WO2013085925A1 - Antibody-drug conjugates and related compounds, compositions, and methods - Google Patents
Antibody-drug conjugates and related compounds, compositions, and methods Download PDFInfo
- Publication number
- WO2013085925A1 WO2013085925A1 PCT/US2012/067803 US2012067803W WO2013085925A1 WO 2013085925 A1 WO2013085925 A1 WO 2013085925A1 US 2012067803 W US2012067803 W US 2012067803W WO 2013085925 A1 WO2013085925 A1 WO 2013085925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- linker
- antibody
- conjugate
- formula
- cytotoxin
- Prior art date
Links
- 0 *C(C(*)C(N1I*)=O)C1=O Chemical compound *C(C(*)C(N1I*)=O)C1=O 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/545—Heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/6811—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
- A61K47/6817—Toxins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6851—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
Definitions
- This invention relates to antibody-drug conjugates (ADCs) and related compounds, such as linkers used to make them, tubulysin analogs, and intermediates in their synthesis; compositions; and methods, including methods of treating cancers.
- ADCs antibody-drug conjugates
- related compounds such as linkers used to make them, tubulysin analogs, and intermediates in their synthesis
- compositions and methods, including methods of treating cancers.
- Cancer is the second most prevalent cause of death in the U.S, yet there are few effective treatment options beyond surgical resection. Of the medical treatments for cancers, the use of monoclonal antibodies targeting antigens present on the cancer cells has become common.
- Anticancer antibodies approved for therapeutic use in the USA include alemtuzumab
- CAMPATH ® a humanized anti-CD52 antibody used in the treatment of chronic lymphocytic leukemia
- bevacizumab AVASTIN®
- cetuximab ERBITUX ®
- a chimeric anti-epidermal growth factor antibody used in colorectal cancer, head and neck cancer, and squamous cell carcinoma
- ipilimumab YERVOY ®
- a human anti-CTLA-4 antibody used in melanoma
- ARZERRA ® a human anti-CD20 antibody used in chronic lymphocytic leukemia
- panitumumab VECTIBIX ®
- rituximab a chimeric anti-CD20 antibody used in non-Hodgkin lympho
- trastuzumab is a recombinant DNA-derived humanized monoclonal antibody that selectively binds with high affinity to the extracellular domain of the human epidermal growth factor receptor2 protein, HER2 (ErbB2) (Coussens et al., Science 1985, 230, 1132-9; Salmon et al., Science 1989, 244, 707-12), thereby inhibiting the growth of HER2-positive cancerous cells.
- HERCEPTIN is useful in treating patients with HER2-overexpressing breast cancers that have received extensive prior anti-cancer therapy, some patients in this population fail to respond or respond only poorly to HERCEPTIN treatment. Therefore, there is a significant clinical need for developing further HER2-directed cancer therapies for those patients with HER2-overexpressing tumors or other diseases associated with HER2 expression that do not respond, or respond poorly, to HERCEPTIN treatment.
- ADCs Antibody drug conjugates
- a rapidly growing class of targeted therapeutics represent a promising new approach toward improving both the selectivity and the cytotoxic activity of cancer drugs. See, for example, Trail et al., “Monoclonal antibody drug immunoconjugates for targeted treatment of cancer", Cancer Immunol. Immunother. 2003, 52, 328-337; and Chari, “Targeted Cancer Therapy: Conferring Specificity to Cytotoxic Drugs", Acc. Chem. Res., 2008, 41(1), 98-107.
- ADCs have three components: (1) a monoclonal antibody conjugated through a (2) linker to a (3) cytotoxin.
- the cytotoxins are attached to either lysine or cysteine sidechains on the antibody through linkers that react selectively with primary amines on lysine or with sulfhydryl groups on cysteine.
- the maximum number of linkers/drugs that can be conjugated depends on the number of reactive amino or sulfhydryl groups that are present on the antibody.
- a typical antibody contains up to 90 lysines as potential conjugation sites; however, the optimal number of cytotoxins per antibody for most ADCs is typically between 2 and 4 due to aggregation of ADCs with higher numbers of cytotoxins.
- lysine linked ADCs currently in clinical development are heterogeneous mixtures that contain from 0 to 10 cytotoxins per antibody conjugated to different amino groups on the antibody.
- the monoclonal antibody is cancer antigen specific, non-immunogenic, low toxicity, and internalized by cancer cells;
- the cytotoxin is highly potent and is suitable for linker attachment; while the linker may be specific for cysteine (S) or lysine (N) binding, is stable in circulation, may be protease cleavable and/or pH sensitive, and is suitable for attachment to the cytotoxin.
- Anticancer ADCs approved for therapeutic use in the USA include brentuximab vedotin (ADCETRIS ® ), a chimeric anti-CD30 antibody conjugated to monomethylauristatin E used in anaplastic large cell lymphoma and Hodgkin lymphoma; and gemtuzumab ozogamicin (MYLOTARG ), a humanized anti-CD33 antibody conjugated to calicheamicin ⁇ used in acute myelogeneous leukemia - though this was withdrawn in 2010 for lack of efficacy.
- ADCETRIS ® a chimeric anti-CD30 antibody conjugated to monomethylauristatin E used in anaplastic large cell lymphoma and Hodgkin lymphoma
- MYLOTARG gemtuzumab ozogamicin
- trastuzumab has been conjugated to the maytansinoid drug mertansine to form the ADC trastuzumab emtansine, also called trastuzumab-DMl or trastuzumab-MC-DMl, abbreviated T-DM1 (LoRusso et al., "Trastuzumab Emtansine: A Unique Antibody-Drug Conjugate in Development for Human Epidermal Growth Factor Receptor 2-Positive Cancer", Clin. Cancer Res.
- trastuzumab emtansine a novel antibody-drug conjugate for HER2-positive breast cancer
- the mertansine is conjugated to the trastuzumab through a maleimidocaproyl (MC) linker which bonds at the maleimide to the 4-thiovaleric acid terminus of the mertansine side chain and forms an amide bond between the carboxyl group of the linker and a lysine basic amine of the trastuzumab.
- MC maleimidocaproyl
- trastuzumab has 88 lysines (and 32 cysteines).
- trastuzumab emtansine is highly heterogeneous, containing dozens of different molecules containing from 0 to 8 mertansine units per trastuzumab, with an average mertansine/trastuzumab ratio of 3.4.
- Antibody cysteines can also be used for conjugation to cytotoxins through linkers that contain maleimides or other thiol specific functional groups.
- a typical antibody contains 4, or sometimes 5, interchain disulfide bonds (2 between the heavy chains and 2 between heavy and light chains) that covalently bond the heavy and light chains together and contribute to the stability of the antibodies in vivo.
- interchain disulfides can be selectively reduced with dithiothreitol, tris(2-carboxyethyl)phosphine, or other mild reducing agents to afford 8 reactive sulfhydryl groups for conjugation.
- Cysteine linked ADCs are less heterogeneous than lysine linked ADCs because there are fewer potential conjugation sites; however, they also tend to be less stable due to partial loss of the interchain disulfide bonds during conjugation, since current cysteine linkers bond to only one sulfur atom.
- the optimal number of cytotoxins per antibody for cysteine linked ADCs is also 2 to 4.
- ADCETRIS is a heterogeneous mixture that contains 0 to 8 monomethylauristatin E residues per antibody conjugated through cysteines.
- tubulysins first isolated by the Hofle/Reichenbach group from myxobacterial cultures (Sasse et al., J. Antibiot. 2000, 53, 879-885), are exceptionally potent cell-growth inhibitors that act by inhibiting tubulin polymerization and thereby induce apoptosis. (Khalil et al., Chem. Biochem. 2006, 7, 678-683; and Kaur et al., Biochem. J. 2006, 396, 235-242).
- tubulysins of which tubulysin D is the most potent, have activity that exceeds most other tubulin modifiers including, the epothilones, vinblastine, and paclitaxel (TAXOL ® ), by 10- to 1000-fold.
- tubulin modifiers including, the epothilones, vinblastine, and paclitaxel (TAXOL ® ), by 10- to 1000-fold.
- TAXOL ® paclitaxel
- Paclitaxel and vinblastine are current treatments for a variety of cancers, and epothilone derivatives are under active evaluation in clinical trials.
- Synthetic derivatives of tubulysin D would provide essential information about the mechanism of inhibition and key binding interactions, and could have superior properties as anticancer agents either as isolated entities or as chemical warheads on targeted antibodies or ligands.
- Tubulysin D is a complex tetrapeptide that can be divided into four regions, Mep
- tubulysin D Most of the more potent derivatives of tubulysin, including tubulysin D, also incorporate the interesting 6>-acyl N,6>-acetal functionality, which has rarely been observed in natural products. This reactive functionality is labile in both acidic and basic reaction conditions, and therefore may play a key role in the function of the tubulysins. (Iley et al., Pharm. Res. 1997, 14, 1634-1639). Recently, the total synthesis of tubulysin D was reported, which represents the first synthesis of any member of the tubulysin family that incorporates the 6>-acyl N,6>-acetal functionality. (Peltier et al., J. Am. Chem. Soc. 2006, 128, 16018-16019).
- tubulysins including tubulysins U and V, have been synthesized by Domling et al., “Total Synthesis of Tubulysins U and V", Angew. Chem. Int. Ed. 2006, 45, 7235-7239.
- US Patent Application Publication No. US 2011/0021568 Al discloses the synthesis and activities of a number of tubulysin analogs, including compounds (40) and (10), referred to here as Tl and T2 respectively:
- this invention is antibody-cytotoxin antibody-drug conjugates (ADCs) of n
- A is an antibody
- PD is pyrrole-2,5-dione or pyrrolidine-2,5-dione
- the double bond represents bonds from the 3- and 4-positions of the pyrrole-2,5-dione or pyrrolidine-
- L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
- CTX is a cytotoxin bonded to L by an amide bond
- n is an integer of 1 to 4, and
- n is an integer of 1 to 12.
- these ADCs are homogeneous and have enhanced stability over ADCs with monodentate linkers. They will therefore have increased half-lives in vivo, reducing the amount of cytotoxin released systemically, and be safer than ADCs with monodentate linkers.
- this invention is pharmaceutical compositions containing ADCs of the first aspect of this invention; and in a third aspect, this invention is methods of treatment of cancers targeted by the relevant antibodies by administering ADCs of the first aspect of this invention or pharmaceutical compositions of the second aspect of this invention.
- this invention is linker-cytotoxin conjugates of formula A, formula B, and formula C:
- R is C 1-6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl,
- L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
- CTX is a cytotoxin bonded to L by an amide bond
- n is an integer of 1 to 12.
- bidentate linker-cytotoxin conjugates are useful in preparing the antibody-drug conjugates of the first aspect of this invention.
- this invention is linkers of formula AA, BB, and CC:
- R is Ci_ 6 alkyl, optionally substituted with halo or hydroxyl; phenyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl; naphthyl, optionally substituted with halo, hydroxyl, carboxyl, Ci_ 3 alkoxycarbonyl, or Ci_ 3 alkyl; or 2-pyridyl, optionally substituted with halo, hydroxyl, carboxyl, C 1-3 alkoxycarbonyl, or C 1-3 alkyl,
- L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
- Z is carboxyl, C 1-6 alkoxycarbonyl, or amino
- n is an integer of 1 to 12.
- bidentate linkers are useful in preparing the linker-cytotoxin conjugates of the fourth aspect of this invention.
- BBB CCC where R' is chloro, bromo, iodo, C 1-6 alkylsulfonyloxy, trifluoromethanesulfonyloxy,
- L is -(CH 2 ) m - or -(CH 2 CH 2 0) m CH 2 CH 2 -
- Z is carboxyl, Ci_ 6 alkoxycarbonyl, or amino
- n is an integer of 1 to 12.
- bidentate linkers are also useful in preparing the linker-cytotoxin conjugates of the fourth aspect of this invention, and are useful in preparing the linkers of the fifth aspect of this invention.
- this invention is tubulysins of the formulae of the formulae T3 and T4:
- tubulysins are analogs of the known tubulysins Tl and T2 referred to previously, but because the terminal N-methylpiperidine has been replaced by an unsubstituted piperidine, these new compounds are able to form tubulysin-linker conjugates with linkers containing a carboxyl group by forming an amide bond between the piperidine nitrogen atom and the carbonyl of the linker carboxy group.
- an "antibody”, also known as an immunoglobulin, is a large Y-shaped protein used by the immune system to identify and neutralize foreign objects such as bacteria and viruses.
- the antibody recognizes a unique part of the foreign target, called an antigen, because each tip of the "Y" of the antibody contains a site that is specific to a site on an antigen, allowing these two structures to bind with precision.
- An antibody consists of four polypeptide chains, two identical heavy chains and two identical light chains connected by cysteine disulfide bonds.
- a “monoclonal antibody” is a monospecific antibody where all the antibody molecules are identical because they are made by identical immune cells that are all clones of a unique parent cell.
- monoclonal antibodies are typically prepared by fusing myeloma cells with the spleen cells from a mouse (or B-cells from a rabbit) that has been immunized with the desired antigen, then purifying the resulting hybridomas by such techniques as affinity purification.
- Recombinant monoclonal antibodies are prepared in viruses or yeast cells rather than in mice, through technologies referred to as repertoire cloning or phage display/yeast display, the cloning of immunoglobulin gene segments to create libraries of antibodies with slightly different amino acid sequences from which antibodies with desired specificities may be obtained.
- the resulting antibodies may be prepared on a large scale by fermentation.
- “Chimeric” or “humanized” antibodies are antibodies containing a combination of the original (usually mouse) and human DNA sequences used in the recombinant process, such as those in which mouse DNA encoding the binding portion of a monoclonal antibody is merged with human antibody-producing DNA to yield a partially-mouse, partially-human monoclonal antibody.
- Full-humanized antibodies are produced using transgenic mice (engineered to produce human antibodies) or phage display libraries.
- Antibodies of particular interest in this invention are those that are specific to cancer antigens, are non-immunogenic, have low toxicity, and are readily internalized by cancer cells; and suitable antibodies include alemtuzumab, bevacizumab, brentuximab, cetuximab, gemtuzumab, ipilimumab, ofatumumab, panitumumab, rituximab, tositumomab, and trastuzumab.
- a "cytotoxin” is a molecule that, when released within a cancer cell, is toxic to that cell.
- Cytotoxins of particular interest in this invention are the tubulysins (such as the tubulysins of the formulae T3 and T4), the auristatins (such as monomethylauristatin E and monomethylauristatin F), the maytansinoids (such as mertansine), the cahcheamicins (such as calicheamicin ⁇ ); and especially those cytotoxins that, like the tubulysins of the formulae T3 and T4, are capable of coordination through an amide bond to a linker, such as by possessing a basic amine or a carboxyl group.
- a "linker” is a molecule with two reactive termini, one for conjugation to an antibody and the other for conjugation to a cytotoxin.
- the antibody conjugation reactive terminus of the linker is typically a site that is capable of conjugation to the antibody through a cysteine thiol or lysine amine group on the antibody, and so is typically a thiol-reactive group such as a double bond (as in maleimide) or a leaving group such as a chloro, bromo, or iodo, or an R-sulfanyl group, or an amine- reactive group such as a carboxyl group; while the antibody conjugation reactive terminus of the linker is typically a site that is capable of conjugation to the cytotoxin through formation of an amide bond with a basic amine or carboxyl group on the cytotoxin, and so is typically a carboxyl or basic amine group.
- linker When the term "linker” is used in describing the linker in conjugated form, one or both of the reactive termini will be absent (such as the leaving group of the thiol-reactive group) or incomplete (such as the being only the carbonyl of the carboxylic acid) because of the formation of the bonds between the linker and/or the cytotoxin.
- an "antibody-drug conjugate”, or “ADC” is an antibody that is conjugated to one or more (typically 1 to 4) cytotoxins, each through a linker.
- the antibody is typically a monoclonal antibody specific to a cancer antigen.
- Tubulysin includes both the natural products described as tubulysins, such as by Sasse et al. and other authors mentioned in the Description of the related art, and also the tubulysin analogs described in US Patent Application Publication No. US 2011/0021568 Al.
- Tubulysins of particular interest in this invention are the tubulysins of the formulae T3 and T4, and other tubulysins where the terminal N-methylpiperidine has been replaced by an unsubstituted piperidine, allowing amide bond formation with a linker.
- a “therapeutically effective amount” means that amount of an ADC of the first aspect of this invention or composition of the second aspect of this invention which, when administered to a human suffering from a cancer, is sufficient to effect treatment for the cancer.
- Treating" or “treatment” of the cancer includes one or more of:
- Cancers of interest for treatment include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g.
- lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, oral cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer including, for example, HER2 -positive breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma, brain cancer, head and neck cancers, and associated metastases.
- lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of
- ADC antibody-drug conjugate
- DEA diethylamine
- DCC 1,3-dicyclohexylcarbodiimide
- DIAD diisopropyl azodicarboxylate
- DIPC 1 ,3-diisopropylcarbodiimide
- DIPEA DIPEA
- DMF N,N-dimethylformamide
- DPBS Dulbecco's phosphate-buffered saline
- DTPA diethylenetriaminepentaacetic acid
- DTT dithiothreitol
- EDC ethyl
- HATU 6>-(7-azabenzotriazol-l-yl)- N,N,N',N'-tetramethyluronium hexafluorophosphate
- HOBT N-hydroxybenzotriazole
- NHS N-hydroxybenzotriazole
- TGI tumor growth inhibition
- ADCs of the prior art that coordinate to cysteine thiols of the antibody have employed monofunctional linkers, of which the MC linker is an example. Reduction and opening of the cysteine-cysteine disulfide bonds to give free thiols for conjugation decreases the stability of the antibody, and the formation of the ADC by reaction of the reduced thiols does not re-form a bond, as illustrated in the scheme below:
- the bifunctional pyrrole-2,5-dione- and pyrrolidine-2,5-dione-based linkers of this invention contain two reactive functional groups (X in the scheme below) that react with the two sulfur atoms of an opened cysteine-cysteine disulfide bond. Reaction of the bifunctional linker with the two cysteines gives a "stapled" dithiosuccinimide or dithiomaleimide antibody conjugate with one linker per disulfide connected through two thioether bonds, as shown in the scheme below (double bond absent from the ring: succinimide linkers of formulae AA and AAA; double bond present in the ring: maleimide linkers of formulae BB and BBB):
- the reaction re-forms a covalently bonded structure between the 2 cysteine sulfur atoms and therefore does not compromise the overall stability of the antibody.
- the method also enables conjugation of an optimal 4 drugs per antibody to afford a homogeneous ADC since all of the reactive cysteines are used.
- the overall result is replacement of a relatively labile disulfide with a stable "staple" between the cysteines.
- the monosubstituted maleimide linkers (formulae CC and CCC) are also effectively bifunctional in conjugation with the antibody because the double bond of the maleimide is capable of conjugation to one of the cysteine sulfur atoms and the X group with the other.
- the compounds of the invention are prepared by conventional methods of organic and bio-organic chemistry. See, for example, Larock, "Comprehensive Organic Transformations", Wiley- VCH, New York, N.Y., U.S.A.. Suitable protective groups and their methods of addition and removal, where appropriate, are described in Greene et al., "Protective Groups in Organic Synthesis", 2 nd ed., 1991, John Wiley and Sons, New York, NY, US. Reference may also be made to the documents referred to elsewhere in the application, such as to the Schumacher et al. article referred to earlier for the synthesis of linkers, US Patent Application Publication No. US 2011/0021568 Al for the preparation of tubulysins, etc.
- Tubulysins T3 and T4 are prepared by methods analogous to those of Peltier et al. and US Patent Application Publication No. US 2011/0021568 Al, by substituting D-pipecolinic acid for the D-N-methylpipecolinic acid, protecting and deprotecting if appropriate.
- the comparator MC linker is prepared by methods known to the art for its preparation.
- Linkers of this invention are prepared by methods analogous to those of Schumacher et al., as follows (in this reaction scheme, R, L and Z have the meanings given them in the discussion of the fifth and sixth as ects of the invention above):
- 2,3-Dibromomaleimide, 1 equivalent, and a base such as sodium bicarbonate, about 5 equivalents, are dissolved in methanol, and a solution of 2-pyridinethiol, slightly more than 1 equivalent, in methanol, is added.
- the reaction is stirred for 15 min at ambient temperature.
- the solvent is removed under vacuum and the residue is purified, such as by flash chromatography on silica gel (petroleum ether: ethyl acetate, gradient elution from 9: 1 to 7:3, to give
- dichloromethane is added dropwise DIAD, 1 equivalent, at -78 °C.
- the reaction is stirred for 5 min and the sidechain, 0.5 equivalent, in dichloromethane is added dropwise.
- neopentyl alcohol, 1 equivalent, in tetrahydrofuran and dichloromethane is added, and stirred for a further 5 min, then the 3,4-bis(2-pyridylsulfanyl)pyrrole-2,5-dione, 1 equivalent, is added and stirred for another 5 min.
- the reaction is allowed to warm to ambient temperature with stirring for 20 hr, then the solvents are removed under vacuum. The residue is purified, such as by flash
- the sidechain may be used in protected form, and deprotected following the Mitsunobu reaction, if appropriate.
- the sidechain optionally protected if appropriate, may be coupled to a 3,4-dibromomaleimide by Mitsunobu coupling; and the resulting compound activated for disulfide exchange by reaction with an R-thiol in the presence of base; in the reverse of the synthesis described in the two previous paragraphs.
- linkers containing the pyrrolidine-2,5-dione moiety rather than the pyrrole-2,5-dione moiety shown above by starting with 2,3-dibromosuccinimide; but more usually these linkers are prepared by preparing the linker with an unsubstituted maleimide and brominating the linker to give the dibromosuccinimide moiety after coupling with the sidechain, and then "activating" the linker with the R-thiol as a last step.
- Mono-substituted maleimide linkers are conveniently prepared by dehydrobromination of the dibromosuccinimide linkers under basic conditions, and related methods.
- Linker-cytotoxin conjugates may be prepared by methods analogous to those of Doronina et al., Bioconjugate Chem. 2006, 17, 114-124, and similar documents.
- the linker, 1 equivalent, and HATU, 1 equivalent are dissolved in anhydrous DMF, followed by the addition of DIPEA, 2 equivalents.
- the resulting solution is added to the cytotoxin, 0.5 equivalents, dissolved in DMF, and the reaction stirred at ambient temperature for 3 hr.
- the linker-cytotoxin conjugate is purified by reverse phase HPLC on a C- 18 column.
- Antibodies typically monoclonal antibodies are raised against a specific cancer target (antigen), and purified and characterized.
- Therapeutic ADCs containing that antibody are prepared by standard methods for cysteine conjugation, such as by methods analogous to those of Hamblett et al., "Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug
- Antibody- drug conjugates with four drugs per antibody are prepared by partial reduction of the antibody with an excess of a reducing reagent such as DTT or TCEP at 37 °C for 30 min, then the buffer exchanged by elution through SEPHADEX ® G-25 resin with 1 mM DTPA in DPBS. The eluent is diluted with further DPBS, and the thiol concentration of the antibody may be measured using 5,5'- dithiobis(2-nitrobenzoic acid) [Ellman's reagent].
- a reducing reagent such as DTT or TCEP
- the linker- cytotoxin conjugate is added at 4 °C for 1 hr, and the conjugation reaction may be quenched by addition of a substantial excess, for example 20-fold, of cysteine.
- the resulting ADC mixture may be purified on SEPHADEX G-25 equilibrated in PBS to remove unreacted linker-cytotoxin conjugate, desalted if desired, and purified by size-exclusion chromatography.
- the resulting ADC may then be then sterile filtered, for example, through a 0.2 ⁇ filter, and lyophilized if desired for storage.
- n will be 4, where all of the interchain cysteine disulfide bonds are replaced by linker- drug conjugates.
- Schumacher et al. in their conjugation to somatostatin add the reducing agent to a mixture of the somatostatin and the PEGylated linker, so this may be possible with antibodies and linker-cytotoxin conjugates also and is not excluded as a method of synthesis.
- the ADCs of this invention may be assayed for binding affinity to and specificity for the desired antigen by any of the methods conventionally used for the assay of antibodies; and they may be assayed for efficacy as anticancer agents by any of the methods conventionally used for the assay of cytostatic/cytotoxic agents, such as assays for potency against cell cultures, xenograft assays, and the like.
- cytostatic/cytotoxic agents such as assays for potency against cell cultures, xenograft assays, and the like.
- the ADCs of the first aspect of this invention will typically be formulated as solutions for intravenous administration, or as lyophilized concentrates for reconstitution to prepare intravenous solutions (to be reconstituted, e.g., with normal saline, 5% dextrose, or similar isotonic solutions). They will typically be administered by intravenous injection or infusion.
- intravenous solutions to be reconstituted, e.g., with normal saline, 5% dextrose, or similar isotonic solutions.
- the 2-pyridinethiol/methanol solution was added dropwise to the 3,4-dibromopyrrole-2,5-dione via a 20 mL syringe with a 16 gauge needle, and the reaction mixture was stirred for an additional 3-4 hours.
- the methanol was evaporated and the crude product was dissolved in ethyl acetate and loaded onto about 2 g silica gel.
- the silica gel-loaded crude product was eluted through a 12 g silica gel cartridge with a hexane: ethyl acetate gradient from 9: 1 to 0: 1 over 25 column volumes.
- the enriched fractions were identified, pooled and lyophilized to dryness.
- the final product was recrystallized from ethyl acetate and diethyl ether to provide yellow needle crystals which were collected by filtration.
- Example 2 Synthesis of 39-(3,4-dibromo-2,5-dioxopyrrolyl)- 3, 6,9, 12, 15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoic acid:
- a 100 mL two-necked round bottom flask was flame dried and cooled under nitrogen.
- the cooled flask was charged with 200 mg (0.296 mmol) of ieri-butyl 39-hydroxy- 3, 6, 9, 12,15, 18,21, 24,27, 30,33, 36-dodecaoxanonatriacontanoate.
- Triphenylphosphine, 106 mg was dissolved in about 5 mL anhydrous tetrahydrofuran in a vial, and the solution was added to thelOO mL flask via cannula under nitrogen.
- the 100 mL flask was cooled in an ice-water bath for 15 minutes.
- the oil was eluted over a 12 g silica gel cartridge with a methanokdichloromethane gradient from 1:0 to 9:1 over 28 column volumes.
- the fractions containing the desired product were pooled and concentrated to dryness.
- the purified product was suspended in 50:50 acetonitrile: water and lyophilized overnight to provide a clear light yellow viscous oil.
- LC-MS analysis the of ieri-butyl-protected carboxylic acid product had been partially deprotected during the work-up.
- the lyophilized material was treated with 5% trifluoroacetic acid in dichloromethane, concentrated to dryness and lyophilized in acetonitrile: water (50:50) overnight.
- Fmoc-T4 was prepared by coupling Fmoc-D-2-piperidinecarboxylic acid to isoleucine in the presence of EDC and sodium bicarbonate, then coupling the resulting Fmoc-D-Pip-Ile-OH to the N-methylvaline intermediate 1 (purchased from Concortis) by mixing with 1 equivalent of HOBT and DIPC in DMF followed by addition of 2.5 equivalents of NMM. The reaction mixture was stirred overnight and purified by flash chromatography on silica gel using a gradient of hexane and ethyl acetate. Evaporation of solvent gave Fmoc-T4 as a yellow oil.
- T4 The Fmoc-T4 was then deprotected by treatment with 20% DEA in methylene chloride for 30 minutes to give T4, which was purified by preparative HPLC on a CI 8 reverse phase column eluted with acetonitrile/water.
- Example 5 Synthesis of 6-(2,5-dioxopyrrolyl)hexanoyl-T4 [MC-T4] and 39-(3,4-dibromo- 2,5-dioxopyrrolidinyl)-3,6,9,12,15, 18,21,24,27,30,33,36-dodecaoxanonatriacontanoyl-T4
- Example 6 Synthesis of 39-(2,5-dioxo-3,4-bis(2-pyridylsulfanyl)pyrrolyl)- -dodecaoxanonatriacontanoyl-MMAF [dPSPEG-MMAF] :
- the crude reaction mixture was purified by reverse-phase HPLC on a 21.2 mm x 50 mm Agilent PREP-C18 column at a flow rate of 35 mL/min over 20 column volumes (about 30 minutes of gradient time). Enriched fractions were identified, pooled and lyophilized to give the dPSPEG- MMAF conjugate as a white semi-solid.
- trastuzumab 1 mL of a 20 mg/niL solution in pH 7.4 PBS (Gibco Mg and Ca free) with ImM DTPA, is loaded into a sterile 1.7 mL Eppendorf tube, then 2.75 equivalents of TCEP hydrochloride (Sigma ampule 0.5M concentration), is added and the mixture incubated at 37 °C for 1 hour to give an average of 4 free thiol pairs per trastuzumab (this can be verified by Ellman's colorimetric assay - see Ellman, "Tissue sulfhydryl groups", Arch. Biochem. Biophys, 1959, 82, 70- 77 or later papers referring to this assay). The reduced antibody solution is cooled in an ice-bath at about 0 °C for 15 minutes; then a solution of about 4 equivalents of dPSPEG-MMAF in
- trastuzumab-dTSPEG-MMAF ADC is added and the mixture incubated at 37 °C for 2 hours (or at 4 °C for 20 hours).
- the resulting trastuzumab-dTSPEG-MMAF ADC is purified by size-exclusion chromatography (GE AKTA pure chromatographic system) or PD10 desalting column.
- GE AKTA pure chromatographic system size-exclusion chromatography
- PD10 desalting column PD10 desalting column.
- ADCs of this invention are tested for potency and selectivity in vitro by determining their cytotoxicity in cancer cell lines of interest, such as those cancer cell lines expressing the antigen corresponding to the antibody portion of the ADC and similar cancer cell lines lacking the antigen. They are tested for potency and safety in vivo in such animal models as the mouse subcutaneous cancer xenograft and mouse orthotopic cancer xenograft models well known to those of skill in the art of cancer research.
- Example 8 Cytotoxicity of trastuzumab ADCs compared to trastuzumab
- the IC 50 for both ADCs and for trastuzumab itself was >500 nM;
- cytotoxicity of tubulysins Tl and T2 was compared to the cytotoxicity of MMAF using the BT474 (HER2+) cell line in a standard cellular cytotoxicity assay.
- MMAF had an IC 50 of 93 nM
- Tl had an IC 50 of 11 nM
- T2 had an IC 50 of ⁇ 0.1 nM, showing that these tubulysins are considerably more potent than MMAF.
- N-conjugable tubulysins T3 and T4 are of similar potency to non-N-conjugable tubulysins Tl and T2, and considerably more potent than MMAF. These results and the results of Example 8 suggest that tubulysin ADCs are considerably more potent than MMAF ADCs, and will be effective anticancer agents. [0084] Example 10: Binding affinity of ADCs for antigen-expressing cells
- Binding of the antibodies and ADCs to antigen-expressing cells are measured using a cell ELISA.
- Sarcoma cells transduced to express the target (F279 cells for HER2, F244 cells for CD98) are plated the day at 5000 cells per well in a 384- well plate.
- antibodies are serially diluted in a separate plate, and then transferred to the cell plate, which has previously had media removed by aspiration. After a 2 hour incubation at room temperature, the plate is washed with wash buffer (DPBS at pH7.4 with 0.1% bovine serum albumin) and then 25 ⁇ horseradish peroxidase-labeled secondary antibody diluted in media is added and incubated for 30 minutes at room temperature.
- wash buffer DPBS at pH7.4 with 0.1% bovine serum albumin
- a chemiluminescent substrate (Pierce catalog #37069) is added; and the plate is read in a plate-based luminescence reader.
- Trastuzumab and trastuzumab ADCs (trastuzumab-MC-MMAF, trastuzumab-MC-T4, trastuzumab-dTSPEG- MMAF, and trastuzumab-dTSPEG-T4) demonstrated comparable affinity for F277 cells; and 18-2A and 18-2A ADCs (18-2A-MC-MMAF, 18-2A-MC-T4, 18-2A-dTSPEG-MMAF, and 18-2A- dTSPEG-T4) demonstrated comparable affinity for F244 cells, indicating that conjugation of the drug payloads do not effect antigen binding.
- Example 11 Potency of ADCs against antigen-expressing cells
- ADCs for inhibition of tumor cell growth was tested in cell proliferation assays.
- ADCs and controls were serially diluted in a master plate, and then transferred to the cell plates, which were incubated at 37 degrees Celsius and 5% C0 2 for 3 days.
- the cells were quantitated by measuring the level of ATP in the wells using the ATPLite IStep kit (Perkin Elmer catalog #50-904-9883) as described by the manufacturer.
- the 18-2A ADCs (18-2A-MC-MMAF, 18- 2A-MC-T4, 18-2A-dTSPEG-MMAF, and 18-2A-dTSPEG-T4) were approximately equipotent and considerably more potent than the parent 18-2A antibody in Ramos cells, while the trastuzumab ADCs (trastuzumab-MC-MMAF, trastuzumab-MC-T4, trastuzumab-dTSPEG-MMAF, and trastuzumab-dTSPEG-T4) were approximately equipotent and considerably more potent than the parent trastuzumab antibody in BT474 cells. [0088]
- Example 12 Efficacy of ADCs in murine xenograft models
- the Ramos cell line was obtained from ATCC and cultured according to the supplier's protocols. 4-6 Week-old immunodeficient female mice (Taconic C.B-17 scid) were subcutaneously ⁇
- mice were randomized. ADCs were formulated in PBS and administered once intravenously at a dose of 1 mg/Kg into the lateral tail vein, and body weights and tumors were measured twice weekly.
- Tumor volume was calculated as described in van der Horst et al., "Discovery of Fully Human Anti-MET Monoclonal Antibodies with Antitumor Activity against Colon Cancer Tumor Models In Vivo", Neoplasia, 2009, 11, 355-364.
- the experiments were performed on groups of 8 animals per experimental point.
- the negative control group received HB121 (an IgG2a-negative antibody) and free MMAF or T4, as appropriate, at a concentration equimolar to the concentration that would be released by the ADCs, while the positive control group received 18-2A.
- the 18-2A ADCs with the linkers of this invention demonstrated slightly more but comparable TGI than the comparator ADCs (18-2A-MC-MMAF and 18-2A-MC-T4, respectively), and more TGI than the parent 18-2A antibody, while all demonstrated significant TGI compared to the control. No toxicity was observed based on animal weight measurements.
- the BT474 cell line was obtained from ATCC and cultured according to the supplier's protocols. 4-6 Week-old immunodeficient female mice (Taconic C.B-17 scid) were implanted with a ⁇ -estradiol pellet 3 days before being subcutaneously injected on the right flank with lxlO 7 viable cells in a mixture of PBS (without magnesium or calcium) and BD Matrigel (BD Biosciences) at a 1: 1 ratio. The injected total volume per mouse was 200 ⁇ with 50% being Matrigel. Once the tumor reached a size of 100-150 mm , mice were randomized.
- ADCs were formulated in PBS and administered once intravenously at a dose of 1 mg/Kg into the lateral tail vein, and body weights and tumors were measured twice weekly. Tumor volume was calculated as described in van der Horst et al., cited above. The experiments were performed on groups of 8 animals per experimental point. The negative control group received HB121 and free MMAF or T4, as appropriate, at a
- trastuzumab ADCs with the linkers of this invention demonstrate comparable TGI to than the comparator ADCs (trastuzumab-MC-MMAF and trastuzumab-MC-T4,
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2014006739A MX2014006739A (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods. |
BR112014013526A BR112014013526A2 (en) | 2011-12-05 | 2012-12-04 | antibody-drug conjugates and related compounds, compositions and methods |
AU2012348017A AU2012348017A1 (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
SG11201402686UA SG11201402686UA (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
CN201280067454.XA CN104244718A (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
RU2014124984A RU2014124984A (en) | 2011-12-05 | 2012-12-04 | COMPOUNDS ANTI-MEDICINAL PRODUCT AND RELATED COMPOUNDS, COMPOSITIONS AND METHODS |
CA2857398A CA2857398A1 (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
JP2014546004A JP2015500287A (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions and methods |
EP12855849.1A EP2793585A4 (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
KR1020147018663A KR20140139480A (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
IN4961CHN2014 IN2014CN04961A (en) | 2011-12-05 | 2012-12-04 | |
ZA2014/03946A ZA201403946B (en) | 2011-12-05 | 2014-05-29 | Antibody-drug conjugates and related compounds, compositions and methods |
PH12014501229A PH12014501229A1 (en) | 2011-12-05 | 2014-05-30 | Antibody-drug conjugates and related compounds, compositions, and methods |
IL232936A IL232936A0 (en) | 2011-12-05 | 2014-06-02 | Antibody-drug conjugates and related compounds, compositions, and methods |
HK15104134.2A HK1203309A1 (en) | 2011-12-05 | 2015-04-29 | Antibody drug conjugates and related compounds, compositions, and methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161566909P | 2011-12-05 | 2011-12-05 | |
US61/566,909 | 2011-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013085925A1 true WO2013085925A1 (en) | 2013-06-13 |
Family
ID=48574809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/067803 WO2013085925A1 (en) | 2011-12-05 | 2012-12-04 | Antibody-drug conjugates and related compounds, compositions, and methods |
Country Status (17)
Country | Link |
---|---|
US (3) | US20130224228A1 (en) |
EP (1) | EP2793585A4 (en) |
JP (1) | JP2015500287A (en) |
KR (1) | KR20140139480A (en) |
CN (1) | CN104244718A (en) |
AU (1) | AU2012348017A1 (en) |
BR (1) | BR112014013526A2 (en) |
CA (1) | CA2857398A1 (en) |
HK (1) | HK1203309A1 (en) |
IL (1) | IL232936A0 (en) |
IN (1) | IN2014CN04961A (en) |
MX (1) | MX2014006739A (en) |
PH (1) | PH12014501229A1 (en) |
RU (1) | RU2014124984A (en) |
SG (1) | SG11201402686UA (en) |
WO (1) | WO2013085925A1 (en) |
ZA (1) | ZA201403946B (en) |
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014145090A1 (en) | 2013-03-15 | 2014-09-18 | Regeneron Pharmaceuticals, Inc. | Biologically active molecules, conjugates thereof, and therapeutic uses |
US20140363454A1 (en) * | 2013-06-06 | 2014-12-11 | Igenica Biotherapeutics, Inc. | Antibody-Drug Conjugates, Compositions and Methods of Use |
WO2015004400A1 (en) * | 2013-07-11 | 2015-01-15 | Universite Francois Rabelais | Novel antibody-drug conjugates and the use of same in therapy |
US20150105540A1 (en) * | 2013-10-15 | 2015-04-16 | Sorrento Therapeutics Inc. | Drug-conjugates with a targeting molecule and two different drugs |
WO2015095953A1 (en) | 2013-12-27 | 2015-07-02 | The Centre For Drug Research And Development | Sulfonamide-containing linkage systems for drug conjugates |
JP2015518831A (en) * | 2012-05-15 | 2015-07-06 | ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. | Drug conjugate, conjugation method and use thereof |
WO2015113760A1 (en) * | 2014-01-28 | 2015-08-06 | Tube Pharmaceuticals Gmbh | Cytotoxic tubulysin compounds for conjugation |
WO2015138460A1 (en) | 2014-03-11 | 2015-09-17 | Regeneron Pharmaceuticals, Inc. | Anti-egfrviii antibodies and uses thereof |
WO2015187596A3 (en) * | 2014-06-02 | 2016-02-25 | Regeneron Pharmaceuticals, Inc. | Antibody-drug conjugates, their preparation and their therapeutic use |
WO2016077260A1 (en) * | 2014-11-10 | 2016-05-19 | Bristol-Myers Squibb Company | Tubulysin analogs and methods of making and use |
CN105979971A (en) * | 2014-02-06 | 2016-09-28 | 欧寇玛特瑞克斯生物制药公司 | Antibody-drug conjugates and immunotoxins |
WO2016160615A1 (en) | 2015-03-27 | 2016-10-06 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
WO2016064749A3 (en) * | 2014-10-20 | 2016-11-17 | Igenica Biotherapeutics, Inc. | Antibody-drug conjugates and related compounds, compositions, and methods of use |
WO2017031034A2 (en) | 2015-08-14 | 2017-02-23 | Rc Biotechnologies, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
WO2017095808A1 (en) | 2015-11-30 | 2017-06-08 | Abbvie Inc. | ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE |
WO2017095805A1 (en) | 2015-11-30 | 2017-06-08 | Abbvie Inc. | ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE |
US20170157262A1 (en) * | 2012-07-12 | 2017-06-08 | R. Yongxin Zhao | Conjugates of cell binding molecules with cytotoxic agents |
WO2017100642A1 (en) | 2015-12-11 | 2017-06-15 | Regeneron Pharmaceuticals, Inc. | Methods for reducing or preventing growth of tumors resistant to egfr and/or erbb3 blockade |
WO2017132173A1 (en) | 2016-01-25 | 2017-08-03 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
WO2017201204A1 (en) | 2016-05-17 | 2017-11-23 | Abbvie Biotherapeutics Inc. | ANTI-cMet ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE |
EP3100731A4 (en) * | 2014-01-29 | 2017-12-20 | Shanghai Hengrui Pharmaceutical Co., Ltd. | Ligand-cytotoxicity drug conjugate, preparation method therefor, and uses thereof |
WO2018002902A1 (en) | 2016-07-01 | 2018-01-04 | Glaxosmithkline Intellectual Property (No.2) Limited | Antibody-drug conjugates and therapeutic methods using the same |
WO2018058003A1 (en) | 2016-09-23 | 2018-03-29 | Regeneron Pharmaceuticals, Inc. | Anti-muc16 (mucin 16) antibodies |
WO2018058001A1 (en) | 2016-09-23 | 2018-03-29 | Regeneron Pharmaceuticals, Inc. | Anti-steap2 antibodies, antibody-drug conjugates, and bispecific antigen-binding molecules that bind steap2 and cd3, and uses thereof |
WO2018089373A2 (en) | 2016-11-08 | 2018-05-17 | Regeneron Pharmaceuticals, Inc. | Steroids and protein-conjugates thereof |
WO2018093866A1 (en) | 2016-11-16 | 2018-05-24 | Regeneron Pharmaceuticals, Inc. | Anti-met antibodies, bispecific antigen binding molecules that bind met, and methods of use thereof |
US10004812B2 (en) | 2014-02-06 | 2018-06-26 | Oncomatryx Biopharma, S.L. | Antibody-drug conjugates and immunotoxins |
US10011657B2 (en) | 2014-10-31 | 2018-07-03 | Abbvie Biotherapeutics Inc. | Anti-CS1 antibodies and antibody drug conjugates |
US20190015517A1 (en) * | 2015-12-04 | 2019-01-17 | Seattle Genetics, Inc. | Conjugates of quaternized tubulysin compounds |
WO2019136487A2 (en) | 2018-01-08 | 2019-07-11 | Regeneron Pharmaceuticals, Inc. | Steroids and antibody-conjugates thereof |
WO2019212965A1 (en) | 2018-04-30 | 2019-11-07 | Regeneron Pharmaceuticals, Inc. | Antibodies, and bispecific antigen-binding molecules that bind her2 and/or aplp2, conjugates, and uses thereof |
WO2019217591A1 (en) | 2018-05-09 | 2019-11-14 | Regeneron Pharmaceuticals, Inc. | Anti-msr1 antibodies and methods of use thereof |
WO2019222663A1 (en) | 2018-05-17 | 2019-11-21 | Regeneron Pharmaceuticals, Inc. | Anti-cd63 antibodies, conjugates, and uses thereof |
WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
WO2020022899A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for breast cancer |
WO2020022900A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for kidney cancer |
WO2020022903A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | ARID1A, CDKN2A, KMT2B, KMT2D, TP53 and PTEN VACCINES FOR CANCER |
WO2020022902A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for colorectal cancer |
WO2020022901A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for uterine cancer |
US10675352B2 (en) | 2014-02-14 | 2020-06-09 | Centrose, Llc | Extracellular targeted drug conjugates |
WO2020132483A1 (en) | 2018-12-21 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Rifamycin analogs and antibody-drug conjugates thereof |
CN111433188A (en) * | 2018-12-17 | 2020-07-17 | 荣昌生物制药(烟台)股份有限公司 | Linker for antibody drug conjugate and application thereof |
WO2020172475A1 (en) | 2019-02-21 | 2020-08-27 | Regeneron Pharmaceuticals, Inc. | Methods of treating ocular cancer using anti-met antibodies and bispecific antigen binding molecules that bind met |
WO2021016204A1 (en) | 2019-07-19 | 2021-01-28 | Immunesensor Therapeutics, Inc. | Antibody-sting agonist conjugates and their use in immunotherapy |
WO2021055895A1 (en) | 2019-09-19 | 2021-03-25 | Regeneron Pharmaceuticals, Inc. | Anti-ptcra antibody-drug conjugates and uses thereof |
WO2021174113A1 (en) | 2020-02-28 | 2021-09-02 | Regeneron Pharmaceuticals, Inc. | Bispecific antigen binding molecules that bind her2, and methods of use thereof |
WO2021178896A1 (en) | 2020-03-06 | 2021-09-10 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
US11129903B2 (en) | 2015-07-06 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
WO2021211984A1 (en) | 2020-04-16 | 2021-10-21 | Regeneron Pharmaceuticals, Inc. | Diels-alder conjugation methods |
EP3900742A1 (en) | 2014-09-11 | 2021-10-27 | Seagen Inc. | Targeted delivery of tertiary amine-containing drug substances |
WO2022015656A1 (en) | 2020-07-13 | 2022-01-20 | Regeneron Pharmaceuticals, Inc. | Camptothecin analogs conjugated to a glutamine residue in a protein, and their use |
WO2022056494A1 (en) | 2020-09-14 | 2022-03-17 | Regeneron Pharmaceuticals, Inc. | Antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof |
WO2022087243A1 (en) | 2020-10-22 | 2022-04-28 | Regeneron Pharmaceuticals, Inc. | Anti-fgfr2 antibodies and methods of use thereof |
US11352446B2 (en) | 2016-04-28 | 2022-06-07 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
WO2022187591A1 (en) | 2021-03-05 | 2022-09-09 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
US11491237B2 (en) | 2017-05-18 | 2022-11-08 | Regeneron Pharmaceuticals, Inc. | Cyclodextrin protein drug conjugates |
WO2023014863A1 (en) | 2021-08-05 | 2023-02-09 | Go Therapeutics, Inc. | Anti-glyco-muc4 antibodies and their uses |
US11596635B2 (en) | 2013-08-26 | 2023-03-07 | Regeneron Pharmaceuticals, Inc. | Pharmaceutical compositions comprising macrolide diastereomers, methods of their synthesis and therapeutic uses |
WO2023034569A1 (en) | 2021-09-03 | 2023-03-09 | Go Therapeutics, Inc. | Anti-glyco-cmet antibodies and their uses |
WO2023034571A1 (en) | 2021-09-03 | 2023-03-09 | Go Therapeutics, Inc. | Anti-glyco-lamp1 antibodies and their uses |
WO2023137026A1 (en) | 2022-01-12 | 2023-07-20 | Regeneron Pharmaceuticals, Inc. | Camptothecin analogs conjugated to a glutamine residue in a protein, and their use |
WO2023173132A1 (en) | 2022-03-11 | 2023-09-14 | Regeneron Pharmaceuticals, Inc. | Anti-glp1r antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof |
US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
US11873281B2 (en) | 2012-07-12 | 2024-01-16 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
WO2024020164A2 (en) | 2022-07-21 | 2024-01-25 | Firefly Bio, Inc. | Glucocorticoid receptor agonists and conjugates thereof |
US11896682B2 (en) | 2019-09-16 | 2024-02-13 | Regeneron Pharmaceuticals, Inc. | Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof |
US11932695B2 (en) | 2013-06-06 | 2024-03-19 | Sensei Biotherapeutics, Inc. | Modified antibodies and related compounds, compositions and methods of use |
WO2024138000A1 (en) | 2022-12-21 | 2024-06-27 | Regeneron Pharmaceuticals, Inc. | Prodrugs of topoisomerase i inhibitor for adc conjugations and methods of use thereof |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8288557B2 (en) | 2004-07-23 | 2012-10-16 | Endocyte, Inc. | Bivalent linkers and conjugates thereof |
EP2481427A1 (en) | 2007-03-14 | 2012-08-01 | Endocyte, Inc. | Folate-Tubulysin conjugates |
CN101784565B (en) | 2007-06-25 | 2014-12-10 | 恩多塞特公司 | Conjugates containing hydrophilic spacer linkers |
US9877965B2 (en) | 2007-06-25 | 2018-01-30 | Endocyte, Inc. | Vitamin receptor drug delivery conjugates for treating inflammation |
WO2013121175A1 (en) | 2012-02-16 | 2013-08-22 | Ucl Business Plc | Lysosome-cleavable linker |
US10080805B2 (en) | 2012-02-24 | 2018-09-25 | Purdue Research Foundation | Cholecystokinin B receptor targeting for imaging and therapy |
US20140080175A1 (en) | 2012-03-29 | 2014-03-20 | Endocyte, Inc. | Processes for preparing tubulysin derivatives and conjugates thereof |
AU2013331440A1 (en) | 2012-10-16 | 2015-04-30 | Endocyte, Inc. | Drug delivery conjugates containing unnatural amino acids and methods for using |
EA030830B1 (en) | 2013-02-14 | 2018-10-31 | Бристол-Майерс Сквибб Компани | Tubulysin compounds, methods of making and use thereof |
JP6282745B2 (en) | 2013-09-12 | 2018-02-21 | ハロザイム インコーポレイテッド | Modified anti-epidermal growth factor receptor antibody and method of use thereof |
AU2015243379B2 (en) * | 2014-04-11 | 2018-02-01 | Medimmune Llc | Tubulysin derivatives |
NZ726911A (en) | 2014-06-03 | 2023-01-27 | Xbiotech Inc | Compositions and methods for treating and preventing staphylococcus aureus infections |
CA3203273A1 (en) | 2014-10-14 | 2016-04-21 | Halozyme, Inc. | Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same |
EP3215538A4 (en) * | 2014-11-07 | 2018-07-04 | Igenica Biotherapeutics, Inc. | Anti-cd39 antibodies and uses thereof |
CN111620861A (en) | 2014-12-09 | 2020-09-04 | 艾伯维公司 | BCL-XL inhibitory compound having low cell permeability and antibody drug conjugate including the same |
CN107249643A (en) | 2014-12-09 | 2017-10-13 | 艾伯维公司 | The antibody drug conjugate of BCL XL inhibitor with cell permeability |
WO2016094517A1 (en) | 2014-12-09 | 2016-06-16 | Abbvie Inc. | Bcl-xl inhibitory compounds and antibody drug conjugates including the same |
CN107231804B (en) | 2015-01-14 | 2019-11-26 | 百时美施贵宝公司 | Inferior heteroaryl bridging benzodiazepine * dimer, its conjugate and preparation and application |
ES2918425T3 (en) | 2015-01-28 | 2022-07-15 | Sorrento Therapeutics Inc | Antibody-drug conjugates |
US10676773B2 (en) * | 2015-03-10 | 2020-06-09 | Bristol-Myers Squibb Company | Antibodies conjugatable by transglutaminase and conjugates made therefrom |
WO2016165762A1 (en) * | 2015-04-15 | 2016-10-20 | Ganymed Pharmaceuticals Ag | Drug conjugates comprising antibodies against claudin 18.2 |
CN106279352B (en) | 2015-05-29 | 2020-05-22 | 上海新理念生物医药科技有限公司 | Derivative of dolastatin 10 and application thereof |
CN106267225B (en) | 2015-05-29 | 2020-03-06 | 上海新理念生物医药科技有限公司 | Trimaleimide-type linker and use thereof |
JP6817288B2 (en) * | 2015-08-10 | 2021-01-20 | ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ.Hangzhou Dac Biotech Co.,Ltd. | Its use in novel conjugates and specific conjugation of biomolecules with drugs |
EP3347049B1 (en) * | 2015-09-08 | 2024-07-03 | Waters Technologies Corporation | Multidimensional chromatography method for analysis of antibody-drug conjugates |
EP3386997B1 (en) | 2015-12-09 | 2021-06-30 | Medizinische Universität Wien | Monomaleimide-functionalized platinum compounds for cancer therapy |
WO2017136652A1 (en) * | 2016-02-04 | 2017-08-10 | Tarveda Therapeutics, Inc. | Stapled peptide conjugates and particles |
WO2017161206A1 (en) | 2016-03-16 | 2017-09-21 | Halozyme, Inc. | Conjugates containing conditionally active antibodies or antigen-binding fragments thereof, and methods of use |
BR112018075636A2 (en) | 2016-06-08 | 2019-04-09 | Abbvie Inc. | anti-egfr drug antibody conjugates |
JP2019526529A (en) | 2016-06-08 | 2019-09-19 | アッヴィ・インコーポレイテッド | Anti-B7-H3 antibody and antibody drug conjugate |
CA3027103A1 (en) | 2016-06-08 | 2017-12-14 | Abbvie Inc. | Anti-b7-h3 antibodies and antibody drug conjugates |
CN109600993A (en) | 2016-06-08 | 2019-04-09 | 艾伯维公司 | Anti-egfr antibodies drug conjugates |
CN116173232A (en) | 2016-06-08 | 2023-05-30 | 艾伯维公司 | anti-CD 98 antibodies and antibody drug conjugates |
CA3027181A1 (en) | 2016-06-08 | 2017-12-14 | Abbvie Inc. | Anti-egfr antibody drug conjugates |
JP2019522643A (en) | 2016-06-08 | 2019-08-15 | アッヴィ・インコーポレイテッド | Anti-CD98 antibodies and antibody drug conjugates |
CA3027045A1 (en) | 2016-06-08 | 2017-12-14 | Abbvie Inc. | Anti-b7-h3 antibodies and antibody drug conjugates |
AU2017277914A1 (en) | 2016-06-08 | 2019-01-03 | Abbvie Inc. | Anti-CD98 antibodies and antibody drug conjugates |
CN109562152B (en) | 2016-08-09 | 2024-04-02 | 西雅图基因公司 | Drug conjugates containing self-stabilizing linkers with improved physiochemical properties |
CN109810039B (en) * | 2017-11-22 | 2021-11-12 | 迈威(上海)生物科技股份有限公司 | Disubstituted maleimide-based linker for antibody-drug coupling, preparation method and application thereof |
US10864279B2 (en) | 2016-12-16 | 2020-12-15 | Industrial Technology Research Institute | Linker-drug and antibody-drug conjugate (ADC) employing the same |
EP3606922A4 (en) * | 2017-04-06 | 2021-03-03 | Hangzhou Dac Biotech Co., Ltd | Conjugation of a cytotoxic drug with bis-linkage |
CN107652219B (en) | 2017-08-14 | 2021-06-08 | 上海新理念生物医药科技有限公司 | Tetramaleimide-type linker and application thereof |
TW201920192A (en) * | 2017-09-20 | 2019-06-01 | 韓商Ph製藥公司 | THAILANSTATIN analogs |
CN112220933A (en) * | 2018-07-03 | 2021-01-15 | 烟台迈百瑞国际生物医药股份有限公司 | antibody-T2 toxin conjugates and uses thereof |
EP3898693A4 (en) | 2018-12-21 | 2022-09-21 | Avidity Biosciences, Inc. | Anti-transferrin receptor antibodies and uses thereof |
CN110997010A (en) | 2019-08-07 | 2020-04-10 | 烟台迈百瑞国际生物医药有限公司 | Antibody drug conjugate and application thereof |
CA3172111A1 (en) | 2020-03-19 | 2021-09-23 | Barbora MALECOVA | Compositions and methods of treating facioscapulohumeral muscular dystrophy |
MX2022011880A (en) | 2020-03-27 | 2022-10-20 | Avidity Biosciences Inc | Compositions and methods of treating muscle dystrophy. |
UY39610A (en) | 2021-01-20 | 2022-08-31 | Abbvie Inc | ANTI-EGFR ANTIBODY-DRUG CONJUGATES |
US11807685B2 (en) * | 2021-08-05 | 2023-11-07 | The Uab Research Foundation | Anti-CD47 antibody and uses thereof |
AU2022345098A1 (en) | 2021-09-16 | 2024-04-04 | Avidity Biosciences, Inc. | Compositions and methods of treating facioscapulohumeral muscular dystrophy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090175865A1 (en) * | 2004-09-23 | 2009-07-09 | Genentech, Inc. | Cysteine engineered antibodies and conjugates |
US7851437B2 (en) * | 2002-07-31 | 2010-12-14 | Seattle Genetics Inc. | Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease |
WO2011018613A1 (en) * | 2009-08-10 | 2011-02-17 | Ucl Business Plc | Functionalisation of solid substrates |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2211443A1 (en) * | 1995-01-26 | 1996-08-01 | Biogen, Inc. | Lymphotoxin-.alpha./.beta. complexes and anti-lymphotoxin-beta receptor antibodies as anti-tumor agents |
DE10254439A1 (en) * | 2002-11-21 | 2004-06-03 | GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) | Tubulysins, manufacturing processes and tubulysin agents |
BR122018071808B8 (en) * | 2003-11-06 | 2020-06-30 | Seattle Genetics Inc | conjugate |
US7740861B2 (en) * | 2004-06-16 | 2010-06-22 | University Of Massachusetts | Drug delivery product and methods |
AU2006293410B2 (en) * | 2005-09-20 | 2012-10-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd | Nanoparticles for targeted delivery of active agents |
JP2011505372A (en) * | 2007-11-30 | 2011-02-24 | ブリストル−マイヤーズ スクウィブ カンパニー | Anti-B7H4 monoclonal antibody-drug conjugates and methods of use |
NZ589880A (en) * | 2008-06-16 | 2012-10-26 | Immunogen Inc | Use of synergistic anti-cancer compositions comprising lenalidomide, at least one corticosteroid and at least one immunoconjugate |
WO2010009124A2 (en) * | 2008-07-15 | 2010-01-21 | Genentech, Inc. | Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds |
EP2822597A1 (en) * | 2012-03-09 | 2015-01-14 | UCL Business Plc. | Chemical modification of antibodies |
-
2012
- 2012-12-04 MX MX2014006739A patent/MX2014006739A/en unknown
- 2012-12-04 WO PCT/US2012/067803 patent/WO2013085925A1/en active Application Filing
- 2012-12-04 SG SG11201402686UA patent/SG11201402686UA/en unknown
- 2012-12-04 CA CA2857398A patent/CA2857398A1/en not_active Abandoned
- 2012-12-04 CN CN201280067454.XA patent/CN104244718A/en active Pending
- 2012-12-04 KR KR1020147018663A patent/KR20140139480A/en not_active Application Discontinuation
- 2012-12-04 AU AU2012348017A patent/AU2012348017A1/en not_active Abandoned
- 2012-12-04 EP EP12855849.1A patent/EP2793585A4/en not_active Withdrawn
- 2012-12-04 IN IN4961CHN2014 patent/IN2014CN04961A/en unknown
- 2012-12-04 BR BR112014013526A patent/BR112014013526A2/en not_active Application Discontinuation
- 2012-12-04 RU RU2014124984A patent/RU2014124984A/en not_active Application Discontinuation
- 2012-12-04 US US13/705,074 patent/US20130224228A1/en not_active Abandoned
- 2012-12-04 JP JP2014546004A patent/JP2015500287A/en active Pending
-
2014
- 2014-05-29 ZA ZA2014/03946A patent/ZA201403946B/en unknown
- 2014-05-30 PH PH12014501229A patent/PH12014501229A1/en unknown
- 2014-06-02 IL IL232936A patent/IL232936A0/en unknown
-
2015
- 2015-04-29 HK HK15104134.2A patent/HK1203309A1/en unknown
- 2015-08-24 US US14/834,078 patent/US20160303247A1/en not_active Abandoned
-
2019
- 2019-12-27 US US16/728,045 patent/US20200392108A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7851437B2 (en) * | 2002-07-31 | 2010-12-14 | Seattle Genetics Inc. | Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease |
US20090175865A1 (en) * | 2004-09-23 | 2009-07-09 | Genentech, Inc. | Cysteine engineered antibodies and conjugates |
WO2011018613A1 (en) * | 2009-08-10 | 2011-02-17 | Ucl Business Plc | Functionalisation of solid substrates |
Non-Patent Citations (2)
Title |
---|
KING H. DALTON ET AL.: "Facile synthesis of maleimide bifunctional linkers", TETRAHEDRON LETTERS, vol. 43, 2002, pages 1987 - 1990, XP004339084 * |
See also references of EP2793585A4 * |
Cited By (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018058851A (en) * | 2012-05-15 | 2018-04-12 | ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. | Drug conjugates, conjugation methods, and uses thereof |
US12115228B2 (en) | 2012-05-15 | 2024-10-15 | Concortis Biosystems, Corp. | Drug-conjugates, conjugation methods, and uses thereof |
US9801951B2 (en) | 2012-05-15 | 2017-10-31 | Concortis Biosystems, Corp. | Drug-conjugates, conjugation methods, and uses thereof |
US9981046B2 (en) | 2012-05-15 | 2018-05-29 | Concortis Biosystems, Corp., a wholly owned Subsidiary of Sorrento Therapeutics, Inc. | Drug-conjugates, conjugation methods, and uses thereof |
US9884127B2 (en) | 2012-05-15 | 2018-02-06 | Concortis Biosystems, Corp. | Drug-conjugates, conjugation methods, and uses thereof |
US10967071B2 (en) | 2012-05-15 | 2021-04-06 | Concortis Biosystems, Corp. | Drug-conjugates, conjugation methods, and uses thereof |
JP2015518831A (en) * | 2012-05-15 | 2015-07-06 | ソレント・セラピューティクス・インコーポレイテッドSorrento Therapeutics, Inc. | Drug conjugate, conjugation method and use thereof |
US11873281B2 (en) | 2012-07-12 | 2024-01-16 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
US11834406B2 (en) | 2012-07-12 | 2023-12-05 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
US11767294B2 (en) | 2012-07-12 | 2023-09-26 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
US20170157262A1 (en) * | 2012-07-12 | 2017-06-08 | R. Yongxin Zhao | Conjugates of cell binding molecules with cytotoxic agents |
US10501412B2 (en) * | 2012-07-12 | 2019-12-10 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
US10399941B2 (en) | 2012-07-12 | 2019-09-03 | Hangzhou Dac Biotech Co., Ltd. | Conjugates of cell binding molecules with cytotoxic agents |
WO2014145090A1 (en) | 2013-03-15 | 2014-09-18 | Regeneron Pharmaceuticals, Inc. | Biologically active molecules, conjugates thereof, and therapeutic uses |
US11345715B2 (en) | 2013-03-15 | 2022-05-31 | Regeneron Pharmaceuticals, Inc. | Biologically active molecules, conjugates thereof, and therapeutic uses |
US10570151B2 (en) | 2013-03-15 | 2020-02-25 | Regeneron Pharmaceuticals, Inc. | Biologically active molecules, conjugates thereof, and therapeutic uses |
EP3964237A1 (en) | 2013-03-15 | 2022-03-09 | Regeneron Pharmaceuticals, Inc. | Biologically active molecules, conjugates thereof, and therapeutic uses |
US11932695B2 (en) | 2013-06-06 | 2024-03-19 | Sensei Biotherapeutics, Inc. | Modified antibodies and related compounds, compositions and methods of use |
US20180147294A1 (en) * | 2013-06-06 | 2018-05-31 | David Y. Jackson | Antibody-drug conjugates, compositions and methods of use |
US20140363454A1 (en) * | 2013-06-06 | 2014-12-11 | Igenica Biotherapeutics, Inc. | Antibody-Drug Conjugates, Compositions and Methods of Use |
CN105592859A (en) * | 2013-07-11 | 2016-05-18 | 图尔大学 | Novel antibody-drug conjugates and the use of same in therapy |
EP3825304A1 (en) * | 2013-07-11 | 2021-05-26 | Mc SAF | Antibody-drug conjugates and the use of same in therapy |
WO2015004400A1 (en) * | 2013-07-11 | 2015-01-15 | Universite Francois Rabelais | Novel antibody-drug conjugates and the use of same in therapy |
EP3521314A1 (en) * | 2013-07-11 | 2019-08-07 | Université François Rabelais | New antibody-drug conjugates and use thereof in treatment |
FR3008408A1 (en) * | 2013-07-11 | 2015-01-16 | Univ Rabelais Francois | NOVEL ANTIBODY-MEDICAMENT CONJUGATES AND THEIR USE IN THERAPY |
US10307488B2 (en) | 2013-07-11 | 2019-06-04 | Universite Francois Rabelais | Antibody-drug conjugates and the use of same in therapy |
CN105592859B (en) * | 2013-07-11 | 2021-08-20 | Mcsaf公司 | Antibody-drug conjugates and their use in therapy |
JP2016531094A (en) * | 2013-07-11 | 2016-10-06 | ユニヴェルシテ フランソワ ラブレーUniversite Francois Rabelais | Novel antibody-drug conjugates and their use in therapy |
US11278627B2 (en) | 2013-07-11 | 2022-03-22 | Mc Saf | Antibody-drug conjugates and the use of same in therapy |
US11596635B2 (en) | 2013-08-26 | 2023-03-07 | Regeneron Pharmaceuticals, Inc. | Pharmaceutical compositions comprising macrolide diastereomers, methods of their synthesis and therapeutic uses |
US10836821B2 (en) * | 2013-10-15 | 2020-11-17 | Sorrento Therapeutics, Inc. | Drug-conjugates with a targeting molecule and two different drugs |
US11987622B2 (en) | 2013-10-15 | 2024-05-21 | Vivasor, Inc. | Drug-conjugates with a targeting molecule and two different drugs |
US20150105540A1 (en) * | 2013-10-15 | 2015-04-16 | Sorrento Therapeutics Inc. | Drug-conjugates with a targeting molecule and two different drugs |
WO2015095953A1 (en) | 2013-12-27 | 2015-07-02 | The Centre For Drug Research And Development | Sulfonamide-containing linkage systems for drug conjugates |
US10889616B2 (en) | 2014-01-28 | 2021-01-12 | Tube Pharmaceuticals Gmbh | Cytotoxic tubulysin compounds for conjugation |
WO2015113760A1 (en) * | 2014-01-28 | 2015-08-06 | Tube Pharmaceuticals Gmbh | Cytotoxic tubulysin compounds for conjugation |
AU2015213106B2 (en) * | 2014-01-28 | 2019-07-25 | Tube Pharmaceuticals Gmbh | Cytotoxic tubulysin compounds for conjugation |
US10183970B2 (en) | 2014-01-28 | 2019-01-22 | Tube Pharmaceuticals Gmbh | Cytotoxic tubulysin compounds for conjugation |
CN106132959A (en) * | 2014-01-28 | 2016-11-16 | 管道制药有限责任公司 | For the cytotoxicity tubulysin compound puted together |
JP2017507926A (en) * | 2014-01-28 | 2017-03-23 | トゥーベ・ファルマシューティカルズ・ゲー・エム・ベー・ハー | Novel cytotoxic tubulin compounds for conjugation |
EP3100731A4 (en) * | 2014-01-29 | 2017-12-20 | Shanghai Hengrui Pharmaceutical Co., Ltd. | Ligand-cytotoxicity drug conjugate, preparation method therefor, and uses thereof |
AU2015210578B2 (en) * | 2014-01-29 | 2020-04-16 | Jiangsu Hengrui Medicine Co., Ltd. | Ligand-cytotoxic drug conjugate, preparation method therefor, and uses thereof |
US10004812B2 (en) | 2014-02-06 | 2018-06-26 | Oncomatryx Biopharma, S.L. | Antibody-drug conjugates and immunotoxins |
US10137202B2 (en) | 2014-02-06 | 2018-11-27 | Oncomatryx Biopharma, S.L. | Antibody-drug conjugates and immunotoxins |
US10864278B2 (en) | 2014-02-06 | 2020-12-15 | Oncomatryx Biopharma, S.L. | Antibody-drug conjugates and immunotoxins |
CN105979971B (en) * | 2014-02-06 | 2019-10-11 | 欧寇玛特瑞克斯生物制药公司 | Antibody-drug conjugates and immunotoxin |
EP3102244B1 (en) * | 2014-02-06 | 2020-03-18 | Oncomatryx Biopharma, S.L. | Antibody-drug conjugates and immunotoxins |
CN105979971A (en) * | 2014-02-06 | 2016-09-28 | 欧寇玛特瑞克斯生物制药公司 | Antibody-drug conjugates and immunotoxins |
US10675352B2 (en) | 2014-02-14 | 2020-06-09 | Centrose, Llc | Extracellular targeted drug conjugates |
US10047160B2 (en) | 2014-03-11 | 2018-08-14 | Regeneron Pharmaceuticals, Inc. | Anti-EGFRvIII antibodies and uses thereof |
US11608380B2 (en) | 2014-03-11 | 2023-03-21 | Regeneron Pharmaceuticals, Inc. | Anti-EGFRvIII antibodies and uses thereof |
US9475875B2 (en) | 2014-03-11 | 2016-10-25 | Regeneron Pharmaceuticals, Inc. | Anti-EGFRvIII antibodies and uses thereof |
US10738124B2 (en) | 2014-03-11 | 2020-08-11 | Regeneron Pharmaceuticals, Inc. | Anti-EGFRvIII antibodies and uses thereof |
WO2015138460A1 (en) | 2014-03-11 | 2015-09-17 | Regeneron Pharmaceuticals, Inc. | Anti-egfrviii antibodies and uses thereof |
WO2015187596A3 (en) * | 2014-06-02 | 2016-02-25 | Regeneron Pharmaceuticals, Inc. | Antibody-drug conjugates, their preparation and their therapeutic use |
US9951141B2 (en) | 2014-06-02 | 2018-04-24 | Regeneron Pharmaceuticals, Inc. | Antibody-drug conjugates, their preparation and their therapeutic use |
EP3148592A2 (en) * | 2014-06-02 | 2017-04-05 | Regeneron Pharmaceuticals, Inc. | Antibody-drug conjugates, their preparation and their therapeutic use |
US10752690B2 (en) | 2014-06-02 | 2020-08-25 | Regeneron Pharmaceuticals, Inc. | Biologically active molecule conjugates, reagents and methods of manufacture, and therapeutic uses |
EP3900742A1 (en) | 2014-09-11 | 2021-10-27 | Seagen Inc. | Targeted delivery of tertiary amine-containing drug substances |
WO2016064749A3 (en) * | 2014-10-20 | 2016-11-17 | Igenica Biotherapeutics, Inc. | Antibody-drug conjugates and related compounds, compositions, and methods of use |
US10308713B2 (en) | 2014-10-31 | 2019-06-04 | Abbvie Biotherapeutics Inc. | Anti-CS1 antibodies and antibody drug conjugates |
US10011657B2 (en) | 2014-10-31 | 2018-07-03 | Abbvie Biotherapeutics Inc. | Anti-CS1 antibodies and antibody drug conjugates |
WO2016077260A1 (en) * | 2014-11-10 | 2016-05-19 | Bristol-Myers Squibb Company | Tubulysin analogs and methods of making and use |
WO2016160615A1 (en) | 2015-03-27 | 2016-10-06 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
US11191844B2 (en) | 2015-07-06 | 2021-12-07 | Regeneran Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
US11129903B2 (en) | 2015-07-06 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Multispecific antigen-binding molecules and uses thereof |
WO2017031034A3 (en) * | 2015-08-14 | 2017-03-30 | Rc Biotechnologies, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
EP3334462A4 (en) * | 2015-08-14 | 2019-08-07 | RC Biotechnologies, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
US10537644B2 (en) | 2015-08-14 | 2020-01-21 | Rc Biotechnologies, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
WO2017031034A2 (en) | 2015-08-14 | 2017-02-23 | Rc Biotechnologies, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
RU2698727C9 (en) * | 2015-08-14 | 2022-03-30 | Рс Биотекнолоджиз, Инк. | Covalent linkers in antibody-drug conjugates, methods for preparing them and use thereof |
EP3981433A1 (en) | 2015-08-14 | 2022-04-13 | RemeGen Biosciences, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
US10772965B2 (en) | 2015-08-14 | 2020-09-15 | Rc Biotechnologies, Inc. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
RU2698727C1 (en) * | 2015-08-14 | 2019-08-29 | Рс Биотекнолоджиз, Инк. | Covalent linkers in antibody-drug conjugates, methods for preparing them and use thereof |
AU2016308539B2 (en) * | 2015-08-14 | 2019-01-24 | Remegen Co., Ltd. | Covalent linkers in antibody-drug conjugates and methods of making and using the same |
WO2017095805A1 (en) | 2015-11-30 | 2017-06-08 | Abbvie Inc. | ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE |
US10195209B2 (en) | 2015-11-30 | 2019-02-05 | Abbvie Inc. | Anti-huLRRC15 antibody drug conjugates and methods for their use |
US10188660B2 (en) | 2015-11-30 | 2019-01-29 | Abbvie Inc. | Anti-huLRRC15 antibody drug conjugates and methods for their use |
US11045480B2 (en) | 2015-11-30 | 2021-06-29 | Abbvie Inc. | Anti-huLRRC15 antibody drug conjugates and methods for their use |
WO2017095808A1 (en) | 2015-11-30 | 2017-06-08 | Abbvie Inc. | ANTI-huLRRC15 ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE |
US11229708B2 (en) | 2015-12-04 | 2022-01-25 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
US20190015517A1 (en) * | 2015-12-04 | 2019-01-17 | Seattle Genetics, Inc. | Conjugates of quaternized tubulysin compounds |
WO2017100642A1 (en) | 2015-12-11 | 2017-06-15 | Regeneron Pharmaceuticals, Inc. | Methods for reducing or preventing growth of tumors resistant to egfr and/or erbb3 blockade |
US9950076B2 (en) | 2016-01-25 | 2018-04-24 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
US10463749B2 (en) | 2016-01-25 | 2019-11-05 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
WO2017132173A1 (en) | 2016-01-25 | 2017-08-03 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
US11446389B2 (en) | 2016-01-25 | 2022-09-20 | Regeneron Pharmaceuticals, Inc. | Maytansinoid derivatives, conjugates thereof, and methods of use |
US11352446B2 (en) | 2016-04-28 | 2022-06-07 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
EP4233909A2 (en) | 2016-05-17 | 2023-08-30 | AbbVie Biotherapeutics Inc. | Anti-cmet antibody drug conjugates and methods for their use |
EP3804765A1 (en) | 2016-05-17 | 2021-04-14 | AbbVie Biotherapeutics Inc. | Anti-cmet antibody drug conjugates and methods for their use |
WO2017201204A1 (en) | 2016-05-17 | 2017-11-23 | Abbvie Biotherapeutics Inc. | ANTI-cMet ANTIBODY DRUG CONJUGATES AND METHODS FOR THEIR USE |
EP3626273A1 (en) | 2016-05-17 | 2020-03-25 | AbbVie Biotherapeutics Inc. | Anti-cmet antibody drug conjugates and methods for their use |
WO2018002902A1 (en) | 2016-07-01 | 2018-01-04 | Glaxosmithkline Intellectual Property (No.2) Limited | Antibody-drug conjugates and therapeutic methods using the same |
WO2018058001A1 (en) | 2016-09-23 | 2018-03-29 | Regeneron Pharmaceuticals, Inc. | Anti-steap2 antibodies, antibody-drug conjugates, and bispecific antigen-binding molecules that bind steap2 and cd3, and uses thereof |
WO2018067331A1 (en) | 2016-09-23 | 2018-04-12 | Regeneron Pharmaceuticals, Inc. | Bi specific anti-muc16-cd3 antibodies and nti-muc16 drug conjugates |
EP4273172A2 (en) | 2016-09-23 | 2023-11-08 | Regeneron Pharmaceuticals, Inc. | Bi specific anti-muc16-cd3 antibodies and anti-muc16 drug conjugates |
WO2018058003A1 (en) | 2016-09-23 | 2018-03-29 | Regeneron Pharmaceuticals, Inc. | Anti-muc16 (mucin 16) antibodies |
US10711032B2 (en) | 2016-11-08 | 2020-07-14 | Regeneron Pharmaceuticals, Inc. | Steroids and protein-conjugates thereof |
WO2018089373A2 (en) | 2016-11-08 | 2018-05-17 | Regeneron Pharmaceuticals, Inc. | Steroids and protein-conjugates thereof |
US11760775B2 (en) | 2016-11-08 | 2023-09-19 | Regeneron Pharmaceuticals, Inc. | Steroids and protein-conjugates thereof |
US11142578B2 (en) | 2016-11-16 | 2021-10-12 | Regeneron Pharmaceuticals, Inc. | Anti-MET antibodies, bispecific antigen binding molecules that bind MET, and methods of use thereof |
WO2018093866A1 (en) | 2016-11-16 | 2018-05-24 | Regeneron Pharmaceuticals, Inc. | Anti-met antibodies, bispecific antigen binding molecules that bind met, and methods of use thereof |
US11491237B2 (en) | 2017-05-18 | 2022-11-08 | Regeneron Pharmaceuticals, Inc. | Cyclodextrin protein drug conjugates |
WO2019136487A2 (en) | 2018-01-08 | 2019-07-11 | Regeneron Pharmaceuticals, Inc. | Steroids and antibody-conjugates thereof |
US12070506B2 (en) | 2018-01-08 | 2024-08-27 | Regeneron Pharmaceuticals, Inc. | Steroids and antibody-conjugates thereof |
US12037411B2 (en) | 2018-04-30 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Antibodies, and bispecific antigen-binding molecules that bind HER2 and/or APLP2, conjugates, and uses thereof |
WO2019212965A1 (en) | 2018-04-30 | 2019-11-07 | Regeneron Pharmaceuticals, Inc. | Antibodies, and bispecific antigen-binding molecules that bind her2 and/or aplp2, conjugates, and uses thereof |
US11377502B2 (en) | 2018-05-09 | 2022-07-05 | Regeneron Pharmaceuticals, Inc. | Anti-MSR1 antibodies and methods of use thereof |
WO2019217591A1 (en) | 2018-05-09 | 2019-11-14 | Regeneron Pharmaceuticals, Inc. | Anti-msr1 antibodies and methods of use thereof |
WO2019222663A1 (en) | 2018-05-17 | 2019-11-21 | Regeneron Pharmaceuticals, Inc. | Anti-cd63 antibodies, conjugates, and uses thereof |
WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
WO2020022900A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for kidney cancer |
WO2020022903A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | ARID1A, CDKN2A, KMT2B, KMT2D, TP53 and PTEN VACCINES FOR CANCER |
WO2020022901A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for uterine cancer |
WO2020022902A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for colorectal cancer |
WO2020022899A1 (en) | 2018-07-26 | 2020-01-30 | Frame Pharmaceuticals B.V. | Cancer vaccines for breast cancer |
CN111433188B (en) * | 2018-12-17 | 2023-08-01 | 荣昌生物制药(烟台)股份有限公司 | Connector for antibody drug conjugate and application thereof |
EP3868409A4 (en) * | 2018-12-17 | 2022-06-15 | RemeGen Co., Ltd. | Connector for use in antibody medicament conjugate and applications of connector |
CN111433188A (en) * | 2018-12-17 | 2020-07-17 | 荣昌生物制药(烟台)股份有限公司 | Linker for antibody drug conjugate and application thereof |
WO2020132483A1 (en) | 2018-12-21 | 2020-06-25 | Regeneron Pharmaceuticals, Inc. | Rifamycin analogs and antibody-drug conjugates thereof |
WO2020172475A1 (en) | 2019-02-21 | 2020-08-27 | Regeneron Pharmaceuticals, Inc. | Methods of treating ocular cancer using anti-met antibodies and bispecific antigen binding molecules that bind met |
WO2021016204A1 (en) | 2019-07-19 | 2021-01-28 | Immunesensor Therapeutics, Inc. | Antibody-sting agonist conjugates and their use in immunotherapy |
US11896682B2 (en) | 2019-09-16 | 2024-02-13 | Regeneron Pharmaceuticals, Inc. | Radiolabeled MET binding proteins for immuno-PET imaging and methods of use thereof |
WO2021055895A1 (en) | 2019-09-19 | 2021-03-25 | Regeneron Pharmaceuticals, Inc. | Anti-ptcra antibody-drug conjugates and uses thereof |
US11814428B2 (en) | 2019-09-19 | 2023-11-14 | Regeneron Pharmaceuticals, Inc. | Anti-PTCRA antibody-drug conjugates and uses thereof |
WO2021174113A1 (en) | 2020-02-28 | 2021-09-02 | Regeneron Pharmaceuticals, Inc. | Bispecific antigen binding molecules that bind her2, and methods of use thereof |
US11958910B2 (en) | 2020-02-28 | 2024-04-16 | Regeneron Pharmaceuticals, Inc. | Bispecific antigen binding molecules that bind HER2, and methods of use thereof |
WO2021178896A1 (en) | 2020-03-06 | 2021-09-10 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
WO2021211984A1 (en) | 2020-04-16 | 2021-10-21 | Regeneron Pharmaceuticals, Inc. | Diels-alder conjugation methods |
WO2022015656A1 (en) | 2020-07-13 | 2022-01-20 | Regeneron Pharmaceuticals, Inc. | Camptothecin analogs conjugated to a glutamine residue in a protein, and their use |
WO2022056494A1 (en) | 2020-09-14 | 2022-03-17 | Regeneron Pharmaceuticals, Inc. | Antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof |
US11866502B2 (en) | 2020-10-22 | 2024-01-09 | Regeneron Pharmaceuticals, Inc. | Anti-FGFR2 antibodies and methods of use thereof |
WO2022087243A1 (en) | 2020-10-22 | 2022-04-28 | Regeneron Pharmaceuticals, Inc. | Anti-fgfr2 antibodies and methods of use thereof |
WO2022187591A1 (en) | 2021-03-05 | 2022-09-09 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
WO2023014863A1 (en) | 2021-08-05 | 2023-02-09 | Go Therapeutics, Inc. | Anti-glyco-muc4 antibodies and their uses |
WO2023034569A1 (en) | 2021-09-03 | 2023-03-09 | Go Therapeutics, Inc. | Anti-glyco-cmet antibodies and their uses |
WO2023034571A1 (en) | 2021-09-03 | 2023-03-09 | Go Therapeutics, Inc. | Anti-glyco-lamp1 antibodies and their uses |
WO2023137026A1 (en) | 2022-01-12 | 2023-07-20 | Regeneron Pharmaceuticals, Inc. | Camptothecin analogs conjugated to a glutamine residue in a protein, and their use |
WO2023173132A1 (en) | 2022-03-11 | 2023-09-14 | Regeneron Pharmaceuticals, Inc. | Anti-glp1r antibody-drug conjugates comprising glp1 peptidomimetics and uses thereof |
WO2024020164A2 (en) | 2022-07-21 | 2024-01-25 | Firefly Bio, Inc. | Glucocorticoid receptor agonists and conjugates thereof |
WO2024138000A1 (en) | 2022-12-21 | 2024-06-27 | Regeneron Pharmaceuticals, Inc. | Prodrugs of topoisomerase i inhibitor for adc conjugations and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
US20160303247A1 (en) | 2016-10-20 |
JP2015500287A (en) | 2015-01-05 |
US20200392108A1 (en) | 2020-12-17 |
AU2012348017A1 (en) | 2014-07-03 |
CA2857398A1 (en) | 2013-06-13 |
CN104244718A (en) | 2014-12-24 |
ZA201403946B (en) | 2015-09-30 |
MX2014006739A (en) | 2015-06-05 |
HK1203309A1 (en) | 2015-10-30 |
SG11201402686UA (en) | 2014-06-27 |
BR112014013526A8 (en) | 2017-06-13 |
KR20140139480A (en) | 2014-12-05 |
US20130224228A1 (en) | 2013-08-29 |
BR112014013526A2 (en) | 2017-06-13 |
EP2793585A4 (en) | 2015-12-09 |
RU2014124984A (en) | 2016-01-27 |
EP2793585A1 (en) | 2014-10-29 |
IL232936A0 (en) | 2014-07-31 |
IN2014CN04961A (en) | 2015-09-18 |
PH12014501229A1 (en) | 2014-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200392108A1 (en) | Antibody-drug conjugates and related compounds, compositions and methods | |
US20180147294A1 (en) | Antibody-drug conjugates, compositions and methods of use | |
JP2023018157A (en) | Hydrophilic antibody-drug conjugates | |
BR112020020466A2 (en) | CAMPTOTECIN PEPTIDE CONJUGATES | |
CN110240654A (en) | In conjunction with the antibody-drug conjugates of CD73 | |
CN105813653A (en) | Methylene carbamate linkers for use with targeted-drug conjugates | |
CN110577600B (en) | GPC 3-targeted antibody-drug conjugate, and preparation method and application thereof | |
WO2015195904A1 (en) | Her2 antibody-drug conjugates | |
WO2018036438A1 (en) | Antibody-drug conjugate and preparation method and application thereof | |
TW202203978A (en) | Charge variant linkers | |
JP2021505676A (en) | Anti-CD22 antibody-Maytan synconjugate and how to use it | |
JP6855496B2 (en) | Anti-CD22 antibody-Maytan synconjugate and how to use it | |
CN112601522A (en) | antibody-ALK 5 inhibitor conjugates and uses thereof | |
JP2022548306A (en) | Selective drug release from conjugates of internalized biologically active compounds | |
JP2023529640A (en) | therapeutic conjugate | |
CN114269388A (en) | antibody-ALK 5 inhibitor conjugates and uses thereof | |
CA3113378A1 (en) | Sulfomaleimide-based linkers and corresponding conjugates | |
WO2024212922A1 (en) | Camptothecin compound and conjugates thereof, preparation method therefor and use thereof | |
WO2024193692A1 (en) | Linker and use thereof in ligand drug conjugate | |
BR122023026165A2 (en) | CAMPTOTECIN PEPTIDE CONJUGATES AND USES THEREOF | |
CN118681035A (en) | Ligand drug conjugate and preparation method and application thereof | |
NZ722252B2 (en) | Hydrophilic antibody-drug conjugates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12855849 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2857398 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12014501229 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 232936 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2014546004 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/006739 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2012855849 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012855849 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2012348017 Country of ref document: AU Date of ref document: 20121204 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147018663 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014124984 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014013526 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014013526 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140604 |