed on groups of 8 animals per experimental point. The negative control group received HB121 (an IgG2a-negative antibody) and free MMAF or T4, as appropriate, at a concentration equimolar to the concentration that would be released by the ADCs, while the positive control group received 18-2A. The 18-2A ADCs with the linkers of this invention ( 18-2A-dTSPEG-MMAF and 18-2A-dTSPEG-T4) demonstrated slightly more but comparable TGI than the comparator ADCs (18-2A-MC-MMAF and 18-2A-MC-T4, respectively), and more TGI than the parent 18-2A antibody, while all demonstrated significant TGI compared to the control. No toxicity was observed based on animal weight measurements.
[0091] The BT474 cell xenograft model.
[0092] The BT474 cell line was obtained from ATCC and cultured according to the supplier's protocols. 4-6 Week-old immunodeficient female mice (Taconic C.B-17 scid) were implanted with a β-estradiol pellet 3 days before being subcutaneously injected on the right flank with lxlO7 viable cells in a mixture of PBS (without magnesium or calcium) and BD Matrigel (BD Biosciences) at a 1: 1 ratio. The injected total volume per mouse was 200 μΕ with 50% being Matrigel. Once the tumor reached a size of 100-150 mm , mice were randomized. ADCs were formulated in PBS and administered once intravenously at a dose of 1 mg/Kg into the lateral tail vein, and body weights and tumors were measured twice weekly. Tumor volume was calculated as described in van der Horst et al., cited above. The experiments were performed on groups of 8 animals per experimental point. The negative control group received HB121 and free MMAF or T4, as appropriate, at a
concentration equimolar to the concentration that would be released by the ADCs, while the positive control group received trastuzumab at 1 mg/Kg. The trastuzumab ADCs with the linkers of this invention (trastuzumab-dTSPEG-MMAF and trastuzumab-dTSPEG-T4) demonstrated comparable TGI to than the comparator ADCs (trastuzumab-MC-MMAF and trastuzumab-MC-T4,
respectively), and slightly more TGI than the parent trastuzumab, while all demonstrated significant TGI compared to the control. No toxicity was observed based on animal weight measurements.
[0093] Similar tests are conducted with other cancers (those expressing different antigens) and ADCs where the antibody corresponds to the antigen expressed by the cancer.

Claims

What is claimed is:
1. An antibody-drug conjugate of the formula:
Figure imgf000030_0001
where:
A is an antibody,
PD is pyrrole-2,5-dione or pyrrolidine-2,5-dione,
the double bond represents bonds from the 3- and 4-positions of the pyrrole-2,5-dione or pyrrolidine-
2,5-dione to the two sulfur atoms of an opened cysteine-cysteine disulfide bond in the antibody,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
CTX is a cytotoxin bonded to L by an amide bond,
n is an integer of 1 to 4, and
m is an integer of 1 to 12.
2. The antibody-drug conjugate of claim 1 where A is a monoclonal antibody.
3. The antibody-drug conjugate of claim 1 or 2 where A is a human or humanized antibody.
4. The antibody-drug conjugate of any one of claims 1 to 3 where A is an antibody that is specific to a cancer antigen.
5. The antibody-drug conjugate of claim 1 where A is alemtuzumab, bevacizumab,
brentuximab, cetuximab, gemtuzumab, ipilimumab, ofatumumab, panitumumab, rituximab, tositumomab, or trastuzumab.
6. The antibody-drug conjugate of claim 1 where A is trastuzumab.
7. The antibody-drug conjugate of any one of claims 1 to 6 where CTX is an auristatin, a calicheamicin, a maytansinoid, or a tubulysin.
8. The antibody-drug conjugate of claim 7 where CTX is monomethylauristatin E,
monomethylauristatin F, calicheamicin γ, mertansine, tubulysin T3, or tubulysin T4.
9. The antibody-drug conjugate of any one of claims 1 to 8 where PD is pyrrolidine-2,5-dione.
10. The antibody-drug conjugate of any one of claims 1 to 8 where PD is pyrrole-2,5-dione.
11. The antibody-drug conjugate of any one of claims 1 to 10 where L is -(CH2)m-.
12. The antibody-drug conjugate of any one of claims 1 to 10 where L is
-(CH2CH20)mCH2CH2-.
13. A pharmaceutical composition containing an antibody-drug conjugate of any one of claims 1 to 12.
14. A method of treating a cancer by administering to a human suffering therefrom an effective amount of an antibody-drug conjugate of any one of claims 1 to 12 or a pharmaceutical composition of Claim 13.
15. A linker-cytotoxin conjugate of formula A, B, or C:
Figure imgf000031_0001
A B C
where R is C1-6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, Ci_3 alkoxycarbonyl, or Ci_3 alkyl,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
CTX is a cytotoxin bonded to L by an amide bond, and
m is an integer of 1 to 12.
16. The linker-cytotoxin conjugate of claim 15 where the conjugate is of formula A.
17. The linker-cytotoxin conjugate of claim 15 where the conjugate is of formula B.
18. The linker-cytotoxin conjugate of claim 15 where the conjugate is of formula C.
19. The linker-cytotoxin conjugate of any one of claims 15 to 18 where R is 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl.
20. The linker-cytotoxin conjugate of claim 19 where R is 2-pyridyl.
21. The linker-cytotoxin conjugate of any one of claims 15 to 20 where CTX is an auristatin, a calicheamicin, a maytansinoid, or a tubulysin.
22. The linker-cytotoxin conjugate of claim 21 where CTX is monomethylauristatin E, monomethylauristatin F, calicheamicin γ, mertansine, tubulysin T3, or tubulysin T4.
23. The linker-cytotoxin conjugate of any one of claims 15 to 21 where L is -(CH2)m-.
24. The linker-cytotoxin conjugate of any one of claims 15 to 21 where L is
-(CH2CH20)mCH2CH2-.
2 . A linker of formula AA, BB, or CC:
Figure imgf000032_0001
AA BB CC
where R is C1-6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, Ci_3 alkoxycarbonyl, or Ci_3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, C1-3 alkoxycarbonyl, or C1-3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, Ci_3 alkoxycarbonyl, or Ci_3 alkyl,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
Z is carboxyl, Ci_6 alkoxycarbonyl, or amino, and
m is an integer of 1 to 12.
26. The linker of claim 25 where the linker is of formula AA.
27. The linker of claim 25 where the linker is of formula BB.
28. The linker of claim 25 where the linker is of formula CC.
29. The linker of any one of claims 25 to 28 where R is 2-pyridyl.
30. The linker of any one of claims 25 to 29 where L is -(CH2)m-.
31. The linker of any one of claims 25 to 29 where L is -(CH2CH20)mCH2CH2-
32. The linker of any one of claims 25 to 31 where Z is carboxyl.
33. The linker of any one of claims 25 to 31 where Z is C1-6 alkoxycarbonyl.
34. The linker of any one of claims 25 to 31 where Z is amino.
35. A linker of formula AAA, BBB, or CCC:
Figure imgf000033_0001
AAA BBB CCC
where R' is chloro, bromo, iodo, Ci_6 alkylsulfonyloxy, trifluoromethanesulfonyloxy, benzenesulfonyloxy, or 4-toluenesulfonyloxy,
L is -(CH2)m- or -(CH2CH20)mCH2CH2-
Z is carboxyl, Ci_6 alkoxycarbonyl, or amino, and
m is an integer of 1 to 12.
36. The linker of claim 35 where the linker is of formula AAA.
37. The linker of claim 35 where the linker is of formula BBB.
38. The linker of claim 35 where the linker is of formula CCC.
39. The linker of any one of claims 35 to 38 where L is -(CH2)m-.
40. The linker of any one of claims 35 to 38 where L is -(CH2CH20)mCH2CH2-.
41. The linker of any one of claims 35 to 40 where Z is carboxyl.
42. The linker of any one of claims 35 to 40 where Z is Ci_6 alkoxycarbonyl.
43. The linker of any one of claims 35 to 40 where Z is amino.
44. The linker of any one of claims 35 to 43 where R' is chloro, bromo, or iodo.
45. The linker of claim 44 where R' is bromo.
46. A tubulysin compound of the formula T3:
Figure imgf000034_0001
T3
47. A tubulysin compound of the formula T4:
Figure imgf000034_0002
PCT/US2012/067803 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods WO2013085925A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
MX2014006739A MX2014006739A (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods.
BR112014013526A BR112014013526A2 (en) 2011-12-05 2012-12-04 antibody-drug conjugates and related compounds, compositions and methods
AU2012348017A AU2012348017A1 (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods
SG11201402686UA SG11201402686UA (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods
CN201280067454.XA CN104244718A (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods
RU2014124984A RU2014124984A (en) 2011-12-05 2012-12-04 COMPOUNDS ANTI-MEDICINAL PRODUCT AND RELATED COMPOUNDS, COMPOSITIONS AND METHODS
CA2857398A CA2857398A1 (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods
JP2014546004A JP2015500287A (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions and methods
EP12855849.1A EP2793585A4 (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods
KR1020147018663A KR20140139480A (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods
IN4961CHN2014 IN2014CN04961A (en) 2011-12-05 2012-12-04
ZA2014/03946A ZA201403946B (en) 2011-12-05 2014-05-29 Antibody-drug conjugates and related compounds, compositions and methods
PH12014501229A PH12014501229A1 (en) 2011-12-05 2014-05-30 Antibody-drug conjugates and related compounds, compositions, and methods
IL232936A IL232936A0 (en) 2011-12-05 2014-06-02 Antibody-drug conjugates and related compounds, compositions, and methods
HK15104134.2A HK1203309A1 (en) 2011-12-05 2015-04-29 Antibody drug conjugates and related compounds, compositions, and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161566909P 2011-12-05 2011-12-05
US61/566,909 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013085925A1 true WO2013085925A1 (en) 2013-06-13

Family

ID=48574809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/067803 WO2013085925A1 (en) 2011-12-05 2012-12-04 Antibody-drug conjugates and related compounds, compositions, and methods

Country Status (17)

Country Link
US (3) US20130224228A1 (en)
EP (1) EP2793585A4 (en)
JP (1) JP2015500287A (en)
KR (1) KR20140139480A (en)
CN (1) CN104244718A (en)
AU (1) AU2012348017A1 (en)
BR (1) BR112014013526A2 (en)
CA (1) CA2857398A1 (en)
HK (1) HK1203309A1 (en)
IL (1) IL232936A0 (en)
IN (1) IN2014CN04961A (en)
MX (1) MX2014006739A (en)
PH (1) PH12014501229A1 (en)
RU (1) RU2014124984A (en)
SG (1) SG11201402686UA (en)
WO (1) WO2013085925A1 (en)
ZA (1) ZA201403946B (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145090A1 (en) 2013-03-15 2014-09-18 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
US20140363454A1 (en) * 2013-06-06 2014-12-11 Igenica Biotherapeutics, Inc. Antibody-Drug Conjugates, Compositions and Methods of Use
WO2015004400A1 (en) * 2013-07-11 2015-01-15 Universite Francois Rabelais Novel antibody-drug conjugates and the use of same in therapy
US20150105540A1 (en) * 2013-10-15 2015-04-16 Sorrento Therapeutics Inc. Drug-conjugates with a targeting molecule and two different drugs
WO2015095953A1 (en) 2013-12-27 2015-07-02 The Centre For Drug Research And Development Sulfonamide-containing linkage systems for drug conjugates
JP2015518831A (en) * 2012-05-15 2015-07-06 ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. Drug conjugate, conjugation method and use thereof
WO2015113760A1 (en) * 2014-01-28 2015-08-06 Tube Pharmaceuticals Gmbh Cytotoxic tubulysin compounds for conjugation
WO2015138460A1 (en) 2014-03-11 2015-09-17 Regeneron Pharmaceuticals, Inc. Anti-egfrviii antibodies and uses thereof
WO2015187596A3 (en) * 2014-06-02 2016-02-25 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates, their preparation and their therapeutic use
WO2016077260A1 (en) * 2014-11-10 2016-05-19 Bristol-Myers Squibb Company Tubulysin analogs and methods of making and use
CN105979971A (en) * 2014-02-06 2016-09-28 欧寇玛特瑞克斯生物制药公司 Antibody-drug conjugates and immunotoxins
WO2016160615A1 (en) 2015-03-27 2016-10-06 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
WO2016064749A3 (en) * 2014-10-20 2016-11-17 Igenica Biotherapeutics, Inc. Antibody-drug conjugates and related compounds, compositions, and methods of use
WO2017031034A2 (en) 2015-08-14 2017-02-23 Rc Biotechnologies, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
WO2017095808A1 (en) 2015-11-30 2017-06-08 Abbvie Inc. ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
WO2017095805A1 (en) 2015-11-30 2017-06-08 Abbvie Inc. ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
US20170157262A1 (en) * 2012-07-12 2017-06-08 R. Yongxin Zhao Conjugates of cell binding molecules with cytotoxic agents
WO2017100642A1 (en) 2015-12-11 2017-06-15 Regeneron Pharmaceuticals, Inc. Methods for reducing or preventing growth of tumors resistant to egfr and/or erbb3 blockade
WO2017132173A1 (en) 2016-01-25 2017-08-03 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
WO2017201204A1 (en) 2016-05-17 2017-11-23 Abbvie Biotherapeutics Inc. ANTI-cMet ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
EP3100731A4 (en) * 2014-01-29 2017-12-20 Shanghai Hengrui Pharmaceutical Co., Ltd. Ligand-cytotoxicity drug conjugate, preparation method therefor, and uses thereof
WO2018002902A1 (en) 2016-07-01 2018-01-04 Glaxosmithkline Intellectual Property (No.2) Limited Antibody-drug conjugates and therapeutic methods using the same
WO2018058003A1 (en) 2016-09-23 2018-03-29 Regeneron Pharmaceuticals, Inc. Anti-muc16 (mucin 16) antibodies
WO2018058001A1 (en) 2016-09-23 2018-03-29 Regeneron Pharmaceuticals, Inc. Anti-steap2 antibodies, antibody-drug conjugates, and bispecific antigen-binding molecules that bind steap2 and cd3, and uses thereof
WO2018089373A2 (en) 2016-11-08 2018-05-17 Regeneron Pharmaceuticals, Inc. Steroids and protein-conjugates thereof
WO2018093866A1 (en) 2016-11-16 2018-05-24 Regeneron Pharmaceuticals, Inc. Anti-met antibodies, bispecific antigen binding molecules that bind met, and methods of use thereof
US10004812B2 (en) 2014-02-06 2018-06-26 Oncomatryx Biopharma, S.L. Antibody-drug conjugates and immunotoxins
US10011657B2 (en) 2014-10-31 2018-07-03 Abbvie Biotherapeutics Inc. Anti-CS1 antibodies and antibody drug conjugates
US20190015517A1 (en) * 2015-12-04 2019-01-17 Seattle Genetics, Inc. Conjugates of quaternized tubulysin compounds
WO2019136487A2 (en) 2018-01-08 2019-07-11 Regeneron Pharmaceuticals, Inc. Steroids and antibody-conjugates thereof
WO2019212965A1 (en) 2018-04-30 2019-11-07 Regeneron Pharmaceuticals, Inc. Antibodies, and bispecific antigen-binding molecules that bind her2 and/or aplp2, conjugates, and uses thereof
WO2019217591A1 (en) 2018-05-09 2019-11-14 Regeneron Pharmaceuticals, Inc. Anti-msr1 antibodies and methods of use thereof
WO2019222663A1 (en) 2018-05-17 2019-11-21 Regeneron Pharmaceuticals, Inc. Anti-cd63 antibodies, conjugates, and uses thereof
WO2019229701A2 (en) 2018-06-01 2019-12-05 Novartis Ag Binding molecules against bcma and uses thereof
WO2020022899A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for breast cancer
WO2020022900A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for kidney cancer
WO2020022903A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. ARID1A, CDKN2A, KMT2B, KMT2D, TP53 and PTEN VACCINES FOR CANCER
WO2020022902A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for colorectal cancer
WO2020022901A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for uterine cancer
US10675352B2 (en) 2014-02-14 2020-06-09 Centrose, Llc Extracellular targeted drug conjugates
WO2020132483A1 (en) 2018-12-21 2020-06-25 Regeneron Pharmaceuticals, Inc. Rifamycin analogs and antibody-drug conjugates thereof
CN111433188A (en) * 2018-12-17 2020-07-17 荣昌生物制药(烟台)股份有限公司 Linker for antibody drug conjugate and application thereof
WO2020172475A1 (en) 2019-02-21 2020-08-27 Regeneron Pharmaceuticals, Inc. Methods of treating ocular cancer using anti-met antibodies and bispecific antigen binding molecules that bind met
WO2021016204A1 (en) 2019-07-19 2021-01-28 Immunesensor Therapeutics, Inc. Antibody-sting agonist conjugates and their use in immunotherapy
WO2021055895A1 (en) 2019-09-19 2021-03-25 Regeneron Pharmaceuticals, Inc. Anti-ptcra antibody-drug conjugates and uses thereof
WO2021174113A1 (en) 2020-02-28 2021-09-02 Regeneron Pharmaceuticals, Inc. Bispecific antigen binding molecules that bind her2, and methods of use thereof
WO2021178896A1 (en) 2020-03-06 2021-09-10 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
US11129903B2 (en) 2015-07-06 2021-09-28 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
WO2021211984A1 (en) 2020-04-16 2021-10-21 Regeneron Pharmaceuticals, Inc. Diels-alder conjugation methods
EP3900742A1 (en) 2014-09-11 2021-10-27 Seagen Inc. Targeted delivery of tertiary amine-containing drug substances
WO2022015656A1 (en) 2020-07-13 2022-01-20 Regeneron Pharmaceuticals, Inc. Camptothecin analogs conjugated to a glutamine residue in a protein, and their use
WO2022056494A1 (en) 2020-09-14 2022-03-17 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof
WO2022087243A1 (en) 2020-10-22 2022-04-28 Regeneron Pharmaceuticals, Inc. Anti-fgfr2 antibodies and methods of use thereof
US11352446B2 (en) 2016-04-28 2022-06-07 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
WO2022187591A1 (en) 2021-03-05 2022-09-09 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
US11491237B2 (en) 2017-05-18 2022-11-08 Regeneron Pharmaceuticals, Inc. Cyclodextrin protein drug conjugates
WO2023014863A1 (en) 2021-08-05 2023-02-09 Go Therapeutics, Inc. Anti-glyco-muc4 antibodies and their uses
US11596635B2 (en) 2013-08-26 2023-03-07 Regeneron Pharmaceuticals, Inc. Pharmaceutical compositions comprising macrolide diastereomers, methods of their synthesis and therapeutic uses
WO2023034569A1 (en) 2021-09-03 2023-03-09 Go Therapeutics, Inc. Anti-glyco-cmet antibodies and their uses
WO2023034571A1 (en) 2021-09-03 2023-03-09 Go Therapeutics, Inc. Anti-glyco-lamp1 antibodies and their uses
WO2023137026A1 (en) 2022-01-12 2023-07-20 Regeneron Pharmaceuticals, Inc. Camptothecin analogs conjugated to a glutamine residue in a protein, and their use
WO2023173132A1 (en) 2022-03-11 2023-09-14 Regeneron Pharmaceuticals, Inc. Anti-glp1r antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof
US11793880B2 (en) 2015-12-04 2023-10-24 Seagen Inc. Conjugates of quaternized tubulysin compounds
US11873281B2 (en) 2012-07-12 2024-01-16 Hangzhou Dac Biotech Co., Ltd. Conjugates of cell binding molecules with cytotoxic agents
WO2024020164A2 (en) 2022-07-21 2024-01-25 Firefly Bio, Inc. Glucocorticoid receptor agonists and conjugates thereof
US11896682B2 (en) 2019-09-16 2024-02-13 Regeneron Pharmaceuticals, Inc. Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof
US11932695B2 (en) 2013-06-06 2024-03-19 Sensei Biotherapeutics, Inc. Modified antibodies and related compounds, compositions and methods of use
WO2024138000A1 (en) 2022-12-21 2024-06-27 Regeneron Pharmaceuticals, Inc. Prodrugs of topoisomerase i inhibitor for adc conjugations and methods of use thereof

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288557B2 (en) 2004-07-23 2012-10-16 Endocyte, Inc. Bivalent linkers and conjugates thereof
EP2481427A1 (en) 2007-03-14 2012-08-01 Endocyte, Inc. Folate-Tubulysin conjugates
CN101784565B (en) 2007-06-25 2014-12-10 恩多塞特公司 Conjugates containing hydrophilic spacer linkers
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
WO2013121175A1 (en) 2012-02-16 2013-08-22 Ucl Business Plc Lysosome-cleavable linker
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US20140080175A1 (en) 2012-03-29 2014-03-20 Endocyte, Inc. Processes for preparing tubulysin derivatives and conjugates thereof
AU2013331440A1 (en) 2012-10-16 2015-04-30 Endocyte, Inc. Drug delivery conjugates containing unnatural amino acids and methods for using
EA030830B1 (en) 2013-02-14 2018-10-31 Бристол-Майерс Сквибб Компани Tubulysin compounds, methods of making and use thereof
JP6282745B2 (en) 2013-09-12 2018-02-21 ハロザイム インコーポレイテッド Modified anti-epidermal growth factor receptor antibody and method of use thereof
AU2015243379B2 (en) * 2014-04-11 2018-02-01 Medimmune Llc Tubulysin derivatives
NZ726911A (en) 2014-06-03 2023-01-27 Xbiotech Inc Compositions and methods for treating and preventing staphylococcus aureus infections
CA3203273A1 (en) 2014-10-14 2016-04-21 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
EP3215538A4 (en) * 2014-11-07 2018-07-04 Igenica Biotherapeutics, Inc. Anti-cd39 antibodies and uses thereof
CN111620861A (en) 2014-12-09 2020-09-04 艾伯维公司 BCL-XL inhibitory compound having low cell permeability and antibody drug conjugate including the same
CN107249643A (en) 2014-12-09 2017-10-13 艾伯维公司 The antibody drug conjugate of BCL XL inhibitor with cell permeability
WO2016094517A1 (en) 2014-12-09 2016-06-16 Abbvie Inc. Bcl-xl inhibitory compounds and antibody drug conjugates including the same
CN107231804B (en) 2015-01-14 2019-11-26 百时美施贵宝公司 Inferior heteroaryl bridging benzodiazepine * dimer, its conjugate and preparation and application
ES2918425T3 (en) 2015-01-28 2022-07-15 Sorrento Therapeutics Inc Antibody-drug conjugates
US10676773B2 (en) * 2015-03-10 2020-06-09 Bristol-Myers Squibb Company Antibodies conjugatable by transglutaminase and conjugates made therefrom
WO2016165762A1 (en) * 2015-04-15 2016-10-20 Ganymed Pharmaceuticals Ag Drug conjugates comprising antibodies against claudin 18.2
CN106279352B (en) 2015-05-29 2020-05-22 上海新理念生物医药科技有限公司 Derivative of dolastatin 10 and application thereof
CN106267225B (en) 2015-05-29 2020-03-06 上海新理念生物医药科技有限公司 Trimaleimide-type linker and use thereof
JP6817288B2 (en) * 2015-08-10 2021-01-20 ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ.Hangzhou Dac Biotech Co.,Ltd. Its use in novel conjugates and specific conjugation of biomolecules with drugs
EP3347049B1 (en) * 2015-09-08 2024-07-03 Waters Technologies Corporation Multidimensional chromatography method for analysis of antibody-drug conjugates
EP3386997B1 (en) 2015-12-09 2021-06-30 Medizinische Universität Wien Monomaleimide-functionalized platinum compounds for cancer therapy
WO2017136652A1 (en) * 2016-02-04 2017-08-10 Tarveda Therapeutics, Inc. Stapled peptide conjugates and particles
WO2017161206A1 (en) 2016-03-16 2017-09-21 Halozyme, Inc. Conjugates containing conditionally active antibodies or antigen-binding fragments thereof, and methods of use
BR112018075636A2 (en) 2016-06-08 2019-04-09 Abbvie Inc. anti-egfr drug antibody conjugates
JP2019526529A (en) 2016-06-08 2019-09-19 アッヴィ・インコーポレイテッド Anti-B7-H3 antibody and antibody drug conjugate
CA3027103A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-b7-h3 antibodies and antibody drug conjugates
CN109600993A (en) 2016-06-08 2019-04-09 艾伯维公司 Anti-egfr antibodies drug conjugates
CN116173232A (en) 2016-06-08 2023-05-30 艾伯维公司 anti-CD 98 antibodies and antibody drug conjugates
CA3027181A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-egfr antibody drug conjugates
JP2019522643A (en) 2016-06-08 2019-08-15 アッヴィ・インコーポレイテッド Anti-CD98 antibodies and antibody drug conjugates
CA3027045A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-b7-h3 antibodies and antibody drug conjugates
AU2017277914A1 (en) 2016-06-08 2019-01-03 Abbvie Inc. Anti-CD98 antibodies and antibody drug conjugates
CN109562152B (en) 2016-08-09 2024-04-02 西雅图基因公司 Drug conjugates containing self-stabilizing linkers with improved physiochemical properties
CN109810039B (en) * 2017-11-22 2021-11-12 迈威(上海)生物科技股份有限公司 Disubstituted maleimide-based linker for antibody-drug coupling, preparation method and application thereof
US10864279B2 (en) 2016-12-16 2020-12-15 Industrial Technology Research Institute Linker-drug and antibody-drug conjugate (ADC) employing the same
EP3606922A4 (en) * 2017-04-06 2021-03-03 Hangzhou Dac Biotech Co., Ltd Conjugation of a cytotoxic drug with bis-linkage
CN107652219B (en) 2017-08-14 2021-06-08 上海新理念生物医药科技有限公司 Tetramaleimide-type linker and application thereof
TW201920192A (en) * 2017-09-20 2019-06-01 韓商Ph製藥公司 THAILANSTATIN analogs
CN112220933A (en) * 2018-07-03 2021-01-15 烟台迈百瑞国际生物医药股份有限公司 antibody-T2 toxin conjugates and uses thereof
EP3898693A4 (en) 2018-12-21 2022-09-21 Avidity Biosciences, Inc. Anti-transferrin receptor antibodies and uses thereof
CN110997010A (en) 2019-08-07 2020-04-10 烟台迈百瑞国际生物医药有限公司 Antibody drug conjugate and application thereof
CA3172111A1 (en) 2020-03-19 2021-09-23 Barbora MALECOVA Compositions and methods of treating facioscapulohumeral muscular dystrophy
MX2022011880A (en) 2020-03-27 2022-10-20 Avidity Biosciences Inc Compositions and methods of treating muscle dystrophy.
UY39610A (en) 2021-01-20 2022-08-31 Abbvie Inc ANTI-EGFR ANTIBODY-DRUG CONJUGATES
US11807685B2 (en) * 2021-08-05 2023-11-07 The Uab Research Foundation Anti-CD47 antibody and uses thereof
AU2022345098A1 (en) 2021-09-16 2024-04-04 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175865A1 (en) * 2004-09-23 2009-07-09 Genentech, Inc. Cysteine engineered antibodies and conjugates
US7851437B2 (en) * 2002-07-31 2010-12-14 Seattle Genetics Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
WO2011018613A1 (en) * 2009-08-10 2011-02-17 Ucl Business Plc Functionalisation of solid substrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2211443A1 (en) * 1995-01-26 1996-08-01 Biogen, Inc. Lymphotoxin-.alpha./.beta. complexes and anti-lymphotoxin-beta receptor antibodies as anti-tumor agents
DE10254439A1 (en) * 2002-11-21 2004-06-03 GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) Tubulysins, manufacturing processes and tubulysin agents
BR122018071808B8 (en) * 2003-11-06 2020-06-30 Seattle Genetics Inc conjugate
US7740861B2 (en) * 2004-06-16 2010-06-22 University Of Massachusetts Drug delivery product and methods
AU2006293410B2 (en) * 2005-09-20 2012-10-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Nanoparticles for targeted delivery of active agents
JP2011505372A (en) * 2007-11-30 2011-02-24 ブリストル−マイヤーズ スクウィブ カンパニー Anti-B7H4 monoclonal antibody-drug conjugates and methods of use
NZ589880A (en) * 2008-06-16 2012-10-26 Immunogen Inc Use of synergistic anti-cancer compositions comprising lenalidomide, at least one corticosteroid and at least one immunoconjugate
WO2010009124A2 (en) * 2008-07-15 2010-01-21 Genentech, Inc. Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
EP2822597A1 (en) * 2012-03-09 2015-01-14 UCL Business Plc. Chemical modification of antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851437B2 (en) * 2002-07-31 2010-12-14 Seattle Genetics Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US20090175865A1 (en) * 2004-09-23 2009-07-09 Genentech, Inc. Cysteine engineered antibodies and conjugates
WO2011018613A1 (en) * 2009-08-10 2011-02-17 Ucl Business Plc Functionalisation of solid substrates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KING H. DALTON ET AL.: "Facile synthesis of maleimide bifunctional linkers", TETRAHEDRON LETTERS, vol. 43, 2002, pages 1987 - 1990, XP004339084 *
See also references of EP2793585A4 *

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058851A (en) * 2012-05-15 2018-04-12 ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. Drug conjugates, conjugation methods, and uses thereof
US12115228B2 (en) 2012-05-15 2024-10-15 Concortis Biosystems, Corp. Drug-conjugates, conjugation methods, and uses thereof
US9801951B2 (en) 2012-05-15 2017-10-31 Concortis Biosystems, Corp. Drug-conjugates, conjugation methods, and uses thereof
US9981046B2 (en) 2012-05-15 2018-05-29 Concortis Biosystems, Corp., a wholly owned Subsidiary of Sorrento Therapeutics, Inc. Drug-conjugates, conjugation methods, and uses thereof
US9884127B2 (en) 2012-05-15 2018-02-06 Concortis Biosystems, Corp. Drug-conjugates, conjugation methods, and uses thereof
US10967071B2 (en) 2012-05-15 2021-04-06 Concortis Biosystems, Corp. Drug-conjugates, conjugation methods, and uses thereof
JP2015518831A (en) * 2012-05-15 2015-07-06 ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. Drug conjugate, conjugation method and use thereof
US11873281B2 (en) 2012-07-12 2024-01-16 Hangzhou Dac Biotech Co., Ltd. Conjugates of cell binding molecules with cytotoxic agents
US11834406B2 (en) 2012-07-12 2023-12-05 Hangzhou Dac Biotech Co., Ltd. Conjugates of cell binding molecules with cytotoxic agents
US11767294B2 (en) 2012-07-12 2023-09-26 Hangzhou Dac Biotech Co., Ltd. Conjugates of cell binding molecules with cytotoxic agents
US20170157262A1 (en) * 2012-07-12 2017-06-08 R. Yongxin Zhao Conjugates of cell binding molecules with cytotoxic agents
US10501412B2 (en) * 2012-07-12 2019-12-10 Hangzhou Dac Biotech Co., Ltd. Conjugates of cell binding molecules with cytotoxic agents
US10399941B2 (en) 2012-07-12 2019-09-03 Hangzhou Dac Biotech Co., Ltd. Conjugates of cell binding molecules with cytotoxic agents
WO2014145090A1 (en) 2013-03-15 2014-09-18 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
US11345715B2 (en) 2013-03-15 2022-05-31 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
US10570151B2 (en) 2013-03-15 2020-02-25 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
EP3964237A1 (en) 2013-03-15 2022-03-09 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
US11932695B2 (en) 2013-06-06 2024-03-19 Sensei Biotherapeutics, Inc. Modified antibodies and related compounds, compositions and methods of use
US20180147294A1 (en) * 2013-06-06 2018-05-31 David Y. Jackson Antibody-drug conjugates, compositions and methods of use
US20140363454A1 (en) * 2013-06-06 2014-12-11 Igenica Biotherapeutics, Inc. Antibody-Drug Conjugates, Compositions and Methods of Use
CN105592859A (en) * 2013-07-11 2016-05-18 图尔大学 Novel antibody-drug conjugates and the use of same in therapy
EP3825304A1 (en) * 2013-07-11 2021-05-26 Mc SAF Antibody-drug conjugates and the use of same in therapy
WO2015004400A1 (en) * 2013-07-11 2015-01-15 Universite Francois Rabelais Novel antibody-drug conjugates and the use of same in therapy
EP3521314A1 (en) * 2013-07-11 2019-08-07 Université François Rabelais New antibody-drug conjugates and use thereof in treatment
FR3008408A1 (en) * 2013-07-11 2015-01-16 Univ Rabelais Francois NOVEL ANTIBODY-MEDICAMENT CONJUGATES AND THEIR USE IN THERAPY
US10307488B2 (en) 2013-07-11 2019-06-04 Universite Francois Rabelais Antibody-drug conjugates and the use of same in therapy
CN105592859B (en) * 2013-07-11 2021-08-20 Mcsaf公司 Antibody-drug conjugates and their use in therapy
JP2016531094A (en) * 2013-07-11 2016-10-06 ユニヴェルシテ フランソワ ラブレーUniversite Francois Rabelais Novel antibody-drug conjugates and their use in therapy
US11278627B2 (en) 2013-07-11 2022-03-22 Mc Saf Antibody-drug conjugates and the use of same in therapy
US11596635B2 (en) 2013-08-26 2023-03-07 Regeneron Pharmaceuticals, Inc. Pharmaceutical compositions comprising macrolide diastereomers, methods of their synthesis and therapeutic uses
US10836821B2 (en) * 2013-10-15 2020-11-17 Sorrento Therapeutics, Inc. Drug-conjugates with a targeting molecule and two different drugs
US11987622B2 (en) 2013-10-15 2024-05-21 Vivasor, Inc. Drug-conjugates with a targeting molecule and two different drugs
US20150105540A1 (en) * 2013-10-15 2015-04-16 Sorrento Therapeutics Inc. Drug-conjugates with a targeting molecule and two different drugs
WO2015095953A1 (en) 2013-12-27 2015-07-02 The Centre For Drug Research And Development Sulfonamide-containing linkage systems for drug conjugates
US10889616B2 (en) 2014-01-28 2021-01-12 Tube Pharmaceuticals Gmbh Cytotoxic tubulysin compounds for conjugation
WO2015113760A1 (en) * 2014-01-28 2015-08-06 Tube Pharmaceuticals Gmbh Cytotoxic tubulysin compounds for conjugation
AU2015213106B2 (en) * 2014-01-28 2019-07-25 Tube Pharmaceuticals Gmbh Cytotoxic tubulysin compounds for conjugation
US10183970B2 (en) 2014-01-28 2019-01-22 Tube Pharmaceuticals Gmbh Cytotoxic tubulysin compounds for conjugation
CN106132959A (en) * 2014-01-28 2016-11-16 管道制药有限责任公司 For the cytotoxicity tubulysin compound puted together
JP2017507926A (en) * 2014-01-28 2017-03-23 トゥーベ・ファルマシューティカルズ・ゲー・エム・ベー・ハー Novel cytotoxic tubulin compounds for conjugation
EP3100731A4 (en) * 2014-01-29 2017-12-20 Shanghai Hengrui Pharmaceutical Co., Ltd. Ligand-cytotoxicity drug conjugate, preparation method therefor, and uses thereof
AU2015210578B2 (en) * 2014-01-29 2020-04-16 Jiangsu Hengrui Medicine Co., Ltd. Ligand-cytotoxic drug conjugate, preparation method therefor, and uses thereof
US10004812B2 (en) 2014-02-06 2018-06-26 Oncomatryx Biopharma, S.L. Antibody-drug conjugates and immunotoxins
US10137202B2 (en) 2014-02-06 2018-11-27 Oncomatryx Biopharma, S.L. Antibody-drug conjugates and immunotoxins
US10864278B2 (en) 2014-02-06 2020-12-15 Oncomatryx Biopharma, S.L. Antibody-drug conjugates and immunotoxins
CN105979971B (en) * 2014-02-06 2019-10-11 欧寇玛特瑞克斯生物制药公司 Antibody-drug conjugates and immunotoxin
EP3102244B1 (en) * 2014-02-06 2020-03-18 Oncomatryx Biopharma, S.L. Antibody-drug conjugates and immunotoxins
CN105979971A (en) * 2014-02-06 2016-09-28 欧寇玛特瑞克斯生物制药公司 Antibody-drug conjugates and immunotoxins
US10675352B2 (en) 2014-02-14 2020-06-09 Centrose, Llc Extracellular targeted drug conjugates
US10047160B2 (en) 2014-03-11 2018-08-14 Regeneron Pharmaceuticals, Inc. Anti-EGFRvIII antibodies and uses thereof
US11608380B2 (en) 2014-03-11 2023-03-21 Regeneron Pharmaceuticals, Inc. Anti-EGFRvIII antibodies and uses thereof
US9475875B2 (en) 2014-03-11 2016-10-25 Regeneron Pharmaceuticals, Inc. Anti-EGFRvIII antibodies and uses thereof
US10738124B2 (en) 2014-03-11 2020-08-11 Regeneron Pharmaceuticals, Inc. Anti-EGFRvIII antibodies and uses thereof
WO2015138460A1 (en) 2014-03-11 2015-09-17 Regeneron Pharmaceuticals, Inc. Anti-egfrviii antibodies and uses thereof
WO2015187596A3 (en) * 2014-06-02 2016-02-25 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates, their preparation and their therapeutic use
US9951141B2 (en) 2014-06-02 2018-04-24 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates, their preparation and their therapeutic use
EP3148592A2 (en) * 2014-06-02 2017-04-05 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates, their preparation and their therapeutic use
US10752690B2 (en) 2014-06-02 2020-08-25 Regeneron Pharmaceuticals, Inc. Biologically active molecule conjugates, reagents and methods of manufacture, and therapeutic uses
EP3900742A1 (en) 2014-09-11 2021-10-27 Seagen Inc. Targeted delivery of tertiary amine-containing drug substances
WO2016064749A3 (en) * 2014-10-20 2016-11-17 Igenica Biotherapeutics, Inc. Antibody-drug conjugates and related compounds, compositions, and methods of use
US10308713B2 (en) 2014-10-31 2019-06-04 Abbvie Biotherapeutics Inc. Anti-CS1 antibodies and antibody drug conjugates
US10011657B2 (en) 2014-10-31 2018-07-03 Abbvie Biotherapeutics Inc. Anti-CS1 antibodies and antibody drug conjugates
WO2016077260A1 (en) * 2014-11-10 2016-05-19 Bristol-Myers Squibb Company Tubulysin analogs and methods of making and use
WO2016160615A1 (en) 2015-03-27 2016-10-06 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
US11191844B2 (en) 2015-07-06 2021-12-07 Regeneran Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
US11129903B2 (en) 2015-07-06 2021-09-28 Regeneron Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
WO2017031034A3 (en) * 2015-08-14 2017-03-30 Rc Biotechnologies, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
EP3334462A4 (en) * 2015-08-14 2019-08-07 RC Biotechnologies, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
US10537644B2 (en) 2015-08-14 2020-01-21 Rc Biotechnologies, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
WO2017031034A2 (en) 2015-08-14 2017-02-23 Rc Biotechnologies, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
RU2698727C9 (en) * 2015-08-14 2022-03-30 Рс Биотекнолоджиз, Инк. Covalent linkers in antibody-drug conjugates, methods for preparing them and use thereof
EP3981433A1 (en) 2015-08-14 2022-04-13 RemeGen Biosciences, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
US10772965B2 (en) 2015-08-14 2020-09-15 Rc Biotechnologies, Inc. Covalent linkers in antibody-drug conjugates and methods of making and using the same
RU2698727C1 (en) * 2015-08-14 2019-08-29 Рс Биотекнолоджиз, Инк. Covalent linkers in antibody-drug conjugates, methods for preparing them and use thereof
AU2016308539B2 (en) * 2015-08-14 2019-01-24 Remegen Co., Ltd. Covalent linkers in antibody-drug conjugates and methods of making and using the same
WO2017095805A1 (en) 2015-11-30 2017-06-08 Abbvie Inc. ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
US10195209B2 (en) 2015-11-30 2019-02-05 Abbvie Inc. Anti-huLRRC15 antibody drug conjugates and methods for their use
US10188660B2 (en) 2015-11-30 2019-01-29 Abbvie Inc. Anti-huLRRC15 antibody drug conjugates and methods for their use
US11045480B2 (en) 2015-11-30 2021-06-29 Abbvie Inc. Anti-huLRRC15 antibody drug conjugates and methods for their use
WO2017095808A1 (en) 2015-11-30 2017-06-08 Abbvie Inc. ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
US11229708B2 (en) 2015-12-04 2022-01-25 Seagen Inc. Conjugates of quaternized tubulysin compounds
US11793880B2 (en) 2015-12-04 2023-10-24 Seagen Inc. Conjugates of quaternized tubulysin compounds
US20190015517A1 (en) * 2015-12-04 2019-01-17 Seattle Genetics, Inc. Conjugates of quaternized tubulysin compounds
WO2017100642A1 (en) 2015-12-11 2017-06-15 Regeneron Pharmaceuticals, Inc. Methods for reducing or preventing growth of tumors resistant to egfr and/or erbb3 blockade
US9950076B2 (en) 2016-01-25 2018-04-24 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
US10463749B2 (en) 2016-01-25 2019-11-05 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
WO2017132173A1 (en) 2016-01-25 2017-08-03 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
US11446389B2 (en) 2016-01-25 2022-09-20 Regeneron Pharmaceuticals, Inc. Maytansinoid derivatives, conjugates thereof, and methods of use
US11352446B2 (en) 2016-04-28 2022-06-07 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
EP4233909A2 (en) 2016-05-17 2023-08-30 AbbVie Biotherapeutics Inc. Anti-cmet antibody drug conjugates and methods for their use
EP3804765A1 (en) 2016-05-17 2021-04-14 AbbVie Biotherapeutics Inc. Anti-cmet antibody drug conjugates and methods for their use
WO2017201204A1 (en) 2016-05-17 2017-11-23 Abbvie Biotherapeutics Inc. ANTI-cMet ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE
EP3626273A1 (en) 2016-05-17 2020-03-25 AbbVie Biotherapeutics Inc. Anti-cmet antibody drug conjugates and methods for their use
WO2018002902A1 (en) 2016-07-01 2018-01-04 Glaxosmithkline Intellectual Property (No.2) Limited Antibody-drug conjugates and therapeutic methods using the same
WO2018058001A1 (en) 2016-09-23 2018-03-29 Regeneron Pharmaceuticals, Inc. Anti-steap2 antibodies, antibody-drug conjugates, and bispecific antigen-binding molecules that bind steap2 and cd3, and uses thereof
WO2018067331A1 (en) 2016-09-23 2018-04-12 Regeneron Pharmaceuticals, Inc. Bi specific anti-muc16-cd3 antibodies and nti-muc16 drug conjugates
EP4273172A2 (en) 2016-09-23 2023-11-08 Regeneron Pharmaceuticals, Inc. Bi specific anti-muc16-cd3 antibodies and anti-muc16 drug conjugates
WO2018058003A1 (en) 2016-09-23 2018-03-29 Regeneron Pharmaceuticals, Inc. Anti-muc16 (mucin 16) antibodies
US10711032B2 (en) 2016-11-08 2020-07-14 Regeneron Pharmaceuticals, Inc. Steroids and protein-conjugates thereof
WO2018089373A2 (en) 2016-11-08 2018-05-17 Regeneron Pharmaceuticals, Inc. Steroids and protein-conjugates thereof
US11760775B2 (en) 2016-11-08 2023-09-19 Regeneron Pharmaceuticals, Inc. Steroids and protein-conjugates thereof
US11142578B2 (en) 2016-11-16 2021-10-12 Regeneron Pharmaceuticals, Inc. Anti-MET antibodies, bispecific antigen binding molecules that bind MET, and methods of use thereof
WO2018093866A1 (en) 2016-11-16 2018-05-24 Regeneron Pharmaceuticals, Inc. Anti-met antibodies, bispecific antigen binding molecules that bind met, and methods of use thereof
US11491237B2 (en) 2017-05-18 2022-11-08 Regeneron Pharmaceuticals, Inc. Cyclodextrin protein drug conjugates
WO2019136487A2 (en) 2018-01-08 2019-07-11 Regeneron Pharmaceuticals, Inc. Steroids and antibody-conjugates thereof
US12070506B2 (en) 2018-01-08 2024-08-27 Regeneron Pharmaceuticals, Inc. Steroids and antibody-conjugates thereof
US12037411B2 (en) 2018-04-30 2024-07-16 Regeneron Pharmaceuticals, Inc. Antibodies, and bispecific antigen-binding molecules that bind HER2 and/or APLP2, conjugates, and uses thereof
WO2019212965A1 (en) 2018-04-30 2019-11-07 Regeneron Pharmaceuticals, Inc. Antibodies, and bispecific antigen-binding molecules that bind her2 and/or aplp2, conjugates, and uses thereof
US11377502B2 (en) 2018-05-09 2022-07-05 Regeneron Pharmaceuticals, Inc. Anti-MSR1 antibodies and methods of use thereof
WO2019217591A1 (en) 2018-05-09 2019-11-14 Regeneron Pharmaceuticals, Inc. Anti-msr1 antibodies and methods of use thereof
WO2019222663A1 (en) 2018-05-17 2019-11-21 Regeneron Pharmaceuticals, Inc. Anti-cd63 antibodies, conjugates, and uses thereof
WO2019229701A2 (en) 2018-06-01 2019-12-05 Novartis Ag Binding molecules against bcma and uses thereof
WO2020022900A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for kidney cancer
WO2020022903A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. ARID1A, CDKN2A, KMT2B, KMT2D, TP53 and PTEN VACCINES FOR CANCER
WO2020022901A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for uterine cancer
WO2020022902A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for colorectal cancer
WO2020022899A1 (en) 2018-07-26 2020-01-30 Frame Pharmaceuticals B.V. Cancer vaccines for breast cancer
CN111433188B (en) * 2018-12-17 2023-08-01 荣昌生物制药(烟台)股份有限公司 Connector for antibody drug conjugate and application thereof
EP3868409A4 (en) * 2018-12-17 2022-06-15 RemeGen Co., Ltd. Connector for use in antibody medicament conjugate and applications of connector
CN111433188A (en) * 2018-12-17 2020-07-17 荣昌生物制药(烟台)股份有限公司 Linker for antibody drug conjugate and application thereof
WO2020132483A1 (en) 2018-12-21 2020-06-25 Regeneron Pharmaceuticals, Inc. Rifamycin analogs and antibody-drug conjugates thereof
WO2020172475A1 (en) 2019-02-21 2020-08-27 Regeneron Pharmaceuticals, Inc. Methods of treating ocular cancer using anti-met antibodies and bispecific antigen binding molecules that bind met
WO2021016204A1 (en) 2019-07-19 2021-01-28 Immunesensor Therapeutics, Inc. Antibody-sting agonist conjugates and their use in immunotherapy
US11896682B2 (en) 2019-09-16 2024-02-13 Regeneron Pharmaceuticals, Inc. Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof
WO2021055895A1 (en) 2019-09-19 2021-03-25 Regeneron Pharmaceuticals, Inc. Anti-ptcra antibody-drug conjugates and uses thereof
US11814428B2 (en) 2019-09-19 2023-11-14 Regeneron Pharmaceuticals, Inc. Anti-PTCRA antibody-drug conjugates and uses thereof
WO2021174113A1 (en) 2020-02-28 2021-09-02 Regeneron Pharmaceuticals, Inc. Bispecific antigen binding molecules that bind her2, and methods of use thereof
US11958910B2 (en) 2020-02-28 2024-04-16 Regeneron Pharmaceuticals, Inc. Bispecific antigen binding molecules that bind HER2, and methods of use thereof
WO2021178896A1 (en) 2020-03-06 2021-09-10 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
WO2021211984A1 (en) 2020-04-16 2021-10-21 Regeneron Pharmaceuticals, Inc. Diels-alder conjugation methods
WO2022015656A1 (en) 2020-07-13 2022-01-20 Regeneron Pharmaceuticals, Inc. Camptothecin analogs conjugated to a glutamine residue in a protein, and their use
WO2022056494A1 (en) 2020-09-14 2022-03-17 Regeneron Pharmaceuticals, Inc. Antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof
US11866502B2 (en) 2020-10-22 2024-01-09 Regeneron Pharmaceuticals, Inc. Anti-FGFR2 antibodies and methods of use thereof
WO2022087243A1 (en) 2020-10-22 2022-04-28 Regeneron Pharmaceuticals, Inc. Anti-fgfr2 antibodies and methods of use thereof
WO2022187591A1 (en) 2021-03-05 2022-09-09 Go Therapeutics, Inc. Anti-glyco-cd44 antibodies and their uses
WO2023014863A1 (en) 2021-08-05 2023-02-09 Go Therapeutics, Inc. Anti-glyco-muc4 antibodies and their uses
WO2023034569A1 (en) 2021-09-03 2023-03-09 Go Therapeutics, Inc. Anti-glyco-cmet antibodies and their uses
WO2023034571A1 (en) 2021-09-03 2023-03-09 Go Therapeutics, Inc. Anti-glyco-lamp1 antibodies and their uses
WO2023137026A1 (en) 2022-01-12 2023-07-20 Regeneron Pharmaceuticals, Inc. Camptothecin analogs conjugated to a glutamine residue in a protein, and their use
WO2023173132A1 (en) 2022-03-11 2023-09-14 Regeneron Pharmaceuticals, Inc. Anti-glp1r antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof
WO2024020164A2 (en) 2022-07-21 2024-01-25 Firefly Bio, Inc. Glucocorticoid receptor agonists and conjugates thereof
WO2024138000A1 (en) 2022-12-21 2024-06-27 Regeneron Pharmaceuticals, Inc. Prodrugs of topoisomerase i inhibitor for adc conjugations and methods of use thereof

Also Published As

Publication number Publication date
US20160303247A1 (en) 2016-10-20
JP2015500287A (en) 2015-01-05
US20200392108A1 (en) 2020-12-17
AU2012348017A1 (en) 2014-07-03
CA2857398A1 (en) 2013-06-13
CN104244718A (en) 2014-12-24
ZA201403946B (en) 2015-09-30
MX2014006739A (en) 2015-06-05
HK1203309A1 (en) 2015-10-30
SG11201402686UA (en) 2014-06-27
BR112014013526A8 (en) 2017-06-13
KR20140139480A (en) 2014-12-05
US20130224228A1 (en) 2013-08-29
BR112014013526A2 (en) 2017-06-13
EP2793585A4 (en) 2015-12-09
RU2014124984A (en) 2016-01-27
EP2793585A1 (en) 2014-10-29
IL232936A0 (en) 2014-07-31
IN2014CN04961A (en) 2015-09-18
PH12014501229A1 (en) 2014-09-08

Similar Documents

Publication Publication Date Title
US20200392108A1 (en) Antibody-drug conjugates and related compounds, compositions and methods
US20180147294A1 (en) Antibody-drug conjugates, compositions and methods of use
JP2023018157A (en) Hydrophilic antibody-drug conjugates
BR112020020466A2 (en) CAMPTOTECIN PEPTIDE CONJUGATES
CN110240654A (en) In conjunction with the antibody-drug conjugates of CD73
CN105813653A (en) Methylene carbamate linkers for use with targeted-drug conjugates
CN110577600B (en) GPC 3-targeted antibody-drug conjugate, and preparation method and application thereof
WO2015195904A1 (en) Her2 antibody-drug conjugates
WO2018036438A1 (en) Antibody-drug conjugate and preparation method and application thereof
TW202203978A (en) Charge variant linkers
JP2021505676A (en) Anti-CD22 antibody-Maytan synconjugate and how to use it
JP6855496B2 (en) Anti-CD22 antibody-Maytan synconjugate and how to use it
CN112601522A (en) antibody-ALK 5 inhibitor conjugates and uses thereof
JP2022548306A (en) Selective drug release from conjugates of internalized biologically active compounds
JP2023529640A (en) therapeutic conjugate
CN114269388A (en) antibody-ALK 5 inhibitor conjugates and uses thereof
CA3113378A1 (en) Sulfomaleimide-based linkers and corresponding conjugates
WO2024212922A1 (en) Camptothecin compound and conjugates thereof, preparation method therefor and use thereof
WO2024193692A1 (en) Linker and use thereof in ligand drug conjugate
BR122023026165A2 (en) CAMPTOTECIN PEPTIDE CONJUGATES AND USES THEREOF
CN118681035A (en) Ligand drug conjugate and preparation method and application thereof
NZ722252B2 (en) Hydrophilic antibody-drug conjugates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2857398

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12014501229

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 232936

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2014546004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/006739

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2012855849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012855849

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012348017

Country of ref document: AU

Date of ref document: 20121204

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147018663

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014124984

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014013526

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014013526

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140604